Building a Programmable
Logic Controller with a

PIC16F6438A
Microcontroller

Building a Programmable
Logic Controller with a

PIC16F648A
Microcontroller

Building a Programmable
Logic Controller with a

PIG16F648A
Microcontroller

Murat Uzam

CRC Press
Taylor & Francis Group
Boca Raton London New York
CRCP rint of the
Tayl , an in i

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20130710

International Standard Book Number-13: 978-1-4665-8986-5 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a pho-
tocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

To my parents and family
who love and support me
and
to my teachers and students

who enriched my knowledge

Contents

PTOIACE. ... ittt sttt bttt n e s st erenas xiii
AckNOWledgmentsccc.ovrueiiiiiiiiice e XV
Background and Use of the BooKcccccoviiiiiinnniiiiicincccea xvii
ADOUL the AULNOTovveeieeieeeeeeeee e ese e xxiii
1 Hardware of the PIC16F648A-Based PLC............ccccooiviiivinininieeeeieene 1
2 Basic SOfEWATE......ccvoieieieieceeeeee ettt 11
2.1 Basic SOftware StrUCUTE........ccccveirieiiieierieieeee e 11
2.1.1 Variable Definitions........ccceererverierierieieiecieeeieeseeeeeeese s 12
2.1.2 MACIO HCLB5 oottt ettt s naeenees 21
2.1.3 MaCIO HC595 oottt ettt enees 21

2.2 Elimination of Contact Bouncing Problem in the
PIC16F648A-Based PLCcccoooieiieiieicieeieeeieee e 22
22.1 Contact Bouncing Problem...........cccccccoeeiiiiiiiiiicennas 22
222 Understanding a Generic Single 1/O Contact Debouncer24
2.2.3 Debouncer Macros dbncr0 and dbncrlccceceeeeereennens 25
2.3 Basic Macros of the PIC16F648A-Based PLC.........cccccecvevrvrrnrennnne. 31
231 Macro initialiZe oot 31
232 Macroget INPULS . 32
2.3.3 Macro send OULPULS .o 33
2.4 Example Program ... 34
3 Contact and Relay-Based Macros..........c.cccoeeueenniereenennereceneerecnneenene 37
3.1 Macro 13 (10ad) ...coeeveeveieieieieieeee e 38
3.2 Macro 1d_not (load not).....cc.cceeevrecininnccirnecieeceeeeene 39
G JC TN \Y/ - 1ol o 35 o o) bSO PSRPTOSPRRS 40
G 22 SN Y/ F- Ta] o I @ 5 SRS PRUR SRRSO 41
3.5 MaCrO OF MO i 42
I J ST\ - Ta] o 35 o o 1 BRSPS 42
I IV Y/ F- Ta] o 1= s o USSR PRRSPRRRS 44
3.8 Macro and O .o 46
1 2O BN \Y/ F- 1ol o 35 o F=¥ o Lo SO PRSP 47
310 MACTO KO tutteuieeeieieeieeieeieenteestesteentesteetesseessesaeessesneessesneenseensenseensenseens 47
311 MaCIO XOT T10OT wiieiiiciiiciiieciieecitecrtce e 49
312 MACTO KILOT wiuiiuieieeuieieenienteesteteentenseentesseessesaeensesneessesneessesnsenseensenseens 49
G 20 1 T Y/ F 1ol o I o U O SRPT SRS 51
3.14 MaCrO OUL TIOT it 53
315 MaCIrO 1IN OUL it 54
3.16 MaCIrO INV_OUL .ot 56

vii

viii Contents

317 MACIO _SEE it 57
318 MaCIOo _TeSET it 58
3.19 Examples for Contact and Relay-Based Macrosccccoeueuenees 59
4 FLp-FIop MACIOS.......cccoiiiiiiiiiiiiici e 67
41 Macro r_edge (Rising Edge Detector)..........ccccoovivirniniiiincninnes 68
42 Macro £_edge (Falling Edge Detector)..........ccccooueerrieiiiirneininnes 70
43 Macro latchl (D Latch with Active High Enable)....................... 72
44 Macro latcho (D Latch with Active Low Enable)..........ccccccc.e.. 72
45 Macro dff_r (Rising Edge Triggered D Flip-Flop).........ccccc........ 74
46 Macrodff_f (Falling Edge Triggered D Flip-Flop)...................... 77
47 Macro tff_r (Rising Edge Triggered T Flip-Flop)cccccc........ 80
48 Macro tff_f (Falling Edge Triggered T Flip-Flop)ccccc........ 82
49 Macro jkff_r (Rising Edge Triggered JK Flip-Flop) 82
410 Macro jkff_f (Falling Edge Triggered JK Flip-Flop) 86
411 Examples for Flip-FIop Macros...........cccoceueiniiicieiiiciccieeicccieeaes 88
5 Timer MACIOS......cooouiiiiiiiiiiieicce s 97
51 On-Delay Timer (TON)ccccoooiiimiiiiiceeicc e 97
52 Macro TON_8 (8-Bit On-Delay Timer).........ccccoveiuiiiiiiiiiiinnnns 98
53 Off-Delay Timer (TOF)cccccooiiiniiiiiiicceccc e 102
5.4 Macro TOF_8 (8-Bit Off-Delay Timer)........ccoeoviuiiiiiiiiiiiennas 105
55 Pulse TImer (TP)...cocoeireeriineeriecnictnenerteeeeeereeee e 107
5.6 Macro TP_8 (8-Bit Pulse Timer)........ccccoceueiiviiccinniciiiiccne 108
5.7 Oscillator Timer (TOS)cooereiiiiiiec e 111
5.8 Macro TOS_ 8 (8-Bit Oscillator Timer)........cccceceucueiviricicccirircncnnes 112
59 Example for Timer Macrosc.c.cccoveueieiiicinieiniccceeieccee e 115
6 Counter MACIOS.coouiuiiiiiiiciciccc s 121
6.1 Move and Load Macros...........cccooeuiiiiimcieiiiiiieeccecc 121
6.2 Counter MacroS......ccoeuiviiiiiiiiiiiicieiiiicee e 123
6.3 Up Counter (CTU).....ccceueuiiiiiiiiiiiiicicicciciccccceeiceennes 124
6.4 Macro CTU_8 (8-Bit Up Counter).........ccccecueuiuiiiiiiiiiiiiiiciiicnnns 126
6.5 Down Counter (CTD)ccccveimeireririeirieieenieene e 129
6.6 Macro CTD_8 (8-Bit Down Counter)cccccceeevrccicnncccnnnnn, 130
6.7 Up/Down Counter (CTUD).......cccceceuiuiuiiiiiiiiiiiiiiciiiccicicciccnes 132
6.8 Macro CTUD_8 (8-Bit Up/Down Counter)........c.ccocvuevrierrennnnnnes 133
6.9 Examples for Counter Macros............ccccoeeueuiuiiiiiiiiiiicneieieienienenenas 136
7 Comparison MacIOS ...t 143
71 MaCroR1_GT_R2 .ottt 144
7.2 MaCrOR1_GE_R2 .ottt 144
7.3 MaCroR1_EQ R2 .ot 146
74 MaCroR1_LT R2 .ot 147

75 MAaCrORL_LE_R2 ooooooooeeomeeesssssssessooeseeeessessssssooseeeeeeseesssssooeeee 148

Contents ix

10

11

7.6 MaCrORL NE R2 ..ot 150
7.7 MaCTO R _GT_ Kuutoioiiieiiiiiiieiiiireeieecte e 151
7.8 MaCTOR GE Kuuiiiiiiiiiiiciciiieicicieicieeisee e 151
7.9 MaCrOR EQ Kuuioiiiiiiiciciiiiiciciceiieicesee e 153
710 MaCTO R LT Kuuiooiueiiiiiciciciiiiieieicies et 154
711 MaCTOR LE Kuuiiiiiiiiiieiciiiiinieieiciisieseeesee et 155
712 MaCTO R NE Ku.iiiiiiiiiieiciiiiiieicicteiesceiseeee e 157
7.13 Examples for Comparison Macroscccoceveecueieieicccieiricccnennn. 158
Arithmetical MaCrOSc.ccueeiiiiiiiicieeeeceee e 163
8.1 MaCro R1IAAARL ittt e 164
8.2 IMACIO RAAAK ..uviiieiieeiieie ettt ettt e ettt e eneaean 165
8.3 MaACrO RISUDRZ ittt et 165
8.4 IMACIO RSUDK ettt ettt e e e aee e 167
8.5 MACIO ITICR e cutieiiieiiete et eete et stte et steeebeesateebeessbeeaeessseebeesnaeenees 168
8.6 IMACIO AECR. .ottt et 169
8.7 Examples for Arithmetical Macros..........c..ccocoeeieieiiiniiiciccenes 170
Logical MACIOSc.cooviiiiiiiiii e 175
9.1 MaCro R1IANARL ittt ettt e eree s 176
9.2 MACIO RANIAK ..eviiieiieeiiieeeeeee ettt ettt e e e etae e eeavaeeeraaean 177
9.3 MacCro RINANARZ .uoiiiiiieeeieeeeeeeee ettt et e e eaaaeeeneeean 177
9.4 MaCro RNANAK ...cooiiiiiiiieeeeeeeeeeeee et eeeaee et e et eeaaeeereeean 179
9.5 IMACTO RIOTR2 ceiiieiiie ettt ettt e eaae e aeaean 180
9.6 IMACTO ROTK . ocoitiieeiiee ettt e et e e e et e e eeaae e eearee e eneaean 181
9.7 MaACrO RINOTR2 oottt ettt eeaae e veaean 182
9.8 IMACIO RNOTK eeviieeiiie ettt ettt e et e et e e eaaaeeereaean 183
9.9 MACIO RIKOTR2 oottt ettt ettt e et eeeaaae e eneaean 185
9.10 IMACTO RXOTK cerviieeiiieeeiiie et et eeee et e et e et e e eteeeeetaeeeeaveeeereaean 186
9.11 MaACrO RIKNOTR2 cuviiiiiiieeeeie et et eeeaee e e e et e eeaaeeeeaaaeeeneeean 187
9.12 MACTO RXTNIOT K uiiieiiieeiiieeetee ettt e et e et e et e eeavaeeeaeaean 187
9.13 MaCIO ANV_R oottt 189
9.14 Example for Logical Macros........c.ccoovmeieiiiicnieiniicceccie 190
Shift and Rotate MacroS.........ccoccveeuieiiiiieiieieeeieeeeete et 199
10.1 Macro Shift R 199
10.2 Macro Shift L 200
10.3 Macro rotate Rt 201
10.4 Macro rotate L 207
10.5 IMACIO SWAD uutttteteriieteeienteetenteete et ete et este st estestesbeetesbeesesbeesesseens 209
10.6 Examples for Shift and Rotate Macros..........c.cccccocevviviniiiiinincnnnen. 210
Multiplexer Macrosccccccuiuiiiiiiiiiiiiiiiiccccc e 225
11,1 MACTO MUX_2 1 oot 225

11.2 Mactomux_ 2 1 B 226

12

13

14

15

Contents

11.3° MaCTO MUX_ 4 1 oot 227
114 Mactomux_ 4 1 B 228
11.5 MacCTO MUX_8_ 1 oo 232
11,6 Mactomux_ 8 1 Euccooeicciinieiciceiiesceieescsce e 233
11.7 Examples for Multiplexer Macros..........cccccoevvevcueieinieccieisicccnen. 233
Demultiplexer Macroscccccceuiuiiiiiiiiiiiiiiiiccccceeecenes 243
121 MacCTODMUX_ 1 2 ciceiiieieicecciieieeceies s 243
122 MactoDmMUX_1 2 E .ot 244
123 MacCTODMUX_ 1 4 ceceeiieieiceiiieiceceeesce e 245
12.4 MactoDmMUX_1 4 E .o 246
125 MacCTO DMUX_ 1 8 .ecvceiiieieiceiiieiceceeeetceee e 251
12.6 MactoDMUX_1 8 E.ocooiiiirieicicininierceienescnce e 252
12.7 Examples for Demultiplexer Macros..........c.cccooveueiricccieiiicccnnnn. 252
Decoder Macroscccucuiiiiiiiiiiiiiiice e 263
13.1 Macro AeCod 1 2. 264
13.2 Macro decod 1 2 AL . 265
13.3 Macro decod 1 2 B 266
13.4 Macro decod 1 2 E AL 268
13.5 Macro AeCOod 2 4. 269
13.6 Macro decod 2 4 AL . 270
13.7 Macro decod 2 4 B 273
13.8 Macro decod 2 4 E AL 273
13.9 Macro Aecod_3_ 8. 276
13.10 Macro decod_3_8 AL ..ieccininierceinerceceee s 280
13.11 Macro decod_3_ 8 E..ciieicciinieiceinieicnce e 280
13.12 Macro decod_3_ 8 E AL 283
13.13 Examples for Decoder Macrosc.cccoeeueiniiicicieinicccieiccne, 286
Priority Encoder Macros............ccccocuiuiiiiiiiiiiiiiiiiiiicccccicccceccenes 295
141 Macro encod 4 2 P 296
142 Macroencod 4 2 P E.inincecc s 298
14.3 Macro encod 8 3 P 300
14.4 Macro encod 8 3 P E.iiieceinecceee s 303
14.5 Macro encod_dec_Dbcd P . 303
14.6 Macro encod_dec_bcd P E .o 304
14.7 Examples for Priority Encoder Macros...........cccocoeveveiciniiincnnan. 312
Application Example............ccccocoiiiiiiiii 319
15.1 Remotely Controlled Model Gate System............ccccccooeueiriinnnnnn. 319
15.2 Control Scenarios for the Model Gate Systemcccocc....... 321
15.3 Solutions for the Control Scenarios.........cccccocevviviviiiiiiiniiiiiicnccnc. 323

15.3.1 Solution for the First Scenario..........ccccoovevviiiiiininiiiinncnnn. 324

15.3.2 Solution for the Second Scenario........ccoecveeveveeiecveeeeieeens 324

Contents xi
15.3.3 Solution for the Third Scenario......cccccceeveeveeviiiceeeeiieeens 325
15.3.4 Solution for the Fourth Scenario.........cceoeeveviiivvveeeveeeens 326
15.3.5 Solution for the Fifth Scenarioccccceeveveeveiiiiiceieeeeeene 327
15.3.6 Solution for the Sixth Scenario.......ccccceveeeeveveeieceeeeceeeeenns 328
15.3.7 Solution for the Seventh Scenario........cccceevvvvivceveeveeeennn 329
15.3.8 Solution for the Eighth Scenario.........cccccocovviiiiinnnnc. 330
ADOUL the CD-ROM ...ttt ettt e e 337
REECICIICES ..ottt ettt e e e et e e s aaeeseaaeeeennees 339

Preface

Programmable logic controllers (PLCs) have been used extensively in indus-
try for the past five decades. PLC manufacturers offer different PLCs in terms
of functions, program memories, and the number of inputs/outputs (I/Os),
ranging from a few to thousands of I/Os. The design and implementation of
PLCs have long been a secret of the PLC manufacturers. Recently, a serious
work was reported by the author of this book to describe a microcontroller-
based implementation of a PLC. With a series of 22 articles published in
Electronics World magazine (http//www.electronicsworld.co.uk/) between
the years 2008 and 2010, the design and implementation of a PIC16F648A-
based PLC were described. This book is based on an improved version of the
project reported in Electronics World magazine.

This book is written for advanced students, practicing engineers, and hob-
byists who want to learn how to design and use a microcontroller-based
PLC. The book assumes the reader has taken courses in digital logic design,
microcontrollers, and PLCs. In addition, the reader is expected to be familiar
with the PIC16F series of microcontrollers and to have been exposed to writ-
ing programs using PIC assembly language within an MPLAB integrated
development environment.

The CD-ROM that accompanies this book contains all the program source
files and hex files for the examples described in the book. In addition, PCB
files of the CPU and I/O extension boards of the PIC16F648A-based PLC are
also included on the CD-ROM.

Dr. Murat Uzam

Meliksah Universitesi
Miihendislik-Mimarlik Fakiiltesi
Elektrik-Elektronik Miihendisligi Boliimii
Talas, Kayseri

Turkey

xiii

Acknowledgments

I am grateful to Dr. Gokhan Gelen (gokhan_gelen@hotmail.com) for his great
effort in drawing the printed circuit boards (PCBs) and for producing the pro-
totypes of the CPU board and the I/O extension board. Without his help this
project may have been delayed for years.

XU

Background and Use of the Book

This project was completed during the search for an answer to the follow-
ing question: How could one design and implement a programmable logic
controller (PLC)? The answer to this question was partially discovered about
15 years ago by the author in a freely available PLC project called PICBIT.
The file, called picbit.inc of PICBIT, contains the basic PLC macro definitions.
The PIC16F648A-based PLC project has been completed by the inspiration of
these macros. Of course many new features have been included within the
PIC16F648A-based PLC project to make it an almost perfect PLC. The reader
should be aware that this project does not include graphical interface PC
software as in PICBIT or in other PLCs for developing PLC programs. Rather,
PLC programs are developed by using macros as done in the Instruction
List (IL) PLC programming language. An interested and skilled reader could
well (and is encouraged to) develop graphical interface PC software for easy
use of the PIC16F648A-based PLC.

The PIC16F648A-based PLC project was first reported in a series of 22 arti-
cles published in Electronics World magazine (http://www.electronicsworld.
co.uk/) between the years 2008 and 2010 [1-22]. All details of this project
can be viewed at http//www.meliksah.edu.tr/muzam/UZAM_PLC_with_
PIC16F648A.htm [23]. This book is based on an improved version of the
project reported in Electronics World magazine. The improvements are sum-
marized as follows:

1. The current hardware has two boards: the CPU board and the I/O
extension board. In the previous version of the hardware, the main
board consisted of the CPU board and eight inputs/eight outputs,
while in the current version, the CPU board excludes eight inputs/
eight outputs. Thus, the CPU board is smaller than the previous
main board. In addition, the current I/O extension board is also
smaller than in the previous version.

2. The hardware explained in this book consists of one CPU board and
two I/O extension boards. Therefore, the current version of the soft-
ware supports 16 inputs and 16 outputs, while the previous one sup-
ported 8 inputs and 8 outputs.

3. Clock frequency was 4 MHz in the previous version, but is 20 MHz
in the current version.

4. Some of the macros are improved compared with the previous versions.

5. Flowcharts are provided to help the understanding of all macros
(functions).

xvii

xviii Background and Use of the Book

In order to properly follow the topics explained in this book, it is expected
that the reader will construct his or her PIC16F648A-based PLC consist-
ing of the CPU board and two I/O extension boards using the PCB files
provided within the CD-ROM attached to this book. In this book, as the
PIC assembly is used as the programming language within the MPLAB
integrated development environment (IDE), the reader is referred to the
homepage of Microchip (http://www.microchip.com/) to obtain the latest
version of MPLAB IDE. References [24] and [25] may be useful to under-
stand some aspects of the PIC16F648A microcontroller and MPASM™
assembler, respectively.

The contents of the book’s 15 chapters are explained briefly, as follows:

1. Hardware: In this chapter, the hardware structure of the PIC16F648A-
based PLC, consisting of 16 discrete inputs and 16 discrete outputs,
is explained in detail.

2. Basic software: This chapter explains the basic software structure
of the PIC16F648A-based PLC. A PLC scan cycle includes the fol-
lowing: obtain the inputs, run the user program, and update the
outputs. In addition, it is also necessary to define and initialize all
variables used within a PLC. Necessary functions are all described
as PIC assembly macros to be used in the PIC16F648A-based PLC.
The macros described in this chapter can be summarized as follows:
HC165 (for handling the inputs), HC595 (for sending the outputs),
dbncr0 and dbncrl (for debouncing 16 inputs), initialize,
get inputs, and send_outputs.

3. Contact and relay-based macros: The following contact and relay-
based macros are described in this chapter: 1d (load), 1d_not (load_
not), not, or, or not, nor, and, and_not, nand, xor, Xor_not,
xnor, out, out not, in out, inv_out, set, reset. These
macros are defined to operate on 1-bit (Boolean) variables.

4. Flip-flop macros: The following flip-flop-based macros are
described in this chapter: r edge (rising edge), £ edge (falling
edge), latcho, latchl, dff r (rising edge triggered D flip-flop),
dff f (falling edge triggered D flip-flop), t££ r (rising edge trig-
gered T flip-flop), t ££ £ (falling edge triggered T flip-flop), jkff r
(rising edge triggered JK flip-flop), and jkf££f £ (falling edge trig-
gered JK flip-flop).

5. Timer macros: The following timer macros are described in this
chapter: TON_8 (8-bit on-delay timer), TOF_8 (8-bit off-delay timer),
TP_8 (8-bit pulse timer), and TOS_8 (8-bit oscillator timer).

6. Counter macros: The following counter macros are described in this
chapter: CTU_8 (8-bit up counter), CTD_8 (8-bit down counter), and
CTUD_ 8 (8-bit up/down counter).

Background and Use of the Book xix

7. Comparison macros: The comparison macros are described in this
chapter. The contents of two registers (R1 and R2) are compared
according to the following: GT (greater than, >), GE (greater than or
equal to, 2), EQ (equal to, =), LT (less than, <), LE (less than or equal
to, <), and NE (not equal to, #). Similar comparison macros are also
described for comparing the contents of an 8-bit register (R) with an
8-bit constant (K).

8. Arithmetical macros: The arithmetical macros are described in this
chapter. The following operators are applied to the contents of two
registers (R1 and R2): ADD, SUB (subtract), INC (increment), and
DEC (decrement). Similar arithmetical macros are also described, to
be used with the contents of an 8-bit register (R) and an 8-bit con-
stant (K).

9. Logical macros: The following logical macros are described in this
chapter: inv_R, AND, NAND, OR, NOR, XOR, and XNOR. These macros
are applied to an 8-bit register (R1) with another register (R2) or an
8-bit constant (K).

10. Shift and rotate macros: The following shift and rotate macros are
described in this chapter: SHIFT R (shift right the content of reg-
ister R), SHIFT L (shift left the content of register R), ROTATE R
(rotate right the content of register R), ROTATE L (rotate left the
content of register R), and SWAP (swap the nibbles of a register).

11. Multiplexer macros: The following multiplexer macros are described in
this chapter: mux_2_1 2x1 MUX), mux_2_1 E (2x1 MUX with enable
input), mux_4 1 @x1 MUX), mux_4_ 1 E (4x1 MUX with enable input),
mux 8 1 (8x1 MUX),and mux_8_1 E (8x1 MUX with enable input).

12. Demultiplexer macros: The following demultiplexer macros are
described in this chapter:Dmux_1 2 (1x2DMUX),Dmux_1 2 E(1x2
DMUX with enable input), Dmux_1 4 (1x4 DMUX), Dmux 1 4 E
(1x4 DMUX with enable input), Dmux 1 8 (1x8 DMUX), and
Dmux_1 8 E (1x8 DMUX with enable input).

13. Decoder macros: The following decoder macros are described
in this chapter: decod_1_ 2 (1x2 decoder), decod_1 2 AL (1x2
decoder with active low outputs), decod_1 2 E (1x2 decoder with
enable input), decod_1_2 E AL (1x2 decoder with enable input
and active low outputs), decod_2 4 (2x4 decoder), decod_2 4
AL (2x4 decoder with active low outputs), decod 2 4 E (2x4
decoder with enable input), decod 2 4 E AL (2x4 decoder
with enable input and active low outputs), decod 3 8 (3x8
decoder), decod 3 8 AL (3x8 decoder with active low out-
puts), decod 3 8 E (3x8 decoder with enable input), and

XX Background and Use of the Book

decod_3_8_ E AL (3x8 decoder with enable input and active low
outputs).

14. Priority encoder macros: The following priority encoder mac-
ros are described in this chapter: encod 4 2 p (4x2 priority
encoder), encod 4 2 p E (4x2 priority encoder with enable
input), encod 8 3 p (8x3 priority encoder), encod 8 3 p E
(8x3 priority encoder with enable input), encod dec becd p
(decimal to binary coded decimal [BCD] priority encoder), and
encod_dec _bcd p E (decimal to BCD priority encoder with
enable input).

15. Application example: This chapter describes an example remotely
controlled model gate system and makes use of the PIC16F648A-
based PLC to control it for different control scenarios.

Table 1 shows the general characteristics of the PIC16F648A-based PLC.

TABLE 1
General Characteristics of the PIC16F648A-Based PLC
Byte Addresses/ Bit Addresses or Function
Inputs/Outputs/Functions Related Bytes Numbers
16 discrete inputs 10 10.0,10.1, ..., 10.7
(external inputs: 50r24 VDC) | I1 11.0,11.1, ..., 11.7
16 discrete outputs Qo0 Q0.0, Q0.1, ..., Q0.7
(relay type outputs) Q1 0Q1.0,Q1.1, ...,Q1.7
MO M0.0, M0.1, ..., M0.7
32 internal relays M1 M1.0,M1.1, ..., M1.7
(memory bits) M2 M2.0,M2.1, ..., M2.7
M3 M3.0,M3.1, ..., M3.7
8 rising edge detectors RED r_edge (0,1, ...,7)
8 falling edge detectors FED f edge (0,1, ...,7)
8 rising edge triggered DFF_RED dff_r (O,. 1,...,7), regi,biti,
D flip-flop rego,bito
8 fa%hng edge triggered DFE_FED dff_f (O,‘ 1,...,7), regibiti,
D flip-flop rego,bito
8 riéing edge triggered TFE_RED tff_r (0, .1, ..., 7), regi biti,
T flip-flop rego,bito
8 fa.lhng edge triggered TFF_FED tff_£(0,1, ..., 7), regi,biti, rego,bito|
T flip-flop
8 rising edge triggered jkff_r (0,1, ..., 7), regi,biti,
JK flip-flop JKFE_RED rego,bito
8 falling edge triggered jkff_£(0,1, ..., 7), regi,biti,
JK flip-flop JKFE_FED rego,bito

Background and Use of the Book xxi

TABLE 1 (CONTINUED)
General Characteristics of the PIC16F648A-Based PLC

Byte Addresses/ Bit Addresses or Function
Inputs/Outputs/Functions Related Bytes Numbers
TONS, TON8+1, ..., TONS_Q0
. TONS8+7

8 on-delay timers TONS8_Q1, ...
TON8_Q TONS8_Q7
TONS8_RED -
TOF8, TOF8+1, ..., TOF8_Q0

8 off-delay timers TOF8+7, TOF8_Q TOF8_Q], ...
TOF8_RED TOF8_Q7
?gg, 2P8+1, ..., TP8+7, TPS_Q0

8 pulse timers - TP8_Q1, ...
TP8_RED1 TPS Q7
TP8_RED2 -
TOS8, TOS8+1, ..., TOS8_ Q0

. . TOS8+7

8 oscillator timers TOS8_Q1, ...
TOS8.Q TOS8_Q7
TOS8_RED -
CVs, CTU8_Q0
CV8+1, ..., CV8+7 CTU8_QL4, ...

8 counters CTU8_Q7
CTU8_Q or
CTU8_RED CTD8_QO0

CTU: up counter CTD8_Q4, ...
CTD8_Q CTDS_Q7
CTD8_RED

CTD: down counter or
CTUD8_Q CTUDS8_Q0

CTUD: up/down counter CTUDS_RED CTUDS_QI, ...

CTUDS_Q7

Note: regi, biti, input bit; rego, bito, output bit.
At any time, a total of eight different counters can be used.

About the Author

Murat Uzam was borned in Soke,
Turkey, in 1968. He received his BSc
and MSc degrees from the Electrical
Engineering Department of Yildiz
Technical ~ University, Istanbul,
Turkey, in 1989 and 1991, respectively.
He received his PhD degree from the
University of Salford, Salford, UK,
in 1998. He is currently a professor
in the Department of Electrical and
Electronics Engineering at Meliksah
University in Kayseri, Turkey.

Dr. Uzam’s research interests
include the design and implementa-
tion of discrete event control systems
modeled by Petri nets (PN) and, in
particular, deadlock prevention/
liveness enforcement in flexible man-
ufacturing systems, Programmable
Logic Controllers (PLCs), microcontrollers (especially PIC microcontrollers),
and the design of microcontroller-based PLCs. The details of his studies are
accessible from his web page: http://www.meliksah.edu.tr/muzam.

xxiii

1

Hardware of the PIC16F648A-Based PLC

The hardware of the PIC16F648A-based programmable logic controller (PLC)
consists of two parts: the CPU board and the I/O extension board. The schematic
diagram and the photograph of the PIC16F648A-based PLC CPU board are
shown in Figures 1.1 and 1.2, respectively. The CPU board contains mainly
three sections: power, programming, and CPU (central processor unit).

The power section accepts 12 V AC input and produces two DC outputs: 12
V DC, to be used as the operating voltage of relays, and 5 V DC, to be used for
ICs, inputs, etc. The programming section deals with the programming of the
PIC16F648A microcontroller. For programming the PIC16F648A in circuit, it
is necessary to use PIC programmer hardware and software with In Circuit
Serial Programming (ICSP) capability. For related hardware and software to
be used for programming the PIC16F648A-based PLC, please visit the follow-
ing web page: http://www.meliksah.edu.tr/muzam/. For other types of USB,
serial, or parallel port PIC programmers the reader is expected to make nec-
essary arrangements. The ICSP connector takes the lines VPP(MCLR), VDD,
VSS(GND), DATA (RB7), and CLOCK (RB6) from the PIC programmer hard-
ware through a properly prepared cable, and it connects them to a four-pole
double-throw (4PDT) switch. There are two positions of the 4PDT switch.
As seen from Figure 1.1, in one position of the 4PDT switch, PIC16F648A is
ready to be programmed, and in the other position the loaded program is
run. For properly programming the PIC16F648A by means of a PIC program-
mer and the 4PDT switch, it is also a necessity to switch off the power switch.
The CPU section consists of the PIC16F648A microcontroller. In the project
reported in this book, the PLC is fixed to run at 20 MHz with an external
oscillator. This frequency is fixed because time delays are calculated based
on this speed. By means of two switches, SW1 and SW2, it is also possible
to use another internal or external oscillator with different crystal frequen-
cies. When doing so, time delay functions must be calculated accordingly.
SW3 connects the RA5 pin either to one pole of the 4PDT switch or to the
future extension connector. When programming PIC16F648A, RA5 should
be connected to the 4PDT switch. RB0O, RB6, and RB7 pins are all reserved to
be used for 8-bit parallel-to-serial converter register 74HC/LS165. Through
these three pins and with added 74HC/LS165 registers, we can describe as
many inputs as necessary. RBO, RB6, and RB7 are the data in, clock in,
and shift/load pins, respectively. Similarly, RB3, RB4, and RB5 pins are
all reserved to be used for 8-bit serial-to-parallel converter register/driver
TPIC6B595. Through these three pins and with added TPIC6B595 registers,

Building a Programmable Logic Controller

"paeoq NJD A4} Jo wreiderp drjewaydg

'L 3¥NOI4
100 10309UU0D)
2a As
- UOISUdIX 21nng
15 2
As Il
peog NdD s
D'1d P2sed-V8¥94191D1d YL - R R R Ye e
. E 10309UU0))
(NI10010) 984
(@1 Lans) za T
Y879491D1d -
iJssn

(Lno"v1iva) yay

4680

& (NMvLva) oy
= NS so10mv2 1xan 3
WO¥4 NI V1va TVI3S
(LNO"HOLYY) s8Y

[l

[dec Tades
J._m_»x H 4u00L == __ BEREN|

HIN 02|

$698901dL LXANIHL OL LNO VLva 1VRi3S| (Ln0™10070) ca

10309UU0D UOTSUNXT O/]

ino

2aAZL MH

AZL

13534

HIMOd' ano|

m:o—ﬂ

SSA

b3

QA (298 “gogz M wims
ALy Homod

<t

>
3

Hardware of the PIC16F648A-Based PLC

1N0_
Ja NZ1

r,"mu_

agyvoe ndd

V8H949131d YIIN IT1dTUVZN

43:np25pbrugusabb (h NI139 M

RE

- -

OEN:H =

T*== NI 9V A ZI

=

LOMme g7d n)

FIGURE 1.2

Photograph of the CPU board.

