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Introduction

The main objective of Chapter 1 is to introduce to readers the concept and 
utility of wavelet transform. It begins with a brief history of wavelets refer-
ring to earlier works completed by renowned researchers, followed by an 
explanation of the Fourier transform. The chapter also shows the advan-
tages of the wavelet transform over the Fourier transform through simple 
examples, and establishes the efficiency of the wavelet transform in signal 
processing and related areas. Chapter 2 first describes the discretization of 
ground motions using wavelet coefficients. Later, it explains the formulation 
of equations of motion for a single-degree-of-freedom system in the wavelet 
domain, and subsequently the same is used to build the formulation for 
multi-degree-of-freedom systems. The systems are assumed to behave in a 
linear fashion in this chapter. The wavelet domain formulation of equilibrium 
conditions of the systems and their solutions in terms of the expected largest 
peak responses form the basis of the technique of wavelet-based formulation 
for later chapters. Chapter 3 focuses on two distinct problems. The first is to 
explain how to characterize nonstationary ground motion using statistical 
functionals of wavelet coefficients of seismic accelerations. The second is to 
develop the formulation of a linear single-degree-of-freedom system based 
on the technique as described in Chapter 2 to obtain the pseudospectral 
acceleration response of the system. The relevant results are also presented 
at the end. Chapter 4 shows stepwise development of the formulation of 
a structure idealized as a linear multi-degree-of-freedom system in terms 
of wavelet coefficients. The formulation considers dynamic soil–structure 
interaction effects and also dynamic soil–fluid–structure interaction effects 
for specific cases. A number of interesting results are also presented at the 
end of the chapter, including a comparison between wavelet-based analysis 
and time history simulation. Chapter 5 describes the wavelet domain for-
mulation of a nonlinear single-degree-of-freedom system. In this case, the 
nonlinearity is introduced into the system using a Duffing oscillator, and the 
solution is obtained through the perturbation method. Chapter 6 introduces 
the concept of probability in the wavelet-based theoretical formulation of 
a nonlinear two-degree-of-freedom system. The nonlinearity is considered 
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through a bilinear hysteretic spring, and the probability conditions are 
introduced depending on the position of the spring with respect to its yield 
displacement condition. The analysis is supplemented with some numerical 
results. In the last chapter (Chapter 7), focus is on diverse applications to 
make readers aware of the use of wavelets in these areas. For this purpose, 
three different cases are discussed. The first one is related to the analysis of 
signals from bridge vibrations to identify axles of vehicles passing over the 
bridge. The second example explains the basic concept and formulation of 
stiffness degradation using a physical model. Thereafter, the chapter focuses 
on using a numerical technique to obtain the results of a degraded model 
(stiffness degradation through formation of cracks) and then compares the 
wavelet-based analysis of the results obtained from linear and nonlinear 
models. The third example is related to soil–structure–soil interaction. In 
this example, the wavelet analytic technique is used to obtain the results 
at the base of a structure considering dynamic soil–structure interaction. 
Subsequently, the forces, shears and moments thus obtained at the base of 
the model are applied at the supporting soil surface and a three-dimensional 
numerical model of this structure–soil interaction problem is used to obtain 
a nonstationary response within the soil domain.



1

Chapter 1

Introduction to wavelets

1.1  HISTORY OF WAVELETS

In 1807, Joseph Fourier developed a method that could represent a signal 
with a series of coefficients based on an analysis function. The math-
ematical basis of Fourier transform led to the development of wavelet 
transform in later stages. Alfred Haar, in his PhD thesis in 1910 [1], was 
the first person to mention wavelets. The superiority of Haar basis func-
tion (varying on scale/frequency) to Fourier basis functions was found 
by Paul Levy in 1930. The area of wavelets has been extensively stud-
ied and developed from the 1970s. Jean Morlet, who was working as a 
geophysical engineer in an oil company, wanted to analyse a signal that 
had a lot of information in time as well as frequency. With the intention 
of having a good frequency resolution at low-frequency components, he 
could have used narrow-band short-time Fourier transform. On the other 
hand, in order to obtain good time resolution corresponding to high-
frequency components, he could also have opted for broad-band short-
time Fourier transform. However, aiming for one meant losing the other, 
and Morlet did not want to lose any of this information. Morlet used a 
smooth Gaussian window (representing a cosine waveform) and chose 
to compress this window in time to get a higher-frequency component 
or spread it to capture a lower-frequency component. In fact, he shifted 
these functions in time to cover the whole time range of interest. Thus, his 
analysis consisted of two most important criteria – dilation (in frequency) 
and translation (in time) – which form the basis of wavelet transform. 
Morlet called his wavelets ‘wavelets of constant shape’, which later was 
changed by other researchers only to ‘wavelets’. J.O. Stromberg [2] and 
later Yves Meyer [3] constructed orthonormal wavelet basis functions. 
Alex Grossmann and Jean Morlet in 1981 [4] derived the transforma-
tion method to decompose a signal into wavelet coefficients and recon-
struct the original signal again. In 1986, Stephen Mallat and Yves Meyer 
developed multiresolution analysis using wavelets [3, 5, 6], which later in 
1998 was used by Daubechies to construct her own family of wavelets. In 
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1996, Daubechies [7] gave a nice, concise description of the development 
of wavelets starting from Morlet through Grossmann, Mallat, Meyer, 
Battle and Lemarié to Coifman, from the 1970s through mid-1990s. A 
pool of academicians, including pure mathematicians, engineers, theoret-
ical and applied physicists, geophysical specialists and many others, have 
developed various kinds of wavelets to serve specific or general purposes 
as and when needed. Thus, though initiated mainly by the mathemati-
cians, wavelets have gained immense popularity in all fields of applied 
sciences and engineering due to their unique time–frequency localization 
feature. It is due to this unique property that the wavelet transform has 
proved its ability (and reliability) in analysing nonstationary processes 
to reveal apparently hidden information that no other tool could pro-
vide. The application areas are wide, e.g. geophysics, astrophysics, image 
analysis, signal processing, telecommunication systems, speech process-
ing, denoising, image compression and so forth. The wavelets have been 
applied analysing vibration signals. Some special techniques like discrete 
and fast wavelet transforms have been developed for this purpose. Before 
going into the discussion on wavelet analytic technique any further, it 
would be wise to review the basic theory on Fourier transform at this 
point.

1.2  FOURIER TRANSFORM

Most of the single-valued functions may be written as the summation of a 
series of harmonic functions within a desired range. This series is termed 
Fourier series. The concept of such a series has already been used by Daniel 
Bernoulli in connection to solving problems of string vibrations. However, 
it was Joseph Fourier, the French mathematician, who did a systematic 
study on Fourier series for the first time. Fourier series has found many 
applications in the fields of heat conduction, acoustics, vibration analysis, 
etc. The Fourier series for a function f(x) in the interval α < x < α + 2π is 
written as follows:

	

f x
a

a nx b nx
n

n

n

n( )
2

cos( ) sin( )0

1 1
∑ ∑= + +
=

∞

=

∞

	 (1.1)

where

	

a f x dx
1

( )0

2

∫=
π

α

α+ π

	 (1.2)
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a f x nx dxn
1

( )cos( )
2

∫=
π

α

α+ π

	 (1.3)

	

b f x nx dxn
1

( )sin( )
2

∫=
π

α

α+ π

	 (1.4)

The readers should note that once the value of α is chosen as zero, the 
interval becomes 0 < x < 2π, and on choosing α = −π, the range becomes 
−π < x < π. Thus, Fourier series can actually represent any periodic (and 
also nonperiodic) function as the sum of simple sine and cosine waves. This 
idea forms the basis of Fourier transform (FT), which is an extension of the 
Fourier series. In Fourier transform, the period of the function may extend 
to infinity. The Fourier transform retrieves the frequency content of a sig-
nal. It decomposes a signal into orthogonal trigonometric basis functions. 
The Fourier transform X  ˆ ( )ω  of a continuous function x(t) is defined in the 
following equation:

	

X x t e dti tˆ ( )
1
2

( )∫ω =
π

−∞

∞

− ω 	 (1.5)

In the above equation, the term X̂( )ω
 
gives the global frequency dis-

tribution of the time-dependent original signal x(t). The original signal 
x(t) can be further reconstructed using the inverse Fourier transform as 
defined below:

	

x t X e di t( )
1
2

ˆ ( )∫=
π

ω ω
−∞

∞

ω 	 (1.6)

The following Dirichlet conditions must be satisfied for Fourier trans-
form and its reconstruction:

	 1.	The time function x(t) and its Fourier transform X̂( ) ω  must be 
single-valued and piece-wise continuous.

	 2.	The integral x t dt( )∫−∞
∞  must exist that insists that if ω → ∞, 

X̂( )ω → ∞ .
	 3.	The functions x(t) and X̂( )ω  have upper and lower bounds (however, 

this is not a necessary condition).



4  Wavelet analysis in civil engineering﻿

In case of signals obtained from experiments, they are discrete in 
nature as they are sampled at N discrete time points with a sampling 
time of, say, Δt. These signals are analysed in the frequency domain 
using the concept of discrete Fourier transform (DFT), XDFT

ˆ ( )ω , as 
defined below:

	

X f
N

x n eDFT n

n

N
i n tˆ ( )  

1
( )

0

1
2∑=

=

−
− π 	 (1.7)

It may be seen from Equation (1.7) that the DFT may be evaluated at 
discrete frequencies fn

n
N t= , where n = 0, 1, 2, …, N – 1. The inverse 

DFT, as shown below, may be used to get back the original discrete time 
signal.

	

x n
t

X f e
f

N
N t

DFT n
i f n t

n

n( )
1 ˆ ( )

0

1

2∑=
=

−

π 	 (1.8)

It may be noted here that the NΔt in the equation above denotes the time 
length of the signal. The discrete Fourier transform computation requires 
evaluation of real and imaginary parts separately; thus, 2N2 numbers of 
operations would be required. So, DFT works quite well when the signal 
length is short. If the signal becomes large with numerous discrete time 
points, DFT could become very tedious. The idea of fast Fourier transform 
(FFT) is developed, which is computationally more efficient in such cases 
because the FFT algorithm works on signals that must have as many sam-
ples as the power of 2 (i.e. 2m samples). The FFT is much faster because it 
uses the results from previous computations and thereby reduces the num-
ber of operations required. It utilizes the periodicity and symmetry of trigo-
nometric functions to compute the transform with approximately NlogN 
numbers of operations.

If the time-dependent function x(t) in Equation (1.6) has only one fre-
quency, the corresponding frequency spectrum, X̂( ) ω , is a Dirac delta 
function. So, if the frequency spectrum has only one frequency, say, 
X̂( )   ( )0ω = δ ω −ω , then on substituting X̂( )ω  in Equation (1.6) the follow-
ing expression of x(t) is obtained:

	

x t e i t( )  
1
2

0=
π

− ω 	 (1.9)
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On substituting x(t) on the right-hand side in Equation (1.5), the following 
equation is obtained, which is one of the definitions of the Dirac delta function.

	

X e dti tˆ ( )
1

2
( )( )

0
0∫ω =

π
= δ ω −ω

−∞

∞

ω−ω 	 (1.10)

The readers should also know about Parseval’s theorem and Parseval’s 
identity at this stage, as these will be used in later chapters. Parseval’s theo-
rem is written as follows:

	

x t dt X d( )   ˆ ( )2 2

∫ ∫= ω ω
−∞

∞

−∞

∞

	 (1.11)

This implies that the total energy content of a function x(t) summed over 
all time t is equal to the total energy contained in its Fourier transform 
summed across all of its frequency components.

	

f t dt
a

a b
n

n n
1

[ ( )]  
2

2 0
2

1

2 2∫ ∑π
= + +

−π

π

=

∞

	 (1.12)

The identity tells us that the sum of the squares of the Fourier coefficients of a 
certain function, say f(t), is equal to the integral of the square of the function.

1.3  RANDOM VIBRATION

The random vibration is a nondeterministic motion that has a unique 
randomness in its characteristic. The vibrations induced in trains and 
road vehicles due to track and road surface roughness, wind excitations, 
ground motions and wave loading are common examples of random 
vibrations. Typically, a random vibration may be either a stationary or a 
nonstationary process. A common characteristic feature of these vibra-
tions is that these are randomly varying in time, which obviously means 
that these are nondeterministic (and hence nonperiodic) in nature. This 
implies that in case of random vibrations, it is not be possible to predict 
the amplitude of vibration accurately at any specific instant; however, 
one may predict the probability of occurrence of acceleration or displace-
ment amplitude at an instant. Unlike a pure sinusoidal vibration, a ran-
dom vibration contains a continuous spectrum of frequencies. It may 
be worth mentioning here that the histogram of a random datum or 
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signal tends to cluster near its mean value, and the histogram itself takes 
the shape of a bell-shaped curve, which is very similar to the Gaussian 
distribution curve. The peak values in a random vibration data do not 
maintain any fixed ratios with the root mean square (RMS) values. Let 
us assume that a sample function is generated every time a test is per-
formed. This sample function may be different every time the test is 
performed. This creates an ensemble of sample functions that constitutes 
what we refer to as a random or stochastic process. For example, during 
ground shaking a sensor at a particular place records some data (pre-
cisely the movement of ground with respect to time at a given interval). 
For a different earthquake at the same site, the same sensor measures 
different data and thus records a new accelerogram. In this way, for an 
infinite number of measurements, an infinite number of data sets would 
be generated. This is called an ensemble of accelerograms. Any random 
process may be characterized by some statistical parameters like mean 
value, standard deviation, kurtosis, etc. If these properties remain con-
stant with time, then vibration may be said to be a random stationary 
process. However, if the estimates of these statistical parameters vary 
with time, the vibration then represents a nonstationary random process 
for which instantaneous value of the datum or signal can never be pre-
dicted at any points of time.

In case of a stationary stochastic (or random) process, say N(t), the power 
spectral density function (PSDF) comes in very handy. The PSDF S(ω) is 
defined as the Fourier transform of the corresponding correlation function 
R(τ) and is written as

	
∫ω =

π
τ τ

−∞

∞

ωτS R e di( )  
1

2
( ) 	 (1.13)

in which

	

∫τ =
− τ

τ + τ

−τ

R
T

N N t dt
T

( )  
1

( ) ( )
0

	 (1.14)

As S( ) ω  and R( ) τ  are even functions, their correlation function may be 
rewritten as

	

R S d( )   ( )cos( )∫τ = ω ωτ ω
−∞

∞

	 (1.15)
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Putting τ = 0 in Equation (1.15), one may write the following:

	

R E N t S d(0) [ ( )]  ( )2 ∫= ω ω
−∞

∞

The above equation readily tells us that the total mean square of the ran-
dom stationary process, N(t), is obtained by finding the total area under the 
power spectral density curve.

If a body is subjected to an excitation force that is a random process, 
its response must also be a random process. Let us concentrate on a single 
degree of freedom system in which a certain mass m is connected to a 
spring (with stiffness coefficient k) and a dashpot (with coefficient, c) and 
the system is excited by an external time-varying force f(t), which is an 
ensemble of several force-time histories. The system is shown in Figure 1.1, 
and the corresponding equation of motion is shown in Equation (1.16):

	

mx t cx t kx t f t( ) ( ) ( ) ( ) + + = 	 (1.16)

In the above equation, the dots represent differentiation with respect to 
time, and the terms m and x(t) denote the mass and the displacement 
response of the system, respectively. Now, as the input excitation f(t) has 
been assumed to be a random process containing uncertainties, we should 
obtain the response x(t) also as a random process. Let us assume that this 
input excitation f(t) to the system represents an earthquake base excitation. 
For our case, we assume this to be the same as one of the ground motions 
recorded during the Loma Prieta earthquake (1989) at the Dumbarton 
Bridge site, shown in Figure 1.2. It may be noted that this excitation has a 
mean value of 0.0539 mm/s2, and the corresponding histogram is shown 
in Figure 1.3.

k

m

c

f(t)

x(t)

Figure 1.1 � SDOF system subjected to external force.
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1.4  WAVELET ANALYSIS

We have read in previous sections about Fourier transform and some impor-
tant characteristics of random vibrations. The frequency spectrum gives 
in many cases thorough information about the sources of the signals that 
cannot be obtained from the time signal, e.g. the vibration level caused by 
rotating parts of a gearbox, the frequency content of vibration induced due 
to passage of high-speed trains underground, etc. Thus, a frequency analy-
sis can be a valuable tool in locating the sources of vibrations as well as 
the level and frequency of vibrations. The Fourier transform, as discussed 
earlier, may work with periodic and nonperiodic functions, but these func-
tions have to be stationary. The Fourier transform does not work with 
nonstationary functions or signals. However, it has become increasingly 
common in practice to analyse a nonstationary random signal or obtain 
responses of a structure when it is subjected to a nonstationary random 
excitation. The main purpose is to know the frequency content of a func-
tion at a certain time. The wavelet analytic tool has emerged as a powerful 
tool mainly due to its time–frequency localization property. Before going 
into the discussion on wavelets, it would be a good idea to understand the 
limitations of Fourier transform in analysis of signals that are nonstation-
ary in nature.

Let us assume a stationary signal as shown in Figure 1.4. The signal has 
three frequency components, viz. 5, 10 and 25 Hz. Thus, this signal has 
at any instant of time the presence of all three frequencies. On performing 
Fourier transform of this signal, we may identify the existing frequencies 
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Figure 1.4 � Stationary signal consisting of frequencies 5, 10 and 25 Hz.
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as shown in Figure 1.5. Thus, Fourier transform is proved to be efficient in 
revealing the frequency content of a signal.

Now, let us assume a nonstationary signal as shown in Figure 1.6. This 
signal shows the variation of the frequency of its amplitude in three distinct 
time zones. From 0 to 0.4 s it has a frequency of 25 Hz, from 0.4 to 0.8 s the 
frequency is 5 Hz, and for the remaining duration the frequency is 10 Hz. 
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These frequencies can be easily identified on taking the Fourier transform 
of the signal. The corresponding Fourier transform of the signal is shown 
in Figure 1.7. Let us also assume another nonstationary signal as shown in 
Figure 1.8. On performing Fourier transform of this signal, we can clearly 
see in Figure 1.9 the dominant peaks again at frequencies 5, 10 and 25 Hz. 
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10 Hz.
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Thus, we see that in all three signals, as shown in Figures 1.5, 1.7 and 1.9, 
the frequencies present are the same – 5, 10 and 25 Hz – but in different 
order. In the first case, the signal is stationary because the frequency con-
tent is the same at all instants of time. In the other two cases, though the 
frequency content is still the same, the occurrence of frequencies in the time 
domain is different. However, Fourier transformation of these nonstation-
ary signals could not determine the order in which the frequencies appear 
in the time domain. This is a serious limitation of the Fourier transform in 
analysing stochastic nonstationary signals because in many physical and 
engineering problems we actually need to determine the presence of a fre-
quency at a particular time instant. The Fourier transform clearly cannot 
handle this situation.

Thus, Fourier transform is not capable of extracting the information that 
we would like to know – time and frequency information – at the same 
time. Instead, what it does is generate the spectral density of the signal. It 
views the signal as a whole because it sums up all information over time; 
hence, the time information gets lost once a signal is Fourier transformed. 
Again, on taking inverse Fourier transform, one would integrate over 
the frequency range, and thus the frequency information is lost. So, the 
researchers tried to think in a more positive way and came up with an idea 
of short-time Fourier transform (STFT). This tool enabled the researchers 
to obtain the frequency content of a signal within a specified time interval. 
This could be achieved by breaking up the signal into several pieces and 
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taking the Fourier transform of each piece. For this, a small window func-
tion, say V(t), was necessary, which would help get the finite time variance 
and the finite frequency variance, respectively, as follows:

	
tV t( ) ( )2 ∈ 	 (1.17)

	

dV t
dt

( )
( )2 ∈ 	 (1.18)

In both Equations (1.17) and (1.18), V t( ) ( )2 ∈ . So, the STFT of a func-
tion x(t) with respect to the window V(t) evaluated at translation τ0 and 
modulation Ω0 may be written as an inner or dot product as follows:

	

STFT( ( ), ( ))    ( ) ( )0
Ω0∫= − τ

−∞

∞

−x t V t x t V t e dti t 	 (1.19)

which may further be rewritten as

	

STFT( ( ). ( ))   
1

2
ˆ( ) ˆ ( )0

( Ω )0 0∫=
π

−
−∞

∞

− τx t V t x V e dj 	 (1.20)

The window may be any suitable function like a Gaussian function, 
raised cosine function, triangular window, etc. as shown in Figures 1.10 
to 1.12. Thus, a properly translated window is actually used to multiply 
the function x(t) to extract the information around t = τ0, and then the 
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Fourier transform is taken; thus, it looks at the frequency content in a cer-
tain region. Equation (1.20) may actually be seen as Parseval’s theorem, 
which says that the right-hand side of this equation is the dot product 
of the Fourier transforms of x(t) and V t e i t( )0

Ω0− τ − . However, even this 
STFT concept was not good enough to capture time–frequency informa-
tion together. One can easily notice the main shortcoming of the STFT 
from Figures  1.10 to 1.12, which is the limit in time and frequency. It 
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means that one may indeed choose a suitable window, but cannot vary 
the size of the window in the time–frequency plane. So, when one multi-
plies the signal by a chosen window function (with finite length), it covers 
only a part of the signal, unlike in FT, where it is done over the whole 
time range. Thus, the frequency resolution becomes poorer. In fact, in 
STFT, narrow windows produce good time resolution but poor frequency 
resolution, and it is the opposite for wider windows. This is actually the 
reiteration of Heisenberg’s uncertainty principle, which states that it is 
impossible to measure the position and momentum of a particle simul-
taneously with infinite precision. In the present context, this may inter-
preted as a fact that it is not possible to obtain good resolutions in both 
time and frequency simultaneously with a fixed window size. To overcome 
this limitation, one must use windows of different sizes, thus leading to 
multiresolution analysis.

At this point, the concept of wavelet transform comes to the rescue. The 
wavelet transform overcomes the resolution problem faced by STFT. The 
continuous wavelet transform (CWT) is the dot (inner) product of the sig-
nal x(t) and a wavelet Ψ( t

s
−τ ), where the wavelet (Ψ) is translated by the 

time parameter τ in the numerator and dilated by the frequency parameter 
s in the denominator. The term τ represents positive real numbers, and the 
term s represents both positive and negative real numbers. The continuous 
wavelet transform of a function x(t) with respect to the mother wavelet Ψ 
evaluated at translation τ and scale s is defined as

	

∫τ =
− τ

−∞

∞

s x t
s

t
s

dtxCWT ( , )    ( )
1

	 (1.21)

The mother wavelet, −τt
s( ) , in the above equation is a prototype from 

which the other window functions may be generated. All the wavelets 
are the dilated (scaling term is s, which is inverse of frequency) or com-
pressed and shifted (translated in the time domain by an amount τ) ver-
sions of the mother wavelet. The most important characteristic feature 
of wavelet transform over STFT is that the width of the multiplying 
window is changed as the transform is computed for each and every 
spectral component. The window function in a wavelet transform is an 
oscillatory function and is compactly supported having finite length. 
The scaling term s    in the denominator of Equation (1.21) is used 
for the purpose of energy normalization so that a wavelet-transformed 
signal will have the same energy at all scales. Let us have a closer look 
at this equation and try to understand how a wavelet transform actually 
works. Let us also assume that we have a signal x(t) known to us. First, 
a specific scale is chosen and the wavelet is placed at the beginning of the 
signal when the time count starts (t = 0). The signal is then multiplied 
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by the wavelet function and subsequently integrated over all times and 
divided by the factor s  to get a single value called the wavelet coef-
ficient for a specific scale and at a particular time point. The operation 
is repeated with the same scale, but now the wavelet function is placed 
at a different time instant, which is basically a shift from the previous 
position by a fixed amount, τ. This gives rise to the second wavelet coef-
ficient. This goes on until one reaches the end of the signal. Thus, in 
doing so, one would ultimately obtain a row of wavelet coefficients for 
all time points but for a particular scale. Now, the scale is increased, 
and the whole process is repeated so as to obtain the second row of 
wavelet coefficients at all time points. In the end, when all desired values 
of scales are finished, one ends up with a complete array of wavelet coef-
ficients for the signal x(t). The product of the wavelet function with the 
signal at a particular location where the signal contains a spectral com-
ponent generates larger amplitude; else the amplitude would be smaller 
or even zero.

Any function, say y(t), may be expressed as a set of linear combinations 
of basis functions ϕk(t) with corresponding coefficients νk as follows:

	

( )   ( ) ∑= ν φy t t
j

k k 	 (1.22)

Now, let us assume that y(t) and z(t) are two square integrable functions in 
the interval [a, b] whose inner product is defined as

	

y t z t y t z t dt
a

b

( ) ( )   ( ).  ( )≡ 	 (1.23)

The CWT as shown in Equation (1.21) is the inner product of the signal 
x(t) with the basis function τ ts ( )( , )  where the τ ts ( )( , )  is written as

	

=
− τ

τ t
s

t
s

s ( )  
1

( , ) 	 (1.24)

The CWT depicts that the wavelet analysis is a measure of similar fre-
quency content between the signal and its multiplier basis function. The 
wavelet coefficients generated from the calculation show the proximity of 
the signal to the wavelet basis function at the current scale. Thus, if there 
is a high correlation at a particular scale and time, the wavelet transform 
would generate a high value. When the wavelet is compressed, it repre-
sents high frequency.
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There are several families of wavelets developed by researchers in the 
past and present. Out of all these wavelets, only three are discussed here: 
Mexican hat wavelet, Morlet wavelet and Daubechies wavelet (db2, as an 
example). The first two types may be used to perform continuous wavelet 
transform, while the third one is suitable for discrete wavelet transforms. 
The Mexican hat wavelet, Ψmexh, is the second derivative of the Gaussian 
probability density function as defined below:

	

= −
−

ce xmexh

x

(1 )2 2

2

	 (1.25)

where c   2
3 0.25=
( )π

. The Morlet wavelet, Ψmor, has the following expression:

	

=
−

e xmor

x

cos52

2

	 (1.26)

The Mexican hat wavelet and Morlet wavelet are shown in Figures 1.13 
and 1.14, respectively.

When performing continuous wavelet transform of the nonstationary 
signals shown in Figure  1.6 (with frequencies in the order of 25, 5 and 
10 Hz) and Figure 1.8 (with frequencies in the order of 10, 25 and 5 Hz) 
using Daubechies wavelet db2, one may obtain the two graphs (three-
dimensional plots) shown in Figures 1.15 and 1.16, which show the varia-
tion of wavelet coefficients with time.

1.0

0.8

0.6

0.4

0.2

0.0

–0.2

–0.4

–0.6

–15

A
m

pl
itu

de

–10 –5 0 5 10 15

T (s)

Figure 1.13 � Mexican hat wavelet.



18  Wavelet analysis in civil engineering﻿

The two plots of wavelet coefficients of signals shown in Figures 1.15 
and 1.16 clearly show the occurrence of frequencies at corresponding time 
regions. So, one can easily identify which frequencies are showing up at 
what frequencies. This is the most important feature of wavelet-based 
analysis. This unique time–frequency localization property has made the 
wavelets unique and most widely used for various purposes in the fields of 
signal processing, speech recognition, compression-decompression, image 
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Figure 1.14 � Morlet wavelet.
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processing, etc. In the next chapter we shall see how wavelets may be used 
to characterize ground motions and how the response of a single-degree-
of-freedom system could be obtained performing the analysis in the wavelet 
domain.

1.5  A BRIEF REVIEW OF WAVELET PROPERTIES

In this section we are going to discuss some important properties of wavelet 
transform that will be used later in this book. The wavelet transform uses 
irregular shaped signals as basis functions that help in capturing discon-
tinuities in the signal and abrupt changes. If a function f(t) belongs to a 
space of all finite energy functions satisfying the following condition, the 
function can be decomposed by wavelet coefficients using wavelet transfor-
mation and later may be reconstructed from these coefficients using inverse 
wavelet transformation.

	

f t dt( )
2

∫ < ∞
−∞

∞

	 (1.27)

The choice of a wavelet function may be linked to the characteristics 
and properties of the signal. The discrete wavelet scheme is used for wave-
let decomposition of a signal and its reconstruction. During this process, 
a signal is decomposed in high-scale (low-frequency) components called 
trends and low-scale (high-frequency) components called details. This 
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Figure 1.16 � Wavelet coefficients obtained from the signal as shown in Figure 1.8.
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decomposition is based on low- and high-pass filters, depending on the 
wavelet basis function used. At each stage (scale) of filtering, twice the 
amount of original data is generated, which is reduced by a factor of 2 
(downsampling). The inverse process of upsampling and filtering is used 
during the reconstruction process using the low- and high-pass recon-
struction filters. Besides wavelet function, there also exists a scaling func-
tion that is associated with the wavelet analysis of a signal. This scaling 
function is related to the trends of the wavelet decomposition. The scaling 
function is obtained by upsampling and convolving the low-pass with 
the high-pass reconstruction filter in an iterative manner. Daubechies [8] 
has given the following dilation equations for scaling t( ( ))  and wavelet 
functions ( t( ) ).

	
t c t kk( ) (2 )∑= − 	 (1.28)

	 ∑= − −−t c t kk
k( ) ( 1) (2 )1

	 (1.29)

The uniqueness is defined as ck 2∑ = . The details about wavelet-based 
decomposition and reconstruction of signals may be found in the work by 
Grossman and Morlet [4].

