

Elevating
React Web
Development
with Gatsby

Practical guide to building performant, accessible,
and interactive web apps with React and Gatsby.js 4

Samuel Larsen-Disney

BIRMINGHAM—MUMBAI

Elevating React Web Development
with Gatsby
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Group Product Manager: Pavan Ramchandani
Publishing Product Manager: Ashitosh Gupta
Senior Editor: Hayden Edwards
Content Development Editor: Rashi Dubey
Technical Editor: Joseph Aloocaran
Copy Editor: Safis Editing
Project Coordinator: Rashika Ba
Proofreader: Safis Editing
Indexer: Hemangini Bari
Production Designer: Roshan Kawale
Marketing Coordinator: Anamika Singh

First published: January 2022
Production reference: 1190122

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80020-909-1
www.packt.com

http://www.packt.com

To Carlota, for making me believe I could do this, motivating me when it
was tough, and always filling my days with happiness. To my family, for

their love and support, and buying this book even though they aren't web
developers.

– Samuel Larsen-Disney

Contributors

About the author
Sam studied computer science at King's College, London. He helped design and build
American Express' websites. He then moved to BehaviourLab where he led frontend
development, before deciding he wanted to get out of finance. He has since become
a senior frontend engineer at Zone. He is most at home coding in React, JavaScript,
GraphQL, and Gatsby but is always open to learning something new. When coding, he
likes to ensure his code is accessible and performant. In the last year, Sam has contributed
1,300+ times to open source projects. He enjoys teaching the next generation to code
through his articles and presentations, and at hackathons.

My passion for web development is the direct result of some awesome
engineers who took the time to teach me their craft. I would particularly
like to thank Adam Wilkinson and Diego Abizaid who challenged what
I thought was possible in the browser. I would also like to thank Yannis
Panagis, Ryan Gregory, Çelik Köseoğlu, Meghan Avery, Arthur Ceccotti,

Ruben Casas, and Joshua Gabrel, who all made my web development
journey unique.

About the reviewer
Benjamin Read has been developing websites for the past decade. That covers a lot of
ground: from the advent of the iPhone and responsive design to today's isomorphic,
serverless, and reactive web applications. A few years ago, he came across an exciting
new project called Gatsby. Gatsby catapulted his interests in static sites, GraphQL,
content management systems, and other concepts that continue to propel his technical
interests today. When he's not working, contributing to open source, or tinkering with
new technology, Ben is usually found spending time with his wife and three children, or
reading a good book.

Table of Contents
Preface

Part 1: Getting Started

1
An Overview of Gatsby.js for the Uninitiated

Technical requirements 4
A brief history of the static web 4
What is Gatsby? 5
Community 6
Sourcing content from anywhere 7
Building tooling you already know 7
Supercharging web performance 8

Gatsby use cases 8
Documentation sites 9
Online courses 10

SaaS products 11
Design agencies and photo-heavy sites 12

Gatsby's competitors 13
Setting up a project 14
Node.js version 14.15.0+ 14
Gatsby command-line interface 15
Directory and package setup 15
Framework files and folders 18
Creating your first few pages 19

Summary 26

2
Styling Choices and Creating Reusable Layouts

Technical requirements 28
Styling in Gatsby 28
Vanilla CSS 28
Sass 29
Tailwind (utility-first CSS framework) 30
CSS in JS 31
Picking a styling tool 32

Styling with CSS 33
Creating a wrapper component 33
Using gatsby-browser.js 35
Verifying our implementation 36

Styling with Sass 36
Styling with Tailwind.css 38

vi Table of Contents

Styling with styled-components 41
Creating a reusable layout 44
Site header 44
Site footer 45

Layout component 46
Organization with atomic design 47

Summary 48

3
Sourcing and Querying Data (from Anywhere!)

Technical requirements 50
Data in Gatsby 50
Introducing GraphQL 51
GraphQL for Gatsby 51
Using GraphiQL 54
Using constructed GraphQL queries 56

Sourcing data from local files 56
Site metadata 56

Markdown 59
MDX 64

Sourcing data from
a Headless CMS 68
GraphCMS 68
Prismic 76

Summary 83

4
Creating Reusable Templates

Technical requirements 86
Creating templates and
programmatic
page generation 86
Blog post template 88

Blog preview template 94
Tag page template 100

Search functionality 105
Summary 110

5
Working with Images

Technical requirements 111
Images on the web 112
Images in Gatsby 112

The StaticImage component 113
The GatsbyImage component 115

Overriding the
gatsby-plugin-image defaults 118
Sourcing images from CMS 119
Sourcing images from GraphCMS 120
Sourcing images from Prismic 122

Summary 126

Table of Contents vii

Part 2: Going Live

6
Improving Your Site's Search Engine Optimization

Technical requirements 130
Introducing SEO 130
On-page search engine optimization 131

Creating an SEO component 132
Exploring meta previews 135
Open Graph metadata 136

Twitter metadata 137
Merging tags 139
Validating tags 140

Learning about XML sitemaps 141
Hiding your site from
search engines 143
Summary 145

7
Testing and Auditing Your Site

Technical requirements 148
Exploring unit testing 148
Testing simple components 153
Testing the SEO component 154
Testing Gatsby page components 155

Adding Git hooks for tests 156

Auditing core web vitals 157
Using Chrome's lighthouse tool 158
Using the web-vitals
JavaScript package 161

Summary 163

8
Web Analytics and Performance Monitoring

Technical requirements 166
Introducing website analytics 166
Privacy 166

Implementing page analytics 167
Adding Google Analytics 168

Using Fathom Analytics 174

Monitoring the performance
of your site 177
Using Sentry.io analytics 178

Summary 179

viii Table of Contents

9
Deployment and Hosting

Technical requirements 182
Understanding build types 182
Common build errors 182
Your pre-deployment checklist 183
Platforms for deploying
hybrid builds 184
Deploying to Gatsby Cloud Hosting 184

Platforms for deploying
static builds 189
Deploying to Netlify 189
Deploying to Render 193
Deploying to Firebase 197

Serving a Gatsby site with
reduced user access 201
Summary 204

Part 3: Advanced Concepts

10
Creating Gatsby Plugins

Technical requirements 207
Understanding Gatsby plugins 208
Introducing local plugin
development 208
Debugging local plugins 209

Creating source plugins 210

Creating theme plugins 218
Contributing to the
plugin ecosystem 225
Pre-publish checklist 225
Publishing a plugin 226

Summary 227

11
Creating Authenticated Experiences

Technical requirements 230
Routing and authentication
in React applications 230
Private routes 233

Authentication using
client-only routes
within Gatsby 238
Site-wide authentication
using context within Gatsby 242
Summary 245

Table of Contents ix

12
Using Real-Time Data

Technical requirements 247
Introduction to web sockets 248
Socket.io in action 248
Live site visitor count 257

Gaining further insights
with rooms 261
Summary 265

13
Internationalization and Localization

Technical requirements 267
Understanding localization
and internationalization 268
Implementing routes for
internationalization 268

Page translations for
programmatic pages 273
Providing locale translations
for single-instance pages 280
Summary 283

Index
Other Books You May Enjoy

Preface
Gatsby is a powerful React static site generator that enables you to create lightning-fast
web experiences. With this latest version of Gatsby, you can combine your static content
with server-side rendered and deferred static content to create a fully rounded application.
Elevating React Web Development with Gatsby provides a comprehensive introduction for
anyone new to GatsbyJS and will have you up to speed in no time.

Complete with hands-on tutorials and projects, this easy-to-follow guide starts by teaching
you the core concepts of GatsbyJS. You'll then discover how to build performant, accessible,
and scalable websites by harnessing the power of the GatsbyJS framework. This book takes a
practical approach to help you to build anything from your personal website through to large-
scale applications with authentication and make your site rise through those SEO rankings.

By the end of this book, you will know how to build client websites your users will love. Every
aspect of performance and accessibility is a point of emphasis with this tool and you will
learn how to squeeze every ounce of benefit out of it through the book's material.

Who this book is for
This book is for web developers who want to use GatsbyJS with React to build better static
and dynamic web apps. Prior experience of React basics is necessary. Basic experience of
Node.js will help you to get the most out of this book.

What this book covers
Chapter 1, An Overview of Gatsby.js for the Uninitiated, provides baseline knowledge of
what Gatsby.js is and explains the guiding principles we will be using in later chapters to
build our web application.

Chapter 2, Styling Choices and Creating Reusable Layouts, shows how to make an informed
choice about the way you would like to style your application. We will cover using CSS,
SCSS, styled-components, and Tailwind.css.

xii Preface

Chapter 3, Sourcing and Querying Data (from Anywhere!), gets you to a position where
you can comfortably source and ingest data into your Gatsby projects from a multitude of
different sources.

Chapter 4, Creating Reusable Templates, explains how to use your sourced data to
programmatically create site pages, blog posts, and more!

Chapter 5, Working with Images, shows you how to master the art of adding responsive
images to your Gatsby site without impacting performance.

Chapter 6, Improving Your Site's Search Engine Optimization, explains how SEO works,
what search engines look for within your site pages, and how to improve your site's
presence on the web.

Chapter 7, Testing and Auditing Your Site, covers testing and auditing your application
using industry-standard tooling.

Chapter 8, Web Analytics and Performance Monitoring, explains how to add analytics to
your site and use your audience to make your site even better!

Chapter 9, Deployment and Hosting, shows how to take the project we have been working
on and deploy it for the world to see!

Chapter 10, Creating Gatsby Plugins, covers creating source and theme plugins and
explains how to contribute them to the Gatsby plugin ecosystem.

Chapter 11, Creating Authenticated Experiences, shows you how to add protected routes to
create logged-in experiences on your site.

Chapter 12, Using Real-Time Data, explains how you can use sockets to create experiences
that make use of real-time data.

Chapter 13, Internationalization and Localization, covers patterns you can use to make
translating your site as it scales simple.

To get the most out of this book
All code examples have been tested using Gatsby 4.4.0 on macOS. However, they should
work with future 4.x releases too.

Preface xiii

This book assumes you have an Integrated Development Environment (IDE) installed
that you are comfortable using.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Elevating-React-Web-Development-
with-Gatsby-4. If there's an update to the code, it will be updated in the
GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800209091_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Create a gatsby-config.js file in your root directory and add
the following."

A block of code is set as follows:

module.exports = {

 plugins: [],

};

https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781800209091_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800209091_ColorImages.pdf

xiv Preface

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

import React from "react"

import {Link} from "gatsby"

export default function Index() => {

 return (

 <div>

 <h1>My Landing Page</h1>

 <p>This is my landing page.</p>

 <Link to="/about">About Me</Link>

 </div>

)

}

Any command-line input or output is written as follows:

gatsby develop -H 0.0.0.0

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "When you
hit the Play button above the query, you will see the result of that query on the central
right column, with a JSON object containing the data property and our query's result
inside it."

Tips or Important Notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of
your message.

mailto:customercare@packtpub.com

Preface xv

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful
if you would report this to us. Please visit www.packtpub.com/support/errata
and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com

Part 1:
Getting Started

Upon finishing this part, you should have a clear understanding of what Gatsby.js is. You
should also be at a point where you can comfortably develop basic sites in Gatsby.js on
your local machine.

In this part, we include the following chapters:

• Chapter 1, An Overview of Gatsby.js for the Uninitiated

• Chapter 2, Styling Choices and Creating Reusable Layouts

• Chapter 3, Sourcing and Querying Data (from Anywhere!)

• Chapter 4, Creating Reusable Templates

• Chapter 5, Working with Images

1
An Overview of

Gatsby.js for the
Uninitiated

In this book, we will take your existing React knowledge and supplement it with Gatsby.js
(which we will refer to as Gatsby from now on) to create performant and accessible static
sites. I hope to give you the tools you need to create better websites using Gatsby and get
you to join the static site revolution. So, happy hacking!

This chapter starts with a brief historical look at the static web and why Gatsby was
created. Then, we'll think about what Gatsby is and how it builds on React. Next, we'll go
through some of the use cases of Gatsby and identify Gatsby's competitors. Finally, we'll
set up a basic Gatsby project, having created our first few pages.

4 An Overview of Gatsby.js for the Uninitiated

In this chapter, we will cover the following topics:

• A brief history of the static web

• What is Gatsby?

• Gatsby use cases

• Gatsby's competitors

• Setting up a project

Technical requirements
The code present in this chapter can be found at https://github.com/
PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/
tree/main/Chapter01.

A brief history of the static web
Static sites have been around nearly as long as the internet itself. They are the original
blueprint for any website – HyperText Markup Language (HTML), Cascading Style
Sheets (CSS), and JavaScript (JS). In the 1990s, HTML was the only publishing
mechanism for the web. To get content on the internet, you would have to create a static
HTML file and expose it to the internet via a server. If you wanted to modify one of your
web pages, you would need to change its corresponding HTML file directly.

While learning HTML is part of primary education these days, back in the 1990s, it was
a novel skill to understand and write the language. Creating or editing content was costly,
as you would require someone with this skill set for every modification. Luckily, Content
Management Systems (CMSes) (WordPress, Drupal, and so on) soon swooped in to
allow non-technical users to control a webpage's design and content. It also gave users the
ability to store and manage files via a user interface. CMSs continue to be utilized today
with increasing popularity. The number of websites using a CMS has risen from 23.6% to
63% in the last decade. Over 75 million sites use WordPress today – that's 30% of the web!

At an almost identical pace, frontend frameworks and libraries have gained notoriety.
Building single-page applications became commonplace. Today, the most dominant
UI library in the JS world is Facebook's React.js, which is a small library with a handful
of functions but some big ideas – a virtual DOM, JavaScript Syntax Extension (JSX),
and componentization. There is no denying how much impact React has had on web
development. In 2020, 80% of JS developers had used it, and 70% of JS developers said
they would use it again.

https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter01
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter01
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter01

What is Gatsby? 5

Frontend frameworks have entirely changed how developers approach web development,
giving them the flexibility to focus on functionality over content and drastically
speeding up their workflows. But you're only as fast as your slowest team member. The
clunky nature of CMS platforms was revealed when developers started to employ these
frameworks and integrate them with CMSs. Traditional CMS workflows made use of
databases and environments that frontend frameworks had removed from the equation.
Combining this with CMS security and bottleneck issues led to the rebirth of static sites.

Kyle Mathews, the founder of Gatsby, was a catalyst for this trend. He noticed that
the expectations on website accessibility and performance increased dramatically. He
observed apps investing millions of dollars in user experience. There is no denying
that the disparity between a 2005 and 2015 website was significant. In a competitive
environment such as the web, you have to have a product that can stand out. Mathews
took a step back, identified gaps in existing tooling, and asked what the ideal product
might be. This research is what led him to create Gatsby.

It's almost poetic that we have gone full circle and returned to static content because there
is no beating it when it comes to speed and performance.

What is Gatsby?
Gatsby is a free, open source static site generator that harnesses React. Static site
generators are software applications that create static pages from a template or component
and supplement them with content from a source. Static site generators are an alternative
to a more traditional database-driven CMS, such as WordPress. In these conventional
systems, content is managed and stored in a database. When the server receives a
particular URL request, the server retrieves data from the database, mixes it with a
template file, and generates an HTML page as its response. Generating HTML on demand
can be a time-consuming process and can leave the user twiddling their thumbs or, worse,
leaving your site. Bounce rates (the percentage of visitors to a particular website who
navigate away from the site after viewing only one page) hover below 10% for websites
that take less than 3 seconds to load, but the number jumps to 24% for a 4-second load
time and 38% for a 5-second load time.

6 An Overview of Gatsby.js for the Uninitiated

Static site generators like Gatsby, on the other hand, generate pages during a build process.
During this process, Gatsby brings in data to its GraphQL layer, where it can be queried in
pages and templates. The requested data is then stored in JSON and accessed by the built
pages, which are composed of HTML, JS, and CSS files. A user can deploy these generated
pages to a server. When it receives a request, the server responds with predetermined,
static, rendered HTML. As these static pages are generated at build time, they eliminate
the latency that databases would introduce. You can even do away with web servers
altogether and have your site served via a CDN pointing to a storage medium, such as an
AWS Simple Storage Service (S3) bucket. The difference is striking; web experiences built
with Gatsby are lightning fast, as nothing can be faster than sending static content.

Important Note
A static site can contain dynamic and exciting experiences! It is a common
misconception that "static" means the site is stationary. This could not be
further from the truth. The word "static" only refers to the manner in which
files are retrieved by a client.

While Gatsby is known for static site generation, recent versions also include
server-side and deferred static generation, rendering functionality for when static
generation is not enough.

Aside from creating a blazing-fast user experience, Gatsby also has a focus on developer
experience. As we learn and build, I'm sure you will start to recognize how easy it is to use.
The way it achieves this can be broken down into four steps.

Community
Gatsby has an incredibly supportive community backing. At the time of writing, over
3,600 people have contributed to the Gatsby repository. This is further amplified by the
plugin ecosystem surrounding Gatsby; the community has created more than 2,000+
plugins that abstract complex functionality that other developers may wish to use in their
own projects. These plugins are distributed as packages stored on a JS repository, such
as NPM, that can be added to your project in a few lines. They can extend your site by
sourcing content, transforming data, creating pages, or theming your application.

What is Gatsby? 7

Sourcing content from anywhere
Every day, the amount of data we need to combine to create experiences is rising. In
traditional React applications, managing multiple sources of data could become a
nightmare. Storing, massaging, merging, and querying data all require complex solutions
that struggle to scale.

Gatsby does this differently. Whether you are sourcing data from a CMS, real-time
database, or even a custom Application Programming Interface (API), you can
merge all of this data into a unified data layer. The Gatsby community is constantly
contributing source plugins to allow you to ingest data from your favorite sources with
ease. Nine times out of ten, you won't need to write a single line of code to source your
data, but for the times when you do, we will be covering plugin creation in Chapter 10,
Creating Gatsby Plugins.

Once ingested into this data layer, we can explore and query all our sources of data in one
place using a uniform data layer. Using the power of GraphQL, we can query our data
in the same way when rendering pages regardless of their source. The GraphQL layer is
transitory and doesn't exist after the application has been built, so doesn't affect the size
of your production site. If GraphQL is something new to you, don't worry – I will be
explaining how it works in Chapter 3, Sourcing and Querying Data (from Anywhere!).

Building tooling you already know
Often when we approach new technologies, we are faced with a steep learning curve as
we understand new syntax and ways of thinking. In Gatsby, we build on your existing
knowledge of React instead of starting from scratch. Underpinning all of our code is the
same React component model many of you already know. You should feel pretty confident
from the beginning, as the code should look familiar, and if you're not, Gatsby can also
help you learn React from a more "content-driven" approach.

8 An Overview of Gatsby.js for the Uninitiated

Supercharging web performance
As web developers, we can spend considerable time tinkering with websites to squeeze
every ounce out of their performance. Sometimes, this can take as long, if not longer,
than building the design. Also, performance gains can sometimes be undone instantly
by a change to the site design outside of your control. It's because of this that some large
organizations have dedicated teams to improve site performance. But it doesn't have to
be this way! As we start to build together, you will see that load times go from seconds to
milliseconds, and your site will feel far more responsive than a conventional React app.
Gatsby has plenty of tricks up its sleeve that improve performance, some of which we will
touch on at the end of this chapter. It also turns your site into a Progressive Web App
(PWA) with just a few lines of code – if that's not cool, I don't know what is!

Important Note
An essential distinction between Gatsby and React is that Gatsby is a
"framework," not a "library." When using a library, you control your application
flow; you call it when you need it. When using a framework, however, there is
an inversion of control. Frameworks command that you adhere to a particular
flow and layout defined by them. Working within a framework can often be
seen as a benefit, as any developer familiar with the framework will know
where to find relevant files and code.

I hope you are beginning to see some of the great reasons why Gatsby is such a powerful
tool. Let's now see it in action.

Gatsby use cases
You might be starting to realize that Gatsby could have applications across many different
kinds of websites. Since Gatsby's v1 launch in 2017, the framework has been used in a
multitude of different ways by companies both big and small. Here, I want to highlight
some examples of use cases where Gatsby excels and suggest why companies may have
chosen Gatsby for these sites.

Tip
While reading about these example sites here is great, I highly encourage you to
visit them via your own device. One of Gatsby's best features is the speed of the
sites it creates, and it is essential to experience this for yourself to understand
the benefit.

Gatsby use cases 9

Documentation sites
Documentation sites are a perfect use case for Gatsby as their content is primarily, if not
entirely, static. Their content does not shift often either, with pages needing infrequent
updates. Their static nature means that we can generate all page routes during the build
process and load them onto a CDN, meaning that when a page is requested, the request is
near-instant. It is for this reason that you see sites such as the official React documentation
(https://reactjs.org) being made with Gatsby:

Figure 1.1 – The React documentation website

Due to the infrequent nature of updates to documentation pages, you can automate the
build and deployment of your site as and when changes to documentation are made. With
GitHub integrations or webhooks, you can get your documentation site to redeploy each
change to a master branch or on a daily basis, for example. We will be exploring how to
create these kinds of processes in Chapter 9, Deployment and Hosting.

https://reactjs.org

10 An Overview of Gatsby.js for the Uninitiated

Online courses
Online courses often have a unique structure – the majority of their content is in static
learning modules, but they also require a small quantity of authenticated routes for
logged-in user experiences.

Websites such as DesignCode.io (https://designcode.io/courses) utilize Gatsby
for their static content, meaning their static pages are incredibly performant, and they
then render authenticated routes on the client. While this does increase bundle size, as
they need to ship more JS, the benefit of the fast static pages far outweighs the cost of
heavier authenticated pages:

Figure 1.2 – The DesignCode.io website

One of the most popular sources of data for Gatsby is MDX. MDX is a powerful format
that allows you to write JSX within Markdown. Why is it awesome? Because you
can include React components alongside documentation with no hassle at all. React
components can be far more interactive and dynamic than text, and as a result, it is
a powerful format to create online courses on, as you can create content that is more
enticing for the user. Perhaps a more interactive course is a more memorable one? We will
be diving into MDX in detail in Chapter 3, Sourcing and Querying Data (from Anywhere!).

https://designcode.io/courses

Gatsby use cases 11

SaaS products
When selling Software as a Service (SaaS) online, your website's performance can be
considered a reflection of your product's performance. As a result, having a clunky
website can be the difference between your product being a success or not. As mentioned
previously, this is an example where you could go down a rabbit hole to improve your
site's performance. Companies such as Skupos (https://www.skupos.com/)
use Gatsby to get more performance benefits for free. Gatsby also works wonders for
Search Engine Optimization (SEO). As pages are prerendered, all your page content is
available to web crawlers such as Googlebot to navigate to your site. The speed and SEO
improvements help their product's website stand out and give the user confidence that
they know what they are doing when it comes to technology:

Figure 1.3 – The Skupos website

Skupos also supplement their site pages with metadata and alt-text, which further aids
web crawlers in understanding site content. The more web crawlers understand your site's
content, the better your search engine ranking will be.

https://www.skupos.com/

12 An Overview of Gatsby.js for the Uninitiated

Design agencies and photo-heavy sites
In cases where your work is more visual, your site often needs to make use of large
quantities of high-resolution images. We've all visited a website and felt like we were
transported back to the dial-up days as we've waited for large image files to load. This
common mistake is often amplified further by a large amount of cumulative layout shift
that happens when loading images. Gracefully handling the image's loading state to avoid
this can be a headache.

Gatsby performs magic for images within its application. It utilizes the sharp library
(https://github.com/lovell/sharp) under the hood to convert your large
images into smaller web-friendly sizes. When your website loads, it will first load in a
smaller resolution version before blurring up to the maximum resolution required. This
results in no layout shift and a far less "jumpy" experience for your site visitor. A great
example of this is on the Call Bruno Creative Agency (https://www.callbruno.
com/en/reelevant) website developed with Gatsby:

Figure 1.4 – The Call Bruno Creative Agency website

https://github.com/lovell/sharp
https://www.callbruno.com/en/reelevant
https://www.callbruno.com/en/reelevant

Gatsby's competitors 13

They use lots of imagery across their project pages, but the image load does not take you
out of the experience. We will get into detail on handling images in Chapter 5, Working
with Images.

By exploring these sites, we can see examples across industries where Gatsby is helping
companies get ahead of their competition.

Gatsby's competitors
While this book focuses on Gatsby, it is crucial to understand that it is not the only React
static site generator on the market. The competitor most often uttered in the same breath
is Next.js.

Until recently, the key difference between Next.js and Gatsby was server-side rendering.
Like Gatsby, a Next.js application can be hosted statically, but it also used to be able to
server render pages where Gatsby could not. Instead of deploying a static build, a server
is deployed to handle requests. When a page is requested, the server builds that page and
caches it before sending it to the user. This means that subsequent requests to the resource
are faster than the first call. As of version 4, Gatsby can have all of its pages prebuilt
statically or it can create a hybrid build – a mixture of static and server-side rendered
content. We will discuss this more in Chapter 9, Deployment and Hosting.

One major drawback to Next.js is its data security. When building Gatsby sites as static
builds, data is only taken from the source at build time, and as the content is static,
it is secure. Next.js keeps data stored on the server and, as such, it is easier to exploit.
Next.js commonly requires more initialization if you wish to set it up via a server or
using databases. This also means that there is more maintenance required in Next.js
applications. Both Next.js and Gatsby have additional utilities to help with the handling of
images. Gatsby, however, can make images more performant on statically rendered pages,
while Next cannot.

The good news is that all static site generators follow a similar process. The skills and
mentality you learn in this book are easily transferable to a different generator in the future
should you decide you want to make the switch.

Now that we understand where Gatsby excels, let's start creating our first Gatsby project.

14 An Overview of Gatsby.js for the Uninitiated

Setting up a project
In order to help you put into practice what you're learning, we will be building a project
together. Throughout this book, we will be working to build a personal portfolio,
something that every developer needs and therefore something I think will be relevant for
most readers. The portfolio will contain blog pages to aid your learning in public, project
pages to demonstrate your work, a stats page showcasing interesting metrics on your site,
as well as many more features that will help your portfolio stand out from the crowd.

Throughout this book, you will be faced with options. We will discuss different
implementations for styling your site, as well as data sources you may want to implement.
This should give you the flexibility to align it with your current knowledge. Alternatively,
you can throw yourself in the deep end – the choice is up to you. Everywhere there is a
choice, I will also provide my personal recommendation for what might be best if you
can't decide.

To see a finished version of the portfolio we will be building, visit this link:

https://elevating-react-with-gatsby.sld.codes/

Tip
Refer to the code repository (https://github.com/
PacktPublishing/Elevating-React-Web-Development-
with-Gatsby-4) that accompanies this book if you're struggling at any
point. It includes a copy of the project as it should appear after every chapter.

To start using Gatsby, we need to ensure we have a few prerequisite tools set up on our
machines. Most of these prerequisites are most likely already on your device if you are a
React developer, although I would still encourage you to read through this list, as some of
your tools may need an update.

Node.js version 14.15.0+
As of version 4.0, Gatsby supports all Node.js versions greater than 14.15.0. You can
quickly check if you have Node.js installed by opening up a terminal window and typing
the following:

 node -v

If you have Node.js installed, this should print a version number. However, if you receive
an error, you can download Node.js by navigating to the Node.js website (https://
nodejs.org). Node.js comes bundled with npm, a package repository, package manager,
and command-line tool that we will be using to install Gatsby.

https://elevating-react-with-gatsby.sld.codes/
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4
https://nodejs.org
https://nodejs.org

Setting up a project 15

Tip
You're most likely already using Node.js, and some of your pre-existing projects
may require a different version than the requirements specified here. If you
need to manage multiple versions of Node.js on the same device, you should
check out the Node.js Version Manager (NVM)(https://github.com/
nvm-sh/nvm). It gives you access to valuable commands, including installing
new versions and switching between minor and major versions of Node.js.

Gatsby command-line interface
The Gatsby Command-Line Interface (CLI) is a tool built by the core Gatsby team; it
allows you to perform standard functions, such as creating new Gatsby projects, setting up
local development servers, and building your production site. Although you can use it on
a per-project basis, it is far more common to install the CLI globally so that you can use
its features across multiple Gatsby projects without having to install it as a package in each
project – got to save that hard-drive space!

To install the CLI globally, npm install it with the global flag:

npm i -g gatsby-cli

To verify its installation, open up a terminal window and type the following:

gatsby --help

If running this provides a list of commands and does not error out, then you're good to go.

Important Note
Throughout this book, I use npm as my package manager. If you prefer Yarn,
you can use the Yarn equivalent commands.

Directory and package setup
Here, we will begin to create the files and folders we need to start our project, as well as
install necessary dependencies such as React and Gatsby.

First, create a folder to house our project. You can call it whatever you like. Throughout
this book, I will refer to this folder as the root folder of the application. Open a terminal
and navigate to your root folder. Initialize a new package in this folder by running the
following:

npm init -y

https://github.com/nvm-sh/nvm
https://github.com/nvm-sh/nvm

16 An Overview of Gatsby.js for the Uninitiated

With the package now initialized, let's install React and Gatsby:

npm i gatsby react react-dom

Open your root folder in your favorite Integrated Development Environment (IDE).
You should notice that it now contains three new items, package.json, package-
lock.json, and a node-modules folder. Opening your package.json, you should
see the following:

{

 "name": "gatsby-site",

 "version": "1.0.0",

 "description": "",

 "main": "index.js",

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit 1"

 },

 "keywords": [],

 "author": "",

 "license": "ISC",

 "dependencies": {

 "gatsby": "^4.4.0",

 "react": "^17.0.2",

 "react-dom": "^17.0.2"

 }

}

In the preceding example, you can see that this file now contains references to the
dependencies we have just installed.

Development scripts
Let's start by modifying package.json so that it contains some useful scripts that will
speed up our development process:

{

 "name": "gatsby-site",

 "version": "1.0.0",

 "description": "",

 "main": "index.js",

Setting up a project 17

 "scripts": {

 "build": "gatsby build",

 "develop": "gatsby develop",

 "start": "npm run develop",

 "serve": "gatsby serve",

 "clean": "gatsby clean"

 },

 "keywords": [],

 "author": "",

 "license": "ISC",

 "dependencies": {

 "gatsby": "^4.4.0",

 "react": "^17.0.2",

 "react-dom": "^17.0.2"

 }

}

Let's break down these scripts:

• build: Runs the Gatsby CLI's build command. This creates a compiled,
production-ready build of our site. We will learn more about this in Chapter 9,
Deployment and Hosting.

• develop: Runs the Gatsby CLI's develop command. We will review it in detail in
the next section, Creating your first few pages.

• start: The start script redirects to the develop script. This is in place as it is
common to start packages with a start script.

• serve: Runs the Gatsby CLI's serve command to serve up a Gatsby build
folder. This is a useful way to review a production build.

• clean: The clean script utilizes the Gatsby CLI's clean command. This deletes
the local Gatsby cache and any build data. It will be rebuilt with the next develop
or build command.

All of these scripts can be run from the root folder with the following command:

npm run script-name

Simply replace script-name with the name of the script you would like to run.

18 An Overview of Gatsby.js for the Uninitiated

You'll notice the absence of a test script. Don't worry – we will get into how to test a
Gatsby application in Chapter 7, Testing and Auditing Your Site.

Framework files and folders
As mentioned, Gatsby is a framework. Frameworks require certain files to exist in order to
work. Let's set up our project with the files and folders where Gatsby expects to find them.

Create a gatsby-config.js file in your root directory and add the following:

module.exports = {

 plugins: [],

};

As the name might suggest, the gatsby-config.js file is the core configuration
file for Gatsby. We will be coming back to this file frequently as we build out our project.
By the time we are done with it, it will be full of plugins, metadata, styling, and even
offline support.

Create gatsby-browser.js and gatsby-node.js files in your root directory.
Both of these files can be left blank for now. The gatsby-browser.js file contains any
code we would like to run on the client's browser. In the next chapter, we will be using this
file to add styles to our website. The gatsby-node.js file contains code we would like
to run during the process of building our site.

Finally, create an src folder in your root directory. This folder will contain the majority
of our development work, much like in a traditional React application. Pages we create
and components we define will all be contained within this folder.

Before we go any further, let's make sure we have our version control tracking the
right files.

Using version control
I suspect many of you would like to use version control while you build out your Gatsby
site. To ensure Git tracks only the files that matter, create a .gitignore file and add
the following:

node_modules/

.cache/

public

These lines stop our dependencies, Gatsby builds, and cache folders from being tracked.

Setting up a project 19

Creating your first few pages
We now have all the underlying code we need set up to allow us to start creating pages.
In this section, we will create a three-page website using Gatsby. It's important to note
that this is a basic example purely designed to solidify your understanding of how Gatsby
works before we worry about styling and additional functionality.

Navigate to your src directory and create a new folder called pages. Any JS files we
create within the pages folder will be treated as a route by Gatsby. This also applies
to subfolders within the pages folder. There is, however, one exception – files called
index.js are treated as the root of their directory. Let's make sense of this with a
few examples:

• src/pages/index.js will map to yourwebsite.com.

• src/pages/about.js will map to yourwebsite.com/about.

• src/pages/blog/my-first-post.js will map to yourwebsite.com/
docs/my-first-post. While we won't be setting up a page at this URL now,
we will start using routes such as this one in Chapter 3, Sourcing and Querying Data
(from Anywhere!).

• src/pages/404.js will map to any page that does not resolve on
yourwebsite.com.

Important Note
Any React components you place in the pages folder will become navigable
routes on your site. As such, it is best to separate your components from your
pages. A common pattern is to create a components folder that sits next to
your pages folder in the src directory and import components you want to
use in your pages.

The index page
Create an index.js file in your pages folder. As the index of the pages folder,
this will become the landing of your website. We can now populate this file with the
following code:

import React from "react"

const Index = () => {

 return (

 <div>

https://yourwebsite.com
https://yourwebsite.com/about
https://yourwebsite.com/docs/my-first-post
https://yourwebsite.com/docs/my-first-post
https://yourwebsite.com

20 An Overview of Gatsby.js for the Uninitiated

 <h1>My Landing Page</h1>

 <p>This is my landing page.</p>

 </div>

)

}

export default Index

The contents of this file should look familiar; it's just a simple stateless ReactJS component.

We could have also defined it as:

import React from "react"

export default function Index(){

 return (

 <div>

 <h1>My Landing Page</h1>

 <p>This is my landing page.</p>

 </div>

)

}

Both examples will output the exact same result, so it's just personal preference.

The about page
In a similar fashion, we can create an about page. Here, you have a choice – you can
either create this page at src/pages/about.js or at src/pages/about/index.
js. The question I always ask myself when deciding which option to go with is whether
the page will have sub-pages. In the case of an about page, I think it's unlikely to contain
any sub-pages, so I will opt for src/pages/about.js:

import React from "react"

export default function About(){

 return (

 <div>

 <h1>My About Page</h1>

 <p>This is a sentence about me.</p>

Setting up a project 21

 </div>

)

}

Here, we have defined another simple React component containing a heading and
paragraph to create our about page.

The 404 page
Gatsby expects to find a 404.js file in your pages directory. This page is special. It
contains the page that will be shown when Gatsby cannot find a page that was requested.
I am sure you have come across "Page not found" pages before. Without this page, on
requesting a non-existent route, the browser will not find any resource and show a
browser error to the user. While the 404 page is another form of displaying the same
error, by creating this page, we can manage the error ourselves. We can link to working
pages on our site or even suggest the page they might have been trying to visit (more on
this in Chapter 3, Sourcing and Querying Data (from Anywhere!)).

Let's create our 404 page now in src/pages/404.js:

import React from "react"

export default function NotFound(){

 return (

 <div>

 <h1>Oh no!</h1>

 <p>The page you were looking for does not

 exist.</p>

 </div>

)

}

You should be starting to see a pattern. Creating pages is as simple as defining React
components – something you should be familiar with already.

Trying the develop command
At this point, you've actually already created a fully working website. Congratulations! To
test it out, open a terminal at your root directory and run the following:

npm run start

22 An Overview of Gatsby.js for the Uninitiated

As you will recall from our package.json, this will run the gatsby develop
command. This will take a few seconds to run, but you should then see some terminal
output that looks like this:

You can now view gatsby-site in the browser.

 http://localhost:8000/

You can now open a browser of your choice and navigate to http://
localhost:8000/, and you should be greeted with something like this:

Figure 1.5 – The landing page preview

This is the rendered version of our index.js page component. You can modify the URL
in your browser to http://localhost:8000/about to see your about page and
http://localhost:8000/404 to see your 404 page. You can also see your 404 page
in development by navigating to any invalid route and pressing the Preview custom 404
page button.

Tip
If you don't want to manually navigate to the browser and type in the URL, you
can modify our scripts by appending the gatsby develop command with
the -o option. This instructs Gatsby to open your default browser and navigate
to the site automatically when you run the develop command.

gatsby develop in detail
Running gatsby develop starts the Gatsby development server. This might be
a little confusing, as we have previously mentioned how a Gatsby site is delivered
as static content, but it's actually there to speed up your development process.

Imagine your site contains 10,000 pages; building the entirety of your site every time
you make a small change to one page would take a long time. To get around this in
development, Gatsby uses a Node.js server to build only what you need as and when
it's requested. Due to it building on demand, it can negatively affect the performance
of a page and you should never test performance on a page in development for this reason.

Setting up a project 23

Once the server is up, you can continue to edit your code without rerunning the
command. The development server supports hot reloading, a concept that should be
familiar to you.

The develop command has a number of built-in options that allow you to customize it:

• -H, --host: Allows you to modify the host

• -p, --port: Allows you to modify the port Gatsby runs on

• -o, --open: Opens your project in the browser

• -S, --https: Turns on HTTPS

You can view your site on any device connected to the same network by using the host
option. This can be useful when you want to compare how your site behaves on mobile
browsers with that of a desktop experience. To achieve this, run the following command:

gatsby develop -H 0.0.0.0

If the command is successful, you will see a subtle difference in the output:

You can now view gatsby-site in the browser.

 Local: http://localhost:8000/

 On Your Network: http://192.168.1.14:8000/

The develop command has added a URL for testing on your network. Typing this into
a browser on any device connected to the same network will render your site.

Connecting your pages
Now that you have multiple pages, you may want to navigate between them. There are two
different ways of achieving this – with the Gatsby Link component or via programmatic
navigation. To some of you, these components and functions may sound familiar; this is
because Gatsby wraps the reach-router (https://reach.tech/router) library
for navigation. For those who haven't used reach-router before, the library comes
with support for server-side rendering and routing accessibility functionality built in.
Gatsby has built on and enhanced this functionality to meet its high standards for user
accessibility, ensuring a great website experience regardless of who you are.

https://reach.tech/router

24 An Overview of Gatsby.js for the Uninitiated

The Gatsby Link component
It's important to use the Gatsby <Link/> component as a replacement for the <a/> tag
whenever you are linking to a page that is internal. The <Link/> component works just
like an <a/> tag, with one important distinction – it enables prefetching. Prefetching is
the act of loading a resource before it is required. This means that when the resource is
requested, the time waiting for that resource is decreased. By prefetching the links on your
page, your next click navigates to content that is already loaded and is therefore practically
instant. This is particularly noticeable on mobile devices in areas with reduced network
conditions that would normally have a delay when loading pages.

The first place you could add a Link component is to your 404 page. It's common for
these pages to have a button that says something like "Take me home" that, when clicked,
navigates to the landing page:

import React from "react"

import {Link} from "gatsby"

export default function NotFound(){

 return (

 <div>

 <h1>Oh no!</h1>

 <p>The page you were looking for does not

 exist.</p>

 <Link to="/">Take me home</Link>

 </div>

)

}

As you can see in the preceding code block, the Link component has a prop called to;
this needs to be passed to the page that you want to navigate to relative to the root of your
website. By passing the "/" prop, Gatsby will navigate to the root of your website.