4 Building a Programmable Logic Controller

we can describe as many outputs as necessary. RB3, RB4, and RB5 are the
clock out,data out,and latch out pins, respectively. The remaining
unused pins of the PIC16F648A are connected to the future extension con-
nector. PIC16F648A provides the following: flash program memory (words),
4096; RAM data memory (bytes), 256; and EEPROM data memory (bytes),
256. The PIC16F648A-based PLC macros make use of registers defined in
RAM data memory. Note that it may be possible to use PIC16F628A as the
CPU, but one has to bear in mind that PIC16F628A provides the following:
flash program memory (words), 2048; RAM data memory (bytes), 224; and
EEPROM data memory (bytes), 128. In that case, it is necessary to take care of
the usage of RAM data memory.

Figures 1.3 and 1.4 show the schematic diagram and photograph of the I/O
extension board, respectively. The I/O extension board contains mainly two
sections: eight discrete inputs and eight discrete outputs. The I/O extension
connector DBIM seen on the left connects the I/O extension board to the
CPU board or to a previous I/O extension board. Similarly, the I/O extension

E:I T LU) e prci6reasa Based PLC I:E

| Lol EE 1/O Extension Board
~ L5111 | TriCeB595 .
e, e) P — 1o the next I/O Extension Board
| [es (aTon oL |
.:L 3 - SR ooTTTo 5 i SERIAL GATA N FROM TRE NEXT 74HC16!] E ”rl,
= “ HE =3
From the 7aHC165 2|8
CPU Board or et
From
a previous
/O Extension Board
208 Les] Boa] [Ris] [Aod [Lom| [Lod [Mod [Edl
ot 1.0 L1 12 13 L4 L5 L6 1.7
FIGURE 1.3

Schematic diagram of the I/O extension board.

Hardware of the PIC16F648A-Based PLC 5

L.

IR0 Q20 .3—0 .40 .5 Q.6 0N

U+ Murat UzZAM http://Fo-st,nigde.edu.tr/muzam/+'
‘ Copyright (2009) murat_uzamsho(mail.com»

: E'
uz2aM_PLC
(1/0 EXTENSION

B3 (Clock Out)

tp: //host.nigde. edu. tr /ggelen/ ggelen€nigde. edu. tr(/z

i LA, bl)ll‘ (\\‘u T (—\‘l 44 (—\03\

A Moy

I0uExasmbor

- o) &, y

| } g N‘ dorhd 7"‘ 4 : o (o bt “(S d |,‘Ir‘1]g‘;w\
E I | d } dbrivdl =y (& S i rivd i
il | 2 15| BT A R Sl R B IORELR E) 2
i o i i e 1 u‘u) | | | i

SV

FIGURE 1.4
Photograph of the I/O extension board.

connector DBIF seen on the right connects the I/O extension board to a next
I/O extension board. In this way we can connect as many 1/O extension
boards as necessary. Five-volt DC and 12 V DC are taken from the CPU board
or from a previous I/O extension board, and they are passed to the next I/O
extension boards. All I/O data are sent to and taken from all the connected
extension I/O boards by means of I/O extension connectors DBOM and DBIE.

The inputs section introduces eight discrete inputs for the PIC16F648A-based
PLC (called 10.0, I0.1, ..., 10.7 for the first I/O extension board). Five-volt DC
or 24 V DC input signals can be accepted by each input. These external input
signals are isolated from the other parts of the hardware by using NPN type
opto-couplers (e.g., 4N25). For simulating input signals, one can use onboard
push buttons as temporary inputs and slide switches as permanent inputs.
In the beginning of each PLC scan cycle (get_inputs) the 74HC/LS165 is
loaded (RB7 (shift/load) = 0) with the level of eight inputs and then these

Building a Programmable Logic Controller

pieog uoisuax3 o1l
‘Snoinaid &

PiEog ojsue}x3 O/l Ixeu o oL

i T preog uorsuaixy Q/1

'SpIeoq uoIsualxa /1 om} snid preoq N JD 93 Jo werderp drewaydg
S'1 3ANOH

Fr HOLIINNOD
._Iﬂw NOISN3LX3 38nLNd
i i

g0 g0l

pavog uojsusixa o/l
snoinaid ©

PiEog Uolsuepaa O/l IXeu ot oL

0 paeog uorsualxy O/1

preog NdD

4 O7Td pased-V8¥9491DId 4L

O1d Pased-V819491DI1d YL D1d Pased-V8%9491DId YL

£00 90D 0D VD €00 §0D 10D

Hardware of the PIC16F648A-Based PLC

, , ‘@'za quvos
NOISN31X3 0/1I| : - [(NOISN3LX3 0/1|"
37d"uvzn | . 37d"HY2Nn
= e I = - =
n B n = =
[\

wiougue . s80Z) W © . . (8008Z) 1ybyiihdo auvos ndd
JRENE/RESRSERpD | @y WYzZn eJny . Ll 4 HYZN eJany + 7 vess49131d WIIN I1dTuVZN

H

ceelecelecClecelecelice e N seelewclsa el

10 2:30.,1:10 8°10) | S '8D 958D §°'8D 4 °80ec ‘@D 2°80 . 1:80 080

FIGURE 1.6

Photograph of the CPU board plus two I/O extension boards.

8 Building a Programmable Logic Controller

FIGURE 1.7
Photograph of the CPU board plus two I/O extension boards and a USB PIC programmer.

Hardware of the PIC16F648A-Based PLC 9

data are serially clocked in (when RB7 = 1; through RBO data in and RB6
clock in pins). If there is only one I/O extension board used, then eight
clock_1in signals are enough to get the eight input signals. For each addi-
tional I/O extension board, eight more clock_in signals are necessary. The
serial data coming from the I/O extension board(s) are taken from the SI input
of the 74HC/LS165.

The outputs section introduces eight discrete relay outputs for the PIC16F648A-
based PLC (called Q0.0, Q0.1, ..., Q0.7 for the first [/O extension board). Each
relay operates with 12 V DC and is driven by an 8-bit serial-to-parallel converter
register/driver TPIC6B595. Relays have single-pole double-throw (SPDT) con-
tacts with C (common), NC (normally closed), and NO (normally open) termi-
nals. At the end of each PLC scan cycle (send_outputs) the output data are
serially clocked out (through RB3 clock out and RB4 data out pins) and
finally latched within the TPIC6B595. If there is only one I/O extension board
used, then eight clock_out signals are enough to send the eight output sig-
nals. For each additional I/O extension board, eight more clock_out signals
are necessary. The serial data going to the I/O extension board(s) are sent out
from the SER OUT (pin 18) of the TPIC6B595.

The PCB design files of both the CPU board and the I/O extension board
can be obtained from the CD-ROM attached to this book. Note that in the
PCB design of the CPU board and the I/O extension board, some lines of I/O
extension connectors DBOM and DBOIF are different from the ones shown in
Figures 1.1 and 1.3.

The project reported in this book makes use of a CPU board and two
I/O extension boards, as can be seen from the schematic diagram and pho-
tograph depicted in Figures 1.5 and 1.6, respectively. Thus, in total there
are 16 inputs and 16 outputs. Figure 1.7 shows the PIC16F648A-based PLC
consisting of a CPU board, I/O extension boards, 12 V DC adapter, and USB
PIC programmer.

2

Basic Software

In this chapter, the basic software of the PIC16F648A-based PLC is explained.
A PLC scan cycle includes the following: obtain the inputs, run the user pro-
gram, and update the outputs. It is also necessary to define and initialize
all variables used within a PLC. Necessary functions are all described as
PIC assembly macros to be used in the PIC16F648A-based PLC. The macros
described in this chapter could be summarized as follows: HC165 (for han-
dling the inputs), HC595 (for sending the outputs), dbncro and dbnerl (for
debouncing the inputs), initialize, get_inputs, and send outputs.
In addition, the concept of contact bouncing and how it is solved in the
PIC16F648A-based PLC is explained in detail.

2.1 Basic Software Structure

The basic software of the PIC16F648A-based PLC makes use of general pur-
pose 8-bit registers of static random-access memory (SRAM) data memory of
the PIC16F648A microcontroller. For the sake of simplicity, we restrict our-
selves to use only BANK 0; ie., all macros, including the basic definitions
explained here, are defined by means of 8-bit SRAM registers of BANK 0.
The file definitions.inc, included within the CD-ROM attached to this book,
contains all basic macros and definitions necessary for the PIC16F648A-based
PLC. In this chapter, we will explain the contents of this file. First, let us look
at the file called UZAM_plc_16i160_exl.asm, the view of which is shown
in Figure 2.1. As is well known, a PLC scan cycle includes the following:
obtain the inputs, run the user program, and update the outputs. This cycle
is repeated as long as the PLC runs. Before getting into these endless PLC
scan cycles, the initial conditions of the PLC are set up in the initialization
stage. These main steps can be seen from Figure 2.1, where initialize is
a macro for setting up the initial conditions, get_inputs is a macro for get-
ting and handling the inputs, and send_outputs is a macro for updating
the outputs. The user PLC program must be placed between get_inputs
and send_outputs. The endless PLC scan cycles are obtained by means of
the label “scan” and the instruction “goto scan.”

The PIC16F648A-based PLC is fixed to run at 20 MHz with an external
oscillator. The watchdog timer is used to prevent user program lockups. As

11

12 Building a Programmable Logic Controller

;Filename: UZAM_plc_lGilSo_exl.asm ;
;Date: 27 September 2011 ;
;Author: Prof.Dr. Murat UZAM :
;Company: Meliksah Universitesi ;
; Mihendislik-Mimarlik Fakiiltesi ;
; Elektrik-Elektronik Mihendisligi Boélumi ;
Talas, 38280, Kayseri, TURKEY :
http://www.meliksah.edu. tr/muzam/ ;
murat_uzam@meliksah.edu.tr ;
murat_uzam@hotmail.com ;
Tel: ++ 90 352 207 73 00 / 7351 H
Fax: ++ 90 352 207 73 49 ;
;Notes: This is the basic program

; for PIC16F648A microcontroller ;
; based UZAM PLC with H
; 16 Inputs and 16 Outputs ;
; and 32 Memory Bits (Internal Relays) ;

list p=16F648A ;list directive to define processor
#include <pl6F648A.inc> ;processor specific variable definitions
#include <definitions.inc> ;basic PLC definitions, macros, etc.
__CONFIG _CP_OFF & DATA CP OFF & _LVP OFF & _BOREN OFF & _MCLRE ON
& WDT OFF & PWRTE ON & _HS OSC
org 0x00 ;Reset Vector

main
initialize

scan
get inputs

Jmmmm e user program starts here -----——-----—--——-—————-

Jemm e user program ends here —--—--—---——-————————————————
send outputs
goto scan
end ;directive 'end of program'

FIGURE 2.1

View of the file UZAM_plc_16i160_ex1.asm.

will be explained later, the hardware timer TMRO is utilized to obtain free-
running reference timing signals.

2.1.1 Variable Definitions

Next, let us now consider the inside of the file definitions.inc. The definitions
of 8-bit variables to be used for the basic software and their allocation in
BANK 0 of SRAM data memory are shown in Figure 2.2(a) and (b), respec-
tively. Although we can define as many inputs and outputs as we want, in
this book we restrict ourselves to BANK 0 and define two 8-bit input regis-
ters and two 8-bit output registers (Q0 and Q1).

It is well known that inputs taken from contacts always suffer from contact
bouncing. To circumvent this problem we define a debouncing mechanism
for the inputs; this will be explained later. In the get_inputs stage of the
PLC scan cycle, the input signals are serially taken from the related 74HC/
LS165 registers and stored in the SRAM registers. As a result, bl0 and bI1 will

Basic Software 13

hold these bouncing input signals. After applying the debouncing mecha-
nism to the bouncing input signals of bl0 and bI1 we obtain debounced input
signals, and they are stored in SRAM registers 10 and I1, respectively.

In the send_outputs stage of the PLC scan cycle, the output information
stored in the 8-bit SRAM registers Q0 and Q1 is serially sent out to and stored
in the related TPIC6B595 registers. This means that Q0 and Q1 registers will
hold output information, and they will be copied into the TPIC6B595 registers
at the end of each PLC scan cycle. Four 8-bit registers, namely, M0, M1, M2,
and M3, are defined for obtaining 32 memory bits (internal relays, in PLC jar-
gon). To be used for the debouncer macros dbncr0 and dbncri, we define
sixteen 8-bit registers (DBNCRO, DBNCRO+1, ..., DBNCR0+7) and (DBNCRI,
DBNCRI1+], ..., DBNCR1+7). In addition, the registers DBNCRREDO and
DBNCRREDI1 are also defined to be used for the debouncer macros doncro0
and dbncrl, respectively. Temp_1 is a general temporary register declared
to be used in the macros. Temp_2 is declared to be used especially for obtain-
ing special memory bits, as will be explained later. Timer_2 is defined for
storing the high byte of the free-running timing signals. The low byte of the
free-running timing signals is stored in TMRO (recalled as Timer_1).

For accessing the SRAM data memory easily, BANK macros are defined as
shown in Figure 2.3.

Jmm e VARIABLE DEFINITIONS --—-—-—————————————
CBLOCK 0x20
bIO0,bIl
endc
CBLOCK 0x22
I0,I1
endc
CBLOCK 0x24
Q0,01
endc
CBLOCK 0x26
MO ,M1 ,M2 ,M3 ;4x8=32 Memory bits(Internal Relays)
endc
CBLOCK 0x2A ;

DBNCRO ;DBNCRO, DBNCRO+1, ..., DBNCRO+7
endc ;

CBLOCK 0x32 ;

DBNCR1 ;DBNCR1, DBNCR1+1, ..., DBNCR1+7
endc ;

CBLOCK O0x3A

Temp_1,Temp_2,Timer 2,DBNCRREDO,DBNCRRED1

endc

Ne Ne Ne Ne e o Ne o Se oNe S

FIGURE 2.2
(@) The definition of 8-bit variables to be used in the basic software. (Continued)

14 Building a Programmable Logic Controller

20h bIo
21h bl1
22h 10
23h I
24h Qo
25h Q1
26h MO
27h M1
28h M2
29h M3

2Ah DBNCRO
2Bh | DBNCRO+1
2Ch | DBNCRO0+2
2Dh | DBNCRO+3
2Eh | DBNCRO+4
2Fh | DBNCRO+5
30h | DBNCRO+6
3lh| DBNCRO+7
32h DBNCR1
33h | DBNCRI1+1
34h | DBNCR1+2
35h | DBNCR1+3
36h | DBNCR1+4
37h | DBNCR1+5
38h | DBNCR1+6
39h | DBNCR1+7
3Ah Temp_1
3Bh Temp_2
3Ch Timer_2
3Dh | DBNCRREDO
3Eh | DBNCRRED1
BANK 0

(b)

FIGURE 2.2 (Continued)
(b) Their allocation in BANK 0 of SRAM data memory.

The definitions of 1-bit (Boolean) variables are depicted in Figure 2.4. The
following definitions are self-explanatory: 74HC165, TPIC6B595, 16 INPUTS,
16 OUTPUTS, and 32 memory bits.

The individual bits (1-bit variables) of 8-bit SRAM registers bl0, b1, 10, I1,
QO0, Q1, M0, M1, M2, and M3 are shown below:

bl0 is an 8-bit register:

| bl0 |

The individual bits of bl0 are as follows:

| b107 | blo6 | b5 | blo4 bI0.3 bl02 | b0 | b100 |

Basic Software 15

bef STATUS,RPO
bef STATUS,RP1
endm

BANK1 macro
bsf STATUS,RPO
bef STATUS,RP1
endm

BANK2 macro
bef STATUS,RPO
bsf STATUS,RP1
endm

BANK3 macro
bsf STATUS,RPO
bsf STATUS,RP1
endm

FIGURE 2.3
BANK macros.

bIl is an 8-bit register:

| bl

The individual bits of bI1 are as follows:

| bii7 | bie | bis | big bI1.3 bI1.2 bill | bILo |

10 is an 8-bit register:

| 10 |

The individual bits of 10 are as follows:

| 07 | w6 | 15 10.4 10.3 10.2 01 | 100 |

I1 is an 8-bit register:

| 1 |

The individual bits of I1 are as follows:

| n7 | e 1.5 1.4 1.3 1.2 1 | 1o |

QO is an 8-bit register:

16

#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define

SJood WNhKREO

bIl.
bIl.
bIl.
bIl.
bIl.
bIl.
bIl.
bIl.

SNtk WN RO

SNoos wWNhRO

Nk wWNhR O

bIO,
bIoO,
bIoO,
bIo,
bIoO,
bIO,
bIo,
bIoO,

10,0
10,1
10,2
10,3
10,4
10,5
10,6
10,7

bIl,
bIl,
bIl,
bIl,
bIl,
bIl,
bIl,
bIl,

11,0
11,1
11,2
11,3
11,4
11,5
11,6
11,7

Building a Programmable Logic Controller

16 INPUTS —---——-———=———=———=——
0 ;b:bouncing

1

2

3

4

5

6

7

;I0 = debounced bIO

0 ;b:bouncing
1
2
3
4
5
6
7

;I1 = debounced bIl

#define

#define
#define
#define
#define
#define
#define
#define
#define

S WNh RO

SNk wWNhEHEO

Q0,2

Q0,4

Q0,7

FIGURE 2.4

Definitions of 1-bit (Boolean) variables: (a) 16 inputs, (b) 16 outputs. (Continued)

Basic Software

jmm————— - LOGIC VALUES -------———-
#define LOGICO Temp 2,0
#define LOGIC1 Temp 2,1

jrmm e SPECIAL BITS -----------
#define FRSTSCN Temp 2,2
#define SCNOSC Temp 2,3

(c)

—————————— Definitions for 74HC165

#define data_in PORTE,0
#define clock_in PORTE, 6
#define shft_ld PORTB,7

17

—————————— Definitions for TPIC6B595

#define data_out PORTB,4
#define clock out PORTE,3
#define latch_out PORTB,5

FIGURE 2.4 (Continued)

Definitions of 1-bit (Boolean) variables: (c) logic values and special bits, (d) definitions for

74HC165 and TPIC6B595. (Continued)

The individual bits of QO are as follows:

| 7 | Q6 | Q5 | Qo4 Q03 Qo2 Q.1 | Qoo |
Q1 is an 8-bit register:
| Q1 |
The individual bits of Q1 are as follows:
| Q7 | Qe | Q5 | Qs Q1.3 Q1.2 ol | Q1o |
MO is an 8-bit SRAM register:
| Mo |
The individual bits of M0 are as follows:
| Moz MO0.6 M0.5 Mo0.4 M03 Mo0.2 Mol | Moo |

M1 is an 8-bit SRAM register:

18 Building a Programmable Logic Controller

;——=— 32 Memory Bits(Internal Relays) -----------
#define MO.0 MO,0
#define MO.1 MO,1

#define M0.2 MO,2
#define MO.3 MO,3
#define M0O.4 MO,4
#define MO.5 MO,5
#define M0.6 MO,6
#define MO.7 MO,7
#define M1.0 M1,0
#define M1.1 M1,1
#define M1.2 M1,2
#define M1.3 M1,3
#define M1.4 M1,4
#define M1.5 M1,5
#define M1.6 M1,6
#define M1.7 M1,7
#define M2.0 M2,0
#define M2.1 M2,1
#define M2.2 M2,2
#define M2.3 M2,3
#define M2.4 M2,4
#define M2.5 M2,5
#define M2.6 M2,6
#define M2.7 M2,7
#define M3.0 M3,0
#define M3.1 M3,1
#define M3.2 M3,2
#define M3.3 M3,3
#define M3.4 M3,4
#define M3.5 M3,5
#define M3.6 M3,6
#define M3.7 M3,7

FIGURE 2.4 (Continued)
Definitions of 1-bit (Boolean) variables: (e) 32 memory bits (internal relays). (Continied)

The individual bits of M1 are as follows:

|Ml.7 | M1l.6 | M1.5 | M1.4 | M1.3 | M1.2 | M1.1 | M1.0|

M2 is an 8-bit SRAM register:

| M2 |

The individual bits of M2 are as follows:

| M2.7 | M2.6 | M2.5 | M2.4 | M2.3 | M2.2 | M2.1 | M2.0|

Basic Software

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

REFERENCE TIMING SIGNALS

Timer 1 TMRO

TO.
TO.
TO.
TO.
TO.
TO.
TO.
TO.
T1.
T1.
T1.
T1.
T1.
T1.
T1.
T1.

0

NoOoOOdWNRFROJOAULBEWNER

Timer 1,0
Timer 1,1
Timer 1,2
Timer 1,3
Timer 1,4
Timer 1,5
Timer 1,6
Timer 1,7
Timer 2,0
Timer 2,1
Timer 2,2
Timer 2,3
Timer 2,4
Timer 2,5
Timer 2,6
Timer 2,7

FIGURE 2.4 (Continued)

Definitions of 1-bit (Boolean) variables: (f) 16 reference timing signals.

;at 20
;Timer
;Timer
;Timer
;Timer
;Timer
;Timer
;Timer
;Timer
;Timer
;Timer
;Timer
;Timer
;Timer
;Timer
;Timer
;Timer

M3 is an 8-bit SRAM register:

MHz clock frequency:
.1024
.2048
.4096
.8192
.6384
.2768
.5536
.1072
.2144
.4288
.8576
.7152
.4304
.8608
.7216
. 4432

clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock
clock

o

19

1.6777216 s.
3.3554432 s.

M3

The individual bits of M3 are as follows:

| M3.7 | M3.6 | M3.5 | M3.4 | M3.3 | M3.2 | M3.1 | NBO|
Register Temp_2 has the following individual bits:
7 6 5 4 3 2 0
[| | | scNOsC | FRSTSCN | LOGICI | LOGICO

LOGICO: Set to 0 after the first scan.
LOGIC1: Set to 1 after the first scan.

FRSTSCN: Set to 1 during the first scan and set to 0 after the first scan.

SCNOSC: Toggled between 0 and 1 at each scan.

The variable LOGICO is defined to hold a logic 0 value throughout the PLC
operation. At the initialization stage it is deposited with this value. Similarly,
the variable LOGIC1 is defined to hold a logic 1 value throughout the PLC
operation. At the initialization stage it is deposited with this value. The spe-
cial memory bit FRSTSCN is arranged to hold the value of 1 at the first PLC
scan cycle only. In the other PLC scan cycles following the first one it is reset.
The special memory bit SCNOSC is arranged to work as a scan oscillator. This
means that in one PLC scan cycle this special bit will hold the value of 0, in

20 Building a Programmable Logic Controller

the next one the value of 1, in the next one the value of 0, and so on. This will
keep on going for every PLC scan cycle.

Timer_1 (TMRO) is an 8-bit register:

| Timer_1 (TMRO) |

The individual bits of Timer_1 are as follows:

| T0.7 | T06 | T05 | T0.4 | T03 | T02 | T0.1 | T0.0|

Timer_2 is an 8-bit register:

| Timer_2 |

The individual bits of Timer_2 are as follows:

| T1.7 | T1.6 | T1.5 | T1.4 | T1.3 | T1.2 | T1.1 | T1.0|

Let us now consider the 16 reference timing signals. As will be explained
later, TMRO of PIC16F648A is set up to count the % of 20 MHz oscillator sig-
nal, i.e.,, 5 MHz with a prescaler arranged to divide the signal to 256. As a
result, by means of TMRO bits (also called Timer_1), we obtain eight free-
running reference timing signals with the T timing periods starting from
0.1024 ms to 13.1072 ms. As will be explained later, the register Timer_2 is
incremented on Timer_1 overflow. This also gives us (by means of Timer_2
bits) eight more free-running reference timing signals with the T timing
periods starting from 26.2144 ms to 3355.4432 ms. The timing diagram of the
free-running reference timing signals is depicted in Figure 2.5. Note that the
evaluation of TMRO (Timer_1) is independent from the PLC scan cycles, but
Timer_2 is incremented within the get _inputs stage of the PLC scan cycle
on Timer_1 overflow. This is justified as long as the PLC scan cycle takes less
than 13.1072 ms.

Off (0) Off (0) Off (0)

FIGURE 2.5
Timing diagram of the free-running reference timing signals (T = 0.1024, 0.2048, ..., 3355.4432
ms).

Basic Software 21

jommmmmmmmm e Macro HC165 -—--————————mm oo

HC165 macro num,var0 ;This macro can be used for 74HC/HCT/LS165
local i=0,3=0 ;parallel to serial shift register ICs
bef shft 1d ;latch
nop ;the inputs
bsf shft 1d ;of all 74HC165s
while j < num ;carry on while j < num
while i < 8 ;for each 74HC165, 8 times do the following
rlf var0+j,f ;rotate the register “var0+j” one position left
btfss data_in ;if the data_in is set then skip
bef var0+3j,0 ;jif the data_in is reset then reset “var0+j,0”
btfsc data_in ;if the data_in is reset then skip
bsf var0+3j,0 ;jif the data_in is set then set “var0+j,0”
bef clock_in ;generate
nop ;a clock_in
bsf clock_in ;pulse
i4=1 ;increment “i”
endw ;after 8 iterations end the while loop for “i”
i=0 ;i=0 : get ready
J +=1 ;increment “j” : for a new 74HC165
endw ;after ‘num’ iterations end the while loop for “j”
endm ;end macro HC165
FIGURE 2.6

The macro HC165.

2.1.2 Macro HC165

The macro HC165 is shown in Figure 2.6. The input signals are serially taken
from the related 74HC/LS165 registers and stored in the SRAM registers
bI0 and bIl by means of this macro. The num defines the number of 74HC/
LS165 registers to be considered. This means that with this macro we can
obtain inputs from as many 74HC/LS165 registers as we wish. However, as
explained before, in this book we restrict this number to be 2, because we
have 16 discrete inputs. varo0 is the beginning of the registers to which the
state of inputs taken from 74HC/LS165 registers will be stored. This implies
that there should be enough SRAM locations reserved after varo, and also
there should be enough 74HC/LS165 registers to get the inputs from. There
are some explanations within the macro to describe how it works. As can be
seen, this macro makes use of previously defined data_in, clock_ in,and
sfht_1d bits to obtain the input signals from 74HC/LS165 registers.

2.1.3 Macro HC595

The macro HC595 is shown in Figure 2.7. The output signals are stored in
the 8-bit SRAM registers Q0 and Q1 and serially sent out to and stored in
the related TPIC6B595 registers by means of this macro. The num defines
the number of TPIC6B595 registers to be used. This means that with this
macro we can send output data serially to as many TPIC6B595 registers as
we wish. However as explained before, in this book we restrict this number
to 2, because we have 16 discrete outputs. varo is the beginning of the 8-bit
registers, such as Q0 in SRAM from which the state of outputs are taken
and serially sent out to TPIC6B595 registers. This implies that there should

22 Building a Programmable Logic Controller

jrmmmmm e Macro HC595 —-----——-—-—-— oo

HC595 macro num,var0 ;This macro can be used for 74HC/HCT/LS595
local i=0,j=num-1 ;or TPIC6B595 serial to parallel shift register ICs
while j >= 0 ;jcarry on while j >= 0
while i < 8 ;for each TPIC6B595, 8 times do the following:
rlf var0+j,f ;rotate the register “varO+j” one position left
btfss STATUS,C ;if the Carry flag is set then skip
bef data out ;if the Carry flag is reset then reset data out
btfsc STATES,C ;if the Carry flag is reset then skip -
bsf data_out ;if the Carry flag is set then set data_out
bsf clock_out ;generate
nop ;a clock out
bef clock_out ;pulse -
i+4+=1 ;increment “i”
endw ;after 8 iterations end the while loop for “i”
rlf var0+j, £ ;rotate the register “varO+j” one position left
i=0 ;i=0 : get ready
j—=1 ;decrement “j” : for a new TPIC6B595
endw ;after ‘num’ iterations end the while loop for “j”
bsf latch_cut ;Latch the serially shifted out data
nop ;on all
bef latch_out ;TPIC6B595' s
endm ;end macro HC595
FIGURE 2.7

The macro HC595.

be enough SRAM locations reserved after var0, and also there should be
enough TPIC6B595 registers to hold the outputs. There are some explana-
tions within the macro to describe how it works. As can be seen, this macro
makes use of previously defined data_out, clock out, and latch out
bits to send the output signals serially to TPIC6B595 registers.

2.2 Elimination of Contact Bouncing Problem
in the PIC16F648A-Based PLC

2.2.1 Contact Bouncing Problem

When a mechanical contact, such as a push-button switch, examples of which
are shown in Figure 2.8, user interface button, limit switch, relay, or contactor
contact, is opened or closed, the contact seldom demonstrates a clean tran-
sition from one state to another. There are two types of contacts: normally
open (NO) and normally closed (NC). When a contact is closed or opened,
it will close and open (technically speaking, make and break) many times
before finally settling in a stable state due to mechanical vibration. As can be
seen from Figure 2.9, this behavior of a contact is interpreted as multiple false
input signals, and a digital circuit will respond to each of these on-off or off-
on transitions. This problem is well known as contact bounce and has always
been a very important problem when interfacing switches, relays, etc., to a
digital control system.

Basic Software 23

13 14 15 16

FIGURE 2.8
Different types and makes of switches and buttons.

In some industrial applications debouncing is required to eliminate both
mechanical and electrical effects. Most switches seem to exhibit bounce dura-
tion under 10 ms, and therefore it is reasonable to pick a debounce period in
the 20 to 50 ms range. On the other hand, when dealing with relay contacts,
the debounce period should be large enough, i.e., within the 20 to 200 ms
range. Nevertheless, a reasonable switch will not bounce longer than 500 ms.
Both closing and opening contacts suffer from the bouncing problem, and
therefore in general, both rising and falling edges of an input signal should
be debounced, as seen from the timing diagram of Figure 2.10.

Contact Contact
bouncing bouncing

An input signal
suffering from
contact bouncing

0

FIGURE 2.9
Contact bouncing problem, causing an input signal to bounce between 0 and 1.