1.5.1  Continuous and discrete wavelet transform

The short-time Fourier transform (STFT) of a function f(t) may be repre-
sented by the following equation, which is another form of Equation (1.19):

	

F t f t e g t t dti t( , ) ( ) ( )0 0∫ω = −
−∞

∞

− ω 	 (1.30)

Using this STFT definition, the wavelet function may be defined in the 
following manner. Let it be assumed that g(t) is a window function that 
depends on time and frequency, and hence is defined as follows:

	
g t g t( ) ( )

1
2= ω ω 	 (1.31)

On substituting Equation (1.31) in Equation (1.30), one may get

	

F t f t e g t t dti t( , ) ( ) ( ( ))0

1
2 0

 ∫ω = ω ω −
−∞

∞

− ω 	 (1.32)



Introduction to wavelets  21

On dividing Equation (1.32) by e i t0− ω  and later replacing ω with a
1  (thus, 

scale becomes inverse of frequency), one may obtain the following:

	

F t
e

f t e g
t t

a
dtit a

i t t a( , ) 1
( )0

/ 1
2

( )/ 0
0

0


∫
ω

=
α

−
−

−∞

∞

− − 	 (1.33)

From the last equation, the wavelet function may be identified as 
=t e g tit( ) ( ) , which represents the mother wavelet. On using translating and 

dilating parameters (b and a, respectively) in the mother wavelet, a series of 
other wavelets (of the same family) may be obtained. The term b precisely 
denotes the time position around which the wavelet basis function is cen-
trally placed, and the term a represents the decomposition level (scale) of 
the wavelet transform. The Fourier transform of the mother wavelet basis 
function is given by

	
ω = ωωt e

aa b
ib( , )

1
ˆ
( )ˆ , 0 	 (1.34)

With these definitions, Equation (1.33) takes the following form, which is 
the definition of the continuous wavelet transform [4]:

	
∫ω =

−

−∞

∞

t
a

f t
t t

a
dta b( , )

1
( )ˆ , 0 1/2

0 	 (1.35)

For the wavelet transform to contain complete information of x tg( ) , the 
normalization constant has to be of finite value (Cψ  < ∞), which obviously 
means that t dta b( )  0,∫ ψ =−∞

∞ . This, in turn, emphasizes that the wavelet 
function has finite energy and hence must vanish. This is called the admis-
sibility condition of wavelet transform.

The discrete wavelet transform helps in analysing discrete signals or 
sampling continuous signals. The scales and time locations of the wavelet 
functions in case of discrete wavelet transform cannot take arbitrary values 
because the discretization rule obeyed by the specific wavelet scheme speci-
fies the scales and time positions. The wavelet functions at various scales 
have variable size (but constant shape). The wavelet family in such a case 
is defined as

	
= −t a a t bj k

j j( ) ( ( )), 0
/2

0
	 (1.36)
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The dyadic wavelet scheme is another useful discretization scheme. In 
this case, the scale parameter is sampled on a dyadic grid. The correspond-
ing discrete wavelet transform is defined as follows:

	
∫= −
−∞

∞

a b f t t k dta b j i
j j( , ) 2 ( )(2 )ˆ ,
/2 	 (1.37)

In the above equation for discrete wavelet transform, aj
j2=  and 

b ki
j2= . The integral in Equation (1.37) is performed in discrete format 

using the pyramid algorithm or fast wavelet algorithm [5, 6]. Usually, 
discrete wavelet transform (DWT) provides an efficient representation 
of a stochastic function compared to the representation by continuous 
wavelet transform (CWT) because DWT uses fewer scales and time 
positions to decompose a signal. The CWT helps in identification of 
singularities in the signals that might be ignored by a discrete grid. The 
computation of integrals for CWT and DWT is, however, not discussed 
here.

1.5.2  Vanishing moments

Another important property of the wavelet transform is the number of van-
ishing moments that represent the regularity of the wavelet functions and 
ability of a wavelet transform to capture localized information. A wavelet 
Ψ(t) has M vanishing moments if the following condition is satisfied:

	

∫ = = −
−∞

∞

t t dt m Mm ( ) 0; 0,1,2, , 1 	 (1.38)

The number of vanishing moments is directly related to the regularity 
of the wavelet. A more regular wavelet has a greater number of vanishing 
moments. The regularity of a function is expressed by the order of dif-
ferentiability. For most of the wavelet functions, such as the Daubechies 
family of wavelets, the number of vanishing moments and the degree of dif-
ferentiability are known. A wavelet of zero mean has at least one vanishing 
moment. A less regular wavelet function is suited more for the analysis of 
nonstationary data, whereas a more regular or smoother wavelet function 
is suitable for the analysis of stationary data. The localization property 
is another important feature of wavelets that helps capture the localized 
effects in the time domain as well as the frequency domain. Localization 
and regularity are inversely related to each other. Thus, depending on the 
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specific characters of a signal to be analysed, preference between regularity 
and localization has to be made.

1.5.3  Uncertainty principle

The resolution in the time–frequency plane is limited by the uncertainty 
principle. The uncertainty principle states that contraction in the time 
domain dilates the function in the frequency domain. This means any 
effort to improve time localization will come at the cost of poor frequency 
resolution. This is as per the Heisenberg uncertainty principle, which is 
expressed as

	
t p

1
2

σ σ ≥ 	 (1.39)

This signifies that a reduction in the value of the standard deviation in 
time (thereby improving time resolution) must increase the value of the 
standard deviation in frequency (thus reducing frequency resolution). Thus, 
the user has to decide the priority of one over the other and select the wave-
let functions accordingly. The Shannon wavelet provides a good frequency 
resolution and is defined by

	

{ } { }
=

π −

π −
−

π

π −
t

t
t t

( )
sin 2 ( 0.5)

2 ( 0.5)
sin
( 0.5)

	 (1.40)

The Shannon wavelet function is infinitely differentiable, and it has 
an infinite number of vanishing moments. The Fourier transform of the 
Shannon wavelet results in the following:

	 ω = ω ∈ − π −π ∪ π π
−
ω

e
i

( ˆ ) ; [ 2 , ] [ ,2 ]2 	 (1.41)

However, Shannon wavelets have poorer time resolution. Daubechies wave-
lets also offer good frequency resolution with increasing order. On the other 
hand, harmonic wavelets may give good time and frequency resolution 
together (to some extent), depending on suitable values of the parameters 
of harmonic wavelets. An example of a harmonic wavelet and its Fourier 
transform is given below [9]:

	

f t F e d
e e

i t
i t

i t i t

( ) ˆ( )
2

4 2

∫= ω ω =
−
π

−∞

∞

ω
πω πω

	 (1.42)
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On taking Fourier transform, the frequency domain representation of the 
harmonic wavelet function may be written as

	

ω =
π

π ω π≤ ≤F̂( )
1

2
; 2 4

= 0; otherwise

	 (1.43)

Though the harmonic wavelet is a complex function with real and imagi-
nary components as even function and odd function, respectively, it has 
practically a finite support (hence, it contains finite energy).

Several authors in the last few decades have written quite a good num-
ber of books on wavelets [9–11]. However, a book on application of 
wavelets, especially with reference to civil engineering problems, is not 
really known to exist. This book may be viewed as a sincere effort to fill 
in that gap.
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Chapter 2

Vibration analysis of SDOF 
and MDOF systems in 
the wavelet domain

The simplest approach in studying the response of a structural system to 
an external dynamic excitation is to idealize the system as a linear single-
degree-of-freedom (SDOF) system comprising a mass body, a spring 
representing the system stiffness and a dashpot representing the energy 
dissipation mechanism of the system. In many of the cases, the dynamic 
excitation to which the system is subjected is a seismic ground motion 
process. The seismic motions are known to be highly nonstationary with 
time-varying statistical characteristics and are also characterized by time-
dependent frequency content due to the dispersion of the constituent waves. 
Different solution procedures have been proposed to obtain the nonstation-
ary system response; however, the specific modulating functions used in the 
approach determined the nature of the nonstationarity to be considered in 
the analysis. Moreover, the time-varying frequency content of input excita-
tions has not been considered. With the development of the wavelet-based 
analytical technique, it has become possible to tackle the frequency non-
stationarities as well. In this chapter, we will see how to use the discretized 
version of the continuous wavelet transform to obtain the nonstationary 
response of a SDOF system subjected to seismic ground motion excitation. 
The basic idea to solve system equations of motion in the wavelet domain is 
clearly explained in this chapter.

2.1 � WAVELET-BASED DISCRETIZATION 
OF GROUND MOTIONS

The seismic ground motion processes are transient and contain finite 
energy. Thus, these processes may be well represented by statistical func-
tionals of wavelet coefficients. Let us consider the earthquake excitation 
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x tg ( ) as a zero mean process with nonstationary Gaussian characteristics. 
The wavelet transform of this process is written as [8]

	
∫= ψ

−
>ψ

−∞

∞

W x a b
a

x t
t b

a
dt ag g( , )  

1
( ) ,   0*

  	 (2.1)

The inverse wavelet transform would fetch the ground motion process 
x tg( )

 as

	
∫ ∫=

π
ψ

ψ
−∞

∞

−∞

∞

ψx t
C a

W x a b t da dbg g a b( )  
1

2
1

( , ) ( )   2 ,  	 (2.2)

The asterisk in Equation (2.1) denotes the complex conjugation. In Equation 
(2.2), the term C  ψ must satisfy the following admissibility condition in the 
frequency domain:

	
∫=
ψ ω

ω
ω < +∞ψ

−∞

∞

C d
ˆ ( )

 
2

	 (2.3)

In the above equations, the function ψ is the basic or mother wavelet. 
ψ̂ indicates the Fourier transform of ψ. This condition implies that the 
wavelet integrates to zero, and this requires that the wavelet must have m 
vanishing moments, i.e.

	

t t dt k mk 0;     0, ,∫ ( )ψ = = …
−∞

∞

	 (2.4)

During a certain time a wavelet oscillates like a wave and is then local-
ized. The oscillation of a wavelet is determined by the number of vanish-
ing moments. The localization of the wavelet is measured by the interval 
where it has values other than zero. From this single function ψ a family of 
functions may be constructed using translation and dilation. The term ψ̂  
is written as

	
∫( ) ( )ψ ω =

π
ψ

−∞

∞

− ωt e dti tˆ 1
2

	 (2.5)
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The wavelet functions ( ) ,ψ ta b  are constructed by the translated and 
dilated version of the mother wavelet using parameters a and b as

	

ψ =
− +t

a

t b
a

a b Ra b( )
1

; ,    , 	 (2.6)

The translation parameter b centres the basis function at t = b by window-
ing over a certain temporal stretch around b depending on the parameter 
a. The frequency content of the wavelet basis function ( ),ψ ta b , obtained by 
its Fourier transform, can be controlled by the parameter a. Since the basis 
functions convolute with the function ( )x tg  in Equation (2.1), the informa-
tion about the frequency content of the said function at the point where the 
basis function is centred is contained in the corresponding wavelet coeffi-
cients [12]. Thus, the wavelet transform coefficients ψW x a bg  ( , )  of the ground 
motion process represent the contribution to the process in the neighbour-
hood of t = b and in the frequency band corresponding to the dilation fac-
tor of a. The integrals used in Equations (2.1) and (2.2) must be discretized 
for the purpose of numerical computation. For this purpose, the following 
assumptions are necessary:

	 aj
j = σ 	 (2.7)

	
( 1)= −b j bj 	 (2.8)

By adopting a discretization scheme [13] and using the above assump-
tions, the following expressions are obtained:

	
0.5*( ) ( )

2
1

1 1= − + − = σ −
σ

+ −a a a a a
a

j j j j j
j 	 (2.9)

	
0.5*( ) ( )1 1= − + − =+ −b b b b b bj j j j j

	 (2.10)

Using the expressions for aj  and bj, the ground motion process as 
shown in Equation (2.2) may be rewritten in a discretized version as

	

( )   ( , ) ( ), ∑∑= ψψx t
K b
a

W x a b tg

i j j
g j i a bj i 	 (2.11)

In the above equation, the term K has the following expression:

	
K

C
1

2
1

=
π

σ −
σψ

	 (2.12)
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Equation (2.11) is particularly important because it shows that any non-
stationary stochastic process may be discretized in terms of wavelet coef-
ficients of the process. This concept will be used in this and the following 
chapters of the book. Before going into the formulation of the SDOF prob-
lem and its solution in the wavelet domain, it is worth discussing at this 
stage the time–frequency characteristics of wavelets that will be used quite 
often in almost all chapters.

2.2 � TIME–FREQUENCY CHARACTERISTICS 
OF WAVELETS

The time-varying second-order moment statistics of the ground motion 
process ( )x tg  are obtained on taking its inner product [8], which may oth-
erwise be written as follows:

	

( )
1

2
1

[ ( , ) ]   2
2

2
 ∫ ∫ ∫=

π
−∞

∞

ψ
−∞

∞

−∞

∞

ψx t dt
C a

W x a b da dbg g 	 (2.13)

The double integral in Equation (2.13) may be discretized using the discret-
ization scheme as shown by Equations (2.9) and (2.10), and then on taking 
expectations of both sides, the following equation is obtained:

	

( ) [ ( , ) ]2 2
 ∑∑= ψE x t K

b
a

E W x a bg

i j j
g j i 	 (2.14)

It should be noted here that the wavelet coefficients ( , )ψW x a bg j i  give local-
ized information of the process xg  about time instant =t bi. So, from 
Equation (2.14), the instantaneous mean square value is derived as

	

( )
[ ( , ) ]2

2



∑=
=

ψE x t K
E W x a b

a
g

t b
i

g j i

ji
	 (2.15)

The expected integral growth   ( ) |  ξ =t t bi  in the temporal energy up to the 
time instant t bi=  is obtainable from the integral mean square response as 
shown below:

	





∫ ∑∑ξ = = τ τ =

=

=

ψt t b x d K
E W x a b

a
i

t b

g

j i

i
g j i

j

i

( )| ( )
[ ( , ) ]

0

2

0

2

	 (2.16)
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The mean square integral response up to the time instant t bi=  corre-
sponding to a specific frequency band with aj

j= σ  is obtainable as well 
from the following equation:

	

∑ξ =
=

=

ψt K
E W x a b

at b

j

i

i
g j i

j
i

( )
[ ( , ) ]

0

2

	 (2.17)

At this stage we are interested in finding out the total expected energy of 
the ground motion process. This is obtained by using the Parseval identity 
in Equation (2.14) in conjunction with the following orthogonal relation:

	

ˆ ( ) ˆ ( ), ,
*∫ψ ω ψ ω ω = δ δ

−∞

∞

da b a b jk ilj i j l 	 (2.18)

The orthogonal relation will be explained later in the chapter. The total 
expected energy of the process thus will take the following expression:

	



∫ ∫∑∑ω ω = ψ ω ω
−∞

∞

−∞

∞

ψE X d
K b
a

E W x a b d
i j j

g j i a bj l[| ( )| ] ( , ) ˆ ( )  2 2
,

2
	 (2.19)

In the above equation, ωX( )  denotes the Fourier transform of the ground 
motion process, xg (t). The expectation of the squared wavelet coefficients 
  [ ( , ) ]2

ψE W x a bg j i  correspond to nonoverlapping energy bands for different 
j values. Thus, the expected energy of ( )x tg  in the frequency band corre-
sponding to aj  is given as

	



∫ ∫∑ω ω = ψ ω ω
−∞

∞

−∞

∞

ψE X d
K b
a

E W x a b dj

i j
g j i a bj l[| ( )| ] [ ( , ) ] | ˆ ( )|2 2

,
2 	 (2.20)

The above equation may also be rewritten as

	



∫ ∑ω ω =
−∞

∞

ψE X d
K b
a

E W x a bj

i j
g j i[| ( )| ] [ ( , ) ]2 2 	 (2.21)

so that

	
∫ ∑∫ω ω = ω ω
−∞

∞

−∞

∞

E X d E F d
j

j[| ( )| ] [| ( )| ]2 2 	 (2.22)
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2.3 � FORMULATION OF SDOF SYSTEM 
EQUATION IN WAVELET DOMAIN

Let us imagine a single-storey building structure that may be represented 
by a SDOF system as shown in Figure 2.1.

The SDOF system contains the lumped mass ms of the building at a certain 
height. The stiffness of the columns supporting the building and the viscous 
damping coefficient are represented by the terms ks and cs, respectively. It 
may be mentioned here that the stiffness and the damping are dependent on 
the mass and the natural frequency of vibration, ωn, of the structure along 
with its damping ratio, ζ. The relevant expressions are given below:

	 k ms s n
2= ω 	 (2.23)

	 c ms s s n2= ζ ω 	 (2.24)

Let the building be subjected to a horizontal earthquake excitation pro-
cess x tg( )  at the base. The equation of motion for this system is written as

	
+ + = −m x t c x t k x t m x ts s s s s s s g( )   ( ) ( )   ( )   	 (2.25)

The terms ( )x ts , ( )x ts  and ( )x ts  denote the relative displacement, relative 
velocity and relative acceleration of the structure in the horizontal direc-
tion with respect to the ground. On substituting the expressions for k and 
c from Equations (2.23) and (2.24) into Equation (2.25), and eliminating 
the mass term from both sides, the simplified equation takes the following 
form:

	
( )  2 ( ) ( )   ( )2

  + ζ ω + ω = −x t x t x t x ts s n s n s g 	 (2.26)

The next goal would be to solve this dynamic equation of the system in 
the wavelet domain. This requires some additional tasks to be done. The 

ms

cs

ks

Figure 2.1 � Single-storey building idealized as SDOF system.
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first and foremost is to expand the structural lateral displacement response 
term, ( )x ts , in terms of wavelet functions. Similar to Equation (2.11), which 
expresses the ground acceleration in terms of wavelet coefficients, the lat-
eral displacement of the structure may also be expressed in terms of wavelet 
functionals as follows:

	
∑∑= ψψx t

K b
a

W x a b ts

i j j
s j i a bj i( )   ( , ) ( ), 	 (2.27)

On differentiating the above equation one and two times with respect to 
time, the velocity and acceleration terms, ( )x ts  and ( )x ts , may be respec-
tively obtained as

	
∑∑= ψψx t

K b
a

W x a b ts

i j j
s j i a bj i( )   ( , ) ( ),

 	 (2.28)

	
∑∑= ψψx t

K b
a

W x a b ts

i j j
s j i a bj i( )   ( , ) ( ),

 	 (2.29)

The relative displacement, velocity and acceleration terms in Equation 
(2.26) may be replaced with corresponding wavelet coefficients as shown 
in Equations (2.27) to (2.29) to get the following transformed equation:

 	

 



∑∑ ∑∑

∑∑ ∑∑
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ψ ψ
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a
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K b
a
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K b

a
W x a b t

i j j
s j i a b s n

i j j
s j i a b

n

i j j
S j i a b

i j j
g j i a b

j i j i

j i j i

( , ) ( ) 2 ( , ) ( )

( , ) ( ) ( , ) ( )

, ,

2
, ,

		
		  (2.30)

On cancelling KΔb and rearranging the terms, the above equation may be 
simplified to

	

∑∑

∑∑

{ }ψ + ζ ω ψ +ω ψ

= − ψ

ψ

ψ

a
W x a b t t t

a
W x a b t

i j j
s j i a b s n a b n a b

i j j
g j i a b

j i j i j i

j i

1
( , ) ( ) 2 ( ) ( )

1
( , ) ( )

, ,
2

,

,

 
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	 (2.31)
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Our next objective would be to transform the above equation from the 
time domain to the frequency domain, and hence we perform Fourier trans-
form to get the following equation:

	

∑∑

∑∑

{ }−ω ψ ω + ζ ωω ψ ω +ω ψ ω

= − ψ ω

ψ

ψ

a
W x a b i

a
W x a b

i j j
s j i a b s n a b n a b

i j j
g j i a b

j i j i j i

j i

1
( , ) ˆ ( ) 2 ˆ ( ) ˆ ( )

1
( , ) ˆ ( )

2
, ,

2
,

,

		
		  (2.32)

The above equation may be simplified further to obtain the lateral relative 
displacement of the SDOF system considered in terms of wavelet coeffi-
cients as follows:

	
∑∑ ∑∑ψ ω = ω ψ ωψ ψ

a
W x a b

a
W x a b H

i j j
s j i a b

i j j
g j i a bj i j i

1
( , ) ˆ ( )

1
( , ) ( ) ˆ ( ), ,

		
		  (2.33)

In the above equation, H(ω) is the frequency-dependent transfer func-
tion relating the relative horizontal displacement, xs  , of the structure to the 
ground acceleration process in terms of wavelet coefficients and is written 
below:

	 ( )
ω = −

ω −ω + ζ ωω
H

i in s n

( )
1

( ) 22 2
	 (2.34)

2.4 � WAVELET BASIS FUNCTION FOR 
GROUND MOTION PROCESS

We are solving a problem where a SDOF system is subjected to a nonstation-
ary random seismic motion. The solution in the wavelet domain depends on 
the wavelet coefficients of this ground motion process. Therefore, we must 
use a wavelet basis function that would be suitable for this application. The 
choice of wavelet depends upon this application and the characteristics of 
the function that would be analysed. For the current problem, we will use 
an orthogonal wavelet basis function as proposed by Basu and Gupta [12]. 
This function is a modified form of the Littlewood–Paley (L-P) basis. The 
L-P basis, though, does not have good time-localization ability, but has a 
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very good frequency localization property. The wavelet transform is char-
acterized by its Fourier transform as [12]

	

ψ ω = − π
π ≤ ω ≤ π

p
p

ˆ ( )

1
2( 1)

,          | |

0,                 otherwise

	 (2.35)

For p = 2, the above function becomes the same as the L-P basis. However, 
with this value of p, ˆ ( )ψ ω  remains constant over a wide frequency band. 
In that case, the L-P basis cannot be used to represent realistic ground 
motions. The value of p should be chosen wisely to correctly represent the 
fluctuations in the frequency spectrum in case of seismic motion processes. 
After conducting detailed investigations on the probable value of p, the 
value of 21/4 is proposed by Basu and Gupta [12], as this value has been 
found to be reasonable for most of the ground motions. Any smaller value 
than this would lead to increased computation effort due to the presence of 
a greater number of energy bands. However, a value of p greater than the 
proposed value of 20.25 may be chosen as well to reduce the computational 
burden in case the ground motions have relatively smooth Fourier spectra. 
It must be mentioned here that the value of σ must be kept the same as the 
value of p (i.e. σ = p); otherwise, the functions generated by the dilated and 
translated versions of the wavelet function may not be mutually orthogo-
nal, which is a desirable feature for a wavelet basis function without which 
the analysis of the system becomes complicated.

On performing inverse Fourier transform of Equation (2.35) and using 
the relation σ = p, the proposed wavelet basis function becomes

	
ψ =

π σ −

σπ − π
t

t t
t

( )  
1

1
sin( ) sin( )

	 (2.36)

The orthogonality relation for the proposed modified L-P basis is given as

	
∫ψ ω ψ ω = δ δ
−∞

∞

a b a b jk ilj i j i
ˆ ( ) ˆ ( ), ,

* 	 (2.37)

The term δmm denotes the Kronecker delta function, which is 1 when the 
two variables are the same or 0 when they are different. The advantage of 
the modified L-P basis is that it is more useful in capturing energy contribu-
tion to each frequency band. It also facilitates representation of input and 
output instantaneous power spectral density functions (PSDFs) due to the 
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nonoverlapping frequency bands for different values of dilation parame-
ters. This also ensures that due to the input from a specific frequency band, 
only this particular band is excited in the output, and not any other band, 
and this makes the point-wise calculation of instantaneous PSDF simpler. 
The orthogonality property of the wavelet basis functions increases com-
putational efficiency, as cross wavelet coefficients are no longer required.

2.5 � WAVELET DOMAIN STOCHASTIC 
RESPONSE OF SDOF SYSTEM

On Fourier transforming Equation (2.18),

	
ψ ω ψ ω = ψ ω ψ ω ( )− ωa a a a ea b a b j k

j k i b b
j i k l

i lˆ ( ) ˆ ( ) ˆ ( )  ˆ ( ), ,
* * 	 (2.38)

On substituting Equation (2.23) into Equation (2.35),

	

ψ ω ψ ω =
σ − π

χ ω χ ω ( )
π σπ π σπ

− ωa a
ea b a b

j k

a a a a

i b b
j i k l

j j k k

i lˆ ( ) ˆ ( )
2( 1)

( ) ( ), ,
*

, ,
	 (2.39)

The term χ is an indicator function that takes up the value of 1 in the inter-
val [.]; else it becomes zero. Using the property of the indicator function, 
Equation (2.39) may be simplified to

	
ψ ω ψ ω = δ ψ ω ψ ωa b a b jk a b a bj i k l j i k l
ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ), ,

*
, ,

* 	 (2.40)

Let us multiply all terms in Equation (2.33) by ψ ωa bk l
ˆ ( ),

*
 to get the following:
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ψ ω ψ ω

= ω ψ ω ψ ω

ψ

ψ
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W x a b

a
W x a b H

i j j
S j i a b a b

i j j
g j i a b a b

j i k l

k l k l

1
( , ) ˆ ( ) ˆ ( )

1
( , ) ( ) ˆ ( ) ˆ ( )

, ,
*

, ,
*



	 (2.41)

Using Equation (2.40), Equation (2.41) may be rewritten as

	
∑ ∑ψ ω = ω ψ ωψ ψW x a b W x a b H

i

s j i a b

i

g j i a bj i j i( , ) ˆ ( ) ( , ) ( ) ˆ ( ), , 	 (2.42)

Now, if we take the expectation of the square of the amplitude of both 
sides of Equation (2.42), integrate over ω and use the orthogonality 
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relationship as defined in Equation (2.37), we will have the following 
equation:

∑ ∑ ∫

∑∑ ∫

= ω ψ ω ω

+ ψ ω ψ ω ω ω
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ψ ψ
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∞

≠ −∞

∞
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( , ) ( , ) ( ) | ˆ ( ) |

( , ) ( , ) . ˆ ( ) ˆ ( ) | ( ) |

2 2 2
,

2

*
, ,

* 2



 

		
		  (2.43)

The second term on the right-hand side of Equation (2.43) is a complex-
conjugate pair, so the same equation may be written as
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 
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*
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		  (2.44)

In Equation (2.44), for a specific value of frequency band j and when σ is 
close to 1, the wavelet coefficients ( ( , ))ψW x a bg j k  form a narrow-band ran-
dom process that has slowly modulated amplitudes. Its central frequency 
is given by ω = σ +π

aj
( 1)0 2 . This corresponds to the central frequency of 

the jth band of energy. Thus, it may be assumed that the covariance of the 
wavelet coefficients defined by E Wx a b Wx a bg j k g j m[ ( , ) ( , )]*

   as appearing in 
the second term of the right-hand side of Equation (2.45) contains a term   
cos {(bk − bm)ω0} that is modulated by a slowly varying function (say, S(aj)). 
So, Equation (2.44) may be written as

		

∑ ∑ ∫
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= ω ψ ω ω
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		  (2.45)
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It may be noted here that because the harmonic oscillations get cancelled, for 
all 0ω = ω , the product of two terms, cos{( ) }− ωb bm k  and − ωb bk mcos{( ) }0 , in 
Equation (2.45), when summed over k and m, tends to become zero. Hence, 
the double summation term in Equation (2.45) may be ignored, and similarly, 
Equation (2.43) may be simplified to

	
∑ ∑ ∫= ω ψ ω ωψ ψ

−∞

∞

E W x a b E W x a b H d
i

s j i

i

g j i a bj i( , ) ( , ) ( ) | ˆ ( ) |
2 2 2

,
2



		
		  (2.46)

It is possible to compute the energy (i.e. the mean square response) con-
tribution to the frequency band corresponding to the dilation factor aj  
using Parseval’s identity and Equations (2.45) and (2.46). The resulting 
expression for the mean square response then becomes

	
∫ ∑ ∫ω ω = ω ψ ω ω
−∞

∞

ψ

−∞

∞

E X d
K b
a

E W x a b H ds
j

i j
g j i a bj i[| ( ) | ] ( , ) ( ) | ˆ ( ) |2 2 2

,
2



		
		  (2.47)

The unique time-localization property of the wavelet coefficients may 
now be used to derive from Equation (2.47) the expression for the instanta-
neous mean square response around t = bi as follows:

	
∫ ∫ω ω = ω ψ ω ω
−∞

∞

ψ

−∞
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E X d
K b
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E W x a b H dsi
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,
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

		
		  (2.48)

The above expression for the instantaneous mean square response 
corresponds to the band with dilation factor aj. As can be seen from 
Equation (2.48), this is valid only in an integral sense. When σ is quite 
close to unity, different energy bands become narrower. The integrals 
in Equation (2.48) have to be performed over a very short time interval, 
which means that the equality of the integrands and hence a point-wise 
relation may be safely assumed. For this reason, Equation (2.48) may be 
rewritten as

	
ω = ω ψ ωψE X

K b
a

E W x a b Hsi
j

j
g j i a bj i[| ( ) | ] ( , ) ( ) | ˆ ( ) |2 2 2

,
2

 	 (2.49)

In our case, σ is assumed to be equal to 20.25 (i.e. 1.189), and even for 
this value, we may obtain a reasonable approximation of the instantaneous 
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PSDF in the case of realistic ground motions. Thus, using the point-wise 
relation as shown in Equation (2.49) and summing over all energy bands 
at a particular time instant (i), the instantaneous PSDF of the structural 
response may be obtained as

∑ ∑ω =
ω

= ω ψ ωψS
E X

b
K
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E W x a b Hx

j

si
j

j j
g j i a bs i j i( )
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2
2 2

,
2



	(2.50)

The moments of instantaneous PSDF should be found out to obtain the 
characteristics of the structural response process, xs(t). The evaluation of 
the following statistical parameters would be helpful to obtain more infor-
mation about the response process.

The nth moment of the instantaneous PSDF, ω =Sx t bi( ) | , is obtained using 
the following equation:
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In the above expression, = σ− πK K/
2( 1) . The closed-form analytical expres-

sions of the zeroth, first, second and fourth moments of instantaneous 
PSDF are expressed, respectively, as follows:
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In the above equations, the expressions for the terms I I Ij j j,     and 0, 1, 2,  are 
shown below:
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It is worth mentioning here that the instantaneous moments as shown in 
Equations (2.52) to (2.55) depend on the terms I j0, , I j1,  and I j2, , which in 
turn are dependent on the natural frequency and the damping ratio of the 
system under consideration. Thus, the response of the system may get mod-
ified considerably by these two basic dynamical properties (frequency and 
damping) of the system. It is interesting to note that some of the statistical 
parameters of the process (SDOF system response in this case) that are eval-
uated using the moments of the PSDF may be used to obtain the ordered 
peak amplitude of the process. Of these statistical parameters, instanta-
neous rates of zero crossing, peak occurrence, and bandwidth parameter 
are important.