You can also add a link to the about page from the index page:

import React from "react"

import {Link} from "gatsby"

export default function Index() => {

 return (

 <div>

Setting up a project 25

 <h1>My Landing Page</h1>

 <p>This is my landing page.</p>

 <Link to="/about">About Me</Link>

 </div>

)

}

You can see here that we instead pass "/about" to the to prop in the <Link/>
component; this will navigate to our previously created about page.

Programmatic navigation
Occasionally, you may need to trigger navigation with something other than a click.
Perhaps you need to navigate as a result of a fetch request, or when a user submits a
form. You can achieve this behavior by making use of the Gatsby navigate function:

import React from "react"

import {navigate} from "gatsby"

export default function SomePage() => {

 const triggerNavigation = () => {

 navigate('/about')

 }

 return (

 <div>

 <p>Triggering page navigation via onClick.</p>

 <button onClick={()=> triggerNavigation()}>

 About Me

 </button>

 </div>

)

}

Like the <Link/> component, the navigate function will only work for navigating to
internal pages.

We now have a basic Gatsby site set up with the ability to navigate between pages.

26 An Overview of Gatsby.js for the Uninitiated

Summary
I appreciate that most of the content in this chapter has been theoretical, but it's important
to understand the "why" as well as the "how." In this chapter, we have cemented the
baseline knowledge of what Gatsby is and grasped the guiding principles we will be using
in further chapters to build our website. We've seen examples of where Gatsby is being
used and the benefits it can bring. We discussed what dependencies you need and how to
initialize Gatsby projects. We have also set up a complete basic Gatsby project and created
the first few pages of our website. We then used the built-in Gatsby components and
functions to link our pages together.

We will be referencing the theory we've outlined in this chapter throughout this book,
but for now, let's turn our focus to styling our web application. In the next chapter, we
will identify various different styling methodologies and make an informed choice about
which one you should use for your project.

2
Styling Choices and

Creating Reusable
Layouts

Gatsby sites can be styled in a multitude of ways. In this chapter, we will introduce you to
a large selection of styling techniques to help you make an informed choice about how you
would like to style your site. Once you've settled on a styling method, we will implement it
on the pages we created in Chapter 1, An Overview of Gatsby.js for the Uninitiated, before
creating the reusable components that will be used across all our site pages.

In this chapter, we will cover the following topics:

• Styling in Gatsby

• Styling with CSS

• Styling with Sass

• Styling with Tailwind.css

• Styling with Styled components

• Creating a reusable layout

28 Styling Choices and Creating Reusable Layouts

Technical requirements
In order to navigate this chapter, you will need to have completed the Gatsby setup and
created the pages in Chapter 1, An Overview of Gatsby.js for the Uninitiated.

In this chapter, we will start adding our first reusable components to our pages. As these
components are not standalone pages, we will need a new place to store them. Create a
subfolder inside your src folder called components that we can use.

The code present in this chapter can be found at https://github.com/
PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/
tree/main/Chapter02.

Styling in Gatsby
This chapter is all about styling your Gatsby site, but what does styling refer to? While
our React code is defining the structure of our web documents, we will use styling to
define our documents' look and feel through page layouts, colors, and fonts. There is an
abundance of tools you can use to style any Gatsby project. In this book, I will introduce
you to four different approaches – vanilla CSS, Sass, Tailwind.css, and CSS in JS. Let's
explore each of these in a little more detail before deciding which to use.

Vanilla CSS
When your browser navigates to a site, it loads the site's HTML. It converts this HTML
into a Document Object Model (DOM). After this, the browser will begin to fetch
resources referenced in the HTML. This includes images, videos, and, more importantly
right now, CSS. The browser reads through the CSS and sorts selectors by element, class,
and identifiers. It then goes through the DOM and uses the selectors to attach styles to
elements as required, creating a render tree. The visual page is then shown on the screen
by utilizing this render tree. CSS has withstood the test of time, as we have been shipping
CSS in this way with HTML for 25 years. But using vanilla CSS has some pros and cons.

The pros for using vanilla CSS are as follows:

• Its age: Because CSS has been around for 25 years at the time of writing this book,
there is an abundance of content available on CSS. Due to its age, the chances that
someone has already worked out how to fix any issue you encounter is also very
high. Both these reasons make vanilla CSS a great choice for a beginner.

• Understandable syntax: The syntax that makes up CSS consists of very few
abbreviations. Reading it as a beginner, it is far easier to learn what any line
of CSS is doing compared to the other style implementations in this chapter.

https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter02
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter02
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter02

Styling in Gatsby 29

The cons for using vanilla CSS are as follows:

• Long style sheets: In traditional websites, you often see that they only ship with one
CSS file. This makes maintaining and organizing styles very difficult, as the file can
end up incredibly long. This can lead to a pattern where lazy developers who can't
find the styles they are looking for might just append them to the bottom of the file
(also known as an append-only style sheets). If they do this and the file already
exists, then they are just increasing the file size for nothing.

• Class reuse confusion: Reusing styles can sometimes lead to more trouble than it's
worth. Let's say you have used one specific class in use across various elements in
your application. You might update this class to make it fit one instance of it, only to
break all the others. If you fall into this cycle multiple times, it can really slow down
your development. This can be avoided with a little forward-thinking – instead
of reusing classes, make components that are reused. Another option is to create
"utility classes" that are unlikely to change; if you'd rather not create these yourself,
you should read the section on Tailwind CSS.

• Inheritance pain points: By using inheritance, we end up tightly coupling our
CSS to the structure of our HTML. If you break that structure, your CSS may no
longer work. While inheritance sometimes is unavoidable, we should try and keep
it to a minimum.

CSS has withstood the test of time and is still a solid choice today. You might be asking
why these are cons when I have listed ways to work around/avoid all of them. These cons
can all be fixed one way or another using one of the other implementations in this chapter.

Sass
Sass is a preprocessor scripting language that compiles into CSS. It gives developers tools
that allow them to create more efficient CSS.

The pros for using Sass are as follows:

• Large toolset: Sass contains a bundle of powerful tools that you can't utilize in
vanilla CSS. While we won't be covering these in detail, these include tools like
mixins, loops, functions, and imports that can be used to create more powerful
and performant CSS for your application. This is a huge pro for Sass.

• Modules: You can split your Sass into separate .scss files to break down files.
You can then import them into one another as needed. This drastically helps
improve the organization of your code.

30 Styling Choices and Creating Reusable Layouts

• Freedom: Sass enforces a convention of how to write it – you can choose. This
means that you can choose a style that suits your team.

The cons for using Sass are as follows:

• Skip foundations: Freedom can also be a negative for developers new to styling.
If you haven't used Sass before, you may create code that works but in a way that
is overly complicated. This can lead to future developers struggling with the code.
Concrete CSS guidelines can help avoid this misuse.

• Naming conventions: Naming every class you create for every element you style is
a tedious process. There are methodologies that can help you create sensible class
names; however it still takes a long time.

• Two sources of truth: When you write your HTML, you probably will also add class
names to your elements to style them. You then jump across to your Sass file to add
these class names, only to forget what names you had for them. Jumping back and
forth between your HTML and Sass can be an annoying context switch. You might
consider abstracting styles away from your markup to be a good thing, but when
markup and styles are so interconnected, this can be an inconvenience.

Although Sass is a powerhouse, increased power does also mean increased complexity.
While the learning curve may be higher for beginners, gaining control of it will give you
a great deal of freedom.

Tailwind (utility-first CSS framework)
Tailwind CSS is a utility-first CSS framework. The "utility-first" approach was created to
combat the cons we talked about previously with CSS and Sass. In this methodology, we
use small utility classes to build a component's style instead of defining our own class
names. It can feel a little like writing inline styling, as your elements will have a string of
utility classes added to them, but the benefit is that you don't have to write a single line of
your own CSS if you don't want to.

The pros for using Tailwind are as follows:

• One source of truth: When using CSS or Sass, you must switch between two files:
your markup and your style sheets. Tailwind does away with this concept and
instead allows you to embed your styles directly in your markup.

• Naming conventions: Tailwind removes the need for you to create your own
classes. It has its own classes that are incredibly granular called "utility classes." You
use these classes to build up your elements' styles and not worry about creating
unique classes for each component.

Styling in Gatsby 31

• Smaller CSS: Tailwind provides you with a complete set of utility classes
that you rarely need to supplement with your own styles. Your CSS, therefore,
stops increasing; in fact, it gets smaller. When you're ready to production-build
your application, you can use Tailwind's built-in purge function to remove
unused classes.

• No side effects: As we are adding styles in our markup and not manipulating the
underlying class names, there are never any unintended side effects elsewhere in
our application.

The cons for using Tailwind are as follows:

• Markup legibility: As your markup contains your style built from utilities, the
class names of elements can become incredibly long. When you add in the fact
that these may need to change on hover or at breakpoints, your line length can
end up very long.

• Learning curve: Utility-first requires you to learn many class names to know what
tools you must build your styles with. This learning can take some time and slow
you down at the beginning, but I believe once you have these under your belt, your
development speed will become much faster.

Tailwind hits a great balance of abstraction and flexibility. It is the newest implementation
on this list and my personal favorite.

CSS in JS
CSS in JS gives you the ability to write plain CSS within your components while
removing the possibility of naming collisions with class names. For the purpose of
exploring this option, I will be reviewing the pros and cons of the most popular solution,
Styled Components (https://styled-components.com). It is, however, worth
mentioning that there are many different CSS in JS solutions, including Emotion
(https://emotion.sh) and JSS (https://cssinjs.org).

The pros for using Styled Components are as follows:

• One source of truth: Like Tailwind, Styled Components also removes context-
switching, as your CSS code is housed within the same file as the component
making use of it.

• Styles tied to components: Styles are created for use by one specific component
and are located next to the markup that implements them. As such, you know
exactly what makes use of these styles but, more importantly, you know that
editing these styles will only affect the markup located with them.

https://styled-components.com
https://emotion.sh
https://cssinjs.org

32 Styling Choices and Creating Reusable Layouts

• JS in CSS: We can make use of JS inside our CSS to determine styling. This makes
handling conditionals within styles much easier, as we do not have to create two
different class names and use a ternary operator.

• Extending: It can often be the case that you may want to use a component style
but subtly modify it for a different use case. Instead of copying the styles again and
creating a new component from the ground up, we can instead create a component
that inherits the styling of another.

The cons for using Styled Components are as follows:

• Performance: When parsing your styles into plain CSS, Styled Components adds
these as style tags in the head of your index.html. Styles used across all your
pages are pulled in on every page without any way to easily split them. Even
caching the styles is difficult, as class names are dynamically generated and can,
therefore, change between builds.

If you like a single source of truth, Styled Components improves the legibility of your
markup when you are combining everything into one file. While performance is listed
as a con, this is something that the community behind Styled Components is making an
effort to improve.

Picking a styling tool
When it comes to styling your Gatsby site, there is no right or wrong way of styling it. It
will totally depend on your existing skill set, how coupled you want your styles and JS to
be, and your own personal preferences. I thought I would end this section by looking at a
few common scenarios and what styling implementation I would use for each of them:

• My experience with styling is limited: If you are new to styling applications, I
would suggest using vanilla CSS. The fundamentals you will learn using this
implementation are built on in every other implementation. By learning the basics,
you will be able to pick another implementation more easily in the future.

• I don't want to spend lots of time styling my application: If you are looking for the
option with the least setup, then look no further than Tailwind. Using utility classes
will save you a lot of time, as you do not need to create your own classes.

• I don't like context switching: In this case, I would lean toward Styled Components
or Tailwind, as in both implementations your styles are located next to your markup
– one file and one source of truth.

• I have used CSS and want to build on that: Using Sass would be a great option for you,
as you can write the CSS you know and love but also enhance it with the Sass toolset.

Styling with CSS 33

At this point, you should feel ready to make an informed choice about which styling
tool is for you. I strongly suggest that you only implement one of the styling choices
outlined in this chapter instead of trying to mix and match. If you add multiple styling
implementations, you can end up in a position where your site styles don't seem to match
up. This is because one implementation can override another. By sticking to one method,
you have the added benefit of keeping your site's style consistently uniform, which is
important, as it reinforces your brand.

Now that you have made a decision, let's start looking at implementations.

Styling with CSS
In this section, we will learn how to implement CSS styling into our Gatsby project.

There are two different methods to adding global CSS styling to our Gatsby site – creating
a wrapper component or using gatsby-browser.js.

Creating a wrapper component
The idea behind a wrapper component is to wrap our page components in another
component that brings common styles to the page:

1. Create StyleWrapper.css in your components folder:

html {

 background-color: #f9fafb;

 font-family: -apple-system, "Segoe UI", Roboto,

 Helvetica, Arial, sans-serif,

 "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI

 Symbol";

}

In the preceding code, we are defining a background color and a font family that all
children of the HTML tag can inherit.

2. Let's now add some h1 styles to this file:

h1 {

 color: #2563eb;

 size: 6rem;

 font-weight: 800;

}

34 Styling Choices and Creating Reusable Layouts

Here, we are adding the color, size, and weight of the largest heading tag.
3. Similarly, we can also add some styles for the p and a tags:

p {

 color: #333333;

}

a {

 color: #059669;

 text-decoration: underline;

}

Here, we are adding a color to each tag and, in the case of the a tags, an underline
to make them more prominent.

4. Create StyleWrapper.js in your components folder:

import React from "react"

import "./StyleWrapper.css"

const StyleWrapper = ({children}) => (

 <React.Fragment>{children}</ React.Fragment>

)

export default StyleWrapper

As the name might suggest, we will use this component to wrap our pages to apply
the styles we are importing on the second line.

5. In order to use StyleWrapper.js, we need to import it into our pages; let's look
at pages/index.js as an example:

import React from "react"

import {Link} from "gatsby"

import StyleWrapper from "../components/StyleWrapper"

export default function Index(){

 return (

 <StyleWrapper>

 <h1>My Landing Page</h1>

 <p>This is my landing page.</p>

Styling with CSS 35

 <Link to="/about">About me</Link>

 </StyleWrapper>

)

}

In the preceding code, we can see we have imported the styled wrapper on the
third line. We then replaced the div wrapping with our new layout component.
The contained h1, p, and Link elements will be passed into the StyleWrapper
component as children.

Using gatsby-browser.js
If you want the same styles applied to every page, you might feel that importing
StyleWrapper on all page instances doesn't feel like you're following Don't Repeat
Yourself (DRY) principles. In cases where you are absolutely sure the styles are needed
on every page, we can add them to our application using the Gatsby browser instead:

1. Create a styles folder inside your src directory. As these styles are being
used globally and are not tied to a specific component, it does not make sense
to store them in the component directory, as we did when implementing
StyleWrapper.js.

2. Create a global.css file in your styles folder and add the following:

html {

 background-color: #f9fafb;

 font-family: -apple-system, "Segoe UI", Roboto,

 Helvetica, Arial, sans-serif,

 "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI

 Symbol";

}

h1 {

 color: #2563eb;

 size: 6rem;

 font-weight: 800;

}

p {

 color: #333333;

}

36 Styling Choices and Creating Reusable Layouts

a {

 color: #059669;

 text-decoration: underline;

}

Here, we are adding the exact same styles that we had in the alternate CSS
implementation, so I won't explain them again here. The key difference is in this
next step.

3. Navigate to gatsby-browser.js and add the following:

import "./src/styles/global.css"

By importing our CSS in gatsby-browser.js, Gatsby will wrap every page with
this CSS.

Verifying our implementation
Regardless of which of the two methods you opted for, if everything has gone according
to plan, you should be presented with a styled site that looks like this:

Figure 2.1 – Development of the index page with styles

You should be able to pick out your CSS additions on this page.

You have now implemented CSS as a styling tool within your Gatsby site. You can
disregard the other styling implementations that follow and proceed to the Creating
a reusable layout section.

Styling with Sass
In this section, we will learn how to implement Sass styling in our Gatsby project:

1. To start using Sass, we will need to install it along with a few other dependencies.
Open a terminal at the root folder of your project and run the following:

npm install sass gatsby-plugin-sass

Styling with Sass 37

Here, we are installing the core Sass dependency as well as the Gatsby plugin that
integrates it.

2. Modify your gatsby-config.js file with the following:

module.exports = {

 plugins: [

 'gatsby-plugin-sass'

],

};

Here, we are updating our Gatsby configuration to let Gatsby know to make use
of the gatsby-plugin-sass plugin. Now, create a styles folder inside your
src directory.

3. Create a global.scss file in your styles folder and add the following:

html {

 background-color: #f9fafb;

 font-family: -apple-system, "Segoe UI", Roboto,

 Helvetica, Arial, sans-serif,

 "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI

 Symbol";

}

I rarely add more than HTML styles to the global.scss file. Instead, I prefer
to import other .scss files into this one. This keeps styles in order and the files
small and readable. As an example, let's create typography.scss to store some
typography styles:

h1 {

 color: #2563eb;

 size: 6rem;

 font-weight: 800;

}

p {

 color: #333333;

}

a {

 color: #059669;

38 Styling Choices and Creating Reusable Layouts

 text-decoration: underline;

}

4. Here, we are adding a color to each and, in the case of the a tags, adding an
underline to make them more prominent. We can now import this file into our
global.scss file:

@import './typography;

html {

 background-color: #f9fafb;

 font-family: -apple-system, "Segoe UI", Roboto,

 Helvetica, Arial, sans-serif,

 "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI

 Symbol";

5. Navigate to your gatsby-browser.js file and add the following:

import "./src/styles/global.scss";

This tells our Gatsby application to include this style sheet on the client, allowing us
to make use of it in our application.

You have now implemented Sass as a styling tool within your Gatsby site. You can
disregard the other styling implementations that follow and proceed to the Creating
a reusable layout section.

Styling with Tailwind.css
In this section, we will learn how to implement Tailwind styling in our Gatsby project:

1. To start using Tailwind, we will need to install it along with a few other
dependencies. Open a terminal at the root folder of your project and
run the following:

npm install postcss gatsby-plugin-postcss tailwindcss

Here, we are installing PostCSS, its associated Gatsby plugin, and tailwindcss.
PostCSS is a tool for transforming styles with JS plugins. These plugins can lint your
CSS, support variables and mixins, transpile future CSS syntax, inline images, and
more. In the case of Tailwind, there is a specific tailwind plugin for PostCSS that we
will be implementing.

Styling with Tailwind.css 39

2. Modify your gatsby-config.js with the following:

module.exports = {

 plugins: [

 'gatsby-plugin-postcss'

],

};

Here, we are updating our Gatsby configuration to let it know to make use of the
Gatsby PostCSS plugin.

3. In order to use PostCSS, it requires postcss.config.js to be present at the
root of your project. Go ahead and create this file now and add the following:

module.exports = () => ({

 plugins: [require("tailwindcss")],

});

In this file, we are telling PostCSS to make use of our newly installed
tailwindcss package.

4. Much like PostCSS, Tailwind also requires a configuration file. Tailwind has
a built-in script for creating the default configuration. Open a terminal and run
the following:

npx tailwindcss init

If this command is successful, you should notice that a new tailwind.config.
js has been created at the root of your project. The default configuration within this
file will work just fine, so for now, we don't need to edit it.

5. Create a styles folder inside your src directory.
6. Create a global.css file inside your styles folder and add the following:

@tailwind base;

@tailwind components;

@tailwind utilities;

7. Add the following to the gatsby-browser.js file:

import "./src/styles/global.css";

This tells our Gatsby application to include this style sheet on the client, allowing us
to make use of Tailwind classes.

40 Styling Choices and Creating Reusable Layouts

With these steps concluded, we now have everything in place to start using Tailwind
within our application. To make use of Tailwind's utility classes, we can use React's
className prop within our components; for example, in pages/index.js, we could
add the following:

import React from "react"

import {Link} from "gatsby"

export default function Index(){

 return (

 <div>

 <h1 className="text-3xl font-bold text-blue-

 600">My Landing Page</h1>

 <p>This is my landing page.</p>

 <Link to="/about">About me</Link>

 </div>

)

}

In the preceding code, we are modifying the style of the heading with the following
utility classes:

• text-3xl: Set the text to the third extra-large size, equivalent to 1.875 rem.

• font-bold: Set the text to the bold font-weight.

• text-blue-600: Set the color of the text to blue.

You can alternatively append styles to the global.css file that we created to have them
included:

@tailwind base;

@tailwind components;

@tailwind utilities;

h1 {

 @apply text-3xl font-bold text-blue-600;

}

Styling with styled-components 41

Here, you will see the exact same styles, just defined globally. Both will equate to the same
styling on the h1 tag; deciding which variation to use is all about frequency. If you intend
to use this h1 style more than once, you should be incorporating it into your CSS to save
you writing the same styles over and over.

Let's now supplement this with a few more styles:

@tailwind base;

@tailwind components;

@tailwind utilities;

h1 {

 @apply text-3xl font-bold text-blue-600;

}

p {

 @apply text-gray-800;

}

a {

 @apply text-green-600 underline;

}

Here, we are adding a color to each element and, in the case of the a tags, adding an
underline to make them more prominent.

You have now implemented Tailwind as a styling tool within your Gatsby site. You can
disregard the other styling implementations that follow and proceed to the Creating a
reusable layout section.

Styling with styled-components
In this section, we will learn how to implement Styled Components as a styling tool in our
Gatsby project:

1. Open a terminal at the root folder of your project and run to install
your dependencies:

npm install gatsby-plugin-styled-components styled-

components babel-plugin-styled-components

42 Styling Choices and Creating Reusable Layouts

These are the details of the dependencies:
a. styled-components: The Styled Components library
b. gatsby-plugin-styled-components: The official Gatsby plugin for

Styled Components
c. babel-plugin-styled-components: Provides consistently hashed class

names between builds

2. Update your gatsby-config.js with the following:

module.exports = {

 plugins: ['gatsby-plugin-styled-components'],

}

This instructs Gatsby to use the Styled Components plugin that we just installed.

We can have all the pieces in place to create styles on a page/component level and
a global level.

3. To demonstrate utilizing them, navigate to your pages/index.js file and add
the following:

import React from "react"

import {Link} from "gatsby"

import styled from "styled-components";

const Box = styled.div'

 background-color: #333;

 padding: 20px;

 h1 {

 color: #fff;

 margin: 0 0 10px;

 padding: 0;

 }

 p {

 color: #fff

 }

'

Styling with styled-components 43

export default function Index(){

 return (

 <Box>

 <h1>My Landing Page</h1>

 <p>This is my landing page.</p>

 <Link to="/about">About me</Link>

 </Box>

)

}

Here, we have defined a component that applies styling to a div tag. We can see
that it also has styles for any h1 or p tag that are children.

4. Occasionally, you may want to create styles globally; in order to demonstrate this,
navigate to your gatsby-browser.js file and add the following:

import React from "react"

import { createGlobalStyle } from "styled-components"

const GlobalStyle = createGlobalStyle'

 body {

 background-color: ${props => (props.theme ===

 "blue" ? "blue" : "white")};

 }

'

export const wrapPageElement = ({ element }) => (

 <>

 <GlobalStyle theme="blue"/>

 {element}

 </>

)

We use the styled-components createGlobalStyle helper function to
create our global styles. This stops Styled Components from being scoped to a local
CSS class.

By using the wrapPageElement method, we tell Gatsby to wrap every page in the
component. We can make use of this to wrap every page in our global styles.

44 Styling Choices and Creating Reusable Layouts

Regardless of your implementation choice, you should now have the basics in place to
start building a fully styled site. Let's now start creating the reusable layout that we will
utilize across the site.

Creating a reusable layout
Most websites feature headers and footers that are present across all their pages. With
our knowledge of how pages work, you might be tempted to import a header component
into every page component. But wait – what happens when you suddenly need to pass
that component a new prop? Situations like these are why it's a good idea to reduce any
duplication across pages. Instead, it's a much better option to create a layout component
that contains a header and footer that we can then wrap our pages in.

In order to keep our components folder well structured, it's useful to create subfolders
to house different parts of the site. Create a layout folder in the components
folder to house components that are related to the layout. We will use these layout
components across all our page files. Now, let's populate this folder with a header, footer,
and layout component.

Important Note
In the code examples in this section, you will notice I am using Tailwind.
css to style my components. In the accompanying GitHub repository
(https://github.com/PacktPublishing/Elevating-
React-Web-Development-with-Gatsby-4/tree/main),
you can find implementations of these components using all the styling
implementations we have covered in this chapter. In future chapters, I will be
sticking to Tailwind.

Site header
A header component acts as the anchor of our site. It is common to include your site
header across all your pages so that visitors are reminded that they are on your site.

To get started, let's create a Header.js component in our components folder:

import React from "react"

const Header = () => (

 <header>

 <p>Site Header</p>

 </header>

https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main

Creating a reusable layout 45

)

export default Header

In the preceding code, we are creating the most basic of header examples. Note that we
are making use of the HTML header tag. As we will learn in Chapter 6, Improving Your
Site's Search Engine Optimisation, using the correct tags when creating content is very
important, as it helps web crawlers and accessibility tools understand your site.

Site footer
Adding a footer to your site can be a powerful tool. I like to think of it as a way to
keep user engagement after they have finished a page. We can use it to give people
quick links to our social media so that they can get in touch, we can suggest other
interesting content that they might enjoy, and we can even tell them how many views
the current page has had.

Let's get started with a basic implementation. Create a Footer.js component in the
components folder:

import React from "react"

const Footer = () => (

 <footer>

 <p>Site Footer</p>

 </footer>

)

export default Footer

Much like our Header, it's important that we use the proper HTML footer tag.

46 Styling Choices and Creating Reusable Layouts

Layout component
We could directly import our header and footer onto every page we create, but if we did
that, it would lead to a lot of duplication. One common way to get around this is to create
a Layout component. We wrap every page we build in this component. Not only is
this an easy way to bring in our header and footer but it also allows us to style the main
content of every page with minimal effort:

import React from "react"

import Footer from "./Footer"

import Header from "./Header"

const Layout = ({children}) => (

 <div>

 <Header/>

 <main>

 {children}

 </main>

 <Footer/>

 </div>

)

export default Layout

Here, you can see I am importing our newly created Header and Footer components. I
am making use of the children prop and rendering child content within a main block.

To demonstrate using the Layout component, let's wrap our index page in the
component. Modify your index.js in pages with the following:

import React from "react"

import {Link} from "gatsby"

import Layout from "../components/layout/Layout"

export default function Index(){

 return (

 <Layout>

 <h1>My Landing Page</h1>

 <p>This is my landing page.</p>

 <Link to="/about">About me</Link>

Creating a reusable layout 47

 </Layout>

)

}

You can see that I have wrapped the landing page in our new Layout component that
has been imported on the third line. If you spin up gatsby develop at this point, you
should see your page content with a header before it and a footer after it. You can continue
to wrap your other pages in your layout component at this moment. Before proceeding,
let's step back for a moment and look at how we can organize the components we're
creating for our pages.

Tip
Some of the styling implementations discussed previously make use of style
wrappers. If your implementation has made use of a style wrapper, import it
into your layout component and wrap content in this component. This way,
you only wrap your pages in one component instead of both the layout and
style wrapper components.

Organization with atomic design
As your site expands, it's important to try and keep your components folder structured.
One commonly used method is to use atomic design principles. Atomic design is the
process of creating effective interface design systems by breaking down your site elements
into atoms, molecules, organisms, templates, and pages:

• Atoms: These are the smallest components that might be incorporated into our site,
such as buttons, typography components, or text inputs. Atoms cannot be logically
broken down into subcomponents while still keeping them functional.

• Molecules: Built from two or more atoms, molecules are small groups of elements
that work together to provide some functionality. A search box consisting of a text
input and a button could be considered a molecule.

• Organisms: Built from a group of molecules and atoms, these form larger sections
of an interface, such as a site's hero section.

• Templates: These wrap organisms in a layout and provide the content structure and
skeletal structure of a page.

• Pages: An instance of a template with real-world content in place.

48 Styling Choices and Creating Reusable Layouts

Using atomic design when building components allows you to break your
components down into smaller self-contained units. These can be tested and
developed in isolation before importing them into your application, allowing for
a more rigorous development process but also reducing the reliance on backend
logic when conducting frontend development.

Once we have defined our atomic design pattern, we can be far more flexible when
working with styling. Changing an atom's style will also update the styles that any
molecules and organisms were making use of.

Depending on your styling implementation, it can also be a good idea to abstract
commonly used tokens, such as brand colors, spacing rules, and font families. It's much
easier to maintain a project with a single source of truth, rather than darting all over your
application pasting hex values to modify your brand colors.

Using atomic design to organize your components folder can really help as things scale,
so keep it in mind in future chapters as your application expands.

Summary
In this chapter, you have learned how you can style a Gatsby site in a multitude of ways.
This should aid you in making an informed choice about what way you will style your
application going forward. We have seen how to style your Gatsby site using CSS, Sass,
Tailwind.css, and Styled Components. You should have decided on one of these and
implemented them. In future chapters, I will use Tailwind.css to style the application, but
this is a personal preference. You should use whatever you feel is best for your site and
your existing knowledge.

We also started creating the first reusable components that will make up the backbone
of our site. While our layout component may seem primitive right now, we will be
integrating it with content in the next chapter and adding imagery to bring it to life even
further in Chapter 5, Working with Images.

Before continuing to the next chapter, I encourage you to spend time building on the
styles outlined here until you have your existing pages looking how you want them to.
While I think it's best to define your own styles, you can find an example of a completely
styled version of the site in Tailwind.css in the code repository.

In the next chapter, we will begin sourcing content from local files, CMSes, and APIs. We
will be using this data to start programmatically creating pages on our Gatsby site.

3
Sourcing and

Querying Data
(from Anywhere!)

In this chapter, you will learn about Gatsby's data layer. You will start by understanding
what we mean by data in the context of Gatsby before learning the basics of GraphQL.
Once you have this understanding, you will learn how to source and query data from local
files. We will then look at sourcing data from a couple of Headless CMSes.

In this chapter, we will cover the following topics:

• Data in Gatsby

• Introducing GraphQL

• Sourcing and querying data from local files

• Sourcing and querying data from a Headless CMS

50 Sourcing and Querying Data (from Anywhere!)

Technical requirements
To complete this chapter, you will need to have completed Chapter 2, Styling Choices and
Creating Reusable Layouts.

The code for this chapter can be found at https://github.com/
PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/
tree/main/Chapter03.

Data in Gatsby
Before diving in, I think it's important to establish what we mean by data in the context
of this book. When referring to data, we are referring to any medium of static content that
is not React code. Up until now, we have been adding text within our React components
directly. As a developer, this can be a perfectly acceptable way to build a small site but
as things scale up, having content mixed into your markup can make it much harder to
develop. It also makes it impossible for colleagues without React experience to update or
add new content to the site.

It is a much more common practice to store data that's separate from our pages and
components, pulling it in as required. There are two ways in which we can store this data:

• Locally: Files stored alongside our source code in the respective repository, such as
JSON, CSV, Markdown, or MDX files.

• Remotely: Files stored in another location that we ingest as part of our build
processes, such as content from a Headless CMS, database, or API.

Important Note
You may have noticed the absence of images being referenced when talking
about data and might be wondering how to work with them. Due to their
complexity, images have a dedicated chapter in this book – Chapter 5, Working
with Images.

Now that we understand what we mean by data in Gatsby, let's learn how we can query it
within our application so that we can use it on our site pages.

https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter03
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter03
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter03

Introducing GraphQL 51

Introducing GraphQL
GraphQL is a specification for querying data – general guidelines on how to query data
efficiently. This specification was developed by engineers at Facebook in 2012 while
working on their mobile application's REST services. They wanted to use their existing
REST service on their mobile platforms, but it was going to require heavy modification
and specific logic for mobile platforms in various areas of their APIs. The engineers also
noticed that there were lots of data points in the responses to their API requests that they
were not using. This meant that people with low network bandwidth were loading data
they weren't even using.

So, the team at Facebook started to work on GraphQL to solve these problems and rethink
the way they could fetch data for devices. GraphQL shifted the focus from the backend
engineers specifying what data is returned by what request, to the frontend developers
specifying what they need.

GraphQL for Gatsby
Gatsby always uses GraphQL whenever you want to get data from within it. This is a great
feature as we have an efficient way of getting data, regardless of its type. Gatsby can call
GraphQL APIs directly if you already have a GraphQL server set up. However, a lot of the
data we need to use on the web is not already in GraphQL format.

Luckily, Gatsby's plugin architecture allows you to get non-GraphQL data into Gatsby,
then use GraphQL to query it once you have it there. Regardless of whether your data is
local or remote, or what format it is in, you can use one of Gatsby's plugins to pull the
data. Then, you can use the GraphQL specification to query for that data on our pages.

This is a great architecture that works with all of our content, no matter where it comes
from. When it gets into Gatsby, we always query and retrieve that data in the same way.

Let's look at a high-level example of what a GraphQL query contains:

query SampleQuery {

 content {

 edges {

 node {

 property

 }

 }

 }

}

52 Sourcing and Querying Data (from Anywhere!)

Here, you can see that we used the word query, followed by the name of the query,
which, in our case, is SampleQuery. Then, inside of the curly braces, we specify what
kind of content we want to get – where you see content here, this would change to be
the source of content you want. edges refers to a collection of connected items within
that content source that have a relationship returned as an array. Then, when we go a level
deeper, we have node, which refers to an individual item. Here, you can see that we are
querying a single property.

One of the great things about GraphQL is that you can be very specific about the data
you need and only get that specific content. As shown in the previous example, we are
only querying a single property of the node, but what if it contained a hundred properties
instead? By pulling out only exactly what we need, we can create a very specific query that
only gets us what we need.

Now, let's look at a Gatsby-specific GraphQL query:

query MySitePages {

 allSitePage {

 edges {

 node {

 path

 }

 }

 }

}

Here, we can see that we are naming the query MySitePages. The content we are
retrieving is from the allSitePage source, which is a default collection that contains
all the pages that have been created within a Gatsby project. edges refers to all the pages,
whereas node refers to a specific page we want. Inside each page, we are querying for the
path parameter of that page.

When running this query in Gatsby, it is going to return JSON. If you run the preceding
query within our site and log the result, you would see the following object:

{

 "data": {

 "allSitePage": {

 "edges": [

 {

 "node": {

Introducing GraphQL 53

 "path": "/404/"

 }

 },

 {

 "node": {

 "path": "/about/"

 }

 },

 {

 "node": {

 "path": "/"

 }

 }

]

 }

 }

}

As you can see, what we get back is an object with a data property. Within that, you can
see our named query and its edges. The edges contain each node and its corresponding
path property. Within the result, we can see every page that exists on the site – we have
our 404 page, the about page, and the home page.

Now, let's learn about filtering and sorting data within GraphQL.

Filtering in GraphQL
Sometimes, all the nodes of the returned data are not useful. We may occasionally want
to filter out nodes based on a particular field. Let's take a look at an example where we are
filtering out nodes from our allSitePage source:

query AllSitePagesExcept404 {

 allSitePage(filter: {path: {ne: "/404/"}}, limit: 1) {

 edges {

 node {

 path

 }

 }

54 Sourcing and Querying Data (from Anywhere!)

 }

}

Here is an example in which we get a single page where the path does not equal (ne for
short) /404/. Filtering is something we will look at in more detail as we start to develop
more complex queries for our pages. Right now, it's important just to recognize that it is
possible.

In Gatsby, it is possible to obtain a single node on its own, but it is more common to query
a collection. For example, if we wanted to retrieve a single SitePage node, we could use
the following query:

query ASingleSitePage {

 sitePage {

 path

 }

}

This query will receive the first node that matches the request and return it as an object
instead of a larger array.

Now that we understand how GraphQL queries are constructed, let's take a look at how
we can use GraphiQL to explore our data.

Using GraphiQL
When it comes to learning GraphQL, it's fortunate that Gatsby ships with a tool called
GraphiQL (https://github.com/graphql/graphiql). This is a web interface
that hooks up to all of the GraphQL options in Gatsby and gives us a nice interface for
testing and playing around with queries before we embed them into our code.

As we know, when developing our site, Gatsby opens up http://localhost:8000
to preview our site while we are building it. If you navigate to http://
localhost:8000/___graphql, you will pull up a GraphiQL interface that is
connected to your development Gatsby site. When you open this page, you should be
presented with something that looks like this:

https://github.com/graphql/graphiql

Introducing GraphQL 55

Figure 3.1 – GraphiQL user interface

On the far left, you will see Explorer, which shows all the possible pieces of content
we could get using GraphQL inside of Gatsby. You can check the properties within the
Explorer area to have GraphiQL automatically build the query for you. In the central left
column, we can see the query that we need to use to retrieve the data we want. When you
hit the Play button above the query, you will see the result of that query on the central
right column, with a JSON object containing the data property and our query's result
inside it. On the far right, you will see the Documentation Explorer area, which you can
use as an alternative way to explore your data and identify the different types of data you
have available.

Now, let's learn where we can use queries to retrieve data within our application.

56 Sourcing and Querying Data (from Anywhere!)

Using constructed GraphQL queries
There are three main places where you can use a GraphQL query in your Gatsby projects:

• Gatsby-node.js: This file is one of the places we can create pages
programmatically based on dynamic data. If we had a list of blog posts in
Markdown and we wanted to create a page for each one, we would use a query here
to retrieve the data from the posts that we need to dynamically create the pages for.

• Within pages: We can append queries to single instance pages to make data
available within that page. This is how we will be testing the data we source within
this chapter. We can also query inside page templates, something we haven't
discussed yet, but it is a key concept we will look at in detail in Chapter 4, Creating
Reusable Templates. A page template could take a slug based on the URL and then
run a query based on that URL to work out what page to display. In both single-
instance pages and templates, the query is run at build time, so the pages that are
created are still static.

• Within any other component: We can also retrieve GraphQL data within any React
component we have created. There is a different method to retrieving data outside of
page templates because outside of a page template, you cannot get dynamic content
using variables. As such, queries run this way are static. We will see examples of
static queries in Chapter 5, Working with Images.

Now that you understand the basics of GraphQL in Gatsby, let's start ingesting different
kinds of data into our GraphQL layer.

Sourcing data from local files
In this section, we will learn how to source and query data from local files. As we
mentioned previously, when we say local files, we are referring to files located alongside
the code in our repository.

Site metadata
A great place to store small reusable pieces of data is within the gatsby-config.
js file. Gatsby exposes the siteMetadata property to the data layer so that you can
retrieve it throughout your application. In the context of our website, I would suggest
storing your website address, your name, your role, and a short bio here. If this is
implemented consistently, whenever any of these pieces of information change, you
can change the field once in siteMetadata and see the change reflected across your
whole site.

Sourcing data from local files 57

Tip
gatsby-config.js is a file that you will often find growing quite large
as you expand your Gatsby projects. To try and keep things ordered, try and
reserve your siteMetadata for a handful of small strings. If you are
considering adding a large block of text here, it might be better to add it as a
Markdown file.

Let's create some site metadata and ingest it on our home page:

1. First, update gatsby-config.js with the following code:

module.exports = {

 siteMetadata: {

 siteUrl: 'https://your.website',

 name: 'Your Name',

 role: 'Developer at Company',

 bio: 'My short bio that I will use to introduce

 myself.'

 },

 plugins: [

 // your plugins

],

};

The siteMetadata key sits next to the plugins we have defined. Here, you can
see we have defined the key values I suggested earlier. Keep in mind that these key
values are just a suggestion and that if you want to add or remove keys, feel free to
do so.