24 Building a Programmable Logic Controller

Contact Contact
bouncing bouncing
IN S >

An input signal
suffering from

contact bouncing 0 : . Debouncing ,
! ! ¢ time 2 (dt2) |
ouT 1 Debouncing :
Output signal = time 1 (dt1)
debounced input signal o] S

Debouncing time 1 (dt1) = CLK x tcnst_01
Debouncing time 2 (dt2) = CLK x tcnst_10

FIGURE 2.10
The timing diagram of a single I/O debouncer (also the timing diagram of each channel of the

independent 8-bit I/O contact debouncers, dbncr0 and dbnerl).

2.2.2 Understanding a Generic Single 1/0 Contact Debouncer

In order to understand how a debouncer works, let us now consider a generic
single I/O debouncer. We can think of the generic single 1/O debouncer as
being a single INput/single OUTput system, whose state transition diagram
is shown in Figure 2.11. In the state transition diagram there are four states,

IN= |,

dt2 has elapsed

START
debouncing START
time 2 (dt2) debouncing
time 1 (dt1)
dt1 has elapsed

FIGURE 2.11
State transition diagram of a generic single I/O debouncer.

Basic Software

S0, S1, S2, and S3, drawn as circles, and six transitions, t1, t2, ..., t6, drawn
as bars. States and transitions are connected by directed arcs. The following
explains the behavior of the generic single 1/O debouncer (also each channel
of the independent 8-bit I/O contact debouncers, dbncr0 and dbncril)

based on the state transition diagram shown in Figure 2.11:

1.

Initially, it is assumed that the input signal IN and the output signal
OUT are both LOW (state SO0).

. When the system is in SO (the IN is LOW and the OUT is LOW), if

the rising edge (T of IN is detected (transition t1), then the system
moves from SO to S1 and the debouncer starts a time delay, called
debouncing time 1 (dt1).

. While the system is in S1 (the IN is HIGH and the OUT is LOW),

before the dt1 ms time delay ends, if the falling edge () of IN is
detected (transition t5), then the system goes back to SO from S1, and
the time delay dt1 is canceled and the OUT remains LOW (no state
change is issued).

. When the system is in S1 (the IN is HIGH and the OUT is LOW), if

the input signal is still HIGH and the time delay dt1 has elapsed
(transition t2), then the system moves from S1 to S2. In this case, the
state change is issued, i.e., the OUT is set to HIGH.

. When the system is in S2 (the IN is HIGH and the OUT is HIGH), if

the falling edge ({) of IN is detected (transition t3), then the system
moves from S2 to S3 and the debouncer starts a time delay, called
debouncing time 2 (dt2).

. While the system is in S3 (the IN is LOW and the OUT is HIGH),

before the dt2 ms time delay ends, if the rising edge (T) of IN is
detected (transition t6), then the system goes back to S2 from S3, and
the time delay dt2 is canceled and the OUT remains HIGH (no state
change is issued).

7. When the system is in S3 (the IN is LOW and the OUT is HIGH),

if the input signal is still LOW and the time delay dt2 has elapsed
(transition t4), then the system moves from S3 to S0. In this case, the
state change is issued, i.e., the OUT is set to LOW.

2.2.3 Debouncer Macros dbncr0 and dbncril

The macro dbncr0 and its flowchart are shown in Figures 2.12 and 2.13,
respectively. Table 2.1 shows the schematic symbol of the macro dbncr0.
The detailed timing diagram of one channel of this debouncer is provided
in Figure 2.14. It can be used for debouncing eight independent buttons,
switches, relay or contactor contacts, etc. It is seen that the output changes its
state only after the input becomes stable and waits in the stable state for the

26

———————————————————— macro:

debouncer0

Building a Programmable Logic Controller

dbncr0 macro num,regi,biti,t reg,t bit,tenst 01,tenst 10,rego,bito

local
btfsc
goto
btfsc
goto
clrf
goto
L4 btfss
goto
clrf
goto
L3 btfss
bsf
btfss
goto
btfss
goto
bef
incf
movf
xorlw
skpnz
bef
goto
L2 btfss
bsf
btfss
goto
btfss
goto
bef
incf
movf
xorlw
skpnz
bsf

Ll1,L2,L3,L4
rego,bito

L4

regi,biti

L2

DBNCRO+num

L1

regi,biti

L3

DBNCRO+num

L1

t reg,t bit
DBNCRREDO , num
t reg,t bit
Ll
DBNCRREDO , num
L1
DBNCRREDO , num
DBNCRO+num, £
DBNCRO+num,w
tcenst 10

rego,bito

L1l

t _reg,t bit
DBNCRREDO , num
t reg,t bit
L1l
DBNCRREDO , num
Ll
DBNCRREDO , num
DBNCRO+num, £
DBNCRO+num,w
tenst 01

rego,bito

FIGURE 2.12
The macro dbncro0.

predefined debouncing time dt1 or dt2. The debouncing is applied to both
rising and falling edges of the input signal. In this macro, each channel is
intended for a normally open contact connected to the PIC by means of a pull-
down resistor, as this is the case with the PIC16F648A-based PLC. It can also
be used without any problem for a normally closed contact connected to the
PIC by means of a pull-up resistor. The debouncing times, such as 20, 50, or
100 ms, can be selected as required depending on the application. It is possi-
ble to pick up different debouncing times for each channel. It is also possible
to choose different debouncing times for rising and falling edges of the same
input signal if necessary. This gives a good deal of flexibility. This is simply

Basic Software 27

Y 7 N
rego,bito = 0 L4
? N N ?
regi,biti = 1 regi,biti = 0

? ?
t_reg,t _bit=1 t_reg,t_bit=1
SET DBNCRREDO,num - ‘ SET DBNCRREDO,num

DBNCRREDO,
?

num =1

DBNCRREDO,
?

num = 1

RESET DBNCRREDO,num RESET DBNCRREDO,num
(DBNCRO+num) = (DBNCRO+num) + 1 (DBNCRO+num) = (DBNCRO+num) + 1
DBNCRO+ N N DBNCRO+

? ?
num=tcnst_01 num=tcnst_10

RESET rego,bito

SET rego,bito

L1

end

FIGURE 2.13
The flowchart of the macro dbncro0.

done by changing the related time constant tcnst 01 or tcnst_10 defin-
ing the debouncing time delay for each channel and for both edges within
the assembly program. Note that if the state change of the contact is shorter
than the predefined debouncing time, this will also be regarded as bounc-
ing, and it will not be taken into account. Therefore, no state change will be
issued in this case. Each of the eight input channels of the debouncer may be
used independently from other channels. The activity of one channel does
not affect that of the other channels.

Let us now briefly consider how the macro dbncro works. First, one of
the previously defined reference timing signals is chosen as t_reg, t_bit,
to be used within this macro. Then, we can set up both debouncing times
dtl and dt2 by means of time constants tcnst 01 and tcnst 10, as

28 Building a Programmable Logic Controller

TABLE 2.1
Schematic Symbol of the Macro dbncro0

dbncr0

regi,biti — IN OUT |— rego,bito
— num
— t_reg,t_bit
— tenst_01
— tenst_10

IN (regi,biti): A Boolean variable passed into the macro through regi,biti.

It represents the input signal to be debounced.

num: Any number from 0 to 7. Eight independent debouncers are chosen by this number.

It is used to define the 8-bit variable “DBNCRO+num” and the edge detector bit
“DBNCRREDO,num’”

t_reg,t_bit: One of the reference timing signals T0.0, T0.1, ..., T0.7, T1.0, T1.1, ..., TL.7. It
defines the timing period.

tenst_01: An integer constant value from 1 to 255. Debouncing time 1 (dt1) is obtained by this
formula: dt1 = the period of (t_reg,t_bit) x tcnst_01.

tenst _10: An integer constant value from 1 to 255. Debouncing time 2 (dt2) is obtained by this
formula: dt2 = the period of (t_reg,t_bit) x tcnst_10.

OUT/(rego,bito): A Boolean variable passed out of the macro through rego,bito. It represents
the output signal, which is the debounced version of the input signal.

dtl = the period of (t_reg,t bit) x tenst 01 and dt2 = the period of
(t_reg,t_bit) x tenst 10, respectively. If the input signal (regi, biti)
= 0 and the output signal (rego, bito) = 0 or the input signal (regi, biti)
= 1 and the output signal (rego,bito) = 1, then the related counter
DBNCRO+num is loaded with 00h and no state change is issued. If the output
signal (rego,bito) = 0 and the input signal (regi,biti) = 1, then with
each rising edge of the reference timing signal t reg, t bit the related
counter DBNCRO+num is incremented by one. In this case, when the count
value of DBNCRO+num is equal to the number tcnst 01, this means that
the input signal is debounced properly and then state change from 0 to 1
is issued for the output signal (rego, bito). Similarly, if the output signal
(rego,bito) =1 and the input signal (regi,biti) = 0, then with each ris-
ing edge of the reference timing signal t reg, t bit the related counter
DBNCRO+num is incremented by one. In this case, when the count value of
DBNCRO+num is equal to the number tcnst 10, this means that the input
signal is debounced properly and then state change from 1 to 0 is issued for
the output signal (rego, bito). For this macro it is necessary to define the
following 8-bit variables in SRAM: Temp_1 and DBNCRREDO. In addition, it
is also necessary to define eight 8-bit variables in successive SRAM locations,
the first of which is to be defined as DBNCRO. It is not necessary to name the
other seven variables. Each bit of the variable DBNCRREDO is used to detect
the rising edge of the reference timing signal t _reg, t_bit for the related
channel.

29

*0IDUQP OIDEUI Y} JO S[UUeYD Y} Jo duo jo werderp urwr) pajrela
P’z [WNOH

01 3su03 x 31q 3 “Sa1 3 = (73p) gowrn) Sudpunogap
10 3sud) x 31q 3 ‘a1 ~ 3 = (T3p) Towmy SudUNOGap

0 reudts yndur
poounoqap

1 reuSts indino
(2ap) Town (T3p) TOWN (onq‘oSax) 1NO

Supunoqag Sununoqag

19)Uunod J1q §
wmu+QIDNAId

10 Isud

01 Isudy

§9¢

0
Teusdts Surwumn

ERISEACICAS
1q 31817}

—

Basic Software

0
Surunoq 1083U00

woy Surrapgns
reudts nduy

(131q “1821) NI

— U U

Sumounoq joe3U0)) Surounoq joeju0)

30 Building a Programmable Logic Controller

With the use of the macro dbncr0 it is possible to debounce 8 input sig-
nals; as we commit to have 16 discrete inputs in the PIC16F648A-based PLC
project, there are 8 more input signals to be debounced. To solve this prob-
lem the macro dbncrl is introduced. It works in the same manner as the
macro doncr0. The macro dbncrl is shown in Figure 2.15. Table 2.2 shows
the schematic symbol of the macro dbncr1. For this macro it is necessary
to define the following 8-bit variables in SRAM: Temp_1 and DBNCRREDI1.
Each bit of the variable DBNCRREDI is used to detect the rising edge of the
reference timing signal t _reg, t_bit for the related channel. In addition, it

o macro: debouncerl -----------------

dbncrl macro num,regi,biti,t reg,t bit,tcnst 01,tcnst_10,rego,bito
local Ll1,L2,L3,L4
btfsc rego,bito

goto L4
btfsc regi,biti
goto L2
clrf DBNCR1+num
goto L1l

L4 btfss regi,biti
goto L3
clrf DBNCR1+num
goto L1l

L3 btfss t reg,t bit
bsf DBNCRRED1 , num
btfss t reg,t bit
goto Ll
btfss DBNCRRED1 , num
goto L1
bef DBNCRRED1 , num
incf DBNCR1l+num, £
movf DBNCR1+num,w
xorlw tenst 10
skpnz -
bef rego,bito
goto L1

L2 btfss t reg,t bit
bsf DBNCRRED1 , num
btfss t reg,t bit
goto L1
btfss DBNCRRED1 , num
goto L1l
bef DBNCRRED1 , num
incf DBNCR1l+num, f
movf DBNCR1l+num,w
xorlw tenst 01
skpnz
bsf rego,bito

Ll
endm

FIGURE 2.15

The macro dbncrl.

Basic Software 31

TABLE 2.2
Schematic Symbol of the Macro dbncril

dbncrl

regi,biti — IN OUT |— rego,bito
— num
— t_reg,t_bit
— tenst_01
— tenst_10

IN (regi,biti): A Boolean variable passed into the macro through regi,biti. It represents the
input signal to be debounced.

num: Any number from 0 to 7. Eight independent debouncers are chosen by this number.

It is used to define the 8-bit variable “DBNCR1+num” and the edge detector bit
“DBNCRREDI1,num’”

t_reg,t_bit: One of the reference timing signals T0.0, T0.1, ..., T0.7, T1.0, T1.1, ..., T1.7.

It defines the timing period.

tcnst_01: An integer constant value from 1 to 255. Debouncing time 1 (dt1) is obtained by this
formula: dt1 = the period of (t_reg,t_bit) x tcnst_01.

tcnst _10: An integer constant value from 1 to 255. Debouncing time 2 (dt2) is obtained by this
formula: dt2 = the period of (t_reg,t_bit) x tcnst_10.

OUT/(rego,bito): A Boolean variable passed out of the macro through rego,bito. It represents
the output signal, which is the debounced version of the input signal.

is also necessary to define eight 8-bit variables in successive SRAM locations,
the first of which is to be defined as DBNCR1.

2.3 Basic Macros of the PIC16F648A-Based PLC

In this section the following basic three macros are considered: initial-
ize,get inputs, and send outputs.

2.3.1 Macro initialize

The macro initialize is shown in Figure 2.16. There are mainly two tasks
carried out within this macro. In the former, first, TMRO is set up as a free-
running hardware timer with the % of 20 MHz oscillator signal, i.e., 5 MHz,
and with a prescaler arranged to divide the signal to 256. In addition, PORTB
is initialized to make RBO (data_in) as input, and the following as outputs:
RB3 (clock out), RB4 (data_out), RB5 (latch_out), RB6 (clock_
in), and RB7 (shift/load). In the latter, all utilized SRAM registers are
loaded with initial “safe values.” In other words, all utilized SRAM registers
are cleared (loaded with 00h) except for Temp_2, which is loaded with 06h.

32 Building a Programmable Logic Controller

e m e macro: initialize ----------------
initialize macro

local Ll
BANK1 ;goto BANK1
movlw b'00000111' ;W <-- b'00000111' : Fosc/4 --> TMRO, PS=256
movwf OPTION_REG jpull-up on PORTB, OPTION REG <-- W
movlw b'00000001" ;PORTB is both input and output port
movwf TRISB ;TRISB <-- b'00000001"
BANKO ;goto BANKO
clrf PORTA ;Clear PortA
clrf PORTB ;Clear PortB
clrf TMRO ;Clear TMRO
movlw h'20' ;initialize the pointer
movwf FSR ;to RAM
L1 clrf INDF ;clear INDF register
incf FSR,f ;increment pointer
btfss FSR,7 ;all done?
goto L1 ;if not goto L1
;if yes carry on
movlw 06h ;W <--- 06h
movwf Temp_2 ;Temp 2 <--- W(06h)
endm
FIGURE 2.16

The macro initialize.

As explained before, Temp_2 holds some special memory bits; therefore, the
initial values of these special memory bits are put into Temp_2 within this
macro. As a result, these special memory bits are loaded with the following
initial values: LOGICO (Temp_2,0) = 0, LOGIC1 (Temp_2,1) = 1, FRSTSCN
(Temp_2,2) =1, SCNOSC (Temp_2,3) = 0.

2.3.2 Macro get inputs

The macro get_inputs is shown in Figure 2.17. There are mainly three
tasks carried out within this macro. In the first one, the macro HC165 is
called with the parameters .2 and bI0. This means that we will use the CPU
board and two I/O extension boards; therefore, the macro HC165 is called
with the parameter .2. As explained before, the input information taken
from the macro is rated as bouncing information, and therefore these 16-bit
data are stored in bl0 and bIl registers. For example, if we decide to use
the CPU board connected to four I/O extension boards, then we must call
the macro HC165 as follows: HC165.4,bI0. Then, this will take four 8-bit
bouncing input data from the 74HC/LS165 ICs and put them to the four suc-
cessive registers starting with the register bl0. In the second task within this
macro, each bit of bl0,i (=0, 1, ..., 7) is debounced by the macro dbncro,
and each debounced input signal is stored in the related bit 10, (i=0, 1, ..., 7).
Likewise, each bit of bI1,i (i =0, 1, ..., 7) is debounced by the macro dbncri,
and each debounced input signal is stored in the related bitI1,i (i=0, 1, ..., 7).
In general, a 10 ms time delay is enough for debouncing both rising and
falling edges of an input signal. Therefore, to achieve these time delays, the

Basic Software 33

;
get inputs macro

local Nzero

HC1l65 .2,bI0 ;obtain the 16 inputs from

dbner0 0,b10.0,T0.2,.25,.25,10.0 ;2 input registers (74HC165)
dbnecr0 1,bI10.1,T0.2,.25,.25,I0.1 ;and put them into bIO and bIl
dbner0 2,bI0.2,T0.2,.25,.25,10.2 ;registers within PIC16F648A.
dbner0 3,b10.3,T0.2,.25,.25,10.3 ;Then debounce all bits of
dbncr0 4,bI0.4,T0.2,.25,.25,10.4 ;bIO0.
dbner0 5,bI0.5,T0.2,.25,.25,10.5 ;The debounced input signals
dbncr0 6,bI0.6,T0.2,.25,.25,10.6 ;are stored in the register
dbner0 7,bI0.7,T0.2,.25,.25,10.7 ;I0
;dtl=dt2=0.4096 ms x 25 = 10,24 ms ;
dbnerl 0,bIl1.0,T0.2,.25,.25,I1.0 ;Likewise debounce all bits of
dbnerl 1,bI1.1,T0.2,.25,.25,11.1 ;
dbnerl 2,bI1.2,T0.2,.25,.25,I1.2 ;bIl.
dbnerl 3,bI1.3,T0.2,.25,.25,I1.3 ;
dbnerl 4,bI1.4,T0.2,.25,.25,11.4 ;The debounced input signals
dbnerl 5,bI1.5,T0.2,.25,.25,I1.5 ;
dbnerl 6,bI1.6,T0.2,.25,.25,I1.6 ;are stored in the register
dbnerl 7,bI1.7,T0.2,.25,.25,I1.7 ;I1
btfsc Timer_1,7 ;
bsf Temp_2,4 ;Increment Timer 2 on Timer 1 overflow
btfsc Timer 1,7 ;
goto Nzero ;
btfss Temp 2,4 ;
goto Nzero ;
inef Timer 2,f H
bef Temp 2,4 ;
Nzero

endm

FIGURE 2.17

The macro get _inputs.

reference timing signal, obtained from Timer_1, is chosen as T0.2 (0.4096 ms
period), and both tecnst 01 and tcnst_10 are chosen to be 25. Then we
obtain the following: dt1 = T0.2 x tcnst_01 = (0.4096 ms) x 25 = 10.24 ms,
dt2 =T0.2 x tenst_01 = (04096 ms) x 25 = 10.24 ms. The last task is about
incrementing the Timer_2 on overflow of Timer_1. In this task, Timer_2 is
incremented by one when the falling edge of the bit Timer_1,7 is detected. In
order to detect the falling edge of the bit Timer_1,7, Temp_2,4 bit is utilized.

2.3.3 Macro send _outputs

The macro send_outputs is shown in Figure 2.18. There are mainly four
tasks carried out within this macro. In the first one, the macro HC595 is
called with the parameters .2 and Q0. This means that we will use the CPU
board and two I/O extension boards; therefore, the macro HC595 is called
with the parameter .2. As explained before, 16-bit output data are taken from
the registers Q0 and Q1, and this macro sends the bits of Q0 and Q1 seri-
ally to TPIC6B595 registers. For example, if we decide to use the CPU board
connected to four I/O extension boards, then we must call the macro HC595

34 Building a Programmable Logic Controller

ittt macro: send_outputs --------------
send_outputs macro

local L1l,L2
HC595 .2,Q0 ;take the registers Q0 and Q1 from PIC16F648A
;and put them into output registers Q0 and Q1 (TPIC6B595)

clrwdt ;clear the watchdog timer
bef FRSTSCN ;reset the FRSTSCN bit
btfss SCNOSC ;toggle
goto L2 ;the SCNOSC bit
bef SCNOSC ;after a program
goto L1 ;scan

L2 bsf SCNOsC ;

Ll
endm

FIGURE 2.18

The macro send_outputs.

as follows: HC595 .4, Q0. Then, the macro HC595 will take four 8-bit out-
put data stored in Q3, Q2, Q1, and Q0 and send them serially to the four
TPIC6B595 register ICs, respectively. In the second task within this macro,
the watchdog timer is cleared. In the third task, the FRSTSCN special mem-
ory bit is reset. As the final task, within this macro the SCNOSC special
memory bit is toggled after a program scan; i.e, when it is 1 it is reset, and
when it is 0 it is set.

2.4 Example Program

Up to now we have seen the hardware and basic software necessary for the
PIC16F648A-based PLC. It is now time to consider a simple example. Before
you can run the simple example considered here, you are expected to con-
struct your own PIC16F648A-based PLC hardware by using the necessary
PCB files, and producing your PCBs, with their components. The user pro-
gram of the example UZAM_plc_16il60_ex2.asm is shown in Figure 2.19. The
file UZAM_plc_16il160_ex2.asm is included within the CD-ROM attached to
this book. Please open it by MPLAB integrated development environment

moviw IO
movwf QO
moviw Timer 2
movwf Q1
jomm e user program ends here —--—-—---—-—-—-———————————————

FIGURE 2.19
The user program of UZAM_plc_16il60_ex2.asm.

Basic Software 35

(IDE) and compile it. After that, by using the PIC programmer software,
take the compiled file UZAM_plc_16i160_ex2.hex, and by your PIC pro-
grammer hardware send it to the program memory of PIC16F648A micro-
controller within the PIC16F648A-based PLC. To do this, switch the 4PDT
in PROG position and the power switch in OFF position. After loading the
UZAM_plc_16i160_ex2.hex file, switch the 4PDT in RUN position and the
power switch in ON position. Now, you are ready to test the first example
program. There are mainly two different operations done. In the first part,
eight inputs, namely, bits 10.0, 10.1, ..., I0.7, are transferred to the respective
eight outputs, namely, bits Q0.0, Q0.1, ..., Q0.7. That is, if 10.0 = 0, then Q0.0
= 0, and similarly, if 10.0 = 1, then Q0.0 = 1. This applies to all eight inputs
10 — eight outputs Q0. In the second part, the contents of the Timer_2 register,
namely, T1.0, T11, ..., T1.7, are transferred to eight outputs Q1, namely, Q1.0,
Q11, ..., Q1.7 respectively.

3

Contact and Relay-Based Macros

In this chapter, the following contact and relay-based macros are described:

14 (load)

1d_not (load not)

not

or

or not

nor

and

and_not

nand

xXor

xXor not

xnor

out

out_ not

in out
inv_out
set

_reset

The file definitions.inc, included within the CD-ROM attached to this book,
contains all macros defined for the PIC16F648A-based PLC. The contact and
relay-based macros are defined to operate on Boolean (1-bit) variables. The
working register W is utilized to transfer the information to or from the con-
tact and relay-based macros, except for macros in_out and inv_out. Letus
now briefly consider these macros.

37

38 Building a Programmable Logic Controller

TABLE 3.1
Truth Table and Symbols of the Macro 1d

Truth Table Ladder Diagram Symbol Schematic Symbol
IN ouT
reg,bit W reg,bit n -
0 0 =
1 1
I

3.1 Macro 1d (load)

The truth table and symbols of the macro 1d are depicted in Table 3.1.
Figure 3.1 shows the macro 1d and its flowchart. This macro has a Boolean
input variable passed into it as reg,bit and a Boolean output variable
passed out through W. In ladder logic, this macro is represented by a nor-
mally open (NO) contact. When the input variable is 0 (respectively 1), the
output (W) is forced to 0 (respectively to 1). Operands for the instruction 1d
are shown in Table 3.2.

begin

A 4

1d macro reg,bit
movlw 0
btfsc reg,bit ¥
movlw 1 d
endm en
(a) (b)
FIGURE 3.1
(@) The macro 1d and (b) its flowchart.
TABLE 3.2
Operands for the Instruction 1d
Input Data Type Operands
(reg,bit) YP P
Bit BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q,
CTUD8_Q, LOGIC1, LOGICO, FRSTSCN, SCNOSC

Contact and Relay-Based Macros 39

TABLE 3.3
Truth Table and Symbols of the Macro 1d_not

Truth Table Ladder Diagram Symbol Schematic Symbol
IN ouT
bit W reg,bit
reg,bi

: w So—w

0 1

1 0
|

3.2 Macro 1d_not (load not)

The truth table and symbols of the macro 1d_not are depicted in Table 3.3.
Figure 3.2 shows the macro 1d_not and its flowchart. This macro has a
Boolean input variable passed into it as reg, bit, and a Boolean output vari-
able passed out through W. In ladder logic, this macro is represented by a
normally closed (NC) contact. When the input variable is 0 (respectively 1),
the output (W) is forced to 1 (respectively to 0). Operands for the instruction
1d_not are shown in Table 3.4.

1ld not macro reg,bit
movlw 1
btfsc reg,bit
movlw 0
endm

(@) (b)

FIGURE 3.2
(@) The macro 1d_not and (b) its flowchart.

40

Building a Programmable Logic Controller

TABLE 3.4
Operands for the Instruction 1d_not
Input Data Type Operands
(reg,bit)
Bit BOOL I, Q M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTUS8_Q, CTD8_Q,
! CTUD8_Q, LOGIC1, LOGICO, FRSTSCN, SCNOSC
TABLE 3.5

Truth Table and Symbols of the Macro not

Truth Table Ladder Diagram symbol Schematic Symbol
IN ouT
\:)V \f W —|NOTf—w W —>0—W
1 0

3.3 Macro not

The truth table and symbols of the macro not are depicted in Table 3.5.
Figure 3.3 shows the macro not and its flowchart. This macro is used as a
logical NOT gate. The input is taken from W, and the output is send out by
W. When the input variable is 0 (respectively 1), the output (W) is forced to 1
(respectively to 0).

FIGURE 3.3

not

W < Wxorl
macro
xorlw 1 end
endm

(a) (b)

(a) The macro not and (b) its flowchart.

Contact and Relay-Based Macros

TABLE 3.6

Truth Table and Symbols of the Macro or

41

Truth Table Ladder diagram symbol Schematic symbol
IN1 IN2 ouT
A\ reg,bit \\4 W
N
0 0 0 \\4 W
0 1 1 reg,bit reg,bit
1 0 1
1 1 1

3.4 Macro or

The truth table and symbols of the macro or are depicted in Table 3.6.
Figure 3.4 shows the macro or and its flowchart. This macro is used as a two-
input logical OR gate. One input is taken from W, and the other one is taken
from reg, bit. The result is passed out of the macro through W. Operands
for the instruction or are shown in Table 3.7.

or macro
movwf
movlw

b

tfsc

movlw
iorwf
endm

FIGURE 3.4

(@)

begin

A 4

Temp_1 <= W
W <=0

reg,bit
Temp 1

?
reg,bit = 0

A 4

reg,bit

W <— Temp_l or W

Temp 1,w

(@) The macro or and (b) its flowchart.

end

(b)

42 Building a Programmable Logic Controller

TABLE 3.7
Operands for the Instruction or
Input
(reg,bit) Data Type Operands
Bit BOOL I, Q M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q,
! CTUDS8_Q, LOGIC1, LOGICO, FRSTSCN, SCNOSC

3.5 Macro or_not

The truth table and symbols of the macro or_not are depicted in Table 3.8.
Figure 3.5 shows the macro or not and its flowchart. This macrois also used
as a two-input logical OR gate, but this time one of the inputs is inverted.
One input is taken from W, and the inverted input is taken from reg, bit.
The result is passed out of the macro through W. Operands for the instruc-
tion or not are shown in Table 3.9.

3.6 Macro nor

The truth table and symbols of the macro nor are depicted in Table 3.10.
Figure 3.6 shows the macro nor and its flowchart. This macro is used as a
two-input logical NOR gate. One input is taken from W, and the other input
is taken from reg, bit. The result is passed out of the macro through W.
Operands for the instruction nor are shown in Table 3.11.

TABLE 3.8
Truth Table and Symbols of the Macro or_not

Truth Table Ladder Diagram Symbol Schematic Symbol

IN1 IN2 ouT

reg,bit

w
0 1 w W
0 reg,bit reg,bit
1
1

1
0
1

~|=|o|o|=

Contact and Relay-Based Macros

43

or_not macro reg,bit
movwf Temp_ 1 \ 4
movlw 1 W <— Temp_1 or W
btfsc reg,bit
movlw 0]
iorwf Temp 1,w q
endm en
(a) (b)
FIGURE 3.5
(@) The macro or_not and (b) its flowchart.
TABLE 3.9
Operands for the Instruction or_not
Input Data Type Operands
(reg,bit) P P
Bit BooL | b QM TONS_Q TOFs_Q TP8_Q TOS8 Q CTUS_Q CTD8_Q
CTUD8_Q, LOGIC1, LOGICO, FRSTSCN, SCNOSC
TABLE 3.10
Truth Table and Symbols of the Macro nor
Truth Table Ladder Diagram Symbol Schematic Symbol
IN1 IN2 ouT
. A\
W reg,bit W
£ | |NOT |— w
0 0 1 W W
0 1 0 reg,bit reg,bit
1 0 0
1 1 0

44

nor

FIGURE 3.6

macro
movwf
movlw
btfsc
movlw
iorwf
xorlw
endm

()

Building a Programmable Logic Controller

A 4

reg,bit W <— Temp_1 or W
Temp 1
0 v
reg,bit W < Wxor 1
1
Temp_1,w
1

end

(b)

(@) The macro nor and (b) its flowchart.

TABLE 3.11

Operands for the Instruction nor

Input
(reg,bit)

Data Type

Operands

Bit

BOOL I, Q M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q,
CTUDS8_Q, LOGIC1, LOGICO, FRSTSCN, SCNOSC

3.7 Macro

and

The truth table and symbols of the macro and are depicted in Table 3.12.
Figure 3.7 shows the macro and and its flowchart. This macro is used as a
two-input logical AND gate. One input is taken from W, and the other one
is taken from reg, bit. The result is passed out of the macro through W.
Operands for the instruction and are shown in Table 3.13.