2.6 � STATISTICAL PARAMETERS AND 
NONSTATIONARY PEAK RESPONSES

The statistical parameters required to explain the characteristics of a ran-
dom nonstationary process and structural response are defined below. The 
instantaneous rate of zero crossings may be defined by
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The instantaneous rate of occurrence of peaks of the response process is 
defined as follows:
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The instantaneous bandwidth parameter is defined as follows:
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In connection to the first passage problem, which is related to the reliabil-
ity of the structure when the earthquake excitation and structural response 
are modelled as random processes [14], another bandwidth parameter, iλ , is 
defined as
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Now, assume that the structural response process xs(t) has the duration 
T and has zeroth instantaneous moment i

2σ . It may also be assumed that 
this process, at t bi= , has statistical parameters denoted by Ω, Ni, ∈i and λi. 
The probability that the amplitude of the process, i.e. |xs(t)| remains below 
the level x within the time interval [0, T] may be written as [14]
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where α t( )  is the time-dependent rate of the Poisson crossing process and 
at a particular time instant it is defined as
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The probability as defined by Equation (2.63) follows an exponential 
law. Equation (2.64) gives an approximate estimation of the Poisson cross-
ing process. A better estimation of α t( )  is given by the following expression:
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where λ = λ +
ie i

b1  with b = 0.2. It might be interesting to note that though 
the first passage problem is quite suitable for application to nonstationary 
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processes with time-varying statistics, it cannot be used to predict the 
second-, third-, or higher-order peak amplitudes of the process. However, 
Gupta and Trifunac [15] proposed order statistics formulation for approx-
imate estimation of higher-order peaks. Basu and Gupta [12] proposed 
a generalized approach based on this order statistics formulation for an 
equivalent stationary process for wider applicability of the proposed 
analysis. This equivalent process is characterized in such a way that the 
expected amplitude of the largest peak response corresponding to the 
order statistics formulation is the same as that estimated by using the first 
passage formulation for |x(t)|. The duration of the equivalent process may 
be calculated from the following equation using the rate of zero crossings, 
v .0
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The first passage estimate of the largest peak [12] is done from
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The mean peak factor of the ith largest peak amplitude may be subse-
quently calculated as follows:

 

=
ζ ω ω

⋅ ζ ω

πσ
+ ω + ζ ω

π
− ω + ζ ω

πσ
+ ω + ζ ω

π
+ ω + ζ ω

+ ω

πσ
+ ω

ζ ω
+

πσ
− ω

ζ ω

−

π
+ ω

ζ ω
−

π
− ω

ζ ω

− −

− −

I ln
a a

a a

a a

a a

j
s d n

s n

j
d s n

j
d s n

j
d s n

j
d s n

d
j

d

s n

j
d

s n

j
d

s n

j
d

s n

1
8

2 tan tan

tan tan

0, 3

2

2 2

2

2 2

2

2 2

2

2 2

1 1

1 1

	

(2.68)
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2.7 � WAVELET DOMAIN STOCHASTIC 
RESPONSE OF MDOF SYSTEM

In this section the formulation of wavelet-based analysis of MDOF systems 
will be developed. The work by Basu and Gupta [12, 16, 17] in this area 
is notable, as the main guidelines for the formulation are laid out in these 
papers. This is necessary, as at certain times a simplified SDOF model does 
not always represent the model in a true sense. Let us consider an n-storey 
building structure representing a MDOF system, undergoing seismic exci-
tation, x tg ( ) , at the base. The floors are all moving with respect to the 
ground and generically denoted by x ti ( ) , where i denotes the floor number 
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(varying from 1 to n). The dynamic equilibrium of such a MDOF system 
may be mathematically expressed by the following equation:

	
  { } { } { } { }[ ] [ ] [ ] [ ]( ) ( ) ( ) ( )+ + = −M x t C x t K x t M I x ti i i g g 	 (2.71)

The terms M[ ] , C[ ]  and K[ ]  denote mass matrix, damping matrix and 
stiffness matrix, respectively, each of dimension ×n n[   ] , and Ig  is the 
ground displacement influence vector of size ×n[   1] . The floor displace-
ment term, x ti ( ), may be expressed as a summation of its normal modes as 
follows:
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On taking the wavelet transform of Equation (2.72), the relative displace-
ment at each floor level may be expressed in terms of modal displacements 
( pχ ) as
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The term ∅i
p( )  indicates the ith element of mode shape ∅i

p( ) . From the 
last equation, on squaring all terms of Equation (2.73) and then taking 
expectation, the following equation is obtained, which contains cross-
modal terms:
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On using Equation (2.72), Equation (2.71) may be transformed into n 
uncoupled equations of motion as
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Each of these uncoupled equations represents the vibration of the sys-
tem in a particular mode. The terms ζp and ωp represent damping ratio 
and natural frequency, respectively, corresponding to the pth mode. On the 

right-hand side of Equation (2.75), the fraction ∅ Γ

∅ ∅

M

M
i
p T

i
p T

i
p

{ } [ ]{ }

{ } [ ]{ }

( )

( ) ( )
 represents the 

modal mass participation factor. Now, we need the wavelet expansion of 
the term xp, which should be similar to the wavelet expansion of the ground 
acceleration term xg, as shown in Equation (2.11). So, it may be written in 
the same way:
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Substitute Equations (2.11) and (2.76) in Equation (2.75), and then tak-
ing Fourier transform, the wavelet coefficients of modal displacements may 
be expressed in terms of wavelet coefficients of ground motions through the 
following equation:
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The term ωTp( )  denotes the frequency-dependent complex-valued transfer 
function at the pth mode correlating the wavelet functionals of the dis-
placement response of the system to the wavelet functionals of the random 
ground acceleration process and is given as
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Multiplying both sides of Equation (2.77) by ψ ωa bj i
ˆ ( )*

, , one may get
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Using the relation that ψ ω ω ψ ω =a b a bj i k l
ˆ ( )( ) ˆ ( ) 0,

*
,  for j ≠ k (which comes from 

Equation (2.35)), one may further get the following relation for mode p as
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and for mode q as
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Multiply Equation (2.80) by the complex conjugate of Equation (2.81). 
Subsequently, take expectation of terms on both sides and integrate over 
ω. On doing so, some cross terms will appear containing coefficients 
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When p = q, the equation may be simplified to
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Substitute Equations (2.82) and (2.83) in Equation (2.74) to obtain 
the expected response of the structure in terms of wavelet coefficients 
of the seismic ground motion process through modal transfer functions 
as follows:
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The instantaneous mean square value of the ground motion (or any ran-
dom) process and the expected value of the instantaneous mean square 
energy of the same process in a frequency band aj are respectively given by 
the following equations [16]:
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The instantaneous mean square value of the structural response xi(t) and 
its instantaneous mean square energy at time instant bq in the frequency 
band ap may be similarly written as
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Equations (2.87) and (2.88) are true in an integral sense. However, if σ is 
chosen close to the value of 1, the relationships may be true in a point-wise 
sense too. It has been seen from much modelling of nonstationary processes 
based on wavelets that a choice of 21/4σ =  is quite a good approximation. 
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Hence, on using this value of σ, Equation (2.88) may be discretized to the 
following form:
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As we have done earlier in the case of a SDOF system, summing up 
Equation (2.89) over all energy bands (p) and then averaging over time 
interval Δb, the instantaneous power spectral density function at a specific 
time instant (t = bq) may be written as
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The instantaneous PSDF has the following general expression:
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The term jρ  may vary depending on the type of the response. For example, 
for displacement response this may be denoted by φi

j( ) . The expressions for 
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the two coefficients Cjk  and Djk  are, respectively [16],
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Chapter 3

Ground motion 
characterization and PSA 
response of SDOF system

In Chapter 2, the theoretical background for obtaining a nonstationary 
stochastic response of a single-degree-of-freedom (SDOF) system subjected 
to a random vibration process in the wavelet domain is clearly shown. The 
formulation to obtain peak stochastic responses of a system is elaborated in 
the same chapter. Users should keep in mind that to study the response of a 
system subjected to nonstationary ground motions, it is necessary to char-
acterize the seismic process through statistical functionals of wavelet coef-
ficients. The ground motion characterization has been attempted before by 
researchers using different approaches like spectrum-compatible wavelet 
functionals for the input Fourier spectrum and input response spectrum. In 
any ground motion, peak horizontal ground acceleration is important, as it 
is directly related to the damage potential. However, the duration of strong 
shaking, the energy and frequency contents, peak ground velocities and 
displacements, etc. also affect the extent of damage in structures. The fre-
quency content of earthquake ground motion is generally characterized by 
the shape of the acceleration response spectrum. The energy content in the 
spectrum is directly proportional to the square of the acceleration. In this 
chapter, we will see how the wavelet coefficients generated from a single 
ensemble are used to characterize ground motions, and how this character-
ization is subsequently used to obtain the pseudospectral acceleration (PSA) 
response spectrum of a SDOF system.

3.1  CHARACTERIZATION OF GROUND MOTIONS

The SYNACC program [18–22] is used to calculate wavelet coefficients as 
per the formulation laid out in Chapter 2. The wavelet-based coefficients 
are calculated only from a single realization of the synthetic ground motion 
(accelerogram) process. This nonstationary process represents the earth-
quake motion recorded near Coyote Hills (Dumbarton Bridge site) during 
the Loma Prieta earthquake (1989). The same parameters as used by Gupta 
and Trifunac [15] are considered for generating the synthetic accelerogram 
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for Loma Prieta seismic motion. The wavelet coefficients are calculated for 
2047 time points and for each frequency band from –17 to +4. The time 
points are considered for each of the 22 frequency bands. It means that for 
a particular frequency band, wavelet coefficients over the entire duration of 
the seismic excitation (which is covered by 2047 time points) are calculated. 
Thus, a total of 45 034 wavelet coefficients are calculated. It must be men-
tioned here that the value of the discretization parameter, Δb, is assumed 
to be 0.02. The seismic ground acceleration due to the Loma Prieta earth-
quake is shown in Figure 1.2.

For each frequency band the total duration of seismic excitation T may 
be divided into a number of smaller stretches for the purpose of local aver-
aging. Each such stretch has a duration of Tj that corresponds to the central 
frequency of the band considered. It is now known that the range of fre-
quency for the jth frequency band is from a aj j

 to  .π πσ  The central frequency, 
jω , for this band is therefore a aj j

( )1
2 +π πσ  rad/s, and hence the duration, Tj, 

of the stretch corresponding to this central frequency is given as follows:
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In each stretch the wavelet coefficients are first squared and subsequently 
averaged over Tj to represent the value of the energy E W x a bg j i[ ( , )]2

ψ  distrib-
uted uniformly over the small stretch with duration Tj. The expression for 
this energy over the stretch may be given as
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and
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a m bj4 1
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2

( )
=

+

+ σ
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It may be mentioned here that k i k1 2ʺ ʺ . The squares of the wavelet 
coefficients computed using the above-mentioned ground motion charac-
terization technique corresponding to the random ground motion process 
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shown in Figure 1.2 are plotted in Figure 3.1 for different frequency bands 
(j = −17, −10, −2 and 4). These coefficients are computed using Δb = 0.02 s. 
The same coefficients are computed assuming nonorthogonal properties 
(i.e. 1= σ

−b j

j
) for different frequency bands using the same ground motion 

and are demonstrated in Figure 3.2. However, in the text and for all exam-
ples used in this book, we will use Δb = 0.02 s wherever applicable.

Thus, the wavelet coefficients are used to characterize the ground 
motions. However, validation should be done to see that this wavelet-based 
ground motion characterization works satisfactorily. For this purpose, 
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Figure 3.1 � Wavelet coefficients for four different frequency bands using Δb = 0.02 s.
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a pseudospectral acceleration spectrum will now be obtained using the 
wavelet-based approach using the above-mentioned characterization tech-
nique, and the same will be computed based on direct time history sim-
ulation. A comparison between the two will reveal the efficiency of the 
wavelet-based ground motion characterization technique.

3.2  PSA RESPONSE SPECTRUM

A response spectrum provides important information about the influence 
of an earthquake on a structure. If a ground acceleration time history from 
an earthquake is known, the response of the structure may be obtained 
using Newmark’s method. This gives rise to a response spectrum. The 
system equation representing dynamic equilibrium for a SDOF system, as 
shown in Figure 3.3, subjected to an earthquake excitation is given below:

	

( ) ( ) ( ) ( )  + + = −mx t cx t kx t mx tg 	 (3.5)

In the above equation, m, c and k denote the mass, the damping coeffi-
cient and the stiffness coefficient of the system, and the term x tg( )  denotes 
the ground acceleration. The term x(t) denotes the displacement of the mass 
with respect to the free field (ground), and the dots represent derivatives 
with respect to time. The damping and stiffness coefficients depend on the 
mass, the damping ratio (ζ) and the natural frequency (ωn) of the system, 
as shown in Equations (2.13) and (2.14), respectively. Thus, on substituting 
these two equations and then simplifying, Equation (3.5) may be rewritten 
in the following form:

	 x t x t x t x tn n g( ) 2 ( ) ( ) ( )2
  + ζω +ω = − 	 (3.6)

The accelerogram contains the values of accelerations at different 
time points covering the whole duration of the earthquake. Thus, 
assuming a specific value of the damping ratio (ζ) and for a specific 

m
k

ẍg

c

Figure 3.3 � Model of a SDOF system.
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system frequency (ωn), the above equation may be solved at each time 
point with the corresponding value of ground acceleration. This will 
ultimately generate a row of values of accelerations for all discrete time 
points considered from which the largest value (the peak) may be easily 
identified. The process may be reiterated with other different values of 
system frequency maintaining a constant damping ratio. In the end, a 
two-dimensional array will be obtained where at a particular damping 
ratio, for each system frequency there will be a specific value of the 
system response, x(t). This SDOF system displacement response may 
now be multiplied by the square of the system frequency (i.e. n

2ω ) to get 
the pseudoacceleration. The pseudoacceleration values thus obtained 
for different system frequencies may be plotted against corresponding 
frequencies to obtain the PSA spectrum. Thus, the PSA spectrum is 
obtained for a SDOF system subjected to a specific seismic motion at a 
particular site. The solution procedure follows a time domain approach. 
The site may undergo several earthquakes, and each ground shaking 
may be digitally recorded. For each of these recorded accelerograms, a 
PSA spectrum for the same SDOF system may be computed. The time 
history simulation results for different accelerograms may then be aver-
aged to obtain a single PSA spectrum for a specific damping ratio.

So far, the thing looks fine. However, the most difficult part is to get 
so many accelerograms at a particular site, as these may not be readily 
available. In addition, performing time history simulations to obtain a PSA 
spectrum for each of these time history acceleration data may be time-
consuming. The concept of wavelet transform may come in very handy in 
this respect. Let us now use the concept of wavelet analysis to obtain a PSA 
spectrum for a single accelerogram. The displacement response, x(t), of the 
structure and its velocity and acceleration terms, x t( )  and x t( ) , may be 
expressed respectively in terms of wavelet coefficients following Equation 
(2.17) as
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Following a similar procedure as shown in Section 2.3, the wavelet 
domain equation of motion for the SDOF system is obtained as
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 	 (3.10)

Multiplying both sides of Equation (3.10) by ˆ ( ),
*ψ ωa bk l  and using Equation 

(2.40), the following equation is obtained:
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Equation (3.11) related the structural displacement response to the ground 
acceleration in terms of wavelet coefficients. On following Equations (2.43) 
to (2.49), the instantaneous mean square response (at t = bi) is expressed as
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Using a point-wise relation as shown in Equation (3.12) and obtaining 
the sum over all energy bands at a particular time instant, the instanta-
neous PSDF of the SDOF response may be obtained as
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Using Equation (2.51), the zeroth, first and second moments of instan-
taneous PSDF are obtained, from which the largest peak factor of the 
response is obtained following the guidelines as shown in Section 2.6. 
The expected response spectra for pseudospectral acceleration may 
be obtained by using the formulation narrated so far on the basis of 
expected energy, ψW x a bg j i[| ( , )| ].2  Similar results have also been obtained 
from exact time history simulation of the same SDOF system using 
the Runge–Kutta fourth-order method. The comparison of the results 
between time history simulation and the wavelet-based response spec-
trum is of particular interest. It must be mentioned here that the PSA 
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spectrum is generated based on statistical functionals of wavelet coef-
ficients calculated from a single accelerogram at a particular site. On the 
other hand, the PSA curve is generated from time history simulations of 
17 different accelerograms at the same site. The PSA spectra thus gener-
ated from two different techniques will be compared. However, it would 
be appropriate to clarify how the exact time history simulation has been 
performed.

3.3 � TIME HISTORY SIMULATION BY THE 
RUNGE–KUTTA FOURTH-ORDER METHOD

Runge–Kutta (R-K) methods for approximately solving ordinary differen-
tial equations primarily represent implicit and explicit iterative methods. 
R-K methods use information from a single preceding point to estimate the 
value of the dependent variable of the system (like the system response) for 
initial value problems.

The general form of any extrapolation equation is given as follows, in 
which m represents the weighted averages of the slopes at various points in 
the interval h.

	
y y mhi i1 = ++ 	 (3.14)

Now, suppose the term m is estimated using slopes at r number of points in 
the interval (xi, xi+1). In that case, m may be written as

	
= + + + +m n m n m n m n mr r1 1 2 2 3 3 	 (3.15)

where n1 , n2 , … nr  are the weights of the gradients or slopes at various 
points. The gradients m  1 , m2 , m3 , … are calculated as per the following 
generic term:

	

= + + + +− − − − −m f x a h y b m h b m hr i r i r r r r( , )1 1,1 1 ( 1),( 1) 1 	 (3.16)

From Equation (3.16) it is clearly seen that for r = 1, m f x yi i( , )1 = . However, 
for other values of r the expression becomes
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−
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The slopes are computed recursively using Equation (3.17) starting from 
m1 . It may be noted here that the slope at any point is computed using 
slopes at all previous points. The R-K methods are usually known by their 
order. The r-order R-K method means the slopes at r points are used to 
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construct the weighted average slope, m. Euler’s method is a first-order R-K 
method because only one slope at ( x yi i, ) is used to estimate yi 1+ . Usually, 
the higher the order, the better is the accuracy of the estimate. The classical 
fourth-order R-K method is given below.

The first four gradients have the following expressions:
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Using these four gradients, yi 1+  may be evaluated as follows:
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The fourth-order R-K method is quite accurate. It resembles Simpson’s 
one-third rule of integration. The local error in this method is of the order 
h5 and the global error is of the order h4.

The time history simulation of the SDOF system is carried out 17 times 
to obtain 17 different PSA spectra corresponding to 17 different accelero-
grams. In each case the largest peak value of the displacement response is 
obtained and multiplied by the square of the natural frequency of the SDOF 
system to obtain the pseudoacceleration term.

3.4  FIXED-BASE ANALYSIS OF A TANK

As a simplistic approach to a more realistic problem, we now confine our 
attention to the analysis of liquid storage tanks. The response of fluid stor-
age tanks subjected to earthquake ground excitations has been the sub-
ject of interest to many researchers and engineers in the last few decades. 
Such tanks are quite common in nuclear industry, oil and petrochemi-
cal industries, sewerage plants, etc. Several academicians and engineers 
[23–27] in the past have studied the response of liquid storage tanks both 
experimentally and theoretically without soil–structure interaction effects 
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being considered. We will first formulate the theory of responses of a fixed-
base liquid storage tank subjected to ground shaking. This implies that no 
soil–structure interaction effects are considered, as the tank base is rigidly 
anchored to the ground. A basic guideline about wavelet domain analysis 
of a tank is given by Chatterjee and Basu [28]. The wavelet domain formu-
lation of the system equation and its solution are described in steps in the 
following sections.

3.4.1  Basic assumptions

Let us assume a right circular, cylindrical tank structure containing water 
filled to its height. The tank radius and its height (which is also the height 
of the water within the tank) are respectively denoted by R and H. The tank 
wall is thin and denoted by h. Let the tank be assumed to be placed on a 
thick foundation and the foundation be supported rigidly on the soil sur-
face, which makes soil–structure interaction effects redundant and hence 
not considered. In fact, this assumption simplifies the whole analysis and 
helps us obtain the wavelet-based stochastic response spectrum for the pur-
pose of validation quite easily. The tank–foundation is considered thick 
to avoid any rocking effects in motion. The tank is rigidly clamped to its 
base of the same radius as that of the tank. The Young’s modulus, Poisson’s 
ratio and mass density of the tank are denoted by E, ν and ρ, respectively. 
The tank is subjected to a seismic ground motion. The liquid in the tank 
is assumed to undergo vibrations in impulsive and convective modes. The 
convective mode of liquid vibration, however, is safely assumed to contain 
only the first sloshing mode. Hence, the damping ratio and the natural 
frequency of impulsive liquid vibration (when a part of the liquid mass is 
vibrating in unison with the tank) are denoted by ξi and ωi. The same terms, 
in case of convective mode of liquid vibration, are denoted by ξc  and ωc. 
The tank is subjected to a horizontal free-field seismic absolute ground dis-
placement, xg(t). The impulsive and convective masses of the vibrating liq-
uid are assumed to be lumped at suitable heights above the base (hi and hc, 
respectively). The displacements of the impulsive and the convective masses 
with respect to the foundation are denoted by xi(t) and xc(t), respectively. 
The front and top views of the tank–foundation are shown in Figure 3.4. 
The mass-spring-dashpot model representing the tank–liquid–foundation 
system attached to a rigid base is shown in Figure 3.5.

3.4.2  Equations of motion

From the basic assumptions as stated above and in Figure 3.4, it is clear 
that the model represents a two-degree-of-freedom (2-DOF) system. In 
Figure 3.4, the terms Cdi and Cdc denote the damping ratios of impulsive 
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and convective modes of liquid mass, the terms Ki and Kc denote the stiff-
ness coefficients of impulsive and convective liquid vibration modes, and 
the terms mi  and mc  represent the masses of impulsive and convective 
modes, respectively. The equation of motion considering the impulsive 
mass of the tank–liquid may be written as

	

( ) ( ) 2 ( ) ( )2
  + ω + ζ ω = −m x t m x t m x t m x ti i i i i i i i i i g 	 (3.23)

2R

H

Figure 3.4 � Top and front views of the tank–liquid system.
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Figure 3.5 � 2-DOF fixed-base tank–liquid system.
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Similarly, the equation of motion considering the vibration of the convec-
tive mass of the tank–liquid system may be written as

	

( ) ( ) 2 ( ) ( )2
  + ω + ζ ω = −m x t m x t m x t m x tc c c c c c c c c c g 	 (3.24)

The first (impulsive) mode of liquid vibration has the frequency ω i  
expressed as follows [27]:

	

C
H

E
i

iω =
ρ

	 (3.25)

The term Ci  is a dimensionless coefficient that depends on certain param-
eters, like the ratio of the depth of the liquid in the tank to the radius of 
the tank (i.e. H/R), the ratio of wall thickness to the tank radius (i.e. h/R) 
and the Poisson’s ratio for the tank material, the ratio of the mass density 
of the liquid to that of the tank (i.e. ρ

ρ
l ). Table 3.1 shows the values of Ci  

for different values of h/R and H/R.
The frequency, cω , of the first sloshing mode of vibration of the convec-

tive mass of the tank–liquid is expressed as follows [27]:

	

H
R

g
R

c 2 tanh1 1ω = π λ λ 	 (3.26)

In the expression of cω , g represents acceleration due to gravity and 1λ  is the 
first root of the first derivative of the Bessel function of first kind and first order. 
On simplifying Equations (3.23) and (3.24) we get the following equations:

	

( ) ( ) 2 ( ) ( )2
  + ω + ζ ω = −x t x t x t x ti i i i i i g 	 (3.27)

and

	
x t x t x t x tc c c c c c g( ) ( ) 2 ( ) ( )2
  +ω + ζ ω = − 	 (3.28)

Table 3.1  Values of Ci  for different ratios of tank wall thickness to tank 
radius and tank height to tank radius

h/R H/R = 0.5 H/R = 1.0 H/R = 2.0 H/R = 3.0

0.0005 0.0506 0.0620 0.0637 0.0563
0.001 0.0719 0.0875 0.0896 0.0792
0.002 0.1019 0.1231 0.1254 0.1108

Source:	 Veletsos,  A. S., and Tang, Y., Earthquake Eng. Struct. Dyn., 19, 473–496, 1990.
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3.4.3  Wavelet domain formulation

The wavelet representation of the ground motion is given in Equation (2.11). 
As we have seen earlier in Chapter 2, on differentiating the expressions of 
impulsive and convective displacements of the liquid mass, the velocities 
and accelerations may be obtained as follows:
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On substituting wavelet-based expressions of x ti( )  and x tc( )  and their 
derivatives from Equations (3.29) to (3.34) in Equation (3.27) and (3.28), 
respectively, one may obtain the following equations:
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On simplifying further, as shown in Section 2.3, the above equations 
may be further simplified to obtain the following two equations in the time 
domain:
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On performing Fourier transform on time domain equations as 
obtained above and collecting proper terms on both sides, the displace-
ments corresponding to impulsive and convective modes of vibration 
may be expressed in terms of ground acceleration using wavelet coef-
ficients as
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(3.40)

The terms ( )ωHi  and ( ) ωHc are the frequency-dependent transfer func-
tions relating the wavelet coefficients of the relative horizontal displace-
ments xi of the impulsive liquid mass and xc of the convective liquid mass to 
the wavelet coefficients of the ground acceleration. These transfer functions 
have the following expressions:
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On multiplying Equations (3.39) and (3.40) by ˆ ( ),
*ψ ωa bk l  and using 

Equation (2.40), the sum of the wavelet coefficients of displacements of 
impulsive and convective liquid masses over time may be expressed in terms 
of wavelet functionals of ground motions as follows:
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Once the transfer function is obtained, the same procedure as described 
in Sections 2.5 and 2.6 may be followed to obtain the nonstationary 
peak responses of impulsive and convective modes of liquid vibration. 
However, it would be interesting to see the effects of ground motion 
nonstationarities on tank–liquid vibration. For this purpose, the hydro-
dynamic pressure on the tank wall is calculated based on wavelet coef-
ficients. The expression of the hydrodynamic pressure on a tank wall due 
to vibration in the containing liquid caused by seismic ground motion is 
given below:

	
( ) cos( ) ( ) ( ) ( , ) ( ) [ ]= ρ θ +P t R c z x t c R z x tH l i i c c 	 (3.45)

In the expression of the hydrodynamic pressure, the terms ( )c zi  and 
( , )c R zc  denote dimensionless functions defining the height-wise variation 

of hydrodynamic pressure and the distribution of the component of the 
hydrodynamic pressure corresponding to the first convective mode, respec-
tively. These two distribution functions do not consider the rotational part 
of the vibration. The term θ in Equation 3.45 is assumed to be 0° because 
currently we are considering only the lateral component of seismic base 
excitation in our analysis. The expression for ( , )c R zc  in Equation (3.45) for 
hydrodynamic pressures on the wall of the tank is written as [27]
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2

1
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cosh1
2

1

1

( ) =
λ −

λ

λ
c R z

z
R
H
R

c 	 (3.46)

As with the terms like ( )x ti  before, the term ( )P tH  representing the hydro-
dynamic pressure may also be expressed in terms of wavelet coefficients as

	

P t
K b
a

W P a b tH

i j j
H j i a bj i  , ,∑∑ ( )( ) ( )= ψψ 	 (3.47)

Let us substitute Equations (3.31), (3.34) and (3.47) in Equation (3.45) to 
obtain the following:

 

∑∑

∑∑ ∑∑

ψ = ρ θ

ψ + ψ

ψ

ψ ψ

K b
a

W P a b t R

c z
K b
a

W x a b t c R z
K b
a

W x a b t

i j j
H j i a b l
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c j i a b

j i

j i j i

( , ) ( ) cos( )

( ) ( , ) ( ) ( , ) ( , ) ( )

,

, ,

 
		  (3.48)

If we now take the Fourier transform of both the sides of Equation (3.48), 
multiply both sides by ˆ ( ),

*ψ ωa bk l
 and use Equation (2.40), we get the follow-

ing resulting equation:

	

( , ) ˆ ( ) cos( )

( ) ( , ) ˆ ( ) ( , ) ( , ) ˆ ( )

,
2

, ,

∑

∑ ∑

ψ ω = −ω ρ θ
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c z W x a b c R z W x a b

i

H j i a b l

i

i

i j i a b c

i

c j i a b

j i

j i j i

	 (3.49)

On substituting the expressions for ( , ) ˆ ( ),Σ ψ ωψW x a bi i j i a bj i  and 
( , ) ˆ ( ),Σ ψ ωψW x a bi c j i a bj i  from Equations (3.43) and (3.44) in Equation (3.49), 

one can easily find the following:
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∑

∑ ∑

ψ ω = −ω ρ θ

ω ψ ω + ω ψ ω

ψ

ψ ψ

W P a b R

c z W x a b H c R z W x a b H

i
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i

i

g j i i a b c

i

g j i c a b

j i

j i j i

( , ) ˆ ( ) cos( )

( ) ( , ) ( ) ˆ ( ) ( , ) ( , ) ( ) ˆ ( )
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2
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		  (3.50)
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The above equation may be further simplified to

	

( , ) ˆ ( ) ( , ) ( ) ˆ ( ), ,∑ ∑ψ ω = τ ω ψ ωψ ψW P a b W x a b
i

H j i a b

i

g j i PH a bj i j i 	 (3.51)

Equation (3.50) expresses the relationship of hydrodynamic pres-
sure to ground acceleration in terms of wavelet coefficients through a 
frequency-dependent transfer function, )( )τ ωPH . The transfer function 

( )τ ωPH  has the following expression:

	 ( ) cos( ) ( ) ( ) ( , ) ( ) ( , ) ˆ ( )2
,∑[ ]τ ω = −ω ρ θ ω + ω ψ ωψR c z H c R z H W x a bPH l i i c c

i

g j i a bj i

		
		  (3.52)

The transfer function may be divided by maximum hydrostatic pressure 
at the tank bottom (ρ Hgl ) to give it a nondimensional form. Thus, on 
doing so and also using cosθ = 1 (as θ is assumed to be zero), the expression 
for the frequency-dependent nondimensional hydrodynamic pressure coef-
ficient, ( )τ ωCPH , becomes

	

g
H
R

c z H c R z HCPH i i c c,
2

( ) ( ) ( ) ( ) ( )τ ω = −
ω

ω + ω
	 (3.53)

This hydrodynamic pressure coefficient may now be used to obtain the 
expected largest peak responses, as shown in Chapter 2.

3.5  NUMERICAL STUDY

The wavelet-based analytical approach described so far is now used to study 
the responses of a structural system. First, wavelet coefficients obtained 
from the data analysis of the time history record are demonstrated before 
and after ground motion characterization. Subsequently, a tank structure 
supported on the ground and assumed to be rigidly attached to the soil-
foundation system is analysed by wavelets. The responses of the system are 
also obtained from exact time history analysis and comparisons are made 
between the two methods.