2. Use the GraphiQL interface to construct the GraphQL query to retrieve the data.
This should look like this:

query BasicInfo {

 site {

 siteMetadata {

 name

 role

 }

 }

}

58 Sourcing and Querying Data (from Anywhere!)

Your site metadata is available within the site source. In the preceding query, we
are only retrieving name and role.

3. Embed your constructed query on your index page:

import React from "react";

import { Link, graphql } from "gatsby";

import Layout from "../components/layout/Layout";

export default function Index({ data }) {

 const {

 site: {

 siteMetadata: { name, role },

 },

 } = data;

 return (

 <Layout>

 <div className="max-w-5xl mx-auto py-16 lg:py-

 24">

 <h1 className="text-4xl md:text-6xl font-bold

 text-black pb-4">

 {name}

 </h1>

 <p className="mb-4">{role}</p>

 <Link to="/about" className="btn">

 About me

 </Link>

 </div>

 </Layout>

);

}

export const query = graphql'

 {

 site {

 siteMetadata {

 name

Sourcing data from local files 59

 role

 }

 }

 }

';

Here, you can see we are importing graphql from Gatsby. We are then appending
our query from Step 2 to the end of the file, below our page component. The export
name isn't important as Gatsby looks for any GraphQL string within your pages, but
here, you can see I am calling it query.

When Gatsby builds this page, this query is pulled out of our source code, parsed,
and run, and the resultant data is passed into our page component via the data prop
you can see on line 5. We can then use the data contained within the query (in our
case, name and role from siteMetadata) to populate our site hero.

Important Note
You can only export one query per component. If you ever need more data on
the page, instead of exporting another query, extend your existing query.

Now, let's learn about how we can ingest data from sources that are not included with
Gatsby out of the box – starting with Markdown.

Markdown
The Markdown syntax is a popular way to write content on a Gatsby site. If you have
used GitHub or Bitbucket before, chances are you've already encountered this format as
they both make use of it in README files. Markdown is a great format for longer pieces of
writing within your site – documentation, blog posts, or even a long bio.

To start using Markdown in Gatsby, you only need to create text files – no additional
infrastructure is required to implement it. Gatsby also provides core-plugin (a plugin
owned and maintained by the Gatsby team) to process Markdown into content that can be
used by our components. Using core-plugin, no code is required to implement Markdown
and get set up.

60 Sourcing and Querying Data (from Anywhere!)

Let's create a short biography in Markdown and add it to our about page:

1. Create a folder to store our Markdown called MD at the root of your project.

It's good practice to keep this folder outside of your src directory as it does not
contain any source code but instead is text content. This makes it much easier for
a developer without React experience to modify site content.

2. Create a folder inside /MD to store your bio called bio. As we add more Markdown
files that serve up different types of content, it's helpful to keep them separated.

3. Create a bio.md file inside our newly created bio folder and add the following
code:

type: bio

This is the first part of the file and contains YAML frontmatter. YAML is a human-
readable data-serialization language. Here, we are defining a type. This type will
help us query for this exact file in our GraphQL query.

4. Create the body of your biography using Markdown syntax:

type: bio

A short biography about me

This is a very short biography about ***me***. But it
could be as long as I want it to be.

You can use any valid Markdown syntax here; I have kept this example brief by just
including one heading and a paragraph, but feel free to add as much as you like.

5. Install gatsby-source-filesystem:

npm install gatsby-source-filesystem

As its name might suggest, this plugin allows Gatsby to read local files.
6. Install gatsby-transformer-remark:

npm install gatsby-transformer-remark

Sourcing data from local files 61

We can use this plugin to recognize Markdown files and read their content. This
plugin will read in the syntax and convert it into HTML that we can then embed in
our components.

7. Next, let's configure our new dependencies in gatsby-config.js:

module.exports = {

 siteMetadata: {

 siteUrl: 'https://your.website',

 name: 'Your Name',

 role: 'Developer at Company',

 bio: 'My short bio that I will use to introduce

 myself.',

 },

 plugins: [

 {

 resolve: 'gatsby-source-filesystem',

 options: {

 name: 'markdown-bio',

 path: '${__dirname}/MD ',

 },

 },

 'gatsby-transformer-remark',

 'gatsby-plugin-postcss',

],

};

Here, we are introducing Gatsby to our new plugins. We are using gatsby-
source-filesystem to tell Gatsby to read files from the Markdown folder we
created previously.

We also added gatsby-transformer-remark so that Gatsby can read
Markdown files into its GraphQL layer.

62 Sourcing and Querying Data (from Anywhere!)

8. Start your development server and navigate to your GraphiQL interface. Construct
and run the query to retrieve just the bio information:

query Biography {

 markdownRemark(frontmatter: {type: {eq: "bio"}}) {

 html

 }

}

Here, we have constructed a query where we are retrieving the HTML from
markdownRemark. We are filtering the Markdown where the frontmatter type is
equal to bio and since there is only one such file, we will always retrieve the correct
file. By running this query in the GraphiQL interface, you should see something
that looks like this:

{

 "data": {

 "markdownRemark": {

 "html": "<h1>A short biography about

 me</h1>\n<p>This is a very short biography

 about me. But it

 could be as long as I want it to be.</p>"

 }

 },

 "extensions": {}

}

Here, you can see that the Markdown we wrote in the file has been transformed into
HTML that we can now use within our pages.

9. Embed this query in your about page:

import React from "react";

import { graphql } from "gatsby";

import Layout from "../components/layout/Layout";

export default function About({ data }) {

 const {

 markdownRemark: { html },

 } = data;

 return (

Sourcing data from local files 63

 <Layout>

 <div className="max-w-5xl mx-auto py-16 lg:py-24

 text-center">

 <div dangerouslySetInnerHTML={{ __html: html

 }}></div>

 </div>

 </Layout>

);

}

export const query = graphql'

 {

 markdownRemark(frontmatter: { type: { eq: "bio" }

 }) {

 html

 }

 }

';

Here, we have appended our query to the bottom of the page and retrieved the
resultant data via the data prop. I'd like to draw your attention to the div with the
dangerouslySetInnerHTML prop. dangerouslySetInnerHTML is React's
replacement for using innerHTML in the browser's DOM.

It's considered dangerous because if the content can be edited by a user, this can
expose users to a cross-site scripting attack. A cross-site scripting attack injects
malicious code into a vulnerable web application. In our case, however, the content
is always static and always defined by us, so we have nothing to worry about.

Markdown can be a great option if you want to write long-form articles, but what if you
want to make your articles more interactive? Maybe you want a poll in the middle of your
post or a prompt for users to sign up to your email between two paragraphs? There are
plenty of scenarios like these that simply cannot be achieved elegantly in Markdown. For
functionalities such as these, MDX is the answer.

64 Sourcing and Querying Data (from Anywhere!)

MDX
MDX is a format that allows you to enhance your Markdown with JSX. You can import
components into your Markdown and embed them in your content.

Let's make an enhanced biography on our about page using MDX that contains your
employment history:

1. Create a folder to store our Markdown called MDX at the root of your project. As
with Markdown (and for the same reasons), it's good practice to keep this folder
outside of src, even though it can contain React components.

2. Create a folder inside /MDX to store your bio called bio (as we did with our
Markdown).

3. Create a folder called components within your /MDX folder to store React
components specifically for use within our MDX files.

4. Create an EmploymentHistory component in the components folder that we
can embed in our mdx file:

import React from "react";

const employment = [

 {

 company: "Company One",

 role: "UX Engineer",

 },

 {

 company: "Company Two",

 role: "Gatsby Developer",

 },

];

const EmploymentHistory = () => (

 <div className="text-left max-w-xl mx-auto">

 <div className="grid grid-cols-2 gap-2 mt-5">

 {employment.map(({ role, company }) => (

 <>

 <div className="flex justify-end font-

 bold"><p>{role}</p></div>

 <p>{company}</p>

 </>

Sourcing data from local files 65

))}

 </div>

 </div>

);

export default EmploymentHistory;

I am using employment history as an example here, but this can be any
valid React component. In this example, we have defined a small array of
employment experiences containing objects, each with a company and role. In
EmploymentHistory, we map over those roles and lay them out in a grid. We
then export the component as normal.

5. Create bio.mdx in /MDX/bio:

type: bio

import EmploymentHistory from

 "../components/EmploymentHistory";

A short biography about me

This is a very short biography about **_me_**. But it
could be as long as I want it to be.

My Employment History

<EmploymentHistory />

Like our Markdown, we can include frontmatter in MDX files. Here, we are once
again specifying type as bio. Just below that, you will see we have introduced an
import statement pointing to our newly created component. We can then use the
imported component wherever we like within the body of our content, much like I
have on the last line in the preceding example.

6. Install the necessary mdx dependencies:

npm install gatsby-plugin-mdx @mdx-js/mdx @mdx-

js/react

66 Sourcing and Querying Data (from Anywhere!)

7. Configure gatsby-config.js so that it includes the gatsby-plugin-mdx
plugin:

module.exports = {

 siteMetadata: {

 siteUrl: 'https://your.website',

 name: 'Your Name',

 role: 'Developer at Company',

 bio: 'My short bio that I will use to introduce

 myself.',

 },

 plugins: [

 {

 resolve: 'gatsby-source-filesystem',

 options: {

 name: 'mdx-bio',

 path: '${__dirname}/MDX ',

 },

 },

 'gatsby-plugin-mdx',

 'gatsby-plugin-postcss',

],

};

We use gatsby-source-filesystem to tell Gatsby to read files from the MDX
folder we created previously. We have also added gatsby-plugin-mdx so that
Gatsby can read MDX files into its GraphQL layer.

8. Start your development server and navigate to your GraphiQL interface. Construct
and run the query to retrieve our updated MDX bio:

query Biography {

 mdx(frontmatter: { type: { eq: "bio" } }) {

 body

 }

}

Here, we have constructed a query where we are retrieving the mdx body from the
mdx source, where the frontmatter type is equal to bio.

Sourcing data from local files 67

9. Embed the query in your about page:

import React from "react";

import { graphql } from "gatsby";

import Layout from "../components/layout/Layout";

import { MDXRenderer } from "gatsby-plugin-mdx";

export default function About({ data }) {

 const {

 mdx: { body },

 } = data;

 return (

 <Layout>

 <div className="max-w-5xl mx-auto py-16 lg:py-24

 text-center">

 <MDXRenderer>{body}</MDXRenderer>

 </div>

 </Layout>

);

}

export const query = graphql'

 {

 mdx(frontmatter: { type: { eq: "bio" } }) {

 body

 }

 }

';

Here, we have appended our query to the bottom of the page and retrieved
the resultant data via the data prop. We then used MDXRenderer from
gatsby-plugin-mdx to render the MDX body's content.

Important Note
Using MDXRenderer does increase your bundle size and the time it takes for
your JavaScript to be parsed. This is because instead of rendering all the HTML
at build time, any pages containing MDX are now being rendered to HTML on
the frontend. This is important to keep in mind as it will negatively impact your
site's performance.

68 Sourcing and Querying Data (from Anywhere!)

Now that we understand how to ingest local data, let's look at sourcing data from a remote
source – a Content Management System (CMS)!

Sourcing data from a Headless CMS
A Headless CMS is a CMS that purely focuses on the content itself and does not care
about how it's presented. Traditional CMSes store content in a database and then use a
series of HTML templates to control how content gets presented to viewers. In Headless
CMSes, however, instead of returning HTML, we return structured data via an API.

Content creators can still add and edit data via a user interface, but the frontend is stored
completely separately. This is perfect for when your content creators are not developers, or
when you're out and about and want to write a post on your phone without having to spin
up your laptop.

With Gatsby's vast plugin ecosystem, your site can support many different Headless
CMSes with very little effort. You could write a book on how to implement every one of
them into your project, so, instead, let's focus on two – GraphCMS and Prismic.

Important Note
Only implement one of the Headless CMS choices outlined in this chapter. Not
only would having two different sources for the same type of data be confusing,
but it would also lead to longer site build times as data will need to be retrieved
from two sources instead of one.

GraphCMS
GraphCMS is a fully-hosted SaaS platform that's used by over 30,000 teams of all sizes
across the world. Their queries are cached across 190 edge CDN nodes globally, meaning
that wherever you're located, pulling data from GraphCMS into your Gatsby projects
should be blazingly fast. Let's introduce ourselves to using GraphCMS by creating a list of
hobbies within the tool that we can then ingest within our application:

1. Navigate to the GraphCMS website (graphcms.com) and log in.
2. Create a new blank project and pick the region you want to host your data in.
3. Navigate to your project's schema and create a hobby model. The schema is the

blueprint for your data graph. Your schema is built from the models you create, the
fields they contain, and their relationships. Clicking the add button next to Models
will open the following dialog:

https://graphcms.com

Sourcing data from a Headless CMS 69

Figure 3.2 – Model creation in GraphCMS
Here, you can see I am creating a model called Icebreakers. You'll notice that you
need to provide an API ID and its plural form to make it easier to distinguish
between when you are querying a single item versus the whole collection. Upon
hitting Update Model, you should see that Icebreakers has been added to the
model on the left sidebar.

70 Sourcing and Querying Data (from Anywhere!)

4. We can now start to define what type of data is in our Icebreakers model by adding
fields. Upon clicking on the Icebreakers model, you will see many field options on
the right-hand side. We can use these to explain to GraphCMS what format our data
will take. In our case, a hobby consists of one to three words each, so it would be
appropriate to use the Single Line Text field option. Selecting this option will open
the following dialog:

Figure 3.3 – Field creation in GraphCMS

Sourcing data from a Headless CMS 71

Enter an appropriate display name and API ID, such as hobbies. Write Collection
of hobbies I have as the description. I have also checked Allow multiple values
so that we can store a list of hobbies instead of one. Click Update to save this
configuration.

5. Navigate to the content section of the site. Click Create item at the top right of the
page. This will open the following window:

Figure 3.4 – Populating content in GraphCMS
We can now start to fill in our hobbies, adding them to the list as we go. Once you've
done this, hit Save at the top right.

72 Sourcing and Querying Data (from Anywhere!)

6. Returning to the content window, you will see that your created icebreaker is in
Draft mode. This means that we are not happy with the content yet and that we will
not be able to retrieve it from the API yet:

Figure 3.5 – GraphCMS content and its draft status

7. To make the content live, we need to publish it by selecting the item and then
clicking the Publish button.

8. Next, we need to modify the endpoint settings to allow for public API access. By
default, your GraphCMS API is not accessible from outside of their platform.
You can change the settings for your public API access or create permanent
authentication tokens with access permissions. Often, I lean toward keeping my
data public as it is still only retrievable if you know the API's URL. Since it can't be
edited by default, all of it will be displayed publicly on my site anyway.

Sourcing data from a Headless CMS 73

Navigate to Settings, then API Access, and modify your public API permissions to
the following:

Figure 3.6 – GraphCMS public API settings
You will see that I have checked Content from stage Published. By doing so, we
can now retrieve data that has been published via the URL endpoint, located at the
top of the API's Access page.

9. Scroll to the top of this page and take note of your master URL endpoint. We will
now move over to our Gatsby project and start ingesting data using this URL.

10. Open a terminal at the root of your project and install the necessary dependencies,
the official GraphCMS source plugin, and dot-env:

npm install gatsby-source-graphcms gatsby-plugin-image

dotenv

74 Sourcing and Querying Data (from Anywhere!)

gatsby-source-graphcms will allow us to source data from GraphCMS
within our application, while dotenv is a zero-dependency module that loads
environment variables from a .env file. We will be storing our API endpoint in the
.env format. This plugin also requires gatsby-plugin-image under the hood,
so make sure to install it. We will talk more about gatsby-plugin-image in
Chapter 5, Working with Images.

11. Create a .env file at the root of your project and add your master URL endpoint for
GraphCMS as a variable:

GRAPHCMS_ENDPOINT=Your-master-endpoint-url-here

This .env file is used to house environment variables. Be sure to replace the
highlight with your master URL endpoint from Step 6. This file should not be
committed to source control and, as such, should be added to your .gitignore.

12. Modify your gatsby-config.js file so that it includes gatsby-plugin-
image and gatsby-source-graphcms:

require("dotenv").config()

module.exports = {

 ...

 plugins: [

 ...

 'gatsby-plugin-image',

 {

 resolve: 'gatsby-source-graphcms',

 options: {

 endpoint: process.env.GRAPHCMS_ENDPOINT,

 },

 },

 ...

],

};

Firstly, we use dotenv to load in our create .env file, and then we use that variable
within the plugin configuration of gatsby-source-graphcms.

Sourcing data from a Headless CMS 75

13. We can now start our development server. You will notice that when the
development server starts, a new folder is created called graphcms-fragments.
This folder is maintained by the plugin and contains fragments that explain the
structure of our data to the GraphQL data layer.

14. At this point, we can query our data as if it were any other source. First, we must
construct a query:

query Hobbies {

 graphCmsIcebreaker {

 hobbies

 }

}

Here, I have created a query that extracts our hobbies array from the auto-generated
graphCmsIcebreaker source.

15. We can now embed this query in our about page:

import React from "react";

import { graphql } from "gatsby";

import Layout from "../components/layout/Layout";

import { MDXRenderer } from "gatsby-plugin-mdx";

export default function About({ data }) {

 const {

 mdx: { body },

 graphCmsIcebreaker: { hobbies },

 } = data;

 return (

 <Layout>

 <div className="max-w-5xl mx-auto py-16 lg:py-24

 text-center">

 <MDXRenderer>{body}</MDXRenderer>

 <div>

 <h2>Hobbies</h2>

 {hobbies.join(", ")}

 </div>

 </div>

 </Layout>

76 Sourcing and Querying Data (from Anywhere!)

);

}

export const query = graphql'

 {

 mdx(frontmatter: { type: { eq: "bio" } }) {

 body

 }

 graphCmsIcebreaker {

 hobbies

 }

 }

';

You'll notice that I have just appended the new query to the existing page query,
bundled into the same GraphQL string. Gatsby expects to only find one query per
page. I then deconstructed the data prop to retrieve the hobbies array.

Now that we understand how GraphCMS works, let's turn our attention to how you would
implement one of GraphCMS's competitors, Prismic.

Prismic
Prismic is smaller than GraphCMS, with around 5,000 paying customers. One feature
that makes it stand out is they offer dynamic multi-session previews, allowing you to
share multiple simultaneous dynamic previews (with shareable links) in Gatsby. This can
improve your workflow when you're working with clients and you need to send the client's
site content back and forth. Let's learn how to integrate Prismic by adding a list of hobbies
within the UI so that we can then ingest them within our Gatsby site:

1. Create a folder in /src called schemas. Unlike GraphCMS, Prismic does not
automatically create the schemas for us; instead, we will retrieve them using the
Prismic UI as we create them.

2. Navigate to Prismic's website (prismic.io) and log in. Create a new repository
with the free plan (you can always scale up later if you need to).

https://prismic.io

Sourcing data from a Headless CMS 77

3. Click the Create your first custom type button and select the single type. Name
your type Icebreaker and submit.

4. Scroll to the bottom of the build-mode sidebar on the right and drag a group into
the central page:

Figure 3.7 – Prismic group field options

5. Name your field hobbies; the corresponding API ID should populate on its own.
Click OK to confirm this.

78 Sourcing and Querying Data (from Anywhere!)

6. Drag a rich text field into this group:

Figure 3.8 – Prismic text field configuration
This will open the side panel shown to the left of the preceding screenshot. We
will use the rich text field as the type for a single hobby. First, let's give it a name –
hobby seems appropriate. Ensure that API ID matches the assigned name. Uncheck
the Allow multiple paragraphs box and then ensure that only the paragraph object
is highlighted. By doing so, we can ensure that our hobbies are always single lines
that only consist of paragraphs. Submit this using the OK button.

7. Save the document.
8. Now that we have defined our type, navigate to the JSON editor and copy its

contents.
9. Create a new file inside your schemas folder called icebreaker.json and paste

the JSON you have copied.

Sourcing data from a Headless CMS 79

10. Navigate back home and click on Documents. Then click the pencil icon button to
create a new instance of your Icebreaker type:

Figure 3.9 – Prismic collection interface
You can now use your hobbies type to create your data. Once you are happy with
your list of hobbies, you can hit Save, followed by Publish.

80 Sourcing and Querying Data (from Anywhere!)

11. Return home, navigate to Settings, and click on API and security. Ensure that your
repository security is set to Public API for Master only:

Figure 3.10 – Repository security
This means that anyone with your API URL can access what is currently live but
not preview future releases. Make a note of your API entry point, which should
be located at the top of this page. Now, let's look at our Gatsby project and start
ingesting data using that URL.

12. Install the Gatsby Prismic source plugin:

npm install gatsby-source-prismic gatsby-plugin-image

13. Modify your gatsby-config.js file:

module.exports = {

 ...

 plugins: [

 ...

 'gatsby-plugin-image',

 {

 resolve: 'gatsby-source-prismic',

 options: {

 repositoryName: 'elevating-gatsby',

 schemas: {

 icebreaker:

 require('./src/schemas/icebreaker.json'),

 },

 }

Sourcing data from a Headless CMS 81

 },

 ...

],

};

Here, you are adding the source plugin for Prismic to your Gatsby configuration.
Be sure to change the repository name to that of your site. If you're unsure what
your repository's name is, you can find it in your API URL. We are also directing
the plugin to use the schema we have created for our icebreaker. The plugin is also
dependent on gatsby-plugin-image, so make sure it has been added to your
configuration.

14. We can now start our development server and query our data as normal. Upon
opening GraphiQL, you should see prismicIcebreaker as a new source that we
can use to query for our hobbies:

query Hobbies {

 prismicIcebreaker {

 data {

 hobbies {

 hobby {

 text

 }

 }

 }

 }

}

Here, we are retrieving the text value of every hobby from within the hobbies
object.

15. We can now embed this query in our about page:

import React from "react";

import { graphql } from "gatsby";

import Layout from "../components/layout/Layout";

import { MDXRenderer } from "gatsby-plugin-mdx";

export default function About({ data }) {

 const {

 mdx: { body },

82 Sourcing and Querying Data (from Anywhere!)

 prismicIcebreaker: {

 data: { hobbies },

 },

 } = data;

 return (

 <Layout>

 <div className="max-w-5xl mx-auto py-16 lg:py-24

 text-center">

 <MDXRenderer>{body}</MDXRenderer>

 <div>

 <h2>Hobbies</h2>

 {hobbies.map(({ hobby }) => (

 {hobby.text}

))}

 </div>

 </div>

 </Layout>

);

}

export const query = graphql'

 {

 mdx(frontmatter: { type: { eq: "bio" } }) {

 body

 }

 prismicIcebreaker {

 data {

 hobbies {

 hobby {

 text

 }

 }

 }

 }

Summary 83

 }

';

As we did when we looked at GraphCMS, I have just appended the new query to the
existing page query. Our data is then passed in as the data prop and is available for
us to use in whatever way we wish.

You should be starting to see the power of using GraphQL in Gatsby. As soon as
we have ingested data, we can use the same format to query it every time. Using these
two as examples, you should feel comfortable sourcing data from another CMS using a
source plugin.

Summary
In this chapter, you learned how to use Gatsby's data layer. You learned about the basics of
how to explore your GraphQL data layer via GraphiQL and should now feel comfortable
sourcing and ingesting data into your Gatsby project from a multitude of different
sources – siteMetadata, Markdown, MDX, and CMSes using their plugins. If you
are interested in how source plugins are created and how to make your own, check out
Chapter 10, Creating Gatsby Plugins.

In the next chapter, we will create and use reusable templates for pages that appear more
than once, such as blog pages. This is great for when you have multiple pieces of data that
you want to make use of while using the same layout.

4
Creating Reusable

Templates
This chapter is where you will really begin to see the power that Gatsby brings to larger
sites. You will learn about how we can programmatically create pages using reusable
templates and data sourced via GraphQL. By the end of this chapter, you will have created
lists of blog posts, blog pages, and tag pages. You'll also understand how to introduce
pagination and search functionality to your site.

All the pages we have created up until now have been single instances, meaning there is
only one copy of that page on the site (for example, our index page, of which there will
be only one copy ever). But what happens when we consider pages such as blog pages?
It would be a very laborious process to create a single instance page for each post. So,
instead, we can use templates. A template is a multi-instance of a page component that
is mapped to data. For every node in a GraphQL query, we can create a page using this
template and populate it with the data of that node.

Now that we understand what we mean by templates in Gatsby, let's create our first few
templates, and then programmatically create pages with them.

86 Creating Reusable Templates

In this chapter, we will cover the following topics:

• Defining templates

• Creating templates and programmatic page generation

• Search functionality

Technical requirements
To complete this chapter, you will need to have completed Chapter 3, Sourcing and
Querying Data (from Anywhere!). You'll get the most out of this chapter if you have a
collection of blog posts that we can use to build our pages, ingested into Gatsby. The
source doesn't matter – you'll be ready to start this chapter if you can see them in your
GraphQL data layer. If you don't have any posts to hand, you can find some placeholder
Markdown files that you can ingest in Gatsby here: https://github.com/
PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/
tree/main/Chapter04/placeholder-markdown.

The code for this chapter can be found at https://github.com/
PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/
tree/main/Chapter04.

Important Note
To keep the code snippets at a manageable size, many of the examples in this
chapter have styling omitted and comments pointing to code we've already
written. To see a fully styled version of these components, please navigate to
this book's code repository.

Creating templates and programmatic
page generation
In this section, we will programmatically generate pages using templates. We will be
creating blog pages, blog list preview pages, and tag pages. To make all of this work
correctly, it is important to ensure that each node of data that you are ingesting to
populate blog pages contains the following:

• Title: The title of the blog post.

• Description: A one-line description of what the blog post contains.

https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter04/placeholder-markdown
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter04/placeholder-markdown
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter04/placeholder-markdown
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter04
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter04
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter04

Creating templates and programmatic page generation 87

• Date: The date that the post should be published.

• Tags: A list of tags that the blog post is associated with.

• Body: The main content of the post.

If you are sourcing more than one type of content from the same source, it would be a
good idea to also include a type field. This will allow you to filter out nodes that don't
belong to this type.

The method for adding these to your nodes will change, depending on the source.
However, in the case of Markdown, you could create your posts in the following format:

type: Blog

title: My First Hackathon Experience

desc: This post is all about my learnings from my first

 hackathon experience in London.

date: 2020-06-20

tags: [hackathon, webdev, ux]

Body Content

Here, we added title, desc, date, and tags to frontmatter. Our body content
would then be everything following frontmatter.

Important Note
I will be querying data from local Markdown files within this chapter. If you
are sourcing content from another type of local or a remote source, you can
still use all the code except the queries and node field manipulation, which you
will have to modify to work with your source. If you are struggling to construct
your queries, refer back to Chapter 3, Sourcing and Querying Data (from
Anywhere!).

Regardless of your source, you should ensure that your content is populated with the same
fields to ensure GraphQL queries for blog-related data are always consistent.

Now that we have established the necessary blog node data fields, let's create blog post
pages using our data.

88 Creating Reusable Templates

Blog post template
In this section, we will create pages for each blog post we have. We will be creating and
using our first template to do this with the help of the following steps:

1. Modify your gatsby-node.js file so that it includes the following code:

const { createFilePath } = require('gatsby-source-

 filesystem');

exports.onCreateNode = ({ node, getNode, actions }) => {

 const { createNodeField } = actions;

 if (node.internal.type === 'MarkdownRemark') {

 const slug = createFilePath({ node, getNode,

 basePath: 'pages' });

 createNodeField({

 node,

 name: 'slug',

 value: slug,

 });

 }

};

The onCreateNode function is called whenever a new node is created. Using
this function, we can transform nodes by adding, removing, or manipulating
their fields. In this specific case, we are adding a slug field if the node is of the
MarkdownRemark type. A slug is an address for a specific page on our site, so
in the case of our blog page, we want every blog post to have a unique slug where
it will render on the site. Creating slugs from filenames can be complicated as you
need to handle characters that would break URL formatting. Luckily, the gatsby-
source-filesystem plugin ships with a function called createFilePath for
creating them.

2. Verify that each blog page has a slug by running your development server and
using GraphiQL to explore your nodes. If you are using Markdown, you should find
it within the fields object on MarkdownRemark nodes.

3. Create a new folder inside src called templates to house our page templates.
4. Create a new file inside templates called blog-page.js. This is the file where

we will create our blog page template.

Creating templates and programmatic page generation 89

5. Add the following code to the blog-page.js file:

import React from "react";

import Layout from "../components/layout/Layout";

import TagList from "../components/blog-posts/TagList"

export default function BlogPage() {

 return (

 <Layout>

 <div className="max-w-5xl space-y-4 mx-auto

 py-6 md:py-12 overflow-x-hidden lg:overflow-x-

 visible">

 <h1 className="text-4xl font-bold">Blog

 Title</h1>

 <div className="flex items-center space-x-2">

 <p className="text-lg opacity-50">Date</p>

 <TagList tags={["ux"]} />

 </div>

 <div>

 Article Body

 </div>

 </div>

 </Layout>

);

}

Here, we are creating the blog post template with a static set of data that we
will switch out for real content shortly. You can see that we have a heading
containing our blog post title. We then follow it with the blog's Date and a
TagList component, which we will make shortly. Finally, we have the main
Article Body.

6. Create a folder inside src/components called blog-posts, in which we will
store any component related to the blog.

90 Creating Reusable Templates

7. Create a TagList component in the src/components/blog-posts file.
We will use this component whenever we want to render a list of tag badges on
the screen:

import React, { Fragment } from "react";

const TagList = ({ tags }) => {

 return (

 <Fragment>

 {tags.map((tag) => (

 <div

 key={tag}

 className="rounded-full px-2 py-1 uppercase

 text-xs bg-blue-600 text-white"

 >

 <p>{tag}</p>

 </div>

))}

 </Fragment>

);

};

export default TagList

This component takes in an array of tags as a prop, maps over them, and returns a
styled div containing that tag. This is all wrapped up in a Fragment component.
By using a Fragment, we can avoid enforcing the ordering and positioning of our
tags, and can instead allow the parent element to decide.

Now that we have created a template file and its components, we can use it within
our gatsby-node.js file.

8. Add the following code to the top of your gatsby-node.js file:

const path = require('path');

const { createFilePath } = require('gatsby-source-

 filesystem');

exports.createPages = async ({ actions, graphql,

 reporter }) => {

 const { createPage } = actions;

Creating templates and programmatic page generation 91

 const BlogPostTemplate =

 path.resolve('./src/templates/blog-page.js');

 const BlogPostQuery = await graphql('

 {

 allMarkdownRemark(filter: { frontmatter: { type:

 { eq: "Blog" } } }) {

 nodes {

 fields {

 slug

 }

 }

 }

 }

 ');

 if (BlogPostQuery.errors) {

 reporter.panicOnBuild('Error while running GraphQL

 query.');

 return;

 }

 BlogPostQuery.data.allMarkdownRemark.nodes.forEach(({

 fields: { slug } }) => {

 createPage({

 path: 'blog${slug}',

 component: BlogPostTemplate,

 context: {

 slug: slug,

 },

 });

 });

};

92 Creating Reusable Templates

9. Here, we are utilizing the createPages function, which allows us to create
pages dynamically. To ensure you can query all your data, this function is only
run once all your data has been sourced. Inside this function, we first destructure
the actions object to retrieve the createPage function. Then, we tell Gatsby
where to find our blog post template. With these two pieces in place, we are now
ready to query our data. You should see a familiar GraphQL query for selecting
the slug from all the Markdown where the type is Blog. We then have a small if
statement to catch errors but, assuming it's successful, we then have all the data we
need to create pages. We can loop through the result of our data and loop through
every data node, creating a page for each one by specifying a path (using slug)
and our template. You'll also notice that we are defining some context here. Data
that's defined in context is available in page queries as GraphQL variables, which
will make it easy to map the correct Markdown content to the correct pages in the
following steps. Restart your development server and open the development 404
page by navigating to any non-existent route on the port. This will display a list of
pages on your site, including the pages we have just created. Clicking on one should
render the static content we defined when creating the template. Now that these
pages have been created successfully, let's navigate back to the template and modify
it to retrieve the correct content instead of the static content.

10. Modify the src/templates/blog-post.js file with the following code:

import React from "react";

import { graphql } from "gatsby";

import Layout from "../components/layout/Layout";

import TagList from "../components/blog-posts/TagList"

export default function BlogPage({data}) {

 const {blogpost: {frontmatter: {date, tags, title},

 html}} = data

 const shortDate = date.split("T")[0]

 return (

 <Layout>

 <div className="max-w-5xl space-y-4 mx-auto

 py-6 md:py-12 overflow-x-hidden lg:overflow-x-

 visible">

 <h1 className="text-4xl font-

 bold">{title}</h1>

 <div className="flex items-center space-x-2">

 <p className="text-lg opacity-

 50">{shortDate}</p>

Creating templates and programmatic page generation 93

 <TagList tags={tags} />

 </div>

 <div className="prose max-w-5xl"

 dangerouslySetInnerHTML={{__html:html}}/>

 </div>

 </Layout>

);

}

export const pageQuery = graphql'

query($slug: String!) {

 blogpost: markdownRemark(fields: {slug: {eq:

 $slug}}) {

 frontmatter {

 date

 title

 tags

 }

 html

 }

 }'

You will see that our template has a page query appended to it; this is where the
slug property we defined in the gatsby-node.js file comes in handy. We can
use that slug to find the blog post where slug matches in the node's fields. We
query for all the data that we need to populate this page with and retrieve date,
title, tags, and the Markdown HTML. This is then passed into the template
via the data prop, exactly like in our single instance pages. We can then use this
content to swap out the static placeholder content we had previously.

11. By restarting your development server and navigating to one of your blog pages
again, you should now see it populated with its node data. You've successfully made
your first programmatic pages!

94 Creating Reusable Templates

As we only have a few blog posts, creating all of these pages won't take very long.
However, what happens if you have thousands of pages to create? Instead of waiting
for all your site pages to build, you can instruct Gatsby to defer the generation of
some of these pages. You can do this by passing defer:true to the createPage
function in gatsby-node.js, like so:

 createPage({

 path: 'blog${slug}',

 component: BlogPostTemplate,

 defer: true,

 context: {

 slug: slug,

 },

 });

With this change, any page that's created in this way will be built the first time that
that page is requested instead of at build time. This feature changes the kind of build
from a static build to a hybrid build. For more information on this difference, please
read Chapter 9, Deployment and Hosting.

Now that we have created blog post pages, we must have some way of linking to them
from our other pages. Let's create a blog preview template page, where we can have
a list of our blog posts with previews and a link to the pages we have just created.

Blog preview template
While we could create a single list of blog posts and render it, it is a standard pattern
for websites to divide lists of blog posts, articles, and products using pagination. Using
pagination within your site has three main benefits:

• Better page performance: If every article includes an image in the preview, then
with every added item, we are increasing the amount of data we need to transfer
to the client significantly. By introducing pagination, the client will only download
small segments of data as they browse a group of items. This leads to faster page
load times, which is particularly important in areas with low bandwidth.

• Improved user experience: Displaying all the content on a single page could
overwhelm the user, so instead, we must break down our content into small and
manageable chunks.

Creating templates and programmatic page generation 95

• Easier navigation: If we render hundreds of products in one continuous list, the
user will have no idea how many products are there while scrolling through. By
breaking content down into multiple pages with a set quantity of products on each,
the user can understand the scale of your content better.

With all that in mind, let's create a paginated blog preview page using a template:

1. Create a Pagination component in the src/components/blog-posts file:

import React from "react";

import { Link } from "gatsby";

const Pagination = ({ numPages, currentPage }) => {

 var pageArray = [];

 for (var i = 1; i <= numPages; i++) pageArray[i] = i;

 return (

 <div>

 {currentPage !== 1 && (

 <Link to={currentPage === 2 ? '/blog' :

 '/blog/${currentPage - 1}'}>

 Previous

 </Link>

)}

 {pageArray.map((pageNum) => (

 <li key={'pageNum_${pageNum}'} >

 <Link to={pageNum === 1 ? '/blog' :

 '/blog/${pageNum}'}>

 {pageNum}

 </Link>

))}

 {currentPage !== numPages && (

 <Link to={'/blog/${currentPage +

 1}'}>Next</Link>

96 Creating Reusable Templates

)}

 </div>

);

};

export default Pagination;

Here, we have created the component that will allow us to access paginated blog
preview pages. The component contains the number of pages and the current page
as props. Using these two pieces of information, we can determine whether a user
can navigate forward or back from their current page. How this component works
is best explained by seeing how it renders:

Figure 4.1 – Pagination component states
In the first case, the current page is 1, so there is no need to render a Previous
button. Instead, we only show the preceding pages and the Next button. In the
second case, we are on page 2, where the user can navigate both forward and back,
and as such, we can render the Previous and Next buttons. In the last case, we are
on the last page, so we don't need to render the Next button.

2. Create a new template in src/templates/ called blog-preview.js and add
the following page query:

/*

 Space for page component

*/

export const pageQuery = graphql'

 query($skip: Int!, $limit: Int!) {

 blogposts: allMarkdownRemark(

 limit: $limit

 skip: $skip

 filter: { frontmatter: { type: { eq: "Blog" } } }

 sort: { fields: frontmatter___date, order: DESC }

Creating templates and programmatic page generation 97

) {

 nodes {

 frontmatter {

 date

 title

 tags

 desc

 }

 fields {

 slug

 }

 }

 }

 }

';

The query within this file sources data from allMarkdownRemark (which I
have named blogposts in this query). The blogposts query retrieves all the
Markdown where the frontmatter type is equal to Blog. It sorts the collection
of posts by descending date. Here's where things get interesting – we also provide
a skip and limit to the query. skip tells the query how many documents from
the collection to skip over, while limit tells the query to limit the number of
results to that quantity. We will be providing skip and limit to the page context,
as well as numPages and currentPage, within our gatsby-config.js file.

3. Create the page component before the query in the blog-preview.js file:

import React from "react";

import { graphql, Link } from "gatsby";

import Layout from "../components/layout/Layout";

import Pagination from "../components/blog-

 posts/Pagination";

import TagList from "../components/blog-posts/TagList"

export default function BlogPreview({ pageContext,

 data }) {

 const {

 numPages,

 currentPage

98 Creating Reusable Templates

 } = pageContext

 const {

 blogposts: { nodes },

 } = data;

 // return statement

}

As with our other queries, when the query at the end of this file runs, it will provide
data to our page via the data prop. Here, we are destructuring pageContext
to access numPages and currentPage. We are also using destructuring data
to get nodes from the blogposts query. We will add our render via the return
statement in the following step.

4. Create the return statement in this same file:

 return (

 <Layout>

 <div className="max-w-5xl mx-auto space-y-8 py-6

 md:py-12">

 {nodes.map(

 ({ frontmatter: { date, tags, title, desc },

 fields: { slug } }) => (

 <div>

 <Link to={'/blog${slug}'}>

 <h2 className="text-2xl font-

 medium">{title}</h2>

 <div className="flex items-center

 space-x-2">

 <p className="text-lg opacity-

 50">{date.split("T")[0]}</p>

 <TagList tags={tags}/>

 </div>

 <p>{desc}</p>

 </Link>

 </div>

)

)}

 <Pagination numPages={numPages}

Creating templates and programmatic page generation 99

 currentPage={currentPage} />

 </div>

 </Layout>

);

We use nodes from the two sources to map through posts, render a preview of
each (making use of the TagList component), as well as render our Pagination
component. Now that we have created our template, we can ingest it into our
gatsby-config.js file.