Contact and Relay-Based Macros

45

TABLE 3.12
Truth Table and Symbols of the Macro and
Truth Table Ladder Diagram Symbol Schematic Symbol
IN1 IN2 ouT
w reg,bit \\4)
5 o 5 W reg,bit W
|—| W W
0 1 0 l_ reg,bit }
1 0 0
1 1 1
begin
y
Temp_ 1 <= W
W <=0
?
reg,bit = 0
We<1
Y
and macro reg,bit I
movwf Temp 1 A 4
movlw 0 W < Temp_land W
btfsc reg,bit
movlw 1
andwf Temp 1,w q
endm en
(@) (b)
FIGURE 3.7
(@) The macro and and (b) its flowchart.
TABLE 3.13
Operands for the Instruction and
Input Data Type Operands
(reg,bit) P P
Bit BOOL I, Q M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q,
CTUDS8_Q, LOGIC1, LOGICO, FRSTSCN, SCNOSC

46

Building a Programmable Logic Controller

TABLE 3.14
Truth Table and Symbols of the Macro and_not
Truth Table Ladder Diagram Symbol Schematic Symbol
IN1 IN2 ouT
W reg,bit W
0 0 0 A\ reg,bit -
w W
0 1 0 L reg bit —c}
1 0 1
1 1 0
|

3.8 Macro and_not

The truth table and symbols of the macro and_not are depicted in Table 3.14.
Figure 3.8 shows the macro and_not and its flowchart. This macro is also
used as a two-input logical AND gate, but this time one of the inputs is
inverted. One input is taken from W, and the inverted input is taken from
reg, bit. Theresultis passed out of the macro through W. Operands for the
instruction and_not are shown in Table 3.15.

and_not macro
movwf
movlw
btfsc
movlw
andwf
endm

FIGURE 3.8

(@) The macro and_not and (b) its flowchart.

(@)

reg,bit
Temp 1

reg,bit

Temp 1,w

\ 4
W <— Temp_1 and W

end

Contact and Relay-Based Macros

TABLE 3.15

Operands for the Instruction and_not

(rIeI:gpIL)litt) Data Type Operands
Bit BOOL I, Q M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTUS8_Q, CTD8_Q,
CTUDS8_Q, LOGIC1, LOGICO, FRSTSCN, SCNOSC
|

3.9 Macro nand

The truth table and symbols of the macro nand are depicted in Table 3.16.
Figure 3.9 shows the macro nand and its flowchart. This macro is used as a
two-input logical NAND gate. One input is taken from W, and the other one
is taken from reg, bit. The result is passed out of the macro through W.

Operands for the instruction nand are shown in Table 3.17.

3.10 Macro xor

The truth table and symbols of the macro xor are depicted in Table 3.18.
Figure 3.10 shows the macro xor and its flowchart. This macro is used as a
two-input logical EXOR gate. One input is taken from W, and the other one
is taken from reg, bit. The result is passed out of the macro through W.

Operands for the instruction xor are shown in Table 3.19.

TABLE 3.16
Truth Table and Symbols of the Macro nand

Ladder Diagram Symbol Schematic Symbol

Truth Table
IN1 IN2 | OUT
W | regbit| W
0 0 1
0 1 1
1 0 1
1 1 0

W reg,bit W
' | —NOT|—wW W
| 1 — — regbit

48 Building a Programmable Logic Controller

A 4

nand macro reg,bit W <= Temp_l and W
movwf Temp 1
movlw 0 ¢
btfsc reg,bit W <— W xor 1
movlw 1

andwf Temp_1,w
xorlw 1 1
endm en

(a) (b)

FIGURE 3.9
(a) The macro nand and (b) its flowchart.

TABLE 3.17

Operands for the Instruction nand

[nput Data Type Operands
(reg,bit) YP P
Bit BOOL I, Q M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q,
CTUD8_Q, LOGIC1, LOGICO, FRSTSCN, SCNOSC
TABLE 3.18

Truth Table and Symbols of the Macro xor

Truth Table Ladder Diagram Symbol Schematic Symbol
IN1 IN2 ouT
o W reg,bit
W reg,bit W 1 W
0 0 0 W —\ w
0 1 1 W reg,bit reg,bit /
1 0 1
1 1 0

Contact and Relay-Based Macros 49

xor macro reg,bit
movwf Temp_1 A 4
movlw 0 W <— Temp_1 xor W
btfsc reg,bit

movlw 1
xorwf Temp 1,w
endm

(a) (b)

end

FIGURE 3.10
(a) The macro xor and (b) its flowchart.

3.11 Macro xor_not

The truth table and symbols of the macro xor not are depicted in Table 3.20.
Figure 3.11 shows the macro xor_not and its flowchart. This macro is also
used as a two-input logical EXOR gate, but this time one of the inputs is
inverted. One input is taken from W, and the inverted input is taken from
reg, bit. The result is passed out of the macro through W. Operands for the
instruction xor not are shown in Table 3.21.

3.12 Macro xnor

The truth table and symbols of the macro xnor are depicted in Table 3.22.

Figure 3.12 shows the macro xnor and its flowchart. This macro is used as

a two-input logical EXNOR gate. One input is taken from W, and the other
TABLE 3.19

Operands for the Instruction xor

(rIeK:gP Eitt) Data Type Operands
Bit BOOL I, Q M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q,
CTUDS8_Q, LOGIC1, LOGICO, FRSTSCN, SCNOSC

50

TABLE 3.20

Building a Programmable Logic Controller

Truth Table and Symbols of the Macro xor_not

Truth Table Ladder Diagram Symbol Schematic Symbol
IN1 IN2 | OUT
W it | w W reg,bit
reg,bi
|—| |——W
0 0 1 W W
0 1 0 W regbit reg,bit
1 0 0
1 1 1
xor_not macro reg,bit
movwf Temp 1 A 4
movlw 1 W <— Temp_1 xor W
btfsc reg,bit
movlw 0
xorwf Temp 1,w
endm end
(@) (b)
FIGURE 3.11
(@) The macro xor_not and (b) its flowchart.
TABLE 3.21
Operands for the Instruction xor not
Input Data Type Operands
(reg,bit) P P
Bit BOOL I, Q M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q,
CTUD8_Q, LOGIC1, LOGICO, FRSTSCN, SCNOSC

Contact and Relay-Based Macros 51

TABLE 3.22
Truth Table and Symbols of the Macro xnor

Truth Table Ladder Diagram Symbol Schematic Symbol
IN1 IN2 ouT
W | regbit | W W reg,bit
. . ; NOT}—w W
0 1 0 W reg,bit reg,bit :)D(F w
1 0 0
1 1 1

one is taken from reg, bit. The result is passed out of the macro through W.
Operands for the instruction xnor are shown in Table 3.23.

3.13 Macro out

The truth table and symbols of the macro out are depicted in Table 3.24.
Figure 3.13 shows the macro out and its flowchart. This macro has a Boolean
input variable passed into it by W and a Boolean output variable passed out

begin

A 4
Temp_1 <= W
W <1

?
reg,bit = 0

xnor macro reg,bit

movwf Temp 1

movlw 0 A 4
btfsc reg,bit W <— Temp_1 xor W
movlw 1

xorwf Temp_ 1,w
xorlw 1 q
endm en

() (b)

FIGURE 3.12
(@) The macro xnor and (b) its flowchart.

52 Building a Programmable Logic Controller

TABLE 3.23
Operands for the Instruction xnor
Input Data Type Operands
(reg,bit) P P
Bit BOOL I, Q M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q,
CTUD8_Q, LOGIC1, LOGICO, FRSTSCN, SCNOSC
TABLE 3.24
Truth Table and Symbols of the Macro out
Truth Table Ladder diagram symbol Schematic symbol
IN ouT
. reg,bit
W | resbi v W ——[reghit >
0 0
1 1

RESET reg,bit

out macro reg,bit
movwf Temp_ 1 -
btfsc Temp 1,0 SET reg,bit
bsf reg,bit
btfss Temp 1,0 v
bef reg,bit q
endm .
(a) (b)
FIGURE 3.13

(a) The macro out and (b) its flowchart.

Contact and Relay-Based Macros 53

TABLE 3.25

Operands for the Instruction out

Output
(reg,bit) Data Type Operands
. Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q,
Bit BOOL CTUDS_Q

through reg, bit. In ladder logic, this macro is represented by an output
relay (internal or external relay). When the input variable is 0 (respectively 1),
the output (W) is forced to 0 (respectively to 1). Operands for the instruction
out are shown in Table 3.25.

3.14 Macro out_not

The truth table and symbols of the macro out not are depicted in Table 3.26.
Figure 3.14 shows the macro out not and its flowchart. This macro has a
Boolean input variable passed into it by W and a Boolean output variable
passed out through reg, bit. In ladder logic, this macro is represented by
an inverted output relay (internal or external relay). When the input variable
is 0 (respectively 1), the output (W) is forced to 1 (respectively to 0). Operands
for the instruction out _not are shown in Table 3.27.

TABLE 3.26
The Truth Table and Symbols of the Macro out_not
Truth Table Ladder Diagram Symbol Schematic Symbol
IN OouT
W reg,bit w regbit W o {FEghi
0 1
1 0

54 Building a Programmable Logic Controller

SET reg,bit

out not macro reg,bit
movwf Temp 1

btfss Temp 1,0
bsf reg,bit
btfsc Temp 1,0 v
bef reg,bit
endm end
(2) (b)

FIGURE 3.14
(@) The macro out_not and (b) its flowchart.

3.15 Macro in_out

The truth table and symbols of the macro in_out are depicted in Table 3.28.
Figure 3.15 shows the macro in_out and its flowchart. This macro has a
Boolean input variable passed into it by regi,biti and a Boolean out-
put variable passed out through rego,bito. When the input variable
regi,biti is 0 (respectively 1), the output variable rego, bito is forced
to 0 (respectively to 1). Operands for the instruction in_out are shown in
Table 3.29.

TABLE 3.27
Operands for the Instruction out_not
Output
(reg,bit) Data Type Operands
. Q M, TONS_Q, TOF8_Q, TP8_Q, TOS8_Q, CTUS_Q, CTD8_Q,
Bit BOOL CTUDS Q

Contact and Relay-Based Macros 55

TABLE 3.28
Truth Table and Symbols of the Macro in_out
Truth Table Ladder Diagram Symbol Schematic Symbol
IN ouT
regi,biti | rego,bito regi’lugo,bito
0 0
1 1

?
regi,biti = 1

RESET rego,bito

in _out macro regi,biti,rego,bito
local L1,L2
btfss regi,biti

goto L2 - -
bsf rego,bito SET rigo,bito
goto L1l <
L2 bef rego,bito h
A 4
Ll
endm end
(a) (b)
FIGURE 3.15
(@) The macro in_out and (b) its flowchart.
TABLE 3.29
Operands for the Instruction in_out
Input/Output | Data Type Operands
Input BOOL I, Q M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,
(regi,biti) Bit CTD8_Q, CTUDS_Q, LOGIC1, LOGICO, FRSTSCN, SCNOSC
Output BOOL Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,
(rego,bito) Bit CTD8_Q,CTUD8_Q

56 Building a Programmable Logic Controller

TABLE 3.30
Truth Table and Symbols of the Macro inv_out

Truth Table Ladder Diagram Symbol Schematic Symbol
regi,biti rego,bito
IN ouT
regi,biti | rego,bito or

[regibit > >0 {regobito>

0 1

regi,biti rego,bito
1 0 —

3.16 Macro inv_out

The truth table and symbols of the macro inv_out are depicted in Table 3.30.
Figure 3.16 shows the macro inv_out and its flowchart. This macro has a
Boolean input variable passed into it by regi,biti and a Boolean output
variable passed out through rego, bito. When the input variable regi, biti

?
regi,biti = 1

SET rego,bito

inv_out macro regi,biti,rego,bito
local L1,L2
btfss regi,biti

goto L2
bef rego,bito RESET rego,bito
goto L1l

L2 bsf rego,bito

L1 A 4
endm end

(a) (b)
FIGURE 3.16

(@) The macro inv_out and (b) its flowchart.

Contact and Relay-Based Macros 57

TABLE 3.31
Operands for the Instruction inv_out
Input/Output | Data Type Operands
Input BOOL I, Q M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,
(regi,biti) Bit CTD8_Q, CTUDS8_Q, LOGIC1, LOGICO, FRSTSCN, SCNOSC
Output BOOL | @M TONS_Q TOF8_Q TP§_Q, TOS8_Q CTUS_Q,
(rego,bito) Bit CTD8_Q,CTUD8_Q

is 0 (respectively 1), the output variable rego, bito is forced to 1 (respectively
to 0). Operands for the instruction inv_out are shown in Table 3.31.

3.17 Macro _set

The truth table and symbols of the macro set are depicted in Table 3.32.
Figure 3.17 shows the macro _set and its flowchart. This macro has a Boolean
input variable passed into it by W and a Boolean output variable passed out
through reg, bit. When the input variable is 0, no action is taken, but when

TABLE 3.32
Truth Table and Symbols of the Macro _set

Truth Table Ladder Diagram Symbol Schematic Symbol
IN ouT
i SET
W reg,bit W regs,blt
0 no change W—IN reg,bit
1 Set
_set macro reg,bit
andlw 1
btfss STATUS, Z v
bsf reg,bit q
endm en
(@ (b)
FIGURE 3.17

(@) The macro _set and (b) its flowchart.

58 Building a Programmable Logic Controller
TABLE 3.33
Operands for the Instruction _set
Output
(rel:g,I};Lilt) Data Type Operands
. Q M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q,
Bit BOOL CTUDS_Q

the input variable is 1, the output variable reg, bit is set to 1. Operands for
the instruction _set are shown in Table 3.33.

3.18 Macro reset

The truth table and symbols of the macro _reset are depicted in Table 3.34.
Figure 3.18 shows the macro reset and its flowchart. This macro has a
Boolean input variable passed into it by W and a Boolean output variable

TABLE 3.34
Truth Table and Symbols of the Macro _reset
Truth Table Ladder Diagram Symbol Schematic Symbol
IN ouT RESET
w reg,bit W re;g{,bit
0 no change W ——IN reg,bit
1 Reset

_reset macro

FIGURE 3.18

andlw
btfss
bef
endm

(a)

reg,bit
1

STATUS, Z
reg,bit

(@) The macro _reset and (b) its flowchart.

RESET reg,bit

(b)

Contact and Relay-Based Macros 59

TABLE 3.35

Operands for the Instruction _reset

Output
(reg,bit) Data Type Operands
. Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q,
Bit BOOL CTUDS_Q

passed out through reg,bit. When the input variable is 0, no action is
taken, but when the input variable is 1, the output variable reg, bit is reset.
Operands for the instruction _reset are shown in Table 3.35.

3.19 Examples for Contact and Relay-Based Macros

In this section, we will consider two examples, UZAM_plc_16i160_ex3.asm
and UZAM_plc_16i160_ex4.asm, to show the usage of contact and relay-based
macros. In order to test the respective example, please take the files from
the CD-ROM attached to this book and then open the respective program
by MPLAB IDE and compile it. After that, by using the PIC programmer
software, take the compiled file UZAM_plc_16il60_ex3.hex or UZAM_
plc_16i160_ex4.hex, and by your PIC programmer hardware send it to the
program memory of the PIC16F648A microcontroller within the PIC16F648A-
based PLC. To do this, switch the 4PDT in the PROG position and the power
switch in the OFF position. After loading the UZAM_plc_16i160_ex3.hex
or UZAM_plc_16i160_ex4.hex, switch the 4PDT in RUN and the power
switch in the ON position. Please check each program’s accuracy by cross-
referencing it with the related macros.

Let us now consider these two example programs: The first example
program, UZAM_plc_16i160_ex3.asm, is shown in Figure 3.19. It shows
the usage of the following contact and relay-based macros: 1d, 1d_not,
not, out, out_not, in out, inv_out, or, or not, and nor. The sche-
matic and ladder dlagrams of the user program of UZAM_plc_16il160_
ex3.asm, shown in Figure 3.19, are depicted in Figure 3.20(a) and (b),
respectively.

60 Building a Programmable Logic Controller

e b bl user program starts here -

1d I10.0 ;rung 1
out Q0.0

1ld_not I0.1 ;rung 2
out Q0.1

1d I10.2 ;rung 3
out M2.7

1d M2.7 ;rung 4
out_not Q0.2

1d 10.3 ;rung 5
not

out Q0.3

in_out 10.4,Q0.4 rrung 6
inv_out I0.5,00.5 rrung 7
in_out LOGICL,Q0.6 ;rung 8
in_out T1.5,00.7 ;rung 8
1d I1.0 ;rung 10
or I1.1

out Q1.0

1d I1.0 ;rung 11
or I1.1

or I1.2

out 0l.1

1d I1.0 ;rung 12
or_not I1.4

out Q1.2

1d I1.2 ;rung 13
or I1.3

or_not I1.4

out Q1.3

1d I1.4 ;rung 14
nor Il1l.5

out Q1.4

1d Il.4 ;jrung 15
nor I1.5

nor I1.6

out Q1.5

1d I1.4 ;rung 16
or I1.5

or_not I1.6

nor I1.7

out QlL.6

it user program ends here ---

FIGURE 3.19
The user program of UZAM_plc_16il60_ex3.asm.

Contact and Relay-Based Macros

FIGURE 3.20

The user program of UZAM_plc_16i160_ex3.asm: (a) schematic diagram. (Continued)

IN ouTt
[100 Q0.0 >
10.1 } Qo1
[102 M2.7
[M27 0
[[103 Q03 >
[104 Qo4 >
105 > Q05
[Logict Q0.6
T = 838,8608 ms
[T15 Q07 >
11.0
Q10
111
QL >
11.0
Q12 >
114 O

61

62 Building a Programmable Logic Controller

10.0 Q0.0
1 I {)—
10.1 Qo.1
2 I {
10.2 M2.7
3 | (
M2.7 Q0.2
i i

10.3 Q0.3
5 } {NOT | (

10.4 QU4
6 } {)

10.5 Qo.5
7= { —
LOGIC1 Q0.6
8 } (

TL5 T - 838,8608 ms Q0.7
9 I C —

1.0 QL0
10 | {)
na

1.0 QL1
1| {)
_1|1.1

_1|1.2

1.0 Q1.2
| ——

12
11.4

R
T w

13

R
T S

2
TU‘\

15 | NOT | | NOT |

2

|

I

3

4

11.4

14— | {NoOT |

—IILS

4
;|

6

16

QL6
| NOT ——)

—
=
Im _

11.7

(b)

FIGURE 3.20 (Continued)
The user program of UZAM_plc_16i160_ex3.asm: (b) ladder diagram.

Contact and Relay-Based Macros

pmmmm s m e user program starts here --

1d I10.0 ;rung 1
and I0.1

out Q0.0

1d I0.0 ;rung 2
and I0.1

and I0.2

out Q0.1

1d I0.0 ;rung 3
and_not I10.4

out Q0.2

1d I0.2 ;rung 4
and I0.3

and_not I0.4

out 0.3

1d I0.4 ;rung 5
nand I0.5

out Q0.4

1d I10.4 ;rung 6
nand I0.5

nand I0.6

out Q0.5

1d I10.4 ;rung 7
and I0.5

and_not I0.6

nand I10.7

out Q0.6

1d I1.0 ;rung 8
Xor I1l.1

out Q1.0

1d I1.2 ;rung 9
xor_not I1.3

out Q1.2

1d I1.4 ;rung 10
Xnor I1.5

out Q1.4

1d I1.6 ;rung 11
_set Q1.7

1d I1.7 ;rung 12
_reset Q1.7

fmm e user program ends here ----

FIGURE 3.21
The user program of UZAM_plc_16i160_ex4.asm.

64 Building a Programmable Logic Controller

IN

o> our
>/ s>
(o> —
Qo>
ETon Sy I
(>
J ez
[T —
903
A s
. -

105

106 i 205

10.4

10.5

:
=

10.6

p—{ Q06 >
[T07
ROEED
11.1 el
112
Q12 >
D
RIED
115 4
SET
[116 INQL7
RESET
[117 INQ17

(a)

FIGURE 3.22
The user program of UZAM_plc_16i160_ex4.asm: (a) schematic diagram. (Continued)

Contact and Relay-Based Macros

—_

ul

()

~

o

10

11

12

FIGURE 3.22 (Continued)
The user program of UZAM_plc_16i160_ex4.asm: (b) ladder diagram.

100 TI0.1 Q0.0
_| | || -

—l {

100 101 102 Qo1
| | | ¢)—
| | {

100 104
L 90?_
| | (

102 103 104 Q0.3
L ‘
—)
104 105 Q0.4

|—| |—|N0TI ¢
Q05
—| |—| |—|NOT|—| |—|NOT|—< —
104 105 106 107 Qo6
1 [l | | :
— A | INOT—()
11.0 111
By Q1o
| | {
11.0 111
112 113 Q12
| [¢
| 1 {
112 113
114 115 Q1l4
A /o ¢
114 115
11.6 Q17
al (57—
11.7 Q17
al (R—
(b)

65

The second example program, UZAM_plc_16i160_ex4.asm, is shown in
Figure 3.21. It shows the usage of the following contact and relay-based mac-
_set,and reset.The
schematic and ladder diagrams of the user program of UZAM_ _plc_16i160_
ex4.asm, shown in Figure 3.21, are depicted in Figure 3.22(a) and (b),

ros: 1d, and, and_not, nand, xor, xor_not, xnor,

respectively.

4

Flip-Flop Macros

In this chapter, the following flip-flop macros are described:

r_edge (rising edge detector)

f_edge (falling edge detector)

latchl (D latch with active high enable)
latcho (D latch with active low enable)
dff_r (rising edge triggered D flip-flop)
dff f (falling edge triggered D flip-flop)
tff_r (rising edge triggered T flip-flop)

tff f (falling edge triggered T flip-flop)
jkff_r (rising edge triggered JK flip-flop)
jkEf f (falling edge triggered JK flip-flop)

Each macro defined here requires an edge detection mechanism except for
latcho0 and latchl. The following 8-bit variables are used for this purpose:

RED: Rising edge detector

FED: Falling edge detector

DFE_RED: Rising edge detector for D flip-flop
DFF_FED: Falling edge detector for D flip-flop
TFF_RED: Rising edge detector for T flip-flop
TFF_FED: Falling edge detector for T flip-flop
JKFF_RED: Rising edge detector for JK flip-flop
JKFF_FED: Falling edge detector for JK flip-flop

They are declared within the SRAM data memory as shown in Figure 4.1.
Each 8-bit variable enables us to declare and use eight different functions
defined by the related macro. The macros 1atch0 and latchl are an excep-
tion to this, which means that we can use as many latches of latcho0 or
latchil as we wish. The file definitions.inc, included within the CD-ROM
attached to thisbook, contains all flip-flop macros defined for the PIC16F648A-
based PLC.

Let us now briefly consider these macros.

67

68 Building a Programmable Logic Controller

jmmm e VARIABLE DEFINITIONS ---
CBLOCK 0x3F
RED, FED,DFF_RED,DFF_FED, TFF_RED, TFF_FED,JKFF_RED,JKFF_FED
endc

3Fh RED
40h FED
41h DFF_RED
42h DFF_FED
43h TFF_RED
44h TFF_FED
45h JKFF_RED
46h JKFF_FED
BANK 0

(b)

FIGURE 4.1
(@) The definition of 8-bit variables to be used for the flip-flop-based macros. (b) Their alloca-
tion in BANK 0 of SRAM data memory.

4.1 Macro r_edge (Rising Edge Detector)

The symbols and the timing diagram of the macro r _edge are depicted in
Table 4.1. Figure 4.2 shows the macro r edge and its flowchart. The macro
r_edge defines eight rising edge detector functions (or contacts) selected
with the num =0, 1, ..., 7. It has a Boolean input variable, namely, IN, passed

TABLE 4.1
Symbols and Timing Diagram of the Macro r_edge

Symbols
r_edge
—IN OUT|— IN: W,
—num OUT: W,
num=0,1,...,7
num
W—P }—W

Timing diagram
1
IN
0
<— ON for one scan
ouT
0

Flip-Flop Macros

jm———————- macro: r edge -----------
r_edge macro num

local Ll,L2

movwf Temp_ 1

btfss Temp 1,0

bsf RED, num ;RED = Rising
btfss Temp 1,0 ;Edge Detector
goto L1l

btfss RED , num

goto Ll

bef RED , num

movlw D'1'

goto L2

Ll movlw D'O’

W 0 RESET RED,num
< wW<—1

FIGURE 4.2
(@) The macro r_edge and (b) its flowchart.

70 Building a Programmable Logic Controller

into the macro through W, and a Boolean output variable, namely, OUT,
passed out of the macro through W. This means that the input signal IN
should be loaded into W before this macro is run, and the output signal OUT
will be provided within the W at the end of the macro. In ladder logic, this
macro is represented by a normally open (NO) contact with the identifier P,
meaning positive transition-sensing contact. As can be seen from the timing
diagram, the OUT is ON (1) for only one scan time when the IN changes its
state from OFF (0) to ON (1). In the other instances, the OUT remains OFF (0).

4.2 Macro £ edge (Falling Edge Detector)

The symbols and the timing diagram of the macro £ edge are depicted in
Table 4.2. Figure 4.3 shows the macro £_edge and its flowchart. The macro
f_edge defines eight falling edge detector functions (or contacts) selected
with the num =0, 1, ..., 7. It has a Boolean input variable, namely, IN, passed
into the macro through W, and a Boolean output variable, namely, OUT,
passed out of the macro through W. This means that the input signal IN
should be loaded into W before this macro is run, and the output signal OUT
will be provided within the W at the end of the macro. In ladder logic, this
macro is represented by a normally open (NO) contact with the identifier N,
meaning negative transition-sensing contact. As can be seen from the timing
diagram, the OUT is ON (1) for only one scan time when the IN changes its
state from ON (1) to OFF (0). In the other instances, the OUT remains OFF (0).

TABLE 4.2
Symbols and Timing Diagram of the Macro £_edge

Symbols
f edge
W-—IN OUT— W |n.w
—num OouT: W
num=0,1,...,7
num
W— N |—W

Timing diagram

—

ON for one scan —= _|

IN

ouT

[

Flip-Flop Macros

jmm—m————- macro: f edge -----------
f edge macro num

local L1l,L2

movwf Temp 1

btfsc Temp 1,0

bsf FED, num ;FED = Falling
btfsc Temp 1,0 ;Edge Detector
goto Ll
btfss FED, num
goto Ll
bef FED, num
movlw D'1’
goto L2
L1 movlw D'0O’
L2
endm
@)

A 4

RESET FED,num
W<—1

FIGURE 4.3

»

L2

A 4
end

(b)

(@) The macro £ _edge and (b) its flowchart.

SET FED,num

71

72 Building a Programmable Logic Controller

TABLE 4.3
Symbol of the Macro 1latchl and Its Truth Table
Symbol
latch1
regibiti—{ D Q [—regobito EN:W,
D : regi,biti
W — EN Q : rego,bito
Truth Table
EN D Q Qi Comment
0 X Q; Q; No change
1 0 X 0 Reset
1 1 X 1 Set
x : don't care.

4.3 Macro latchl (D Latch with Active High Enable)

The symbol of the macro 1atchl and its truth table are depicted in Table 4.3.
Figure 4.4 shows the macro latchl and its flowchart. The macro latchl
defines a D latch function with active high enable. Unlike the edge trig-
gered flip-flops and the edge detector macros, in which eight functions are
described, this function defines only one D latch function. However, we
are free to use this macro as much as we need with different input/output
variables. The macro latchl has two Boolean input variables, namely, EN,
passed into the macro through W, and D (regi,biti), and a single Boolean
output variable, Q (rego,bito). The input signal EN (active high enable input)
should be loaded into W before this macro is run. When the active high
enable input EN is OFF (0), no state change is issued for the output Q and it
holds its current state. When the active high enable input EN is ON (1), the
output Q is loaded with the state of the input D. Operands for the instruction
latchl are shown in Table 4.4.

4.4 The Macro latchoO (D Latch with Active Low Enable)

The symbol of the macro 1atch0 and its truth table are depicted in Table 4.5.
Figure 4.5 shows the macro latcho0 and its flowchart. The macro latch0
defines a D latch function with active low enable. Unlike the edge triggered
flip-flops and the edge detector macros, in which eight functions are described,

Flip-Flop Macros

FIGURE 4.4

—————————— macro: latchl ----------

latchl macro regi,biti,rego,bito
local L1,L2

andlw 1
btfsc STATUS,Z
goto L1
btfss regi,biti
goto L2
bsf rego,bito
goto L1l
L2 bef rego,bito
Ll
endm

A

SET rego,bito RESET rego,bito

y

L2
A 4

(@) The macro latchl and (b) its flowchart.

73

TABLE 4.4
Operands for the Instruction latchl
Input/Output | Data Type Operands
D BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,
regi,biti (Bit) CTD8_Q, CTUD8_Q, LOGIC1, LOGICO, FRSTSCN, SCNOSC
Q BOOL Q M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTUS8_Q,
rego,bito (Bit) CTD8_Q,CTUD8_Q

74 Building a Programmable Logic Controller

TABLE 4.5
Symbol of Macro latcho and Its Truth Table

Symbol
latchO
regibiti— D Q [—regobito EN:W
D : regi,biti
W —q EN Q : rego,bito
Truth Table
EN D Q Qi Comment
1 X Q, Q; No change
0 0 X 0 Reset
0 1 X 1 Set
x : don't care.

this function defines only one D latch function. However, we are free to use
this macro as much as we need with different input/output variables. The
macro latcho has two Boolean input variables, namely, EN, passed into the
macro through W and D (regi,biti), and a single Boolean output variable, Q
(rego,bito). The input signal EN (active low enable input) should be loaded into
W before this macro is run. When the active low enable input EN is ON (1),
no state change is issued for the output Q and it holds its current state. When
the active low enable input EN is OFF (0), the output Q is loaded with the state
of the input D. Operands for the instruction 1atch0 are shown in Table 4.6.

4.5 Macro dff_r (Rising Edge Triggered D Flip-Flop)
The symbol of the macro df£_r and its truth table are depicted in Table 4.7.

Figure 4.6 shows the macro dff r and its flowchart. The macro dff r
defines eight rising edge triggered D flip-flop functions selected with the
TABLE 4.6

Operands for the Instruction latcho

Input/Output | Data Type Operands
D BOOL I, Q M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,
regi,biti (Bit) CTD8_Q, CTUDS8_Q, LOGIC1, LOGICO, FRSTSCN, SCNOSC

Q BOOL Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,
rego,bito (Bit) CTD8_Q,CTUD8_Q

Flip-Flop Macros 75

e macro: latch0 --------—--
latchO0O macro regi,biti,rego,bito
local L1,L2

andlw 1
btfss STATUS, Z
goto L1l
btfss regi,biti
goto L2
bsf rego,bito
goto L1l
L2 Dbef rego,bito
Ll
endm
@)
L2
\ 4 A 4
SET rego,bito RESET rego,bito
; d
L1 |g
\ 4
end

FIGURE 4.5
(@) The macro latcho and (b) its flowchart.

num =0, 1, ..., 7 It has two Boolean input variables, namely, clock input C,
passed into the macro through W, and data input D (regi,biti), and a single
Boolean output variable, flip-flop output Q (rego,bito). The clock input signal
C should be loaded into W before this macro is run. When the clock input
signal C is ON (1) or OFF (0), or changes its state from ON to OFF (), no state
change is issued for the output Q and it holds its current state. When the
state of clock input signal C is changed from OFF to ON (T), the output Q is
loaded with the state of the input D. Operands for the instruction df£_r are
shown in Table 4.8.