3.5.1  Ground motion characterization

The wavelet coefficients are calculated corresponding to the random 
ground acceleration time history representing the Loma Prieta earthquake 
(1989), as shown in Figure 1.2. The wavelet coefficients are obtained using 
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the modified Littlewood–Paley basis function as explained in Chapter 2 
(Equation 2.36) for frequency bands and are depicted in Figure 3.6. The 
ground motion is then characterized as explained before by redistributing 
the wavelet coefficients at different time instants based on the central fre-
quency of each frequency band, and then these coefficients are squared, as 
shown in Figure 3.7.

3.5.2  Validation – PSA response

Figures  3.8 and 3.9 demonstrate the curves representing pseudospectral 
accelerations (in terms of g) of a single-degree-of-freedom system for 1% 
damping and 5% damping, respectively. These figures reveal that the 
responses obtained from wavelet-based analysis of the dynamic SDOF 
system are in reasonably good agreement with the responses obtained 
from exact time history simulation (using the Runge–Kutta fourth-order 
method). It may be reiterated here that the wavelet-based approach has con-
sidered only a single time history of input seismic excitation, whereas the 
time history analysis is based upon an ensemble of several different accel-
erograms representing the input seismic excitation at the same site. With 
higher level of damping, the response gets less.
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Figure 3.6 � Wavelet coefficients of the Loma Prieta (1989) acceleration data for some 
frequency bands.
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3.5.3  Validation – structural response

A right circular, cylindrical water storage tank structure made of steel with 
a thick foundation is assumed to be rigidly attached to the ground surface. 
Hence, the rocking effects of vibration as well as any soil–structure inter-
action effects may be ignored. The tank is subjected to a random ground 
vibration. The tank contains water to its full height and has no top cover. 
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Figure 3.7 � Squared wavelet coefficients after ground motion characterization for the 
Loma Prieta (1989) acceleration data for specific frequency bands.
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Figure 3.8 � Comparison of PSA spectra obtained from time history simulation and wave-
let analysis corresponding to 1% damping in the system.
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The steel tank is assumed to have a damping ratio of 5%. The damping 
ratio iζ  of the water mass vibrating in impulsive mode in unison with the 
tank is also assumed to be 5%. The damping ratio cζ  corresponding to the 
convective mode of liquid vibration is considered to be 1%. The ratio of 
tank wall thickness to tank radius (i.e. h

R
) is considered to be 0.001. The 

linear elastic material parameters for the steel tank are given by E (Young’s 
modulus of elasticity) = 2.1 × 1011 N/m2, ν (Poisson’s ratio) = 0.3 and ρ 
(mass density) = 7850 kg/m3. The ratio of the mass density of the tank water 
to the mass density of the steel tank is maintained constant at 0.127. The 
water in the tank is assumed to have a density of 1000 kg/m3. A series of 
parametric variation has been done with respect to the height of the tank-
liquid, H, for both fixed broad tanks with height-to-radius ratios less than 
or equal to 1 and for fixed slender tanks with height–radius ratios greater 
than unity. The hydrodynamic pressures and base shears are obtained at 
different heights along the tank wall and are plotted in graphs. Some of 
these are also compared with the results of the same system obtained using 
time history simulations. We will find the distribution of the hydrodynamic 
pressure coefficient on the tank wall along the vertical height. The height-
radius ratio of the tank is kept fixed at 0.5 (i.e. tanks are chosen broader) 
and three different heights of the tank are considered: 3, 7 and 15 m. As 
per the analytical formulation, we need the values of λ1, Ci, Ci(z) and Cc(z) 
to calculate the transfer function relating the pressure coefficients on the 
tank wall to the ground acceleration. As we are considering only the first 
sloshing mode of vibration of the liquid in the tank, the value of λ1, which 
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Figure 3.9 � Comparison of PSA spectra obtained from time history simulation and wave-
let analysis corresponding to 5% damping in the system.
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is the first zero of the first derivative of the Bessel function [27], is 1.841. 
The values of Ci may be obtained from Table 3.1. The values of Ci(z) repre-
senting impulsive components of hydrodynamic pressure can be obtained 
from Figure 3.10 [27], and the values of Cc(z) are easily obtainable from 
Equation (3.46).

The hydrodynamic pressure coefficients are obtained from time history 
simulation and wavelet analysis for three different heights of the tank struc-
ture (H = 3, 7 and 10 m) and are shown in Figures 3.11 to 3.13.

In each figure, the two curves corresponding to two types of analysis are 
quite close to each other, demonstrating the reliability of the wavelet-based 
method of analysis. Thus, wavelet-based analysis based on a single repre-
sentative accelerogram may be carried out to obtain the design curves for a 
given system. It is seen that the pressure increases with the increase in the 
height of the tank wall.

The coefficients of base shear are subsequently obtained for various tank 
heights for two different tank height–radius ratios (1.0 and 3.0). These are 
obtained from time history simulation and wavelet analysis and are shown 
in Figures 3.14 and 3.15. The curves seem to be in good agreement with 
each other. These validations give us confidence that the method adopted 
for ground motion characterization works well.
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3.5.4  Wavelet analysis – structural response

For the benefit of the readers, some more wavelet analysis has been done 
with different height–radius ratios to generate the design curves in case of 
tanks fixed to the foundation. The other parameters remain the same, as 
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Figure 3.11 � Hydrodynamic pressure coefficients on tank wall obtained from time history 
analysis and wavelet-based analysis for H = 3 m.
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Figure 3.12 � Hydrodynamic pressure coefficients on tank wall obtained from time history 
analysis and wavelet-based analysis for H = 7 m.
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Figure 3.13 � Hydrodynamic pressure coefficients on tank wall obtained from time history 
analysis and wavelet-based analysis for H = 15 m.
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Figure 3.14 � Variation of base shear coefficients with tank height obtained from time 
history analysis and wavelet-based analysis for tank height–radius ratio 
equal to 1.0.
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Figure 3.15 � Variation of base shear coefficients with tank height obtained from time his-
tory analysis and wavelet-based analysis for tank height–radius ratio equal 
to 3.0.
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Figure 3.16 � Pressure coefficients on tank wall obtained from wavelet analysis for H = 
3 m for various height–radius ratios.
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Figure 3.17 � Pressure coefficients on tank wall obtained from wavelet analysis for H = 7 
m for various height–radius ratios.
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Figure 3.18 � Pressure coefficients on tank wall obtained from wavelet analysis for H = 15 
m for various height–radius ratios.
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described in Section 3.5.3. The hydrodynamic pressure coefficients are cal-
culated again for different height–radius ratios (0.5, 1.0 and 3.0) and are 
plotted in Figures 3.16 to 3.18 for tank heights 3, 7 and 15 m, respectively. 
Similarly, base shear coefficients for various tank heights are calculated for 
H/R = 0.5 using the wavelet-based technique and are shown in Figure 3.19 
along with the wavelet-based analytical results already computed in the 
previous section for H/R = 1.0 and 3.0.
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Figure 3.19 � Shear coefficients at tank base obtained from wavelet analysis for different 
tank heights and height–radius ratios.
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Chapter 4

Wavelet-based analysis of 
linear MDOF system

We have seen in Chapter 3 how wavelet-based formulation is gradually 
developed for single-degree-of-freedom (SDOF) and two-degree-of-freedom 
(2-DOF) systems. In case of the 2-DOF system, the equations representing 
the dynamic motion of the system were uncoupled. So, searching for a solu-
tion was not a difficult task. However, in reality most of the systems may 
not always be representable as a simplified SDOF or 2-DOF system; rather, 
they would need to be represented with more degrees of freedom. In this 
chapter, we will take up a unique example of a specific multi-degree-of-
freedom (MDOF) system and show step-wise how to make valid assump-
tions to concentrate more on those parameters that would affect the system 
response to a great extent. The first important consideration would be to 
include soil interaction in the analysis. In Chapter 3 we have assumed the 
superstructure to be anchored to rigid foundations, thereby ignoring soil–
structure interaction. The other important criterion could be consideration 
of rocking motion of the structure [29, 30]. During strong ground shakings, 
it is quite likely that ground-supported structures like liquid storage tanks, 
buildings, reactors, etc. would be subjected to rocking motions as well. 
With these considerations, the main objective of this chapter is to define 
a suitable model with practical assumptions, development of a theoretical 
formulation based on the wavelet-based technique and providing a closed-
form analytical solution to the problem. The basic guidelines for such for-
mulation are well proposed in the work by Chatterjee and Basu [31].

4.1 � DESCRIPTION OF THE MODEL

The ground-supported cylindrical liquid storage tank is idealized as a 
multi-degree-of-freedom (in this case, 4-DOF) system. The tank is assumed 
to be flexibly attached to the soil–foundation system. The depth of the liq-
uid is the same as the height of the tank. The liquid in the tank is assumed 
to vibrate in predominantly two modes, as explained in Chapter 3. One is 
impulsive mode of vibration, in which the liquid (water in this case) moves 
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in unison with the tank. The other is the convective mode of liquid vibra-
tion, in which the water body vibrates mostly in the first sloshing mode. 
The tank is resting on a circular footing (of same radius as that of the 
tank), which is assumed to undergo rocking motion. Thus, the equivalent 
tank–liquid–foundation–soil system consists of 4 degrees of freedom – the 
horizontal displacement of impulsive liquid mass, the horizontal displace-
ment of convective liquid mass, the horizontal displacement of the tank–
foundation and the rocking motion of the tank–foundation system. The 
tank–liquid–foundation–soil model subjected to a seismic base excitation 
is shown in Figure 4.1.

The two modes of liquid vibration are represented by two different 
masses – impulsive mass mi and convective mass mc lumped at heights h′i 
and h′c , respectively, above the base of the tank. The impulsive mass of 
the tank–liquid is assumed to be attached to the tank through a combined 
spring-damper system, which actually represents the stiffness and corre-
sponding damping in the impulsive mode. The spring coefficient and the 
viscous damping coefficient are denoted by Ki and Cdi, respectively. Similar 
terms for the convective liquid mass are denoted by Kc and Cdc, respec-
tively. The soil–foundation system is represented by the foundation mass 
mf, which is attached to the surrounding soil medium through two sets of 
spring-dashpot combinations. These two sets of spring-dashpot systems are 
represented by the terms Kx  and Kψ, respectively – the first one being the 
complex-valued translational impedance function for the circular footing 
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xc (t)

ψR (t)

xf (t)

mi

mc

mf

Cdi
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h´c

h´i

Ki

Kx

Kψ

ẍg
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Figure 4.1 � MDOF model for a tank–fluid–foundation–soil system.
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on which the tanks rests, and the second term denotes the same for rocking 
motion of that footing.

The model is subjected to horizontal free-field ground displacement, 
xg(t). The ground shaking induces vibrations in the foundation, and hence 
it undergoes both lateral and rocking motions. The terms xf(t) and ψR(t) 
denote the absolute lateral and rocking displacements of the foundation. 
The displacements of the impulsive and convective masses with respect to 
the foundation are denoted by xi(t) and xc(t), respectively. The linear static 
stiffness coefficients, Ki and Kc for impulsive and convective liquid masses, 
respectively, are defined as

	 = ωK mi i i
2 	 (4.1)

	 = ωK mc c c
2 	 (4.2)

The linear viscous damping coefficients, Cdi and Cdc, are defined as

	 = ζ ωC mdi i i i2 	 (4.3)

	 = ζ ωC mdc c c c2 	 (4.4)

Now, the reader must be willing to know the expressions for natural fre-
quencies for impulsive and convective (first sloshing) modes of liquid vibra-
tion, i.e. ωi and ωc , respectively. These expressions are given below [2]:

	
ω =

ρ
C
H

E
i

i 	 (4.5)

	
ω = π λ λ

H
R

g
R

c 2 tanh1 1 	 (4.6)

In Equation (4.5), Ci is a dimensionless coefficient and is a function of 
four parameters. The first one is the ratio of liquid height to tank radius 
(for the present case, it is H/R), and the second one is the ratio of tank wall 
thickness (h) to tank radius (R). The next parameter is the Poisson’s ratio of 
the tank material (denoted by ν). The other parameter is the relative mass 
density of the liquid with respect to that of the tank (i.e. 

ρ
ρ
l ). The terms E 

and ρ denote the linear elastic tank material parameters, Young’s modulus 
and mass density, respectively. In Equation (4.6), λ1 is the first root of the 
first derivative of the Bessel function of the first kind and the first order and 
g is the acceleration due to gravity.
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The convective mass (mc) of the liquid forms a part of the total liquid 
mass in the tank and is calculated from the height–radius ratio of the tank 
(λ1) and the total mass of the tank–liquid (m1). The expression for mc is 
given as

	
=

λ λ
λm

R
H

H
R

mc l
2

tanh
1
2

1
1 	 (4.7)

The height of the lumped convective mass (h′c) above the tank base is given 
as follows:

	 = +h h hc c c 	 (4.8)

where

	
= −

λ
λ

h
R
H

H
R

Hc 1
1

tanh
21

1 	 (4.9)

and

	

=
λ λ

h
H

H
R

H
R

c

sinh1 1

	 (4.10)

4.2 � EQUATIONS OF MOTION

Now let us formulate the equations of dynamic equilibrium for the given 
system. As rocking motion is considered, the readers may note that the 
liquid masses would undergo additional translation due to rocking besides 
normal translational displacement due to horizontal motion. Let us first 
consider the equilibrium of only the impulsive mass of the liquid. The cor-
responding equation of motion may be written as

 



+ + ψ + + ψ + + ψ =m x t x t m h t K x t h t C x t h ti i f i i R i i i R di i i R[ ( ) ( )] ( ) [ ( ) ( )] [ ( ) ( )] 0

		  (4.11)
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On using Equations (4.1) and (4.3), Equation (4.11) may be simplified to 
the following:

	

 





+ + ψ + ω + ψ

+ ζ ω + ψ =

m x t x t m h t m x t h t

m x t h t

i i f i i R i i i i R

i i i i i R

[ ( ) ( )] ( ) [ ( ) ( )]

2 [ ( ) ( )] 0

2

	 (4.12)

The single and double dots represent single and double differentiations 
with respect to time. On considering the equilibrium of only the convective 
mass of the liquid and using relations given by Equations (4.2) and (4.4), 
one may write

	

 





+ + ψ + ω + ψ

+ ζ ω + ψ =

m x t x t m h t m x t h t

m x t h t

c c f c c R c c c c R

c c c c c R

[ ( ) ( )] ( ) [ ( ) ( )]

2 [ ( ) ( )] 0

2

	 (4.13)

Next, we consider the equilibrium of the tank–liquid–foundation system. 
This gives us the third equation of dynamic motion as follows:

   
 

+ + + + ψ + ψ + + =m x t x t m x t x t m h t m h t m x t Si i f c c f i i R c c R f f B[ ( ) ( )] [ ( ) ( )] ( ) ( ) ( ) 0

		  (4.14)

The term SB in the above equation denotes the shear at the tank base 
(precisely at the interface between the base of the tank–foundation and 
the supporting soil). Assuming that the foundation (i.e. the circular foot-
ing on which the tank is mounted) does not slip over the soil surface, the 
base shear remains proportional to the relative deformation of the tank–
foundation system and the soil. Thus, the base shear may be expressed as

	
= −S K x t x tB x f g( ( ) ( )) 	 (4.15)

The term Kx, as said earlier, represents the complex-valued translational 
impedance function of the circular footing in consideration and has the 
following expression:

	
=

− ν
α + βK

G R
iax

s

s
x x

8
2

( )0 	 (4.16)

The term Gs represents the shear modulus of the soil medium, which is 
related to the mass density of the soil (ρ) and the shear wave velocity in the 
soil (Vs) as per the following relation:

	 = ρG Vs s
2 	 (4.17)
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There are three other terms in Equation (4.16): α βa x x,   and0 . The first 
term, a0, is a nondimensional frequency parameter related to the frequency 
(ω) of foundation vibration through the following relation:

	
=
ω

a
R

Vs
0 	 (4.18)

The other terms, αx and βx, are the dimensionless functions of a0 and 
νs. Veletsos and Verbic [32], in one of their papers, proposed closed-form 
solutions for these two functions. It may be noted here that for the static 
case (i.e. if the value of ω = 0), the imaginary component βia x0  vanishes 
in Equation (4.16), and subsequently the term Kx consists of only real 
terms, which represents the static stiffness coefficient.

The fourth and last equation may be developed based on the equilibrium 
of moments of the tank–liquid–foundation system and written as

	


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m h x t x t h t

f R R i i i f i R

c c c f c R
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2

( ) ( ) [ ( ) ( ) ( )]

[ ( ) ( ) ( )] 0

2

	 (4.19)

In Equation (4.19), the term Kψ denotes the linear rocking impedance 
function of the foundation, which depends upon the soil properties and 
the frequency of foundation vibration. The expression for Kψ [33] is given 
below:

	
=

− ν
α + βψ ψ ψK

G R
ias

s

8
3(1 )

( )
3

0 	 (4.20)

The terms αψ and βψ are the two dimensionless functions that depend on 
the nondimensional frequency parameter a0, as defined by Equation (4.18) 
as follows:

	
α = −

+
ψ

a
a

1
0.3178

1 0.675
0
2

0
2 	 (4.21)

	
β =

+
ψ

a
a

0.2612
1 0.675

0
2

0
2 	 (4.22)
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It may be mentioned here that the above expressions of αψ and βψ  are valid 
corresponding to the value of ν =s

1
3 .

Furthermore, let us transform Equations (4.16) and (4.20) to obtain the 
expressions for lateral and rocking natural frequencies of vibration of the 
tank–liquid–foundation system. Let us divide both sides of these two equa-
tions by mf and m Rf

1
2

2, respectively, as follows:

	
=

− ν
α + β = ω α + β

K
m

G R
m

ia iax

f

s

f s
x x lf x x

8
(2 )

( ) ( )0
2

0 	 (4.23)

	

=
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α + β = ω α + βψ
ψ ψ ψ ψ

K

m R

G R
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f

s

f s
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1
2

16
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2

0
2

0 	 (4.24)

The constant terms in front of the parenthesis on the right-hand sides of 
Equations (4.23) and (4.24) represent the squares of the natural frequencies 
for lateral ω lf( )2  and rocking ωrf( )2  motions of the foundation. These terms 
have the following expressions;

	
ω =

− ν
G R

m
lf

s

f s

8
(2 )

	 (4.25)

	
ω =

− ν
G R

m
rf

s

f s

16
3 (1 )

	 (4.26)

4.3 � WAVELET DOMAIN FORMULATION OF 
TANK–LIQUID–FOUNDATION SYSTEM

The dynamic equilibrium of the tank–liquid–foundation–soil system is 
governed by four equations, (4.12) to (4.14) and (4.19), as shown in the pre-
ceding section. The MDOF system is subjected to a seismic ground accel-
eration process with a given nonstationary statistical characteristic. In this 
section we will make an attempt to transform the equations to the wavelet 
domain. The wavelet domain-coupled dynamic equations are formulated 
and then solved to get the expressions of instantaneous power spectral 
density function (PSDF) in terms of the functionals of input wavelet coef-
ficients. The moments of the instantaneous PSDF are used to obtain the 
stochastic responses of the tank in the form of coefficients of hydrodynamic 
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pressure, base shear and overturning base moment for the largest expected 
peak responses. A few parametric variations are carried out to study the 
effects of various governing parameters, e.g. height of liquid in the tank, 
height–radius ratio of the tank, ratio of total liquid mass to mass of founda-
tion, shear wave velocity in the soil medium, etc.

As seen in Chapter 2, like any other nonstationary system response, the 
nonstationary ground displacement and ground acceleration may also be 
expressed in terms of wavelet coefficients as

	
∑∑= ψψx t

K b
a

W x a b tg

i j j
g j i a bj i( ) ( , ) ( ), 	 (4.27)

	

 ∑∑= ψψx t
K b
a

W x a b tg

i j j
g j i a bj i( ) ( , ) ( ), 	 (4.28)

On differentiating Equation (4.27) two times and subsequently taking 
the Fourier transform of both sides, one may get

	

 ∑∑ω = ψ ω −ωψx
K b
a

W x a bg

i j j
g j i a bj i

ˆ ( ) ( , ) ( )( ),
2 	 (4.29)

On taking the Fourier transform of both sides of Equation (4.28), one 
may also get

	

 ∑∑ω = ψ ωψx
K b
a

W x a bg

i j j
g j i a bj i

ˆ ( ) ( , ) ( ), 	 (4.30)

On comparing Equations (4.29) and (4.30), one may obtain the follow-
ing important relation, which we will make use of:

∑∑ ∑∑ψ ω = −
ω

ψ ωψ ψ
K b
a

W x a b
K b
a

W x a b
i j j

g j i a b

i j j
g j i a bj i j i( , ) ˆ ( )

1
( , ) ˆ ( ), 2 ,

		
		  (4.31)

The above equation relates the wavelet coefficients of ground displace-
ment to the wavelet coefficients of ground acceleration. As also explained 
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in Chapter 2, the absolute lateral and rocking displacements of the founda-
tion may be expressed in terms of wavelet coefficients as follows:

	
∑∑= ψψx t

K b
a

W x a b tf

i j j
f j i a bj i( ) ( , ) ( ), 	 (4.32)

	
∑∑ψ = ψ ψψt
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a

W a b tR

i j j
R j i a bj i( ) ( , ) ( ), 	 (4.33)

Similarly, the system responses in terms of relative displacements of 
impulsive and convective liquid masses with respect to the tank–foundation 
may be expanded in terms of wavelet coefficients as follows:

	
∑∑= ψψx t

K b
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i j j
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∑∑= ψψx t
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i j j
c j i a bj i( ) ( , ) ( ), 	 (4.35)

The time derivatives of the above terms (single derivative indicating veloc-
ity and double derivative indicating acceleration) may be written as follows:
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 ∑∑( )ψ = ψ ψψt
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
∑∑= ψψx t
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i j j
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c j i a bj i( )   ( , ) ( ), 	 (4.43)

On substituting the expressions for x ti ( ), x tf ( ),  ψ ψt x t t x tR i R i( ),  ( ),  ( ),  ( ) and 
ψ tR( )  in Equation (4.12) and cancelling the common term, mi, one may get
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On taking the Fourier transform of both sides, Equation (4.44) becomes
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On collecting similar terms, Equation (4.45) reduces to
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Now, multiplying both sides of Equation (4.46) by ψ ωa bk l
ˆ ( )*

,  and using 
Equation (2.40) of Chapter 2, the following equation is obtained:
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Now, let us take up the next equation of system equilibrium, which is 
Equation (4.13). On substituting the expressions for x t( )c , x tf ( ), ψ t x tR c( ),  ( ),  

ψ t x tR c( ),  ( )  and ψ tR( )  in Equation (4.13) and cancelling the common term, 
mc, one may get
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On taking the Fourier transform of both sides, Equation (4.48) becomes
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On collecting similar terms, Equation (4.49) takes the following form:
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Now, we shall use the same technique here. First, we multiply both sides 
of Equation (4.50) by ψ ωˆ ( )a b

*
,k l  and use Equation (2.40) to obtain the fol-

lowing equation:
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Now, we pick up the third equation pertaining to the dynamic equilib-
rium of the tank–liquid–foundation system, which is Equation (4.14). On 
replacing the base shear, SB, by its expression as given in Equation (4.15), on 
substituting the expressions for  x t x t x t x tf g i c( ),   ( ),  ( ),   ( ),  ψx t tf R( ) and  ( )  in 
Equation (4.14) and dividing throughout by mf, one can get the following 
equation:
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We take the Fourier transform on both sides to transform it to the fre-
quency domain as follows:
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Now, again we multiply both sides of Equation (4.53) by ψ ωa bk l
ˆ ( )*

, , 
use Equation (2.40) and divide all terms by ω2 to obtain the following 
equation:
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We now take up the remaining system equilibrium equation (Equation 
4.19) to convert it to the wavelet domain. For this we repeat the same 
process as done above with three other equations of dynamic equilib-
rium of the system. First, we substitute the expressions for  x t x ti c( ),  ( ), 


ψ ψx t t tf R R( ),   ( ) and  ( ) in Equation (4.19) and divide throughout by mf to 
obtain the following equation in the wavelet domain:
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Subsequently, we Fourier transform the wavelet domain equation to get 
the following:
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	 (4.56)

Now, we multiply both sides of Equation (4.56) by ψ ωa bk l
ˆ ( )*

, , use Equation 

(2.40), divide all terms by ω2  and then collect similar terms to obtain the 
following equation:
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Thus, we obtain four coupled equations based on which we shall obtain 
the various responses of the tank–liquid–foundation-soil system in the wavelet 
domain.

4.4 � WAVELET-BASED NONSTATIONARY 
SYSTEM RESPONSES

Let us temporarily denote the expressions ∑ ψ ωψW x a bi i j i a bj i( , ) ˆ ( ), , 
∑ ψ ωψW x a bi f j i a bj i( , ) ˆ ( ), , ∑ ψ ωψW x a bi c j i a bj i( , ) ˆ ( ), , ∑ ψ ψ ωψW a bi R j i a bj i( , ) ˆ ( ),  
and ∑ ψ ωψW x a bi g j i a bj i( , ) ˆ ( ),  by Xi , Xc , Xf , ψX  and Xg  for easier rec-
ognition in the remaining part of the formulation. So, Equations (4.47), 
(4.51), (4.54) and (4.57) may be respectively rewritten as

	
ω −ω + ζ ω ω + −ω + ω − ω + ζ ω ω =ψi X X h i Xi i i

i f
i i i i2 [ ] 2 02 2 2 2 2

	(4.58)

	
ω −ω + ζ ω ω + −ω + ω − ω + ζ ω ω =ψi X X h i Xc c c

c f
c c c c2 [ ] 2 02 2 2 2 2 	(4.59)
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However, our main objective in this chapter is to formulate the wavelet-
based response of the tank in terms of hydrodynamic pressure on the tank 
wall, base shear and overturning base moment. The total hydrodynamic 
pressure, PH(t), at any point on the tank wall at a certain time instant is 
obtained by summing up the hydrodynamic pressures due to the impulsive 
component and the convective component (corresponding to the first slosh-
ing mode only) at that time instant. Thus, the expression for PH(t) becomes

 


 
= ρ θ + + ψ + + + ψP t R c z x t x t h t c R z x t x t h tH l i i f i R c c f c R( ) cos( )[ ( ){ ( ) ( ) ( )} ( , ){ ( ) ( ) ( )}] 	

		  (4.62)

We see two dimensionless functions used in the expression of hydro-
dynamic pressure. These are ci(z) and cc(R,z). The first function (ci(z)) 
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represents the height-wise variation of hydrodynamic pressure for the 
impulsive component of liquid vibration, and the second one (cc(R,z)) 
defines the distribution of the same due to the first convective (sloshing) 
mode. It is worth mentioning here that these two distribution functions do 
not consider the rotational component of the motion; however, the rock-
ing component of the ground motion is included in Equation (4.62). It 
may also be noted that we are considering the seismic base excitation in 
the horizontal direction. Hence, the value of θ in Equation (4.62) may 
safely be assumed to be zero. So, the term Rcos(θ) becomes only R. The 
expression for cc(R,z) is given below [27], which may be used to obtain the 
hydrodynamic pressure on the tank wall (at r = R).

	

=
λ −

λ

λ
c R z

z
R
H
R

c( , )
2

1

cosh

cosh1
2

1

1

	 (4.63)

The effective shear at the tank base (QB) and the net effective overturn-
ing moment (MB) at any time at a section immediately above the tank base 
may be calculated from Figure 4.1 in terms of impulsive displacement, con-
vective displacement, rocking response and the foundation displacement 
and are written below:

	
 


 

= + + ψ + + + ψQ t m x t x t h t m x t x t h tB i i f i R c C f c R( ) { ( ) ( ) ( )} { ( ) ( ) ( )} 	 (4.64)

	
 


 

= + + ψ + + + ψM t m h x t x t h t m h x t x t h tB i i i f i R c c C f c R( ) { ( ) ( ) ( )} { ( ) ( ) ( )}
	

(4.65)

As we have done earlier, the next step would be to represent the hydro-
dynamic pressure, base shear and base moment in terms of wavelet coef-
ficients as follows:
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On substituting the expressions for x tf ( ), ψ tR( ), x ti  ( ) , x tc( )  and P tH ( )  from 
Equations (4.37), (4.39), (4.41), (4.43) and (4.66) in Equation (4.62), one may 
obtain the following expression for hydrodynamic pressure in the wavelet domain.
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Now, on Fourier transforming Equation (4.69), multiplying both sides 
of the transformed equation by ψ ωa bk l

ˆ ( )*
,  and subsequently using Equation 

(2.40), one may obtain the following expression of hydrodynamic pressure 
in terms of wavelet functionals:

	

∑ ∑ψ ω = τ ω ψ ωψ ψW P a b W x a b
i

H j i a b H

i

g j i a bj i j i( , ) ˆ ( ) ( ) ( , ) ˆ ( ), , 	 (4.70)

Equation (4.70) relates the wavelet coefficients of hydrodynamic pressure 
on the inner tank wall at various heights to the wavelet coefficients of the 
ground acceleration through the transfer function τ ωPH ( ), which has the 
following expression:

τ ω = −ρ ω τ ω + τ ω + τ ω + τ ω + τ ω

+ τ ω

R c z h c R z

h

H l i i f i R c c f

c R

( )   [ ( ){ ( ) ( ) ( )} ( , ){ ( ) ( )

( )}]

2

	 (4.71)

This transfer function for hydrodynamic pressure is not like the other 
transfer functions we have seen before. The previous transfer functions 
were relating the wavelet coefficients of a specific response, say, impulsive 
displacement, directly with those of the ground acceleration using system 
properties and excitation frequency. In this case, τH(ω) involves several 
other transfer functions to establish the relation between wavelet coeffi-
cients of hydrodynamic pressure and wavelet coefficients of ground motion. 
In Equation (4.71), τi(ω), τc(ω) and τf(ω) represent the transfer functions 
relating the displacements of the impulsive mode of the liquid, the first 
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convective mode of the liquid and the foundation to the ground accelera-
tion. The term τR(ω) represents the transfer function relating the rocking 
motion of the foundation to the ground acceleration. All these relationships 
are valid in terms of wavelet coefficients. At this point, let us assume the 
expressions for τi(ω), τc(ω), τf(ω) and τR(ω), as mentioned below:

	

∑ ∑ψ ω = τ ω ψ ωψ ψW x a b W x a b
i

i j i a b i

i
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In fact, the above expressions may even be simplified if we use the nam-
ing convention as described at the beginning of Section 4.4 and rewritten as

	
= τ ωX Xi

i
g( )  	 (4.76)

	
= τ ωX Xc

c
g( )  	 (4.77)

	
= τ ωXf

f
gX( )  	 (4.78)

	
= τ ωψX XR

g( )  	 (4.79)

On substituting the expressions for x tf ( ) , ψ tR( ), x ti ( ), x tc( )  and Q tB( )  
from Equations (4.37), (4.39), (4.41), (4.43) and (4.67) in Equation (4.64), one 
may obtain the following expression for base shear in the wavelet domain:
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As done earlier, taking the Fourier transform of Equation (4.80), multi-
plying both sides of the transformed equation by ψ ωa bk l

ˆ ( )*
,  and then using 

Equation (2.40), the relation between the wavelet coefficients of tank base 
shear and the wavelet coefficients of ground acceleration may be obtained 
through an appropriate transfer function, τ ωQ( ), as follows:

	

∑ ∑ψ ω = τ ω ψ ωψ ψW Q a b W x a b
i
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The expression for τ ωQ( ) is shown below:

	
τ ω = −ω τ ω + τ ω + τ ω + τ ω + τ ω + τ ωm h m hQ i i f i R c c f c R( ) [ { ( ) ( ) ( )} { ( ) ( ) ( )}]2

		  (4.82)

Similarly, on substituting the expressions for x tf ( ), ψ tR( ), x ti ( ), x tc( ) and 
M tB( )  from Equations (4.37), (4.39), (4.41), (4.43) and (4.68) in Equation 
(4.64), one may obtain the following expression for the overturning base 
moment in the wavelet domain:
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Following a similar sequence of operations as done above in the cases of 
hydrodynamic pressure and base shear, the following expression for base 
moment may be obtained:

	

∑ ∑ψ ω = τ ω ψ ωψ ψW Q a b W x a b
i

B j i a b M
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in which the transfer function τ ωM ( )  has the following expression:

τ ω = −ω τ ω + τ ω + τ ω + τ ω + τ ω + τ ωm h h m h hM i i i f i R c c c f c R( ) [ { ( ) ( ) ( )} { ( ) ( ) ( )}]2

		
		  (4.85)

Now, it is clear to us that we have to know beforehand the expressions for 
τi(ω), τc(ω), τf(ω) and τR(ω) to obtain the transfer functions τH(ω), τQ(ω)  
and τM(ω). This is possible if we solve Equations (4.58) to (4.61) to get the 
expressions for the unknowns Xi, Xc , Xf  and Xψ  in terms of the known 
variable, Xg .