5. Modify your gatsby-config.js file's createPages function with the
following code:

exports.createPages = async ({ actions, graphql,

 reporter }) => {

 const { createPage } = actions;

 const BlogPostTemplate =

 path.resolve('./src/templates/blog-page.js');

 const BlogPreviewTemplate =

 path.resolve('./src/templates/blog-preview.js');

 // BlogPostQuery

 const BlogPosts =

 BlogPostQuery.data.allMarkdownRemark.nodes;

 const postsPerPage = 6;

 const numPages = Math.ceil(BlogPosts.length /

 postsPerPage);

 Array.from({ length: numPages }).forEach((_, i) => {

 createPage({

 path: i === 0 ? '/blog' : '/blog/${i + 1}',

 component: BlogPreviewTemplate,

 context: {

 limit: postsPerPage,

 skip: i * postsPerPage,

 numPages,

 currentPage: i + 1,

 slug: i === 0 ? '/blog' : '/blog/${i + 1}',

 },

 });

100 Creating Reusable Templates

 // Blog Post Page Creation

 });

 //

};

First, we require our new BlogPreviewTemplate, then we run our
Markdown query as normal. As we will be now using BlogPostQuery.data.
allMarkdownRemark.nodes in two places (blog previews and blog post page
creation), we can assign it to a constant. We will also assign two more constants
– the number of posts per page (postsPerPage) and the number of pages
(numPages) that we will need for pagination. postsPerPage specifies how
many posts we want on each of our paginated blog post previews. numPages
calculates how many preview pages are needed by dividing the total number of
posts by postsPerPage and then rounding up to the nearest whole integer using
the Math.ceil function. We then create an Array with a length equal to the
number of pages and loop through it using the forEach function. For each index
(i), we use the createPage action. We provide this action with the path to where
the page should be located, which is /blog if i is 0 and /blog/i+1 for anything
higher. We also provide BlogPreviewTemplate and context, which contain
limit and skip, which we utilize on the page.

6. You are now ready to start your development server to verify that pagination is
working. You should see your posts in descending date order located at /blog.
If you have more posts than your postsPerPage value, you should also see
your Pagination component, showing you that there are additional pages and
allowing you to navigate there.

Now that we have implemented a blog preview page, let's use what we have learned to
create one more collection of pages – tag pages.

Tag page template
As a user, seeing my posts in date order is not always enough – I may want to be able to
find groups of posts associated with a single topic. Tag pages are pages you navigate to
whenever you click on one of a blog post's tags. Navigating to one of these pages, you are
presented with a list of posts that are associated with that tag.

Let's programmatically create tag pages for each tag that's present in our articles:

1. Install lodash:

npm i lodash

Creating templates and programmatic page generation 101

lodash is a JavaScript utility library that we will be using to make tags
URL-friendly. Because a single tag might consist of multiple words, we need a way
to remove the spaces. While you could create a function yourself to do this, lodash
has a .kebabCase() function that works well for this use case.

2. Modify the TagList component to turn our tag badges into Link components:

import React, { Fragment } from "react";

import { Link } from "gatsby";

import { kebabCase } from "lodash"

const TagList = ({ tags }) => {

 return (

 <Fragment>

 {tags.map((tag) => (

 <Link key={tag}

 to={'/tags/${kebabCase(tag)}'}>

 <div

 key={tag}

 className="rounded-full px-2 py-1 uppercase

 text-xs bg-blue-600 text-white"

 >

 <p>{tag}</p>

 </div>

 </Link>

))}

 </Fragment>

);

};

export default TagList

As Link components, they need a to prop. This prop should point to where your
tag pages will be created – in our case, /tags/tag-name is the location. We can
use the kebabCase function from lodash to ensure that any spaces in tags are
turned into hyphens.

3. Create a tags.js file in the src/templates folder:

/*

 Space for page component

*/

102 Creating Reusable Templates

export const pageQuery = graphql'

 query($tag: String) {

 blogposts: allMarkdownRemark(

 sort: { fields: [frontmatter___date], order:

 DESC }

 filter: { frontmatter: { tags: { in: [$tag] },

 type: { eq: "Blog" } } }

) {

 totalCount

 nodes {

 frontmatter {

 date

 title

 tags

 desc

 }

 fields {

 slug

 }

 }

 }

 }

';

4. This component will appear very similar to our previously constructed blog-
preview.js file in the Blog preview template section, except for a minor change
to the query. In this query, we still source our Markdown content, but this time, we
filter out the posts that do not contain the page's tag.

5. Create the page component before the query in the tags.js file:

import React from "react";

import { graphql, Link } from "gatsby";

import Layout from "../components/layout/Layout";

import TagList from "../components/blog-

 posts/TagList";

export default function Tags({ pageContext, data }) {

Creating templates and programmatic page generation 103

 const { tag } = pageContext;

 const {

 blogposts: { nodes },

 } = data;

 return (

 <Layout>

 <div>

 <p>Posts tagged with "{tag}"</p>

 {nodes.map(

 ({ frontmatter: { date, tags, title, desc },

 fields: { slug } }) => (

 <div>

 <Link to={'/blog${slug}'}>

 <h2>{title}</h2>

 <div>

 <p>{date.split("T")[0]}</p>

 <TagList tags={tags} />

 </div>

 <p>{desc}</p>

 </Link>

 </div>

)

)}

 </div>

 </Layout>

);

}

The page then renders a paragraph containing the tag you are currently filtering
posts with, followed by the filtered list of posts. Each post preview is rendered with
its title, date, description (desc), and tags, just like in the blog-preview.
js file.

Important Note
If you intend to render the same items in the lists of both your blog-
preview.js and tags.js files, then you should probably abstract the
item preview component into a separate component. To keep these examples
independent, I will not do this here.

104 Creating Reusable Templates

6. Import lodash into the top of your gatsby-config.js file, next to the
other imports:

const _ = require("lodash");

We will need to use lodash's kebabCase in this file as well.
7. Add your tag template and query to your gatsby-config.js files'

createPages function:

exports.createPages = async ({ actions, graphql,

 reporter }) => {

// actions destructure & other templates

 const TagsTemplate =

 path.resolve('./src/templates/tags.js');

 const BlogPostQuery = await graphql('

 {

 allMarkdownRemark(filter: {frontmatter: {type:

 {eq: "Blog"}}}) {

 nodes {

 fields {

 slug

 }

 }

 }

 tagsGroup: allMarkdownRemark(filter: {frontmatter:

 {type: {eq: "Blog"}}}) {

 group(field: frontmatter___tags) {

 tag: fieldValue

 }

 }

 }');

// Error Handling, Blog Preview & Blog Post page

 creation

 BlogPostQuery.data.tagsGroup.group.forEach((group)

 => {

 createPage({

 path: 'tags/${_.kebabCase(group.tag)}/',

 component: TagsTemplate,

Search functionality 105

 context: {

 tag: group.tag,

 },

 });

 });

};

First, we acquire our new TagsTemplate. Then, we append our query with a new
query to our Markdown source. This group (which we've named tagsGroup)
retrieves an array containing every unique tag that is within frontmatter
of our posts.

We can then use this new data to loop through every tag and create a tag page
for each one. We pass a path to each createPages function, pointing to tags/,
followed by the tag name that's parsed through the kebabCase function. We pass
the component property we want it to build the page with, which in our case is
TagsTemplate, at the beginning of this file. You will also notice that we are also
passing tag to the page's context so that the page knows which tag it relates to.

8. You are now ready to start your development server to verify that the tag pages are
working. Navigate to the development 404 page; you should see a page starting with
tags/ for each tag. Clicking on one of these, you should be presented with our tag
page template and a list of blog posts associated with that tag.

Further Exercise
We've learned how to paginate blog lists, as well as create tag pages. Why not
take this one step further and paginate your tag pages?

With that, we have learned how to programmatically create pages for blog posts, blog lists,
and tags. Now, let's turn our attention to how we might create a site search so that as the
site expands, finding our blog's content is easier.

Search functionality
There are many different ways of integrating a site search. Many options are both
hosted and local. For small projects, such as the site we are creating, it's often better to
opt for a local index solution as the number of pages you are searching through is never
that large. This also means that your site search will work in offline scenarios, which can
be a real plus.

106 Creating Reusable Templates

Elasticlunr (http://elasticlunr.com/) is a lightweight full-text search
engine in JavaScript for browser and offline search. Using the elasticlunr Gatsby
plugin, content is indexed and then made available via GraphQL to rehydrate in an
elasticlunr index. Search queries can then be made against this index to retrieve
page information.

Let's integrate a site search using elasticlunr:

1. Install the elasticlunr Gatsby plugin:

npm install @gatsby-contrib/gatsby-plugin-elasticlunr-

search

2. Add the elasticlunr plugin to your gatsby-config.js plugins array:

{

 resolve: '@gatsby-contrib/gatsby-plugin-

 elasticlunr-search',

 options: {

 fields: ['title', 'tags', 'desc'],

 resolvers: {

 MarkdownRemark: {

 title: node => node.frontmatter.title,

 tags: node => node.frontmatter.tags,

 desc: node => node.frontmatter.desc,

 path: node => '/blog'+node.fields.slug,

 },

 },

 filter: (node, getNode) =>

 node.frontmatter.type === "Blog",

 },

 },

As part of options, we provide the plugin with a list of fields that we would
like to index. Then, we give it a resolvers object, which explains how to resolve
fields for a source. Within our blog posts, we can retrieve title, tags, and
desc from frontmatter. We can construct path with that specific content with
a string and the data's slug. Finally, we also pass a filter. This filter tells the
plugin to only use nodes where the frontmatter type is of the Blog type, as it is
only our blog pages that we want to be searchable at this moment.

http://elasticlunr.com/

Search functionality 107

3. Create a Search.js component in the src/layout folder:

import React, { useState, useEffect } from "react";

import { Link } from "gatsby";

import { Index } from "elasticlunr";

const Search = ({ searchIndex }) => {

 const [query, setQuery] = useState("");

 let [index, setIndex] = useState();

 let [results, setResults] = useState([]);

 useEffect(() => {

 setIndex(Index.load(searchIndex));

 }, [searchIndex]);

};

export default Search

The Search component takes in searchIndex as a prop. One of the first things
you will notice is a useEffect hook that loads the index into a state hook. Once
we have loaded in the index, we can query it.

4. Create a search function below useEffect:

const search = (evt) => {

 const query = evt.target.value;

 setQuery(query);

 setResults(

 index

 .search(query, { expand: query.length > 2 })

 .map(({ ref }) =>

 index.documentStore.getDoc(ref))

);

 };

108 Creating Reusable Templates

You will see that whenever the search function is called, we search the index
using our query string. You will notice that we are passing in expand: query.
length > 2 as an option to the search function. This tells elasticlunr to
allow partial matches if more than two characters have been entered. If you allow
partial matches for fewer characters, you will often find that you get an abundance
of results that are not related to what the user is looking for. Once we have searched
the index, we can map over documentStore within index and return the
document results, which are then passed to state via the useState hook.

5. Create the search result render function:

const searchResultSize = 3;

return (

 <div className="relative w-64 text-gray-600">

 <input

 type="search"

 name="search"

 placeholder="Search"

 autoComplete="off"

 aria-label="Search"

 onChange={search}

 value={query}

 />

 {results.length > 0 && (

 <div>

 {results

 .slice(0, searchResultSize)

 .map(({ title, description, path }) => (

 <Link key={path} to={path}>

 <p>{title}</p>

 <p className="text-

 xs">{description}</p>

 </Link>

))}

 {results.length > searchResultSize && (

 <Link to={'/search?q=${query}'}>

 <p>+ {results.length - searchResultSize}

 more</p>

Search functionality 109

 </Link>

)}

 </div>

)}

 </div>

);

We map over results from the state using the results value from the useState
hook and render the results to the screen within our render function. For a slightly
better user experience, it's often a good idea to include a searchResultSize
constant. This value determines the maximum number of results to display. This
stops cases where you have hundreds of results and see the overlay run off the page.
Instead, if there are more results, we simply indicate to the user how many more
results there are.

6. Modify your Header.js file to retrieve the site index and pass it to your
Search component:

import React from "react";

import { Link, StaticQuery, graphql } from "gatsby";

import Search from "./Search";

const Header = () => (

 <header className="px-2 border-b w-full max-w-7xl

 mx-auto py-4 flex items-center justify-between">

 <Link to="/">

 <div className="flex items-center space-x-2

 hover:text-blue-600">

 <p className="font-bold text-2xl">Site

 Header</p>

 </div>

 </Link>

 <StaticQuery

 query={graphql'

 query SearchIndexQuery {

 siteSearchIndex {

 index

 }

 }

110 Creating Reusable Templates

 '}

 render={data => (

 <Search

 searchIndex={data.siteSearchIndex.index}/>

)} />

 </header>

);

export default Header;

Because Header.js is not a page component, we cannot append the graphql
query to the end of the page as Gatsby is not looking for it. However, we can still
locate data with the component by using StaticQuery. Static queries differ from
page queries as they cannot accept variables like our pages can via page context. In
this scenario, that's not a constraint as the search index is always static.

StaticQuery has two important props – query and render. query accepts a
graphql query, while render tells the component what to render with the data
from that query. In this particular instance, we are querying for the elasticlunr
index, and then rendering our Search component using that data, passing
index as a prop.

7. Now that we have completed our search functionality, restart your development
server. You should see that the header of our site now contains our Search
component. Try typing in a few characters and click on one of the results. You
should be navigated to the corresponding page.

By adjusting the resolvers and using the same methodology and tools outlined here, we
could add pages of different types to our results to create a true site-wide search.

Summary
In this chapter, you learned how to programmatically create pages using reusable
templates. You should feel confident that you can now create pages using any GraphQL
data source. We've implemented a list of blog posts with pagination, blog pages, tag pages,
and created a site search for blog posts that even works offline.

In the next chapter, we will master the art of adding images to our Gatsby site. First,
we will learn why importing images is not that simple, before creating images that
progressively load in and are performant.

5
Working with

Images
In this chapter, you will master the art of adding images to your Gatsby site. First, we will
learn a little about the history of images on the web, before understanding why importing
images is not as easy you might think. We will then move on to creating images that
progressively load in and are performant.

In this chapter, we will cover the following topics:

• Images on the web

• The StaticImage component

• The GatsbyImage component

• Overriding the gatsby-plugin-image defaults

• Sourcing images from CMS

Technical requirements
To complete this chapter, you will need to have completed Chapter 3, Sourcing and
Querying Data (from Anywhere!).

112 Working with Images

The code for this chapter can be found at https://github.com/
PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/
tree/main/Chapter05.

Images on the web
When was the last time you visited a website without any images? You might be thinking
that this is a hard question to answer. Images are a critical part of websites and our
browsing experience. We use images for logos, products, profiles, and marketing to convey
information, entice, or excite through a visual medium. While images are great for these
use cases (and many more!), they are the single largest contributor to page size. According
to the HTTP Archive (https://httparchive.org/), the median page size on
desktops is 2,124 KB. Images make up 973 KB of this size, which is roughly 45% of the
total page size.

As images are so integral to our browsing experience, we cannot do away with them. But
when they account for so much of the page size, we should be doing everything in our
power to ensure that they are optimized, accessible, and as performant as possible. Newer
versions of browsers (including Chrome) have responsive image capabilities built into
them. Instead of providing a single source for the image, the browser can accept a source
set. The browser uses this set to load an image at a different size, depending on the size
of the device. This ensures the browser never loads images that are too big for the space
available. Another way in which developers can optimize images, specifically in React, is
with lazy loading. Lazy loading is the process of deferring the load of your images until
a later point in time. This could be after the initial load, or when they specifically become
visible on the screen. Using this technique, you can improve your site's speed, better
utilize a device's resources, and reduce a user's data consumption.

Images in Gatsby
Manually creating high-performance sites that contain lazy-loaded images is a project
in itself. Luckily, Gatsby has a plugin that takes the pain away when you're generating
responsive, optimized images – gatsby-plugin-image.

This plugin contains two React image components with specific features aimed at creating
a better user experience when using images, both for the developer and the site visitor:

• Loads the correct image for the device viewing the site.

• Reduces cumulative layout shift by holding the position of the image while it
is loading.

• Uses a lazy loading strategy to speed up the initial load time of your site.

https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter05
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter05
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter05
https://httparchive.org/

The StaticImage component 113

• Has multiple options for placeholder images that appear while the image is loading.
You can make the images blur up or use a traced Scalable Vector Graphics (SVG)
of the image in its place.

• Supports new image formats such as WebP if the browser can support it.

In the next section, we will begin looking at the first of the two image components in this
chapter – the StaticImage component.

The StaticImage component
StaticImage is best used when an image will always remain the same. It could be your
site logo, which is the same across all pages, or a profile photo that you use at the end of
blog posts, or a home page hero section, or anywhere else where the image is not required
to be dynamic.

Unlike most React components, the StaticImage component has some limitations on
how you can pass the props to it. It will not accept and use any of its parents' props. If you
are looking for this functionality, you will want to use the GatsbyImage component.

To get an understanding of how we utilize the StaticImage component, we will
implement an image on the hero of our home page:

1. Create an assets folder next to your src folder. To keep things organized, it is
good practice to keep images away from your source code. We will use the assets
folder to house any visual assets.

2. Create a folder within assets called images. We will use this folder to store the
visual assets of the image type.

3. Add an image to your images folder. The image file type must be in .png, .jpg,
.jpeg, .webp, or .avif format.

4. Install gatsby-plugin-image and its dependencies:

npm install gatsby-plugin-image gatsby-plugin-sharp

gatsby-source-filesystem

These dependencies spawn other node processes and may take a little longer to
install compared to our previous installs.

5. Update your gatsby-config.js file so that it includes the three
new dependencies:

plugins: [

 'gatsby-plugin-image',

114 Working with Images

 'gatsby-plugin-sharp',

 'gatsby-transformer-sharp',

 // Other plugins

],

6. Import the StaticImage component into your index.js file:

import { StaticImage } from "gatsby-plugin-image";

7. Use the StaticImage component within the render on the page:

<StaticImage

 src="../../assets/images/sample-photo.jpeg"

/>

The src prop should be the relative path to the image from the current file, not the
root directory.

8. Modify the image that's rendered via props:

<StaticImage

 src="../../assets/images/sample-photo.jpeg"

 alt="A man smiling"

 placeholder="tracedSVG"

 layout="fixed"

 width={400}

 height={600}

/>

Let's look at these props in detail:
• src: This prop is the relative path to the image from the current file.

• alt: As you would with a normal img tag, be sure to include an alt prop with text
describing the image so that your image remains accessible.

• Placeholder: This prop tells the component what to display while the image
is loading. Here, we have set it to tracedSVG, which uses a placeholder SVG
(created by tracing the image) to fill the gap where the image will load in, but
also gives the user a sense of the shape of whatever is in the photo. Other options
include blurred, dominantColor, and none.

The GatsbyImage component 115

• layout: This prop determines the size of images that are produced as the output
by the plugin and their resizing. Here, we have set it to fixed – this suggests that
the image will be at a consistent size when it renders. Other layout options include
constrained, which takes a maximum height or width and can scale down, and
fullWidth, which will also resize to fit the container but is not restricted to the
maximum height or width.

• width and height: We can use these props to specify the width and height of
the image.

Tip
StaticImage can also take a remote source as its src prop. Any
images that are specified as URLs will be downloaded at build time and
then resized. Using remote images instead of local images is a great way
to keep your repository small, but it should also be remembered that Gatsby
does not know when that image changes if it is outside of your repository. If the
image is changed on the remote server, it will only update when you rebuild
your project.

Now that we understand how to utilize the StaticImage component, let's turn
our attention to the other half of gatsby-plugin-image and learn about the
GatsbyImage component.

The GatsbyImage component
If ever you need to use dynamic images, such as those embedded in your Markdown
content, then you can use the GatsbyImage component.

Let's add hero images to our Markdown/MDX blog posts using the GatsbyImage
component:

1. Install the gatsby-transformer-sharp npm package:

npm install gatsby-transformer-sharp

2. Add some images to assets/images that you would like to use as covers for your
blog posts – one per blog post.

3. Update your Gatsby-config.js file so that it includes your assets source:

{

 resolve: 'gatsby-source-filesystem',

 options: {

116 Working with Images

 path: '${__dirname}/assets/images',

 },

 },

Unlike StaticImage, GatsbyImage requires that images are ingested into our
data layer. We can use the gatsby-source-filesystem plugin to achieve this,
but by giving it the path to our images.

4. For each blog post, modify the post file's frontmatter so that it includes a hero
key that contains the relative path to the image:

type: Blog

title: My First Hackathon Experience

desc: This post is all about my learnings from my

 first hackathon experience in London.

date: 2020-06-20

hero: ../../assets/images/cover-1.jpeg

tags: [hackathon, webdev, ux]

Here, you can see an updated example of the placeholder Markdown with a
hero key added. Be sure to replace the relative path in this example with the one to
your image.

5. Add the GatsbyImage component and the getImage function as imports, at the
top of the src/templates/blog-page.js file:

import { GatsbyImage, getImage } from "gatsby-plugin-

image";

6. Modify the file's page query to reference the new images:

export const pageQuery = graphql'

 query($slug: String!) {

 blogpost: markdownRemark(fields: { slug: { eq:

 $slug } }) {

 frontmatter {

 date

 title

 tags

 hero {

The GatsbyImage component 117

 childImageSharp {

 gatsbyImageData(

 width: 600

 height: 400

 placeholder: BLURRED

)

 }

 }

 }

 html

 }

 }

';

You may notice that the data that's passed to the gatsbyImageData function
looks very similar to the props of the StaticImage component that we saw
in Step 8 of the previous section. In this instance, we are using the BLURRED
placeholder for the image, which uses a blurred, lower-resolution version of the
image in place of the original image while it is loading. We are now able to retrieve
the hero data from the component as it is included in the page query.

7. Use the new data within the data prop to get the image within the component:

const {

 blogpost: {

 frontmatter: { date, tags, title, hero },

 html,

 },

 } = data;

 const heroImage = getImage(hero)

First, retrieve hero from the data prop, and then use the getImage utility from
gatsby-plugin-image to retrieve the image data that's required to render it
and assign it to a const.

8. Render your image within your return statement:

<GatsbyImage image={heroImage} alt="Your alt text" />

118 Working with Images

Use the const defined in Step 7 to render the image within a GatsbyImage
component. Be sure to provide it with alt text to keep your image accessible – you
could provide this via frontmatter as well if you wish.

9. Start or restart your development server and admire your hard work. Navigate to
one of the blog posts and you should see your image blur in gracefully.

Further Exercise
We've learned how to add images to our blog pages, so why not use what you
have learned to add a smaller version of the same image to the blog preview
page? An implementation can be found in this book's GitHub repository
(https://github.com/PacktPublishing/Elevating-
React-Web-Development-with-Gatsby-3/tree/main/
Chapter05) if you want to see how it can be achieved.

You might find yourself adding the same configuration to your images across the whole
site. Let's find out how we can use the defaults to keep our code in Don't Repeat Yourself
(DRY) form.

Overriding the gatsby-plugin-image defaults
To create a consistent look and feel, you may have included the same props with many
instances of the two image components. Keeping these image components updated can be
a monotonous task if your site is image-heavy. Instead, you could configure the defaults
within the options of gatsby-plugin-sharp:

{

 resolve: 'gatsby-plugin-sharp',

 options: {

 defaults: {

 formats: ['auto', 'webp'],

 placeholder: 'blurred'

 quality: 70

 breakpoints: [300…]

 backgroundColor: 'transparent'

 tracedSVGOptions: {}

 blurredOptions: {}

 jpgOptions: {}

 pngOptions: {}

https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-3/tree/main/Chapter05
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-3/tree/main/Chapter05
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-3/tree/main/Chapter05

Sourcing images from CMS 119

 webpOptions: {}

 avifOptions: {}

 }

 }

 },

Let's look at each of these options in detail:

• formats: The file formats generated by the plugin.

• placeholder: Overrides the style of the temporary image.

• quality: The default image quality that's created.

• breakpoints: The widths to use for full-width images. It will never create an
image with a width that's longer than the source.

• backgroundColor: The default background color of the images.

• tracedSVGOptions and blurredOptions: The default options to use for
placeholder image types in the case that these are different from the global defaults.

• jpgOptions, pngOptions, webpOptions, and avifOptions: The
default options to use for image types in the case that these are different from
the global defaults.

We now have a good understanding of the gatsby-plugin-image package. There are,
however, some important niches to using this package with other sources such as Content
Management Systems (CMSes) – let's take a look.

Sourcing images from CMS
It is not always practical to store images within your repository. You may want someone
other than yourself to be able to update or add images to your site without you needing to
change the code. In these cases, serving images via CMS is preferable. It's still important
that we use the Gatsby image plugin as we want our images to be performant, regardless of
the source. To understand how we would integrate images via CMS, let's use an example.
Let's add a profile image to our about page using gatsby-plugin-image and a CMS.

Important Note
Due to the vast number of headless CMSes in the market, we will continue
to focus on the two mentioned in the Sourcing data from a Headless CMS
section of Chapter 3, Sourcing and Querying Data (from Anywhere!):
GraphCMS and Prismic.

120 Working with Images

Both of the following sections will assume you have already installed the CMS's
dependencies and integrated the CMS via your gatsby-config.js file. Please only
implement one of the following.

Sourcing images from GraphCMS
By making some small modifications to our configuration and queries, we can ensure that
we can source images from GraphCMS that utilize gatsby-plugin-image and load in
on the site in the same way as those that are locally sourced:

1. Navigate to the GraphCMS website (graphcms.com) and log in.
2. Navigate to your project's assets and click the upload button.
3. Drag and drop a local image you wish to use onto the page. Be sure to take note of

the file's name as we will need it later.
4. Publish the asset.
5. Modify your gatsby-source-graphcms plugin:

{

 resolve: 'gatsby-source-graphcms',

 options: {

 endpoint: process.env.GRAPHCMS_ENDPOINT,

 downloadLocalImages: true,

 },

 },

By modifying your gatsby-source-graphcms plugin's options to include the
downloadLocalImages option, the plugin will download and cache the CMS's
image assets within your Gatsby project.

6. Modify your about page's query so that it includes the graphCmsAsset source:

export const query = graphql'

 {

 markdownRemark(frontmatter: { type: { eq: "bio" } })
{

 html

 }

 graphCmsAsset(fileName: { eq: "profile.jpeg" }) {

 localFile {

 childImageSharp {

https://graphcms.com

Sourcing images from CMS 121

 gatsbyImageData(layout: FULL_WIDTH)

 }

 }

 }

 }

';

As with the local queries we looked at in the The GatsbyImage component section,
we are using gatsbyImageData within our query and can make use of any of
the configuration options that it supports. Here, we are specifying that the image
should be full width.

7. Add the GatsbyImage component and the getImage function as imports at the
top of the src/pages/about.js file:

import { GatsbyImage, getImage } from "gatsby-plugin-

image";

8. Use the new data within the data prop to get the image within the component:

const {

 markdownRemark: { html },

 graphCmsAsset: { localFile },

 } = data;

 const profileImage = getImage(localFile);

First, retrieve graphCmsAsset from the data prop and then use the getImage
utility from gatsby-plugin-image to retrieve the image data that's required to
render it. Finally, assign it to a const called profileImage.

9. Render your image within your return statement:

return (

 <Layout>

 <div className="max-w-5xl mx-auto py-16 lg:py-24

 text-center">

 <GatsbyImage

 image={profileImage}

 alt="Your alt text"

 className="mx-auto max-w-sm"

 />

122 Working with Images

 <div dangerouslySetInnerHTML={{ __html: html

 }}></div>

 </div>

 </Layout>

);

Use the const parameter that we defined in Step 8 to render the image within a
GatsbyImage component. Be sure to provide it with alt text to keep your image
accessible – you could provide this via frontmatter as well if you wish.

10. Restart your development server and admire your hard work by navigating to your
about page.

Now that we understand how we can source images within GraphCMS, let's turn our
attention to how the same can be achieved in Prismic.

Sourcing images from Prismic
With a few simple changes to our configuration and queries, we can source images from
Prismic utilizing gatsby-plugin-image and load them in on the site in the same way
as local images:

1. Navigate to Prismic's website (prismic.io) and log in. Select your
existing repository.

2. Navigate to the CustomTypes tab, click the Create new button, and select Single
Type. Name your type Profile and submit it.

3. Using the build-mode sidebar (on the right), drag an image component into
the type.

4. Name your field photo; the corresponding API ID should populate on its own.
Click OK to confirm this. If you've done this correctly, your profile type should
look as follows:

https://prismic.io

Sourcing images from CMS 123

Figure 5.1 – Prismic profile type

5. Save the document.
6. Navigate to the JSON editor and copy its contents to a new file called profile.

json within your src/schemas folder.
7. Navigate to the Documents tab and click the Create new button. If Prismic has not

automatically opened your new type, select Profile. Using the interface, upload a
new image into the document in the photo field.

8. Save and publish the new document. We now have everything set up in the CMS
and can return to our Gatsby project.

9. Update your gatsby-source-prismic configuration within your gatsby-
config.js file:

{

 resolve: "gatsby-source-prismic",

 options: {

124 Working with Images

 repositoryName: "elevating-gatsby",

 schemas: {

 icebreaker:

 require("./src/schemas/icebreaker.json"),

 profile:

 require("./src/schemas/profile.json"),

 },

 shouldDownloadFiles: () => true,

 },

 },

Add the new scheme to schemas that we added in Step 6. We will also add the
shouldDownloadFiles option. This is a function that determines whether to
download images. In our case, we always want it to download images so that we
can use gatsby-plugin-image, and therefore set the function to always
return true.

10. Add the GatsbyImage component and the getImage function as imports at the
top of the src/pages/about.js file:

import { GatsbyImage, getImage } from "gatsby-plugin-

image";

11. Modify your about page's query so that it includes the prismicProfile source:

export const query = graphql'

 {

 markdownRemark(frontmatter: { type: { eq: "bio" }

 }) {

 html

 }

 prismicProfile {

 data {

 photo {

 localFile {

 childImageSharp {

 gatsbyImageData(layout: FULL_WIDTH)

 }

 }

Sourcing images from CMS 125

 }

 }

 }

 }

';

We utilize gatsbyImageData within our query and can make use of any of the
configuration options that it supports. Here, we are specifying that the image should
be full width.

12. Use the new data within the data prop to get the image within the component:

const {

 markdownRemark: { html },

 prismicProfile: {

 data: {

 photo: { localFile },

 },

 },

 } = data;

 const profileImage = getImage(localFile);

First, retrieve the prismicProfile data from the data prop and then use the
getImage utility from gatsby-plugin-image to retrieve the image data that's
required to render it and assign it to a const called profileImage.

13. Render your image within your return statement:

<GatsbyImage

 image={profileImage}

 alt="Your alt text"

 className="mx-auto max-w-sm"

 />

Use the const parameter defined in Step 12 to render the image within a
GatsbyImage component. Be sure to provide it with alt text to keep your image
accessible – you could provide this via frontmatter as well if you wish.

14. Restart your development server and admire your hard work by navigating to your
about page.

126 Working with Images

You should now feel comfortable using images and sourcing images via the Prismic CMS.
While we have only looked at two CMSes, these concepts can be taken and applied to
any headless CMS that supports images. Now, let's summarize what we have learned
in this chapter.

Summary
In this chapter, we learned about images on the web, and how critical they are to our
browsing experience. We learned about gatsby-plugin-image and implemented
the two contained image components. We also learned in which circumstances to use
which component.

At this stage, you should feel comfortable developing all manner of pages for your Gatsby
site. In the next chapter, we will begin to look at how we can take our development site
live. We will start this journey by looking at search engine optimization.

Part 2:
Going Live

In this part, we will slowly move from working in development to getting our site ready to
go live. By the end of this part, you should have your site deployed online.

In this part, we include the following chapters:

• Chapter 6, Improving Your Site's Search Engine Optimization

• Chapter 7, Testing and Auditing Your Site

• Chapter 8, Web Analytics and Performance Monitoring

• Chapter 9, Deployment and Hosting

6
Improving Your

Site's Search Engine
Optimization

In this chapter, you will learn about how search engine optimization (SEO) works,
what search engines look for within your site pages, and how to improve your site's
presence on the web. We will also dive into other uses of metadata to make visually
enticing social share previews for your site. By the end of this chapter, you will have
created a reusable SEO component to provide meta information on every page. We will
also create a sitemap to make it easier for search engines to understand our site. Finally,
we will also learn how to stop our site from appearing in search engines if you would
rather not have it publicly visible.

In this chapter, we will cover the following topics:

• Introducing SEO

• Creating an SEO component

• Exploring meta previews

• Learning about XML sitemaps

• Hiding your site from search engines

130 Improving Your Site's Search Engine Optimization

Technical requirements
To complete this chapter, you will need to have completed Chapter 5, Working with Images.

The code for this chapter can be found at https://github.com/
PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/
tree/main/Chapter06.

Introducing SEO
SEO is the practice of improving the chances of search engines such as Google, Bing,
and Yahoo, recommending your site's content to users as the best result for a given query
or problem.

Important Note
Within this chapter, you will get an overview of what SEO is, why it's
important, and how to implement pages with components that boost their SEO
ranking. SEO is a vast subject and not something that can be covered in its
entirety within this book. As such, you are encouraged to take what you learn
in this chapter and build on it through your research.

Google will be the search engine that this chapter focuses on. Google has a 92% share of
the search engine market worldwide. With all other search engines combined, taking less
than a 10% share of the search engine market, there is no doubt that Google is dominating
this space. Because of this, it is the logical search engine to gear this chapter toward.

If you want search engines to recommend your content, there is a trinity of tasks that need
to be worked on in tandem:

• Ensuring your content can be discovered by search engine web crawlers.

• Showing search engines that you're a trustworthy source of information.

• Making your content user-friendly and inviting with a great UX, content hierarchy,
and multimedia.

By investing time in implementing and improving these three things, the search engine
will give you the most precious form of traffic – organic traffic. The best part? It's free!
When Google shows your site as a part of a results page, you do not pay for its ranking or
when it is clicked.

https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter06
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter06
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter06

Introducing SEO 131

So, what's in it for the search engine? Ads and sponsors. Whenever search users search on
Google, you will also be presented with results from sponsors that have been paid for, and
occasionally personalized ads too. This is how search engines make their money and to
keep their revenue stream consistent, they need you to keep coming back. To do that, they
need to make sure that they bring you the best possible content for your search so that you
use them again for your next search.

Now that we understand what search engines are looking for, let's learn about the
important on-page signals that we can give to search engines to help them rank our site.

On-page search engine optimization
On-page signals are signals that a search engine can obtain from a site page. As your site
pages are within your control, improving on-page signals is the easiest thing to get right
and the easiest way to influence your site ranking. As a result, we will spend most of our
time improving these signals in this chapter.

On-page signals can be split into two groups – technical and content signals.

Technical signals
Technical signals are those related to your site's code:

• Speed: Search engines want users to receive their results quickly, so pages that are
fast receive a boost in ranking.

• Mobile Responsiveness: Most content on the web is consumed via mobile these
days, so having a great mobile user experience is very important. Search engines are
considering this more and more, with Google's index now being mobile-first.

• Security: Ensuring your website is secure improves your site's credibility. For
example, HTTPS sites receive a boost over HTTP sites.

Content signals
Content signals are those related to the copy and links present on your site page:

• Content Hierarchy: The title, content headings, and page hierarchy are
very important.

• Page Content: Google is always on the lookout for high-quality and accurate
content that ultimately answers a user's query. Keep this in mind when you're
creating pages and populating them. Your content needs to serve a real purpose for
your site visitors.

132 Improving Your Site's Search Engine Optimization

• Rich Content: Google looks beyond the raw copy nowadays. The web is filled with
multimedia content. Google is looking for content that contains images and videos
instead of raw text. Multimedia content allows for better user interaction with your
content and is therefore favored.

• Recently Updated: If the content within your pages has not been changed for a
while, Google may treat its content as stale. Google is actively checking that the
content of your page was created recently. By ensuring that your content is "fresh,"
Google can be sure your content is recent.

• Outbound links: By referencing content externally, this tells Google that the
information is accurate as it is like content contained on multiple sites.

As you might be starting to realize by looking at these signals, you can sink vast amounts
of time into these factors. It's up to you to decide how valuable search ranking and social
media sharing are for your site, which will, in turn, determine how much time you should
focus on implementing what is within this chapter.

Now that we understand what SEO is, let's turn our attention to how we can improve our
on-page SEO ranking with an SEO component.

Creating an SEO component
Every site on the web has meta tags. Meta tags are snippets of text and image content
that provide a summary of a web page. This data gets rendered in the browser whenever
someone shares your site or when it appears within a search engine. Let's create an SEO
component so that we can have rich previews that entice users to visit our site:

1. Install the necessary dependencies:

npm i react-helmet-async gatsby-plugin-react-helmet-

async

react-helmet-async is a dependency that manages all the changes that are
made to your document head.

2. Include the gatsby-plugin-react-helmet-async plugin in your gatsby-
config.js file:

module.exports = {

 // rest of config

 plugins: [

 `gatsby-plugin-react-helmet-async`,

// other plugins

Creating an SEO component 133

]

}

This plugin updates your gatsby-browser.js file so that it wraps the root
element in HelmetProvider, like this (you do not need to do this step yourself):

import React from "react";

import { HelmetProvider } from "react-helmet-async";

export const wrapRootElement = ({ element }) => {

 return (

 <HelmetProvider>

 {element}

 </HelmetProvider>

);

};

We are now ready to edit the document's head within our React components and
pages when required.

3. Create a new file inside src/components called SEO.js. This is the file in which
we will create our SEO component.

4. Open the newly created file and add the following code:

import React from "react";

import { Helmet } from "react-helmet-async";

import { useStaticQuery, graphql } from "gatsby";

export default function SEO({ description, lang =

 "en", title }) {

 return (

 <Helmet

 htmlAttributes={{

 lang,

 }}

 title={title}

 titleTemplate={`%s · My Site`}

 meta={[

 {

 name: `description`,

 content: description,

134 Improving Your Site's Search Engine Optimization

 },

]}

 />

);

}

Here, we are adding the language as an HTML attribute. We also added the title
tag, a title template, and a description as metadata. The title template is useful if
you want to have a consistent format. Let's imagine that the title we are passing in is
Home. In this case, the template's final page title would be Home · My Site.

You are now ready to use your SEO component on your pages, so let's try it out! We will
use the src/pages/index.js file as an example:

import React from "react";

import { Link, graphql } from "gatsby";

import { StaticImage } from "gatsby-plugin-image";

import Layout from "../components/layout/Layout";

import SEO from "../components/layout/SEO";

export default function Index({ data }) {

 const {

 site: {

 siteMetadata: { name, role },

 },

 } = data;

 return (

 <Layout>

 <SEO

 title="Home"

 description="The landing page of my website"

 />

 {/* REST OF FILE */}

 </Layout>

);

}

Exploring meta previews 135

Here, you can see the component embedded within our index page. We have added
the title and description props to ensure these can populate the <title> and
<description> tags contained within the SEO component. If you run gatsby
develop at this point, you should see the title of the tab change to match your new title.

We can also provide title and description using data from our GraphQL data. In
our blog page template file (src/templates/blog-page.js), we could use the blog
post's frontmatter to populate the SEO component:

export default function BlogPage({ data }) {

 const {

 blogpost: {

 frontmatter: { date, tags, title, hero, desc },

 html,

 },

 } = data;

 return (

 <Layout>

 <SEO title={title} description={desc} />

 {/* Rest of render */}

 </Layout>

)}

Here, we are passing title and desc from frontmatter of the Markdown post to the
SEO component so that it can use these pieces of information to generate the tags.

Now that we have the basics set up, how do we enhance our site previews to make them
more appealing within social media? Let's find out.

Exploring meta previews
If you've ever shared a website with a friend via Twitter, Slack, or any other instant
messaging service, you probably saw a nice preview image, title, and description appear
in a card to give the user insight into where you are sending them. This is achieved with
meta tags.