76 Building a Programmable Logic Controller

TABLE 4.7
Symbol of the Macro df £ _r and Its Truth Table

Symbol
dff r
regi,biti— D Q +—rego,bito g :e(/,gi,biti,
wW—C Q : rego,bito,
— hum num=0,1,...,7
Truth Table

D C Q Qi1 Comment
X 0 Q Q No change
x 1 Q Q No change
X 1 Q Q No change
0 T X 0 Reset

1 T X 1 Set

x : don't care.

TABLE 4.8

Operands for the Instruction df£f_r

Input/Output | Data Type Operands
D BOOL I, Q M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,
regi,biti (Bit) CTD8_Q, CTUD8_Q, LOGIC1, LOGICO, FRSTSCN, SCNOSC
Q BOOL Q M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,
rego,bito (Bit) CTD8_Q,CTUDS8_Q

jmmmm macro: dff r ------------

dff r macro num, regi,biti,rego,bito
local L1l,L2
movwf Temp 1
btfss Temp_1,0

bsf DFF_RED,num ;DFF RED = Rising Edge
btfss Temp 1,0 ;Detector for rising edge
goto L1l ;triggered D flip-flop
btfss DFF_RED,num
goto Ll
bef DFF_RED,num
btfss regi,biti
goto L2
bsf rego,bito
goto Ll
L2 bef rego,bito
Ll
endm

FIGURE 4.6
(@) The macro df£_r and (b) its flowchart. (Continued)

Flip-Flop Macros 77

A
SET DFF_

RESET DFF_RED,num

(b)

FIGURE 4.6 (Continued)
(@) The macro df£_r and (b) its flowchart.

4.6 Macro dff_f (Falling Edge Triggered D Flip-Flop)

The symbol of the macro dff £ and its truth table are depicted in Table 4.9.
Figure 4.7 shows the macro dff £ and its flowchart. The macro df£_f defines
eight falling edge triggered D flip-flop functions selected with the num =0, 1,
..., 7. It has two Boolean input variables, namely, clock input C, passed into the

78 Building a Programmable Logic Controller

TABLE 4.9
Symbol of the Macro dff£ £ and Its Truth Table

Symbol
dff_f
regi,biti—) D Q — rego,bito gifggi,biti
w—a> C Q : rego,bito
—{ um num=0,1,...,7
Truth Table

b C Q Qg Comment
~ 0 Q Q No change
y 1 Q Q, No change
N 1 Q Q No change
o 1 % 0 Reset

1 1 < 1 Set

x : don't care.

macro through W, and data input D (regi,biti), and a single Boolean output vari-
able, flip-flop output Q (rego,bito). The clock input signal C should be loaded
into W before this macro is run. When the clock input signal C is ON (1) or OFF
(0), or changes its state from OFF to ON (T, no state change is issued for the
output Q and it holds its current state. When the state of clock input signal C is
changed from ON to OFF (), the output Q is loaded with the state of the input
D. Operands for the instruction df£_f are shown in Table 4.10.

oo macro: dff f -----------—-
dff f macro num,regi,biti,rego,bito
local L1,L2
movwf Temp 1
btfsc Temp 1,0

bsf DFF_FED,num ;DFF_FED = Falling Edge
btfsc Temp 1,0 ;Detector for falling edge
goto Ll ;triggered D flip-flop
btfss DFF_FED,num
goto L1
bef DFF_FED,num
btfss regi,biti
goto L2
bsf rego,bito
goto Ll
L2 bef rego,bito
Ll
endm

FIGURE 4.7
(@) The macro df£_f and (b) its flowchart. (Continued)

Flip-Flop Macros

A
SET DFE_|

FED,num

FIGURE 4.7 (Continued)
(@) The macro df£_f and (b) its flowchart.

SET rego,bito

RESET DFF_FED,num

L2

RESET rego,bito

TABLE 4.10
Operands for the Instruction df £ £
Input/Output | Data Type Operands
D BOOL I, Q M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,
regi,biti (Bit) CTD8_Q, CTUDS8_Q, LOGIC1, LOGICO, FRSTSCN, SCNOSC
Q BOOL Q M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,
rego,bito (Bit) CTD8_Q,CTUD8_Q

79

80 Building a Programmable Logic Controller

TABLE 4.11
Symbol of the Macro t££ r and Its Truth Table
Symbol
tf r
s . C: W
regi,biti— T Q — rego,bito T regibiti
wW— C Q : rego,bito
— hum num=0,1,..,7
Truth Table
T C Q Qi1 Comment
x 0 Q, Q, No change
x 1 Q Q No change
x 2 Q Q; No change
0 0 Q Q No change
1 T Q Q Toggle
x : don't care.
1

4.7 Macro tff r (Rising Edge Triggered T Flip-Flop)

The symbol of the macro t££ r and its truth table are depicted in Table 4.11.
Figure 4.8 shows the macro tff r and its flowchart. The macro tff r
defines eight rising edge triggered T flip-flop functions selected with the

jo———————— macro: tff r ------------
tff r macro num,regi,biti,rego,bito
local L1,1L2
movwf Temp 1
btfss Temp_1,0

bsf TFF_RED,num ;TFF_RED=Rising Edge
btfss Temp 1,0 ;Detector for rising edge
goto L1 ;triggered T flip-flop
btfss TFF_RED,num
goto L1
bef TFF_RED,num
btfss regi,biti
goto L1
btfsc rego,bito
goto L2
bsf rego,bito
goto L1
L2 Dbef rego,bito
L1
endm

FIGURE 4.8
(@) The macro t££_r and (b) its flowchart. (Continued)

Flip-Flop Macros 81

SET TFF_RED,num

\ 4

RESET TFF_RED,num

2 N

regi,biti = 1 P

Y
?
rego,bito = 0 N
L2
A 4
SET rego,bito RESET rego,bito
Ll |g
\ 4

end

(b)

FIGURE 4.8 (Continued)
(@) The macro t££_r and (b) its flowchart.

82 Building a Programmable Logic Controller

TABLE 4.12
Operands for the Instruction tff r
Input/Output | Data Type Operands
T BOOL I, Q M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,
regi,biti (Bit) CTD8_Q, CTUDS8_Q, LOGIC1, LOGICO, FRSTSCN, SCNOSC
Q Bo0L | @M TON8_Q TOFs_Q, TP8_Q TOS8_Q, CTUS_Q,
rego,bito (Bit) CTD8_Q,CTUDS8_Q

num =0, 1, ..., 7 It has two Boolean input variables, namely, clock input C,
passed into the macro through W, and toggle input T (regi,biti), and a single
Boolean output variable, flip-flop output Q (rego,bito). The clock input signal C
should be loaded into W before this macro is run. When the clock input signal
C is ON (1) or OFF (0), or changes its state from ON to OFF ({), no state change
is issued for the output Q and it holds its current state. When the state of clock
input signal C is changed from OFF to ON (T), if T = 0, then no state change is
issued for the output Q and it holds its current state. When the state of clock
input signal C is changed from OFF to ON (T), if T = 1, then the output Q is
toggled. Operands for the instruction t ££_r are shown in Table 4.12.

4.8 Macro tff f (Falling Edge Triggered T Flip-Flop)

The symbol of the macro t££_f and its truth table are depicted in Table 4.13.
Figure 49 shows the macro t££ £ and its flowchart. The macro tff f
defines eight falling edge triggered T flip-flop functions selected with the
num =0, 1, ..., 7 It has two Boolean input variables, namely, clock input C,
passed into the macro through W, and toggle input T (regi,biti), and a single
Boolean output variable, flip-flop output Q (rego,bito). The clock input signal
C should be loaded into W before this macro is run. When the clock input
signal C is ON (1) or OFF (0), or changes state from OFF to ON (), no state
change is issued for the output Q and it holds its current state. When the
state of clock input signal C is changed from ON to OFF ({): if T = 0, then no
state change is issued for the output Q; if T = 1, then the output Q is toggled.
Operands for the instruction t££ £ are shown in Table 4.14.

L]
4.9 Macro jkff r (Rising Edge Triggered JK Flip-Flop)

The symbol of the macro jkff_r and its truth table are depicted in Table 4.15.
Figure 4.10 shows the macro jkf£f r and its flowchart. The macro jkff r
defines eight rising edge triggered JK flip-flop functions selected with the
num =0, 1, ..., 7 It has three Boolean input variables, namely, clock input C,
passed into the macro through W, and data inputsJ (regj,bitj) and K (regk,bitk),

Flip-Flop Macros

TABLE 4.13
Symbol of the Macro t££ £ and Its Truth Table
Symbol
tff f
S . C:W
regi,biti— T Q —rego,bito T+ regibiti
wW—a) C Q: rego,bito
— ! hum num=0,1,...,7
Truth Table
T C Q Qi1 Comment
X 0 Q; Q; No change
X 1 Q, Q No change
x T Q Q No change
0 1 Q Q No change
1 d Q Q Toggle
x : don't care.
o macro: tff f ------------

tff £ macro num,regi,biti,rego,bito
“local L1,L2
movwf Temp_ 1
btfsc Temp 1,0

bsf TFF_FED,num ;TFF_FED = Falling Edge
btfsc Temp 1,0 ;Detector for falling edge
goto L1 ;triggered T flip-flop
btfss TFF_FED,num
goto L1l
bef TFF_FED,num
btfss regi,biti
goto L1
btfsc rego,bito
goto L2
bsf rego,bito
goto L1l
L2 bef rego,bito
L1l
endm

FIGURE 4.9
(@) The macro t££_f and (b) its flowchart. (Continued)

83

84 Building a Programmable Logic Controller

SET TFF_FED,num

\ 4

RESET TFF_FED,num

? N

regi,biti = 1 >

Y
?
rego,bito = 0 N
L2
A 4
SET rego,bito RESET rego,bito
Ll |g
\ 4

end

(b)

FIGURE 4.9 (Continued)
(@) The macro t££_f and (b) its flowchart.

Flip-Flop Macros 85

TABLE 4.14
Operands for the Instruction t££f £

Input/Output | Data Type Operands
T BOOL I, Q M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,
regi,biti (Bit) CTD8_Q, CTUDS_Q, LOGIC1, LOGICO, FRSTSCN, SCNOSC
Q BOOL Q M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,
rego,bito (Bit) CTD8_Q,CTUDS8_Q

and a single Boolean output variable, flip-flop output Q (rego,bito). The clock
input signal C should be loaded into W before this macro is run. When the
clock input signal C is ON (1) or OFF (0), or changes state from ON to OFF
(), no state change is issued for the output Q and it holds its current state.
When the state of clock input signal C is changed from OFF to ON (T): if JK
=00, then no state change is issued; if JK = 01, then Q is reset; if JK = 10, then
Qis set; and finally if JK = 11, then Q is toggled. Operands for the instruction
jkff r are shown in Table 4.16.

TABLE 4.15
Symbol of the Macro jkf£f_r and Its Truth Table
Symbol
jkft r
regj,bitj —] Q — rego,bito]C : :rzgj,bitj
w—pC K : regk,bitk
regk,bitk — K Q: rego,bito
—hum num=0,1,...,7
Truth Table
] K C Q Qi1 Comment
x x 0 Q, Q, No change
x X 1 Q Q No change
X X 1 Q; Q, No change
0 0 T Q Q No change
0 1 T x 0 Reset
1 0 1 x 1 Set
1 1 T Q, Q, Toggle
x : don't care.

86 Building a Programmable Logic Controller

jmmmm————— macro: Jkff r -----------
jkff r macro num,reg]j,bitj,regk,bitk,rego,bito
"local L1,L2,L3,Ld
movwE Temp_1
btfss Temp_ 1,0

bsf JKFF_RED, num ;JKFF_RED = Rising Edge
btfss Temp 1,0 ;Detector for rising edge
goto L1l ;triggered JK flip-flop
btfss JKFF_RED, num
goto L1
bef JKFF_RED, num
btfss reg]j,bitj
goto L4 ;1f j=0 then goto L4
btfss regk,bitk
goto L3 ;if j=1&k=0 then SET rego,bito (goto L3)
btfsc rego,bito ;if j=1l&k=1
goto L2 ;then TOGGLE
goto L3 ;rego,bito
L4 btfss regk,bitk
goto L1 ;if j=0&k=0 then NO CHANGE (goto L1)
goto L2 ;if j=0&k=1 then RESET rego,bito
L3 bsf rego,bito
goto L1
L2 bcf rego,bito
Ll
endm
(a)
FIGURE 4.10

(@) The macro jkff_r and (b) its flowchart. (Continued)

4.10 Macro jkff £ (Falling Edge Triggered JK Flip-Flop)

The symbol of the macro jkf£_ £ and its truth table are depicted in Table 4.17.
Figure 4.11 shows the macro jkff_f and its flowchart. The macro jkff_f
defines eight falling edge triggered JK flip-flop functions selected with the
num =0, 1, ..., 7 It has three Boolean input variables, namely, clock input C,
passed into the macro through W, and data inputs J (regj,bitj) and K (regk,bitk),
and a single Boolean output variable, flip-flop output Q (rego,bito). The clock
input signal C should be loaded into W before this macro is run. When the
clock input signal C is ON (1) or OFF (0), or changes state from OFF to ON
(), no state change is issued for the output Q and it holds its current state.
When the state of clock input signal C is changed from ON to OFF ({): if JK
= 00, then no state change is issued; if JK = 01, then Q is reset; if JK = 10, then
Qis set; and finally if JK = 11, then Q is toggled. Operands for the instruction
jkff f are shown in Table 4.18.

Flip-Flop Macros

SET JKFF_

SET rego,bito

FIGURE 4.10 (Continued)
(@) The macro jkff r and (b) its flowchart.

88

TABLE 4.16

Building a Programmable Logic Controller

Operands for the Instruction jkff r

Input/Output | Data Type Operands
.]’.I]()it‘ B00L | ' Q M, TONS_Q TOF8_Q TP8_Q TOS§_Q CTUS_Q
BBy CTD8_Q, CTUD8_Q, LOGIC1, LOGICO, FRSTSCN, SCNOSC
regk,bitk (Bit)
Q BOOL | @M TONS_Q TOF8_Q TP8_Q TOS8_Q, CTUS_Q
rego,bito (Bit) CTD8_Q,CTUD8_Q
.|

4.11 Examples for Flip-Flop Macros

In this section, we will consider two examples, UZAM_plc_16il60_ex5.asm
and UZAM_plc_16i160_ex6.asm, to show the usage of flip-flop macros. In
order to test the respective example please take the files from the CD-ROM
attached to this book and then open the respective program by MPLAB IDE
and compile it. After that, by using the PIC programmer software, take the
compiled file UZAM_plc_16il160_ex5.hex or UZAM_plc_16il60_ex6.hex,
and by your PIC programmer hardware send it to the program memory of

TABLE 4.17
Symbol of the Macro jkf£f f and Its Truth Table
Symbol
jkft_f
S . C:W
regj,bitj — J Q |— rego,bito Y : regj,bit]
w—pC K : regk,bitk
regk,bitk — K Q: rego,bito
num=0,1,...,7
— num
Truth Table
] K C Q; Qi1 Comment
x X 0 Q Q No change
x X 1 Q Q No change
x x 0 Q, Q, No change
0 0 T Q, Q, No change
0 1 1 X 0 Reset
1 0 1 X 1 Set
1 1 1 Q; Q Toggle

x : don't care.

Flip-Flop Macros 89

jemmm————— macro: Jjkff f -----------

jkff £ macro num,regj,bitj,regk,bitk,rego,bito
local Ll1,L2,L3,1L4
movwf Temp 1
btfsc Temp 1,0

bsf JKFF_FED, num ;JKFF_FED = Falling Edge
btfsc Temp 1,0 ;Detector for falling edge
goto L1l ;triggered JK flip-flop
btfss JKFF_FED, num
goto L1
bef JKFF_FED, num
btfss reg]j,bitj
goto L4 ;1f j=0 then goto L4
btfss regk,bitk
goto L3 ;if j=1&k=0 then SET rego,bito (goto L3)
btfsc rego,bito ;if j=1&k=1
goto L2 ;then TOGGLE
goto L3 ;rego,bito
L4 btfss regk,bitk
goto L1 ;if j=0&k=0 then NO CHANGE (goto L1)
goto L2 ;if j=0&k=1 then RESET rego,bito
L3 bsf rego,bito
goto L1
L2 bef rego,bito
L1l
endm
(a)
FIGURE 4.11

(@) The macro jkff £ and (b) its flowchart. (Continued)

PIC16F648A microcontroller within the PIC16F648A-based PLC. To do this,
switch the 4PDT in PROG position and the power switch in OFF position.
After loading the UZAM_plc_16i160_ex5.hex or UZAM_plc_16i160_ex6.hex,
switch the 4PDT in RUN and the power switch in ON position. Please check
each program’s accuracy by cross-referencing it with the related macros.

Let us now consider these two example programs: The first example
program, UZAM_plc_16i160_ex5.asm, is shown in Figure 4.12. It shows
the usage of the following flip-flop macros: r edge, £ edge, latchl,
latcho,dff r,dff f.Theladder and schematic diagrams of the user pro-
gram of UZAM_plc_16i160_ex5.asm, shown in Figure 4.12, are depicted in
Figure 4.13(a) and (b), respectively. It may not possible to observe the effects
of r edge and £ _edge shown in rungs 1 and 2 due to the time delays
caused by the macro HC595, explained in the Chapter 2. On the other hand,
you can observe their effects from rungs 5 and 6, respectively, where r _edge
and £ _edge are both used together with the macro latchl. Observe that
in rung 5 we obtain a rising edge triggered D flip-flop by using an r _edge
and a latchl. Similarly, in rung 6 we obtain a falling edge triggered D flip-
flop by using an £ edge and a 1atchl. Note that in this example, set and
_reset functions are both used as asynchronous SET and RESET inputs for
the D type flip-flops.

90 Building a Programmable Logic Controller

SET JKFF

?
regk,bitk = 1

SET rego,bito

FIGURE 4.11 (Continued)
(@) The macro jkff £ and (b) its flowchart.

Flip-Flop Macros

TABLE 4.18
Operands for the Instruction jkff £
Input/Output | Data Type Operands
re;;lliitj BOOL I, Q M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,
regk,bitk (Bit) CTD8_Q, CTUDS8_Q, LOGIC1, LOGICO, FRSTSCN, SCNOSC
Q BOOL Q M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,
rego,bito (Bit) CTD8_Q,CTUDS_Q
jmmmm e user program starts here --
1d I0.0 ;rung 1
r_edge 0
out Q0.0
1d I0.1 ;rung 2
£ _edge 0
out Q0.1
1d I0.2 ;rung 3
latchl 10.3,Q0.2
1d I10.4 ;rung 4
latchO 10.5,Q0.3
1d I0.0 ;rung 5
r_edge 1
latchl 10.1,Q0.4
1d I10.6 ;rung 6
f_edge 1
latchl 10.7,Q0.7
1d I1.0 ;rung 7
dff r 0,11.1,01.0
1d I1.2 ;rung 8
_set Q1.0
1d I1.3 ;rung 9
_reset Q1.0
1d I1.4 ;rung 10
dff f 0,11.5,01.7
1d I1.6 ;rung 11
_set Q1.7
1d I1.7 ;rung 12
reset Q1.7

FIGURE 4.12

user program ends here ----

The user program of UZAM_plc_16i160_ex5.asm.

91

92 Building a Programmable Logic Controller

10.0 r_edge Q0.0
1 —H pB—IN ouTf— (")—]
0 —{num
10.1 f_edge Q0.1
2+— ——INOUT (")—
0 —num
IO.IB latchl Q02
31— | D QH)
10.2
— | EN
IO'|5 latchO Q03
4 f D QH)
10.4
—| b———QEN
IO.Il latch1 Q0.4
5 [D QK
10.0 r_edge
| ——IN ouT EN
1 —{num
IO'|7 latch1 Q07
6 . D Q-
106 f_edge
— —{v our EN
1 —{num
dff r
H~|1 = Q1.0
7 . D QM
1.0 > C
T o
11.2 Q1.0
st | (5
11.3 Q1.0
o1 (R)—
dff f
1 f = QL7
10 [D Q (" —
11.4 > c
—| 0 — num
11.6 QL7
1 | ('S —
11.7 Q1.7
12+ | (R —

()

FIGURE 4.13
The user program of UZAM_plc_16i160_ex5.asm: (a) ladder diagram. (Continued)

Flip-Flop Macros

IN r_edge ouT
10.0 IN OUT Q0.0 >
0 —{num
f edge
10.1 IN OUT Q0.1
0 —{num
latch1
[103 D Q Q0.2
EN
10.2
latchO
[105 D Q Q0.3
O EN
10.4
latch1
[o1 D Q
r_edge EN
[100 IN OUT
1 —{num
latch1
[107 D Q Q0.7
f_edge EN
[106 IN OUT
1 —{num
dff r
[1 D Q Q1.0
C
11.0 00— num
SET
[na2 IN Q1.0
RESET
[13 IN QLO
dff f
[s D Q QL7
oD C
11.4 0— num
SET
[16 IN QL7
RESET
1.7 IN Q17
(b)

FIGURE 4.13 (Continued)
The user program of UZAM_plc_16i160_ex5.asm: (b) schematic diagram.

94 Building a Programmable Logic Controller

e bt user program starts here --
1d I0.0 ;rung 1
tff r 0,10.1,Q0.0
1d I0.2 ;rung 2
_set Q0.0
1d 10.3 ;rung 3
_reset Q0.0
1d I10.4 ;rung 4
tff 0,10.5,Q0.7
1d I0.6 ;rung 5
_set Q0.7
1d I0.7 ;rung 6
_reset Q0.7
1d I1.0 ;rung 7
jkff_r 0,11.1,11.2,901.0
1d I1.3 ;rung 8
_set Q1.0
1d Il.4 ;rung 9
_reset Q1.0
1d I1.5 ;rung 10
jkEf £ 0,I1.6,I1.7,01.7

e mm s m e user program ends here ----

FIGURE 4.14
The user program of UZAM_plc_16i160_ex6.asm.

Flip-Flop Macros

tf r

10.0 C
o

10.2 Q0.0
21— | (S)—
10.3 Q0.0
31 | (R —
10.5 Cis Q0.7
4 b——T QA
10.4: C
—| 0—{ num
10.6 Q0.7
sH 1 (5
10.7 Q0.7
61 (R)—
.1 JfE_x QL0

1.2 0 —1 num
1.3 QL0

81— | ($)—
1.4 QL0

o1 s
1.6 KL 17

WHpF—— Q—(

Il.}5_,—0 C
— K

11.7 0 —| num

(a)

FIGURE 4.15
The user program of UZAM_plc_16i160_ex6.asm: (a) ladder diagram. (Continued)

96 Building a Programmable Logic Controller

IN tif r ouT
[101 T Q Q0.0 >
C
10.0 0 — num
SET
[102 IN Q0.0
RESET
[103 IN Q0.0
tf_f
[105 T Q Q0.7
o> C
10.4 0 — num
SET
[106 IN Q0.7
RESET
[107 IN Q0.7
jkft_r
[a1] Q Q1.0
¢
K
o -
[13 IN QL0
RESET
[(114 IN QL0
jket_f
[ne] Q Q1.7
QP C
K
o —lnum

FIGURE 4.15 (Continued)
The user program of UZAM_plc_16i160_ex6.asm: (b) schematic diagram.

The second example program, UZAM_plc_16i160_ex6.asm, is shown in
Figure 4.14. It shows the usage of the following flip-flop macros: tff_r,
tff f, jkff r, and jkff_ f. The ladder and schematic diagrams of the
user program of UZAM_plc_16il60_ex6.asm, shown in Figure 4.14, are
depicted in Figure 4.15(a) and (b), respectively. Note that in this example,
_set and _reset functions are both used as asynchronous SET and RESET
inputs for the T and JK type flip-flops.

5

Timer Macros

In this chapter, the following timer macros are described:

TON_8 (on-delay timer)
TOF_8 (off-delay timer)
TP_8 (pulse timer)

TOS_ 8 (oscillator timer)

Timers can be used in a wide range of applications where a time delay func-
tion is required based on an input signal. The definition of 8-bit variables
to be used for the timer macros, and their allocation in BANK 0 of SRAM
data memory are shown in Figure 5.1(a) and (b), respectively. The status bits,
which will be explained in the next sections, of all timers are defined as
shown in Figure 5.2(a). All 8-bit variables defined for timers must be cleared
at the beginning of the PLC operation for a proper operation. Therefore, all
variables of timer macros are initialized within the macro initialize, as
shown in Figure 5.2(b). The file definitions.inc, included within the CD-ROM
attached to this book, contains all timer macros defined for the PIC16F648A-
based PLC.

Let us now consider the timer macros. In the following, first, a general
description is given for the considered timer function, and then its 8-bit
implementation in the PIC16F648A-based PLC is provided.

5.1 On-Delay Timer (TON)

The on-delay timer can be used to delay setting an output true (ON—1)
for a fixed period of time after an input signal becomes true (ON—I). The
symbol and timing diagram of the on-delay timer (TON) are both shown
in Figure 5.3. As the input signal IN goes true (ON—I), the timing func-
tion is started, and therefore the elapsed time ET starts to increase. When
the elapsed time ET reaches the time specified by the preset time input PT,
the output Q goes true (ON—I1) and the elapsed time is held. The output Q
remains true (ON—1) until the input signal IN goes false (OFF—0). If the
input signal IN is not true (ON—1) longer than the delay time specified in

97

98 Building a Programmable Logic Controller

Jmm e ———— VARIABLE DEFINITIONS ---
CBLOCK 0x47
TON8_Q , TOF8_Q , TP8_Q , TOSS_Q
endc
CBLOCK 0x4B
TONS ;TON8, TON8+1, ..., TON8+7
endc
CBLOCK 0x53
TOF8 ;TOF8, TOF8+1, ..., TOF8+7
endc
CBLOCK 0x5B
TP8 ;TP8, TP8+1, ..., TP8+7
endc
CBLOCK 0x63
TOS8 ;TOS8, TOS8+1, ..., TOS8+7
endc
CBLOCK 0x6B
TON8 RED, TOF8 RED,TP8 RED1,TP8 RED2,TOS8 RED
endc

FIGURE 5.1
(a) The definition of 8-bit variables to be used for the timer macros. (Continued)

PT, the output Q remains false (OFF—0). The following section explains the
implementation of eight 8-bit on-delay timers for the PIC16F648A-based PLC.

5.2 Macro TON_8 (8-Bit On-Delay Timer)

The macro TON_8 defines eight on-delay timers selected with the num =
0,1, ..., 7 The macro TON_8 and its flowchart are shown in Figure 5.4. The
symbol of the macro TON_ 8 is depicted in Table 5.1. IN (input signal), Q (out-
put signal = timer status bit), and CLK (free-running timing signals—ticks:
T0.0, TO.1, ..., TO.7, T1.0, T1.1, ..., T1.7) are all defined as Boolean variables.
The time constant tcnst is an integer constant (here, for 8-bit resolution,
it is chosen as any number in the range 1-255) and is used to define preset
time PT, which is obtained by the formula PT = tcnst x CLK, where CLK
should be used as the period of the free-running timing signals—ticks. The
on-delay timer outputs are represented by the status bits: TON8_Qnum
(um =0, 1, ..., 7), namely, TON8_QO, TON8_Q], ..., TON8_Q7, as shown
in Figure 5.2(a). A Boolean variable, TON8_RED,num (num =0, 1, ..., 7), is
used as a rising edge detector for identifying the rising edges of the chosen
CLK. An 8-bit integer variable TON8+num (num = 0, 1, ..., 7) is used to
count the rising edges of the CLK. The count value of TON8+num (num = 0,
1, ..., 7) defines the elapsed time ET as follows: ET = CLK x count value of

Timer Macros

47h
48h
49h
4Ah
4Bh
4Ch
4Dh
4Eh
4Fh
50h
51h
52h
53h
54h
55h
56h
57h
58h
5%h
5Ah
5Bh
5Ch
5Dh
5Eh
5Fh
60h
61h
62h
63h
64h
65h
66h
67h
68h
69h
6Ah
6Bh
6Ch
6Dh
6Eh
6Fh

FIGURE 5.1 (Continued)

TONS_Q

TOF8_Q

TP8_Q

TOS8_Q

TONS

TONS8+1

TONS8+2

TONS8+3

TONS8+4

TONS8+5

TON8+6

TONS8+7

TOFES8

TOF8+1

TOF8+2

TOF8+3

TOF8+4

TOF8+5

TOF8+6

TOFE8+7

TP8

TP8+1

TP8+2

TP8+3

TP8+4

TP8+5

TP8+6

TP8+7

TOS8

TOS8+1

TOS8+2

TOS8+3

TOS8+4

TOS8+5

TOS8+6

TOS8+7

TONS_RED

TOF8_RED

TP8_RED1

TP8_RED2

TOS8_RED

BANK 0
(b)

(b) Their allocation in BANK 0 of SRAM data memory.

99

100 Building a Programmable Logic Controller

;— defining on delay timer outputs -
#define TON8 QO TON8 Q,0
#define TON8 Q1 TONS8 Q,1
#define TON8 Q2 TON8 Q,2
#define TON8 Q3 TON8 Q,3
#define TON8 Q4 TON8 Q,4
#define TON8 Q5 TON8 Q,5
#define TON8 Q6 TON8 Q,6
#define TON8_Q7 TON8 Q,7

;- defining off delay timer outputs -
#define TOF8 QO TOF8 Q,0
#define TOF8 Q1 TOF8 Q,1
#define TOF8 Q2 TOF8 Q,2
#define TOF8 Q3 TOF8 Q,3
#define TOF8 Q4 TOF8 Q,4
#define TOF8_Q5 TOF8 Q,5
#define TOF8 Q6 TOF8 Q,6
#define TOF8 Q7 TOF8 Q,7

;- defining puls timer outputs -----
#define TP8_QO0 TP8_Q,0
#define TP8_ Q1 TP8 Q,1
#define TP8_Q2 TP8_Q,2
#define TP8_Q3 TP8 Q,3
#define TP8 Q4 TP8 Q,4
#define TP8 Q5 TP8 Q,5
#define TP8 Q6 TP8 Q,6
#define TP8_Q7 TP8_Q,7

;- defining osilator timer outputs -
#define TOS8 Q0 TOS8 Q,0
#define TOS8 Q1 TOS8 Q,1
#define TOSB_QZ TOS8 Q,2
#define TOS8 Q3 TOS8 Q,3
#define TOS8 Q4 TOS8 Q,4
#define TOS8 Q5 TOS8 Q,5
#define TOS8 Q6 TOS8 Q,6
#define TOS8 Q7 TOS8 Q,7

(@)

FIGURE 5.2
(@) The definition of status bits of timer macros. (Continued)

TON8+num (num =0, 1, ..., 7). Let us now briefly consider how the macro
TON_ 8 works. First, preset time PT is defined by means of a reference tim-
ing signal CLK = t_reg, t bit and a time constant tcnst. If the input
signal IN, taken into the macro by means of W, is false (OFF—0), then the
output signal TON8_Q,num (num =0, 1, ..., 7) is forced to be false (OFF—0),
and the counter TON8+num (num = 0, 1, ..., 7) is loaded with 00h. If the
input signal IN is true (ON—1) and the output signal Q, i.e., the status bit
TON8_Qnum (num =0, 1, ..., 7), is false (OFF—0), then with each rising

Timer Macros 101

e m e e macro: initialize ------—-—----—----
initialize macro

local L1

BANK1 ;goto BANK1

movlw b'00000111" ;W<--b'00000111':Fosc/4-->TMRO, PS=256
movwf OPTION REG ;pull-up on PORTB, OPTION REG <-- W
movlw b'00000001" ;PORTB is both input and output port

movwf TRISB ;TRISB <-- b'00000001"
BANKO ;goto BANKO
clrf PORTA ;Clear PortA
clrf PORTB ;Clear PortB
clrf TMRO ;Clear TMRO
movlw h'20° ;initialize the pointer
movwf FSR ;to RAM

L1 clrf INDF ;clear INDF register
incf FSR,f ;increment pointer
btfss FSR,7 ;all done?
goto L1 ;1f not goto L1

;if yes carry on

movlw 06h ;W <--- 06h
movwf Temp 2 ;Temp 2 <--- W(06h)
endm

FIGURE 5.2 (Continued)
(b) The initialization of all variables of timer macros within the macro initialize.