4.5 � SOLUTION OF TRANSFER FUNCTIONS

Equations (4.58) to (4.61) form a set of simple linear simultaneous algebraic 
equations that may be readily expressed in the following matrix format:
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The complex coefficients are placed in matrix [Ccoeff] given by

=Ccoeff[ ]

{ }
{ }

ω − ω + ζ ω ω

−

ω − ω + ζ ω ω

−

−ω

−ω

+ + −
ω

− −

ω − ω + ζ ω ω

ω − ω + ζ ω ω

+

− − − +
ω

ψ

i

m
m

m
m

h

i

m
m

m
m

h

m
m

m
m

K
m

m
m

h
m
m

h

h i

h i

h
m
m

h
m
m

R
m
m

h
m
m

h
K

m

i i i

i

f

i

f
i

c c c

c

f

c

f
c

i

f

c

f

x

f

i

f
i

c

f
c

i i i i

c c c c

i
i

f
c

c

f

i

f
i

c

f
c

f

2    

0

0   

2

  

   

  

1

2

2

1
2

2 2

2 2

2

2

2

2 2

2 2

2 2 2
2

		  (4.87)

Now, the solutions for Xi, Xc , Xf and Xψ may be obtained from Equations 
(4.86) once we are able to invert the complex coefficient matrix, [Ccoeff]. Let 
us assume that on inverting matrix [Ccoeff], we obtain real and imaginary 
components as follows:

	
= +−C C i Ccoeff coeff

R
coeff

i[ ] [ ]  [ ]1 	 (4.88)
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where
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Thus, multiplying both sides of Equation (4.5.1) by −Ccoeff[ ] 1 , one may obtain
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From Equation (4.91), the expression for Xi (i.e. ∑ ψ ωψW x a bi i j i a bj i( , ) ˆ ( ), ) 
may be derived in terms of Xg  (i.e. ∑ ψ ωψW x a bi g j i a bj i( , ) ˆ ( ), ) as

	

{ }=
ω

+X
K
m

c ic Xi x

f

r i g[ ]4 13 13 	 (4.92)

Similarly, other relations between wavelet coefficients of convective dis-
placement, foundation displacement and base rotation may be written in 
terms of wavelet coefficients of seismic ground acceleration as
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The transfer functions, τi(ω), τc(ω), τf(ω) and τR(ω), may be readily recog-
nized from Equations (4.92) to (4.95) and written as follows:
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f
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Once the expressions for transfer functions correlating the wavelet coef-
ficients of impulsive, convective and foundation displacements and rock-
ing displacement (i.e. τi(ω), τc(ω), τf(ω) and τR(ω), respectively) to wavelet 
coefficients of ground accelerations are known, the transfer functions for 
hydrodynamic pressure, base shear and base moment (i.e. τH(ω), τQ(ω)  
and τM(ω)  respectively), as given by Equations (4.71), (4.82) and (4.85), 
may be computed. On substituting appropriate terms, dividing by ρH gl  
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(which is the maximum hydrostatic pressure at the tank base) using 
Equation (4.39) and subsequently simplifying, one may easily obtain the 
transfer function for hydrodynamic pressure coefficient, τCH(ω), as follows:

τ ω = −
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ω
+ + +
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In Equation (4.100), the expressions for S1, S2, T1 and T2 are as follows:
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On substituting appropriate terms, dividing by mlg (which is the weight 
of the tank–liquid), using Equation (4.23) and simplifying further, one 
may get the transfer function for the tank base shear coefficient, τ ωCQ( ), 
as follows:
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In a similar way, the expression for the transfer function for the over-
turning base moment coefficient at the tank base may be obtained (in this 
case, we need to divide by mlHg for making it dimensionless) as
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The expressions for hydrodynamic pressure coefficient, base shear 
coefficient and overturning base moment coefficient may be further 
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simplified on collecting the real and imaginary components separately 
as follows:
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It may be noted here that the terms cmn
r  and cmn

i , as used in the above 
equations, may be obtained from the matrix inversion process, which is not 
explained here in further detail. Thus, we now know the expressions of all 
transfer functions. Using these transfer functions, we may now start look-
ing for the expected largest peak response of the tank–liquid–foundation 
system in the wavelet domain.

4.6 � EXPECTED LARGEST PEAK RESPONSE

The expected largest peak response of the tank–liquid–foundation system 
is computed in this section with the help of statistical functionals of wavelet 
coefficients. First, we express the expected hydrodynamic pressure coef-
ficients in terms of the expected ground motion process using the relevant 
transfer function. Subsequently, we evaluate the instantaneous energy in 
the mean square response of the pressure coefficients followed by evalua-
tion of the power spectral density function. In this derivation, we follow the 
same procedure as shown in previous chapters.
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On taking expectation of the square of the amplitude of the left- and 
right-hand sides of Equation (4.70), integrating over ω and using the orthog-
onality relation for the Littlewood–Paley wavelet basis function given by 
Equation (2.18), the relationship for a specific (jth) frequency band becomes
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The instantaneous energy for the mean square response in terms of 
hydrodynamic pressure coefficient (CH) at a particular time instant (t = 
bi) and corresponding to a specific band j (with dilation factor aj) may be 
obtained using the time-localization property of wavelet coefficients and 
may be expressed as follows:
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Equation (4.111) is an approximate relation. The instantaneous power 
spectral density function (SCH) for the hydrodynamic pressure coefficient may 
now be obtained by summing up the average energy terms of the pressure 
coefficients (i.e. averaged over Δb) over all frequency bands, as shown below:
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We know from previous discussions in Chapter 2 that the expressions for the 
zeroth, first and second moments of the PSDF are essential to evaluate the non-
stationary peak factors of any responses. So, in this case we have to compute 
these values at every time point from their respective expressions given below:

	

∑= π σ −
= ψm

K
E W x a b It b

j

g j i ji|
( 1)

[| ( , )| ]0
2

0, 	 (4.113)

	

∑= π σ −
= ψm

K
E W x a b It b

j

g j i ji|
( 1)

[| ( , )| ]1
2

1, 	 (4.114)

	

∑= π σ −
= ψm

K
E W x a b It b

j

g j i ji|
( 1)

[| ( , )| ]2
2

2, 	 (4.115)



Wavelet-based analysis of linear MDOF system  101

The expressions for the three moments of PSDF as shown in Equations 
(4.113) to (4.115) remain the same for hydrodynamic pressure coefficients, 
base shear coefficients and base moment coefficients. The difference lies in 
the expressions for I0,j, I1,j and I2,j. The expressions for I0,j, I1,j  and I2,j  for 
hydrodynamic pressure coefficients are written below:
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In the same way, the expressions for the terms I j0, , I j1,  and I j2,  for base 
shear coefficients may be written as
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The expressions for the same terms in the case of base moment coeffi-
cients are given below:
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Now, it becomes easier to compute the nonstationary peak factors for 
the largest expected peak response. The probability that the process (non-
stationary response in terms of hydrodynamic pressure or base shear or 
base moment) remains below the level x within a time interval [0, T] is 
first computed from Equation (2.63). Subsequently, the time-dependent 
rate of the Poisson process is obtained using Equation (2.65), following 
which the expected value of the largest peak is obtained from Equation 
(2.67).

4.7 � NUMERICAL EXAMPLE

The formulation of a multi-degree-of-freedom tank–fluid–foundation–soil 
system subjected to a random base excitation in the form of seismic ground 
motion is now clear to us. We will now try to apply the concept to solve the 
problem of a realistic tank model and obtain the nonstationary stochastic 
responses of the system. The objective is to carry out a parametric study 
on the stochastic responses of the tank–fluid–foundation system undergo-
ing rocking motion to observe the effects of the variation in hydrodynamic 
pressure on the tank wall, shear developed at the tank–foundation inter-
face and the overturning moment generated at the tank base due to the 
changes in liquid height, ratio of total liquid mass to foundation mass, 
slenderness of the tank and shear wave velocity in soil. This results in 
generation of some design charts that any user may develop following the 
formulation given in the previous sections. In the first set of examples, we 
will consider only impulsive liquid mass and ignore the convective mode 
of liquid vibration. However, soil interaction will be involved. The next set 
of examples will have soil–structure–fluid interaction analysis for the total 
structural model (considering both impulsive and first sloshing modes of 
fluid vibration). The results are all obtained from wavelet-based analysis 
of the models.
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4.7.1 � Impulsive response

For the analysis of the tank–fluid–soil interaction considering only the 
impulsive mode of liquid vibration, the tank with same linear elastic 
material properties as explained in Chapter 3 is considered. The values 
of material properties of linear elastic soil are as follows: Poisson’s ratio 
= 1

3  and mass density = 1500 kg/m3. The properties of rigidly supported 
steel tanks for impulsive response are listed in Tables 4.1 to 4.3 [27]. These 
tables provide the values of mi/ml, hi/H and h′i/H, respectively, for various 
combinations of h/R and H/R  ratios. These values are required to compute 
the responses of the structure as per the formulation laid out in previous 

Table 4.2  Values of hi/H in case of rigidly supported steel tanks for 
impulsive response

h/R H/R = 0.5 H/R = 1.0 H/R = 2.0 H/R = 3.0

0.0005 0.385 0.415 0.491 0.547
0.001 0.387 0.417 0.492 0.548
0.002 0.392 0.420 0.494 0.549

Source:	 Veletsos, A. S., and Tang, Y., Earthquake Eng. Struct. Dyn., 19, 473–496, 
1990.

Table 4.3  Values of h′i/H in case of rigidly supported steel tanks for 
impulsive response

h/R H/R = 0.5 H/R = 1.0 H/R = 2.0 H/R = 3.0

0.0005 1.455 0.799 0.543 0.562
0.001 1.428 0.706 0.543 0.563
0.002 1.384 0.700 0.544 0.564

Source:	 Veletsos, A. S., and Tang, Y., Earthquake Eng. Struct. Dyn., 19, 473–496, 
1990.

Table 4.1  Values of mi/ml in case of rigidly supported steel 
tanks for impulsive response

h/R H/R = 0.5 H/R = 1.0 H/R = 2.0 H/R = 3.0

0.0005 0.300 0.549 0.694 0.695
0.001 0.304 0.554 0.700 0.703
0.002 0.312 0.565 0.711 0.713

Source:	 Veletsos, A. S., and Tang, Y., Earthquake Eng. Struct. Dyn., 19, 473–496, 
1990.
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sections. In case of only the impulsive mode of liquid being considered, the 
convective mass of the liquid participating in vibrations is assumed to be zero, 
hence mc/ml  = 0 and mi/ml= 1.0. The ratio of the density of water to steel 
is assumed to be 0.127. The damping for the impulsive part (ζi) is assumed 
as 5%. When only the impulsive part of the liquid mass and lateral motion 
of the system are considered (foundation thickness is assumed to be high 
to arrest rocking motion), the model reduces to a 2-DOF system (impulsive 
motion and foundation motion, both in the lateral direction only).

The impulsive modal mass heights, hi and h′i , are obtained from Tables 4.2 
and 4.3 based on the choice of h/R (= 0.001 here) and H/R (= 0.5, 1 and 3 
considered here) and the height of the tank assumed in the examples. The 
system is solved in the wavelet domain, and the pseudospectral accelera-
tion (PSA) response spectrum is obtained for different parametric varia-
tions. Figure 4.2 shows the variation of the PSA response of the tank (with 
only impulsive liquid mass) with the tank height for different mass ratios, 
γ (mass of the impulsive liquid to the mass of the supporting foundation, 
i.e. mi/ml). Figures 4.3 and 4.4 demonstrate some design curves showing 
the variation of PSA responses with shear wave velocity (Vs) and lateral 
natural frequency of the foundation vibration (ωlf), respectively, for differ-
ent heights of the tank. Thus, more design curves could be generated in the 
same way, changing other parametric values.
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Figure 4.2 � Variation of PSA with tank height for different mass ratios.
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4.7.2 � MDOF analysis results

Now, we make two important changes to our 2-DOF model. We introduce 
the first sloshing mode into the model and allow the rocking motion of the 
foundation simultaneously. The thickness of the foundation beneath the 
tank is assumed to be much less, so as to induce rocking motion into the 
system. The damping ratio corresponding to the first sloshing mode (i.e. ζc) 
is assumed to be 1%. The value of λ1 is assumed to be 1.841 (vide Equation 
(4.16)). Hence, the system now turns into a MDOF (4-DOF) model. In this 
case, the corresponding values of mi/ml may be obtained from Table 4.1, 
and mc/ml  is obtained from subtracting mi/ml  from 1.0. The heights of 
lumped impulsive modal mass are obtained as usual from Tables 4.2 and 
4.3. The heights of lumped convective modal mass may be found from 
Equations (4.8) to (4.10). Once these parameters are all known, the transfer 
functions and instantaneous moments and PSDFs as obtained from wavelet 
analysis may be computed and finally used to obtain the expected largest 
peak values of the response terms. The values of hydrodynamic pressure 
coefficients at different elevations of the tank wall thus found out are plot-
ted in Figures 4.5 to 4.7, respectively, for variations in shear wave velocity 
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(50, 200 and 400 m/s), H/R ratios (0.5, 1 and 3) and ratio of total liquid 
mass to foundation mass (4 and 8). Figure 4.8 also depicts the variation in 
tank base shear coefficient with shear wave velocity in soil for different H/R 
ratios (0.5, 1 and 3). These figures may be used as design curves for dif-
ferent situations by structural designers, and similar others may be found 
out if necessary following the same wavelet-based approach, to include the 
ground motion nonstationarities.
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Chapter 5

Wavelet-based nonstationary 
vibration analysis of a 
simple nonlinear system

The previous chapters have been devoted to the response analysis of linear 
systems subjected to nonstationary random vibrations. In these chapters, 
the basic idea of wavelets and the usefulness of wavelet-based analysis have 
been explained. The theory of wavelet-based analysis is used to develop 
and formulate the system equations of motions and transfer those to the 
wavelet domain and solve using wavelet coefficients. However, not all the 
structures behave in a way that could be well approximated by a linear 
system. In reality, the responses of a structure may deviate far from linear 
considerations [34–38]. The response of, say, buildings to earthquakes is 
a nonlinear dynamic problem. The readers should keep in mind that at 
this point we are talking about the nonlinearity present in the material 
model of the structure. However, it should also be borne in mind that we 
are not concerned about how to represent material nonlinearity; rather, 
we are focused only on how to formulate the equations of motion once 
we consider nonlinearity in our assumptions and how we solve the system 
dynamics using the wavelet analytical technique. The basic background 
theory regarding wavelets as discussed in previous chapters is used in this 
chapter too; however, the problem has become more complicated due to 
introduction of nonlinearity into the system. The main objective is to pro-
vide an insight into the formulation of the problem related to obtaining the 
nonlinear response of the system using the wavelet-based approach.

5.1  NONLINEAR SYSTEM

So far, we have considered linear structural systems in the analysis. 
However, most of the engineering structures include some degree of nonlin-
earity under real operating conditions. Though an assumption of a struc-
ture being linear is justified based on dynamic conditions and magnitude 
of external input excitation, nonlinear analysis of a structural system may 
become necessary as per design requirements that are aimed to improve the 
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performance level, prediction accuracy, cost optimization, etc. Generally, 
different types of nonlinearities are introduced into the system due to stiff-
ness, damping and friction effects, and these are usually dependent on 
amplitude of external force, velocity of motion and frequency of excitation. 
These are simplified and idealized so that the nonlinearity may be incor-
porated into subsequent simulation and analysis. The sources of nonlin-
earities may be broadly classified into material nonlinearity and geometric 
nonlinearity. To better understand the effect of nonlinear stiffness on the 
responses of structural systems, the Duffing oscillator is used to model the 
physical behaviour of the system with hardening (stiffening) or softening 
nonlinearity. The Duffing oscillator is the simplest appropriate nonlinear 
model available. A linear term and a nonlinear term are needed to describe 
the initial linear-elastic region of the stress-strain curve and the subsequent 
nonlinearities under larger deformations. Before going into the details of 
wavelet-based formulation for obtaining the response of a nonlinear struc-
tural system, let us first look into the basic theory of the Duffing oscillator, 
which will be subsequently used.

5.2  DUFFING OSCILLATOR

The single-degree-of-freedom (SDOF) system is modelled using the Duffing 
oscillator, and the response of the system subjected to nonstationary ran-
dom excitations is investigated analytically. A damped Duffing oscillator 
with cubic nonlinearity in the restoring force is considered in the physical 
model of the system. The analytical treatment is carried out by the pertur-
bation method because this is suitable for systems with weak nonlinearity, 
which is considered in the present analysis. Before going into the details of 
wavelet-based formulation and solution of the system response, a concise 
introduction to the Duffing oscillator and perturbation method may be 
useful to the readers.

The Duffing oscillator has become a classical paradigm for explaining 
the nonlinear behaviour of systems. Let us assume that a SDOF system is 
subjected to an external forcing function that is harmonic in nature. The 
relevant nondimensional Duffing equation is written as

	

+ ζ + + β =x t x t x t x t F t( ) 2 ( ) ( ) ( ) cos( ) 3
  	 (5.1)

In the above equation the terms x(t), ζ and β on the left-hand side denote 
displacement (with respect to time), damping ratio and cubic stiffness 
parameter, respectively. The single dot and double dots represent velocity 
and acceleration, respectively. The terms F and Ω respectively represent 
the amplitude of the external force and the dimensionless frequency of the 
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excitation (Ω is the ratio of the frequency of external force to the natural 
frequency of the system). If β = 0, Equation (5.1) reduces to the (forced) 
linear oscillator. For β > 0, the same equation represents a forced nonlinear 
oscillator, which is characterized by a nonlinear force-displacement curve. 
A positive value of β would correspond to a hardening (stiffening) spring, 
whereas a negative value would represent a softening spring. Now, one 
should note that Equation (5.1) stands for an externally excited Duffing 
oscillator where the excitation is external to the system. As this exter-
nal forcing function is time dependent, the Duffing equation becomes a 
second-order nonautonomous system.

One may easily find that on assuming no external force (i.e. free vibra-
tion, so F = 0) and substituting β = 0 in Equation (5.1), the free vibration 
equation becomes

	 + ζ + =x t x t x t( ) 2 ( ) ( ) 0  	 (5.2)

The initial conditions are assumed to be =x x(0) 0  and =x x(0) 0  . The above 
equation may be solved assuming the solution to be of the following form:

	 = λx t ke t( )   	 (5.3)

On substituting this expression of x(t) in Equation (5.2), using boundary con-
ditions and making suitable simplifications (details may be followed from any 
textbook), the response for an underdamped system (ζ < 1) may be obtained as

	
= ω +−λx t Ke tt

d( ) sin( ) 	 (5.4)

In the above equation, the expressions for the constant term K, the damped 
natural frequency ωd  and the phase angle φ are given as

	



= +
+ ζ
ω

K x
x x

d
0
2 0 0

2

	 (5.5)

	
ω = − ζd 1 2 	 (5.6)

	


=
ω
+ ζ

− x
x x

dtan 1 0

0 0
	 (5.7)

Equation (5.4) shows that the oscillations are decaying exponentially. 
When the external force is present without cubic nonlinearity in spring 
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stiffness (so, the case becomes the same as linear damped forced vibration), 
the equation is written as

	

+ ζ + =x t x t x t F t( ) 2 ( ) ( ) cos( )   	 (5.8)

Using the same pair of initial conditions as used before for the case of 
free damped vibration, the nonhomogeneous equation (Equation (5.8)) 
gives a solution consisting of two parts, as written below:

	
= ω + + + φ−λx t Ke t T tt

d( ) cos( ) cos( ) 	 (5.9)

The first part of the response, x(t), is a homogenous part resembling an 
exponentially decaying response, and the second is the nonhomogeneous 
part resembling a steady-state response. The constant term ϕ denotes the 
phase shift with respect to the phase of the external force F and is given by 
the following relation:

	

( )φ ω =

−
ζ
−

ω ≤

− π −
ζ
−

ω >

−

−

tan
2

1
, 1

tan
2

1
, 1

1
2

1
2

	 (5.10)

The term T is given as

	

=
− + ζ

T
F

(1 ) 42 2 2 2
	 (5.11)

The magnification factor, M, is obtained on dividing the amplitude of 
the nonhomogeneous part of the response given in Equation (5.9) (i.e. the 
term T) by the absolute amplitude of the excitation force, F:

	

=
− + ζ

M
1

(1 ) 42 2 2 2 	 (5.12)

There is an interesting observation for the magnification factor. For a 
specific damping ratio, the excitation frequency at which the maximum 
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magnification takes place may be determined from the first- and second-
order differentiations of M as follows:

	

=
dM

d
( )

0 	 (5.13)

	

<
d M

d
( )

0
2

2 	 (5.14)

Using Equations (5.12) to (5.14), it is found, after an easy exercise, that the 
maximum amplification (M) in the response is possible when = − ζ1 2 2  
for < ζ <0 1

2
. This means that the lower the damping ratio, the closer 

the excitation frequency (causing maximum steady-state response) is to the 
natural frequency of the system. The change in the magnification factor due 
to the change in excitation frequency for various damping ratios is shown 
clearly in Figure 5.1.

It is also notable that when resonance occurs (i.e. Ω = 1), the response of 
the system is unbounded, and hence the magnification factor also tends to 
become very high (infinity). A system with lower damping exhibits signifi-
cant magnification over a shorter range of frequencies than a system with 
higher damping.

Now, let us turn our attention to the original Duffing equation, as given 
by Equation (5.1). A nonlinear term x3 is seen in this equation, which means 
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Figure 5.1 � Variation in magnification factor due to change in excitation frequency for 
different values of damping ratios.
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the linear superposition rule can no longer be used to obtain the forced 
response of the nonlinear system. The reader also has to keep in mind that 
the in the case of linear systems, the steady-state response does not depend 
on initial conditions. However, in the case of a nonlinear system the initial 
conditions influence the steady-state response. The maximum response also 
does not occur close to the natural frequency of the system if nonlinearity 
in the system is assumed. The cubic nonlinearity as considered can create 
resonance at a frequency that is away from the system natural frequency. A 
closed-form analytical solution to Equation (5.1) does not exist. However, 
some assumptions and approximations can be made to obtain an analyti-
cally approximate solution to the Duffing equation. In this case the method 
of perturbation will be used to solve the Duffing equation. The perturba-
tion method and the solution of Duffing’s equation are explained in the 
next sections.

5.3  PERTURBATION METHOD

The theory of perturbation is based on the concept of introducing small 
disturbances in the equation to solve it. It must be remembered that when 
the effect of a small parameter (simulating small disturbance) is small, 
the perturbation is termed regular perturbation; else, if the introduction 
of this small disturbance generates a large change in the solution, it is 
called a singular perturbation. Let us take a simple example on perturba-
tion. We will find out the value of 50  using the perturbation method, 
i.e. by adding a small coefficient to 49. So, 50  can be rewritten as 
follows:

	

( )= + ε = + ∗ = +

= ∗ = ∗ =

50 49 49 49 0.02 49 1 0.02

7 1.02 7 1.00995 7.06965

Though the more approximate answer is 7.07107 (up to five places of deci-
mal), the answer 7.06965 obtained from perturbation is quite acceptable.

Now, we look into a second example. We try to solve the following equation:

	
( )− = εx x2 cosh 	 (5.15)

If ε = 0, x = 2. Assume ε ≪ 1, and expand x as

	 = + ε + ε +…x x x x0 1
2

2 	 (5.16)
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On substituting x in Equation (5.15) by its expansion as shown in 
Equation (5.2), the following equation is obtained:

	

+ ε + ε +… − = ε + ε + ε +…x x x x x x( ) 2 cosh( )0 1
2

2 0 1
2

2 	 (5.17)

The above equation can be solved separately for each order of ε. However, 
ε is assumed to be much smaller than 1, so the higher terms of ε can be 
ignored. Subsequently, solving only for the order of ε, one may obtain the 
following solution:

	
≈ + εx 2 cosh(2) 	 (5.18)

Thus, the basic principle of the regular perturbation of a general function 
f(x) can be laid down in a few key points as follows:

	 1.	Set ε = 0 and solve the resulting system (for definiteness).
	 2.	The system now is perturbed by introducing nonzero ε, which is a 

small disturbance.
	 3.	The solution to the new perturbed system can now be expanded as 

+ ε + ε +…f f f0 1
2

2 .
	 4.	Subsequently, the governing equations are expanded in a series of ε. 

The terms with the same powers of ε are collected and solved indi-
vidually until the desired solution is obtained.

5.4  SOLUTION OF THE DUFFING EQUATION

The Duffing oscillator was introduced originally to model the large-amplitude 
vibration modes of a steel beam when subjected to periodic forces. It is not pos-
sible to find an exact solution of the Duffing equation representing the dynamic 
behaviour of the Duffing oscillator. However, the solution can be approximated 
well by certain methods, of which the perturbation method is a widely used 
one. This method is described in the preceding section, and it is used to solve 
the equation pertaining to the Duffing oscillator as represented by Equation 
(5.1). Let us assume that the nonlinear system in consideration has weak non-
linearity, weak damping and weak forcing function. So, the damping ratio ζ 
and the nonlinear parameter β in Equation (5.1) may be reduced by a factor, 
say, ε ( 1) , and written as ζ′ = εζ and β′ = εβ. The amplitude of the forcing 
function may similarly be written as = εF F( ) . On using these terms, Equation 
(5.1) transforms to

	 { }+ + ε ζ + β = εx t x t x t x t F t( ) ( ) 2 ( ) ( ) cos( ) 3
  	 (5.19)
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The displacement response term, x(t), is expanded as follows:

	
= + ε + ε +…x t x t x t x t( ) ( ) ( ) ( )0 1

2
2 	 (5.20)

The expansion of x(t) together with its differentiations can be used in 
Equation (5.19) to obtain an equation from which terms of the same powers 
of ε can be collected and the corresponding coefficients can be compared 
to obtain some more differential equations. These, in turn, can be solved 
using initial conditions of the considered system to obtain expressions for 
x0 , x1 , x2 , …. However, the maximum power of ε to be considered in the 
solution is based on the problem and accuracy of the solution sought after. 
Substituting the expressions of x0 , x1 , x2 , … in Equation (5.20), the final 
solution of x(t) is obtained.

5.5 � NONLINEAR SYSTEM SUBJECTED 
TO RANDOM VIBRATION

A SDOF system is considered in the analysis and shown in Figure 5.2. The 
system is subjected to an input excitation that is nonstationary and random 
in nature. This SDOF model consists of an oscillator that is a combination of 
mass, spring and dashpot. The stiffness of the spring is assumed to behave 
nonlinearly. There are several options to consider nonlinearity in the spring. 
We consider here the cubic-type nonlinear spring force, + εK x t x t[ ( ) ( )]3 , in 
which the term K denotes the linear static spring stiffness coefficient, ε is the 
nonlinear parameter and x(t) denotes the displacement of the SDOF oscil-
lator. This is similar to what is described as the Duffing oscillator in the 
foregoing section. Here, the first part in the expression, Kx(t), is the linear 
spring element and the second part, εK x t( )3 , is the cubic nonlinear spring ele-
ment. If the value of the nonlinear parameter ε is less than zero, it resembles 
a softening spring. If the value of ε is positive, the spring element resembles a 
hardening (stiffening) spring. For the linear stiffness element, the force versus 

K

mc
x(t)

Figure 5.2 � Nonlinear SDOF oscillator.
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displacement curve becomes a straight line and its slope gives the stiffness con-
stant K. However, with cubic nonlinearity, the force displacement relation no 
more remains a straight line. The stiffening (or softening) effect comes from 
geometry ‘adaptation’ to the applied loads because of redistribution of load, 
which occurs due to development of stresses as a reaction to applied loading. 
Figures 5.3 and 5.4 demonstrate the nonlinear (cubic) force-deformation rela-
tionship of hardening and softening spring elements, respectively. It is quite 
common to model the problems related to the vibration of beams, plates and 
shells by assuming cubic nonlinearity in the spring stiffness [39].