We've already included a couple of these (title and description meta tags)
within our search component, but here, we will implement two other common
types – OpenGraph and Twitter metadata. We will then learn how to merge and
validate these tags.

136 Improving Your Site's Search Engine Optimization

Open Graph metadata
Open Graph is an internet protocol that was originally designed and created by Facebook
with a single purpose – to unify and standardize metadata within web pages to get better
representations of the content of the page. The protocol does this by adding specific meta
tags to your site header. These tags provide details about the content of your site pages.
This could include information as basic as the page's title or maybe something more
complex, such as how long a video on a page is. By populating the appropriate fields, we
can create a bundled summary of what our site page looks like.

We can add Open Graph meta tags via our existing SEO component by adding them to
the meta prop of the Helmet component:

<Helmet

 meta={[

 {

 property: `og:title`,

 content: title,

 },

 {

 property: `og:description`,

 content: description,

 },

 {

 property: `og:type`,

 content: `website`,

 },

 {

 property: `og:image`,

 content: `your-image-url.com`,

 }

]} />

Here, we are implementing Open Graph tags for the content's title, description,
type, and image. As you can see, all open graph tags have the og prefix. These are just
a few of the meta tags that are available via the protocol.

For a full list of all the available types, visit the Open Graph protocol website (https://
ogp.me).

https://ogp.me
https://ogp.me

Exploring meta previews 137

Twitter metadata
Like Facebook, Twitter also decided to create its own meta tags like Open Graph. All
Twitter tags use the twitter prefix instead of og. One thing that separates Twitter tags
from Open Graph's is that Twitter also has a tag for the content's display format on its
platform. The first type is summary:

Figure 6.1 – Twitter summary card

summary shows a small summary preview of the site page. If you are looking
for something larger with an image preview, you can use the summary_large_image
type instead:

Figure 6.2 – Twitter summary card with a large image

138 Improving Your Site's Search Engine Optimization

As you can see, this type shows a larger image that is much more enticing to the user.

We can add Twitter meta tags via our existing SEO component by adding them to the
meta prop of the Helmet component:

<Helmet

 meta={[

 {

 name: `twitter:card`,

 content: `summary_large_image`,

 },

 {

 name: `twitter:creator`,

 content: twitter,

 },

 {

 name: `twitter:title`,

 content: title,

 },

 {

 name: `twitter:description`,

 content: description,

 },

 {

 name: `twitter:image`,

 content: `your-image-url.com`,

 }

]} />

Though many of these tags are self-explanatory, it is worth calling out the
twitter:creator tag. If you place your Twitter username as the content for this
property, Twitter will be able to identify you as the creator of the site.

Now that we have implemented both Open Graph and Twitter meta tags, let's combine
and merge the two.

Exploring meta previews 139

Merging tags
You may have noticed that there is a little bit of duplication between the data we are
providing via Twitter tags and Open Graph tags. For example, in both cases, we are
providing a title (twitter:title and og:title). There is no harm in including these
duplicates. Only a few bytes are added to your page by including this redundancy.

But if you would like to keep things clean, it is possible to reduce the number of tags.
Twitter scrapes your site page – if it does not find the Twitter tag it is looking for, it will
fall back to the Open Graph tags if they are present. This is great for duplicates such as the
title and description, but it is still important to include those tags that are Twitter-specific,
such as the card type.

Now, let's merge the Open Graph and Twitter tags we found in the previous two sections
to create a subset that serves both formats without redundancy:

<Helmet

 meta={[

 // Twitter MetaData

 {

 name: `twitter:card`,

 content: `summary_large_image`,

 },

 {

 name: `twitter:creator`,

 content: twitter,

 },

 // Open Graph MetaData

 {

 property: `og:title`,

 content: title,

 },

 {

 property: `og:description`,

 content: description,

 },

 {

 property: `og:type`,

 content: `website`,

 },

140 Improving Your Site's Search Engine Optimization

 {

 property: `og:image`,

 content: `your-image-url.com`,

 },

]}

 />

Here, we can see that we have completely omitted the Twitter tags for title,
description, and image as they will fall back to the Open Graph tags. We have,
however, retained the Twitter tags for creator and card as they are not available via
Open Graph.

Now that we understand how to make our site look great when we share it, what about
when it is shared for us by a search engine? How do we highlight the information we want
it to care about?

Validating tags
Regardless of whether you have implemented Open Graph tags, Twitter tags, or both, you
will want to ensure that your tags are working correctly before sharing your site pages
online. Both Facebook and Twitter have created applications to preview how links that are
shared on their platforms will be displayed:

• Twitter Card Validator: https://cards-dev.twitter.com/validator

• Facebook Sharing Debugger: https://developers.facebook.com/tools/
debug

These tools perform a very similar function – they scrape the web page that's entered for
any relevant meta tags that you have defined. Then, they display what a preview of the site
would look like on their platform using these tags. There are also third-party services that
will validate for both of these platforms at the same time, such as MetaTags.io (https://
metatags.io).

Tip
The validators mentioned here only work with sites that are hosted on public
servers. You will not be able to test your meta tags using these without
deploying your site first. You will learn more about how to deploy your site in
Chapter 9, Deployment and Hosting.

At this point, you should feel comfortable with creating and testing meta tags. Now, let's
turn our attention to how we can make our site easier for web crawlers to interpret.

https://cards-dev.twitter.com/validator
https://developers.facebook.com/tools/debug
https://developers.facebook.com/tools/debug
https://metatags.io
https://metatags.io

Learning about XML sitemaps 141

Learning about XML sitemaps
A sitemap is a special file that provides information about the web pages and files on
your site, as well as their relationships. Creating this file allows web crawlers to gather
information about your site without having to crawl your site manually. It helps us
highlight to search engines which pages we specifically want them to look at. Let's create a
sitemap for our site:

1. Install the gatsby-plugin-sitemap dependency:

npm install gatsby-plugin-sitemap

2. Update your gatsby-config.js file:

module.exports = {

 siteMetadata: {

 siteUrl: `https://your.website.com`,

 },

 plugins: [

 `gatsby-plugin-sitemap`,

 // other plugins

]

}

By including this plugin, Gatsby will automatically create a sitemap when building
the site. It's important to remember that this plugin only generates output when
running in production. When you're using gatsby develop, you will not see
your sitemap file being created. Only when the gatsby build command is
running will the sitemap file be created.

Now that we have followed those steps, let's verify our implementation. Run gatsby
build && gatsby serve and navigate to /sitemap/sitemap-index.xml on
your site. This page should show you some XML data that looks like this:

<sitemapindex

 xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">

<sitemap>

<loc>https://your.website.com/sitemap/sitemap-0.xml</loc>

</sitemap>

</sitemapindex>

142 Improving Your Site's Search Engine Optimization

This page is the index of your sitemap and tells search engines where to find your
site data. In your case, you will probably see a single entry, similar to the one shown
in the preceding code block. If you follow the path in the <loc> tag (/sitemap/
sitemap-0.xml), you will find something like this:

<urlset>

<url>

<loc>https://your.website.com/blog</loc>

<changefreq>daily</changefreq>

<priority>0.7</priority>

</url>

<url>

<loc> Post/</loc>

<changefreq>daily</changefreq>

<priority>0.7</priority>

</url>

…

</urlset>

In this list, you should see an entry for each page on the site, with a changefreq and a
priority. If the site pages appear in this list, then Google can find information about
your pages without having to manually crawl your site. Congratulations!

Important Note
Your site's 404 page and its development variants are always excluded from the
sitemap, so you don't have to worry about filtering these pages out.

Google has built a great tool for validating your sitemap, as well as other search
analytics – Google Search Console. You can use it to check your site's indexing status
and optimize the visibility of your site based on which queries are driving traffic to your
website. You can try it out by visiting https://search.google.com/search-
console/about.

We now understand how to make it easy for Google to find and display our site, but what
if we want to do the opposite and stop our site from appearing in search engines? We'll
look at this in the next section.

https://search.google.com/search-console/about
https://search.google.com/search-console/about

Hiding your site from search engines 143

Hiding your site from search engines
To prevent your page from appearing within Google and other search engines, you must
update the <head> property of the page so that it includes the following meta tag:

<meta name="robots" content="noindex">

By including a noindex meta tag, crawlers that crawl that page and see the tag will drop
the page from their search results. This happens regardless of whether the site is being
linked to any other site on the internet.

Much like our SEO component, we could make this addition to a component so that we
can reuse it across the pages when needed:

1. Create a new file in src/components/layout called NoRobots.js.
2. Open the newly created file and add the following code to it:

import React from "react";

import { Helmet } from "react-helmet-async";

export default function NoRobots() {

 return (

 <Helmet

 meta={[

 {

 name: `robots`,

 content: "noindex",

 },

]}

 />

);

}

This component adds the noindex metadata to head when it's included on any
page. Using this component in this way gives us the flexibility to make a few pages
hidden while still allowing the rest to be indexed.

144 Improving Your Site's Search Engine Optimization

To hide static resources such as images within your site from search engines, we need to
include a robots.txt file. This file is used by search engine crawlers to determine which
parts of your site it can access. There is a plugin called gatsby-plugin-robots-txt
that has been set up to make creating this file painless. Let's implement this plugin now:

1. Install the gatsby-plugin-robots-txt dependency:

npm install gatsby-plugin-robots-txt

2. Update your gatsby-config.js file with the following code:

module.exports = {

 siteMetadata: {

 siteUrl: `https://your.website.com`,

 },

 plugins: [

 resolve: 'gatsby-plugin-robots-txt',

 options: {

 host: ' https://your.website.com,

 sitemap: https://your.website.com

 /sitemap.xml',

 policy: [{ userAgent: '*', disallow: '/static'

 }]

 }

 // other plugins

]

}

Within this plugin's configuration, we have specified that all crawler user agents can
access the whole site except for the /static folder. The /static folder is where
site images are stored. Adding this disallow policy will stop your images from
appearing in a Google image search. They will only be found within your site pages.

We now have a clear understanding of how to omit both pages and assets from
search engines.

Summary 145

Summary
In this chapter, we learned what SEO is and what signals search engines use to identify
quality content. We created an SEO component that we can use to add meta information
to our site pages. Then, we enhanced this with Open Graph and Twitter meta tags for
better site previews on social media platforms. We also implemented a sitemap to help
search engines index our site effectively. Finally, we learned how to hide our site from
search engines.

In the next chapter, we will learn how to test and audit our site. We will also explore how
to audit our site page's SEO. By learning how to audit our site pages, we can identify ways
to improve the speed of our pages too, which will also boost our SEO ranking.

7
Testing and Auditing

Your Site
In this chapter, we will learn about what unit testing is, why it's useful, and how to start
unit testing your Gatsby site. We will then learn how we can use Git hooks to trigger
your unit tests and other commands when running common Git commands. Following
this, we will investigate how we can measure core web vitals to understand how well our
Gatsby site's page experience is performing, both in lab and field environments. By the
end of this chapter, you should feel comfortable that you can analyze how well a Gatsby
site is working locally by using unit tests and looking at web vitals when it is out there
on the web.

In this chapter, we will cover the following topics:

• Exploring unit testing

• Adding Git hooks for tests

• Auditing core web vitals

148 Testing and Auditing Your Site

Technical requirements
To complete this chapter, you will need to have completed Chapter 6, Improving Your Site's
Search Engine Optimization. You will also need Google Chrome installed.

The code for this chapter can be found at https://github.com/
PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/
tree/main/Chapter07.

Exploring unit testing
Unit testing is a way of testing the smallest piece of code that you have logically defined
within your application. During unit testing, we isolate a small part of the code and
verify that it is behaving as intended independently from the rest of the code base. We
instantiate this piece of code, invoke it, and then observe its behavior. If the observed
behavior matches what we expected, then we know that our code is doing what it should
be. By setting up a multitude of these tests, we can have a better understanding of where
something has broken when we edit large parts of the code base.

Within React and Gatsby, there are multiple different ways in which you can set up unit
tests. Here, we will focus on one of the most popular combinations – Jest and React
Testing Library. Let's create a structure within our repository that will allow us to test our
site using these tools:

1. Install the necessary dependencies:

npm install -D jest babel-jest @testing-library/jest-

dom @testing-library/react babel-preset-gatsby

identity-obj-proxy

2. Create a jest.config.js file:

module.exports = {

 transform: {

 "^.+\\.jsx?$": '<rootDir>/jest-preprocess.js',

 },

 moduleNameMapper: {

 ".+\\.(css|styl|less|sass|scss)$": 'identity-obj-

 proxy',

 ".+\\.(jpg|jpeg|png|gif|eot|otf|webp

 |svg|ttf|woff|woff2|mp4|webm|wav|mp3|m4a|aac

 |oga)$": '<rootDir>/__mocks__/file-mock.js',

https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter07
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter07
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter07

Exploring unit testing 149

 },

 testPathIgnorePatterns: ['node_modules', '.cache'],

 transformIgnorePatterns:

 ['node_modules/(?!(gatsby)/)'],

 testEnvironment: "jsdom",

 globals: {__PATH_PREFIX__: '',

 },

 setupFiles: ['<rootDir>/loadershim.js'],

 setupFilesAfterEnv: ['<rootDir>/jest.setup.js']

};

Both Gatsby and Jest use Babel under the hood. However, unlike Gatsby, Jest does
not handle its own Babel configuration. We use the jest.config.js file to
manually set up Jest with Babel, as well as configure our tests.

Let's break down the contents of this file so that we understand what each part
is doing:

a. transform: This tells Jest that all the files that end in .js or .jsx need
to be handled with a jest-preprocess.js file, which we will create in
the next step.

b. moduleNameMapper: When testing, it is uncommon to test static assets such
as images. As such, Jest does not care for them. But it is still important that it
knows how to handle them as they may be embedded in your code. Here, we are
giving Jest a mock for handling stylesheets that uses the identity-obj-proxy
package, which we installed in the first step, and another mock that handles
common image, video, and sound files. We will create this second mock later in
this section.

c. testPathIgnorePatterns: This tells Jest to ignore any tests found within
node_modules as we do not want to bring in tests that have been found within
our packages and the .cache directory.

d. transformIgnorePatterns: Here, we tell Jest to ignore Gatsby when it is
transforming code, as Gatsby includes untranspiled ES6 code.

e. globals: This is where we define a global variable called __PATH_PREFIX__
that Gatsby uses behind the scenes. We need to define it here too as some Gatsby
components will break without it being present.

150 Testing and Auditing Your Site

f. setupFiles: Here, we list the configuration files that we would like to use to
configure the testing environment. It is run once per test. Here, we tell it to run
loadershim.js, which we will create later in this section.

g. setupFilesAfterEnv: Here, we specify the configuration files we would like
to use to set up our tests. Crucially, these files run after the testing environment
has been set up.

3. Create a jest-preprocess.js file within your root directory:

const babelOptions = {

 presets: ["babel-preset-gatsby"],

};

module.exports = require("babel-

 jest").default.createTransformer(babelOptions);

This is where we define our Babel configuration. As we are working with Gatsby,
we are using the babel-preset-gatsby preset. You can expand this preset list
as necessary.

4. Create a loadershim.js file within your root directory:

global.___loader = {

 enqueue: jest.fn(),

 }

We use this file to mock a global loader.enqueue function using a Jest
mock function.

5. Create a new folder in your root directory called __mocks__.
6. Create a file-mock.js file within the __mocks__ folder:

module.exports = "test-file-mock"

As we mentioned in Step 2, this file mocks out static asset file types.
7. Create a gatsby.js file within the __mocks__ folder:

const React = require("react")

const gatsby = jest.requireActual("gatsby")

module.exports = {

 ...gatsby,

 graphql: jest.fn(),

Exploring unit testing 151

 Link: jest.fn().mockImplementation(

 ({

 activeClassName,

 activeStyle,

 getProps,

 innerRef,

 partiallyActive,

 ref,

 replace,

 to,

 ...rest

 }) =>

 React.createElement("a", {

 ...rest,

 href: to,

 })

),

 StaticQuery: () => React.createElement("div", {

 id: "StaticQuery",

 }),

 useStaticQuery: jest.fn(),

}

Here, we are mocking out any components or functions that we are using
from the gatsby package. We strip the props from the Link component and
return an <a/> tag instead. We return a div in place of the StaticQuery
component. Finally, we also mock out the useStaticQuery function with
a Jest mock function.

8. Create a gatsby-plugin-image.js file within the __mocks__ folder:

const React = require("react")

const gatsbyPluginImage = jest.requireActual("gatsby-

 plugin-image")

module.exports = {

 ...gatsbyPluginImage,

 StaticImage: () => React.createElement("div", {

152 Testing and Auditing Your Site

 id: "StaticImage",

 }),

}

Here, we are mocking out any components or functions that we are using
from the gatsby-plugin-image package. We return a div in place of the
StaticImage component.

9. Create a jest.setup.js file within your root directory:

require('@testing-library/jest-dom/extend-expect');

const { useStaticQuery } = require("gatsby");

beforeAll(() => {

 useStaticQuery.mockReturnValue({

 site: {

 siteMetadata: {

 siteUrl: "test.url.com",

 social: { twitter: "@slarsendisney" },

 },

 },

 });

});

Before each test, we need to mock a return value for useStaticQuery. Any page
components that make use of the SEO component will fail unless they can retrieve
this data from the function.

10. Create a test-utils.js file within your src directory:

import React from 'react'

import {render} from '@testing-library/react'

import { HelmetProvider } from "react-helmet-async";

const Wrapper = ({children}) => {

 return (

 <HelmetProvider>

 {children}

 </HelmetProvider>

)

Exploring unit testing 153

}

const customRender = (ui, options) =>

 render(ui, {wrapper: Wrapper, ...options})

export {customRender as render}

This file is not required but is helpful. Much of your application might make
use of a provider, which we would normally wrap our root element in, within
gatsby-browser.js. We can't do that in Jest. So, instead of defining wrapper
in every test, it is preferable to create a custom render function that wraps any
content in the required providers. We then call this render instead of the one
that's exported from @testing-library/react when required.

11. Create a test script within your package.json file:

"scripts": {

 "build": "gatsby build",

 "develop": "gatsby develop",

 "start": "npm run develop",

 "serve": "gatsby serve",

 "clean": "gatsby clean",

 "test": "jest"

 },

Now, when using the npm run test command, it will start Jest and begin testing.
We now have everything in place to start testing! This book does not have space for
a full guide on unit testing. However, let's create a few example tests for a few
different component types, such as simple components, SEO components, and
our Gatsby page components.

Testing simple components
Testing simple components can be done in the same way you would do so in any standard
react project. Let's take a look at how we would test our header component, as an example.

Create a Header.test.js file next to your header component using the following code:

import React from "react";

import {render, screen} from '@testing-library/react'

import '@testing-library/jest-dom'

154 Testing and Auditing Your Site

import Header from "./Header";

test("Renders header", async () => {

 render(<Header />);

 expect(screen.getByText('Site Header'))

});

Here, we are rendering our Header component to the screen. We are then testing that the
screen contains some text stating Site Header to ensure that the Header component
is rendered. We do this by using the screen.getByText function.

Now that we understand how to test simple components, let's look at a more complex
example – your site's SEO component.

Testing the SEO component
A common component among Gatsby pages that is important to test is the SEO
component. It is important to ensure that the meta tags we are adding using the
component are being correctly applied to the document's head so that we know that when
that page is shared, it will have the rich previews that we set up in Chapter 6, Improving
Your Site's Search Engine Optimization. Let's look at how we could test this.

Create a SEO.test.js file next to your SEO component using the following code:

import React from "react";

import { render } from "@testing-library/react";

import "@testing-library/jest-dom";

import { HelmetProvider } from "react-helmet-async";

import SEO from "../SEO";

HelmetProvider.canUseDOM = false;

test("Correctly Adds Meta Tags to Header", async () => {

 const mockTitle = "Elevating React with Gatsby";

 const mockDescription = "A starter blog demonstrating

 what Gatsby can do.";

 const context = {};

 render(

 <HelmetProvider context={context}>

Exploring unit testing 155

 <SEO title={mockTitle} description={mockDescription} />

 </HelmetProvider>

);

 const head = context.helmet;

 expect(head.meta.toString()).toMatchSnapshot();

});

First, we inform react-helmet-async from HelmetProvider that it cannot use the
Document Object Model (DOM) as this is only available in the browser. This allows it to
emulate how it behaves when your site is being built. Within the test itself, we first create
a mock title and description. Then, we pass this to the SEO component. After rendering,
we check that the context's helmet object contains meta, and if it does, we make sure it
matches the snapshot.

Now, let's understand how we would test whole site pages.

Testing Gatsby page components
If you ever want to test pages, you can make use of the custom render function we set up
in Step 10 of the Exploring unit testing section. Let's take a look at how we would test our
site's index page as an example.

Unlike our component tests, it is best to avoid placing your page tests in the same
directory as the page files. This is because Gatsby will automatically try and create pages
for every exported React component in the pages directory. Instead, create a folder
alongside the pages directory called pages-lib that's specifically for Gatsby page tests.

Create an index.test.js file in the pages-lib directory using the following code:

import React from "react";

import { screen } from "@testing-library/react";

import {render} from "../../test-utils"

import "@testing-library/jest-dom";

import Index from "../pages/index";

test("Renders Index Page with correct name", async () => {

 const data = {

 site: {

 siteMetadata: { name: "My Name", role: "My Role" },

 },

156 Testing and Auditing Your Site

 };

 render(<Index data={data} />);

 expect(screen.getByText(data.site.siteMetadata.name));

});

In this instance, we are making use of the custom render function that we set up in the
test-utils.js file. This is because page components typically also contain an SEO
component, which uses the Helmet component, and, as such, needs to be wrapped in
HelmetProvider. It's also important to pass any data to the data prop that the page
would normally retrieve via GraphQL, as GraphQL queries on the page will not run.

Now that we understand how to write tests, let's understand how we can trigger them with
Git hooks.

Adding Git hooks for tests
A Git hook is a method that fires on common Git commands. We can use this method to
invoke custom scripts when we commit or push our code. It is common practice to use
these hooks to run checks against your repository to ensure that the code that is being
added does not break application functionality. One valuable check we could add is to
run our applications unit tests before we push our code, and if they fail, we can stop the
push. By implementing this feature, it's unlikely that the code being pushed will break any
functionality we test for.

Let's implement this functionality now by creating a Git hook that is triggered by a git
push. This will ensure our unit tests pass before allowing the push command to run. We
will be using the husky package to do this as it is easy to set up and maintain:

1. Install the necessary dependencies:

npm install husky --save-dev

2. Create a postinstall script in your package.json file with the
following command:

npm set-script postinstall "husky install"

This command will add a new script to our package.json file called
postinstall that causes husky to be installed.

3. Run this new script:

npm run postinstall

Auditing core web vitals 157

As we are setting this up for the first time, we will need to trigger the husky install
manually by running the postinstall script via the command line. Every
subsequent developer will never need to run this manually.

4. Add a hook:

npx husky add .husky/pre-push "npm run test"

This adds a pre-push hook that runs our npm test script. After running
this command, every subsequent push will run the test script and only push
on success.

Important Note
Running tests on push is not always the best test. We may have uncommitted
code locally that is causing the tests to pass, which are not included in the push.
This can cause the same tests to fail in continuous integration/continuous
deployment (CI/CD) environments.

Now that we understand how to trigger unit tests with Git hooks, let's turn our attention
to a different kind of test – auditing core web vitals.

Auditing core web vitals
Web vitals (https://web.dev/vitals) are an initiative by Google to provide unified
guidance for quality signals that are essential to delivering a great user experience on the
web. These directly tie into the signals discussed in Chapter 6, Improving Your Site's Search
Engine Optimization.

The core web vitals are a small group of Google's web vitals that focus on three pillars
– how fast the page loads, how soon you can interact with the page, and how stable the
page is while it is loading and while the user is interacting with it. These three pillars are
encompassed in the following three metrics:

• Largest Contentful Paint: A representation of load time. It is the measure of the
time the browser takes to make the majority of a page's content visible from the
moment you start navigating to it. This is the moment at which a user perceives the
site to have finished loading.

• First Input Delay: Measures the response time to interact. First input delay is the
time the browser takes from navigation to a point where you can interact with any
element on the page, such as a form or button.

https://web.dev/vitals

158 Testing and Auditing Your Site

• Cumulative Layout Shift: A measurement of how stable the page is while it loads.
The less your elements shift around the page while the page loads, the higher your
score will be.

Now that we understand these core web vitals, how do we measure them? There are two
different methods we can use to retrieve these metrics. They are as follows:

• Lab Test Data: Data generated on demand by you for testing. This is less accurate
as it is based on approximations of user data. But while developing, it is often
incredibly useful as we can use it to develop our site iteratively, without ever having
to deploy it.

• Field Data: Data collected from users when viewing your site. This is the most
accurate source of data as it directly corresponds to how your users are perceiving
your site.

Let's look at how we can retrieve lab test data using the lighthouse tool and field data using
the web-vitals package.

Using Chrome's lighthouse tool
The lighthouse tool will analyze your website for performance, accessibility, search engine
optimization, and progressive web app features. Not only does it give you a score in each
of these categories, but it will also tell you how to improve your site to increase these
scores. The best part? It's built into Google Chrome – no other downloads or tooling
installation is required.

Now, let's generate a lighthouse report for our site using the tool:

1. Build your site using the gatsby build command. As we saw in Chapter 1, An
Overview of Gatsby.js for the Uninitiated, this creates a production build of your
website. It is vitally important that we audit a production build of the site instead of
a development build, since the development tools that Gatsby adds into the build
drastically increase your site's bundle.

2. Serve your build using the gatsby serve command. With the default settings,
your site should be live on http://localhost:9000/.

3. Open Google Chrome in incognito mode and navigate to http://
localhost:9000/. You should see the index page of your site. By loading this
page in incognito mode, we ensure that no Chrome extensions you have installed
interfere with the test.

4. Right-click anywhere on the page and click Inspect. This will bring up Developer
Tools on the right-hand side of the window.

Auditing core web vitals 159

5. Click the chevron in the center of the top bar and select Lighthouse:

Figure 7.1 – Lighthouse location Within Developer Tools

6. This will present you with the lighthouse report generator window, which looks
like this:

Figure 7.2 – Lighthouse report generator
Select the categories you would like to audit, all of which will be switched on by
default. All of these categories are important, and it is advised to keep them all on
unless you are specifically trying to improve a single metric and want the report to
be generated more quickly.

You must also select a Device type. By default, this setting is set to Mobile.
Lighthouse will try to emulate a mobile device attempting to access the page, which
includes using a smaller viewport and throttling the network connection. Running
multiple reports – one for each device type – is a great idea as it ensures that your
site has a great experience on every device. Note that for SEO purposes, Google uses
mobile metrics in their site rankings.

160 Testing and Auditing Your Site

7. Clicking Generate report will start lighthouse. You may see the page flash a few
times during this process. This is nothing to worry about. Congratulations – you've
just run your first lighthouse report!

Once lighthouse has finished running, you will see that the report generator window has
been replaced with a report that contains a section for each category. Let's take a look at
the Performance category:

Figure 7.3 – Lighthouse Performance report

You may notice some familiar items within these metrics. Lighthouse has audited each of
the three core web vitals as part of its audit. Each metric will be color-coded to give you an
indication of where you need to focus your efforts. Green means good, orange means that
it needs improvement, while red means that the score for this metric is considered poor.
In cases where your scores are not optimal, lighthouse will propose changes that you can
make to your site to improve the score. Let's look at an example:

Auditing core web vitals 161

Figure 7.4 – Lighthouse Accessibility report with suggested improvements

In the preceding screenshot, we can see that our buttons are not currently accessible as
they do not have accessible names. Hovering over the failing element will highlight it
within the site so that we can rectify it quickly.

Now that we understand how to retrieve lab test data, let's investigate how we can retrieve
field data using the web-vitals JavaScript package.

Using the web-vitals JavaScript package
The web-vitals package is a 1 KB package that's developed by the Google Chrome
team. This package monitors web vitals, including core web vitals on real users as they
visit your site. It aims to measure them in a way that is incredibly similar to other Google
reporting tools.

162 Testing and Auditing Your Site

Important Note
The web-vitals package makes use of browser APIs that are not supported
in all browsers. The package only guarantees complete support in Google
Chrome. If you are gathering metrics using this tool, please consider that the
results will only be retrievable on supported browsers. If you are collating these
metrics, it is important to remember that they do not necessarily represent all
your site visitors.

To understand how to use web-vitals within our application, let's create a rudimentary
example where we simply log the vitals when the user navigates to our site:

1. Install the web-vitals package:

npm install web-vitals

2. Create a function that utilizes the web-vitals package:

import { getCLS, getFID, getLCP } from "web-vitals";

export default async function webVitals() {

 try {

 getFID((metric) => console.log(metric));

 getLCP((metric) => console.log(metric));

 getCLS((metric) => console.log(metric));

 } catch (err) {

 console.log(err);

 }

}

In this example, we retrieve the metrics and then simply log them to the console. It
is important to wrap them in a try catch block to avoid crashing the page when
the APIs are not supported. This also allows you to handle the error accordingly.

3. Use the following code within your gatsby-browser.js file:

import "./src/styles/global.css"

import webVitals from "./src/utils/web-vitals"

webVitals()

Summary 163

By calling the function within this file, it will run once when the user initially
navigates to our site from an external source, but not on every page navigation
within the site.

Starting your development server and navigating to your site via Google Chrome, you
should see the metrics logged in the console. In this example, we are simply displaying
them, but we could be sending these to our analytics platform. We will look at this in
more detail in Chapter 8, Web Analytics and Performance Monitoring.

We now have a good understanding of how to measure web vitals both in the field and
during development.

Summary
In this chapter, we learned about unit testing – what it is and why it is important. Then,
we integrated unit testing into our Gatsby site. We also looked at a few different recipes
for unit tests that we can use to test different types of react components. We then learned
about Git hooks and implemented a Git hook that runs unit tests using husky. Finally,
we investigated core web vitals. We used web vitals to test our page experience both
locally using lighthouse, and in the field using the web-vitals package. Using what
you've learned, you should now feel that you can test a site locally, as well as audit its
performance, accessibility, and SEO once it is out on the web.

In the next chapter, we will discover how we can add analytics to our site, including how
we can track web-vitals field data.

8
Web Analytics

and Performance
Monitoring

In this chapter, we will investigate ways in which we can monitor the behavior of our
application and the users who visit it. We will learn how page analytics can be a valuable
tool in helping create better user experiences. We will learn how to use two different
tools to gather these page insights, depending on what we require. We will learn what is
required of us legally when using these tools. We will also implement plugins that allow us
to debug errors that our users encounter when using our site.

By the end of this chapter, you should feel confident that you can gather different types
of analytics and use them to inform yourself (or the site owner) about how code changes
have affected the user experience.

In this chapter, we will cover the following topics:

• Introducing website analytics

• Implementing page analytics

• Monitoring the performance of your site

166 Web Analytics and Performance Monitoring

Technical requirements
To complete this chapter, you will need to have completed Chapter 7, Testing and Auditing
Your Site.

The code for this chapter can be found at https://github.com/
PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/
tree/main/Chapter08.

Introducing website analytics
Website analytics is the act of collecting, aggregating, analyzing, and reporting a website's
data. Let's break website analytics down into two categories:

• Page analytics: Analytics we gather about how users interact with our website.
This could be page views, click rates, or bounce rates, for example.

• Performance Monitoring: Analytics we gather on how our code performs for
our users. This is primarily used for logging errors in our JavaScript that our
users encounter.

Regardless of the category, they all work in a similar way. First, an inserted script tag
loads a small amount of JavaScript into the page. This code is run in the web browser of
anyone visiting the site. In most cases, the code drops a small text file with small pieces
of data known as cookies onto the users' browsers. This data is used to identify the user
session. This is sent back to the analytics tool, along with request information, to identify
the user and the event that is being tracked.

You've collected all this data – now what? By looking at aggregated users' data, we can gain
insights into how our users are behaving. This information is the most powerful ally you
can have when you're trying to improve your user experience. You can use these reports to
identify trends in the kind of content your users like or pages where users most often leave
your application, for example.

Now, let's take a moment to talk about privacy concerns when gathering user data.

Privacy
Regardless of what data you intend on collecting, it is always important to consider
the privacy of your users. A published and publicly accessible privacy policy is a legal
requirement if you intend to store, transfer, or handle a user's personal information. It is
also the case that the popular analytics providers, including Google Analytics, specify in
their terms of service that if you are using their service, you must publish a privacy policy.
If you do not, you are in breach of your contract with them and are using the tool illegally.

https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter08
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter08
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter08

Implementing page analytics 167

In addition to a privacy policy, it is also a good idea to have a cookies policy, if your
website has visitors from Europe. As of 2018, the European Union state that you are
required to get "clear, informed consent" from your users to use cookies. This normally
takes the form of a banner that you display to users on their first visit to your site.

Now that we understand what website analytics is, let's turn our attention to how we can
implement the first type of them – page analytics.

Implementing page analytics
There is a multitude of tools you can use to perform page analytics. In this book, we are
going to look at the following two:

• Google Analytics

• Fathom Analytics

Google Analytics is the world's leader in page analytics. More than half of all websites
on the web use this tool. One of the reasons for its popularity is its age as it has been
around since 2005. When it was launched, there wasn't much competition in the analytics
space. Another reason for its popularity is that it's free. It's important to remember that
if you are using a free tool or site, it is often the case that your data is the product. If you
are concerned about your privacy and that of your site visitors, then perhaps Fathom
Analytics is a better choice.

Unlike Google, Fathom Analytics does not track personal data. For example, when a page
view is logged, it only tells you it was visited, but not by who specifically. Fathom's script is
cookie-free, which means that you do not need a cookie policy or cookie consent banner.
As Fathom is determined to collect as little personal information as possible, your privacy
policy can also be considerably shorter.

Important Note
Only implement one of the page analytics tools mentioned in this section.
Having multiple scripts that accomplish the same thing is only going to make
your page heavier.

We will discuss how to implement both page analytics tools in the following sections. Let's
start with Google Analytics.

168 Web Analytics and Performance Monitoring

Adding Google Analytics
To start tracking data within our Gatsby site, we will need to obtain a measurement ID
from Google Analytics. Let's do this by following these steps:

1. Navigate to https://analytics.google.com/analytics/
web/?authuser=0#/provision/create from your browser.

2. Give your account an Account name and enter your Account Data Sharing
Settings preferences:

Figure 8.1 – Google Analytics account setup
The name is specific to a project, so call it something relevant. Pay attention to the
data sharing options – only ever share with Google what you're comfortable sharing.

https://analytics.google.com/analytics/web/?authuser=0#/provision/create
https://analytics.google.com/analytics/web/?authuser=0#/provision/create

Implementing page analytics 169

3. Set up a property by entering a Property name, Reporting time zone (region),
and Currency:

Figure 8.2 – Google Analytics property setup
This property is specific to your website or app. In our case, this will be used to
reference analytics from our Gatsby site, so a name such as personal-website or
my-website would be appropriate.

170 Web Analytics and Performance Monitoring

4. Fill out the business information that Google requires and submit the form. You will
then be presented with the following screen:

Figure 8.3 – Google Analytics dashboard
This is your first look at the Google Analytics dashboard. Before we can start
leveraging its power, we will need to set up our first data stream.

5. Select Web under the Choose a platform heading. This will open the
following screen:

Implementing page analytics 171

Figure 8.4 – Google Analytics web stream setup
Enter your website address under URL and name your web stream. Finally, submit
the form by clicking Create stream. This will bring up the details of our newly
created stream.

6. Make a note of the stream's measurement ID.

Now that we have obtained the measurement ID, let's turn our attention to our Gatsby site
repository and use it to start gathering site statistics:

1. Install the necessary dependencies:

npm install gatsby-plugin-google-gtag

2. Include the gatsby-plugin-google-gtag plugin in your gatsby-config.
js file:

{

 resolve: `gatsby-plugin-google-gtag`,

 options: {

 trackingIds: [

 "GA-TRACKING_ID", // Your Measurement ID

],

 gtagConfig: {

172 Web Analytics and Performance Monitoring

 anonymize_ip: true

 },

 },

 },

By including this plugin in your configuration, Gatsby will append the required
Google Analytics script to the body of your application. The plugin comes with
plenty of options, all of which can be found here: https://www.npmjs.com/
package/gatsby-plugin-google-gtag.

It's important to draw attention to the anonymize_ip gtag configuration option.
Anonymizing the IP is a legal requirement in some countries, such as Germany.
Without any additional configuration, the plugin will automatically send a page
view event whenever your site's route changes.

This is a great start, but you will most likely also want to track other events on your site.
Let's look at how we can track custom events and outbound links.

Custom events
There are plenty more ways to track user engagement than just page views. Websites today
are becoming more and more interactive, so being able to track interaction can be very
useful. We can achieve this within Google Analytics by using custom events. Let's look at
an example of using a button click.

Let's assume we have a simple button component:

import React from "react"

const Button = () => {

 return (

 <button>Click Me</button>

)

}

export default Button

To track a click of this button, we can utilize the gtag function, which is exposed in the
window via the plugin:

import React from "react"

const Button = () => {

 const track = (e) => {

 typeof window !== "undefined" &&

https://www.npmjs.com/package/gatsby-plugin-google-gtag
https://www.npmjs.com/package/gatsby-plugin-google-gtag

Implementing page analytics 173

 window.gtag("event", "click", { /* Meta Data */ })

 }

 return (

 <button onClick={track}>Click Me</button>

)

}

export default Button

In the previous code block, you can see that within onClick, we call a track function.
This function calls the window.gtag function conditionally, if window is defined.
We need to perform this check as the function does not work when it's rendered on
the server side.

Important Note
This plugin is for production use only. This means that any events that
take place while you are working on the project in development will not be
tracked. To test that the plugin is working correctly, you will need to build
and serve the site.

Now that we understand how custom events work, let's look at how we can track people
leaving our site via outbound links.

Outbound links
It can be useful to understand where and when users navigate away from your site.
Perhaps you reference another developer's site within a blog post and users leave to visit
that site? To track this kind of outbound traffic, the gatsby-plugin-google-gtag
plugin contains a ready-made component – OutboundLink. Let's see how we can use it:

import React from "react"

import { OutboundLink } from "gatsby-plugin-google-gtag"

const MyLink = () => {

 return (

 <OutboundLink href="https://sld.codes">Visit

 sld.codes.</OutboundLink>

)

}

export default MyLink

174 Web Analytics and Performance Monitoring

As you should be able to see in this example, we can use the OutboundLink component
as a direct drop-in replacement for an a tag. As its name suggests, you should only use
this component for outbound links. If the link is internal, you should be using Gatsby's
Link component.

Google Analytics is a great way to track your site's page analytics, but there is also
a multitude of other tools you can use for this purpose. Let's look at an alternative –
Fathom Analytics.

Using Fathom Analytics
Fathom Analytics is marketed as a privacy-focused alternative to Google. Google
Analytics collects an abundance of data when users browse your site, but Fathom suggests
that the information that is acquired is too much. Fathom collects only what they need to
create their one-page stats dashboard. Unlike Google, Fathom is not free and starts at $14
per month. To start tracking data within our Gatsby site, we will need to obtain a site ID
from Fathom Analytics. Let's do this now by following these steps:

1. Navigate to https://usefathom.com from your browser and create an
account. You will need to sign up with a credit card, but you will receive
a 7-day free trial.

2. Upon account creation, you should be prompted to create a new site:

Figure 8.5 – Fathom dashboard

https://usefathom.com

Implementing page analytics 175

Give your site an appropriate name. A name such as personal-website would be
appropriate. Click Create site.