TON IN: INput
BOOL —IN Qr—BOOL Q:Output

TIME — PT ET |— TIME PT: Preset Time

ET: Elapsed Time
1
IN
0
t0 tl 2 3 4 th
1
Q
0
t0+PT til t4 + PT ts
PT
ET
0
t0 t1 t2 3 t4 t5
FIGURE 5.3

The symbol and timing diagram of the on-delay timer (TON).

102 Building a Programmable Logic Controller

Jm———————= macro: TON 8 ---—-----—---
TON_8 macro num,t reg,t bit,tenst

local L1,L2

movwif Temp 1

btfsc Temp 1,0

goto L2

movlw 00h

movwf TON8+num

bef TON8 Q,num
goto L1l

L2 btfsc TON8_Q,num
goto L1
btfss t reg,t bit
bsf TON8 RED,num
btfss t reg,t bit
goto L1l
btfss TON8 RED,num
goto L1
bef TON8_RED , num
incf TON8+num, £

moviw TON8+num
xorlw tenst
skpnz

bsf TON8_Q, num

FIGURE 5.4
(@) The macro TON_8 and (b) its flowchart. (Continued)

edge of the reference timing signal CLK = t_reg, t_bit therelated coun-
ter TON8+num is incremented by one. In this case, when the count value
of TON8+num is equal to the number tcnst, then state change from 0 to
1 is issued for the output signal (timer status bit) TON8_Q,num (num = 0,
1, ..., 7). If the input signal IN and the output signal Q, i.e., the status bit
TON8_Qnum (num =0, 1, ..., 7) are both true (ON—I1), then no action is
taken and the elapsed time ET is held. In this macro a previously defined
8-bit variable Temp_1 is also utilized.

5.3 Off-Delay Timer (TOF)

The off-delay timer can be used to delay setting an output false (OFF—0)
for a fixed period of time after an input signal goes false (OFF—0); i.e., the
output is held ON for a given period longer than the input. The symbol and

Timer Macros

(TONS8+nu

m) <— 00h
RESET TON8_Q,num

N

SET TONS_RED,num
I

?
TONS8_RED,num = 1

RESET TON8_RED,num
(TON8+num)=(TON8+num)+1

| SET TON8_Qnum |

L1 |«
v
end

(b)

FIGURE 5.4 (Continued)
(@) The macro TON_8 and (b) its flowchart.

103

104

TABLE

5.1

Symbol of the Macro TON_8

Building a Programmable Logic Controller

TON_8

— IN

CLK

— tenst

— num

Q

PT = tenst x CLK

IN (through W) =0or 1

CLK (t_reg,t_bit) = T0.0(1.024 ms), ..., T1.7(3355.4432 ms)
tenst (8bit) = 1, 2, ..., 255
num=0,1,...,7
Q =TON8_Q,num (num=0, 1, ..., 7)

timing diagram of the off-delay timer (TOF) are both shown in Figure 5.5.
As the input signal IN goes true (ON—1), the output Q follows and remains
true (ON—I), until the input signal IN is false (OFF—0) for the period speci-
fied in preset time input PT. As the input signal IN goes false (OFF—0), the
elapsed time ET starts to increase. It continues to increase until it reaches
the preset time input PT, at which point the output Q is set false (OFF—0)
and the elapsed time is held. If the input signal IN is only false (OFF—0) for
a period shorter than the input PT, the output Q remains true (ON—1). The
following section explains the implementation of eight 8-bit off-delay timers
for the PIC16F648A-based PLC.

IN

PT

ET

FIGURE 5.5

TOF IN: INput
BOOL —IN Q |— BOOL Q: Output
PT: Preset Time
TIME —PT ET|— TIME ET: Elapsed Time
t0 tl t2 t3 td th
to t1+PT t2 t5+PT
tl 2 t3 t4 t5

The symbol and timing diagram of the off-delay timer (TOF).

Timer Macros 105

5.4 Macro TOF_8 (8-Bit Off-Delay Timer)

The macro TOF_8 defines eight off-delay timers selected with the num =0, 1,
..., 7. The macro TOF_8 and its flowchart are shown in Figure 5.6. The sym-
bol of the macro TOF_8 is depicted in Table 5.2. IN (input signal), Q (output
signal = timer status bit), and CLK (free-running timing signals—ticks: T0.0,
T0.1,...,T0.7, T1.0, T1.1, ..., T1.7) are all defined as Boolean variables. The time
constant tcnst is an integer constant (here, for 8-bit resolution, it is chosen as
any number in the range 1-255) and is used to define preset time PT, which
is obtained by the formula PT = tcnst x CLK, where CLK should be used
as the period of the free-running timing signals—ticks. The off-delay timer
outputs are represented by the status bits: TOF8_Q,num (num =0, 1, ..., 7),
namely, TOF8_QO, TOF8_Q], ..., TOF8_Q7, as shown in Figure 5.2(a). We use
a Boolean variable, TOF8_REDnum (num =0, 1, ..., 7), as a rising edge detec-
tor for identifying the rising edges of the chosen CLK. An 8-bit integer vari-
able TOF8+num (hum =0, 1, ..., 7) is used to count the rising edges of the

jmmm = macro: TOF 8 -----------
TOF_8 macro num,t reg,t bit,tcnst

local L1,L2

movwf Temp 1

btfss Temp 1,0

goto L2

movlw 00h

movwf TOF8+num

bsf TOF8_Q,num
goto L1l

L2 btfss TOF8_Q, num
goto Ll
btfss t reg,t bit
bsf TOF8_ RED,num
btfss t reg,t bit
goto L1
btfss TOF8_ RED,num
goto L1l
bef TOF8_RED, num
incf TOF8+num, £

moviw TOF8+num
xorlw tcenst
skpnz

bef TOF8_Q,num

FIGURE 5.6
(@) The macro TOF_8 and (b) its flowchart. (Continued)

106 Building a Programmable Logic Controller

(TOF8+num) <— 00h
SET TOF8_Q,num

N

SET TOF8_RED,num
I

?
TOF8_RED,num =1

RESET TOF8_RED,num
(TOF8+num)=(TOF8+num)+1

| RESET TOF8_Qnum |

L1 |«
v
end

(b)

FIGURE 5.6 (Continued)
(@) The macro TOF_8 and (b) its flowchart.

Timer Macros 107

TABLE 5.2

Symbol of the Macro TOF_8

TOF_8
—N Q IN (through W) =0or1
— > CLK CLK (t_reg,t_bit) = T0.0(1.024 ms), ..., T1.7(3355.4432 ms)
tenst (8bit) = 1, 2, ..., 255
— tenst num=0,1,...,7
— num Q =TOF8_Q,num (num =0, 1, ..., 7)
PT = tenst x CLK

CLK. The count value of TOF8+num (num =0, 1, ..., 7) defines the elapsed
time ET as follows: ET = CLK x count value of TOF8+num (num =0, 1, ..., 7).
Let us now briefly consider how the macro TOF_8 works. First, preset time
PT is defined by means of a reference timing signal CLK = t_reg, t_bit
and a time constant tcnst. If the input signal IN, taken into the macro by
means of W, is true (ON—I1), then the output signal TOF8_Q,num (hum = 0,
1, ..., 7) is forced to be true (ON—1), and the counter TOF8+num (num = 0,
1, ..., 7) is loaded with 00h. When IN = 1 and TOF8_Q,num = 1, if IN goes
false (OFF—0), then with each rising edge of the reference timing signal CLK
=t_reg,t_bit the related counter TOF84+num is incremented by one. In
this case, when the count value of TOF8+num is equal to the number tcnst,
then state change from 1 to 0 is issued for the output signal (timer status bit)
TOF8_Qnum (num =0, 1, ..., 7). In this macro a previously defined 8-bit vari-
able Temp_1 is also utilized.

5.5 Pulse Timer (TP)

The pulse timer can be used to generate output pulses of a given time dura-
tion. The symbol and timing diagram of the pulse timer (TP) are both shown
in Figure 5.7. As the input signal IN goes true (ON—1) (t0, t2, t4), the output Q
follows and remains true (ON—1) for the pulse duration as specified by the
preset time input PT. While the pulse output Q is true (ON—I), the elapsed
time ET is increased (between t0 and t0 + PT, between t2 and t2 + PT, and
between t4 and t4 + PT). On the termination of the pulse, the elapsed time
ET is reset. The output Q will remain true (ON—1) until the pulse time has
elapsed, irrespective of the state of the input signal IN. The following section
explains the implementation of eight 8-bit pulse timers for the PIC16F648A-
based PLC.

108 Building a Programmable Logic Controller

TP IN: INput

i | Q: Output
BOOL QI=BOOL p1 breet Time

TIME— PT ET |— TIME ET: Elapsed Time

1
m 10
0 L1
t0 tl t2it3 t4:t5 t6 t7
1
Q
0
t t0+PT t24PT t4+PT
PT
ET
0
t0 t0+PT t2 t2+PT 4 t4+PT
FIGURE 5.7

The symbol and timing diagram of the pulse timer (TP).

5.6 Macro TP_8 (8-Bit Pulse Timer)

The macro TP_8 defines eight pulse timers selected with the num = 0,
1, ..., 7. The macro TP_8 and its flowchart are shown in Figure 5.8. The sym-
bol of the macro TP_8 is depicted in Table 5.3. The macro TP_8 defines eight
pulse timers selected with the num =0, 1, ..., 7. IN (input signal), Q (out-
put signal = timer status bit), and CLK (free-running timing signals—ticks:
T0.0, TO.1, ..., T0.7, T1.0, T1.1, ..., T1.7) are all defined as Boolean variables.
The time constant tcnst is an integer constant (here, for 8-bit resolution,
it is chosen as any number in the range 1-255) and is used to define preset
time PT, which is obtained by the formula PT = tcenst x CLK, where CLK
should be used as the period of the free-running timing signals—ticks. The
pulse timer outputs are represented by the status bits: TP8_Qnum (num =
0,1, ..., 7), namely, TP8_QO, TP8_Q], ..., TP8_Q7, as shown in Figure 5.2(a).
A Boolean variable, TP§_RED1l,num (num =0, 1, ..., 7), is used as a rising
edge detector for identifying the rising edges of the chosen CLK. Similarly,
another Boolean variable, TP§_RED2num (num =0, 1, ..., 7), is used as a
rising edge detector for identifying the rising edges of the input signal IN,
taken into the macro by means of W. An 8-bit integer variable TP8+num
(mum =0, 1, ..., 7) is used to count the rising edges of the CLK. The count

Timer Macros

FIGURE 5.8

TP_8 macro
local
movwf
btfss
bsf
btfss
goto
btfss
goto
bsf

L3 btfsc
goto
btfss
goto

L2 btfss
bsf
btfss
goto
btfss
goto
bef
incf
movEiw
xorlw
skpz
goto
bef
bef

L1l btfss
clrf
endm

macro: TP_8

num,t reg,t bit,tcnst

L1,L2,L3,L4

Temp 1

Temp 1,0
TP8_RED2,num
Temp 1,0

L3

TP8 RED2,num
L3

TP8_Q,num
TP8_ Q,num

L2

Temp 1,0

L1

t reg,t bit
TP8 RED1,num
t reg,t bit

L1

TP8 RED1, num

L1

TP8 RED1,num

TP8+num, £
TP8+num
tenst

L1

TP8_Q,num

TP8_RED2,num

TP8 Q,num

TP8+num

(@) The macro TP_ 8 and (b) its flowchart. (Continued)

109

value of TP8+num (num =0, 1, ..., 7) defines the elapsed time ET as follows:
ET = CLK x count value of TP8+num (num =0, 1, ..., 7). Let us now briefly
consider how the macro TP_8 works. First, preset time PT is defined by
means of a reference timing signal CLK = t_reg,t bit and a time con-
stant tcnst. If the rising edge of the input signal IN is detected, by means
of TP8_RED2,num, then the output signal TP8_Qnum (num =0, 1, ..., 7) is
forced to be true (ON—I). After the output becomes true, i.e.,, TP§_Q,num =
1, the related counter TP8+num is incremented by one with each rising edge
of the reference timing signal CLK = t_reg, t bit detected by means of
TP8_RED1,num. When the count value of TP8+num is equal to the number
tcnst, then state change from 1 to 0 is issued for the output signal (timer

110 Building a Programmable Logic Controller

TPS_RED2,num = 1

SET TP8_Q,num

?
t_reg,t bit=1
SET TP8 RED1,num h

RESET TP8_RED1,num
(TP8+num)=(TP8+num)+1

Y

RESET TP8_Q,num
RESET TP8 RED2,num

?
TP8_Q,num = 1
(TP8+num) <— 00h h

(b)

FIGURE 5.8 (Continued)
(@) The macro TP_8 and (b) its flowchart.

Timer Macros 111

TABLE 5.3
Symbol of the Macro TP_8
TP_8
— N Q IN (through W) =0or1
—15 CLK CLK (t_reg,t_bit) = T0.0(1.024 ms), ..., T1.7(3355.4432 ms)
tenst (8bit) = 1, 2, ..., 255
— tenst num=0,1,...,7
— hum Q=TP8_Qnum (num=0,1,...,7)
PT = tenst x CLK

status bit) TP8_Q,num (num =0, 1, ..., 7), and at the same time the counter
TP84+num (num =0, 1, ..., 7) is cleared. In this macro a previously defined
8-bit variable Temp_1 is also utilized.

5.7 Oscillator Timer (TOS)

The oscillator timer can be used to generate pulse trains with given dura-
tions for true (ON) and false (OFF) times. Therefore, the oscillator timer can
be used in pulse width modulation (PWM) applications. The symbol and
timing diagram of the oscillator timer (TOS) are both shown in Figure 5.9.
PTO (respectively PT1) defines the false (OFF) time (respectively true (ON)
time) of the pulse. As the input signal IN goes and remains true (ON—1),
the OFF timing function is started, and therefore the elapsed time ETO is
increased. When the elapsed time ETO reaches the time specified by the pre-
set time input PTO, the output Q goes true (ON—I1) and ETO is cleared. At
the same time, as long as the input signal IN remains true (ON—1), the ON
timing function is started, and therefore the elapsed time ET1 is increased.
When the elapsed time ET1 reaches the time specified by the preset time
input PT1, the output Q goes false (OFF—1) and ET1 is cleared. Then it is
time for the next operation for OFF and ON times. This operation will carry
on as long as the input signal IN remains true (ON—1), generating the pulse
trains based on PTO0 and PT1. If the input signal IN goes and remains false
(OFF—0), then the output Q is forced to be false (OFF—0). The following sec-
tion explains the implementation of eight 8-bit oscillator timers (TOS) for the
PIC16F648A-based PLC.

112 Building a Programmable Logic Controller

TOS IN: INput
BOOL —| IN Q |— BOOL Q: Output

PTO: Preset Time0
TIME — PTO ETO — TIME ETO: Elapsed Time0

TIME —|PT1 ET1 |— TIME PT1: Preset Tirpel
ET1: Elapsed Timel

N
0

{0 {0+PTO+PT1 t0+2PTO+2PT1 t1
1
Q

0 i

t0+PTO £0+2PTO+PT1 t0+3PT0+2PT1

PT1 /

PTO
ETO
ET1
0

0 t1
FIGURE 5.9

Symbol and timing diagram of the oscillator timer (TOS).

5.8 Macro TOS 8 (8-Bit Oscillator Timer)

The macro TOS_ 8 defines eight oscillator timers selected with thenum =0, 1,
..., 7. The macro TOS_ 8 and its flowchart are shown in Figure 5.10. The sym-
bol of the macro TOS_ 8 is depicted in Table 5.4. IN (input signal), Q (output
signal = timer status bit), and CLK (free-running timing signals—ticks: T0.0,
T0.1, ..., T0.7, T1.0, T1.1, ..., T1.7) are all defined as Boolean variables. The
time constant tcnst0 is an integer constant (here, for 8-bit resolution, it is
chosen as any number in the range 1-255) and is used to define preset time
PT0, which is obtained by the formula PTO = tecnst0 x CLK, where CLK
should be used as the period of the free-running timing signals—ticks. The
time constant tcnst1 is an integer constant (here, for 8-bit resolution, it is cho-
sen as any number in the range 1-255) and is used to define preset time PT1,
which is obtained by the formula PT1 = tcnst1 x CLK, where CLK should
be used as the period of the free-running timing signals—ticks. The oscillator
timer outputs are represented by the status bits: TOS8_Qnum (num =0, 1,
..., 7), namely, TOS8_QO0, TOS8_Q1, ..., TOS8_Q7, as shown in Figure 5.2(a).
We use a Boolean variable, TOS8_RED,num (num =0, 1, ..., 7), as a rising
edge detector for identifying the rising edges of the chosen CLK. An 8-bit

Timer Macros

TOS_8 macro

local
movwf
btfsc
goto
movlw
movwE
bef
goto
L3 btfss
bsf
btfss
goto
btfss
goto
bef
incf
btfsc
goto
movEw
xorlw
skpz
goto
bsf
movliw
movwf
goto
L2 moviw
xorlw
skpz
goto
bef
movlw
movwE

FIGURE 5.10

(@) The macro TOS_8 and (b) its flowchart. (Continued)

macro: TOS 8 ---——--——--—-----
num,t reg,t bit,tcnstO,tecnstl

L1,L2,L3
Temp 1

Temp 1,0

L3

00h

TOS8+num
TOS8_Q,num
L1

t reg,t bit
TOS8_RED,num
t reg,t bit
L1

TOS8_ RED,num
L1

TOS8_ RED,num
TOS8+num, £
TOS8_Q,num
L2

TOS8+num
tcenstO

Ll
TOS8_Q,num
00h
TOS8+num
Ll
TOS8+num
tenstl

L1
TOS8_Q,num
00h
TOS8+num

113

integer variable TOS8+num (num =0, 1, ..., 7) is used to count the rising
edges of the CLK. Note that we use the same counter TOS8+num (num = 0,
1, ..., 7) to obtain the time delays for both OFF and ON times, as these dura-
tions are mutually exclusive. The count value of TOS8+num (num =0, 1, ...,
7) defines the elapsed time ETO or ET1 as follows: ET(0 or 1) = CLK x count
value of TOS8+num (num =0, 1, ..., 7). Let us now briefly consider how the
macro TOS_8 works. First, preset time PTO (respectively PT1) is defined
by means of a reference timing signal CLK = t_reg,t bit and a time

114 Building a Programmable Logic Controller

N
(TOS+num) <— 00h
RESET TOS8_Q,num

SET TOS8_RED,num

RESET TOS8_RED,num
(TOS8+num)=(TOS8+num)+1

?
TOS8_Q,num =0

?
(TOS8+num) = tenstl

RESET TOS8_Q,num SET TOS8_Q,num
(TOS8+num) <— 00h (TOS8+num) <— 00h
N P

L1
v
end

(b)

FIGURE 5.10 (Continued)
(@) The macro TOS 8 and (b) its flowchart.

Timer Macros 115

TABLE 5.4
Symbol of the Macro TOS_8

TOS_8

—IN Q IN (through W) =0or1
CLK (t_reg,t_bit) = T0.0(1.024 ms), ..., T1.7(3355.4432 ms)

— CLK tenstO (8bit) = 1,2, ..., 255
— tenst0 tenstl (8bit) =1, 2, ..., 255
— | tenstl num=0,1,...,7
— hum Q=TOS8_Q,num (num =0, 1, ...,7)
PTO = tcnst0 x CLK
PT1 = tenstl x CLK

constant tcnst 0 (respectively tcnst1). If the input signal IN, taken into the
macro by means of W, is false (OFF—0), then the output signal TOS8_Q,num
(num =0, 1, ...,7) is forced to be false (OFF—0), and the counter TOS8+num
(num =0, 1, ..., 7) is loaded with 00h. If the input signal IN is true (ON—1)
and the output signal Q, i.e., the status bit TON8_Qnum (num =0, 1, ...,
7), is false (OFF—0), then with each rising edge of the reference timing sig-
nal CLK = t_reg, t bit the related counter TON8+num is incremented
by one. In this case, when the count value of TON8+num is equal to the
number tcnst0, then TON8+num is cleared and a state change from 0 to
1 is issued for the output signal (timer status bit) TON8_Q,num (num = 0,
1, ..., 7). If both the input signal IN and the output signal Q, i.e., the status
bit TON8_Q,num (num =0, 1, ..., 7), are true (ON—1), then with each rising
edge of the reference timing signal CLK = t_reg, t_bit the related coun-
ter TON8+num is incremented by one. In this case, when the count value
of TON8+num is equal to the number tcnst1, then TON8+num is cleared
and a state change from 1 to 0 is issued for the output signal (timer status
bit) TON8_Q,num (num =0, 1, ..., 7). This process will continue as long as
the input signal IN remains true (ON—1). In this macro a previously defined
8-bit variable Temp_1 is also utilized.

5.9 Example for Timer Macros

In this section, we will consider an example, namely, UZAM_plc_16il60_ex7
.asm, to show the usage of timer macros. In order to test this example, please
take the file from the CD-ROM attached to this book and then open the pro-
gram by MPLAB IDE and compile it. After that, by using the PIC program-
mer software, take the compiled file UZAM_plc_16i160_ex7.hex, and by your
PIC programmer hardware, send it to the program memory of PIC16F648A

116 Building a Programmable Logic Controller

microcontroller within the PIC16F648A-based PLC. To do this, switch the
4PDT in PROG position and the power switch in OFF position. After load-
ing the UZAM_plc_16i160_ex7.hex, switch the 4PDT in RUN and the power
switch in the ON position. Please check the program’s accuracy by cross-
referencing it with the related macros.

Let us now consider this example program: The example program UZAM_
plc_16i160_ex7.asm is shown in Figure 5.11. It shows the usage of all timer
macros described above. The ladder diagram of the user program of UZAM_
plc_16i160_ex7.asm, shown in Figure 5.11, is depicted in Figure 5.12.

In the first two rungs, an on-delay timer TON_8 is implemented as fol-
lows: the input signal IN is taken from 10.0 num = 0, and therefore we choose
the first on-delay timer, whose timer status bit (or output Q) is TONS8_QO.
The preset time PT = tenst x CLK = 50 x 104.8576 ms (T1.2) = 5242.88 ms =
5.24288 s. As can be seen from the second rung, the timer status bit TON8_QO0
is sent to output Q0.0.

In rungs 3 and 4, an off-delay timer TOF_8 is implemented as follows: the
input signal IN is taken from 0.2 num = 1, and therefore we choose the sec-
ond off-delay timer, whose timer status bit (or output Q) is TOF8_Q1. The
preset time PT = tcnst x CLK = 50 x 104.8576 ms (T1.2) = 5242.88 ms =
5.24288 s. As can be seen from rung 4, the timer status bit TOF8_Q1 is sent to
output QO0.2.

In rungs 5 and 6, a pulse timer TP_8 is implemented as follows: the input
signal IN is taken from 10.4 num = 2, and therefore we choose the third pulse
timer, whose timer status bit (or output Q) is TP8_Q2. The preset time PT =
tcenst x CLK = 50 x 104.8576 ms (T1.2) = 5242.88 ms = 5.24288 s. As can be
seen from rung 6, the timer status bit TP8_Q2 is sent to output Q0.4.

In rungs 7 and 8, an oscillator timer TOS_8 is implemented as follows:
the input signal IN is taken from 10.6 num = 3, and therefore we choose the
fourth oscillator timer, whose timer status bit (or output Q) is TOS8_Q3. The
preset time PTO = tcnst0 x CLK = 50 x 104.8576 ms (T1.2) = 5242.88 ms =
5.24288 s. The preset time PT1 = tcnst1l x CLK =50 x 104.8576 ms (T1.2) =
5242.88 ms = 5.24288 s. In this setup, the pulse trains we will obtain have a
50% duty cycle with the time period of T = 100 x 104.8576 ms = 10,485.76 ms
=10.48576 s. As can be seen from rung 8, the timer status bit TOS8_Q3 is sent
to output QO0.6.

In rungs 9 and 10, another on-delay timer TON_8 is implemented as fol-
lows: the input signal IN is taken from I1.1 num = 4, and therefore we choose
the fifth on-delay timer, whose timer status bit (or output Q) is TON8_Q4.
The preset time PT = tcnst x CLK = 10 x 419.4304 ms (T1.4) = 4194.304 ms =
4.194304 s. As can be seen from rung 10, the timer status bit TON8_Q4 is sent
to output Q1.1.

In rungs 11 and 12, another off-delay timer TOF_8 is implemented as
follows: the input signal IN is taken from I1.3 num = 5, and therefore
we choose the sixth off-delay timer, whose timer status bit (or output
Q) is TOF8_Q5. The preset time PT = tcnst x CLK = 10 x 419.4304 ms

Timer Macros

1d
TOF_8

1d
out

1d
TP B

1d
out

1d
TOS_8

1d
out

1d
TON_8

1d
out

1d
TOF_8

1d
out

1d
TP B

1d
out

btk user program ends here ----

FIGURE 5.11

I0.0
0,T1.2,.50

TONS_QO
0.0

I0.2
1,T1.2,.50

TOF8_Q1
Q0.2

10.4
2,T1.2,.50

TP8 Q2
0.4

I0.6
3,Tl1.2,.50,.50

TOS8_Q3
Q0.6

Il.1
4,T1.4,.10

TONS_Q4
QL.1

I1.3
5,T1.4,.10

TOF8_Q5
Q1.3

I1.5
6,T1.4,.10

TP8_ Q6
QL.5

I1.7
7,T71.4,.10,.10

TOS8_Q7
QL.7

The user program of UZAM_plc_16i160_ex7.asm.

;rung

;rung

;rung

;rung

;rung

;rung

;rung

;rung

;rung

;rung

;rung

;rung

;rung

;rung

;rung

;rung

———————————————— user program starts here --

1

10

11

12

13

14

15

16

117

118

Building a Programmable Logic Controller

IO.IO TON_8
1| IN
T2 —————P>CK
50 — tenst
104,8576 ms o — num
TONS8_QO Q0.0
20| " —
10.2 TOF_8
3+ | IN
T1.|2_,7> CLK
50 — tenst
104,8576 ms 1 —4num
TOF8_Q1 Q0.2
q=k .
IO.‘IL TP_8
50 | IN
T1‘|2_,7> CLK
50 — tenst
104,8576 ms 9 — num
TPS_Q2 Q0.4
6 })
IOAI6 TOS_8
7| IN
T1~|2_,7> CLK
50 — tenst0
104,8576 ms 20— tenstl
3 — num
TOS8_Q3 Q0.6
8 N
1.1 TON_8
9+ | IN
T1i4_,7> CLK
10 — tenst
419,4304 ms 4—num
TONS8_Q4 Q1.1
10— | {
1.3 TOF_8
1 | IN
T1<|4_,7> CLK
10 — tenst
419,4304 ms 5— | num
TOF8_Q5 QL3
12 } ¢
1.5 TP_8
131 | IN
T1~|4_,7> CLK
10 — tenst
419,4304 ms 6 — num
TP8_Q6 15
14| 5
.7 TOS_8
15 } IN
T4 DK
— 10 — tenst0
419,4304 ms 10 — tenstl
7 — num
TOS8_Q7 Q17
16 —| I 1
FIGURE 5.12

The ladder diagram of the user program of UZAM_plc_16il60_ex7.asm.

Timer Macros 119

(T1.4) = 4194.304 ms = 4.194304 s. As can be seen from rung 12, the timer
status bit TOF8_Q5 is sent to output Q1.3.

In rungs 13 and 14, another pulse timer TP_8 is implemented as follows: the
input signal IN is taken from I1.5 num = 6, and therefore we choose the sev-
enth pulse timer, whose timer status bit (or output Q) is TP8_Q6. The preset
time PT = tcnst x CLK = 10 x 419.4304 ms (T1.4) = 4194.304 ms = 4.194304 s.
As can be seen from rung 14, the timer status bit TP8_Q6 is sent to output Q1.5.

In rungs 15 and 16, another oscillator timer TOS_8 is implemented as fol-
lows: the input signal IN is taken from I1.7 num = 7, and therefore we choose
the eighth oscillator timer, whose timer status bit (or output Q) is TOS8_Q7.
The preset time PT0 = tecnst 0 x CLK = 10 x 419.4304 ms (T1.4) = 4194.304 ms
=4.194304 s. The preset time PT1 = tcnst1 x CLK =10 x 419.4304 ms (T14) =
4194.304 ms = 4.194304 s. In this setup, the pulse trains we will obtain have a
50% duty cycle with the time period of T = 20 x 419,4304 ms = 8,388608 s. As
can be seen from rung 16, the timer status bit TOS8_Q7 is sent to output Q1.7.

6

Counter Macros

In this chapter, the following counter macros are described:

CTU_8 (up counter)
CTD_8 (down counter)
CTUD_8 (up/down counter)

In addition two macros, move R and load R, are also described for data
transfer.

6.1 Move and Load Macros

In a PLC, numbers are often required to be moved from one location to
another; a timer preset value may be required to be changed according to
plant conditions, or the result of some calculations may be used in another
part of a program. To satisfy this need for 8-bit variables, in the PIC16F648A-
based PLC we define the macro move_R. Similarly, the macro 1oad_Risalso
described to load an 8-bit number into an 8-bit variable.

The algorithm and the symbol of the macro move R are depicted in
Table 6.1. Figure 6.1 shows the macro move_R and its flowchart. In this macro,
EN is a Boolean input variable taken into the macro through W, and ENO is
a Boolean output variable sent out from the macro through W. Output ENO
follows the input EN. This means that when EN = 0, ENO is forced to be
0, and when EN = 1, ENO is forced to be 1. This is especially useful if we
want to carry out more than one operation based on a single input condition.
When EN = 1, the macro move_R transfers the data from the 8-bit input vari-
able IN to the 8-bit output variable OUT.