A system with skinny hysteresis can be well approximated by the com-
bination of a linear viscous damper and a nonlinear cubic spring. The 
skinny hysteresis represents the fundamental nonlinear modal response of 
a structural system. Let us assume that the SDOF oscillator as shown in 
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Figure 5.3 � Hardening spring element with nonlinear (cubic) stiffness.
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Figure 5.4 � Softening spring element with nonlinear (cubic) stiffness.
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Figure 5.2 represents a beam (with lumped mass m) and is subjected to 
random base acceleration x tg ( ) . The damping is represented by introduc-
ing a viscous damping coefficient C. The equilibrium equation of the SDOF 
system is written as

	

+ + ε + + =mx t K x t x t Cx t mx tg( ) [ ( ) ( )] ( ) ( ) 03
   	 (5.21)

The overdots in Equation (5.21) represent differentiations with respect to time, 
t. On using the relations = ωK m n

2  and = ζωC m n2   in Equation (5.21) and 
cancelling the common mass (m) terms from both sides, it is simplified to

	

+ ω + εω + ζω + =x t x t x t x t x tn n n g( ) ( ) ( ) 2 ( ) ( ) 02 2 3
   	 (5.22)

The terms ζ and ωn, respectively, denote the damping ratio of the linear 
component of the SDOF oscillator (viscous damper) and the natural fre-
quency of the SDOF system. The following pair of substitutions is to be 
made in order to transform the above equation into nondimensional form:

	
= ωT tn 	 (5.23)

and

	

=
ω

T
x t

x
n

gm

( )
( )2



	 (5.24)

In the above equation, xgm  denotes the absolute value of the maximum 
ground acceleration (also otherwise called peak ground acceleration (PGA)). 
From Equations (5.23) and (5.24) the following expressions for x t( ), x t( )  
and ( )x t  are derived:

	

=
ω

x t T
xgm

n

( )   ( ). 2



	 (5.25)

	

= =
ω

=
ω

ωx t
d
dt

x t
d

dT
T

x dT
dt

x d T
dT

gm

n

gm

n
n( ) ( ( )) ( ). .

( )
.2 2

 

	 (5.26)

	
= =

ω
ω =

ω
ωx t

d
dt

x t
d

dT
x d T

dT
dT
dt

x d T
dT

gm

n
n

gm

n
n( ) ( ( )) .

( )
. .

( )
.2 2

2

2
2

 

 

	 (5.27)
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On substituting Equations (5.25) to (5.27) in Equation (5.22), the system 
equilibrium equation reduces to the following nondimensional form:

	





+ + κ + ζ + =
d T

dT
T T

d T
dT

x T
x
g

gm

( )
( )   ( ) 2

( ) ( )
0

2

2
3 	 (5.28)

In fact, the term T in the above equations represents a nondimensional time 
parameter, and the term Δ stands for the nondimensional displacement 
parameter. The term κ in Equation (5.28) is the nondimensional nonlinear 
parameter evolved in the course of simplification of equations and has the 
following expression:

	



κ = ε
ω

xgm

n

2

	 (5.29)

In order to solve Equation (5.28), the perturbation method is used here. 
Let us perturb the nondimensional displacement term, Δ, of the oscillator 
as shown below:

	
= + κ + κ + κ +…T T T T T( ) ( ) ( ) ( ) ( )0 1

2
2

3
3 	 (5.30)

As the model in consideration is subjected to nonstationary stochastic 
excitation at the base, the concept of the wavelet analytical technique will 
now be used to solve the dynamic equation. On taking the wavelet trans-
form of the terms on both sides of Equation (5.30), one may get

	

ω ω = ω ω + κ ω ω

+ κ ω ω + κ ω ω +…

ψ ψ ψ

ψ ψ

W a b W a b W a b

W a b W a b

j n i n j n i n j n i n

j n i n j n i n

( , ) ( , ) ( , )

( , ) ( , )

0 1

2
2

3
3 		

		  (5.31)

As we have seen in previous chapters, it is necessary to compute the energy 
given by the term ω ωψE W a bj n i n[{ ( , )} ]2  to obtain the nonlinear stochastic 
response of the given SDOF system. As the value of κ is small due to small 
disturbance (perturbation) introduced into the system, values greater than 
1 in the order of κ will be ignored. Hence, on considering only the first two 
terms on the right-hand side of the Equation (5.31) and subsequently taking 
squares of all terms on both sides and then their expectations, one may get

{ } { } { }{ }= + κψ ψ ψ ψE W a b E W a b E W a b W a bj i j i j i j i( , ) ( , ) 2 ( , ) ( , )
2

0
2

0 1
	

		  (5.32)
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In Equation (5.32), the terms aj  and bj  have the following expressions:

	
= ωa aj j n 	 (5.33)

	
= ωb bi i n 	 (5.34)

It is important here to note that Equation (5.28) has a cubic term of Δ (i.e. 
T( )3 ), which should also be replaced with wavelet coefficients. On cubing 

all terms in Equation (5.30), considering only the first-order term of κ and 
using substitutions as given in Equations (5.33) and (5.34), one may get

	
( ) ( ) ( ) ( )= + κT T T T33

0
3

0
2

1 	 (5.35)

On taking the wavelet transform of both sides of Equation (5.35), the 
following equation is obtained:

	
= + κψ ψ ψW a b W a b W a b a bj i j i j i j i( , ) ( , ) 3 ( , ). ( , )3

0
3

0
2

1 	 (5.36)

We have seen before that any response may be expressed in terms of 
wavelet coefficients. In this case, the term T( )3  may be expanded in terms 
of wavelet coefficients as

	
∑∑= ψψT

K b
a

W a b T
i j j

j i a bj i( ) ( , ) ( )3
*

3
, 	 (5.37)

The term b*  in Equation (5.37) is given as

	
= ωb b n.*

	 (5.38)

The term ψW a bj i( , )3  on the right-hand side of Equation (5.37) can be 
replaced by its expression from Equation (5.36), and this leads to obtaining 
the expression of the nondimensional displacement term, Δ, dependent on 
nonlinear parameter κ as follows:

	

∑∑

∑∑

= ψ

+ κ ψ

ψ
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W a b T
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3 [ ( , ). ( , )] ( )

3
*

0
3
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2

1 ,

	 (5.39)
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Equation (5.39) is necessary for solving Equation (5.28). For the same 
reason, we now need to obtain the expansion of T( )  in terms of wavelet 
coefficients. This is written below:

	

∑∑

∑∑

= ψ

+ κ ψ

ψ

ψ

T
K b

a
W a b T

K b
a

W a b T

i j j
j i a b

i j j
j i a b

j i

j i

( ) ( , ) ( )

( , ) ( )

*

0 ,

*

1 ,

	 (5.40)

The expression of seismic ground acceleration can be expressed in terms 
of wavelet coefficients and is shown in Chapter 3. However, for a quick 
recapitulation, let us write the expression once more;

	

∑∑= ψψx t
K b
a

W x a b tg

i j j
g j i a bj i( ) ( , ) ( ), 

	 (5.41)

Using nondimensional terms, the ground acceleration may otherwise be 
written as

	

∑∑= ψψx T
K b

a
W x a b Tg

i j j
g j i a bj i( ) ( , ) ( )

*

,  	 (5.42)

On substituting Equations (5.39), (5.40) and (5.42) in Equation (5.28) 
and neglecting higher-order terms of κ (i.e. κ2  and higher), the following 
wavelet domain equation is obtained:
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		  (5.43)



124  Wavelet analysis in civil engineering﻿

In Equation (5.43), the term xgm  is given as

	

=x T
x T
x

gm
g

gm

( )
( )







	 (5.44)

There are two unknowns in Equation (5.43): 0  and 1 . The method 
of perturbation is used for the solution; hence, these two unknown terms 
can be found from two separate equations that can be formed by collect-
ing the terms associated with nonlinear perturbation parameters κ0  and 
κ1  from both sides of Equation (5.43) and equating them. Thus, on equat-
ing the coefficients of κ0  from Equation (5.43), one may get
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Similarly, equating the coefficients of κ1, one can easily find the other equa-
tion as
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Let us deal with the above two wavelet domain equations one by one. 
On Fourier transforming Equation (5.45), the following equation is 
obtained:
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On collecting similar terms, Equation (5.47) takes the following form:
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Now, first multiply all terms in Equation (5.48) by ψ ωa bk l
ˆ ( )*

,  and subse-
quently use the relation defined in Equation (2.40) in Chapter 2 to arrive at 
the following equation:

∑ ∑−ω + ζω ψ ω = − ψ ωψ ψi W a b W x a b
i

j i a b

i

gm j i a bj i j i[1 2 ] ( , ) ˆ ( ) ( , ) ˆ ( )2
0 , , 	 (5.49)

from which the transfer function ωH  ( )1  may be derived as shown below:

	
∑ ∑ψ ω = ω ψ ωψ ψW a b H W x a b

i

j i a b

i

gm j i a bj i j i( , ) ˆ ( ) ( ) ( , ) ˆ ( )0 , 1 , 	 (5.50)

where
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−
− ω + ζω
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[(1 ) (2 )]
1 2 	 (5.51)

This transfer function defines the relation between the nondimensional 
displacement term 0  and the ground acceleration in terms of wavelet 
coefficients. On proceeding in a similar manner with the other wave-
let domain equation (Equation (5.46)), the following transfer function 

ωH( ( ))2  relating the wavelet coefficients of 1  to the wavelet coefficients 
of 0

3  can be obtained:
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It may be noted that these two transfer functions are the same, i.e. 
ω = ωH H( ) ( )1 2 . It is seen from Equation (5.52) that term 1  is related to 

0
3 , but the expectation is that 1  should be related to the ground accelera-

tion term xgm  in a similar way as the term 0  is related to xgm  (as seen in 
Equation (5.50)). In order to accomplish this, we need to put up some more 
effort, which is elucidated in the next few steps.

In the first step, Equation (5.52) is multiplied by Σ ψ ωψW a bk j k a bj k( , ) ˆ ( )0 ,
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The above equation can be expanded as
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There are two operations that should now be performed simultaneously 
to simplify Equation (5.55). The first operation is to use the following rela-
tion to replace the term:

	
ψ ω =

ψ ω
a

a
j

a b

j

j i| ˆ ( )|
| ˆ ( )|2 ,

2

	 (5.56)

The remaining operation is to integrate both sides of Equation (5.55) over 
ω so that the double summation terms (the second term on both sides of 
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the equation) disappear (see Section 2.5 for details). The resulting equation 
looks like the following:
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At this point, we shall use the following relation:

	 ∫ ∫ ∫=ψ ψE W f W g d d E g f d[ . ] a. b [ . ] t  	 (5.58)

Using the discretized version of the above relation, we can express the prod-
uct of wavelet coefficients of the linear and cubic terms of 0  (assume =f  0  
and =g 0

3 ), as seen in the right-hand side of Equation (5.57), as shown 
below:
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Now, considering the instantaneous relationship at every time point bi , it 
can be written
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The assumption here is that the nondimensional displacement term, 0, is 
a locally Gaussian nonstationary random process for which we have the 
following equation:
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Let us suppose that the terms f and g are both equal to 0
2 . In that case, 

Equation (5.58) gives rise to the following discretized version:
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Using Equations (5.59), (5.61) and (5.62), one may write
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Here, the right-hand side of Equation (5.63) involving the term 0
2  needs to be 

replaced with the term containing the ground motion term, x a bgm j i( , ) . To do 
so, Equation (5.50) is used and the resulting expression for ψW a bj i{ ( , )}0

2 2  
becomes

	
{ }( )( ){ } ( )( )= ω ψ ωψ ψW a b H W x a bj i gm j i a bj i( , ) ( , ) ˆ ( )0

2 2
1

2 2
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The term ωH(| ( )|)1
2  has the following expression:
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Using Equation (5.64) in Equation (5.63) and integrating over ω, one 
may write
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Using the following relationship (to break down the whole square term 
on the right-hand side of Equation (5.66) into the product of two separate 
terms),
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Equation (5.66) may also be written in the form
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For the readers, there are some important points to note here. First, the 
value of σ is close to 1 in the case of nonstationary ground motions (viz. 
Section 2.4), and the integrands in Equation (5.68) also get closer to 1. Hence, 
the integral sign may be dropped to obtain a point-wise equality in the rela-
tionship. In addition, as per the basic assumption that the frequency bands 
are nonoverlapping in nature, the expressions under the summation sign 
on both sides of Equation (5.68) are equal. Thus, on multiplying all terms 
of this equation by the term ωH ( )2  and summing up over all time instants, 
the relation between the nondimensional displacement term and the ground 
motion for a specific frequency band may be expressed as follows:
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Combining Equations (5.57) and (5.69), the cubic nondimensional dis-
placement term may be avoided as follows:
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The transfer function, ωH ( )2 , consists of a real component and an 
imaginary component, which can be easily derived from Equation (5.53) 
as follows:
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However, only the real part of ωH ( )2  must be considered on the right-
hand side of Equation (5.70) because the left-hand side of the same equa-
tion is a real quantity. On denoting the real part ωH ( )2  as β as follows,
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and using the following relation,
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and integrating Equation (5.70) over ω, one may get
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We are interested in finding out the instantaneous power spectral density 
function of the displacement response of the SDOF oscillator in consid-
eration. To get this, it is necessary to first obtain the total instantaneous 
energy content of the system response over an interval b*  at a particular 
time point t = bi  where the energy over all frequency bands (i.e. over all j’s) 
are summed up. Using Equations (5.64) and (5.74) to replace the expres-
sions for ψW a bj i{ ( , )}0

2 2  and ψ ψW a b W a bj i j i{ ( , ). ( , )}1 0 , respectively, in the 
right-hand side of Equation (5.32), the expression for the total instanta-
neous energy content thus becomes
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which may further be simplified to
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The instantaneous power spectral density function of the displacement 
response of the oscillator (following guidelines laid out in Section 2.5) 
is obtained from Equation (5.76) by averaging the instantaneous total 
(summed up over all frequency bands) energy spectrum over b*  as writ-
ten below:
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K
a

E W x a b H
j j

gm j i a bj i( , ) ˆ 1 6
2

1
2

,

2


	 (5.77)

The response of the oscillator may now be found from the instantaneous 
PSDF following the procedure described in Chapter 2. The moments of 
instantaneous PSDF of the nondimensional displacement term, T( ) , must 
be evaluated to compute the statistics of the response process (i.e. the dis-
placement term). The moments of this instantaneous output PSDF are used 
to obtain some essential statistical parameters like zero-crossing rates, 
bandwidth parameter, etc., which may be subsequently used to obtain the 
largest peak amplitude of the nonstationary stochastic random response 
process, T( ).
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Chapter 6

Wavelet-based 
probabilistic analysis

It was seen in Chapter 5 how system nonlinearity affects structural responses. 
The structure, in most of the cases, is supported on a soil medium that may 
behave nonlinearly, and this may affect the structural responses to a signifi-
cant extent under the action of moderate to severe seismic ground motions. 
Several researchers have studied the influence of material nonlinearity of 
soil on the responses of a structure in the form of a nonlinear stress-strain 
relationship, transfer function analysis to obtain effective shear wave veloc-
ities in soil, a nonlinear load-displacement relationship, etc. [34–38]. The 
nonlinearity in the system (e.g. in case of slipping foundations) has been 
studied in the past [40] in the wavelet domain, extending the technique of 
equivalent linearization [38]. There is a general approach to model system 
nonlinearity using a hysteretic force-displacement relationship. However, 
in doing so to model large deformations, the area under the curve also gets 
larger, and hence a ‘fat’ hysteresis loop may be considered. In such cases, 
it is always worth modelling the effect of the hysteresis loop instead of 
representing the system stiffness by a backbone curve and an equivalent 
viscous damping mechanism (to represent dissipation of energy). In this 
chapter, the wavelet analytic technique is used to solve the system dynamics 
in the case of a tank supported on nonlinear soil. However, to keep things 
simpler, the force-deformation curve, in this case, is assumed to follow 
an elasto-perfectly-plastic (EPP) path, and subsequently a methodology for 
obtaining a nonstationary stochastic seismic response of a storage tank is 
described.

6.1  MODEL AND SOIL NONLINEARITY

In order to demonstrate the use of wavelets in solving the problems related 
to material nonlinearity, a structural model is considered similar to the 
one described in Chapter 3. The user may use the same concept for other 
structures as well. A rigid, right circular cylindrical tank is assumed to 
be supported on a thick circular foundation mat. This model, shown in 
Figure 6.1, is the same as that used in Chapter 3. However, the system now 
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comprises only impulsive liquid mass and the supporting soil is considered 
to be nonlinear. It is known that many structures, subjected to seismic 
ground motions or another type of dynamic excitations, exhibit nonlinear 
behavior in the form of a hysteretic restoring force-displacement character-
istic. In fact, hysteresis is encountered when there is relative sliding between 
substructures if the deformation amplitude exceeds a critical value. The 
hysteresis loops can be modelled in terms of a differential equation [38]. 
The basic concept in such modelling is to incorporate a differential equa-
tion into the general equations of motion of the system and derive an addi-
tional set of differential equations. These equations are then linearized and 
solved to obtain the system responses. This approach is adopted to for-
mulate the equations of motion in the case of the tank–liquid–foundation 
vibration problem. The EPP model is used to represent the system nonlin-
earity. This EPP model is distinctly a bilinear model. The wavelet-based 
formulation discussed in previous sections is extended in this chapter to 
include pre-yield and post-yield phases. It may be noted here that the linear 
theory is valid in the two phases, as these phases are piece-wise linear. The 
spectral values are estimated later using probabilistic compatibility con-
ditions. The liquid in the tank is vibrating in the same phase as that of 
the tank, so this is an impulsive mode of vibration for tank–liquid. The 
tank–liquid–foundation structure is resting on the surface of a nonlinear 
soil medium that is laterally flexible. The whole system is modelled by the 
combination of a mass-spring-dashpot system as shown in Figure 6.1. The 
impulsive mass is connected to the foundation mass through a spring and 
a damper. So, this spring and the damper represent the structural (mate-
rial) properties of the tank. The supporting soil nonlinearity is considered 
here, assuming the soil to be connected to the superstructure by a hysteretic 

xf (t)

z (t)

xi (t)

Ki

Cdi

mi

mf

Kc

C0

Figure 6.1 � Tank–fluid–foundation model on soil idealized as a bilinear hysteretic EPP 
spring.
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spring that is EPP in nature. At this point it is necessary to understand the 
working mechanism of the EPP hysteretic spring. The EPP nature means 
that the ratio of post-yield stiffness to pre-yield stiffness of the EPP spring 
is zero. The tank–foundation is actually connected to the soil by a combina-
tion of EPP hysteretic spring and a viscous damper. The source of excita-
tion considered is the random, nonstationary ground excitation due to an 
earthquake. The deformation in the foundation of the tank due to seis-
mic excitation induces a displacement in the attached spring until the yield 
level. Beyond the yield level, the associated friction element starts slipping. 
When the hysteretic loop unwinds, any change in foundation displacement 
causes a displacement in the EPP spring in the opposite direction. Due to 
this reason, the soil model considered here represents a bilinear hysteretic 
(i.e. nonlinear) system. The reader must be aware that the complication 
in analytical formulation may increase manifold if a complex nonlinear 
soil model is selected, and in most of these cases an analytical solution of 
the nonlinear differential equations may be difficult to obtain. However, 
a numerical modelling approach, especially based on the finite element 
method, may help in implementing a number of nonlinear soil models to 
simulate the true soil behaviour to a considerable extent. The application 
of a different type of nonlinear soil model is shown in Chapter 7. Wavelet-
based system identification techniques for linear and nonlinear systems 
have been developed by Ghanem and Romeo [41, 42].

6.2  GENERAL EQUATIONS OF MOTION

In this chapter, the analytical formulation of a simple structure supported on 
a nonlinear soil-foundation system and subjected to a nonstationary random 
motion is developed as outlined in the work by Chatterjee and Basu [43]. A 
tank–fluid–foundation-soil system is assumed as a simple structure. The system 
is subjected to a lateral seismic excitation at its base. The nonstationary ground 
motion process, x tg( ) , causes a horizontal free-field ground displacement, x tg( )
, and shaking the superstructure as well. On considering the dynamic equilib-
rium of the tank–liquid–foundation system, the equation of motion is written 
in the following form, which was already seen in previous chapters:

	
+ + = − +m x t C x t K x t m x t x ti i di i i i i f g( ) ( ) ( )   ( ( ) ( ))    	 (6.1)

In the above equation, the term mi  denotes the impulsive mass of the liquid 
participating in vibration. The terms x ti( )  and x tf ( )  denote, respectively, 
the displacement of the liquid in the tank with respect to the foundation 
and the displacement of the foundation relative to the ground. The overdot 
represents acceleration. The terms Cdi  and Ki  denote the viscous damping 
coefficient and static spring stiffness coefficient, respectively. These two 
linear coefficients represent the steel tank properties. The expressions of 
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Cdi  and Ki , though given in Chapter 3, are shown below once more for 
ready reference.

	 = ζ ωC mdi i i i2 	 (6.2)

	 = ωK mi i i
2

	 (6.3)

The terms mi , ζi  and ω i  represent, respectively, the mass of the liquid in 
impulsive mode of vibration, the damping ratio of the impulsive mass and 
the first natural frequency of vibration of the tank–liquid. The expression 
of ω i  is given in Equation (3.25) in Chapter 3. It must be borne in mind 
that the natural frequency of vibration of the tank–liquid is the same as that 
of the tank itself as impulsive mode of vibration is considered. On substi-
tuting Equations (6.2) and (6.3), and then on dividing all terms by mi , the 
following equation independent of impulsive mass is obtained:

	 ( )+ ζ ω +ω + + =x t x t x t x t x ti i i i i i f g( ) 2 ( ) ( ) ( ( )) 02
    	 (6.4)

As it is seen that there are two degrees of freedom considered in the model 
(the displacements of the impulsive mass and the foundation), another equa-
tion has to be written to solve the system dynamics. The second equation 
comes from direct consideration of dynamic equilibrium of the total system 
(i.e. tank–liquid–foundation system) and may be written as

	 { } { }+ + + + + + =m x t x t x t m x t x t C x t K z ti i f g f f g f
c( ) ( ) ( ) ( ) ( ) ( ) ( )  00      	 (6.5)

In Equation (6.5), the readers may note three terms appearing – Kc, C0 
and z(t). The term Kc  is the static stiffness coefficient of the hysteretic spring, 
which attaches the foundation of the tank to the inelastic soil supporting the 
foundation. The other term, C0, denotes the coefficient of the linear viscous 
damper, which is also placed between the tank–foundation and the inelastic 
soil. The expressions of Kc  and C0  are given as follows [33].

The expressions for viscous damper coefficient, C0, and the static spring 
stiffness coefficient, Kc, are given below:

	
= γC

R
V

K
s

c
0 0 	 (6.6)

and
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G Rc s

s

8
2

	 (6.7)
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In Equation (6.6), the term γ 0  appears, which is defined as follows:

	 γ = − νs0.78 0.40 	 (6.8)

The third term, z(t), represents the displacement of the nonlinear hyster-
etic elasto-perfectly-plastic spring and is written as [38]

	
= − − − − − −z t x t F x t F z t x F x t F z t xf f y f y( ) ( )[1 { ( )} { ( ) } { ( )} { ( ) }]    	 (6.9)

The soil beneath the tank–foundation system is assumed to have a 
yield displacement of xy. In Equation (6.9), the term F represents unit 
step function (also called Heaviside step function). If the relative dis-
placement of the EPP spring remains below the yield level or the hys-
teretic loop rewinds, the change in the displacement of the EPP spring 
becomes equal to the change in the displacement of the foundation. 
When the spring slips, there is no change in the hysteretic displacement 
of the spring even if the foundation undergoes deformation. In order to 
simplify Equation (6.5), all terms in the equation are divided by the com-
mon foundation mass term, mf, and the terms C0 and Kc  are replaced 
with their expressions from Equations (6.6) and (6.7), respectively, to 
obtain the following equation:

	
γ + + + + + ω γ + ω =x t x t x t x t x t

R
V

x t z ti i f g f g
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lf f lf{ ( ) ( ) ( )} ( ) ( ) ( ) ( ) 02
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It may be noted that the ratio of the impulsive liquid mass to the founda-
tion mass is replaced with the term γ i  in Equation (6.10). The term ω lf  has 
been brought in to represent the lateral natural frequency of free vibration 
of the circular footing and is expressed as

	 ( )
ω = =

− ν
K
m

G R
m

lf

c

f

s

f s

8
2

	 (6.11)

The term Gs  denotes the shear modulus of the supporting soil and is given 
by Equation (4.17). The terms R and νs , respectively, represent the radius 
of the footing beneath the tank (which is assumed to be the same as that of 
the tank) and Poisson’s ratio of the soil.

6.3  EQUATIONS BASED ON YIELD CONDITIONS

Equation (6.9) gives clear hints on how the solution could be obtained. A 
set of two distinct cases may arise depending upon the values of the hyster-
etic spring displacement (z(t)), the yield displacement (xy) and the direction 
of the velocity of the foundation ( x tf ( ) ). One of the cases corresponds to 
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the situation when the soil behaviour is linearly elastic, which is essentially 
the pre-yield case. The other one corresponds to the post-yield case, where 
the soil is in the plastic range. The conditions for these two cases are well 
defined and indeed depend on the direction of motion of the foundation 
and yield displacement. For the pre-yield case, the condition is that the 
foundation velocity is greater than zero when either the nonlinear EPP 
spring displacement is less than the yield displacement of the underlying 
soil medium, or the negative of the relative displacement of the EPP spring 
is greater than the yield displacement. In short, the condition for the pre-
yield case may be written as >x tf ( ) 0  when <z t xy  ( ) , or <x tf ( ) 0  when 
− <z t xy( ) . For the post-yield case too, depending on whether the hyster-
etic spring displacement exceeds the yield displacement in either direction 
(+ or –), the condition may be concisely written as >x tf ( ) 0  when >z t xy  ( ) , or 

<x tf ( ) 0  when − >z t xy( ) . It is readily recognized that Equations (6.4) and 
(6.10) are valid in both pre-yield and post-yield cases because these equa-
tions are independent of yield conditions. However, depending upon the 
state of the yield, two separate equations of motion may be derived from 
Equation (6.9). On considering the conditions for the pre-yield case and 
post-yield case separately, the additional equations become

	
=z t x tf( ) ( )  	 (6.12)

and

	 =z t( ) 0 	 (6.13)

Thus, the equations that need to be solved representing the pre-yield situa-
tion are (6.4), (6.10) and (6.12), and those representing the post-yield case 
are (6.4), (6.10) and (6.13). Both sets of equations for the two yield cases 
are linear. In the next section, a wavelet-based solution for these cases will 
be formulated.

6.4  TRANSFER FUNCTIONS

In this section, two separate formulations will be developed – one for 
the pre-yield case and another for the post-yield case. It has been seen in 
earlier chapters that using a proper discretization scheme, the nonstation-
ary random ground acceleration motion, x tg( ) , can be expressed in terms 
of wavelet functional (see Equation (2.11)). In the same way, the impul-
sive displacement response of the tank–liquid body (xi), the displacement 
response of the foundation (xf) and the relative displacement response 
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of the EPP spring (z(t)) may be respectively written in terms of wavelet 
functionals as

	
∑∑= ψψx t
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The expression for K is given in Equation (2.12). As the pre-yield case is 
first taken up, Equations (6.14) to (6.16) and Equation (2.12) may be sub-
stituted in the dynamic equations ((6.4), (6.10) and (6.12)) of the system to 
obtain the following wavelet-based equations:
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The above system equations in the wavelet domain are written following 
the same procedure as described in Chapter 2. Now, after cancelling the 
common term KΔb throughout, rearranging the terms properly and there-
after taking Fourier transform of all terms of Equations (6.17), (6.18) and 
(6.19), one may easily obtain the following equations:
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At this point, Equation (2.40) should be recalled, which states the orthogo-
nality property of the wavelet basis function, and also Equation (4.31) has to 
be used, which gives the relation between ground displacement and ground 
acceleration through wavelet coefficients. Thus, on multiplying all terms in 
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Equation (6.20) by ψ ωa bk l
ˆ ( ),

* , and subsequently on using Equations (2.40) and 
(4.31) and collecting terms properly, the following equation may be written:
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Similar operations could be performed on Equations (6.21) and (6.22) to 
obtain the following two wavelet domain equations:
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In order to obtain the wavelet-based response in terms of displacements 
of impulsive liquid mass of the tank and the displacements of the founda-
tion of the tank, Equations (6.23) to (6.25) must be solved. After doing 
some simple algebraic manipulation, the user should obtain the two expres-
sions as shown below – one for the impulsive displacement response and the 
next for the foundation displacement response.
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It is seen from the above equations that the displacement responses are 
tied up to the ground motion through complex-valued frequency-dependent 
transfer functions (τ ωi

pre( )  for impulsive displacement response and τ ωf
pre( )  

for foundation displacement response). The main objective of wavelet-
based analysis is to finally obtain a relation between the wavelet coeffi-
cients of response terms and the wavelet coefficients of the input excitation 
through transfer functions. These transfer functions will be required to 
obtain expected largest peak values after some statistical evaluations. This 
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has also been seen in previous chapters. For the present case, these transfer 
functions for the pre-yield case may be elaborated as follows:
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The terms C and D are given as
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The term a0 , appearing in the above expressions, represents a dimension-
less frequency parameter, as given by Equation (4.18). With this, the formu-
lation of equations, and obtaining transfer functions corresponding to the 
pre-yield case, now has become complete. The next objective is to obtain 
similar expressions for the post-yield case.

For the post-yield case, the dynamic equilibrium equations for the tank–
liquid system and the tank–liquid–foundation system remain the same, so 
Equations (6.4) and (6.10) may be reused for the post-yield case along with 
Equation (6.13), which is specific to the yield case (post-yield in this case). 
The wavelet domain representation of Equation (6.13) may be obtained fol-
lowing a procedure similar to that described while formulating equations 
in the pre-yield case, and is given below:
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Thus, for the post-yield case, Equations (6.23), (6.24) and (6.32) must be 
solved to obtain the transfer functions τ ωi

post ( )  and τ ωf
post ( ) , relating the 

wavelet coefficients of impulsive liquid displacements and foundation dis-
placements, respectively, to the wavelet coefficients of seismic ground accel-
eration. These transfer functions are written below:
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The terms E and F in the expressions of post-yield transfer functions are 
longer terms that are shown below separately.
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Once these transfer functions are known, the impulsive displacement 
response of the tank may be derived using wavelet-based relations for the 
pre-yield and post-yield cases.