3. Upon submission, you will be presented with your Site ID and embeddable code for
a multitude of frameworks, including Gatsby:

Figure 8.6 – Fathom embed code
I suggest that you do not follow the instructions they provide you with for Gatsby.
Why? Because their instructions suggest modifying the component that Gatsby uses
to server render head and other parts of the HTML outside of Gatsby. There is no
guarantee that Gatsby will keep this file consistent between versions, so meddling
with it might make upgrading it difficult later down the line. Instead, simply make a
note of your Site ID. Then, minimize your browser.

176 Web Analytics and Performance Monitoring

Now that we have retrieved our Site ID, let's turn our attention to our Gatsby site
repository and start populating that Fathom dashboard with statistics:

1. Install the necessary dependencies:

npm install gatsby-plugin-fathom

2. Include the gatsby-plugin-fathom plugin in your gatsby-config.js file:

{

 resolve: 'gatsby-plugin-fathom',

 options: {

 siteId: 'FATHOM_SITE_ID'

 }

 }

3. Replace FATHOM_SITE_ID with the Site ID property that you retrieved via
Fathom's website.

4. Build and serve your Gatsby site. gatsby-plugin-fathom is production-only,
so we need to create and serve a production build to validate that it is working.

5. Once your site has loaded, navigate to it. Once it has been rendered, return to
Fathom and click Verify site code. It should inform you that fathom is all
hooked up!

Now, let's investigate how we can track more than page views.

Custom events (goals)
Like Google Analytics, Fathom also allow you to track custom events. Fathom refers to
these events as "goals." To learn how we can track a goal, let's look at an example of using a
button click.

First, we need to create an event via Fathom:

1. Navigate to your Fathom analytics dashboard. Under the Events section, click
Add event.

2. Give your event a name and click Create event. Note your event code.

Monitoring the performance of your site 177

Now that we have an event code, let's use it! Let's assume we have a simple
button component:

import React from "react"

const Button = () => {

 return (

 <button>Click Me</button>

)

}

export default Button

To track a click of this button, we can utilize the useGoal function, which is exposed via
the plugin:

import React from "react"

import { useGoal } from "gatsby-plugin-fathom"

const Button = () => {

 const handleGoal = useGoal("YOUR_EVENT_CODE")

 return (

 <button onClick={() => handleGoal(100)}>Click

 Me</button>

)

}

export default Button

The useGoal hook exposes a function with a single argument, which is the value of your
goal. Perhaps this is the purchase button, and you would like to log your revenue on your
dashboard. If your goal has no value, set this parameter to 0.

Now that we understand how to track page analytics, let's look at how we can monitor our
application for errors in production through application monitoring.

Monitoring the performance of your site
One of the hardest things to debug is user errors in production that you cannot seem to
replicate on your machine. Without logs, this can be an impossible task. Luckily, some
tools are dedicated to monitoring errors within your application and alert you when
things do go wrong. One of the most popular tools out there for this purpose is Sentry.io.

178 Web Analytics and Performance Monitoring

Using Sentry.io analytics
Sentry.io is a full-stack error tracking system that supports a variety of desktop, browser,
and server applications – including GatsbyJS! Sentry works by integrating with our site's
logging infrastructure directly. Let's learn how we can implement Sentry so that we can
monitor it for production errors:

1. Navigate to https://sentry.io/signup/ from your browser and create
an account.

2. Once you've logged in, create a new project by navigating to Projects and clicking
Create Project.

3. Fill in the new project user interface, like so:

Figure 8.7 – Sentry initialization
Choose Gatsby as your platform. As your site is presumably going to be small at
launch, I would suggest setting your default alert settings to Alert me on every new
issue. Finally, give your project a name. Then, click Create Project.

https://sentry.io/signup/

Summary 179

Sentry, then, gives you a great step-by-step guide on how to set up Sentry within your
Gatsby project. Let's reiterate these steps here:

1. Install the necessary dependencies:

npm install --save @sentry/gatsby

2. Include the @sentry/gatsby plugin in your gatsby-config.js file:

{

 resolve: "@sentry/gatsby",

 options: {

 dsn: "YOUR_DSN_NUMBER",

 sampleRate: 0.7

 },

},

sampleRate is the rate of error events that are sent. Sentry suggests 0.7 as the
default value, which means that 70% of error events will be sent.

A complete list of plugin options can be found here: https://docs.sentry.
io/platforms/javascript/guides/gatsby/configuration/
options/.

These few lines of code are all that is needed to have Sentry start tracking errors and the
performance of your site in production. You can rest easy knowing that if your site visitors
encounter errors, you will know about them instantly.

Summary
In this chapter, we learned about website analytics and how useful they can be to make our
application perform at its best. We learned about the different types of data we can collect
and the regulations we should follow when collecting a user's data. We implemented page
analytics in two different ways – one by providing you with an abundance of data and the
other by taking a more privacy-focused stance. Finally, we also implemented application
monitoring using Sentry.io. You should now feel confident collecting website analytics.

In the next chapter, we will finally bring together everything we have learned in the last
eight chapters and deploy our website.

https://docs.sentry.io/platforms/javascript/guides/gatsby/configuration/options/
https://docs.sentry.io/platforms/javascript/guides/gatsby/configuration/options/
https://docs.sentry.io/platforms/javascript/guides/gatsby/configuration/options/

9
Deployment and

Hosting
In this chapter, we will finally take the project we have been working on and deploy it
for the world to see! We will delve into the different types of builds that Gatsby creates
and gain an understanding of how to debug common build errors. Following this, we
will continue to learn how we can deploy them using a variety of different platforms.
Additionally, we will discover how we can lock down access to our site by serving it up as
part of an Express server.

In this chapter, we will cover the following topics:

• Understanding build types

• Common build errors

• Your pre-deployment checklist

• Platforms for deploying hybrid builds

• Platforms for deploying static builds

• Serving a Gatsby site with reduced user access

182 Deployment and Hosting

Technical requirements
To navigate this chapter, you will need to have completed Chapter 8, Web Analytics and
Performance Monitoring.

The code that is presented in this chapter can be found at https://github.com/
PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/
tree/main/Chapter09.

Understanding build types
Gatsby version 4 introduced the ability for your website to be built in two different ways:

• As a static build: This creates all your pages at build time using Node.js. The resulting
files are all static HTML, JavaScript, and CSS, which can be served entirely statically.

• As a hybrid build: This is a mixture of a static build combined with pages that are
server-side rendered or have been created via deferred static generation.

When running gatsby build, Gatsby will inspect your site's content, and if possible,
create a static build. However, if your site contains pages that are server-side rendered or
have been created via deferred static generation, it will create a build that requires server-
side code that runs on a Node.js server or via serverless functions. Builds of both types
can be tested locally using the gatsby serve command.

Before deploying your build, it's worth ensuring that everything is working as it should
locally. Now, let's take a moment to look at common build errors and learn how you can
avoid them.

Common build errors
While working on our project, we mostly run the project in development mode. This
is a great idea to ensure that the site also works with a production build by running the
gatsby build command.

https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter09
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter09
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter09

Your pre-deployment checklist 183

Sometimes, you might find that errors occur during the build process. So, let's talk about
the most common issues and how we can fix them:

• The most common error that you'll come across is window/document is not
defined. Node.js does not contain the window and document variables found in
the browser. Therefore, while your site is being built, it is unable to access them.
You can get around this issue in a couple of ways. You can perform a check
to confirm that the variable is defined (for example, typeof window !==
undefined && yourFunction()), or if appropriate, you can move the code
into a useEffect hook.

• Ensure that all your components, your pages, and your gatsby-browser.js and
gatsby-ssr.js files do not mix ES5 and ES6 syntax, as this can lead to builds
crashing out.

• Take special care to ensure that all JavaScript files found within your pages
directory are React components with a default export. Gatsby treats all JavaScript
files as pages within this folder. If you have components or other utility functions
within this directory, you will get an error that says A page component must
export a React component for it to be valid. If you see this error, just move the files
in question outside of the folder.

Now that we can build our site without issues, let's examine a practical checklist that we
should run through before deploying our site.

Your pre-deployment checklist
Regardless of how you intend to deploy your site, there are a few steps you should follow
on your local machine to ensure that your first deployment will run smoothly:

1. Ensure any deployment platform plugins that are required have been installed. A
couple of the platforms we will look at have Gatsby plugins specifically for use with
their product. By adding them to your Gatsby site, the platform is better able to
understand your project and, as a result, build your site faster.

2. Make sure your Gatsby site builds without an error. Once the build has passed
successfully, try running gatsby serve to ensure that you can use the site
without issue.

3. Ensure all your tests are passing. Make sure that you have run your unit tests that
we set up in Chapter 7, Testing and Auditing Your Site, using npm run test, and
ensure that they are all passing.

184 Deployment and Hosting

4. Take note of your Node.js version. As of Gatsby version 4, your Node.js version
should be 14 or higher. You'll want to ensure that the Node.js version matches your
deployment platform so that you don't have compatibility issues. You can check this
by running node -v in your terminal.

Now that we have completed our checklist, let's look at the various platforms we can
deploy our site with, starting with those that support hybrid sites.

Important Note
It is recommended that you only deploy your site on one deployment platform
and not multiple platforms. Managing multiple platforms when you can do the
job with one is far easier for you to maintain. Try experimenting with all the
options to find the best fit for your project.

Platforms for deploying hybrid builds
As hybrid sites require a Node.js server, we need to use platforms that can provision
them. Hybrid sites are also very new to the Gatsby ecosystem. At the time of writing, the
only stable option for hosting a hybrid build is Gatsby Cloud Hosting, so let's look at the
platform next.

Deploying to Gatsby Cloud Hosting
Gatsby Cloud is a cloud platform that has been specifically designed and built for the
Gatsby framework by the Gatsby organization. Because they focus on this framework,
they excel at building technology that makes your builds run as fast as possible. This
includes the following:

• Incremental builds: Gatsby Cloud observes the GraphQL data layer and identifies
page dependencies. When you push changes to your code, it identifies the data
layer changes and only rebuilds the pages that are dependent on that data. This can
drastically speed up repeat builds – Gatsby says that incremental builds can be as
much as 1,000 times faster than traditional builds.

• Intelligent caching: Special caching headers are sent to the browser when
requesting your site. These are used to ensure that the browser does not
re-download any content that has not changed between builds.

Platforms for deploying hybrid builds 185

It should be noted that incremental builds are not available on the free tier of the platform.
If you want to benefit from them, you'll need to upgrade.

Now that we understand the benefits of using the platform, let's look at how we can deploy
our site to the platform.

Quick Note
The process for deploying a hybrid site and a static site is the same on the
Gatsby platform, so these instructions will work in both cases.

Perform the following steps to deploy your site to the Gatsby Cloud platform:

1. Install the Gatsby Cloud plugin:

npm install --save gatsby-plugin-gatsby-cloud

Here, we are installing the Gatsby Cloud plugin. This adds basic security headers
during the build for the Gatsby Cloud platform.

2. Include the gatsby-plugin-gatsby-cloud plugin in your gatsby-
config.js file:

module.exports = {

 // rest of config

 plugins: [

 `gatsby-plugin-gatsby-cloud`,

 // other plugins

]

}

3. Commit and push all changes to your chosen Git repository.
4. Open a browser and navigate to https://www.gatsbyjs.com/products/

cloud. Click on Get Started.

https://www.gatsbyjs.com/products/cloud
https://www.gatsbyjs.com/products/cloud

186 Deployment and Hosting

5. Sign up to the platform by populating the form with your name, email, and country
of residence:

Figure 9.1 – Signing up to Gatsby Cloud

6. Select your VCS (version control system) provider, log in, and approve the
requested permissions that the Gatsby Cloud platform requires in order to integrate
with it:

Platforms for deploying hybrid builds 187

Figure 9.2 – The Gatsby Cloud VCS Provider authorization step

7. Upon being redirected to Gatsby Cloud, you will be asked whether you would like
to trial a 14-day upgrade. This is up to you.

8. Then, you will be navigated to your dashboard, which will be empty, as we have not
set up any sites yet. Let's add our site now by clicking on Add Site.

9. Select Import from a Git Repository, and click on Next.
10. Select your Git provider from the list, followed by the organization and repository

name. If, for some reason, this list has not been populated, ensure that you have
given Gatsby the relevant permissions to read from your Git repositories.

11. Following this, you will need to provide your site details, including a base branch
and base directory. Your base directory should point to the root of the Gatsby
project within the repository – this is most likely the root directory or /. Click
on Next.

12. You will then be presented with optional integrations for your site. These integrations
can help your CMS communicate with Gatsby Cloud. When you make a change to
your CMS, you can see a preview of how that content will look via Gatsby Cloud. If
you desire to do this, you can click on Connect next to the CMS platform you are
using and follow the steps; otherwise, you can click on Skip this Step.

188 Deployment and Hosting

13. Finally, you will be asked to add any environment variables that your site needs
to build. Gatsby scans your site's integrations and plugins to help fill in the
environment variables it thinks you need. Be sure to cross-check this with your
local .env file to ensure you have everything that is required.

14. Click on Create site. This will prompt Gatsby to start building your site for the very
first time:

Figure 9.3 – The Gatsby Cloud site dashboard
Once the build has been completed, you can see the deployed site live by following
the purple hyperlink underneath the HOSTED ON GATSBY CLOUD heading in
the preceding screenshot.

With every subsequent push to the base branch, Gatsby Cloud will build and deploy the
change automatically.

Now that we understand how to deploy a hybrid build, let's look at the options we have for
deploying static builds.

Platforms for deploying static builds 189

Platforms for deploying static builds
As static builds are a far more common and predictable format, there are plenty more
options for where you can host them. We have already looked at Gatsby Cloud, which
can deploy static sites in the same way as it does hybrid. Now, let's look at three other
platforms – Netlify, Render, and Firebase.

Deploying to Netlify
Netlify is the deployment platform used for over 500,000 websites. It is popular among
developers for its ease of use. It also provides a free Secure Sockets Layer (SSL). Let's
learn how we can deploy our site with Netlify:

1. Install the Netlify plugin:

npm install --save gatsby-plugin-netlify

Here, we are installing the Netlify plugin, which adds basic security headers during
the build for the Netlify platform.

2. Include the gatsby-plugin-netlify plugin in your gatsby-config.js file:

module.exports = {

 // rest of config

 plugins: [

 `gatsby-plugin-netlify`,

 // other plugins

]

}

3. Commit and push all changes to a Git repository.
4. Navigate to https://app.netlify.com/signup in your browser.
5. Sign up by logging in with the third-party login details provided by your VCS, and

approve the requested permissions that the Netlify platform requires to integrate
with it.

https://app.netlify.com/signup

190 Deployment and Hosting

6. Click on Create New Site from your dashboard:

Figure 9.4 – The Netlify new site page
Select the Git provider where your repository is stored. Then, pick the repository
that you would like to build.

7. You can leave the Owner option in its default setting. However, make sure that the
deploy branch matches your site's main production branch:

Figure 9.5 – The Netlify site creation settings

Platforms for deploying static builds 191

8. Finally, provide the Build command and Publish directory details for the site,
which should be npm run build and public, respectively:

Figure 9.6 – The Netlify site creation build settings

192 Deployment and Hosting

9. Clicking on Deploy site will start the build process.
10. While your site is building, take note of the URL, in blue, at the top of the

dashboard. This is where your site will be deployed:

Figure 9.7 – The Netlify site dashboard

If everything goes well, your site should be deployed after a few minutes. With
every subsequent push to the base branch, Netlify will build and deploy the change
automatically.

Now that we understand how to deploy with Netlify, let's look at another
alternative – Render.

Platforms for deploying static builds 193

Deploying to Render
Render is a cloud platform that can build and run Gatsby websites with free SSL and a
global CDN. Let's learn how we can deploy our site with Render:

1. Commit and push all changes to a Git repository.
2. Navigate to https://dashboard.render.com/register, and then create

an account.
3. From the dashboard, click on New:

Figure 9.8 – The Render site dashboard

4. Select Static Site.

https://dashboard.render.com/register

194 Deployment and Hosting

5. At this point, you will be asked to present a repository. However, as you have not
connected Render to your VCS, the list will be empty. Click on the hyperlink
for your VCS and proceed to connect Render to that system by following the UI
journey from that third party. In the case of GitHub, it will look something like this:

Figure 9.9 – GitHub's third-party installation

6. The list should now be populated with your repositories. Select the one containing
your Gatsby site.

7. Next, configure your site settings:

Platforms for deploying static builds 195

Figure 9.10 – The Render site settings
The Name field can be anything you like, and the Branch field should be the branch
of your repository that you would like to be deployed. Additionally, Build Command
should be npm run build, and Publish directory should be ./public.

8. Click on Create Static Site.

196 Deployment and Hosting

9. While your site is building, take note of the URL, in blue, at the top of the
dashboard. This is where your site will be deployed:

Figure 9.11 – The Render site dashboard

If everything goes well, your site should be deployed after a few minutes. Check
the URL to be sure. With every subsequent push to the base branch, Render will
build and deploy the change automatically.

Now that we understand how to deploy with Render, let's look at another
alternative – Firebase.

Platforms for deploying static builds 197

Deploying to Firebase
Firebase is Google's mobile development application. It allows you to focus on the frontend
of your application by allowing you to manage your backend infrastructure through a
no-code/low-code development UI. Firebase has a large number of features, including real-
time databases, machine learning, Cloud Functions authentication, and – the feature we will
be focusing on – hosting. Let's learn how we can deploy our site with Firebase:

1. Navigate to https://console.firebase.google.com, and sign in with a
Google account.

2. Once logged in, you will be directed to the Firebase console. From there, click on
Add Project.

3. You will be prompted to give your project a name. Once entered, take note of your
project ID, and click on Continue:

Figure 9.12 – Firebase project naming

https://console.firebase.google.com

198 Deployment and Hosting

4. At this point, you can optionally set up Google Analytics for your project. If
you added Google Analytics to your site as part of Chapter 8, Web Analytics and
Performance Monitoring, then do not set this up again here:

Figure 9.13 – Setting up Firebase project analytics

5. Click on Create project – this will provision the Google Cloud services that are
required for your project. Now we have set up everything we need within the
Firebase platform and can return to the code.

6. Install the Firebase CLI:

npm install -g firebase-tools

This package allows us to integrate local projects with the Firebase platform. We can
use the -g command to install it globally.

Platforms for deploying static builds 199

7. Run the firebase login command:

firebase login

This will open a browser window prompting you to log in with a Google account.
Log in with the Google account that you signed up to Firebase with.

8. Once complete, return to your Gatsby project's root directory and run the following:

firebase init

This will trigger the Firebase initialization UI within our Gatsby project and present
you with the following:

Figure 9.14 – Firebase CLI project initialization
Within this project, we are only using hosting, so press the down arrow key until
Hosting is selected. Then, hit the spacebar to select it followed by Enter to confirm
your choice.

9. Firebase will then ask you which Firebase project to associate with this directory:

Figure 9.15 – Setting up the Firebase CLI project

200 Deployment and Hosting

We have already created a Firebase project, so ensure Use an existing project is
selected and hit Enter.

10. Use the up and down arrow keys to select the project ID that we created in Step 3
(the project name should be visible in brackets next to the ID). Then, hit Enter.

11. Tell Firebase where to find the static build during the hosting setup:

Figure 9.16 – Setting up Firebase CLI hosting
By default, Firebase uses the public directory, so we can hit Enter without
changing this.

12. Then, it will ask you whether you would like it to configure your application as a
single-page app. Type in n and hit Enter.

13. Finally, it will ask whether you want to set up automatic deploys with GitHub. Type
in n and hit Enter. You can change this in the future if needed, but for now, we will
focus on manual deployments.

14. We now have everything in place ready to deploy to Firebase. Run the
following command:

gatsby build && firebase deploy

As we already know, gatsby build will create a production-ready build of our
site. Then, the firebase deploy command will take our build and upload it to
the Firebase platform, ready to be served to site visitors:

Figure 9.17 – Deploying the Firebase CLI

Serving a Gatsby site with reduced user access 201

At the end of the Firebase deployment, it will log a Hosting URL to the terminal.
Navigate to this link in a browser to see your deployed application.

Quick Tip
As you might have noticed from these instructions, Firebase is the only
platform in this list that does not require you to push your code to a VCS.
If you have a project where you do not wish to use a VCS, this is a great
choice. It's important to note that, unlike the other platforms, Firebase will
not automatically deploy your project unless it has been set up as part of a
deployment pipeline.

We have now looked at a multitude of different ways to deploy our site onto the internet.
If you have completed any of the implementations discussed in the previous sections, you
should be able to send a friend the site URL, and they should be able to see it. However,
what if you don't want your site to be visible to everyone but only a selected few? Next,
let's look at how we can reduce the level of access to our site for when the situation
requires it.

Serving a Gatsby site with reduced user access
You might be asking yourself why you would ever want to reduce the access to your
site. One word – security. In all the examples we have seen so far, our site is public and
out there on the internet for all to see, but what if you are building an application that
is only for a selected group of people? Perhaps it's portfolio work that you want to have
locked behind a password or an onboarding application that should only be available to
colleagues at a specific company. We can achieve functionalities such as these using most
backend web applications.

Important Note
This type of authentication is not to be confused with that of Chapter 11,
Creating Authenticated Experiences. Here, we are restricting access to the
entirety of the site unless you have been approved. In Chapter 11, Creating
Authenticated Experiences, access is only partially restricted, as we allow users
to visit parts of the application without logging in.

202 Deployment and Hosting

As an example, let's explore how we can use Express to introduce a password login to
our site:

1. Install the dependencies:

npm i express express-basic-auth

We will be using Express as our backend and express-basic-auth to
implement HTTP basic authorization as middleware.

2. At the root of your Gatsby project, create a server.js file with the following:

const express = require("express");

const app = express();

const basicAuth = require("express-basic-auth");

const port = 3000;

app.use(

 basicAuth({

 challenge: true,

 users: { admin: "testing" },

 })

);

app.use(express.static(`${__dirname}/public`));

app.listen(port, () => {

 console.log(`Example app listening at

 http://localhost:${port}`);

});

First, we create an express app. Then, we instruct it to use the express-
basic-auth middleware. You will see that we are passing an object that instructs
the middleware to challenge the user. When a user navigates to the site, before
seeing any content, they will be prompted with the following dialog box:

Serving a Gatsby site with reduced user access 203

Figure 9.18 – Basic auth challenge dialog box
They will only be allowed onto the site if the credentials they provide match those in
the users object provided to basicAuth.

Assuming they successfully pass this middleware check, we then allow them to view
the static content of our site using the express.static() method.

3. Modify your scripts in package.json to include a start:server script:

"scripts": {

 ...

 "start:server": "node server.js"

 },

This script will run our server.js file using Node.js.
4. We now have everything in place to try our server:

gatsby build && npm run start:server

This will build your Gatsby project and then run your server code, which will
serve up your Gatsby build content. If all has gone well, you should be able to visit
localhost:3000 and see this implementation working. Upon entering the
username and password that has been specified on the server, you should be able to
see your Gatsby application.

204 Deployment and Hosting

All the other static deployment methods we have looked at within this chapter have
assumed that the Gatsby project is being hosted on its own dedicated server, but
sometimes, you don't always have the luxury of multiple servers. This example is also
a great demonstration of how you can combine backend and frontend code on a single
server. You could use a similar approach to lock down your site to certain IP ranges. For
instance, we could expand upon this Express server to serve API endpoints alongside our
Gatsby project within the same repository.

Quick Tip
You might be wondering how to deploy a site using this functionality –
deploying Express servers is beyond the remit of this book, but platforms that
support this include Heroku, Render, and Google Cloud.

Now, let's take a moment to summarize what we have learned in this chapter.

Summary
In this chapter, we investigated the builds that a Gatsby project can create and the
differences between them. We looked at common errors that crop up during build
time and how we can debug them. We learned how we can deploy hybrid builds using
Gatsby Cloud and how we can deploy static builds with Netlify, Render, and Firebase.
Additionally, we discovered how we can lock down access to our site by serving it up as
part of an Express server. You should now feel comfortable with the process of taking your
site live.

In the next chapter, we will start looking at more advanced concepts. We will begin by
learning about Gatsby's plugin creation.

Part 3:
Advanced Concepts

By now, you should have an understanding of how to make a standard static site live. In
this part, we cover some more advanced techniques to handle use cases that are slightly
less common for Gatsby sites.

In this part, we include the following chapters:

• Chapter 10, Creating Gatsby Plugins

• Chapter 11, Creating Authenticated Experiences

• Chapter 12, Using Real-Time Data

• Chapter 13, Internationalization and Localization

10
Creating Gatsby

Plugins
In this chapter, we will look at Gatsby's plugin ecosystem. We'll start by learning how to
make our Gatsby site more modular as it grows. We will then create our first source plugin
to fetch data from GitHub. We will also create our first theme plugin to create events pages
for our website. Finally, we will learn how to share our plugins with the world via Gatsby's
plugin ecosystem.

In this chapter, we will cover the following topics:

• Understanding Gatsby plugins

• Introducing local plugin development

• Creating source plugins

• Creating theme plugins

• Contributing to the plugin ecosystem

Technical requirements
To complete this chapter, you will need to have completed Chapter 9, Deployment and
Hosting. You will also need a GitHub account.

208 Creating Gatsby Plugins

The code for this chapter can be found at https://github.com/
PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/
tree/main/Chapter10.

Understanding Gatsby plugins
By this stage in this book, you should have all the tools you need to get a Gatsby site
into production. In this chapter, we are going to go one step further and talk about
creating reusability across multiple Gatsby sites using something called Gatsby plugins.
Gatsby plugins are node packages that abstract common site functionality that utilizes
Gatsby APIs. By bundling functionality into a plugin, you can source data, create pages,
implement SEO, and so much more with just a few lines. Gatsby plugins also act as a way
to modularize larger sites into more manageable chunks of functionality.

The two most common types of plugins are as follows:

• Gatsby Source Plugins: Source plugins allow you to gather data from a data source
and ingest it into Gatsby's GraphQL data layer. You could source data from anywhere,
such as APIs, RSS feeds, or CMSes, as we did in Chapter 3, Sourcing and Querying Data
(from Anywhere!). Once data has been ingested into your GraphQL data layer, you can
query it from within your gatsby-node.js file, as well as within your pages.

• Gatsby Theme Plugins: Theme plugins focus more on the user interface of your
application. Often, theme plugins contain code that creates pages of a site, such as
an FAQ section. They act to split your Gatsby site into smaller manageable projects,
which can be very useful when you have multiple teams working on the same site.

These two types can be identified by the plugin name, which will either begin with
gatsby-source or gatsby-theme. While these two types are the most common,
they are not the only types. Plugins that encapsulate any other functionality have a plugin
name that begins with gatsby-plugin.

Before we dive in and start creating plugins, let's learn about local plugin development so
that we can avoid common pitfalls.

Introducing local plugin development
Local plugin development begins with a new folder called plugins, which you need to
create within your root directory. This is the folder that will house the plugins we create.
When you add a plugin to your Gatsby config, Gatsby first looks within your node_
modules folder. If it cannot find a plugin there, it will check within this local plugins
folder. If it finds a plugin here with the same name within its package.json file, it will
use it.

https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter10
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter10
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter10

Introducing local plugin development 209

As you may have guessed by the mention of a package.json file, plugins come in the
form of npm packages. npm packages take care of their dependencies, so it is important
that, when you're installing packages for use in a plugin, you make sure that you open the
terminal within the plugin's folder and not the root directory. Otherwise, your site and
plugin dependencies may be inaccurate.

Quick Tip
If you don't have any intention of ever sharing the plugins you create, you can
choose to install dependencies that your plugins require in the root directory
instead. This can be easier to manage if you prefer having one source of truth
for your dependencies. But be careful – if you think the plugin could be shared
at any point, do not do this, as you will have to manually sort through your
dependencies and find those that the plugin requires.

While creating local plugins, you may find that your code does not behave like the rest of
your project. Let's look at how we can debug common issues.

Debugging local plugins
Gatsby does not treat the local plugins folder the same as the rest of the code base.
Changes to pages, templates, and configs may not necessarily appear while hot reloading.
Here are a couple of tips to make your life a little easier:

• If you make a change and do not see it reflected, even after restarting the server,
try clearing the cache using gatsby clean. Gatsby caches plugin data in the
.cache folder. To make itself faster, Gatsby uses this cache.

• If you are unsure whether your plugin is even being run, try adding the following
command to your plugin's gatsby-node.js file:

exports.onPreInit = () => console.log("Plugin

Started!")

This command will run first during Gatsby's execution. If Gatsby is aware of your
plugin, you will see Plugin Started! logged to the console.

Now that we know when it's a good idea to make plugins, let's learn how we can
create them.

210 Creating Gatsby Plugins

Creating source plugins
As we mentioned in the Understanding Gatsby plugins section, source plugins are those
that allow us to ingest data from a new source into our GraphQL layer. By creating a
source plugin, we abstract the logic to source this data away from our site so that we can
reuse it across multiple Gatsby projects if we want to. To understand how source plugins
work, let's build one together. Let's source our total contributions from GitHub so that we
can display them on our about page:

1. The first thing we need to be able to do to pull data from GitHub is use an access
token. Navigate to https://github.com/settings/tokens/new.

2. Write a Note to help you identify your access token later:

Figure 10.1 – GitHub personal access token generation

https://github.com/settings/tokens/new

Creating source plugins 211

3. Change the Expiration property to your desired length. Once the length of time
has been selected, the token will be deleted and no longer work. If you prefer that it
doesn't expire, you can select No Expiry from this list.

4. Scroll down the list and check read:user:

Figure 10.2 – GitHub personal access token generation (continued)

5. Click Generate token.
6. On the next screen, you will be presented with your access token – make a note of

this immediately as you will not be able to see it again.

Important Note
If you ever lose your access token, you will not be able to see it again.
GitHub does this to prevent your key being used by someone else for
malicious purposes. In an instance where you do lose your key, you will
have to create a new one with the same scopes and replace the token
wherever it was being used.

212 Creating Gatsby Plugins

7. Create a .env file in your root directory and add the following line:

GITHUB_PROFILE_BEARER_TOKEN=your-token-here

You may already have a .env file within your project at this point. If this is the case,
simply append the preceding code block line to that file.

8. Ensure that dotenv is installed as a dependency at the root of your project. If it is
not, run the following command:

npm i dotenv

9. Create a new folder called gatsby-source-github-profile in your
plugins folder.

10. Open a terminal in the gatsby-source-github-profile folder and run the
following command:

npm init -y

This initializes an npm package for our plugin.
11. Install the node-fetch package:

npm i node-fetch@2.6.5

The node-fetch package brings the fetch browser API to node. I've used it in
this example as I suspect most of you will be familiar with fetch, as this book is
aimed at React developers.

Important Note
Node Fetch is ESM only from version 3.0. This means it will not play nicely
with the ES5 format that's being used in our Gatsby configuration files. The
maintainers suggest using version 2.6.5 in our case.

12. Create a gatsby-node.js file in your gatsby-source-github-profile
folder and add the following code to it:

const fetch = require("node-fetch");

const crypto = require("crypto");

/*

 Code added here in the next step

*/

Creating source plugins 213

Here, we are importing our most recent install, node-fetch, and the crypto
library (which comes with node) into our project. crypto provides cryptographic
functionality, which we will be using later in this file.

13. Under your imports, add the following code:

exports.sourceNodes = async ({ actions },

 configOptions) => {

 const { createNode } = actions;

 /*

 Code added here in the next step

 */

};

Here, we are utilizing the sourceNodes Gatsby node API. As its name
suggests, we will add code here that sources our data and then creates nodes
using the createNode action. You may have also noticed that we are passing
configOptions into this as an argument. This object gives us access to any of the
options we provide to the plugin when we use it in our gatsby-config.js file.
We are going to be passing our access token and username as options.

Quick Tip
To improve the understandability of this file, it's been broken down into its
parts. If you are finding it hard to follow, you can see the file in its entirety
within the repository listed in the Technical requirements section of this chapter.

14. Create a POST request, like the following, inside sourceNodes for the
GitHub API:

 const headers = {

 Authorization: 'bearer ${configOptions.token}',

 };

 const body = {

 query: 'query {

 user(login: "${configOptions.username}") {

 contributionsCollection {

 contributionCalendar {

 totalContributions

 }

 }

214 Creating Gatsby Plugins

 }

 }',

 };

 const response = await

 fetch("https://api.github.com/graphql", {

 method: "POST",

 body: JSON.stringify(body),

 headers: headers,

 });

 const data = await response.json();

 /*

 Code added here in the next step

 */

We use node-fetch to make the POST request to the GitHub API. We provide it
with token authentication in the request header. Here, you can see we are using the
token that's provided within configOptions. Like Gatsby, the GitHub API uses
GraphQL. As with any GraphQL API, to select which data we want from GitHub,
we have to pass a query into the body of our request. The query that's defined in
body retrieves the total contributions for a given username (in this case, yours!).
We pass our username in from configOptions.

15. Add the following code after your request:

const { contributionsCollection } = data.data.user;

 const totalContributions =

 contributionsCollection.contributionCalendar.
totalCont

 ributions;

 createNode({

 totalContributions: Number(totalContributions),

 id: "Github-Contributions",

 internal: {

 type: 'GitHubContributions',

 contentDigest: crypto

 .createHash('md5')

 .update(

 JSON.stringify({

Creating source plugins 215

 totalContributions,

 })

)

 .digest('hex'),

 description: 'Github Contributions Information',

 },

 });

Here, we deconstruct the data from our request to receive the total contributions.
Then, we utilize the createNode function to add this data to our GraphQL data
layer. Let's break down the object I am passing to the function:

a. totalContributions: The first key value in the object is the value of the total
contributions. This is the variable we will query for later when we try to retrieve this
information on our pages.

b. id: Each node must have a globally unique ID. Because there is a single instance of
this node type, we can just use the"Github-Contributions" string.

c. internal.type: A globally unique type that we can use to identify this
data source.

d. internal.contentDigest: This field helps Gatsby avoid regenerating nodes
when they haven't changed. While creating the node if this field remains constant,
it won't regenerate. So, we need to make sure that if our total contributions change,
so too does this contentDigest. To do that, I am using the crypto library to
create an md5 hash of our total contributions. This might seem a little overkill in
this particular instance, but it works well if the amount of data on a node is more
than one key-value pair, as you can just add them to the object that's being passed to
JSON.stringify.

e. internal.description: This field allows us to describe the source type,
which is helpful if we are confused about what this source is at any point. This field
is not required but is nice to have. Our plugin is now ready to be used – the process
from this point is the same as it is for a plugin that's been installed via npm.

16. Navigate to your gatsby-config.js file at the root of your project and add the
following code:

require("dotenv").config({

 path: '.env',

});

216 Creating Gatsby Plugins

module.exports = {

 // rest of config

 plugins: [

 {

 resolve: 'gatsby-source-github-profile',

 options: {

 token:

 process.env.GITHUB_PROFILE_BEARER_TOKEN,

 username: "your-github-username-here",

 },

 },

 // other plugins

]

}

Note that we are passing in the options to the plugin that we utilized in the plugin's
gatsby-node.js file. We source the token from our .env file. You can pass your
GitHub username in as plain text as this is public information.

Quick Note
You may be tempted to try adding someone else's username here instead of
your own, but this will cause the fetch request to fail as your access token does
not have permission to retrieve another user's data.

17. Start your development server. Navigate to http://localhost:8000/_graphql
– you should be able to query your total contributions with the following query:

query Contributions {

 gitHubContributions {

 totalContributions

 }

}

18. Let's add this new source of data to our about page:

export default function About({ data }) {

 const {

 markdownRemark: { html },

Creating source plugins 217

 gitHubContributions: { totalContributions }

 } = data;

 return (

 <Layout>

 <div className="max-w-5xl mx-auto py-16 lg:py-24

 text-center">

 <div dangerouslySetInnerHTML={{ __html: html

 }}></div>

 <p>In the last year I have made

 {totalContributions} on Github.</p>

 </div>

 </Layout>

);

}

export const query = graphql'

 {

 markdownRemark(frontmatter: { type: { eq: "bio" } })
{

 html

 }

 gitHubContributions {

 totalContributions

 }

 }

';

We have updated the page query so that it includes the new source. We can then
access it within the page via the data prop and render it to the screen, as shown in
the highlighted section of code.

Congratulations – you've just built your first local plugin. You could replicate the methods
outlined here to fetch data from another API. So, at this point, we can create source
plugins with ease, but what about theme plugins?

218 Creating Gatsby Plugins

Creating theme plugins
As we have discovered, theme plugins are all about adding visual elements to our Gatsby
site. Theme plugins are unique in that they have to contain a gatsby-config.js file.
To better understand theme plugins, let's look at the most minimal of examples. Let's use
a plugin to add a simple sample page to our site:

1. Create a new folder called gatsby-theme-sample-page in your
plugins folder.

2. Open a terminal in the gatsby-theme-sample-page folder and run the
following command:

npm init -y

3. Create an src folder in /gatsby-theme-sample-page.
4. Create a pages folder in your src folder.
5. Create a sample.js file inside your new pages folder and add the following code:

import React from "react";

const Sample = () => {

 return (

 <div>

 <h1>Sample page</h1>

 </div>

);

};

export default Sample;

This page is very basic and just renders a heading on the page.
6. Navigate to your gatsby-config.js file at the root of your project and add the

following code:

module.exports = {

 // rest of config

 plugins: [

 'gatsby-theme-sample-page',

 // other plugins

]

}

Creating theme plugins 219

7. Start your Gatsby development server and navigate to /sample; you should see
your sample page.

You may have noticed that a plugin consists of the same building blocks as your Gatsby
site. This is one of the reasons why creating plugins is so straightforward in Gatsby. By
building a site with this tool, you also inherit the ability to create plugins.

Now that we have seen a basic example, let's try and build something a little more useful
and a little more complex. Let's create a plugin that takes a folder of events (in JSON
format) and creates a page for each one:

1. First, we're going to need some events that we can source within our plugin. Let's
assume each event will have a title, description, location, and date.
Create a folder called events within your root directory. Add some JSON files
within this folder that are in the following format:

{

 "title": "Elevating Your Hack",

 "description": "Tips & tricks to make your hack

 stand out from the crowd.",

 "location": "King's College",

 "date": "2021-12-25"

 }

Ensure that the JSON is valid as errors will cause the plugin to crash out.
2. Create a new folder called gatsby-theme-events-section in your

plugins folder.
3. Open a terminal in the gatsby-theme-events-section folder and run the

following command:

npm init -y

4. Create an src folder in /gatsby-theme-events-section.
5. Open a terminal in the gatsby-theme-events-section folder and run the

following command:

npm i gatsby-transformer-json

As its name suggests, this installs the transformer plugin for handling JSON.
6. Create a gatsby-config.js file and add the following code:

module.exports = {

 plugins: [

220 Creating Gatsby Plugins

 'gatsby-transformer-json',

 {

 resolve: 'gatsby-source-filesystem',

 options: {

 path: './events',

 },

 },

],

};

Here, we are adding our newly installed plugin, as well as pointing our plugin to
source files from the filesystem that exists in the events directory. These plugins
will work together to create a new node for each JSON file within the events
directory.

7. Create a gatsby-node.js file and add the following code:

const { createFilePath } = require('gatsby-source-

 filesystem');

exports.onCreateNode = ({ node, getNode, actions }) => {

 const { createNodeField } = actions;

 if (node.internal.type === 'EventsJson') {

 const slug = createFilePath({ node, getNode });

 createNodeField({

 node,

 name: 'slug',

 value: slug,

 });

 }

};

The onCreateNode function is called whenever a new node is created. Using this
function, we can transform nodes by adding, removing, or manipulating their fields.
In this specific case, we are adding a slug field if the node is of the EventsJson
type. A slug is the address of a specific page on our site, so in the case of our event
page, we want every event to have a unique slug where it will render on the site.