The algorithm and the symbol of the macro load R are depicted in
Table 6.2. Figure 6.2 shows the macro 1oad_R and its flowchart. In this macro,
EN is a Boolean input variable taken into the macro through W, and ENO is
a Boolean output variable sent out from the macro through W. Output ENO
follows the input EN. This means that when EN = 0, ENO is forced to be 0,
and when EN = 1, ENO is forced to be 1. When EN = 1, the macro 1load R
transfers the 8-bit constant data IN, within the 8-bit output variable OUT.

121

122 Building a Programmable Logic Controller

TABLE 6.1
Algorithm and Symbol of the Macro move R

Algorithm Symbol
if EN = 1 then move_R
OUT = IN; IN, OUT (8 bit register)
ENO=1; W—EN ENO—W gN (through W) =0or1
else ENO = 0; _|IN ouTl— ENO (through W) =0or1
end if;

move R macro in,out
local Ll

movwf Temp 1
btfss Temp 1,0 OUT <= IN
goto Ll W <—Temp_1
movEw in
movwf out » L1
moviw Temp 1 v

Ll

end

endm

(a) (b)

FIGURE 6.1
(@) The macro move R and (b) its flowchart.

TABLE 6.2
Algorithm and Symbol of the Macro 1load R

Algorithm Symbol
T load R IN (8 bit constant)
OUT = IN; IN (8 bit consta
ENO=1; W —{EN ENO —w UT (8 bit register)
else ENO = 0; EN (through W) =0or 1
end if; o —IN OUT — ENO (through W) =0or 1

Counter Macros 123

load R macro in,out
local Ll
movwf Temp_ 1
btfss Temp 1,0 OUT <— IN
goto L1 W<—Temp_1
movlw in
movwf out » L1
Ll
movEw Temp 1
— A 4
Ll d
endm <
() (b)

FIGURE 6.2
(@) The macro load_R and (b) its flowchart.

The file definitions.inc, included within the CD-ROM attached to this
book, contains these two macros.

6.2 Counter Macros

Counters can be used in a wide range of applications. In this chapter, three
counter functions, up counter, down counter, and up/down counter, are
described. The definition of 8-bit variables to be used for the counter mac-
ros, and their allocation in BANK 0 of SRAM data memory are both shown
in Figure 6.3(a) and (b), respectively. Here, it is important to note that as we
restrict ourselves to use the BANK 0, where there are not enough registers
left, we cannot define different sets of 8-bit variables to be used in the count-
ing process for each counter type. Rather, we define eight 8-bit variables and
share them for each counter type. As a result, in total we can define eight dif-
ferent counters at most, irrespective of the counter type. The status bits, which
will be explained in the next sections, of all counters are defined as shown
in Figure 6.4(a). All the 8-bit variables defined for counters must be cleared
at the beginning of the PLC operation for a proper operation. Therefore,
all variables of counter macros are initialized within the macro initial-
ize, as shown in Figure 6.4(b). The file definitions.inc, included within the
CD-ROM attached to this book, contains all counter macros defined for the
PIC16F648A-based PLC.

124 Building a Programmable Logic Controller

Jomm VARIABLE DEFINITIONS ---
CBLOCK 0x70
CTU8_Q,CTD8_Q,CTUD8_Q
endc
CBLOCK 0x73
cv_8 ;CV8, CV8+1l, ..., CV8+7
endc
CBLOCK 0x7B
CTU8_RED,CTD8_RED,CTUD8_RED
endc

70h [CTUS_Q
71h | CTDS_Q
72h | CTUDS_Q
73h Cv_s8
74h | CV_8+1
75h CV_8+2
76h CV_8+3
77h | CV_8+4
78h CV_8+5
79h | CV_8+6
7Ah| CV_8+7
7Bh | CTUS_RED
7Ch| CTDS_RED
7Dh | CTUDS_RED
7Eh
7Fh

BANK 0
(b)

FIGURE 6.3
(@) Definition of 8-bit variables to be used for the counter macros. (b) Their allocation in BANK
0 of SRAM data memory.

Let us now consider the counter macros. In the following, first, a general
description will be given for the considered counter function, and then its
implementation in the PIC16F648A-based PLC will be provided.

6.3 Up Counter (CTU)

The up counter (CTU) can be used to signal when a count has reached
a maximum value. The symbol of the up counter (CTU) is shown in
Figure 6.5, while its truth table is given in Table 6.3. The up counter counts

Counter Macros

;- defining Up Counter

;= (CTU)
#define
#define
#define
#define
#define
#define
#define
#define

outputs
CTU8_QO0
CTU8_Q1
CTU8_Q2
CTU8_Q3
CTU8_Q4
CTU8_Q5
CTU8_Q6
CTU8_Q7

CTU8 Q,0
cTUS Q,1
CTUS Q,2
cTus Q,3
CTU8 Q,4
CTU8 Q,5
CTU8 Q,6
CcTU8 Q,7

;- defining Down Counter

;- (CTD)
#define
#define
#define
#define
#define
#define
#define
#define

;- defining Up/Down Counter

outputs
CTD8_QO0
CTD8_Q1
CTD8_Q2
CTD8_Q3
CTD8_0Q4
CTD8_ Q5
CTD8_Q6
CTD8_Q7

;- (CTUD) outputs -

#define CTUD8_QO CTUD8 Q,0
#define CTUD8 Q1 CTUD8 Q,1
#define CTUD8_Q2 CTUD8 Q,2
#define CTUD8 Q3 CTUD8 Q,3
#define CTUD8 Q4 CTUD8 Q,4
#define CTUD8_Q5 CTUD8 Q,5
#define CTUD8_Q6 CTUD8 Q,6
#define CTUD8 Q7 CTUD8 Q,7
@
jemm e macro: initialize ---—-———————————-
initialize macro
local L1
BANK1 ;goto BANK1
movlw b'00000111° ;W<--b'00000111':Fosc/4-->TMRO,PS=256
movwf OPTION REG ;pull-up on PORTB, OPTION REG <-- W
movlw b'00000001° ;PORTB is both input and output port
movwf TRISB ;TRISB <-- b'00000001°
BANKO ;goto BANKO
clrf PORTA ;Clear PortA
clrf PORTB ;Clear PortB
clrf TMRO ;Clear TMRO
movlw h'20"' ;initialize the pointer
movwf FSR ;to RAM
Ll clrf INDF ;clear INDF register
incf FSR,f ;increment pointer
btfss FSR,7 ;all done?
goto L1 ;if not goto L1
;if yes carry on
movlw 06h ;W <--- 06h
movwf Temp 2 ;Temp 2 <--- W(06h)
endm
(b)
FIGURE 6.4

125

(a) Definition of status bits of counter macros. (b) The initialization of all variables of counter

macros within the macro initialize.

126 Building a Programmable Logic Controller

CTU CU: Count Up Input

BOOL — >CU Q —BOOL R: Reset Input
PV: Preset Value

BOOL — R Q: Counter Output
INT — PV CV —INT CV: Count Value
FIGURE 6.5
The up counter (CTU).
TABLE 6.3
Truth Table of the Up Counter (CTU)
CU R Operation
1 1. Set the output Q false (OFF — LOW)
x 2. Clear the count value CV to zero
0 0 NOP (No Operation is done)
1 0 NOP
| 0 NOP
1 0 If CV < PV, then increment CV (i.e. CV =CV + 1).
If CV =PV, then hold CV and set the output Q true (ON — HIGH).

the number of rising edges (T) detected at the input CU. PV defines the
maximum value for the counter. Each time the counter is called with a new
rising edge (T) on CU, the count value CV is incremented by one. When
the counter reaches the PV value, the counter output Q is set true (ON—1)
and the counting stops. The reset input R can be used to set the output Q
false (OFF—0) and clear the count value CV to zero. The following section
explains the implementation of eight 8-bit up counters for the PIC16F648A-
based PLC.

6.4 Macro CTU_8 (8-Bit Up Counter)

The macro CTU_8 defines eight up counters selected with the num =
0,1, ..., 7. Table 6.4 shows the symbol of the macro CTU_8. The macro
CTU_8 and its flowchart are depicted in Figure 6.6. CU (count up input),
Q (output signal = counter status bit), and R (reset input) are all defined as
Boolean variables. The PV (preset value) is an integer constant (here, for
8-bit resolution, it is chosen as any number in the range 1-255) and is used
to define a maximum count value for the counter. The counter outputs are
represented by the counter status bits: CTU8_Q,num (num =0, 1, ..., 7),
namely, CTU8_QO0, CTU8_Q], ..., CTU8_Q7, as shown in Figure 6.4(a). We

Counter Macros 127

TABLE 6.4

Symbol of the Macro CTU_8

CTU_8

num=0,1,..,7
—>CU Q CU (cu_reg,cu_bit) =0, 1

—IR R (rs_reg,rs_bit) = 0, 1

PV (8 bit constant) = 1, 2, ..., 255
— PV Q=CTU8_Qnum (num =0, 1, ..., 7)
—1 num

use a Boolean variable, CTUS_RED,num (num =0, 1, ..., 7), as a rising
edge detector for identifying the rising edges of the CU. An 8-bit integer
variable CV_8+num (num =0, 1, ..., 7) is used to count the rising edges of
the CU. Let us now briefly consider how the macro CTU_8 works. If the
input signal R is true (ON—1), then the output signal CTU8_Q,num (num
=0,1, ..., 7) is forced to be false (OFF—0), and the counter CV_8+num
(num =0, 1, ..., 7) is loaded with 00h. If the input signal R is false (OFF—
0), then with each rising edge of the CU, the related counter CV_8+num
is incremented by one. In this case, when the count value of CV_8+num
is equal to the PV, then state change from 0 to 1 is issued for the output

Jmm—————— macro: CTU 8 —--——-——--———————————————
CTU_8 macro num,cu_reg,cu bit,rs reg,rs bit,PV
local L1,L2
btfss rs_reg,rs_bit
goto L2
movlw 00h
movwf CV_8+num

bef CTU8_Q, num
goto Ll

L2 Dbtfsc CTU8_ Q,num
goto L1
btfss cu_reg,cu bit
bsf CTU8_RED, num
btfss cu_reg,cu bit
goto Ll
btfss CTU8_RED,num
goto L1
bef CTU8_RED, num
incf CV 8+num, £

movEiw CVZ8+num
xorlw PV

skpnz

bsf CTU8_Q, num

FIGURE 6.6
(@) The macro CTU_8 and (b) its flowchart. (Continued)

128 Building a Programmable Logic Controller

(CV_8+num) <— 00h -

?
rs_reg,rs_bit = 0

RESET CTU8_Q,num
? N o
CTU8_Q,num =0 |
?
cu_reg,cu_bit =1
SET CTU8_RED,num
]
N N
cu_reg,cu_bit =1 >
? N
CTU8_RED,num =1 >
RESET CTU8_RED,num
(CV_8+num)=(CV_8+num)+1
2 N
(CV_8+num) = PV >
| ser cTus Qoum |

FIGURE 6.6 (Continued)
(@) The macro CTU_8 and (b) its flowchart.

Counter Macros 129

CTD CD: Count Down Input
BOOL —>CD Q|— BOOL LD: Load Input
PV: Preset Value
BOOL —LD Q: Counter Output
INT — PV CV|— INT CV: Count Value
FIGURE 6.7
The down counter (CTD).

signal (counter status bit) CTU8_Q,num (num =0, 1, ..., 7) and the count-
ing stops.

6.5 Down Counter (CTD)

The down counter (CTD) can be used to signal when a count has reached
zero, on counting down from a preset value. The symbol of the down coun-
ter (CTD) is shown in Figure 6.7, while its truth table is given in Table 6.5.
The down counter counts down the number of rising edges (T) detected at
the input CD. PV defines the starting value for the counter. Each time the
counter is called with a new rising edge (T) on CD, the count value CV is
decremented by one. When the counter reaches zero, the counter output Q
is set true (ON—I) and the counting stops. The load input LD can be used
to clear the output Q to false (OFF—0) and load the count value CV with the
preset value PV. The following section explains the implementation of eight
8-bit down counters for the PIC16F648A-based PLC.

TABLE 6.5
Truth Table of the Down Counter (CTD)
CD LD Operation
" 1 1. Clear the output Q to false (OFF — LOW)
2. Load the count value CV with the preset value PV
0 0 NOP (No Operation is done)
1 NOP
1 NOP
1 0 If CV > 0, then decrement CV (i.e., CV =CV - 1).
If CV =0, then hold CV and set the output Q true (ON — HIGH).

130 Building a Programmable Logic Controller

TABLE 6.6

Symbol of the Macro CTD_8

CTD_8

num=0,1,..7
—1>CD Q| CD (cd_reg,cd_bit) =0, 1

—{ID LD (1d_reg,ld_bit) =0, 1

PV (8 bit constant) = 1, 2, ..., 255
— PV Q=CTD8_Qnum (num=0,1,..,7)
—1 num

6.6 Macro CTD_ 8 (8-Bit Down Counter)

The macro CTD_8 defines eight down counters selected with the num =0, 1,
..., 7. Table 6.6 shows the symbol of the macro CTD_8. The macro CTD_8 and
its flowchart are depicted in Figure 6.8. CD (count down input), Q (output
signal = counter status bit), and LD (load input) are all defined as Boolean

Jmm——————— macro: CTD 8 ----—---—-———————————-————-
CTD_8 macro num,cd_reg,cd bit,ld reg,ld bit,PV
local L1,L2
btfss 1ld reg,ld bit
goto L2
movlw PV
movwf CV 8+num

bef CTB8_Q,num
goto Ll

L2 btfsc CTD8_Q, num
goto L1
btfss cd reg,cd bit
bsf CTD8 RED,num
btfss cd _reg,cd bit
goto Ll

moviw CV_8+num
xorlw 0

skpnz

goto Ll

btfss CTD8_RED,num

goto Ll

bef CTD8_RED, num

decft CV_8+num, £

moviw CV_8+num

xorlw 0

skpnz

bsf CTD8_ Q,num
Ll

endm

FIGURE 6.8
(@) The macro CTD_8 and (b) its flowchart. (Continued)

Counter Macros 131

2
1d_reg,Id_bit =0

(CV_8+num) <=— PV
RESET CTD8_Q,num

N

SET CTD8_RED,num
[

RESET CTDS8_RED,num
(CV8+num)=(CV8+num) — 1

| SET CTD8_Q,num |

L1 [«

(b)

FIGURE 6.8 (Continued)
(@) The macro CTD_ 8 and (b) its flowchart.

132 Building a Programmable Logic Controller

variables. The PV (preset value) is an integer constant (here, for 8-bit resolu-
tion, it is chosen as any number in the range 1-255) and is used to define a start-
ing value for the counter. The counter outputs are represented by the counter
status bits: CTD8_Qnum (num = 0, 1, ..., 7), namely, CTD8_Q0, CTD8_Q],
..., CTD8_QY7, as shown in Figure 6.4(a). We use a Boolean variable, CTDS8_
REDnum (num =0, 1, ..., 7), as a rising edge detector for identifying the ris-
ing edges of the CD. An 8-bit integer variable CV_8+num (num=0,1, ...,7)is
used to count the rising edges of the CD. Let us now briefly consider how the
macro CTD_8 works. If the input signal LD is true (ON—1), then the output
signal CTU8_Q,num (num =0, 1, ..., 7) is forced to be false (OFF—0), and the
counter CV_8+num (num =0, 1, ..., 7) is loaded with PV. If the input signal
LD is false (OFF—0), then with each rising edge of the CD, the related coun-
ter CV_8+num is decremented by one. In this case, when the count value of
CV_8+num is equal to zero, then state change from 0 to 1 is issued for the
output signal (counter status bit) CTUS_Q,num (num =0, 1, ..., 7) and the
counting stops.

6.7 Up/Down Counter (CTUD)

The up/down counter (CTUD) has two inputs CU and CD. It can be used to
both count up on one input and count down on the other. The symbol of the
up/down counter (CTUD) is shown in Figure 6.9, while its truth table is given
in Table 6.7. The up/down counter counts up the number of rising edges (T)
detected at the input CU. The up/down counter counts down the number of
rising edges (T) detected at the input CD. PV defines the maximum value for
the counter. When the counter reaches the PV value, the counter output Q is
set true (ON—1) and the counting up stops. The reset input R can be used
to set the output Q false (OFF—0) and clear the count value CV to zero. The
load input LD can be used to load the count value CV with the preset value
PV. When the counter reaches zero, the counting down stops. The following

CTUD

CU: Count Up Input
BOOL — >cu Q— BOOL CD: Count Down Input
BOOL — >CD R: Reset Input

LD: Load Input
BOOL —R PV: Preset Value
BOOL —{LD Q: Counter Output

INT —| PV CVl— INT CV: Count Value

FIGURE 6.9
The up/down counter (CTUD).

Counter Macros 133

TABLE 6.7
Truth Table of the Up/Down Counter (CTUD)
CU|[CD| R LD Operation
“ « 1 “ 1. Set the output Q false (OFF — LOW)
2. Clear the count value CV to zero
X x 0 1 | Load the count value CV with the preset value PV
0 0 0 0 | NOP (No Operation is done)
0 1 0 0 | NOP
1 0 0 0 | NOP
1 1 0 0 | NOP
1 T 0 0 | NOP
T 1 0 0 | NOP
x | L | o | o |NoP
l x 0 0 | NOP
1 0 0 0 If CV < PV, then increment CV.
If CV = PV, then hold CV and set the output Q true (ON — HIGH).
0 T 0 0 | IfCV >0, then decrement CV.

section explains the implementation of eight 8-bit up/down counters for the
PIC16F648A-based PLC.

6.8 Macro CTUD 8 (8-Bit Up/Down Counter)

The macro CTUD_ 8 defines eight up/down counters selected with the num =
0,1, ..., 7. Table 6.8 shows the symbol of the macro CTUD 8. The macro CTUD8
and its flowchart are depicted in Figure 6.10. CU (count up input), CD (count
down input), Q (output signal = counter status bit), R (reset input), and LD

TABLE 6.8
Symbol of the Macro CTUD8

CTUD_8

—INep Q num=0,1,..7

CU (cu_reg,cu_bit) =0, 1
—CD CD (cd_reg,cd_bit) =0, 1
— IR R (rs_reg,rs_bit) = 0, 1
LD (Id_reg,Id_bit) =0, 1
—|LD PV (8 bit constant) = 1,2, ..., 255
—1PV Q=CTUDS8_Qnum (num =0, 1, ..., 7)

— | hum

134 Building a Programmable Logic Controller

Jmm——————— macro: CTUD 8 -------—---=--—-—-———————————-
CTUD_8 macro num,cu_reg,cu_bit,cd reg,cd bit,
rs_reg,rs_bit,1ld reg,ld bit,PV

local Ll1,1.2,L3,14

btfss rs_reg,rs_bit

goto L4

movlw 00h

movwf CV_8+num

goto Ll
L4 btfss 1d reg,1d bit
goto L3

movlw PV
movwf CV_8+num
goto Ll
L3 movlw 0
btfsc cu reg,cu bit
movlw 1
movwf Temp 1
movlw 0
btfsc cd_reg,cd bit
movlw 1
iorwf Temp_1,W
movwf Temp 1
btfss Temp_1,0

bsf CTUD8_RED, num
btfss Temp 1,0
goto Ll
btfss CTUD8 RED, num
goto Ll
bef CTUD8_RED, num
btfss cu _reg,cu bit
goto L2
btfsc CTUD8_ Q,num ;—-—-- count up---
goto L1l
incf CV_8+num, £
goto Ll
L2 moviw CV_8+num ;-—--count down---
xorlw 00h
btfsc STATUS, Z ;skip if no Zero
goto L1
decf CV_8+num, £
L1l bef CTUD8 Q,num
movfw CV_8+;um
xorlw PV
btfsc STATUS, Z ;skip if no Zero
bsf CTUD8_Q,num
endm

FIGURE 6.10
(a) The macro CTUDS8 and (b) its flowchart. (Continued)

(load input) are all defined as Boolean variables. The PV (preset value) is an
integer constant (here, for 8-bit resolution, it is chosen as any number in the
range 1-255) and is used to define a maximum count value for the counter. The
counter outputs are represented by the counter status bits: CTUD8_Q,num
(um=0,1,...,7), namely, CTUD8_QO0, CTUDS8_Q]4, ..., CTUDS8_Q7, as shown

Counter Macros

?
rs_reg,rs_bit =0

?
1d_reg,1d_bit = 0

(CV_8+num) <=— 00h |—>

(CV_8+num) <—PV |—>

| (CV_8+num)=(CV_8+num)+1 |

| (CV_8+num)=(CV_8+num) — 1 |

L <€

~

SET CTUD8_Qnum |

<

L1

~

| RESET CTUD8_Qnum |

end

FIGURE 6.10 (Continued)
(a) The macro CTUDS8 and (b) its flowchart.

(b)

136 Building a Programmable Logic Controller

in Figure 6.4(a). We use a Boolean variable, CTUD8_RED,num (num =0, 1, ...,
7), as a rising edge detector for identifying the rising edges of the inputs CU
or CD. An 8-bit integer variable CV_8+num (num =0, 1, ..., 7) is used to count
up the rising edges of the CU and count down the rising edges of the CD.
Let us now briefly consider how the macro CTUD_ 8 works. If the input signal
R is true (ON—I), then the output signal CTU8_Qnum (num =0, 1, ..., 7) is
forced to be false (OFF—0), and the counter CV_8+num (num =0, 1, ..., 7) is
loaded with 00h. If the input signal R is false (OFF—0) and the input signal
LD is true (ON—1), then the counter CV_8+num (num =0, 1, ..., 7) is loaded
with PV. If the input signal R is false (OFF—0), the input signal LD is false
(OFF—0), and the CD is false (OFF—0), then with each rising edge of the CU,
the related counter CV_8+num is incremented by one. In this case, when the
count value of CV_8+num is equal to the PV, then state change from 0 to 1
is issued for the output signal (counter status bit) CTUS_Q,num (num = 0,
1, ..., 7) and the counting up stops. If the input signal R is false (OFF—0), the
input signal LD is false (OFF—0), and the CU is false (OFF—0), then with
each rising edge of the CD, the related counter CV_8+num is decremented by
one. The counting down stops when the CV reaches zero.

6.9 Examples for Counter Macros

In this section, we will consider four examples, namely, UZAM_plc_16i160_
exX.asm (X =8, 9, 10, 11), to show the usage of counter macros. In order to test
one of these examples, please take the related file UZAM_plc_16i160_exX
.asm (X =8, 9, 10, 11) from the CD-ROM attached to this book, and then open
the program by MPLAB IDE and compile it. After that, by using the PIC
programmer software, take the compiled file UZAM_plc_16i160_exX.hex
(X =8,9 10, 11), and by your PIC programmer hardware, send it to the pro-
gram memory of PIC16F648A microcontroller within the PIC16F648A-based
PLC. To do this, switch the 4PDT in PROG position and the power switch in
OFF position. After loading the file UZAM_plc_16i160_exX.hex (X = 8§, 9, 10,
11), switch the 4PDT in RUN and the power switch in ON position. Please
check the program’s accuracy by cross-referencing it with the related macros.

Let us now consider these example programs: The first example program,
UZAM_plc_16i160_ex8.asm, is shown in Figure 6.11. It shows the usage
of the macro CTU_8. The ladder diagram of the user program of UZAM_
plc_16i160_ex8.asm, shown in Figure 6.11, is depicted in Figure 6.12. In the
first two rungs, an up counter CTU_8 is implemented as follows: the count
up input CU is taken from 10.0, while the reset input R is taken from 10.1 num
=0, and therefore we choose the first up counter, whose counter status bit (or
output Q) is CTU8_QO. The preset value PV = 15. As can be seen from the sec-
ond rung, the state of the counter status bit CTU8_QO is sent to output Q0.0.
In the third rung, by using the move_R function, the contents of the register

Counter Macros 137

Jmmm e user program starts here -
CTU_8 0,10.0,10.1,.15 ;rung 1
1d CTUB_QO ;rung 2
out Q0.0
1d LOGIC1 ;rung 3
move R Ccv_8,01

it user program ends here ---

FIGURE 6.11
The user program of UZAM_plc_16i160_ex8.asm.

CTU_8
10.0
|
T | U Q
10.1 R
15 —{ PV
0 — num
CTU8_QO Q0.0
2 | € r
move_R
LOGIC1
| -
3 | EN ENO
CV.8 —{IN OUT —Ql

FIGURE 6.12
The ladder diagram of the user program of UZAM_plc_16i160_ex8.asm.

cv_8, which keeps the current count value (CV) of the first up counter, are
sent to the output register Q1.

The second example program, UZAM_plc_16i160_ex9.asm, is shown in
Figure 6.13. It shows the usage of the macro CTD_8. The ladder diagram
of the user program of UZAM_plc_16i160_ex9.asm, shown in Figure 6.13,

Jmmmmmm e user program starts here -

CTD_8 4,10.2,10.3,.10 ;rung 1
1d CTD8_Q4 ;rung 2
out Q0.4

1d LOGICl ;rung 3
move R CV_8+4,Q1

e user program ends here ---

FIGURE 6.13
The user program of UZAM_plc_16i160_ex9.asm.

138 Building a Programmable Logic Controller

CTD_8
10.2
|
| @ qQ
10.3 LD
__4 10— PV
4 — num
CTDS8_Q4 Q0.4
2—4 €
move_R
LOGIC1
| -
3 | EN ENO
CV_8+4 —IN OUT —Q1

FIGURE 6.14
The ladder diagram of the user program of UZAM_plc_16i160_ex9.asm.

is depicted in Figure 6.14. In the first two rungs, a down counter CTD_8 is
implemented as follows: the count down input CD is taken from 10.2, while
the load input LD is taken from 10.3 num = 4, and therefore we choose the
fifth down counter, whose counter status bit (or output Q) is CTD8_Q4. The
preset value PV = 10. As can be seen from the second rung, the state of the
counter status bit CTD8_Q4 is sent to output Q0.4. In the third rung, by using
the move_R function the contents of the register CV_8+4, which keeps the
current count value (CV) of the fifth down counter, are sent to the output
register Q1.

The third example program, UZAM_plc_16i160_ex10.asm, is shown in
Figure 6.15. It shows the usage of the macro CTUD_8. The ladder diagram of
the user program of UZAM_plc_16i160_ex10.asm, shown in Figure 6.15, is
depicted in Figure 6.16. In the first two rungs, an up/down counter CTUD_8
is implemented as follows: the count up input CU is taken from 104, the
count down input CD is taken from 10.5, while the reset input R is taken

e ittt user program starts here -------------
CTUD_8 7,10.4,10.5,10.6,10.7,.20 ;rung 1
1d CTUD8_Q7 ;rung 2
out Q0.7
1d LOGIC1 ;rung 3
move R CV_8+7,Q1

e b user program ends here ---------------

FIGURE 6.15

The user program of UZAM_plc_16i160_ex10.asm.

Counter Macros 139

CTUD_8
10.4
|
' I 10.5 >CU ?
— Dco
10,6
[R
107
— | LD
20 — PV
7 — num
CTUDS_Q7 Q0.7
2| ¢
move_R
LOGIC1
| -
3 | EN ENO
CV_8+7 —IN OUT |-Q1

FIGURE 6.16
The ladder diagram of the user program of UZAM_plc_16i160_ex10.asm.

from 10.6 and the load input LD is taken from 10.7 num = 7, and therefore
we choose the eighth up/down counter, whose counter status bit (or output
Q) is CTUDS_Q?7. The preset value PV = 20. As can be seen from the second
rung, the state of the counter status bit CTUDS8_Q?7 is sent to output Q0.7. In
the third rung, by using the move_R function the contents of the register
CV_8+7, which keeps the current count value (CV) of the eighth up/down
counter, are sent to the output register Q1.

The fourth and last example program, UZAM_plc_16il60o_ex1l.asm, is
shown in Figure 6.17. It shows the usage of all counter macros. The ladder
diagram of the user program of UZAM_plc_16il60_ex1l.asm, shown in
Figure 6.17, is depicted in Figure 6.18. This example contains the previous
three examples in one program.

In the first two rungs, an up counter CTU_8 is implemented as follows: the
count up input CU is taken from 10.0, while the reset input R is taken from
10.1. As num = 0, the first up counter is chosen, whose counter status bit (or
output Q) is CTU8_QO. The preset value PV = 15. As can be seen from the sec-
ond rung, the state of the counter status bit CTU8_QO is sent to output QO.0.

In rungs 3 and 4, a down counter CTD_8 is implemented as follows: the
count down input CD is taken from 10.2, while the load input LD is taken from
10.3. As num = 4, the fifth down counter is chosen, whose counter status bit
(or output Q) is CTD8_Q4. The preset value PV = 10. As can be seen from the
fourth rung, the state of the counter status bit CTD8_Q4 is sent to output Q0.4.

In rungs 5 and 6, an up/down counter CTUD_8 is implemented as follows:
the count up input CU is taken from 104, the count down input CD is taken

140 Building a Programmable Logic Controller

e mmmm e m e user program starts here --------------
CTU_8 0,10.0,10.1,.15 ;rung 1
1d CTU8_QO0 ;rung 2
out Q0.0
CTD_8 4,10.2,10.3,.10 ;rung 3
1d CTD8_Q4 ;rung 4
out Q0.4
CTUD_8 7,10.4,10.5,10.6,10.7,.20 ;rung 5
1d CTUD8_Q7 ;rung 6
out Q0.7
1d not I1.1 ;rung 7
and I1.0
out MO.1
1d I1.1 ;rung 8
and not I1.0
out MO.2
1d I1.1 ;rung 9
and I1.0
out MO.3
1d MO.1 ;rung 10
move R cv_8,Q1
1d MO.2 ;rung 11
move R CV_8+4,01
1d MO.3 ;rung 12
move_ R CV_8+7,Q1

s s user program ends here ----------------

FIGURE 6.17

The user program of UZAM_plc_16i160_ex11l.asm.

from 10.5, while the reset input R is taken from 10.6 and the load input LD is
taken from 10.7. As num = 7, the eighth up/down counter is chosen, whose
counter status bit (or output Q) is CTUD8_Q?. The preset value PV = 20. As
can be seen from the sixth rung, the state of the counter status bit CTUD8_Q7
is sent to output QO0.7.

In rungs 7 to 9, based on the input bits I1.1 and 1.0, one of three situations
is chosen: If I11.1,11.0 = 01, then MO0.1 is activated. If I1.1,11.0 = 10, then MO0.2 is
activated. Finally, if I1.1,11.0 = 11, then M0.3 is activated.

In rung 10, if M0.1 = 1, then by using the move_R function, the contents of
the register CV_8, which keeps the current count value (CV) of the first up
counter, are sent to the output register Q1.