6.5  RESPONSE OF THE STRUCTURE

In this section, the response of the tank in terms of the displacement of the 
tank–liquid undergoing impulsive mode of vibration will be obtained in the 
wavelet domain. The displacement response, as will be seen, depends on 
the probability of yield crossing. Following Equation (2.49), the instanta-
neous mean square energy response for the jth energy band corresponding 
to the displacement of the impulsive mode of the tank–liquid may be writ-
ten as shown below:
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In this equation of instantaneous mean square energy response of impul-
sive tank–liquid displacement contained in the jth frequency band, ωH( )  
denotes the corresponding transfer function, which is dependent on the 
state of the yield displacement – when it is the pre-yield state, ω = τ ωH i

pre( ) ( ), 
and when it is the post-yield state, ω = τ ωH i

post( ) ( ). Now, the instantaneous 
power spectral density function (PSDF) of the displacement response of the 
tank–liquid may be computed based on the expected energy summed up 
over all frequency bands and subsequently averaging it over the small time 
interval of Δb. Thus, following Equation (2.50), the PSDF at a particular 
instant in time may be written as
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It is seen from the standard approach as described in Chapter 2 that 
the next step would be to evaluate the instantaneous root mean square 
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(RMS) values of the displacement responses of the structure, which in 
this case is the impulsive tank–liquid displacement. To do so, only zeroth 
moments of instantaneous PSDF should be computed first. The calculation 
of zeroth moment depends heavily on the transfer function ωH( ), which in 
turn is dependent on the yield condition (whether pre-yield or post-yield). 
However, at any specific time point, the yield-crossing phenomenon of the 
hysteretic spring is random in nature, which means the response of the sys-
tem would also be a stochastic phenomenon. This indicates that the prob-
ability of yield crossing has to be calculated in order to compute the correct 
response. Based on the probability of occurrence of the spring in the pre-
yield or post-yield state, the instantaneous power spectral density function 
must be evaluated.

We have the following four yield conditions as explained already in 
Section 6.3: (1) > <x z xf y0,  , (2) < − <x z xf y0,  , (3) > >x z xf y0,   and (4) 

−x z xf y 0,  . The first two represent the pre-yield case, and the next two 
represent the post-yield case. The probabilities that the spring displacement 
would satisfy the yield conditions 1, 2, 3 and 4 are denoted by p1, p2, p3  
and p4, respectively. The zeroth moment of the instantaneous PSDF of the 
structural displacement response depends on these probabilities and may 
be written as
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The readers must have noticed that the expression for zeroth moment 
of instantaneous PSDF contains terms Io j,  and I j0,

/  for pre-yield and post-
yield cases, respectively. These terms are similar to the ones described ear-
lier in previous chapters and are defined below:
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Thus, it is seen that the computation of instantaneous PSDF requires the 
values of the probabilities beforehand. The method of calculation of these 
probabilities is explained in the next section.

6.6  PROBABILITY EVALUATION

The normal or Gaussian distribution is well known and defined as
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The terms σ, μ and σ2, respectively, denote the standard deviation, the 
mean and the variance of the distribution. We will use the Gaussian dis-
tribution curve to evaluate the probabilities. For this, we assume that the 
hysteretic spring displacement, z, has a zero mean, mixed Gaussian dis-
tribution locally. The distribution is assumed to be truncated because the 
displacement of the spring (z) in the pre-yield case remains within the range 
–xy ≤ z ≤ xy. The hysteretic spring displacement term, z, being a random 
variable, may assume any continuous value in the range of –xy ≤ z ≤ xy in the 
pre-yield case or a specific value (i.e. either –xy or xy) in the post-yield case. 
Hence, this Gaussian distribution is also assumed to be mixed (continuous-
discrete). The zero mean, locally truncated, mixed Gaussian distribution of 
z may be defined completely by the following equation:
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This mixed Gaussian distribution, with a being a parameter, is shown 
in Figure 6.2. As this is a nonstationary case, the distribution is local at 
any time instant t. The parameter σ also varies with time. The probability 
p  that the spring displacement z lies between –xy and xy (i.e. –x_y < z < 
x_y) to represent the pre-yield situation can be obtained from calculating 
the area under the Gaussian distribution curve between the same limits of 
z as follows:
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Further simplification of Equation (6.44) may be done using a substitution, 
z = va, in the equation as
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The probability p/  that the event remains in the post-yield state (i.e. equal 
to either –xy or xy) may be calculated from the fact that the total probability 
of the variable z lying in both pre-yield and post-yield states (i.e. –xy ≤ z 
≤ xy) is unity. Thus, + =p p2 1/ , from which we get
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−
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p1
2

/
	 (6.46)

The probability that the foundation displacement xf occurs in either direction (i.e. 
xf < 0 or xf > 0) is equal to 0.5. If xf is assumed to be locally Gaussian, the expressions 
for the probabilities p1  (= > < = > − > ≥x z x x x z xf y f f yPr[ 0,  ] Pr[ 0] Pr[ 0, ]   ) 
and p2  (= < − < = > − < − ≥x z x x x z xf y f f yPr[ 0,  ] Pr[ 0] Pr[ 0, ]   ) in the pre-yield 
case are given as
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Figure 6.2 � Mixed Gaussian distribution.
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Similarly, the expressions for probabilities p3  = > ≥ =x z xf y( Pr[ 0,  ]

 
 > > ≥x z x z xf y yPr[ 0| ].Pr[ ]) and p4  (  = < − ≥ = < − >x z x x zf y fPr[ 0,  ] Pr[ 0|

− ≥x z xy y].Pr[ ]) in the post-yield case are defined as
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If it is also assumed that the permanent drifting (or the yield) of the 
foundation is reasonably low in the pre-yield situation, the expected mean 
square value of the hysteretic spring displacement (relative), z(t), remains the 
same as the foundation displacement (relative), xf(t). However, the expected 
mean square value of z(t) in the post-yield state remains constant and is 
equal to xy

2 . The instantaneous variance of hysteretic spring displacement 
may be calculated using wavelet functionals considering the chances of 
occurrence of z(t) in the pre-yield and post-yield cases and using Equations 
(6.47) and (6.48). Following Chapter 2, the expression of this variance, 

=mz
t bi|0 , for the pre-yield case is given below:
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The term I j
z
0,

 for the relative hysteretic spring displacement is the same 
as the relative foundation displacement in the pre-yield case and may be 
expressed as
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where the expressions for C and D are given in Equations (6.30) and (6.31), 
respectively. It may be seen from Equations (6.39), (6.47), (6.48) and (6.49) 
that the evaluation of probabilities p1  through p4  and the calculation of 
instantaneous moment depend upon the correct evaluation of the term p . 
This is done as follows.

The variance of z(t), i.e. =mz
t bi|0 , is calculated as per Equation (6.49). 

However, the same variance may be calculated alternatively using the prob-
ability distribution from the following equation:
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For a given value of yield displacement xy, the value of a can be cal-
culated once an initial value of x

a
y  is selected. With this value of xy , the 

value of p  can be calculated from the integral given in Equation (6.45) and 
may be subsequently used to obtain the values of the probabilities p1, p2, 
p3  and p4  from Equations (6.47) and (6.48). Once these probabilities are 
known, =mz

t bi|0  may be evaluated from Equation (6.49). The value of p  
obtained from Equation (6.45) may be considered to be the correct one only 
when the value of =mz

t bi|0  obtained so far (from Equation (6.49)) matches 
with the value of =mz

t bi|0  obtained from Equation (6.51). If the equality 
of =mz

t bi|0  obtained from Equations (6.49) and (6.51) is not established, 
the whole procedure has to be iterated again. However, on obtaining the 
correct value of p , the instantaneous moments for the displacement of the 
impulsive liquid mass in the tank may be obtained from Equation (6.39).

6.7  VALIDATION AND RESULTS

Let us present the concept explained so far using the same tank–liquid–
foundation model subjected to seismic ground motion. The tank–liquid 
model is assumed to be slender with a large value of height–radius ratio (3 
in this case), which allows the liquid in the tank to vibrate mostly in impul-
sive mode. The tank wall is quite thin with a wall thickness-to-tank radius 
ratio (i.e. h/R ratio) being confined to 0.001. Once this ratio is known, the 
appropriate value of Ci in Equation (3.25) may be chosen from Table 3.1. 
The material properties of the steel tank are as follows. Young’s modulus 
= 2.1 × 1011 N/m2, Poisson’s ratio = 0.30, mass density = 7850 kg/m3 and 
damping ratio = 5%. The ratio of the density of water (the tank–liquid) 
is assumed as 1000 kg/m3. The Poisson’s ratio of the soil supporting the 
tank–foundation system is kept constant at 0.33, and the lateral natural 
frequency of the tank–foundation (ω lf ) is assumed to be 10 Hz (or ~62.83 
rad/s). The impulsive liquid mass is taken as eight times heavier than the 
mass of the foundation (i.e. γ i   = 8). The ground motion process considered 
here corresponds to the 1989 Loma Prieta earthquake at the Dumbarton 
Bridge site near Coyote Hills.

It is assumed that a right circular cylindrical tank with material prop-
erties as described above is undergoing seismic excitation as per the time 
history shown in Figure 1.2. The tank has a height of 6 m and is supported 
on a soil with shear wave propagation velocity of 200 m/s and yield dis-
placement of 0.0025 m. The wavelet-based nonlinear stochastic response 
of the tank is obtained in terms of instantaneous root mean square of the 
displacement of the impulsive mode of the tank–liquid system as per the 
formulation laid above. Figure 6.3 represents comparison of responses 
between the curves obtained from the wavelet-based analysis and exact 
time history simulation (using the Runge-Kutta fourth-order method). 
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The comparisons are repeated for tanks with heights of 4 and 10 m, 
while other properties of the tank and the underlying supporting soil 
remain the same. These comparisons are shown in Figures 6.4 and 6.5.

To look into more detail about the displacement response of the tank, 
the tank is subjected to an accelerogram that is three times more magnified 
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Figure 6.3 � Instantaneous RMS displacement response for a tank with height of 6 m.
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than the previous ones. This would reveal clearly the effect of strong 
ground motion nonstationarities on the structural responses. It is clearly 
seen from Figure 6.6 that the instantaneous RMS displacement response 
of the tank increases with an increase in tank height, so the more the tank 
height, the more pronounced becomes the effect of ground motions. As the 
yield displacement is kept the same when compared to the tank considered 
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to generate responses shown in Figures 6.3 to 6.5, the amplified ground 
motion pushes the tank displacement into the nonlinear range quickly and 
for a longer time. However, in Figure 6.6, the peaks seem to occur at the 
same place in the time domain for all heights of the tank, which is quite 
obvious, as the accelerogram, though amplified, does not have any change 
in its frequency content.
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Chapter 7

General applications

In previous chapters we have seen how the wavelet-based analytical tech-
nique can be used to formulate equations of motion in the wavelet domain in 
steps, and subsequently how the system equations (for both linear and non-
linear systems) can be solved to obtain the expected largest peak responses 
of the system. In all cases, we have seen that some common objectives have 
been met in order to solve the dynamic equilibrium in the wavelet domain. 
In this chapter, we will discuss some interesting applications of wavelets in 
different fields of civil engineering. However, before starting the details of 
these applications, it would be wise to briefly discuss once more the general 
properties, strengths as well as shortcomings, of wavelets that the users 
must be aware of before indulging in wavelet-based analysis.

We have seen that Fourier transform can give us information about 
the frequency content of a signal, but the time information gets lost, 
and this renders Fourier transform less usable in case the signal cor-
responds to a nonstationary random process. The wavelet transforms 
enable us to obtain orthonormal basis expansions of a signal using 
mother wavelets that have a good time–frequency localization property. 
The wavelet transform is based on octave band decomposition in the 
time–frequency plane in which higher frequencies are localized well in 
time. However, as frequency increases, uncertainty in frequency local-
ization also increases. In wavelet transform, the large-scale features 
are well resolved in the time domain with greater uncertainty in their 
location. The small-scale features are well resolved in the time domain 
with greater uncertainty with their frequency content. This phenom-
enon is due to the limitation explained by Heisenberg’s uncertainty 
principle. The choice of a wavelet depends on many factors, including 
the purpose of the analysis and the type of the signal used, and hence 
this choice cannot be made arbitrarily. The function (t) is chosen with 
unit energy (i.e. integration (|(t)|2 = 1) such that it has compact support, 
indicating that the decay would be fast, and hence localization in the 
spatial domain would be possible. The mother wavelet is also chosen to 
ensure that it has a proper admissibility condition; i.e. it has zero mean 
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(i.e. ∫ =−∞
∞ t dt( ) 0 ), and also the higher moments may be zero as well, as 

shown below:

	
∫ ( ) = = … −
−∞

∞

t t dt k Nk 0;    0,1, , 1 	 (7.1)

This zero mean property ensures that the function has a wave-like shape. 
Thus, several functions satisfying these two conditions may be chosen. The 
wavelet transform is an energy-preserving transformation. In order to take 
the wavelet transform of a sampled signal, discretization of scale and loca-
tion parameters (or time and frequency parameters) must be done, and this 
is called discrete wavelet transform, which is already explained in Chapter 2.

7.1  B-WIM NOR SIGNAL ANALYSIS

Weighing-in-motion (WIM) devices are designed to capture and record 
axle weights and gross vehicle weights as vehicles drive over a measure-
ment site. Unlike static scales, WIM  systems are capable of measuring 
vehicles travelling at a reduced or normal traffic speed and do not require 
the vehicle to come to a stop. This makes the weighing process more effi-
cient and, in the case of commercial vehicles, allows for trucks under the 
weight limit to bypass static scales or inspection. Bridge weigh-in-motion 
(B-WIM) is a process to determine the axle and gross vehicle weights of 
vehicles travelling at highway speeds on instrumented bridges. In this case, 
strain transducers are placed underneath the bridge for axle detection and 
nothing-on-the-road (NOR). The signals, measuring bridge vibrations due 
to the passage of traffic over the bridge, are recorded in these transducers 
and later analysed by wavelets to extract detailed information that other-
wise would not have been possible. If τ ts ( ),  is chosen as the mother wavelet, 
the continuous wavelet transform may be defined as

	 ∫( ) ( ) ( )τ =
τ

Wx s x t t dt
s

,
, 	 (7.2)

However, the continuous wavelet transform cannot be computed in a 
practical sense, as the variables involved in the definition of continuous 
wavelet transform are continuous. Hence, the transformation needs dis-
cretization in such a way that at lower frequencies the sampling rate may 
be decreased, thereby significantly saving computation time. An example of 
the B-WIM problem is given below. A numerical B-WIM model is described 
and realistic values of the parameters of the model are given. Subsequently, 
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the numerically obtained strain signals are analysed by appropriate wavelets 
to reveal more information. Additionally, experimentally obtained strain 
signals are also analysed to obtain similar information on axle spacing, 
vehicle velocity, etc. Chatterjee et al. [44] showed efficient use of wavelets 
in signal processing with respect to B-WIM to extract vehicle information.

7.1.1  Bridge and vehicle model

A two-dimensional numerical walking beam model is used to generate 
strain signals corresponding to a biaxial tandem travelling at a speed of 
approximately 75 km/h over a 15 m long simply supported beam. The 
vehicle is assumed to have a total mass of about 12 440 kg. This mass 
is assumed to be located at mid-way between the two axles. The bridge 
is assumed to have a mass of 28 125 kg/m, considering the length of the 
bridge to be the same as the beam (i.e. 15 m). The model of the vehicle is 
shown in Figure 7.1. The distance between the axles is 1.5 m. The model 
has vertical translation and a rotation (hence, it is a two-degree-of-freedom 
(2-DOF) model). In the model, the terms K and C denote the stiffness coef-
ficients and dampers, respectively. The mass is denoted by m and the veloc-
ity by V(x, t).

The moment of inertia of the vehicle is 45 000 kgm2, whereas the 
second moment of inertia of the cross section of the bridge is 0.527 
m4. The vehicle suspension is modeled by two spring-dashpot combina-
tions that have spring stiffnesses of 350 kN/m and damping coefficients 
of 7 kN-s/m. The modulus of elasticity of the beam is 35 × 109 N/m2. 
The second-order equation of dynamic equilibrium of the model may be 
solved to obtain the interaction force between the bridge and the vehicle 
axles at a particular time step and may be used in the next time step to 
update the beam (or bridge) deflection [44]. The strains are calculated at 
one-quarter and three-quarter points (i.e. 0.25L and 0.75L) on the beam 
(L = 15 m). The strains are sampled at 6300 Hz. The amplitude of vibra-
tion response obtained from the numerical solution of the system equa-
tion is quite high, and hence it is difficult to identify the axle passage 

V(x,t)

CKC

m

K

Figure 7.1 � Model of a vehicle.
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or extract any other information from the generated strain signals. The 
original strain signals at 0.25L, 0.50L and 0.75L on the beam model are 
shown in Figure 7.2. The wavelet analysis of the strain signals is done 
in MATLAB®. A reverse biorthogonal wavelet basis function is chosen 
here to analyse the strain signals. After performing a number of analy-
ses using other existing wavelet basis functions in MATLAB® (which 
are shown later), a reverse biorthogonal wavelet rbio2.4 is selected to 
analyse the strain signals and also the other NOR signals later in this 
chapter. The wavelet rbio2.4 is a compactly supported biorthogonal 
spline wavelet with symmetry and perfect reconstruction properties. 
Unlike the case of the orthogonal wavelet, where the analysis wavelet 
function is the same as the synthesis wavelet function (hence the number 
of vanishing moments is a single value), two sets of low-pass and high-
pass filters are used in the biorthogonal wavelet transform – one is used 
for decomposition and the other for reconstruction (i.e. analysis and 
synthesis, respectively).

The numbers 2 and 4 in rbio2.4 denote the orders (vanishing moments) 
for decomposition and reconstruction of the associated wavelet function, 
respectively. The biorthogonal wavelets are symmetric and have compact 
support. The decomposition and reconstruction wavelet functions (rbio2.4) 
are shown in Figures 7.3 and 7.4. The biorthogonal wavelets retain more 
energy than the orthogonal wavelets in lower-frequency subbands.

Using this wavelet function, rbio2.4, the strain signal, is first decomposed 
and reconstructed using a standard MATLAB® function, and the contour of 
wavelet coefficients is obtained at different scales, as shown in Figure 7.5.
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Figure 7.2 � Strain signals at spans 0.25L, 0.50L and 0.75L.
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The two prominent vertical lines at about 0.18 and 0.25 s indicate the axle 
positions, and these are much pronounced at lower scales (i.e. higher fre-
quencies). The wavelet coefficients at a particular scale are shown in the time 
domain in Figure 7.6, in which the passage of each axle can be easily identi-
fied from two sharp peaks. The time difference between the occurrence of 
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Figure 7.6 � Wavelet coefficients at 0.25L for a specific scale (scale 16).
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these two peaks accounts for the difference in time of arrivals of the first and 
second axles at 0.25L and 0.75L. The corresponding velocity may be sub-
sequently calculated to be 74.85 km/h, which is only 0.2% different from 
the actual value of 75 km/h. From this velocity and the distance between the 
peaks corresponding to each axle, the axle spacing comes out to be 1.5012 
m, indicating an error of only 1.2 mm from the 1.5 m spacing used.

Figure 7.7 demonstrates the wavelet coefficients at 0.25L for four differ-
ent scales (6, 16, 24 and 32). This figure reveals that at higher scales the 
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peaks are getting lost. The wavelet used here is effective at isolating the axle 
passages from the effects of vehicle and bridge vibrations. Thus, it is seen 
that the details of the vehicle passage can be identified from wavelet-based 
analysis of the original strain signal, which would otherwise be quite dif-
ficult. In this case, the original strain signal has been derived numerically 
from a physical model with known characteristics. Thus, the foregoing 
example may be considered a validation exercise to prove the suitability of 
wavelet analysis to process a nonstationary random signal due to vibra-
tion induced by the passage of a vehicle. This gives confidence to analyse 
similar signals obtained from experiments conducted at sites. Now, we will 
try to perform wavelet-based analysis of some real-time measurements of 
vibrations of bridges (in the form of strain signals) due to axle passages and 
extract similar information.

7.1.2  Wavelet analysis of experimental NOR data

Chatterjee et al. [44] has referred to a series of experimentally obtained 
NOR strain signals measured at different sensors placed underneath the 
Ravbarkomanda box culvert in Slovenia in 2004. A total of 16 channels 
were used to measure NOR strain signals at a frequency of 512 Hz. Of 
these channels, six were placed at mid-span to determine axle weights and 
two were placed in the slow lane under the wheel track and off-centre to 
correctly identify the axles of vehicles passing by. Figure  7.8 shows the 
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Figure 7.8 � Original strain signal.
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original strain signal measured at one of those two sensors placed in the 
slow lane corresponding to the passage of a truck with a gross vehicle 
weight of about 179 kN with five axles. The vehicle was stopped to mea-
sure the axle distances with tape, and these are as follows. The distances 
between the first and second axles and the second and third axles are 3.19 
and 6.06 m, respectively. The third to fourth axle distance and the fourth 
to fifth axle distance are measured to be 1.32 and 1.31 m, respectively.

The original strain signal shows peaks corresponding to four axles with 
a very weak third peak. However, the fifth axle is hardly seen; rather, a 
negligible change in the slope of the signal is visible. This signal is analysed 
using continuous wavelet transform in MATLAB®, and the wavelet basis 
function chosen is rbio2.4. The wavelet coefficients are computed at vari-
ous scales. The wavelet-transformed strain signal corresponding to scale 
16 is shown in Figure 7.9. All five axles can now be identified from the 
spectrum very clearly. This is due to the unique time–frequency localization 
property of the wavelets that the time information is not lost over different 
scales or frequencies, unlike Fourier transform. The wavelet transformation 
is able to retain the original relationship with time. However, the level of 
prominence of peaks may depend on the choice of scale. In this case, scale 
16 is seen to be the most useful one, and at the same time, it has been veri-
fied that the wavelet coefficients corresponding to other scales cannot pro-
duce such sharp peaks indicating axle positions so distinctly. The ripples 
in the transformed signal may be attributed to the fact that the changes in 
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frequencies might be sudden. The same data, when analysed with other 
wavelets, such as the Daubechies family of wavelets, did not yield results 
as good as shown in Figure 7.9. To give readers a reasonable comparison, 
the wavelet-transformed signal of the original strain signal using rbio2.4, 
but at different scales, is shown in Figure  7.10. It is clearly visible from 
this figure that the wavelet coefficients at scale 16 are able to show all the 
peaks representing all vehicle axles correctly in the time domain and wave-
let coefficients at other scales cannot reveal this information. The axle spac-
ing may be subsequently calculated from the position of the peaks in the 
time domain.

The same, using the Daubechies family of wavelets db6, db12 and db18, 
is shown in Figures 7.11 to 7.13, respectively. The figures demonstrate that 
the Daubechies family of wavelets is not able to identify axles distinctly at 
any scale. So, the selection of the correct wavelet function for the analysis 
is very important.

The wavelet-based analysis of the signal thus helps in identifying the 
arrival of vehicle axles in the time domain, correct axle spacing and hence 
the velocity of the vehicle.
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7.2  STIFFNESS DEGRADATION ANALYSIS

A reliable and popular approach toward structural health monitoring and 
damage detection is based on the wavelet analysis of structural response 
data. It has been shown in numerous studies that the effect of system deg-
radation is reflected in time–frequency characteristics of the response. The 
wavelet coefficients of the response of the structure reveal important infor-
mation on stiffness degradation and help sort out the damage locations. 
The cracks developed in engineering structures may cause local variation 
in stiffness, and hence affect the nature and type of the response of the 
structure. The cracks affect the natural frequencies and mode shapes of the 
structure. The powerful wavelet analytic tool helps in damage detection of 
affected structure and gives precise information about the temporal varia-
tion of the frequency content of the nonstationary response of the cracked 
structure. A simple example of a mass-spring-dashpot system representing 
a structural frame subjected to earthquake base excitation is analysed, and 
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the response is obtained, which is nonstationary in nature. The wavelet-
based analysis of the response is carried out to show the prominent effects 
of stiffness degradation.

7.2.1  Description of the analytical model

Let us first consider a simple model of a structure represented by the combi-
nation of a single mass connected to multiple springs in parallel and a single 
viscous dashpot. The springs are analogous to the stiffness of the structural 
components (beams, columns, etc.). The model is shown in Figure 7.14. The 
displacement of the mass is denoted by x(t), and the mass is subjected to 
an external time-varying force P(t). The springs have stiffness coefficients 
denoted by K1, K2, K3, etc., and the damper is assumed to be damping 
coefficient C. Each spring is assumed to exhibit a nonhysteretic bilinear 
behaviour. Hence, each spring is given a specific value of displacement (a 
threshold) that when exceeded, it breaks. Once the spring fails, it does 
not contribute to the system stiffness any more. However, if the force in 
the spring comes below the threshold value, it offers resistance again. The 
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failure of a spring may be compared to the damage of a structure. The sys-
tem stiffness is time varying, and at any time instant this may be expressed 
as the summation of individual spring stiffness, Kj, as follows:

	
∑=
=

K t K t
j

n

j( ) ( )
1

	 (7.3)

This actually represents a multilinear nonhysteretic concrete structure. 
The time-varying stiffness of any individual spring, Kj(t), follows a bilinear 
path, depending upon a predefined yield displacement, xy, as follows:

	

=
<

K t
K x t x

j
i y

( )
    ,   if  ( )

0,  otherwise

 

	 (7.4)

The term Ki 
denotes the initial spring stiffness.

The equation of motion for this mass–multilinear-spring–single-dashpot 
combination is written below:

	 + ζω + ω =mx t m t x t m t x t mx tn n i( ) 2 ( ) ( ) ( ) ( ) ( )2
   	 (7.5)

In this dynamic equation, the term x ti( )  denotes the input acceleration, 
ω tn( )  is the natural frequency of the system and varies with time and ζ 
is the damping ratio, which is also time dependent. Equation (7.5) may be 
solved in the time domain to obtain the response of the system. Once the 
solution is obtained, the response may be inspected in more detail using 
wavelet coefficients, and the results may then be compared with the wavelet 
coefficients of the input excitation.

In order to obtain a more realistic representation of a structural sys-
tem that behaves nonlinearly at low vibration amplitude, unlike the model 
discussed above, a continuous hysteretic force displacement curve may be 
assumed. This allows the stiffness to vary at every time instant (unlike 
bilinear variation in the above case). The equation of motion in this case is 
described as [45]

	   + ζω + χω + − χ ω =mx t m t x t m t x t t z t mx tn n n i( ) 2 ( ) ( ) ( ) ( ) (1 ) ( ) ( ) ( )2 2 	 (7.6)

In this equation, one can see some additional terms appearing. The terms 
z t( ) , x t( ) , ζ, ωn  and x ti( )  denote, respectively, the hysteretic displace-
ment, structural displacement, linear damping ratio, natural frequency of 
the system and input acceleration. The term χ represents the rigidity ratio of 
the hysteretic force-displacement loop. For a linear system, the value of χ is 
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1. For a highly nonlinear system, this value should be relatively smaller, and 
for χ = 0, the system is completely nonlinear. The third term, ωm t x tn( ) ( )2 , 
and the fourth term, − ω t z tn(1 ) ( ) ( )2 , are linear restoring force and hyster-
etic force, respectively. The relation between the structural displacement 
and the hysteretic displacement is given below:

	
= −γ − λ

−
z t x t z t z t x t z t

m m( ) ( ) ( ) ( ) ( ) ( )1
   	 (7.7)

The basic shape of the hysteresis is determined by three shape parameters, 
γ, λ and m, as can be seen in Equation (7.7).

7.2.2 � Numerical approach to wavelet-based 
damage detection

Unlike in previous chapters, this time we will not solve Equations (7.6) and 
(7.7) in the wavelet domain. The guideline on formulation of basic equa-
tions of motion in case of damage analysis is given in the previous section. 
These equations can be solved numerically. However, when the model is 
big and quite complicated, and especially for three-dimensional problems, 
a finite element model of the structural model is likely to be developed. The 
response of the structural system may be subsequently obtained once the 
material properties, the boundary and support conditions and the loading 
conditions are appropriately defined and assigned to the right parts of the 
finite element meshes. Once the responses are obtained, these can be ana-
lysed further computing wavelet coefficients. One simple example as given 
below may illustrate the efficiency of the wavelet-based signal processing 
technique in revealing some important information regarding the forma-
tion of cracks in the structure or stiffness degradation of the structure, 
which would have been more difficult to ascertain from ordinary Fourier 
transform of the data or analysis by any other technique.

7.2.3  Finite element model

A two-dimensional numerical model of a shear wall fixed at the bottom is 
developed using finite elements (software DIANA, version 9.5). The model 
of the wall is shown in Figure 7.15. The wall panel is 0.1 m thick. It has verti-
cal flanges on both sides and supports a beam at the top. The reinforcements 
are assumed to be present in the wall and the flange (not in the beam). The 
base of the model is subjected to a random seismic ground motion process 
simulating the Loma Prieta ground motion as shown in Figure  3.1. The 
base excitation is applied in both the directions (vertical and horizontal) 
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in the model simultaneously. The model dimensions are clearly shown in 
Figure 7.15. The mesh in this model is developed using eight-node quadrilat-
eral isometric plane stress elements. The whole structure is made up of con-
crete with reinforcements of steel wherever applied. A number of runs have 
been made assuming linear and nonlinear material properties for the con-
crete in the same model as described in Table 7.1. The steel reinforcements 
were always assumed to follow linear behaviour. In order to simulate devel-
opment of cracks, nonlinear material properties were assumed to follow a 
total strain rotating (orthogonal) crack model, which is usually applied to 
the constitutive modelling of reinforced concrete during a long period and 
quite well suited to reinforced concrete structures. A five-point multilinear 
tension curve, represented in Figure 7.16, is used to define fully the stress-
strain relationship, which has made the input of the tensile strength redun-
dant, and this is a more pragmatic approach for a numerical model. The 
crushing behaviour of the concrete is simulated by a constant compression 
curve, as shown in Figure 7.17.

0.
24

 m

0.26 m 1.18 m
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Beam
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20
 m

Figure 7.15 � Model of shear wall panel.