Creating theme plugins 221

8. Prepend your gatsby-node.js file with the following code:

exports.createPages = async ({ actions, graphql,

 reporter }) => {

 const { createPage } = actions;

 const EventTemplate =

 require.resolve('./src/templates/event');

 const EventsQuery = await graphql('

 {

 allEventsJson {

 nodes {

 fields {

 slug

 }

 }

 }

 }

 ');

 if (EventsQuery.errors) {

 reporter.panicOnBuild('Error while running GraphQL

 query.');

 return;

 }

 const events = EventsQuery.data.allEventsJson.nodes;

 events.forEach(({ fields: { slug } }) => {

 createPage({

 path: 'event${slug}',

 component: EventTemplate,

 context: {

 slug: slug,

 },

 });

 });

};

222 Creating Gatsby Plugins

This code should look very familiar as it is very similar to the code we saw in the
Creating templates and programmatic page generation section of Chapter 4, Creating
Reusable Templates. Here, we are utilizing the createPage function, which allows
us to create pages dynamically. Inside this function, we destructure the actions
object to retrieve the createPage function. Then, we tell Gatsby where to find our
event template. With these two pieces in place, we are now ready to query our data.
You should see a familiar GraphQL query upon selecting the slug property from
all the events. After this, we can iterate through the events and create a page for each
one, providing the slug property as context.

9. Create a templates folder in /gatsby-theme-events-section/src.
10. Create an event.js file in /gatsby-theme-events-section/src/

templates and add the following code:

import React from "react";

import { graphql } from "gatsby";

export default function Event({ data }){

 const {

 event: { description, title, location, date },

 } = data;

 return (

 <div className="prose max-w-5xl">

 <h1>{title}</h1>

 <p>

 {date} - {location}

 </p>

 <p>{description}</p>

 </div>

);

}

Here, we take title, location, description, and date, which we will
retrieve in the page query, and render them on the screen.

11. Append the events.js file with the following code:

export const pageQuery = graphql'

 query($slug: String!) {

Creating theme plugins 223

 event: eventsJson(fields: { slug: { eq: $slug } }) {

 description

 title

 location

 date(formatString: "dddd Do MMMM yyyy")

 }

 }

';

Here, we are using slug from the context to find the event where slug matches
in the node's fields. We query for all the data that we need to populate this page
by retrieving title, location, description, and date, which have been
formatted. This is then passed into the template via the data prop.

12. Now, let's create a page with all the events listed. Create a pages folder in
/gatsby-theme-events-section/src.

13. Create an events.js file in /gatsby-theme-events-section/src/
pages and add the following code:

import React from "react";

import { graphql, Link } from "gatsby";

const Events = ({ data }) => {

 const events = data.allEventsJson.nodes;

 return (

 <div className="prose max-w-5xl">

 <h1>Upcoming Events:</h1>

 {events.map(({ title, location, date, fields: {

 slug } }) => (

 <Link to={'/event${slug}'}>

 <h2>{title}</h2>

 <p>

 {date} - {location}

 </p>

 </Link>

))}

 </div>

);

224 Creating Gatsby Plugins

};

export default Events

Here, we are mapping through our events and creating a Link to an event's
dedicated page with title, data, and location.

14. Append events.js with the following code:

export const query = graphql'

 {

 allEventsJson {

 nodes {

 location

 title

 date

 fields {

 slug

 }

 }

 }

 }

';

This query will retrieve all the events and return them in a nodes array, which can
be retrieved via the data prop on the page.

15. You're all done – run your development server and navigate to localhost:8000/
events. You should see the following output:

Figure 10.3 – Events page preview
Clicking on an event should take you to its dedicated page:

Contributing to the plugin ecosystem 225

Figure 10.4 – Events page preview

You've just made your first local theme plugin. Adding an event to the events folder will
see it appended to the list and get a dedicated page. If we were to publish this plugin, we
could then use it within multiple Gatsby sites to create these pages by simply creating an
events folder and populating it. No additional configuration is required!

Quick Tip
You'll notice a lack of styling in the examples set out in this chapter. This
chapter focuses on the Gatsby APIs that are being utilized and less on styling.
By now, you should feel confident enough to create styling for these pages.

Now that we understand how to create both types of plugins, let's learn how we can
publish them and contribute them back to the community.

Contributing to the plugin ecosystem
So, you've built a plugin and now you want to use it in a separate Gatsby project? Or
perhaps you think the plugin could help other developers? In either case, you'll need to
publish your plugin. By publishing your plugin with npm, your plugin will automatically
become visible on Gatsby's site plugins page (https://www.gatsbyjs.com/
plugins). Let's start this journey by looking at a pre-publish checklist.

Pre-publish checklist
Before we publish our plugin, it's important to ensure that we are ready to do so. The
following is a suggested pre-publish checklist:

• Ensure your plugin's name explains what it does. This might seem a little trivial but
naming your plugin in a way that makes it clear what it does will make it easier to
find online.

• Ensure your plugin's name is unique. Two npm packages cannot share the same
name, so you mustn't try and deploy a package with a name that is already in use.
To check whether your name is in use, visit https://www.npmjs.com/ and
search for your plugin's name.

https://www.gatsbyjs.com/plugins
https://www.gatsbyjs.com/plugins
https://www.npmjs.com/

226 Creating Gatsby Plugins

• Ensure your plugin adheres to the naming convention that was outlined in the
Understanding Gatsby plugins section. This is the way that Gatsby determines which
npm packages are Gatsby plugins so that it can add them to their site.

• Ensure your plugin has a comprehensive README.md file. This file will be picked
up by Gatsby and included within the plugin ecosystem, so it's vitally important that
the README.md file explains what your plugin does and how to use it. You should
include the specific configuration options that might be required.

• Check that both React and Gatsby are peer dependencies.

• Ensure your code has been tested properly. Unit tests are so important, but
even more so if you're about to pass your code onto others. Aim for 100% test
code coverage.

Important Note
If you ended up changing your plugin's name, be sure that this new name is
reflected in the package.json file, as well as the folder's name. Having the
old name anywhere can be confusing when you're using/searching for your
plugin later down the line.

Now that we have gone through our checklist, let's learn how to publish a plugin.

Publishing a plugin
Publishing a Gatsby plugin follows the same process as publishing any npm package. Let's
learn how to do this:

1. Ensure you have an npm account. If you do not, you can create one at https://
www.npmjs.com/signup.

2. Log into the npm CLI from your terminal by running the following command:

npm login

The CLI will ask for your name, email, and password as part of the login process.
3. Navigate your terminal to your Gatsby plugin's directory. This is vitally important.

If you continue these steps within your root directory, you will end up accidentally
releasing your entire site as a package, so ensure you have navigated to the plugin.

4. Finally, run the publish command:

npm publish

https://www.npmjs.com/signup
https://www.npmjs.com/signup

Summary 227

If this command finishes successfully, congratulations! Your plugin is now available
via npm. If, however, you saw permission errors, this is most likely because your
plugin name is not unique. Refer back to the Pre-publish checklist section and if the
name is clashing, change the name in the package.json file and retry.

Quick Tip
After your first publish, you will most likely find things you want to change.
If you follow these instructions again, be sure to bump the version number
in your package.json file as npm will reject a publish with the same
version number.

Now that your plugin has been published, it should be visible on the Gatsby website
plugins page within 24 hours.

Summary
In this chapter, we learned what a Gatsby plugin is and what types exist. We learned about
local plugin development and how to create source and theme plugins. We created both
source and theme plugins and then tested them locally by including them on our site. We
then learned about sharing plugins online. We discussed what you should consider before
deploying a plugin and then learned how to share a plugin by publishing them online via
npm. By completing this chapter, you should now feel confident that you can create and
share source and theme plugins with ease. This has been a brief introduction to a massive
topic, and I hope you can build on this knowledge to create plugins for any use case.

In the next chapter, we will look at another advanced concept – authentication. We will
learn how to create login experiences on your website.

11
Creating

Authenticated
Experiences

Within the context of this book, authentication is the act of verifying that a user is who
they say they are within a website. Once their identity has been verified, we can show the
individual content that's only meant for them. This might be their profile page, delivery
address, bank details, and more. In this chapter, we're going to focus more on how to
implement routing for use with authentication services instead of focusing on how to
implement authentication services or what content to display when a user is authenticated.
We will remind ourselves of how this is done in traditional React applications before
applying this knowledge to Gatsby sites with two different client-side implementations.

In this chapter, we will cover the following topics:

• Routing and authentication in React applications

• Authentication using client-only routes within Gatsby

• Site-wide authentication using context within Gatsby

230 Creating Authenticated Experiences

Technical requirements
To complete this chapter, you will need to have completed Chapter 10, Creating Gatsby
Plugins. You will also need a GitHub account.

The code for this chapter can be found at https://github.com/
PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/
tree/main/Chapter11.

Routing and authentication in React
applications
To achieve authenticated experiences, we will be using routing. Before jumping into
how we do this in Gatsby, let's familiarize ourselves with how routing works within
React applications. Routing is the process of navigating a user around different parts
of an application.

For this example, I will be bootstrapping a React project using create-react-app.
I have included steps for its installation but feel free to skip them and use your own
React implementation. Keep this section's demo separate from your Gatsby project.

Important Note
In the following example, we will be using the @reach/router package
for routing. Gatsby uses @reach/router under the hood, so by using the
package here in React, it will be easy to recognize patterns when we move on to
implementing them in Gatsby.

As React developers, routing is a common part of building applications – let's remind
ourselves of the routing basics:

1. Create a new folder for this demo. Open a terminal within this new folder and run
the following command:

npx create-react-app .

2. In the same terminal, run the following command:

npm i @reach/router

This will install the @reach/router package within the project.

https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter11
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter11
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter11

Routing and authentication in React applications 231

3. Open src/App.js and replace it with the following code:

import { Router, Link } from "@reach/router";

const Nav = () => (

 <nav>

 <Link to="/">Homepage</Link> | <Link

 to="about">About Me</Link>

 </nav>

);

{/* Code continued in next step */}

Here, we have imported Router and Link from the @reach/router package.
We have also created a Nav component that we can use to access the routes. This
Nav component utilizes the Link component from @reach/router to provide
navigation between routes.

4. Append src/App.js with the following code:

const HomePage = () => (

 <div>

 <Nav />

 <h1>Homepage</h1>

 </div>

);

const AboutPage = () => (

 <div>

 <Nav />

 <h1>About Me</h1>

 </div>

);

{/* Code continued in next step */}

Here, we have defined a couple of dummy components to route between – a home
page and an about page. This should all be very familiar to you.

232 Creating Authenticated Experiences

5. Finally, append src/App.js with the following code:

function App() {

 return (

 <Router>

 <HomePage path="/" />

 <AboutPage path="about" />

 </Router>

);

}

export default App;

This is where the magic happens. By wrapping the components in a Router
component, we can switch out which component is displayed based on the current
URL path. In this instance, if the user is at the / path (the route URL) they will see
the HomePage component, while if path is /about, they will see the AboutPage
component. They can use the Nav component within these two pages to navigate
between the two of them.

6. Start the project by running npm start from the root directory to try it out.

It's important to remember that navigating between routes is fast because all the routes
are loaded when the router renders. As we move into Gatsby, it's important to make sure
we only use routers when it is necessary as we might be adding page weight to include
components that a user may never have any intention of seeing.

Now that we have gone through a basic routing example, let's start adding pages that can
only be accessed once a user has logged in. We will do this with private routes.

Routing and authentication in React applications 233

Private routes
A private route behaves the same as the other components that are wrapped in a Router,
except it has an authentication condition. If the condition is not satisfied, instead of seeing
the requested content, the user will be redirected to a login screen to authenticate. Let's try
this out now by turning our about page that was previously public into a private route:

1. First, we are going to need to define our authentication condition. For this example,
we are going to keep it simple. To be considered "authenticated," the user must have
called the login function, which we will trigger via a button on the login page. To
achieve this condition, we are going to create a context that can store the current
authentication state. Create a new file called auth-context.js and add the
following code:

import React, { useState, useContext } from "react";

import { navigate } from "@reach/router";

const AuthContext = React.createContext();

export const AuthProvider = ({ …props }) => {

 {/* Code continued in next step */}

};

export const useAuth = () => useContext(AuthContext);

export default AuthContext;

Here, we are setting up the boilerplate of our authorization context. We are
creating a useAuth hook to access the context values that we will be defining
in the next step.

2. Within the auth-context.js file's AuthProvider, add the following code:

Const [authenticated, setAuthenticated] =

 useState(false);

 const login = () => {

 // Make authentication request here and only

 trigger the following if successful.

 setAuthenticated(true);

 navigate("/");

 };

 const logout = () => {

 setAuthenticated(false);

 navigate("/login");

234 Creating Authenticated Experiences

 };

 return (

 <AuthContext.Provider

 value={{

 login,

 logout,

 authenticated,

 }}

 {...props}

 />

);

Here, we have created a useState value called authenticated to track
whether the user is authenticated or not. We then created a login function that
sets authenticated to true. It is within this function that you would make a
request to your authentication service and verify the user before authenticating.
Most likely, you will also have some information about the user that you could store
in your state or local storage. If you do add additional information, be sure to clear
it within the logout function. For the time being, the logout function just sets
authenticated to false and navigates a user back to the login page. Within
AuthContext.Provider, we expose the login and logout functions, as well
as the authenticated state, to the rest of the application.

3. Navigate to your React application's index.js file and modify it with the
following code:

import React from "react";

import ReactDOM from "react-dom";

import "./index.css";

import App from "./App";

import { AuthProvider } from "./auth-context";

import reportWebVitals from "./reportWebVitals";

ReactDOM.render(

 <React.StrictMode>

 <AuthProvider>

 <App />

 </AuthProvider>

 </React.StrictMode>,

Routing and authentication in React applications 235

 document.getElementById("root")

);

Without wrapping our application in AuthProvider, we would not be able to
access the authentication context within the application.

4. Our authentication condition is now defined, so we can utilize it to create a private
route component. Create a new file called PrivateRoute.js and add the
following code:

import React from "react";

import { navigate } from "@reach/router"

import { useAuth } from "./auth-context";

const PrivateRoute = ({

 component: Component,

 ...rest

}) => {

 const { authenticated } = useAuth();

 if (!authenticated) {

 navigate("/login");

 return null;

 }

 return <Component {...rest} />;

};

export default PrivateRoute;

This PrivateRoute component uses the authenticated state from
the useAuth hook to conditionally render a given component. If the user
is authenticated, the component will be rendered. If, however, they are not
authenticated, the user will be navigated to the login route instead.

5. Return to your App.js file and update the file with the following imports:

import { useAuth } from "./auth-context";

import PrivateRoute from "./PrivateRoute";

Here, we are importing the useAuth hook and our newly created PrivateRoute
component.

236 Creating Authenticated Experiences

6. Modify the HomePage component with the following code:

import { Router, Link } from "@reach/router";

// Predefined Nav Component Here.

Const HomePage = () => {

 const { authenticated } = useAuth();

 return (

 <div>

 <Nav />

 <h1>You are {authenticated ? "logged in" :

 "logged out"}.</h1>

 </div>

);

};

We can use the authenticated state from the useAuth hook to give the user
some indication of their authentication status.

7. Modify the AboutPage component with the following code:

const AboutPage = () => {

 const { logout } = useAuth();

 return (

 <div>

 <Nav />

 <h1>About Me</h1>

 <button onClick={logout}>Logout</button>

 </div>

);

};

This is the path we intend to make private in this demo. If a user is on this page, we
can assume they have been authenticated and render a logout button to allow them
to trigger the logout function.

Routing and authentication in React applications 237

8. Add a LoginPage component to App.js:

const LoginPage = () => {

 const { login } = useAuth();

 return (

 <div>

 <Nav />

 <h1>Login Page</h1>

 <button onClick={login}>Login</button>

 </div>

);

};

This is a basic implementation that uses the login function from useAuth to log
a user in. In your application, you would probably want to flesh this out with inputs
where users enter their email and password. You would then pass this to the login
function so that it can be used as part of the authorization request.

9. Finally, update your App function so that it includes your PrivateRoute
component:

function App() {

 return (

 <Router>

 <HomePage path="/" />

 <LoginPage path="login" />

 <PrivateRoute component={AboutPage} path="about" />

 </Router>

);

}

export default App;

10. Start the project by running npm start from the root directory. If you try to
navigate to /about, you will notice that you will be redirected to /login until you
have clicked the login button.

We now have a firm grasp on routing and private routes, so let's take the knowledge we
have gained in this section and apply it to Gatsby.

238 Creating Authenticated Experiences

Authentication using client-only routes
within Gatsby
While not common practice, we can use routers inside Gatsby pages too. Normally, Gatsby
abstracts all the routing away so that we don't have to worry about it, but authentication is
one example where we need to bring the control over routing back into our hands. We will
be creating what is known as client-only routes. To demonstrate this within our project,
we are going to create a page at /private. As its name might suggest, this path contains
a private page that we will lock behind authentication. Let's get started:

Important Note
This example will conflict with the Site-wide authentication using context
within Gatsby section's code. It's best to choose one of these two methods to
implement instead of trying to combine them.

1. Create a new folder inside src called context.
2. Create a new file called auth-context.js and add the following code:

import React, { useState, useContext } from "react";

import { navigate } from "@reach/router";

const AuthContext = React.createContext();

export const AuthProvider = ({ ...props }) => {

 {/* Code continued in next step */}

};

export const useAuth = () => useContext(AuthContext);

Here, we are setting up an authentication context in the same way we did within
the example code from the Routing and authentication in React applications section.
Note that we are still importing navigate from @reach/router instead of the
Gatsby library.

3. Add the following within AuthProvider:

 const [authenticated, setAuthenticated] =

 useState(false);

 const login = async () => {

 // Make authentication request here and only

 trigger the following if successful.

 setAuthenticated(true);

Authentication using client-only routes within Gatsby 239

 navigate("/private")

 };

 const logout = () => {

 setAuthenticated(false);

 };

 return (

 <AuthContext.Provider

 value={{

 login,

 logout,

 authenticated,

 }}

 {...props}

 />

);

We set up this auth-context.js file in the same way we did with the React
demo, except this time, we navigate to /private on a successful login.

Important Note
Within this section, you will see code that looks very similar to the React demo
from the previous section. Please note that while they are similar, they are not
the same. Don't be tempted to copy and paste them from the React example.

4. Add the following to your gatsby-browser.js and gatsby-ssr.js files:

import React from "react";

import { AuthProvider } from "./src/context/auth-

 context";

export const wrapPageElement = ({ element }) => {

 return <AuthProvider>{element}</AuthProvider>;

};

We want to ensure that the authentication context is available throughout the
application. By adding the preceding code to both gatsby-browser.js and
gatsby-ssr.js, we can be sure it is accessible everywhere.

240 Creating Authenticated Experiences

5. Create a new file within src/components called PrivateRoute.js.
6. Add the following code to the newly created PrivateRoute.js:

import React from "react";

import { navigate } from "gatsby";

import { useAuth } from "../context/auth-context";

const PrivateRoute = ({

 component: Component,

 location,

 basepath,

 ...rest

}) => {

 const { authenticated } = useAuth();

 if (!authenticated) {

 navigate(basepath + "/login");

 return null;

 }

 return <Component {...rest} />;

};

export default PrivateRoute;

This is a Gatsby-friendly implementation of the PrivateRoute component. Note
that we are switching out the @reach/router part of navigate for Gatsby's
implementation. This is because Gatsby's implementation will handle the redirect
in a way that is suitable for a Gatsby project. Without this switch, you will be
presented with a white screen when navigate is called. You will also notice that
we are passing in a prop called basepath. As our router will not sit at the top of
the application, the PrivateRoute component must know the router's base path
location to ensure it navigates the respective users to it.

7. Create a new folder inside src/pages called private.
8. Inside this new folder, create a new file called [...].js. Using Gatsby's file-

system-route API, this format creates a wildcard route that matches anything
whose path begins with /private. This step is vitally important as Gatsby does
not know the router we will set up, so it needs to understand that if it sees a path
beginning with /private, such as /private/login, it needs to be handled by
this file instead of erroring out with a 404 status code.

Authentication using client-only routes within Gatsby 241

9. Add the following code to src/pages/private/[...].js:

import React from "react";

import { Router } from "@reach/router";

import Layout from "../components/layout/Layout";

import PrivateRoute from "../components/PrivateRoute";

import { useAuth } from "../context/auth-context";

const LoginPage = () => {

 const { login } = useAuth();

 return (

 <Layout>

 <h1>Login Page</h1>

 <button onClick={login}>Login</button>

 </Layout>

);

};

const AuthenticatedPage = () => {

 const { logout } = useAuth();

 return (

 <Layout>

 <h1>Authenticated Page</h1>

 <button onClick={logout}>Logout</button>

 </Layout>

);

};

Here, we are defining the two possible paths that will be visible. Either you will be
shown AuthenticatedPage or, if you are not logged in, you will see the login
page. These components both make use of the useAuth hook to retrieve the
functions they require.

10. Append the following code to src/pages/private/[...].js:

function PageWithRouter() {

 const basepath = "/private";

 return (

 <Router basepath={basepath}>

242 Creating Authenticated Experiences

 <LoginPage path="login" />

 <PrivateRoute

 basepath={basepath}

 component={AuthenticatedPage}

 path="/"

 />

 </Router>

);

}

export default PageWithRouter;

Within this step, we have defined our basepath – this must match the Gatsby
page's path (which, in this instance, is /private). We pass this value as a prop
both to Router and PrivateRoute. This example is different from the React
example in that the base path is the path that requires authentication.

11. Start the project by running npm start from the root directory. If you try to
navigate to /private, you will notice that you are redirected to /private/
login, and clicking the login button will redirect you to /private.

With that, we've learned how to add routing within a particular section of our Gatsby site.
Now, let's turn our attention to an implementation that you can use when your whole site
requires authentication.

Site-wide authentication using context
within Gatsby
There may be situations where you want the entirety of your Gatsby site to be behind
authentication. For example, you may have made a documentation site only meant for
employees of your company. Let's look at how we can use context to turn every page
into a private route:

1. First, let's create a login component in the components folder. Call this file
Login.js and add the following code to it:

import React from "react";

const Login = ({login}) => {

 return <button onClick={login}>Login</button>;

Site-wide authentication using context within Gatsby 243

};

export default Login;

You'll notice that, unlike the last Login component we created, we are not
retrieving the login function from the context. The reason for this will become
clear when we create the context.

2. Create a folder called context in src.
3. Create a file in context called auth-context.js and add the following code:

import React, { useState, useContext } from "react";

import Login from "../components/Login";

const AuthContext = React.createContext();

export const AuthProvider = ({ ...props }) => {

{/* Code continued in next step */}

};

export const useAuth = () => useContext(AuthContext);

export default AuthContext;

Here, we are setting up the authentication context in the same way we did in the
Routing and authentication in React applications section but with one addition. We
are now also importing our Login component into our authentication context.

4. Add the following code within AuthProvider:

 const [authenticated, setAuthenticated] =

 useState(false);

 const login = async () => {

 // Make authentication request here and only

 trigger the following if successful.

 setAuthenticated(true);

 };

 const logout = () => {

 setAuthenticated(false);

 };

244 Creating Authenticated Experiences

 if (!authenticated) {

 return <Login login={login} />;

 }

 return (

 <AuthContext.Provider

 value={{

 login,

 logout,

 authenticated,

 }}

 {...props}

 />

);

If the user is not authenticated, the provider will return the Login component,
being sure to pass in the login function as a prop. This does not cause a route
change, which can be a great benefit. When a user navigates to a page, their
requested path is not lost by navigating away to a login page and, as such, when the
user has successfully logged in, they will jump right back into the application in
the place they intended to be. As a developer, this can stop you from having to pass
redirect URLs around in the browser, which can be a hassle.

If, for some reason, you want to keep a few pages public, you can check for the path
in this conditional statement and allow some paths to be accessible, even without
being authenticated. Note that even on these pages, the Login component will be
loaded in, despite the fact it is not being used and will add unnecessary page weight.

5. Add the following to your gatsby-browser.js and gatsby-ssr.js files:

import React from "react";

import { AuthProvider } from "./src/context/auth-

 context";

export const wrapPageElement = ({ element }) => {

 return <AuthProvider>{element}</AuthProvider>;

};

Summary 245

We want to ensure that the authentication context is available throughout the
application. By adding this file to both gatsby-browser.js and gatsby-ssr.
js, we can ensure it is accessible everywhere.

6. Start the project by running npm start from the root directory and navigate to
any page on the site. You should find that you are prompted to log in before being
able to view the page.

Now that we have looked at two different ways to achieve authenticated experiences
within Gatsby applications, let's summarize what we have learned.

Summary
In this chapter, we explored routing and authenticated experiences. We reminded
ourselves of how routing works in React and created private routes for use with @reach/
router. Then, we ported this knowledge into Gatsby and created a private page that was
only accessible by logging in. Finally, we investigated how we can use context to wrap our
whole application in authentication for situations that require it.

In the next chapter, we will learn about another advanced concept – how to use sockets to
create experiences that make use of real-time data.

12
Using Real-Time

Data
Have you ever ordered food and watched as it made its way closer to your destination
without you having to refresh the page? You may have also seen this with package
deliveries or ride-hailing apps. All of these make use of real-time data. This is a form of
data that is presented as soon as it is acquired. So, in these examples, as soon as the service
you are using has the food, package, or car's location, it will relay that information to you.
The most common way that convenience sites and messaging applications enable real-
time data is by using web sockets.

In this chapter, we will cover the following topics:

• Introduction to web sockets

• Socket.io in action

• Live site visitor count

• Gaining further insights with rooms

Technical requirements
To complete this chapter, you will need to have completed Chapter 11, Creating
Authenticated Experiences.

248 Using Real-Time Data

The code for this chapter can be found at https://github.com/
PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/
tree/main/Chapter12.

Introduction to web sockets
A web socket is a bi-directional communication channel between a client and a server.
Unlike REST requests, the socket connection's channel remains open for the client and
the server to push messages to and from each other whenever they need, instead of closing
when a response is received. This kind of communication is commonly associated with
low latency, which means it can handle high volumes of data with minimal delay.

So, how does it work? To start, the client sends an HTTP request to a server, asking it to
open a connection. If the server agrees, it will send back a response with a status of 101,
indicating that it will be switching protocols. At this point, the handshake is complete and
a TCP/IP connection is left open, allowing messages to pass back and forth between the
two devices. This connection will remain open until one of the devices disconnects or
loses its connection.

One of the most popular socket implementations in the JavaScript world is socket.io,
which consists of two parts – a Node.js server and a JavaScript client library. We'll look at
socket.io in action by creating a minimal demo in the next section.

Quick Tip
Note that there are also several other implementations of the socket.io server
and client libraries available in languages other than JavaScript. This may be
helpful if you want to combine a socket server (which we will create in this
chapter) with more than just your Gatsby site.

Socket.io in action
In this demo, we will make a server that accepts a socket connection. When it receives a
message from the client, it will log it to the console. Let's start by creating the server and
then move on to the client:

1. Create a folder called server in your root directory.
2. Open a terminal in the server folder and run the following command:

npm init -y

https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter12
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter12
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-4/tree/main/Chapter12

Socket.io in action 249

This will set up an empty npm package in the folder.
3. In the same terminal, run the following command:

npm i express socket.io

Here, we are installing the express dependency for creating our server and the
socket.io library.

4. Create an app.js file in the server folder and add the following code:

const PORT = 3000

const express = require("express");

const server = express()

 .listen(PORT, () => console.log('Listening on

 ${PORT}'));

This creates a minimal Express server that listens for requests on port 3000. As we
have already learned, this socket connection is established with an HTTP request,
and it requires an HTTP server to do this.

5. Verify that the server is working by opening a terminal within the server folder
and running the following command:

node app.js

If the server starts, you will see Listening on 3000 printed to the console.
6. Update the app.js file with the following code:

const PORT = 3000

const express = require("express");

const server = express()

 .listen(PORT, () => console.log('Listening on

 ${PORT}'));

const io = require("socket.io")(server);

io.on("connection", (socket) => {

 socket.on("message", (msg) => {

 console.log("message: " + msg);

 });

});

250 Using Real-Time Data

Here, we are passing the server instance into socket.io for the client-server
handshake. We then tell our socket server how to handle events from clients.
In this instance, if a client socket sends an event of the message type, we log it to
the console.

7. Before moving on, we must add a CORS policy for our HTTP and socket
configuration. Without this, your browser will not be able to access the server as the
cross-origin policy will be blocked. To do this, open a terminal within the server
folder and run the following command:

npm i cors

This installs the cors library, which acts as middleware within our Express
application to enable CORS.

8. Now, update your app.js file with the following code:

const PORT = 3000;

const express = require("express");

var cors = require("cors");

var allowlist = ["http://localhost:8000"];

var corsOptions = {

 origin: function (origin, callback) {

 var originIsAllowlisted =

 allowlist.indexOf(origin) !== -1;

 callback(null, originIsAllowlisted);

 },

};

const server = express()

 .use(cors(corsOptions))

 .listen(PORT, () => console.log('Listening on

 ${PORT}'));

const io = require("socket.io")(server, {

 cors: {

 origin: corsOptions.origin,

 },

});

io.on("connection", (socket) => {

 socket.on("message", (msg) => {

Socket.io in action 251

 console.log("message: " + msg);

 });

});

This CORS setup uses an allowlist of origins that are allowed to access the
server. The middleware checks the origin of any request to ensure that the origin
is present in this list and is therefore allowed. If a request comes from an origin
that is not on the list, the cross-origin request will be blocked. In this case, we have
added localhost:8000, which is the default development port for Gatsby. If this
changes or you are hosting the application, this list will need to be updated.

9. Now that we have set up our socket server, let's interact with it from our Gatsby site
by using Gatsby as the socket client. Navigate back to the root of your Gatsby site.
Open a terminal here and run the following command:

npm i socket.io-client

As the name of the library might suggest, this installs the socket.io client library that
we will be using to communicate with our web socket server.

10. Create a new file within your pages folder called socket.js and add the
following code to it:

import React from "react";

import openSocket from "socket.io-client";

import Layout from "../components/layout/Layout";

export default function SocketDemo() {

 const [socket, setSocket] = React.useState(null);

 const [value, setValue] = React.useState("");

 React.useEffect(() => {

 const newSocket =

 openSocket("http://localhost:3000");

 setSocket(newSocket);

 return () => newSocket.close();

 }, [setSocket]);

252 Using Real-Time Data

The standard setup for this page is the same as any other Gatsby page. We
have additionally imported our new socket.io-client package. Inside a
useEffect, we create the socket connection by using the default export from
socket.io-client with the server URL string as an argument. In our case,
the server port was defined as 3000, so we added http://localhost:3000.
This one line of code abstracts all the logic around the client-server handshake, so
all you need to focus on is firing the messages you want to send. We then set the
socket in our useState so that we can use it within the page. It's best to create the
socket connection in useEffect as we only want this connection to be established
once. If the page re-renders, we do not want the socket to reconnect
as this would be perceived as a new connection by the server. The return
statement in our useEffect ensures that the socket connection is closed when
the component dismounts.

11. Continue editing socket.js and add the following code:

 const sendMessage = () => {

 socket && socket.emit("message", value);

 };

 return (

 <Layout>

 <div className="max-w-5xl mx-auto py-16 lg:py-24

 flex flex-col prose space-y-2 ">

 <h1>Message The Server</h1>

 <label htmlFor="message">Your Message:</label>

 <input

 id="message"

 className="border-blue-700 border-2"

 onChange={(e) => setValue(e.target.value)}

 />

 <button onClick={sendMessage} className="btn">

 Send message

 </button>

 </div>

 </Layout>

);

}

Socket.io in action 253

We've set up a simple form here. The input updates the value of the state, which
we can then send to the server by clicking the Send message button. Upon clicking
this button, the sendMessage function is called, which uses socket.emit
(if there is a socket available in the state), which emits a message from this client
to the server. The first argument is the message type, while the second argument
is the body of the message. In this case, we are just sending a string, but you could
also send an object with multiple key-value pairs. If you were to send an object,
there is no need to JSON.stringify it as the library handles all that for you.

12. Start your Gatsby development server and ensure your socket server is also
running. Navigate to localhost:8000/socket, type in a message, and click
Send message. With any luck, the contents of your message should now be logged
within your server's terminal. Congratulations – you've just sent your first message
via sockets!

Now, let's expand this demo so that the client can receive communication back from the
server. As an example, let's make the server return one of three random greetings when it
receives a message:

1. First, we need to modify how our server handles messages. Modify the socket
server's connection configuration with the following code:

io.on("connection", (socket) => {

 socket.on("message", (msg) => {

 console.log("message: " + msg);

 socket.emit(

 "message",

 ["Hi there!", "Hello!",

 "Howdy"][Math.floor(Math.random() * 3)]

);

 });

});

Now, as well as logging the messages that are received from a client, we emit
something back to that same client. In this case, we are choosing a random greeting
to send back.

254 Using Real-Time Data

2. With our Gatsby page, we need to tell it to expect and handle messages of a certain
type. This works like event listeners, so this should feel familiar to you:

export default function SocketDemo() {

 const [socket, setSocket] = React.useState(null);

 const [value, setValue] = React.useState("");

 const [serverMessages, setServerMessages] =

 React.useState([]);

 React.useEffect(() => {

 const newSocket =

 openSocket("http://localhost:3000");

 setSocket(newSocket);

 return () => newSocket.close();

 }, [setSocket]);

 React.useEffect(() => {

 if (socket) {

 socket.on("message", (message) => {

 setServerMessages((currentMessages) =>

 [...currentMessages, message]);

 });

 }

 }, [socket, setServerMessages]);

 const sendMessage = () => {

 socket && socket.emit("message", value);

 };

// render in next step

Here, we created a new useState hook to store the server messages. As we may
receive more than one, we set this to an empty array that we can push elements
to. Then, we defined a second useEffect. If the socket connection has been
established, this function listens for messages from the server of the message type.
If it receives one, it adds the body of the message to the server message list.

Socket.io in action 255

3. Update the render of the page component:

 return (

 <Layout>

 <div className="max-w-5xl mx-auto py-16

 lg:py-24 flex flex-col prose space-y-2 ">

 <h1>Message The Server</h1>

 <label htmlFor="message">Your Message:</label>

 <input

 id="message"

 className="border-blue-700 border-2"

 onChange={(e) => setValue(e.target.value)}

 />

 <button onClick={sendMessage} className="btn">

 Send message

 </button>

 <label>Server Messages:</label>

 {serverMessages.map((message, index) => (

 <li key={index}>{message}

))}

 </div>

 </Layout>

);

}

Within the render, we can map through the server messages and render them to the
screen in a bulleted list.

256 Using Real-Time Data

4. Start your Gatsby development server and ensure your socket server is also
running. Navigate to localhost:8000/socket, type in a message, and
click Send message:

Figure 12.1 – Socket demonstration page
Your message should be logged within the server's terminal, but additionally, the
server should have also sent a message back. It should be visible underneath the
Send Message button. The speed at which this happens can feel crazy. And when
the connection is good, it can almost feel like the server message is being triggered
by your button press.

We now have a clear understanding of how socket connections work and we have
managed to send messages between the client and the server. Now, let's apply what we
have learned and build something useful for our Gatsby site with this technology – a live
visitor count in our site footer.

Live site visitor count 257

Live site visitor count
The setup for this will need to be a little different from the previous example since,
in the Socket.io in action section, the socket connection was isolated to a single page.
However, our site footer is not on a single page but every page! An implementation of
this that would work well is wrapping the site in some context. By doing this, we would
be able to access the count in other parts of the application if we needed to. Let's try this
approach together:

1. Modify the socket server's connection configuration with the following code:

io.on("connection", (socket) => {

 io.emit("count", io.engine.clientsCount);

 socket.on("disconnect", function () {

 io.emit("count", io.engine.clientsCount);

 });

});

We've changed this configuration quite a bit, so let's break it down. When a new
socket connects to the server, we use io.emit. This function sends a message to
all the connected clients instead of a single socket. The socket type is count and
the body contains io.engine.clientsCount, which is a count of the number
of connected clients. If you use this whenever a new client connects, everyone will
know that the count has changed. Then, we have to make sure that the count for
clients is updated on disconnect too. For that, we trigger the same io.emit when
the server has seen a client drop off.

2. Create a new folder inside src called context if you don't already have one.
3. Create a new file called stats-context.js and add the following code:

import React, { useState, useContext } from "react";

import openSocket from "socket.io-client";

const socket = openSocket("http://localhost:3000");

const StatsContext = React.createContext();

export const StatsProvider = ({ ...props }) => {

 {/* Code continued in next step */}

};

export const useStats = () =>

258 Using Real-Time Data

 useContext(StatsContext);

export default StatsContext;

Here, we are setting up the boilerplate of our stat's context. We create a useStats
hook to access the context values that we will be defining in the next step.

4. Add the following code within StatsProvider:

const [socket, setSocket] = React.useState(null);

 const [liveVisitorCount, setLiveVisitorCount] =

 useState(0);

 React.useEffect(() => {

 const newSocket =

 openSocket("http://localhost:3000");

 setSocket(newSocket);

 return () => newSocket.close();

 }, [setSocket]);

 React.useEffect(() => {

 if (socket) {

 socket.on("count", (count) => {

 setLiveVisitorCount(count);

 });

 }

 }, [socket, setLiveVisitorCount]);

 return (

 <StatsContext.Provider

 value={{

 liveVisitorCount,

 connected: socket && socket.connected,

 }}

 {...props}

 />

);

Within the page level demo, we set up the socket using a useEffect. We do
the same thing here to ensure it only happens one time. Then, we create a second
useEffect that, when connected to the server, will listen for messages of the
count type. If one is received, it updates the count in state, which will then be
available throughout the application via the useStats hook.

Live site visitor count 259

5. Update your gatsby-browser.js and gatbsy-ssr.js files with the
following code:

import React from "react";

import { StatsProvider } from "./src/context/stats-

 context";

export const wrapPageElement = ({ element }) => {

 return <StatsProvider>{element}</StatsProvider>;

};

We want to ensure that the count's context is available throughout the application.
By adding this file to both the gatsby-browser.js and gatsby-ssr.js files,
we can be sure it is accessible everywhere.

6. Create a VisitorCountBadge.js file in src/components/layout and add
the following code to it:

import React from "react";

import { useStats } from "../../context/stats-

 context";

const VisitorCountBadge = () => {

 const { liveVisitorCount, connected } = useStats();

 return (

 <p className={'${connected? "bg-blue-200" :"bg-

 red-200"} px-2 py-1 inline-block rounded'}>

 Visitors: {liveVisitorCount}

 </p>

);

};

export default VisitorCountBadge;

Here, we are making use of the useStats hook to retrieve liveVistorCount
and the connected status. The color of the badge is dependent on the connection's
status – if it is blue, then we are connected to the server; if not, it will be red. Then,
we render liveVistorCount within this badge so that it is visible to the user.

260 Using Real-Time Data

Important Note
Here, we are using colors to signify the application state as an example only.
Color alone should never be used to signify application state in production
as it can leave your application inaccessible to colorblind users. It is better to
combine color with another visual indicator, such as text, or at the very least
an aria-label.

7. Update your Footer component file with the following code:

import React from "react";

import VisitorCountBadge from "./VisitorCountBadge";

const Footer = () => (

 <footer className="px-2 border-t w-full max-w-5xl

 mx-auto py-4">

 <div className="flex justify-between w-full">

 <VisitorCountBadge />

 <div className="flex items-center">

 <p>Your name here.</p>

 </div>

 </div>

 </footer>

);

export default Footer;

Where you want to use the badge and how you style it is entirely up to you. But by
adding it to the Footer component, it will be visible on every page that utilizes our
Layout component.

8. Start your Gatsby development server and ensure your socket server is also running.
Navigate to localhost:8000 and you should see the visitor count. If you
duplicate your browser tab, the visitor count will rise, while if you close a tab, the
count will fall. Finally, if you close the terminal with the socket server running, you
should see the badge change to red, indicating it has lost connection to the server.

We have now implemented a working current visitor count. Let's build on this feature by
using rooms.

Gaining further insights with rooms 261

Gaining further insights with rooms
There is one element to socket.io events that we have not talked about yet but could be of
great benefit in our application – rooms. Rooms are channels that a socket can join and
leave. The server can emit messages to a room to broadcast an event to a subset of the
clients connected to the server.

To demonstrate the concept of rooms, we will be breaking down our visitor count into
more granular stats. Not only will we display to the user the count of total users on the
site, but we will also provide them with the details of how many people are on their
current page of the site. Let's get started:

1. Update your server/app.js file's socket code so that it includes a new event:

// defined at top of file

const pathToRoom = (path) => 'Page-${path}';

// defined in socket configuration

socket.on("page-update", ({ currentPage, previousPage

 }) => {

 if (previousPage) {

 const previousRoom = pathToRoom(previousPage);

 socket.leave(previousRoom);

 io.to(previousRoom).emit(

 "page-count",

 io.sockets.adapter.rooms.get(previousRoom)?.size

);

 }

 const roomToJoin = pathToRoom(currentPage);

 socket.join(roomToJoin);

 io.to(roomToJoin).emit(

 "page-count",

 io.sockets.adapter.rooms.get(roomToJoin).size

);

 });

We now expect clients to send us a new event of the page-update type. The body
contains a currentPage and an optional previousPage for the client. We will
use these two pieces of information to make them join the room for their current
page and remove them from the room for their previous page.

262 Using Real-Time Data

We have defined a function called pathToRoom that we use to take the path where
the user is and turn it into a string that we can use as a room identifier. If the client
has sent a previous page, we know that this is not the first page on the site they have
visited, so they need to be removed from the previousPage room. To do this, we
can call the socket.leave function with the room identifier as the argument.
We can then use io.to(previousRoom).emit to emit the new reduced count
to users still on that page. After that, we can use currentPage to determine the
new room that the user should join and emit the new count to users in that room
(including the new user).

Quick Tip
socket.leave and socket.join are server-side only. Sockets cannot
leave and join rooms on the client site.

2. Update the disconnect event with the following code:

socket.on("disconnect", function () {

 io.emit("count", io.engine.clientsCount);

 for(room of io.sockets.adapter.rooms){

 io.to(room[0]).emit(

 "page-count",

 io.sockets.adapter.rooms.get(room[0])?.size

);

 };

 });

When a socket disconnects, we loop through all open rooms and emit the new
number of clients to each of them.

3. Update your gatsby-browser.js and gatbsy-ssr.js files with the
following code:

import React from "react";

import { StatsProvider } from "./src/context/stats-

 context";

export const wrapPageElement = ({ element, props }) => {

 return <StatsProvider

 location={props.location}>{element}</StatsProvider>;

};

Gaining further insights with rooms 263

Here, we are passing in the location object that Gatsby provides via props to
StatsProvider. The location object contains a pathname variable, which
will tell us what path the user is currently at.

4. Navigate to your stats-context.js file and update the StatsProvider
arguments:

export const StatsProvider = ({ location, ...props })

 => {

// Code continued in next step

}

We will need to use the location that we are now passing in, so let's de-structure it
with props.

5. Add two new React hooks to the top of StatsProvider:

 const [pageVisitorCount, setPageVisitorCount] =

 useState(0);

 const previousLocation = useRef(null);

We will need to track the page visitor count in the state. We can do this by using a
useState hook. We will also need to keep a record of the previous location, which
we can do using a useRef React hook.

6. Update useEffect that's related to incoming socket events within
StatsProvider:

 React.useEffect(() => {

 if (socket) {

 socket.on("count", (count) => {

 setLiveVisitorCount(count);

 });

 socket.on("page-count", (count) => {

 setPageVisitorCount(count);

 });

 }

 }, [socket, setLiveVisitorCount,

 setPageVisitorCount]);

When the socket receives a page-count event, we update the
pageVisitorCount value in the state using the setPageVisitorCount
function.

264 Using Real-Time Data

7. Create a new useEffect inside StatsProvider:

React.useEffect(() => {

 if (socket && previousLocation.current !==

 location.pathname) {

 socket.emit("page-update", {

 currentPage: location.pathname,

 previousPage: previousLocation.current,

 });

 previousLocation.current = location.pathname;

 }

 }, [location, socket]);

Here is one of the most crucial parts of the code. We add the location to the
useEffect dependency array so that this code runs whenever the user navigates
between a page. Within useEffect, we check that the socket is available in the
state and that the location update does not match the current location. If both
conditions are met, we emit a page-update to the server, telling it where we have
moved to so that it can keep track of the locations.

8. Update the render of the StatsProvider.js file:

 return (

 <StatsContext.Provider

 value={{

 liveVisitorCount,

 pageVisitorCount,

 connected: socket && socket.connected,

 }}

 {...props}

 />

);

By including pageVisitorCount in the provider's value prop, we can access it
via the useStats hook in our components.

Summary 265

9. Update components/VistorCountBadge.js with the following code:

const VisitorCountBadge = () => {

 const { liveVisitorCount, pageVisitorCount,

 connected } = useStats();

 return (

 <p className={'${connected? "bg-blue-200" :"bg-

 red-200"} px-2 py-1 inline-block rounded'}>

 {pageVisitorCount} of {liveVisitorCount} visitors

 on this page

 </p>

);

};

Here, we are retrieving pageVisitorCount from the useStats hook and
rendering it to the screen so that the user can see the value within the badge.

10. Start your Gatsby development server and ensure your socket server is also
running. Navigate to localhost:8000; you should see the visitor and page
count. If you duplicate your browser tab, both numbers should rise, and if you
navigate one of these tabs to another page on the site, you should see both tabs'
page visitor counts update.

Now that we have implemented an entire feature using sockets, let's summarize what we
have learned.

Summary
In this chapter, we learned all about web sockets and how we can use them to utilize real-
time data within our Gatsby applications. Then, we implemented a working visitor count
that shows the number of people on the current page, as well as the site as a whole. Visitor
count statistics is one of a whole host of possible applications for web sockets within a
personal site. Perhaps you could take what you have learned here and try and implement
article reactions, polls, or even a chat application?

In the next chapter, we will learn about our final advanced concept – localization.
We will learn how we can make our Gatsby site support multiple languages for an
international audience.

13
Internationalization

and Localization
This chapter is all about opening your site up to an international audience. We will talk
about patterns you can use to make translating your site as it scales simple! Creating your
site in English makes it accessible to the 1.3 billion people in the world who speak the
language. However, if we provide users with localization options, we can translate the site
into any language, therefore making our site accessible to all.

In this chapter, we will cover the following topics:

• Understanding localization and internationalization

• Implementing routes for internationalization

• Page translations for programmatic pages

• Providing locale translations for single-instance pages

Technical requirements
To navigate this chapter, you will need to have completed Chapter 12, Using Real-Time Data.

The code present in this chapter can be found at https://github.com/
PacktPublishing/Elevating-React-Web-Development-with-Gatsby-3/
tree/main/Chapter13.

https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-3/tree/main/Chapter13
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-3/tree/main/Chapter13
https://github.com/PacktPublishing/Elevating-React-Web-Development-with-Gatsby-3/tree/main/Chapter13

268 Internationalization and Localization

Understanding localization and
internationalization
While the end goal of this chapter is to set up localization, we can make things easier by
implementing internationalization first. The terms localization and internationalization
are often confused, so let's define these terms properly:

• Internationalization: The process of ensuring that your website is created
in such a way that it can support different languages, locales, and cultures.
Internationalization is all about being proactive in your site's design and
development to ensure that you don't have to completely redesign it later when you
introduce it to a new market. This could include allowing text to be displayed from
right to left as well as left to right, for example.

• Localization: Normally conducted after internationalization, localization is the
process of adapting your site to meet a new locale requirement. This could be
adding a language or cultural requirement.

By spending the time upfront to get the internationalization right within the project,
you can save yourself considerable time when you need to add a new locale later
down the line. Let's now look at how we can modify our project with an
internationalization strategy.

Implementing routes for internationalization
A common approach for large sites to accommodate localization is to prefix all paths
with a language code. Let's take our about page, for example – the English (and default)
language version of the page is located at /about but the French version of the page
might be located at /fr/about and the German version of it at /de/about.

Let's implement this pattern now for our default language of English and add French as a
secondary language. We can make this easy with the help of gatsby-theme-i18n:

1. Install the new dependencies:

npm install gatsby-theme-i18n gatsby-plugin-react-

helmet react-helmet

Here we are installing the gatsby-theme-i18n package and its dependencies.
This package automatically creates the route prefixes for us. It also adds language
and alternate tags to the head of document. This helps Google identify that two
pages contain the same content in different languages.

Implementing routes for internationalization 269

Important Note
This theme uses react-helmet, which may clash with react-helmet-
async, a package we have used in other chapters. Be sure to check that the
head of your document is set up as intended when using both, and if you
experience issues stick to a single package.

2. Include the gatsby-theme-i18n plugin in your gatsby-config.js file:

{

 resolve: 'gatsby-theme-i18n',

 options: {

 defaultLang: 'en',

 configPath:

 require.resolve('./i18n/config.json'),

 },

 },

As part of this configuration, we add a couple of options. defaultLang refers
to the default language we will use on the site – in this case, this is English, so we
use the language code en. configPath is the configuration path to where we will
set up i18n. This is most commonly in its own folder, which we will create in the
next step.

3. Create a folder in your root directory called i18n.
4. Create a new file inside the i18n folder called config.json, and add

the following:

[

 {

 "code": "en",

 "hrefLang": "en-US",

 "name": "English",

 "localName": "English",

 "langDir": "ltr",

 "dateFormat": "MM/DD/YYYY"

 },

 {

 "code": "fr",

 "hrefLang": "fr-FR",

270 Internationalization and Localization

 "name": "French",

 "localName": "Francais",

 "langDir": "ltr",

 "dateFormat": "DD/MM/YYYY"

 }

]

Here it is important that we define a configuration for every locale we intend to
support. Each configuration object must contain the following:

a. code: This refers to the language's code you will use to access this locale. Though
you can set this to whatever you want for each language, it is probably best to
keep them easily identifiable, for example, fr for French and en for English.

b. hrefLang: This is the value that is used for the hrefLang tag attribute in the
head of the HTML. It is used to tell Google which language you are using on a
specific page.

c. name: The name of the language in the native language of the developer.

d. localName: This is how the name of the language is spelled by its
native speakers.

e. langDir: This is the direction that text is read in the given locale. This could be
ltr for left-to-right text or rtl for right-to-left text.

f. dateFormat: This is the date format used within the locale.

Quick Tip
When adding locales later on, this is the only file that needs to be updated to
create the required routes for the locale.

5. Finally replace instances of the Gatsby Link component on your site with the
LocalizedLink component from gatbsy-theme-i18n:

import { LocalizedLink } from "gatsby-theme-i18n";

import React from "react";

const Footer = () => {

 return (

 <footer className="px-2 border-t w-full max-w-5xl

 mx-auto py-4">

 <div className="flex justify-between w-full">

 <div className="flex flex-col justify-center

Implementing routes for internationalization 271

 items-end space-y-1">

 <p>Your name here.</p>

 <LocalizedLink to="/" language="en"

 className="text-blue-400 text-xs">

 English

 </LocalizedLink>

 <LocalizedLink to="/" language="fr"

 className="text-blue-400 text-xs">

 Francais

 </LocalizedLink>

 </div>

 </div>

 </footer>

);

};

export default Footer;

LocalizedLink is a component that extends the Link component with a
language prop. By specifying a language's code (from the i18n/config.
json file), we route the user to the corresponding page in that specific language. If
no language is specified, it will keep the user in their currently active locale. In the
preceding example code, we have modified the footer to include links to the index
page for both English and French visitors. This will allow site visitors to switch
between the locales on any page.

6. Let's verify the previous steps. First, start your Gatsby development server's
GraphQL layer (normally located at http://localhost:8000/_graphql)
and run the following query:

query MyQuery {

 allSitePage {

 nodes {

 path

 }

 }

}

272 Internationalization and Localization

In the returned data object, you should be able to see nodes with paths for
all locales:

{

 "data": {

 "allSitePage": {

 "nodes": [

 {

 "path": "/"

 },

 {

 "path": "/fr/ "

 },

 {

 "path": "/blog"

 },

 {

 "path": "/fr/blog"

 },

 // Continued list

]

 }

 },

 "extensions": {}

}

7. Finally, navigate to your Gatsby development site. Your footer should now contain
links to the two languages:

Figure 13.1 – Site footer with language toggle
Clicking French should route you to /fr/ and clicking English should route you
back to /.

Now that we have set up our pages for different locales, let's ensure that we have
language-appropriate content to display on these pages. Let's start by looking at pages
generated programmatically.

Page translations for programmatic pages 273

Page translations for programmatic pages
To be able to offer pages such as articles and blog posts translated, we will need to provide
the content in both languages. Let's look at how we structure our project so that posts in
different languages are available to the site visitor.

gatsby-theme-i18n comes with built-in support for handling MDX content (a format
you can read more about in Chapter 3, Sourcing and Querying Data (from Anywhere!)). If
you are using Markdown files, this will also work for you. Just ensure that the gatsby-
plugin-mdx plugin is set up to treat .md files as .mdx by adding the extension to the
plugin's configuration options:

 {

 resolve: 'gatsby-plugin-mdx',

 options: {

 extensions: ['.mdx', '.md'],

 },

 }

I will be using the posts that are local files for this demo, but the same steps will work for
CMS content once it is ingested to Gatsby's data layer:

1. First, we need to restructure our blog posts folder in a way that makes them easy to
identify when we have duplicates in different languages. Instead of filenames, use
folder names to group them. Inside /blog-posts, create a folder for each post. A
good name format for these folders would be YYYY-mm-DD-Post-Title. This
makes the folder sortable by date but also tells you what the post is about without
you having to open the folder.

2. Inside this folder, place the corresponding default language blog post and rename it
to index.mdx. Be sure that the MDX file contains a slug in the frontmatter. An
example might look like this:

type: Blog

title: My First Hackathon Experience

desc: This post is all about my learnings from my

 first hackathon experience in London.

date: 2020-06-20

hero: ../../../assets/images/cover-1.jpeg

tags: [hackathon, webdev, ux]

slug: /my-first-post/

274 Internationalization and Localization

My First Hackathon Experience was great!

Rest of content...

3. Repeat Step 2 for every blog post you wish to add.
4. Create a second file in this folder called index.fr.mdx. This file's name has the

locale code added between the filename and extension. In this example, we are
using France (French), so the locale code is fr. Replicate the index.mdx file's
frontmatter in French by translating all the text values. The slug, type, hero,
date, and tags must remain the same for both files. The resultant file for the
example started in Step 2 looks as follows:

type: Blog

title: Ma première expérience de hackathon

desc: Ce post est tout sur mes apprentissages de ma

 première expérience de hackathon à Londres.

date: 2020-06-20

hero: ../../../assets/images/cover-1.jpeg

tags: [hackathon, webdev, ux]

slug: /my-first-post/

Ma première expérience de hackathon était super !

Rest of content...

5. Repeat Step 4 for any additional languages and locales you wish to support.
6. Update your gatsby-node.js files' blog post page creation configuration with

the following:

exports.createPages = async ({ actions, graphql,

 reporter }) => {

 const { createPage } = actions;

 const BlogPostTemplate =

 path.resolve('./src/templates/blog-page.js');

 const BlogPostQuery = await graphql('

 {

 allMdx(filter: { frontmatter: { type: { eq:

 "Blog" } } }) {

Page translations for programmatic pages 275

 nodes {

 frontmatter {

 slug

 }

 }

 }

 }

 ');

 const BlogPosts = BlogPostQuery.data.allMdx.nodes;

 BlogPosts.forEach(({ frontmatter: { slug } }) => {

 createPage({

 path: slug,

 component: BlogPostTemplate,

 context: {

 slug: slug,

 },

 });

 });

};

Here, we query for the slug from the frontmatter of the MDX files. We then use
this to create the page with the createPage function, ensuring that we also
provide the slug to the component as context. atsby-theme-i18n listens
for page creation and will additionally create the same page for each locale without
any additional configuration! It will also add two fields to the MDX nodes in our
GraphQL data layer – locale and isDefault, which tell you what locale the
MDX is and whether the MDX is the default locale, respectively.

7. We now need to tell Gatsby to use the correct MDX file on the correct locale path.
Without this step, your site will find the MDX file with the first matching slug
when creating blog posts. This may not match the locale as we have multiple files
with the same slug and could lead to us being lost in translation. First, update the
blog page template (located at src/templates/blog-page.js) query with
the following:

export const pageQuery = graphql'

 query($locale: String!, $slug: String!) {

 blogpost: mdx(

 frontmatter: { slug: { eq: $slug } }

276 Internationalization and Localization

 fields: { locale: { eq: $locale } }

) {

 frontmatter {

 date

 title

 desc

 tags

 hero {

 childImageSharp {

 gatsbyImageData(width: 600, height: 400,

 placeholder: BLURRED)

 }

 }

 }

 body

 }

 }

';

Here, we access the locale field provided via the gatsby-theme-i18n plugin and
use it to filter the MDX blog posts to those that match the specified locale. This will
ensure that we render the blog post in the correct language on any blog page.

8. Perform the exact same step in the src/templates/blog-preview.js file:

export const pageQuery = graphql'

 query($locale: String!,$skip: Int!, $limit: Int!) {

 blogposts: allMdx(

 limit: $limit

 skip: $skip

 filter: {frontmatter: {type: {eq: "Blog"}},

 fields: {locale: { eq: $locale }}}

 sort: { fields: frontmatter___date, order: DESC }

) {

 nodes {

 frontmatter {

 date

 title

Page translations for programmatic pages 277

 tags

 desc

 slug

 hero {

 childImageSharp {

 gatsbyImageData(width: 240, height: 160,

 placeholder: BLURRED)

 }

 }

 }

 }

 }

 }

';

9. Let's verify the previous steps. First, start your Gatsby development server's
GraphQL layer (normally located at http://localhost:8000/_graphql)
and run the following query:

query MyQuery {

 blogposts: allMdx(filter: {frontmatter: {type: {eq:

 "Blog"}}}) {

 nodes {

 fields {

 locale

 isDefault

 }

 frontmatter {

 slug

 }

 }

 }

}

278 Internationalization and Localization

Here, we are querying for all MDX of type Blog and retrieving the locale, whether
that locale is the default, and the slug. The result should look like this:

{

 "data": {

 "blogposts": {

 "nodes": [

 {

 "fields": {

 "locale": "en",

 "isDefault": true

 },

 "frontmatter": {

 "slug": "/my-first-post/"

 }

 },

 {

 "fields": {

 "locale": "fr",

 "isDefault": false

 },

 "frontmatter": {

 "slug": "/my-first-post/"

 }

 }

]

 }

 }

}

A result should be present for each locale for any given slug. Assuming this is the
case, you can navigate to /blog on your Gatsby development site. You should see
your blog content in your default language:

Page translations for programmatic pages 279

Figure 13.2 – Blog page in English
Navigating to /fr/blog, you should see your content in French:

Figure 13.3 – Blog page in French

Quick Tip
If you are clicking on a blog post and always receiving the default locale
version, the most likely cause is that you are using Link instead of
LocalizedLink when navigating to the page. Review Step 5 of the
Implementing routes for internationalization section of this chapter.

We can provide translations for our programmatically generated pages with ease using
this strategy. Let's now learn how we can set up translations for single-instance pages.

280 Internationalization and Localization

Providing locale translations for
single-instance pages
For static pages, we will need a different approach to providing translations. For any
strings that require translation we can no longer have the values in line with our JSX.
A very common approach is to use react-i18next, which has a great hook called
useTranslation that allows you to switch strings out depending on the locale.
Let's use this now to translate content on our index page for site visitors:

1. Open a terminal at your root directory and add these new dependencies:

npm install gatsby-theme-i18n-react-i18next react-

i18next i18next

Here, we are installing the gatsby-theme-i18n-react-i18next package
and its dependencies. This package is a Gatsby theme plugin that provides
locale support to our application by wrapping our site in react-i18next's
context provider. Underneath the hood, this package wraps the site by using
wrapPageElement in the gatsby-browser.js in the same way we did in
Chapter 12, Using Real-Time Data.

2. Include the gatsby-theme-i18n-react-i18next plugin in your
gatsby-config.js file:

 {

 resolve: 'gatsby-theme-i18n-react-i18next',

 options: {

 locales: './i18n/locales',

 i18nextOptions: {

 ns: ["globals"],

 },

 },

 },

As part of this configuration, we add a couple of options. locales refer to location
where we will store our translations. i18nextOptions accepts any configuration
options that i18next accepts (the full list is available at https://www.
i18next.com/overview/configuration-options). Here, we are passing
in the ns option, which is an array of namespaces to use. For this example, we will
just be creating a single namespace called globals, but you may want to add more
as your site grows.

https://www.i18next.com/overview/configuration-options
https://www.i18next.com/overview/configuration-options

Providing locale translations for single-instance pages 281

Important Note
The gatsby-theme-i18n-react-18next is an add-on package
that will only work in tandem with gatsby-theme-i18n. Ensure that
this package is installed by following the steps in the Implementing routes for
internationalization section.

3. Create a new folder in i18n called locales.
4. Within locales, create a new folder for each locale your site supports, for

example, en and fr.
5. For each namespace, create a JSON file in the locale folder. In our case, we need

to create a single file named globals.json for our globals namespace in
each folder. This file should contain any translations you require, retrievable with
a key that is consistent across all files. Your English file (which should be located at
i18n/locales/en/globals.json) should contain the following:

{

 "header": "Site Header",

 "yourName": "Your Name",

 "aboutMe": "About Me",

 "location": "London, UK",

 "bio": "A short biography about me"

 }

Your French file (which should be located at i18n/locales/fr/globals.
json) should contain the following:

{

 "header": "En-tête du site",

 "yourName": "Votre nom",

 "aboutMe": "À propos de moi",

 "location": "France, Paris",

 "bio": "Une courte biographie sur moi."

 }

282 Internationalization and Localization

6. To use the translation within a Gatsby page component, we can use the
useTranslation hook from react-i18next. Let's look at the about me link
on the index page (located at src/pages/index.js) as an example:

import React from "react";

import { useTranslation } from "react-i18next";

import { LocalizedLink } from "gatsby-theme-i18n";

import Layout from "../components/layout/Layout";

import SEO from "../components/layout/SEO";

export default function SamplePage() {

 const { t } = useTranslation("globals");

 return (

 <Layout>

 <SEO title="Home" description="The landing page

 of my website" />

 <div className="max-w-5xl mx-auto py-16 lg:py-

 24">

 <LocalizedLink to="/about" className="btn">

 {t("aboutMe")}

 </LocalizedLink>

 </div>

 </Layout>

);

}

We import useTranslation from reacti18next. Then within the page
component, we invoke the hook specifying the namespace we wish to use. In our
case, this is the globals namespace we have created. The t function can be used
to retrieve the translation from the namespace by passing in a valid key from the
globals.json objects created in Step 5. t("aboutMe") will return About me
when on the en locale and À propos de moi when on the fr locale.

7. We can also use the exact same process in any other components, such as our
header, for example:

import React from "react";

import { useTranslation } from "react-i18next";

import { LocalizedLink } from "gatsby-theme-i18n"

Summary 283

const Header = () => {

 const { t } = useTranslation("globals");

 return(

 <header className="px-2 border-b w-full max-w-7xl

 mx-auto py-4 flex items-center justify-between">

 <LocalizedLink to="/">

 <div className="flex items-center space-x-2

 hover:text-blue-600">

 <p className="font-bold text-

 2xl">{t("header")}</p>

 </div>

 </LocalizedLink>

 </header>

)

 };

export default Header;

You can even use this inside React components that are used within MDX content
if you need to!

8. Verify your implementation by navigating to the index page on your Gatsby
development site. Toggle the locale by modifying the path or using the Footer
component, and you should see any copy that is using useTranslation update.

We've only scratched the surface of the features that i18next offers. Visit their
documentation at https://www.i18next.com/ to learn more about the powerful
capabilities they offer. With this strategy and the preceding sections, you should now feel
confident translating any aspect of your site. Let's now summarize what we've learned.

Summary
In this final chapter, we learned about making our site accessible to a global audience.
We first identified the differences between internationalization and localization. We then
used the gatsby-theme-i18n plugin to create routes for our locales. We created
programmatic blog posts in different languages and ensured the correct translation
was visible when visiting a locale. Finally, we also translated our static pages using the
gatsby-theme-i18n-react-i18next plugin. Between these two plugins, you now
have the power to translate any of your site's content.

https://www.i18next.com/

Hi!

I am Samuel Larsen-Disney, author of Elevating React Web Development with Gatsby.
I really hope you enjoyed reading this book and found it useful for increasing your
productivity and efficiency in Gatsby.

It would really help me (and other potential readers!) if you could leave a review on
Amazon sharing your thoughts on Elevating React Web Development with Gatsby here.

Go to the link below or scan the QR code to leave your review:

https://packt.link/r/1800209096

Your review will help me to understand what's worked well in this book, and what could
be improved upon for future editions, so it really is appreciated.

Best Wishes,

Samuel Larsen-Disney

https://packt.link/r/1800209096

Index

Symbols
404 page

creating 21

A
about page

creating 20
application monitoring

about 177
with Sentry.io analytics 178

Application Programming
Interface (API) 7

atomic design 47, 48
atoms 47

B
blog pages

fields 86
blog post template 88-94
blog preview template 94-100
build process

common build errors 182, 183

build types
about 182
hybrid build 182
static build 182

C
Cascading Style Sheets (CSS) 4
client-only routes

used, for authentication within
Gatsby 238-242

Command-Line Interface (CLI) 15
common build errors 183
configuration options

reference link 280
constructed GraphQL queries

using 56
Content Management Systems (CMSes)

about 4
images, sourcing from 119

content signals 131, 132
continuous integration/continuous

deployment (CI/CD) 157
core-plugin 59

286 Index

core web vitals
auditing 157
method 158
metrics 157

CORS 250
cross-site scripting attack 63
CSS in JSS 31
CSS styling

implementation, verifying 36
implementing 33

D
data

in Gatsby 50
sourcing, from Headless CMS 68
sourcing, from local files 56

data storage
local 50
remote 50

DesignCode.io
reference link 10

develop command
built-in options 23
working 21, 22

development scripts 16, 17
documentation sites 9
Document Object Model (DOM) 28, 155
dynamic multi-session previews 76

E
elasticlunr

about 106
URL 106
using, for site search integration 105-110

Emotion
URL 31

F
Facebook Sharing Debugger

URL 140
Fathom Analytics

about 167
custom events, tracking 176, 177
using, in page analytics 174-176

field data
about 158
retrieving, with web-vitals

package 161, 163
file-system-route API 240
filtering

in GraphQL 53
Firebase

about 197
static build, deploying to 197-201

framework 8, 18

G
Gatsby

about 5, 6
authentication, with client-

only routes 238-242
community 6
competitors 13
content, sourcing 7
data 50
images 112
site, styling 28
site-wide authentication, with

context 242-245

Index 287

tool, building 7
versus React 8
web performance, supercharging 8

gatsby-browser.js
using 35, 36

Gatsby Cloud
about 184
hybrid build, deploying to 184-188
incremental builds 184
intelligent caching 184

gatsby develop 22
GatsbyImage component

using 115-118
Gatsby Link component 24, 25
Gatsby-node.js 56
Gatsby page component

testing 155, 156
gatsby-plugin-google-gtag

reference link 172
gatsby-plugin-image defaults

overriding 118, 119
Gatsby plugin

about 208
reference link, for options 179

Gatsby project
404 page, creating 21
about page, creating 20
Command-Line Interface (CLI) 15
directory 15, 16
folders 18
framework files 18
index page, creating 19, 20
multiple pages, connecting 23
Node.js version 14.15.0+ 14
package setup 15, 16
pages, creating 19
setting up 14

Gatsby site
serving, with reduced user

access 201-204
Gatsby Source Plugins 208
Gatsby Theme Plugins 208
Gatsby use cases

about 8
design agencies 12, 13
documentation sites 9
online courses 10
photo-heavy sites 12, 13
SaaS products 11

Git hook
about 156
adding, for tests 156

Google Analytics
about 167
adding, to page analytics 168-172
custom events, tracking 172, 173
outbound links, tracking 173

GraphCMS
about 68
content 72
content, populating 71
draft status 72
field creation 70
images, sourcing from 120-122
model creation 68
public API settings 73-75
URL 68, 120
working 68-75

GraphiQL
URL 54
using 54, 55

GraphQL
about 51
data, filtering 53
for Gatsby 51-53

288 Index

H
Headless CMS

about 68
data, sourcing from 68

HTTP Archive
URL 112

hybrid build
about 182
deploying, to Gatsby Cloud 184-188
platforms for deployment 184

HyperText Markup Language (HTML) 4

I
i18next

URL 283
images

about 112
in Gatsby 112
on web 112
sourcing, from CMS 119
sourcing, from GraphCMS 120-122
sourcing, from Prismic 122-125

incremental builds 184
index page

creating 19, 20
Integrated Development

Environment (IDE) 16
intelligent caching 184
internationalization 268

routes, implementing for 268-272

J
JavaScript (JS) 4
JavaScript Syntax Extension (JSX) 4
Jest 148
JSS

URL 31

L
lab test data

about 158
retrieving, with lighthouse tool 158-160

Layout component
creating 46
using 46

lazy loading 112
lighthouse tool

used, for retrieving lab test data 158-160
live site visitor count

implementing 257-260
locale translations

providing, for single-instance
pages 280-283

local files
data, sourcing from 56

localization 268
local plugin

debugging 209
development 208, 209

M
markdown

about 59
short biography, creating 60-63

Index 289

MDX
about 64
enhanced biography, creating 64-67

meta previews
exploring 135

molecules 47
multiple pages

connecting 23

N
navigate function 25
Netlify

about 189
static build, deploying to 189-192

Node.js
URL 14

Node.js Version Manager (NVM) 15
NPM 6

O
online courses

utilizing, Gatsby for static content 10
on-page signals 131
Open Graph metadata 136
Open Graph tags

Twitter tags, merging with 139, 140
validating 140

organic traffic 130
organisms 47

P
page analytics

about 166
Fathom Analytics, using 174-176

Google Analytics, adding to 168-172
implementing 167

pages
about 47
creating, with Gatsby 19

page templates 56
pagination

benefits 94, 95
performance monitoring 166
plugin

pre-publish checklist 225, 226
publishing 226
reference link 225

pre-deployment checklist, Gatsby 183, 184
Prismic

about 76
collection interface 79
group field options 77
images, sourcing from 122-125
repository security 80
text field configuration 78
URL 76
working 76-81

private route 233-237
programmatic page generation

templates, using 86, 87
programmatic pages

translations 273-279
Progressive Web App (PWA) 8

R
reach router

reference link 23
React

URL 9
versus Gatsby 8

290 Index

React applications
authentication 230-232
routing 230-232

React Testing Library 148
Render

about 193
static build, deploying to 193-196

responsive image 112
REST services 51
reusable layout

creating 44
rooms 261-265
routes

implementing, for
internationalization 268-272

S
Sass

about 29
cons 30
pros 29, 30
styling, implementing 36-38

Scalable Vector Graphics (SVG) 113
search engine optimization (SEO)

about 130, 131
component, creating 132-135
on-page signals 131

search engine optimization
(SEO), on-page signals

content signals 131, 132
technical signals 131

search engines
site, hiding from 143, 144

Secure Sockets Layer (SSL) 189

Sentry.io
about 178
setting up, in Gatsby project 179
steps for implementation 178

Sentry.io analytics
using, in application monitoring 178

SEO component
testing 154, 155

simple components
testing 153

Simple Storage Service (S3) 6
single-instance pages

locale translations, providing
for 280-283

site
hiding, from search engines 143, 144
pre-deployment checklist 183, 184

site footer 45
site header 44, 45
site metadata

about 56
creating 57
ingesting, into home page 59

site search
integrating, elasticlunr used 105-110

site-wide authentication
context, using within Gatsby 242-245

Skupos
about 11
URL 11

Socket.io
working 248-256

Software as a Service (SaaS) products 11
source plugins

creating 210-217

Index 291

static build
about 182
deploying, to Firebase 197-201
deploying, to Netlify 189-192
deploying, to Render 193-196
platforms for deployment 189

StaticImage component
about 113
using 113-115

static site
about 6
generation 6

static web
history 4, 5

Styled Components
cons 32
pros 31, 32
URL 31

styled-components styling
implementing 41-43

styling, Gatsby 28
styling tool

selecting 32

T
tag page template 100-105
Tailwind

about 30
cons 31
pros 30
styling, implementing 38-41

technical signals 131

templates
about 47, 85
blog post template 88-94
blog preview template 94-100
creating 86
programmatic page, generating

with 86, 87
tag page template 100-105

theme plugins
creating 218-225

Twitter Card Validator
URL 140

Twitter metadata 137, 138
Twitter tags

validating 140
Open Graph tags, merging with 139, 140

U
unit testing

exploring 148-153
Gatsby page component,

testing 155, 156
SEO component, testing 154, 155
simple components, testing 153

V
vanilla CSS

about 28
cons 29
pros 28

version control
using 18

292 Index

W
WebP 113
website analytics

about 166
page analytics 166
performance monitoring 166
privacy 166, 167

web socket 248
web vitals

URL 157
web-vitals package

about 162
used, for retrieving field data 161-163

wrapper component
creating 33-35

X
XML sitemaps 141, 142

Y
YAML 60

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

294 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Full-Stack React Projects

Shama Hoque

ISBN: 978-1-83921-541-4

• Extend a basic MERN-based application to build a variety of applications

• Add real-time communication capabilities with Socket.IO

• Implement data visualization features for React applications using Victory

• Develop media streaming applications using MongoDB GridFS

• Improve SEO for your MERN apps by implementing server-side rendering
with data

• Implement user authentication and authorization using JSON web tokens

• Set up and use React 360 to develop user interfaces with VR capabilities

• Make your MERN stack applications reliable and scalable with industry
best practices

https://www.packtpub.com/product/full-stack-react-projects-second-edition/9781839215414

Other Books You May Enjoy 295

React Projects

Roy Derks

ISBN: 978-1-80107-063-8

• Create a wide range of applications using various modern React tools
and frameworks

• Discover how React Hooks modernize state management for React apps

• Develop web applications using styled and reusable React components

• Build test-driven React applications using Jest, React Testing Library, and Cypress

• Understand full-stack development using GraphQL, Apollo, and React

• Perform server-side rendering using React and Next.js

• Create animated games using React Native and Expo

• Design gestures and animations for a cross-platform game using React Native

https://www.packtpub.com/product/react-projects-second-edition/9781801070638

296

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

http://authors.packtpub.com
http://authors.packtpub.com

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Part 1:
Getting Started
	Chapter 1: An Overview of Gatsby.js for the Uninitiated
	Technical requirements
	A brief history of the static web
	What is Gatsby?
	Community
	Sourcing content from anywhere
	Building tooling you already know
	Supercharging web performance

	Gatsby use cases
	Documentation sites
	Online courses
	SaaS products
	Design agencies and photo-heavy sites

	Gatsby's competitors
	Setting up a project
	Node.js version 14.15.0+
	Gatsby command-line interface
	Directory and package setup
	Framework files and folders
	Creating your first few pages

	Summary

	Chapter 2: Styling Choices and Creating Reusable Layouts
	Technical requirements
	Styling in Gatsby
	Vanilla CSS
	Sass
	Tailwind (utility-first CSS framework)
	CSS in JS
	Picking a styling tool

	Styling with CSS
	Creating a wrapper component
	Using gatsby-browser.js
	Verifying our implementation

	Styling with Sass
	Styling with Tailwind.css
	Styling with styled-components
	Creating a reusable layout
	Site header
	Site footer
	Layout component
	Organization with atomic design

	Summary

	Chapter 3: Sourcing and Querying Data (from Anywhere!)
	Technical requirements
	Data in Gatsby
	Introducing GraphQL
	GraphQL for Gatsby
	Using GraphiQL
	Using constructed GraphQL queries

	Sourcing data from local files
	Site metadata
	Markdown
	MDX

	Sourcing data from a Headless CMS
	GraphCMS
	Prismic

	Summary

	Chapter 4: Creating Reusable Templates
	Technical requirements
	Creating templates and programmatic
page generation
	Blog post template
	Blog preview template
	Tag page template

	Search functionality
	Summary

	Chapter 5: Working with Images
	Technical requirements
	Images on the web
	Images in Gatsby

	The StaticImage component
	The GatsbyImage component
	Overriding the gatsby-plugin-image defaults
	Sourcing images from CMS
	Sourcing images from GraphCMS
	Sourcing images from Prismic

	Summary

	Part 2:
Going Live
	Chapter 6: Improving Your Site's Search Engine Optimization
	Technical requirements
	Introducing SEO
	On-page search engine optimization

	Creating an SEO component
	Exploring meta previews
	Open Graph metadata
	Twitter metadata
	Merging tags
	Validating tags

	Learning about XML sitemaps
	Hiding your site from search engines
	Summary

	Chapter 7: Testing and Auditing Your Site
	Technical requirements
	Exploring unit testing
	Testing simple components
	Testing the SEO component
	Testing Gatsby page components

	Adding Git hooks for tests
	Auditing core web vitals
	Using Chrome's lighthouse tool
	Using the web-vitals JavaScript package

	Summary

	Chapter 8: Web Analytics and Performance Monitoring
	Technical requirements
	Introducing website analytics
	Privacy

	Implementing page analytics
	Adding Google Analytics
	Using Fathom Analytics

	Monitoring the performance of your site
	Using Sentry.io analytics

	Summary

	Chapter 9: Deployment and Hosting
	Technical requirements
	Understanding build types
	Common build errors
	Your pre-deployment checklist
	Platforms for deploying hybrid builds
	Deploying to Gatsby Cloud Hosting

	Platforms for deploying static builds
	Deploying to Netlify
	Deploying to Render
	Deploying to Firebase

	Serving a Gatsby site with reduced user access
	Summary

	Part 3:
Advanced Concepts
	Chapter 10: Creating Gatsby Plugins
	Technical requirements
	Understanding Gatsby plugins
	Introducing local plugin development
	Debugging local plugins

	Creating source plugins
	Creating theme plugins
	Contributing to the plugin ecosystem
	Pre-publish checklist
	Publishing a plugin

	Summary

	Chapter 11: Creating Authenticated Experiences
	Technical requirements
	Routing and authentication in React applications
	Private routes

	Authentication using client-only routes
within Gatsby
	Site-wide authentication using context
within Gatsby
	Summary

	Chapter 12: Using Real-Time Data
	Technical requirements
	Introduction to web sockets
	Socket.io in action
	Live site visitor count
	Gaining further insights with rooms
	Summary

	Chapter 13: Internationalization and Localization
	Technical requirements
	Understanding localization and internationalization
	Implementing routes for internationalization
	Page translations for programmatic pages
	Providing locale translations for
single-instance pages
	Summary

	Index
	Other Books You May Enjoy