Table 7.1  Material properties for concrete and steel

Unit Concrete Steel

Young’s modulus N/m2 3 × 106 2 × 1011

Poisson’s ratio — 0.15 0.2
Density kg/m3 2400 7850
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To make the model more realistic, Rayleigh damping parameters are 
introduced into the model. Actually, in dynamic analysis of structures and 
foundations, damping significantly affects the response. The most effec-
tive and relatively easier way to tackle damping is to consider it within the 
modal framework. To obtain the value of the Rayleigh damping param-
eters (α and β) that depend on a pair of dominant eigenfrequencies (ω i ) 
and corresponding damping ratios (ζi ), as shown by the Equation (7.8), 
a free vibration analysis (also referred to as eigenanalysis) of the model is 
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first carried out. This analysis yields some important information listed in 
Table 7.2.

	 ζ ω = α + βω =2 ;    1,22 ii i i 	 (7.8)

The terms α and β are used subsequently in the numerical model to com-
pute the damping matrix [C] of the physical system with the help of the 
following expression, in which [M] denotes the mass matrix of the system 
and [K] represents the system stiffness matrix.

	 [ ] [ ]= α +C M
 [ ]β K 	 (7.9)

Table 7.2 shows the natural frequencies of free vibration of the shear wall 
in both directions (horizontal, X; vertical, Y) and the cumulative mass par-
ticipation in percent as obtained from the eigenvalue analysis of the finite 
element model for this system, shown in Figure 7.15.

From Table 7.2 it is clearly seen that modes 4, 6 and 10 are dominant in 
the X direction and modes 1, 3 and 12 are dominant in the Y direction. 
Hence, from corresponding eigenfrequencies it is observed that the domi-
nant frequency range lies between 11 and 55 Hz. For assumed damping 

Table 7.2  Eigen frequencies and mass participation factors obtained from 
modal analysis

Mode
Frequency 

(Hz)

Cumulative mass 
participation (%) – 
horizontal direction

Cumulative mass 
participation (%) –
vertical direction

1 11.54 0.00 83.46
2 12.07 1.78 83.46
3 17.75 1.78 86.93
4 21.39 84.13 86.93
5 28.62 87.27 86.93
6 29.98 89.10 86.93
7 33.30 89.10 86.98
8 39.27 89.10 87.59
9 45.33 89.10 89.26

10 47.36 92.08 89.26
11 50.52 92.08 89.98
12 54.11 92.08 94.47
13 54.62 92.11 94.47
14 66.19 92.34 94.47
15 69.85 93.47 94.47
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of 2%, the Rayleigh damping parameters, α and β, have been evaluated to 
be 5.762 and 0.00024, respectively, from Equation (7.8). These values are 
used as input parameters to the model when it is necessary to introduce 
2% damping. Two sets of results for the linear model have been obtained – 
one for the ‘no damping’ condition and the other with 2% damping. Two 
sets of results were further obtained in the case of the nonlinear concrete 
model (using nonlinear material properties for cracks as discussed above) 
for the no damping condition and with 2% damping. Some of the mode 
shapes corresponding to dominant frequencies in the lateral (X) direc-
tion obtained from the modal analysis of the finite element model are 
shown in Figures 7.18, 7.19, 7.20 and 7.21. The results were obtained 
in terms of acceleration response of the system and are illustrated in the 
next section.

7.2.4  Wavelet-based analysis of numerical results

The responses were obtained from the numerical model in terms of the 
acceleration response of specific nodes in the system. These nodes are 
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Figure 7.18 � Mode shape 2 at 12.07 Hz.
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chosen from the area that suffered maximum cracks in the case of the non-
linear model. Figures  7.22 and 7.23 show the temporal variation of the 
response of the current model in terms of acceleration of the linear and 
nonlinear models, respectively, obtained at a particular node (precisely 
node number 102) that lies within the most affected area suffering the max-
imum number of cracks. Apparently, these two acceleration time histories 
do not reveal any good information about the system. The wavelet coef-
ficients are computed for the input excitation (Loma Prieta) and also for 
the response for linear and nonlinear systems (both with 2% damping) and 
are plotted in Figures 7.24 to 7.26, respectively. The wavelet coefficients 
of acceleration response for the linear model clearly seem to be different 
from the wavelet coefficients of the acceleration response of the nonlinear 
model. The amplitudes of wavelet coefficients of the acceleration response 
for the nonlinear model seem to be higher than those of the linear model. 
The cross-correlation coefficients are computed between input excitation 
and linear model and also between input excitation and nonlinear model 
and are demonstrated, respectively, in Figures 7.27 and 7.28. It is vividly 
seen that the coefficients are closer to zero in the case where the nonlinear 

FX+ for DIANA
+1.00000e+000
+9.37500e–001
+8.75000e–001
+8.12500e–001
+7.50000e–001
+6.87500e–001
+6.25000e–001
+5.62500e–001
+5.00000e–001
+4.37500e–001
+3.75000e–001
+3.12500e–001
+2.50000e–001
+1.87500e–001
+1.25000e–001
+6.25000e–002
+0.00000e+000

X

Y

[UNIT] N, mm
[DATA] Structural Eigenvalue, DtX (V), Mode 4(21.3927)

3.0%
3.0%
3.0%
5.8%
3.2%
4.1%
6.1%

6.6%
8.3%

8.3%

10.1%
5.8%
9.6%
9.0%
7.9%
6.4%

Figure 7.19 � Mode shape 4 at 21.39 Hz.
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model is considered, which indicates that stiffness degradation is higher in 
the case of the nonlinear model than in the case of the linear model.

7.3 � SOIL–STRUCTURE–SOIL 
INTERACTION ANALYSIS

In the previous chapters, we have seen methods considering nonstationari-
ties in ground motions in wavelet-based analysis for soil–structure inter-
action. We have cited a few examples on soil-building interaction and 
soil-tank interaction, including some numerical illustrations. Fluid–soil–
structure interaction analysis and soil–structure interaction analysis due 
to nonstationary random excitations have been carried out by numerous 
researchers in the past, as referred to in previous chapters. In fact, some 
interesting works have also been presented recently by Livaoglu [46], Tam 
[47], Ding and Sun [48], Ovanesova and Suárez [49] and others. The advan-
tage of wavelet-based analysis lies in the fact that it may efficiently account 
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Figure 7.20 � Mode shape 6 at 29.98 Hz.
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Figure 7.21 � Mode shape 10 at 47.36 Hz.
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for the nonstationarities in input excitation. In the formulation discussed 
in Chapters 2 to 6, the responses of the structural models were obtained 
through wavelet coefficients. In most of the cases, the analysts are inter-
ested in obtaining only the response of the structure due to ground shaking. 
However, at certain times, the structural vibrations may have a nonnegli-
gible effect on the response of the underlying soil medium. In this section, a 
simple technique to obtain a soil response considering nonstationary soil–
structure–soil interaction is presented. For the wavelet domain analysis of 
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Figure 7.23 � Acceleration response of nonlinear model with 2% damping.
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Figure 7.24 � Wavelet coefficients of input seismic acceleration (Loma Prieta).
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the physical model (single degree of freedom (SDOF)) of the system, as 
shown in Figure 7.29, the technique remains the same as used in the previ-
ous chapters. This time, we solve the system dynamics three times to obtain 
three pairs of shear and moment at the base for the same tank for three dif-
ferent accelerograms. A tank has been considered to be the superstructure 
and is imagined to be placed at three different locations having three differ-
ent types of earthquake record. The three different input ground accelera-
tions are representatives of seismic ground motions at Loma Prieta (United 
States, 1989), Miyagi (Japan, 1978) and El Centro (United States, 1940). 
These accelerograms are shown in Figures 7.30, 7.31 and 1.2. A 3D finite 
element model of the soil domain with a centrally placed circular footing 
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Figure 7.25 � Wavelet coefficients of acceleration response of node 102 in linear model.

60
40

20
0 10

20 25
15

30
35

Centre Frequency (Hz)Time (s)

–3

2
1
0

–1
–2

3

W
av

el
et

 C
oe

�
ci

en
ts

(n
on

lin
ea

r m
od

el
 –

 2
% 

da
m

p)

Figure 7.26 � Wavelet coefficients of acceleration response of node 102 in nonlinear 
model.



General applications  177

on the top of the surface is subsequently developed in DIANA. The values 
of base shear and base moment as obtained from wavelet-based analysis 
are applied simultaneously to the nodes on the surface of the footing in the 
appropriate direction. The 3D nonlinear static analysis of the finite element 
model is then carried out to obtain the values of displacements, strains and 
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stresses. The whole process is repeated three times – each time with a dif-
ferent accelerogram.

7.3.1  Responses at tank base

We consider here a simple model of a tank–foundation–soil structure. The 
model is shown in Figure 7.29. The physical characteristics of the system 
are represented by impulsive mass (mi), foundation mass (mf), spring stiff-
ness Ki connecting the liquid to the foundation, damper Ci and complex-
valued impedance of the soil-foundation system (Kx). The displacements 
of the impulsive mode of the tank–liquid and the foundation are denoted 
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Figure 7.29 � 2-DOF model of the tank–foundation system.
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Figure 7.30 � Time history of acceleration during the Miyagi earthquake (1978), Japan.
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by xi(t) and xf(t), and these are relative to the ground displacement. The 
whole system is subjected to ground shaking with acceleration time his-
tory denoted by x tg( ) . The equations of motion may be formulated for 
linear soil–structure interaction analysis and subsequently solved using the 
wavelet-based technique as explained earlier. For the sake of the readers’ 
interest, the dynamic equations of the tank–fluid–foundation system and 
only the tank–fluid system may be written as

	
+ + + − =m x t x t m x t K x t x ti i f f f x f g( ( ) ( )) ( ) ( ( ) ( )) 0   	 (7.10)

	 + + = −m x t C x t K x t m x ti i i l i i i i( ) ( ) ( ) ( )   	 (7.11)
It may be noted here that in the above equation, = ζ ω2C mi i i  and = ω2K mi i i , 
and the expression for the term Kx  is given by Equation (4.16). The expressions 
for the base shear, Q(t), and the base moment, M(t), developed at the tank 
base due to soil–structure interaction effects may be written as

	 { }= +Q t m x t x ti i f( ) ( ) ( )  	 (7.12)

	 { }= +M t m x t x t hi i f i( ) ( ) ( )  	 (7.13)

In the above expression for tank base moment the term hi denotes the 
height above the tank base at which the impulsive mass should be located 
to give correct moments at a section immediately above the tank base. The 
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Figure 7.31 � Time history of acceleration during the El Centro earthquake (1940), United 
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base shear and the base moment may also be expressed in terms of wavelet 
coefficients as

	
∑∑= ψψQ t

K b
a

W Q a b t
i j j

j i a bj i( ) ( , ) ( ), 	 (7.14)

	
∑∑= ψψM t

K b
a

W M a b t
i j j

j i a bj i( ) ( , ) ( ), 	 (7.15)

The reader may now follow the procedure adopted in previous chapters in 
solving the system equations in the wavelet domain. Without getting into the 
details of the solution method (which is already cited in previous chapters), the 
expressions for impulsive displacement and foundation displacement responses 
in terms of functionals of wavelet coefficients are given below:

	

∑ ∑ψ ω = τ ω ψ ωψ ψW x a b W x a b
i

i j i a b i

i

j i a bj i j i( , ) ˆ ( ) ( ) ( , ) ˆ ( )( , ) ( , ) 	 (7.16)

	

∑ ∑ψ ω = τ ω ψ ωψ ψW x a b W x a b
i

f j i a b f

i

g j i a bj i j i( , ) ˆ ( ) ( ) ( , ) ˆ ( )( , ) ( , ) 	 (7.17)
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In the above equations, (7.16) and (7.17), ( )τ ωi  and ( )τ ωf  are the 
frequency-dependent complex-valued transfer functions relating the 
wavelet coefficients of horizontal displacements of impulsive tank–liquid 
and supporting foundation, respectively, to the wavelet coefficients of 
horizontal seismic accelerations. These transfer functions have the fol-
lowing expressions:

	
( )

τ ω =

− + γ ω ω −ω + ζω ω − γω

K
m
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m
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x

f

x

f
i i
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The expressions relating the wavelet coefficients of base shear and base 
moment to the wavelet coefficients of the ground acceleration have been 
derived from Equations (7.14) and (7.15) and may be written respectively as
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The transfer functions τ ωQ( )  and τ ωM( )  in Equations (7.20) and (7.21), 
finally, may be expressed as follows (after dividing these functions respec-
tively by mig and migH to obtain nondimensional coefficients of base 
shear and base moment):
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Subsequently, using the time-localization property of wavelets, assum-
ing a point-wise relation and taking advantage of narrow energy bands, 
the instantaneous power spectral density functions for base shear and the 
overturning base moment may be computed from the transfer functions as 
obtained in Equations (7.22) and (7.23) as follows:
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In Equation (7.24), ( )τ ω  represents either ( )τ ωQ  or ( )τ ωM . This 
expression of PSDF and other statistical estimates would finally give us the 
expected largest peak responses of the superstructure, which is a tank in 
this case, in the form of shear and an overturning moment at the tank base. 
Once these values become known, the same can be applied at the surface of 
the soil medium modelled with finite elements to obtain the responses with 
the soil domain. An example is considered here to clarify the approach.

Let us assume a tank resting on the foundation that is placed on the 
surface of a homogeneous elastic soil medium. The height, radius, wall 
thickness, elastic modulus, mass density, Poisson’s ratio and damping ratio 
of the tank are assumed as 12 m, 4 m, 4 mm, 2.1 × 108 kN/m2, 7850 kg/m3, 
0.2 and 5%, respectively. The values of linear elastic soil properties, viz. 
elastic modulus, mass density and Poisson’s ratio, have been assumed as 
3.5 × 105 kN/m2, 1500 kg/m3 and 0.33, respectively. The tank is filled with 
water, which has a mass density of 1000 kg/m3. The values of shear and the 
overturning moment obtained at tank base from the wavelet-based analysis 
have been given in Table 7.3. The wavelet-based pseudospectral accelera-
tion (PSA) spectra of the tank have been computed for all three seismic 
motions at 5% damping and shown in Figure 7.32. It may be seen from this 
figure that the Miyagi earthquake generated dominant PSA responses for 
the widest range in a time period (0.06 to 5.0 s), and indeed the strongest 
of the three motions, as is also evident from the values of the base shear 
and moment in Table 7.3. The Loma Prieta seismicity has a milder effect on 
PSA responses and is critical for a shorter range of time (0.1 to 1.0 s). The 
El Centro ground motion resulted in the mildest peak PSA responses for a 
range similar to that of Loma Prieta, but without any sharp peaks.

Table 7.3  Expected largest peak value of responses at tank base

Responses Loma Prieta (1989) Miyagi (1978) El Centro (1940)

Base shear (kN) 1207.60 3902.90 446.34
Base moment (kN–m) 661.73 2138.80 244.75
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Next, a three-dimensional finite element model of the underlying soil 
domain can be constructed in any standard software using a linear or non-
linear soil constitutive model, and the particular base shear and overturn-
ing base moment as specified in Table  7.3 may be applied to the model 
suitably. The corresponding soil responses may be subsequently obtained 
from finite element analysis of the model. The model and the approach 
toward soil–structure–soil interaction analysis are described in the follow-
ing section.

7.3.2  Finite element model of the system

A three-dimensional (3D) soil-footing model has been developed in 
DIANA, and a 3D nonlinear static analysis of this model has been carried 
out separately for each of the three seismic motions considered. The finite 
element (FE) model is shown in Figure 7.33. The circular tank of radius 
4 m is placed at the centre of the soil surface. The soil domain is considered 
to have a lateral extension that is seven times the tank radius (i.e. 28 m) on 
both sides along two mutually perpendicular directions. The vertical extent 
of the soil domain is assumed to be five times the tank radius (i.e. 20 m). In 
the finite element model, the circular concrete footing is assumed to be 1 m 
thick. The footing and the soil together have been meshed by 2D plate ele-
ments and six-node isoparametric solid wedge elements, respectively. The 
base shear obtained from the analysis has been distributed equally among 
all the nodes of the footing along the horizontal direction (+X), and the 

Z Y

X

Figure 7.33 � 3D FE model of the soil in DIANA.
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overturning base moment has been equally distributed about the Y axis at 
the nodes at the centre of the footing (at x = 28 m). The self-weight of the 
soil and the tank has been considered during the analysis. The weight of the 
steel tank in this case (with water) is approximately 5940 kN.

The soil has been represented by Mohr–Coulomb parameters (cohesion = 
5 kN/m2, friction angle = 36° and dilatancy angle = 6°), and K0 = 0.5 is also 
assumed in addition to the values stated above for linear elastic analysis done 
before. The elastic modulus, Poisson’s ratio and the density of the footing 
material are 3 × 107 kN/m2, 0.2 and 2400 kg/m3, respectively. Figure 7.34 
represents normalized horizontal displacements of the soil at a depth of 7 m 
on the XZ plane through the footing centre as obtained from finite element 
analysis in DIANA for three different seismic motions. Figures 7.35 and 7.36 
show variation of normalized normal stresses (Sxx) and the maximum hori-
zontal principal strain (free from shear strain) inside the soil domain at 7 m 
below the surface on the XZ plane through the centre of the tank-footing 
system.

These results include the nonstationary effects of the ground motions, as 
these effects have been captured while obtaining the values of the shear and 
moment responses from wavelet-based analysis. It may be mentioned here 
that in the plots shown, the normalized distance along the X axis has been 
obtained dividing the distance by the tank diameter, and the values of the 
displacements and stresses have also been normalized, dividing the respec-
tive values by the corresponding maximum value obtained considering all 
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Figure 7.34 � Horizontal (X) displacements in soil at 7 m depth. (From DIANA analysis.)
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Figure 7.35 � Horizontal (X) stresses in soil at 7 m depth. (From DIANA analysis.)
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three types of earthquakes. The soil near the boundary is deformed more 
due to the more powerful Miyagi earthquake, and the nature is antisym-
metric in the case of milder earthquakes like Loma Prieta and El Centro 
(Figure  7.34). As the base shear is applied in the +X direction and the 
moment has been applied clockwise about the Y axis, so the stresses seem 
to increase immediately on the right side of the centreline of the tank-soil 
model (around x = 3.5), as evident from Figure 7.35. The maximum hori-
zontal principal strain (Figure 7.36) seems to follow a symmetrical trend 
about the centreline of the tank.
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Appendix: MATLAB® Programmes

% Programme File #1: wvcf.m  
% This Matlab programme calculates wavelet coefficients of 
an input accelerogram based on 
% modified Littlewood-Paley basis function (vide Section 
2.4) and subsequently characterizes 
% the ground motion. The earthquake acceleration time 
history data is assumed to be stored in 
% file ‘acc.dat’ in a single column which has 2047 time 
points (so 2047 rows).
%                     Author: Pranesh Chatterjee
%                     Year:   2014
%                     Version: 2014.02
%
close all;
clear all;
% User input starts
tsm=0.02;
nn=2047;
lowband=-17;
highband=4;
sigma=2.0^(1.0/4.0);
fid=fopen(‘acc.dat’);  % input acceleration file is read 
% User input finishes
tm=(nn-1)*tsm;
zz=fscanf(fid,’%f’);
fclose(fid);
for ibk=1:nn  % time instants
    bk=(ibk-1)*tsm; 
    for j=lowband:highband % frequency bands
        mj=j+18;
        aj=sigma^j;
        w=0.0;
        for i=1:nn
            ti=(i-1)*tsm;
            if((ti-bk)==0.00)
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                psi=sqrt(sigma-1.0);
            else
                u=(ti-bk)/aj;
                rnum=sin(sigma*pi*u)-sin(pi*u);
                den=u*pi*sqrt(sigma-1.0);
                psi=rnum/den;
            end
                w=w+zz(i)*psi*tsm;
        end
                baj=sqrt(abs(aj));
                wvcfacc(ibk,j+18)=w/baj;          
    end
end
save(‚wvcfacccmpsps.mat‘,‘wvcfacc‘); %2047 rows, 22 columns
%
% Calculation of wavelet coefficients finished
%
% Ground motion characterization starts now (vide Section 
3.1)
%
for i=1:2047
    for j=1:22
        wvcfaccsq(i,j)=wvcfacc(i,j)^2;
    end
end
        bb=0.2;
        cpsi=2.0*log(sigma)/(2.0*(sigma-1.0)*pi);
        sk=2.0/(4.0*pi*cpsi)*(sigma-1.0/sigma);
        skk=sk/((sigma-1.0)*pi);
        for jj=-17:4
            j=jj+18;
            tj=(4.0*(sigma^jj))/(1.0+sigma);
            jjj=tj/tsm;
            im=1;
            sum=0.0;
            is=0;
            for i=im:2047
                is=is+1;
                sum=sum+wvcfaccsq(i,j);
                if((is<jjj)&&(i==2047))
                    jjj=is;
                    wvs=sum/jjj;
                    ik=i-jjj+1;
                    for ie=ik:i
                        wv(ie,j)=wvs;
                    end
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                    is=0;
                    sum=0.0;
                elseif(is==jjj)
                    wvs=sum/jjj;
                    ik=i-jjj+1;
                    for ie=ik:i
                        wvcfaccsq(ie,j)=wvs;
                    end
                    is=0;
                    sum=0.0;
                else
                    flag=1.0;
                end
            end
        end
        �save(‘wvcfaccsq.mat‘,‘wvcfaccsq‘);  % squared 

acceleration stored
        time_pts=[0.00:0.02:40.92];
        time_pts=time_pts‘;
        for i=1:2047
            for j=1:22
                tm_inst(i,j)=time_pts(i,1);
            end
        end
        freq_bands=[1:22];
        for i=1:2047
            for j=1:22
                bands(i,j)=freq_bands(1,j);
            end
        end
        %
        % Plotting wavelet coefficients in 3D
          figure(1);
        �plot3(tm_inst(:,1:4:22),bands(:,1:4:22)-

18,wvcfacc(:,1:4:22)/100);
        xlabel(‚Time (s)‘);
        ylabel(‚Frequency band‘);
        zlabel(‘Wavelet coefficients’);
        �legend(‘j = -17’,’j = -13’,’j = -9’,’j = -5’,’j = 

-1’,’j = 3’); 
        %
        % �Plotting squared wavelet coefficients in 3D after 

ground motion characterization
       figure(2);
        �plot3(tm_inst(:,1:4:22),bands(:,1:4:22)-

18,wvcfaccsq(:,1:4:22)); 
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        xlabel(‘Time (s)’);
        ylabel(‘Frequency band’);
        zlabel(‘Wavelet coefficients squared’);
        �legend(‘j = -17’,’j = -13’,’j = -9’,’j = -5’,’j = 

-1’,’j = 3’);
%    Ground motion characterization is finished
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%    Programme File #2: PSAwavelet.m 
%    �This program finds out the PSA of a SDOF system based 

on wavelet analytic technique using
%    �modified Littlewood Paley basis function (vide Sections 

3.2 & 3.5.2).
%    �It reads in squared wavelet coefficients generated by 

previous programme (wvcf.m) and stored
%    �separately after ground motion characterization is 

done.
%
%                   Author: Pranesh Chatterjee
%                   Year: 2014
%                   Version: 2014.01
clear all;
close all;
% User input starts here
ze=0.05;       % damping ratio of the SDFOF system
bb=0.2;
grv=9.81;     % acceleration due to gravity (in SI unit)
sig=2^0.25;
dw=0.005;
tsm=0.02;                  % �sampling time (in s) in time 

history acceleration input file 
load(‘wvcfaccsq.mat’); % �The squared wavelet coefficients 

are read
%
cpsi=2.0*log(sig)/(2.0*(sig-1.0)*pi);
sk=2.0/(4.0*pi*cpsi)*(sig-1.0/sig);
skk=sk/((sig-1.0)*pi);
maxtmpt=length(wvcfaccsq);   % length is 2687 for El Centro
wv=wvcfaccsq;
icnt=0;
for itn=0.01:0.025:10.05           % �time periods (0.01 s 

through 10.05 s)
    icnt=icnt+1;
    wni(icnt)=2*pi/itn; 
    timep(icnt)=itn;
end
for ih=1:length(wni)
    for j=-17:4
        sll=pi/(sig^j);
        ul=sll*sig;
        ji=j+18;
        fr(1,ji)=0.0;
        fr(2,ji)=0.0;
        fr(3,ji)=0.0;
        for w=sll:dw:ul
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            �fra=1.0/((w*w-wni(ih)*wni(ih))^2.0+(2.0*ze*w*wni
(ih))^2.0);

            fr(1,ji)=fr(1,ji)+fra*dw;
            fr(2,ji)=fr(2,ji)+fra*w*dw;
            fr(3,ji)=fr(3,ji)+fra*w*w*dw;
        end
    end
    for ii=1:3
        for i=1:maxtmpt
            sm(ii,i)=0.0;
            for j=-17:4
                jj=j+18;
                sm(ii,i)=sm(ii,i)+skk*wv(i,jj)*fr(ii,jj);
            end
        end
    end
    for ii=1:3
        for i=1:maxtmpt
            sm(ii,i)=sm(ii,i)*(wni(ih)*wni(ih)/grv)^2.0;
        end
    end
    for i=1:maxtmpt
        omega(i)=sqrt(sm(3,i)/sm(1,i));
        part1=sm(2,i)^2.0;
        part2=sm(1,i)*sm(3,i);
        part=part1/part2;
        slambda(i)=sqrt(1-part);
    end
    x=0.0005;
    exlpk=0.0;
    prdisfn1=0;
    delta=0.00025;
    ijl=99*(10^6);
    for jk=1:ijl  
        alpha=0.0;
        for i=1:maxtmpt
            snulambda=slambda(i)^(1.0+bb);
            alpha1=(omega(i)/pi)*exp(-(x*x/(2.0*sm(1,i))));
            �alpha2=1.0-exp(-sqrt(pi/2.0)*snulambda*(x/

sqrt(sm(1,i))));
            alpha3=1.0-exp(-(x*x/(2.0*sm(1,i))));
            alpha4=alpha1*alpha2/alpha3;
            alpha=alpha+alpha4;
         end
         prdisfn2=exp(-alpha*tsm);
            diff=prdisfn2-prdisfn1;
            if(jk==1)
               exlpk=(x/2.0)*diff+exlpk;
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            else
               exlpk=exlpk+diff*(x-delta/2.0);
            end
            prdisfn1=prdisfn2;
            x=x+delta;
            if(prdisfn2>0.95)
                break
            end
    end
    larpeak(ih)=exlpk;
end
save(‚PSAacc.mat‘,‘wni‘,‘larpeak‘); % �The largest peak 

response of SDOF 
                                    % �system is saved in a 

‚mat‘ file.
figure(1);
plot(timep,larpeak);                  % �Plots PSA spectrum 

at 5% damping
xlabel(‚Time period (s)‘);
ylabel(‚PSA (in g)‘);
figure(2);
semilogx(timep,larpeak);        % �Semilog plot of PSA 

spectrum at 5% damping
xlabel(‚Time period (s)‘);
ylabel(‚PSA (in g)‘);
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% Programme File #3: linstoch.m 
% �This Matlab programme performs wavelet analysis of a 

soil-tank-footing interaction problem
% �where the system is subjected to strong ground shaking 

(vide Section 4.7.1). Values of main 
% parameters are:
% Shear wave velocity: vs = 200 m/s 
% Tank heights (‘ht’) considered: ht = 3, 6 and 10 m
% �Height–radius ratio of the tank assumed: hr = 3.0 

(slender)
%
clear all;
close all;
%
zei=0.05;                    % �damping ratio of impulsive 

liquid mass
gr=9.81;                     % �acceleration due to gravity 

(SI unit)
est=2.1*(10.0^11.0);         % �Elastic modulus of steel tank 

(N/m^2)
pst=7850.0;                  % �mass density of steel tank 

material
tsm=0.02;
bb=0.2;
g=9.81;
sig=2^0.25;
dw=0.0001;
%
ep=sqrt(est/pst);
cpsi=2.0*log(sig)/(2.0*(sig-1.0)*pi);
sk=2.0/(4.0*pi*cpsi)*(sig-1.0/sig);
skk=sk/((sig-1.0)*pi);
load(‚wvcfaccsq.mat‘);      % �Squared wavelet coefficients 

are read
wv=wvcfaccsq;               % �Squared wavelet coefficients 

are stored in a variable
clear wvcfaccsq;
vs=200.0;
ht=[3 6 10];
for ikl=1:3
    for ihr=1:3
      if(ihr==1)
          hr=0.5;
          ci=0.0719;
      elseif(ihr==2)
          hr=1.0;
          ci=0.0875;
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      else
          hr=3.0;
          ci=0.0792;
      end
      rt=ht(ikl)/hr;
      wn=(ci/ht(ikl))*ep;
      wf=62.83; % foundation frequency in rad/s
      wfsq=wf*wf;
      rof=8.0;
      for j=-17:4
           sll=pi/(sig^j);
           ul=sll*sig;
           ji=j+18;
           fr(1,ji)=0.0;
           fr(2,ji)=0.0;
           fr(3,ji)=0.0;
           for w=sll:dw:ul
               %     IMPULSIVE DISPLACEMENT
               xa0=w*rt/vs;
               xa=wfsq;
               xb=0.65*xa0*xa;
               xy1=wn*wn-w*w;
               xy2=2.0*zei*wn*w;
               xp=xa;
               xq=xb;
               xr=(xa-w*w*(1.0+rof))*xy1-xy2*xb-rof*w^4;
               xs=(xa-w*w*(1.0+rof))*xy2+xy1*xb;
               fra=(xp*xp+xq*xq)/(xr*xr+xs*xs);
               fr(1,ji)=fr(1,ji)+fra*dw;
               fr(2,ji)=fr(2,ji)+fra*w*dw;
               fr(3,ji)=fr(3,ji)+fra*w*w*dw;
           end
      end
      for ii=1:3
          for i=1:2047
              sm(ii,i)=0.0;
              for j=-17:4
                  jj=j+18;
                  sm(ii,i)=sm(ii,i)+skk*wv(i,jj)*fr(ii,jj);
              end
          end
      end
         for iy=1:2047
             timep(iy)=(iy-1)*0.02;
             xmt(ihr,iy,ikl)=sqrt(sm(1,iy)); % in ‘m’
         end
    end
end
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save(‘linstochres.mat’,’timep’,’xmt’);
% Results are saved in a ‘mat’ file
% �Results for the tank with height–radius ratio = 3 are now 

plotted
figure(1);
plot(0.0:0.02:40.92,xmt(3,:,1),0.0:0.02:40.92,xmt(3,:,2),0.0
:0.02:40.92,xmt(3,:,3));
%
% Soil-tank-footing interaction analysis is finished
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