Counter Macros 141

CTU_8
10.0
1 [CU Q
10‘1_,7 R
— | 15— PV
0 — num
CTU8_QO0 Q0.0
|
2| I
CTD_8
IO'|2
3 | CD
10~3_,7 LD
— | 10—{pv
4 — num
CTD8_Q4 Q0.4
|
1 i
CTUD_8
10.4
|
5 | CU Q
| I10.5 D
10.6
— | R
| IIOJ LD
20 — PV
7 — num
CTUDS_Q7 Q0.7
|
oH | O
1 110 MO.1
7 | [| { =
1.1 110 MO0.2
| |4)
8— | V1 {
1.1 110 MO0.3
| | |)
9 | | {
MO.1 move_R
10+ | EN ENO |—
CV_8—IN OUT}|Q1
move_R
MO0.2
11+ | EN ENO |-
CV_8+4—{IN OUT |-Q1
MO0.3 move_R
12+ | EN ENO |
CV_8+7 - IN OUT |-Q1

FIGURE 6.18
The ladder diagram of the user program of UZAM_plc_16i160_ex11.asm.

142 Building a Programmable Logic Controller

In rung 11, if M0.2 = 1, then by using the move_R function, the contents of
the register CV_8+4, which keeps the current count value (CV) of the fifth
down counter, are sent to the output register Q1.

In rung 12, if M0.3 =1, then by using the move_R function, the contents of
the register CV_8+7, which keeps the current count value (CV) of the eighth
up/down counter, are sent to the output register Q1.

7

Comparison Macros

Numerical values often need to be compared in PLC programs; typical
examples are a batch counter saying the required number of items has been
delivered, or alarm circuits indicating, for example, a temperature has gone
above some safety level. These comparisons are performed by elements that
have the generalized form of Figure 7.1, with two numerical inputs A and B
corresponding to the values to be compared, and a Boolean (on/off) output
that is true if the specified condition is met. The comparisons provided in
this chapter are as follows:

A greater than B (A>B)
A greater than or equalto B (A > =DB)
A equalto B (A=B)
A less than B (A <B)
A less than or equal to B (A<=B)
A not equal to B (A <> B)

where A and B are 8-bit numerical data.

In this chapter, two groups of comparison macros are described for the
PIC16F648A-based PLC. In the former, the contents of two registers (R1 and
R2) are compared according to the following;:

GT (greater than, >)

GE (greater than or equal to, > =)
EQ (equal to, =)

LT (less than, <)

LE (less than or equal to, < =)
NE (not equal to, < >)

In the latter, similar comparison macros are also described for comparing
the content of an 8-bit register (R) with an 8-bit constant (K). The file defini-
tions.inc, included within the CD-ROM attached to this book, contains all
comparison macros defined for the PIC16F648A-based PLC. Let us now con-
sider these comparison macros in detail.

143

144 Building a Programmable Logic Controller

A =) Binary result:
B Compare > true or false
1 lor0

FIGURE 7.1
The generalized form of data comparison.

7.1 Macro R1_GT R2

The definition, symbols, and algorithm of the macro R1_GT_R2 are depicted
in Table 71. Figure 7.2 shows the macro R1_GT R2 and its flowchart. The
macro R1_GT_R2 has a Boolean input variable (active high enabling input),
EN, passed into the macro through W, and a Boolean output variable, Q,
passed out of the macro through W. This means that the input signal EN
should be loaded into W before this macro is run, and the output signal Q
will be provided within the W at the end of the macro. R1 and R2 are both
8-bit input variables. When EN = 0, no action is taken and the output Q (W)
is forced to be 0. When EN = 1, if the content of R1 is greater than the content
of R2 (R1 > R2), then the output Q (W) is forced to be 1. Otherwise, the output
Q (W) is forced to be 0.

7.2 Macro R1_GE_R2

The definition, symbols, and algorithm of the macro R1_GE_R2 are depicted
in Table 7.2. Figure 7.3 shows the macro R1_GE_R2 and its flowchart. The
macro R1_GE_R2 has a Boolean input variable (active high enabling input),
EN, passed into the macro through W, and a Boolean output variable, Q,
passed out of the macro through W. This means that the input signal EN

TABLE 7.1
Definition, Symbols, and Algorithm of the MacroR1_GT_R2
Definition Ladder Diagram Schematic Symbol Algorithm
Symbol
W —EN — W
. Q if EN = 1 then
is the content of —R1 .
, R1 > if R1 > R2 then
register R1 Greater | vy _| N |_ W —R2 Q=1
Thfa n thetcog;? t R2 R1, R2 (8 bit register) else Q = 0;
of register I82: EN (through W) =0or1 | end if;
Q (through W) =0or1

Comparison Macros 145

R1_GT R2 macro rl,r2
local L1,L2
movwf Temp 1
btfss Temp 1,0
goto Ll
moviw rl
subwf r2, W

skpnc
goto L1l
movlw D'1"
goto L2 [1o
Ll movlw D'O’
L2 A\ 4
endm end
(a) (b)
FIGURE 7.2

(@) The macroR1_GT_ R2 and (b) its flowchart.

should be loaded into W before this macro is run, and the output signal Q
will be provided within the W at the end of the macro. R1 and R2 are both
8-bit input variables. When EN = 0, no action is taken and the output Q (W) is
forced to be 0. When EN = 1, if the content of R1 is greater than or equal to the
content of R2 (R1 2 R2), then the output Q (W) is forced to be 1. Otherwise,
the output Q (W) is forced to be 0.

TABLE 7.2
Definition, Symbols, and Algorithm of the Macro R1_GE_R2
Definition Ladder diagram Schematic symbol Algorithm
symbol
i W —EN — W
1sbthe content of Q i EN = 1 then
register R1 Greater —R1 .
h Eaual R1 Ry T if R1 > R2 then
anoihqua o W—|>=|—W — Q-1
" t: ist R2 R1, R2 (8 bit register) else Q = 0;
conten I{)z?regls er EN (through W) =0or1 | end if;
' Q (through W) =0or1

146 Building a Programmable Logic Controller

R1_GE_R2 macro rl,r2
local Ll,L2
movwf Temp 1
btfss Temp 1,0
goto Ll
moviw r2
subwf rl, W

skpc
goto Ll
movlw D'1"
goto L2 [Lo
Ll movlw D'O"
L2 A\ 4
endm end
(a) (b)
FIGURE 7.3

(@) The macroR1_GE_R2 and (b) its flowchart.

7.3 Macro R1_EQ R2

The definition, symbols, and algorithm of the macro R1_EQ_R2 are depicted
in Table 7.3. Figure 74 shows the macro R1_EQ R2 and its flowchart. The
macro R1_EQ R2 has a Boolean input variable (active high enabling input),
EN, passed into the macro through W, and a Boolean output variable, Q,
passed out of the macro through W. This means that the input signal EN

TABLE 7.3
Definition, Symbols, and Algorithm of the Macro R1_EQ R2
Definition Ladder diagram Schematic symbol Algorithm
symbol
W — EN — W
. Q if EN = 1 then
is the content of R1 —R1 - if R1 = R2 then
register R1 EQual | v —| _ |— W —R2 } 1 Q_— 1;
to the' ctontl?; of R2 R1, R2 (8 bit register) else Q =0;
register R EN (through W) =0o0r1 | endif;
Q (through W) =0or1

Comparison Macros 147

R1_EQ R2 macro rl,r2
local Ll1,L2
movwf Temp 1
btfss Temp 1,0
goto Ll
moviw rl
subwf r2,W

skpz
goto Ll
movlw Dr1' W< 0 W<1
goto L2 [Lo

L1 movlw D'O’

12 A4
endm end

(a) (b)
FIGURE 7.4

(@) The macroR1_EQ R2 and (b) its flowchart.

should be loaded into W before this macro is run, and the output signal Q
will be provided within the W at the end of the macro. R1 and R2 are both
8-bit input variables. When EN = 0, no action is taken and the output Q (W)
is forced to be 0. When EN = 1, if the content of R1 is equal to the content of
R2 (R1 = R2), then the output Q (W) is forced to be 1. Otherwise, the output
Q (W) is forced to be 0.

7.4 Macro R1 LT R2

The definition, symbols, and algorithm of the macro R1_LT_R2 are depicted
in Table 74. Figure 7.5 shows the macro R1_LT_R2 and its flowchart. The
macro R1_LT_R2 has a Boolean input variable (active high enabling input),
EN, passed into the macro through W, and a Boolean output variable, Q,
passed out of the macro through W. This means that the input signal EN
should be loaded into W before this macro is run, and the output signal Q
will be provided within the W at the end of the macro. R1 and R2 are both
8-bit input variables. When EN = 0, no action is taken and the output Q (W)
is forced to be 0. When EN = 1, if the content of R1 is less than the content of

148 Building a Programmable Logic Controller

TABLE 7.4
Definition, Symbols, and Algorithm of the Macro R1_LT R2
Definition Ladder diagram Schematic symbol Algorithm
symbol
W —EN — W
. Q if EN = 1 then
is the content of —R1 .
) R1 < if R1 < R2 then
register R1 Less | vy _| < |_ W —R2 Q=1
TTnmim;?t R2 R1, R2 (8 bit register) else Q = 0;
ot register 82 EN (through W) =0or1 | end if;
Q (through W) =0or 1

R1_LT R2 macro rl,r2
local Ll,L2
movwf Temp 1
btfss Temp 1,0
goto Ll
moviw r2
subwf rl, W

skpnc
goto L1l
movlw D'1" W< 0 WwW<1
goto L2 |

Ll movlw D'O" L2

2 A 4
endm end

(a) (b)
FIGURE 7.5

(@) The macroR1_LT R2 and (b) its flowchart.

R2 (R1 < R2), then the output Q (W) is forced to be 1. Otherwise, the output
Q (W) is forced to be 0.

7.5 Macro R1_LE R2

The definition, symbols, and algorithm of the macro R1_LE_R2 are depicted
in Table 7.5. Figure 7.6 shows the macro R1_LE R2 and its flowchart. The
macro R1_LE R2 has a Boolean input variable (active high enabling input),

Comparison Macros 149

TABLE 7.5

Definition, Symbols, and Algorithm of the Macro R1_LE_R2

Definition Ladder diagram Schematic symbol Algorithm
symbol
W —EN — W
is the content of I Q if EN = 1 then
register R1 Less R1 <= if R1 < R2 then
than or Equal to w _| <= |_ W R Q=1
the content of R2 R1, R2 (8 bit register) else Q = 0;
register R2? EN (through W) =0or1 | end if;
Q (through W) =0or 1

EN, passed into the macro through W, and a Boolean output variable, Q,
passed out of the macro through W. This means that the input signal EN
should be loaded into W before this macro is run, and the output signal Q
will be provided within the W at the end of the macro. R1 and R2 are both
8-bit input variables. When EN = 0, no action is taken and the output Q (W)
is forced to be 0. When EN = 1, if the content of R1 is less than or equal to the
content of R2 (R1 < R2), then the output Q (W) is forced to be 1. Otherwise,
the output Q (W) is forced to be 0.

R1_LE_R2 macro rl,r2
local L1,L2
movwf Temp 1
btfss Temp 1,0
goto L1l
moviw rl
subwf r2,W

skpc
goto L1l
movlw D'1’
goto L2

L1l movlw D'O’

1.2 A 4
endm end

(a) (b)
FIGURE 7.6

(@) The macroR1_LE R2 and (b) its flowchart.

150 Building a Programmable Logic Controller

TABLE 7.6

Definition, Symbols, and Algorithm of the Macro R1_NE_R2

Definition Ladder diagram Schematic symbol Algorithm
symbol
W — EN — W
is the content I Q if EN = 1 then
of register R1 R1 <> if R1 = R2 then
NotEqualtothe | W — oW R Q=1
content of register R2 R1, R2 (8 bit register) else Q = 0;
R2? EN (through W) =0or1 | end if;
Q (through W) =0or 1

7.6 MacroR1_NE R2

The definition, symbols, and algorithm of the macro R1_NE_R2 are depicted
in Table 7.6. Figure 7.7 shows the macro R1_NE_R2 and its flowchart. The
macro R1_NE_R2 has a Boolean input variable (active high enabling input),
EN, passed into the macro through W, and a Boolean output variable, Q,
passed out of the macro through W. This means that the input signal EN

R1 NE R2 macro rl,r2
local Ll1,L2
movwf Temp 1
btfss Temp 1,0

goto L1l

movfiw rl

subwf r2,w

skpnz

goto L1l

movlw D'1’

goto L2
L1l movlw D'O"
L2

endm

(@ (b)
FIGURE 7.7

(@) The macroR1_NE_R2 and (b) its flowchart.

Comparison Macros 151

TABLE 7.7

Definition, Symbols, and Algorithm of the MacroR_GT K

Ladder Diagram

Definition Symbol Schematic Symbol Algorithm
WwW—EN QFr—W

. —R if EN = 1 then

is the content of _lx > iR > K then

R
register R Greater | vy _| N |_ W
Than the constant K R (8 bit register)

K? K (8 bit constant)
EN (through W) =0or 1
Q (through W) =0or1

Q=1
else Q = 0;
end if;

should be loaded into W before this macro is run, and the output signal Q
will be provided within the W at the end of the macro. R1 and R2 are both
8-bit input variables. When EN = 0, no action is taken and the output Q (W)
is forced to be 0. When EN = 1, if the content of R1 is not equal to the content
of R2 (R1 # R2), then the output Q (W) is forced to be 1. Otherwise, the output
Q (W) is forced to be 0.

7.7 MacroR_GT_K

The definition, symbols, and algorithm of the macroR_GT K are depicted in
Table 7.7. Figure 7.8 shows the macro R_GT K and its flowchart. The macro
R_GT Khasa Boolean input variable (active high enabling input), EN, passed
into the macro through W, and a Boolean output variable, Q, passed out of
the macro through W. This means that the input signal EN should be loaded
into W before this macro is run, and the output signal Q will be provided
within the W at the end of the macro. R is an 8-bit input variable, while K
is an 8-bit constant value. When EN = 0, no action is taken and the output
Q (W) is forced to be 0. When EN = 1, if the content of R is greater than the
constant value K (R > K), then the output Q (W) is forced to be 1. Otherwise,
the output Q (W) is forced to be 0.

7.8 MacroR_GE_K

The definition, symbols, and algorithm of the macro R_GE_K are depicted in
Table 7.8. Figure 79 shows the macro R_GE K and its flowchart. The macro
R_GE_ Khasa Boolean input variable (active high enabling input), EN, passed

152 Building a Programmable Logic Controller

R _GT_K macro R,K
local L1,1L2
movwf Temp 1
btfss Temp 1,0

goto L1l

moviw R

sublw K

skpnc

goto L1

movlw D'1"

goto L2 [1o
Ll movlw D'0" i
1.2 A 4

endm end

(a) (b)
FIGURE 7.8

(@) The macroR_GT K and (b) its flowchart.

into the macro through W, and a Boolean output variable, Q, passed out of
the macro through W. This means that the input signal EN should be loaded
into W before this macro is run, and the output signal Q will be provided
within the W at the end of the macro. R is an 8-bit input variable, while K
is an 8-bit constant value. When EN = 0, no action is taken and the output
Q (W) is forced to be 0. When EN = 1, if the content of R is greater than or
equal to the constant value K (R > K), then the output Q (W) is forced to be 1.
Otherwise, the output Q (W) is forced to be 0.

TABLE 7.8
Definition, Symbols, and Algorithm of the MacroR_GE_K

Ladder diagram

Definition Schematic symbol Algorithm
symbol
wW—EN Qf—W
. —R if EN = 1 then
is 'the content of R B iR > K then
register R Greater | vy _| o= |_ A\
. . Q=1
than or Equal to K R (8 bit register) else Q = 0;
the constant K? K (8 bit constant) -

EN (through W) =0or1 end if;

Q (through W) =0or1

Comparison Macros 153

R _GE_K macro R,K
local L1,L2
movwf Temp 1
btfss Temp 1,0
goto Ll
movlw K
subwf R,W

skpc
goto Ll
movlw D'1v W< 0 WwW<1
goto L2 [-

L1l movlw D'O’ 12

12 \ 4
endm end

(a) (b)
FIGURE 7.9

(@) The macroR_GE_Kand (b) its flowchart.

7.9 MacroR_EQ K

The definition, symbols, and algorithm of the macro R_EQ K are depicted
in Table 79. Figure 710 shows the macro R_EQ K and its flowchart. The
macroR_EQ_Khas a Boolean input variable (active high enabling input), EN,
passed into the macro through W, and a Boolean output variable, Q, passed
out of the macro through W. This means that the input signal EN should

TABLE 7.9
Definition, Symbols, and Algorithm of the MacroR_EQ K
Definition Ladder diagram Schematic symbol Algorithm
symbol
wW—EN Ql—W
—R B if EN = 1 then
is the content of R —K - if R = K then
register REQual | W —A=Fw I Q=1
K R (8 bit register)
to the constant K? . else Q = 0;
K (8 bit constant) dif:
EN (through W) =0or1 end it
Q (through W) =0or1

154 Building a Programmable Logic Controller

R _EQ K macro R,K
local L1l,1L2
movwf Temp 1
btfss Temp 1,0

goto Ll
moviw R
sublw K
skpz
goto L1
movlw D'1" W< 0 W<1
goto L2 | 1o
L1 movlw D'O’ "
1.2 A 4
endm end
(a) (b)
FIGURE 7.10

(@) The macroR_EQ_ K and (b) its flowchart.

be loaded into W before this macro is run, and the output signal Q will be
provided within the W at the end of the macro. R is an 8-bit input variable,
while K is an 8-bit constant value. When EN = 0, no action is taken and the
output Q (W) is forced to be 0. When EN = 1, if the content of R is equal to the
constant value K (R = K), then the output Q (W) is forced to be 1. Otherwise,
the output Q (W) is forced to be 0.

710 MacroR_LT K

The definition, symbols, and algorithm of the macro R_LT K are depicted
in Table 7.10. Figure 711 shows the macro R_LT K and its flowchart. The
macroR_LT Khas a Boolean input variable (active high enabling input), EN,
passed into the macro through W, and a Boolean output variable, Q, passed
out of the macro through W. This means that the input signal EN should be
loaded into W before this macro is run, and the output signal Q will be pro-
vided within the W at the end of the macro. R is an 8-bit input variable, while
K is an 8-bit constant value. When EN = 0, no action is taken and the output
Q (W) is forced to be 0. When EN = 1, if the content of R is less than the

Comparison Macros

TABLE 7.10

Definition, Symbols, and Algorithm of the MacroR_LT K

Ladder diagram

EN (through W) =0or 1
Q (through W) =0or1

Definition Schematic symbol Algorithm
symbol
W —EN QF—W
is the content of R : E < if EI; : Il(tt}}llzrrlx
register R Less W _| < |_ W Q-1
Than the constant K R (8 bit register) else Q_— (;
K? K (8 bit constant) end if: e

R LT K macro

local
movwf
btfss
goto
movlw
subwf
skpnc
goto
movlw
goto
L1 movlw
L2
endm

@

FIGURE 7.11

(@) The macroR_LT K and (b) its flowchart.

R,K
L1,L2
Temp 1

Ll
D'1"
L2
D'O"

155

constant value K (R < K), then the output Q (W) is forced to be 1. Otherwise,
the output Q (W) is forced to be 0.

711 MacroR_LE K

The definition, symbols, and algorithm of the macro R_LE_K are depicted
in Table 7.11. Figure 712 shows the macro R_LE_K and its flowchart. The
macroR_LE K has a Boolean input variable (active high enabling input), EN,

156 Building a Programmable Logic Controller

TABLE 7.11

Definition, Symbols, and Algorithm of the MacroR_LE_K

Definition Ladder diagram Schematic symbol Algorithm
symbol
W —EN Q}l—W
—R if EN = 1 then
is the content of <=
R] .
register R Less W _| <= |_ AV K ifR < K then
. R Q=1
than or Equal to K R (8 bit register) Ise Q = 0;
the constant K? K (8 bit constant) ene dsief~ -

EN (through W) =0or1
Q (through W) =0or1

passed into the macro through W, and a Boolean output variable, Q, passed
out of the macro through W. This means that the input signal EN should
be loaded into W before this macro is run, and the output signal Q will be
provided within the W at the end of the macro. R is an 8-bit input variable,
while K is an 8-bit constant value. When EN = 0, no action is taken and the
output Q (W) is forced to be 0. When EN =1, if the content of R is less than or
equal to the constant value K (R < K), then the output Q (W) is forced to be 1.
Otherwise, the output Q (W) is forced to be 0.

R LE_K macro R,K
local L1l,12
movwf Temp 1
btfss Temp 1,0

goto L1l
movEw R
sublw K
skpc
goto L1
movlw D'1" W<-0 W<1
goto L2
L1 movlw D'O’ > L2
1.2 A 4
endm end
(a) (b)
FIGURE 7.12

(@) The macroR_LE_Kand (b) its flowchart.

Comparison Macros

TABLE 7.12

Definition, Symbols, and Algorithm of the MacroR_NE_K

157

Definition Ladder diagram Schematic symbol Algorithm
symbol
W —EN Qf(—W
is the content of R : E <> if IF%I; ; %(tt}tlferrll
register R Not W— <« fF—w
. . Q=1
Equal to the con- K R (8 bit register) else Q = 0;
stant K? K (8 bit constant) dif: e
EN (through W) =0or 1 end it
Q (through W) =0or1
.

712 Macro R_NE K

The definition, symbols, and algorithm of the macro R_NE K are depicted
in Table 7.12. Figure 7.13 shows the macro R_NE K and its flowchart. The
macro R_NE_K has a Boolean input variable (active high enabling input), EN,
passed into the macro through W, and a Boolean output variable, Q, passed
out of the macro through W. This means that the input signal EN should be
loaded into W before this macro is run, and the output signal Q will be pro-
vided within the W at the end of the macro. R is an 8-bit input variable, while
K is an 8-bit constant value. When EN = 0, no action is taken and the output

R NE_K macro R,K
local L1l,L2
movwE Temp_1
btfss Temp_1,C

goto L1l

moviw R

sublw K

skpnz

goto L1

movlw D'1’

goto L2
Ll movlw D'oO’
L2

endm

(@)

FIGURE 7.13
(@) The macroR_NE_K and (b) its flowchart.

158 Building a Programmable Logic Controller

Q (W) is forced to be 0. When EN = 1, if the content of R is not equal to the
constant value K (R # K), then the output Q (W) is forced to be 1. Otherwise,
the output Q (W) is forced to be 0.

7.13 Examples for Comparison Macros

In this section, we will consider two examples, UZAM_plc_16i160_ex12.asm
and UZAM_plc_16i160_ex13.asm, to show the usage of comparison macros.
In order to test one of these examples, please take the related file UZAM_
plc_16i160_ex12.asm or UZAM_plc_16il60_ex13.asm from the CD-ROM
attached to this book, and then open the program by MPLAB IDE and com-
pile it. After that, by using the PIC programmer software, take the compiled
tile UZAM_plc_16i160_ex12.hex or UZAM_plc_16i160_ex13.hex, and by your
PIC programmer hardware, send it to the program memory of PIC16F648A
microcontroller within the PIC16F648A-based PLC. To do this, switch the
4PDT in PROG position and the power switch in OFF position. After loading
the file UZAM_plc_16i160_ex12.hex or UZAM_plc_16i160_ex13.hex, switch
the 4PDT in RUN and the power switch in ON position. Please check the
program’s accuracy by cross-referencing it with the related macros.

Let us now consider these example programs: The first example program,
UZAM_plc_16i160_ex12.asm, is shown in Figure 714. It shows the usage of

e e user program starts here --

1d LOGIC1 ;rung 1
R1_GT R2 I1,I0

out Q1.7

1d LOGIC1 ;rung 2
R1_GE_R2 I1,I0

out Q1.4

1d LOGIC1l ;rung 3
R1_EQ R2 I1,I0

out Q1.1

1d LOGIC1 ;rung4
R1_LT R2 I1,10

out Q0.6

1d LOGIC1 ;rung5
R1_LE R2 I1,10

out Q0.3

1d LOGIC1 ;rungé
R1_NE R2 I1,I0

out Q0.0

jemm—mmm—em———e— user program ends here ----

FIGURE 7.14
The user program of UZAM_plc_16il60_ex12.asm.

Comparison Macros

159

LOGIC1 11 Q1.7
1| | > | (
10
LOGIC1 I1 Ql4
2— | | >= | (
10
LOGIC1 I1 Q1.1
|] | |
3 i | =T {
10
LOGIC1 I1 Q0.6
s«
10
LOGIC1 11 Q0.3
5— | | <= | (
10
LOGIC1 I1 Q0.0
o <
10
(a)
N Q QL7
11— R1
10 —{ R2 >
LOGIC1 EN Q Ql4 >
11— R1
10— R2 *>=
N Q
11— R1
10 — R2 =
N Qp—{ @6 >
11— R1
10— R2 <
N Q—— Q03 >
11—{R1
10— R2 <=
N Ql— 0 >
IT 4 R1
10 —R2 <>

FIGURE 7.15

(b)

The user program of UZAM_plc_16i160_ex12.asm

diagram.

: (a) ladder diagram and (b) schematic

160 Building a Programmable Logic Controller

et user program starts here --

1d LOGIC1 ;rungl
R GT K I1,0Fh

out Q1.7

1d LOGIC1 ;rung2
R GE K I1,0Fh

out Q1.4

1d LOGICL ;rung3
R EQ K I1,0Fh

out Q1.1

1d LOGICL ;rung4
R LT K I1,0Fh

out Q0.6

1d LOGIC1 ;rung5
R_LE K I1,0Fh

out Q0.3

1d LOGICl ;rungé
R NE_K I1,0Fh

out Q0.0

Jmm e user program ends here ----

FIGURE 7.16
The user program of UZAM_plc_16i160_ex13.asm.

the macros in which the contents of two registers (R1 and R2) are compared.
The ladder diagram and schematic diagram of the user program of UZAM_
plc_16i160_ex12.asm, shown in Figure 7.14, are depicted in Figure 7.15(a) and
(b), respectively. In rungs 1 to 6, the content of I1 is compared with the content
of 10 based on the following criteria, respectively: >, >, =, <, <, = The result of
each comparison is observed from the outputs Q1.7, Q1.4, Q1.1, Q0.6, Q0.3, and
QO0.0, respectively. These outputs will be true or false based on the comparison
being made and the input data entered from the inputs I1 and I0.

The second example program, UZAM_plc_16il160_ex13.asm, is shown in
Figure 7.16. It shows the usage of the macros in which the content of a reg-
ister R is compared with a constant value K. The ladder diagram and sche-
matic diagram of the user program of UZAM_plc_16i160_ex13.asm, shown
in Figure 7.16, are depicted in Figure 717(a) and (b), respectively. In rungs 1

Comparison Macros 161

LOGIC1 I1 Q1.7
| | | | (
1 11 1 > {
OFh
LOGIC1 11 Ql.4
| | | | (
2 11 1 >= | {
OFh
LOGIC1 I1 Q1.1
| | | | (
3 11 1 =1 {
OFh
LOGIC1 I1 Q0.6
|1 | | (
4 11 o< ()
OFh
LOGIC1 11 Q0.3
s F—— < ———
OFh
LOGIC1 11 Q0.0
o —— o ——
OFh

11— R
0Fh — K >

LOGIC1 EN Q Ql.4
I1T—R
OFh— K >=
LOGIC1 EN Q Q1.1
I1—R
OFh—{K =
LOGIC1 EN Q

—
—
=

OFh— K <

|

I1T—R
OFh— K <=

LOGIC1 EN Q

LOGIC1 EN Q
11— R
OFh— K <>

FIGURE 7.17
The user program of UZAM_plc_16i160_ex13.asm: (a) ladder diagram and (b) schematic
diagram.

162 Building a Programmable Logic Controller

to 6, the content of I1 is compared with the constant value OFh based on the
following criteria, respectively: >, 2, =, <, <, # The result of each comparison is
observed from the outputs Q1.7, Q1.4, Q1.1, Q0.6, Q0.3, and Q0.0, respectively.
These outputs will be true or false based on the comparison being made and
the input data entered from the input register I1.

8

Arithmetical Macros

Numerical data imply the ability to do arithmetical operations, and almost
all PLCs provide some arithmetical operations, such as add, subtract, multi-
ply, and divide. Arithmetical functions will retrieve one or more values, per-
form an operation, and store the result in memory. As an example, Figure 8.1
shows an ADD function that will retrieve and add two values from sources
labeled source A and source B and will store the result in destination C. The list
of arithmetical functions (macros) described for the PIC16F648A-based PLC
is as follows. The increment and decrement functions are unary, so there is
only one source.

ADD (source value 1, source value 2, destination): Add two source val-
ues and put the result in the destination.

SUB (source value 1, source value 2, destination): Subtract the second
source value from the first one and put the result in the destination.

INC (source value, destination): Increment the source and put the result
in the destination.

DEC (source value, destination): Decrement the source and put the
result in the destination.

In this chapter, the following six arithmetical macros are described for the
PIC16F648A-based PLC:

RladdR2
RaddK
R1subR2
RsubK
incR
decR
The file definitions.inc, included within the CD-ROM attached to this book,

contains all arithmetical macros defined for the PIC16F648A-based PLC. Let
us now consider these macros in detail.

163

164 Building a Programmable Logic Controller

Source A =
ADD > Destination C
Source B >
FIGURE 8.1
The ADD function.
TABLE 8.1
Algorithm and Symbol of the Macro
RladdR2
Algorithm Symbol
ADD
if EN = 1 then W — EN ENO|— w
OUT =RI1 + R2; —IR1 OUT|—
ENO =1; _Iro
else ENO = 0;
end if; R1, R2, OUT (8 bit register)
EN (through W) =0or1
ENO (through W) =0or 1
|

8.1 Macro RladdR2

The algorithm and the symbol of the macro R1addR2 are depicted in Table 8.1.
Figure 8.2 shows the macro R1addR2 and its flowchart. In this macro, EN
is a Boolean input variable taken into the macro through W, and ENO is a
Boolean output variable sent out from the macro through W. Output ENO

RladdR2 macro inl,in2,out
local L1
movwf Temp 1

btfss Temp 1,0
goto 1 OUT <— R1+R2
movfw inl W <—Temp_1
addwf in2,W
movwf out p» L1
moviw Temp 1 v

L1 end
endm

(@) (b)

FIGURE 8.2
(@) The macro R1addR2 and (b) its flowchart.

Arithmetical Macros 165

TABLE 8.2
Algorithm and Symbol of the Macro
RaddK
Algorithm Symbol
ADD
W —EN ENO|— w
if EN = 1 then
OUT=R+K —R OUT—
ENO = J; —K
else FNO =0 R, OUT (8 bit register)
end if; K (8 bit constant)
EN (through W) =0or1
ENO (through W) =0or 1

follows the input EN. This means that when EN = 0, ENO is forced to be 0,
and when EN = 1, ENO is forced to be 1. This is especially useful if we want
to carry out more than one operation based on a single input condition. R1
and R2 refer to 8-bit source variables from where the source values are taken
into the macro, while OUT refers to an 8-bit destination variable to which
the result of the macro is stored. When EN = 1, the macro R1addR2 adds the
contents of two 8-bit variables R1 and R2 and stores the result into the 8-bit
output variable OUT (OUT = R1 + R2).

8.2 Macro RaddkK

The algorithm and the symbol of the macro RaddK are depicted in Table 8.2.
Figure 8.3 shows the macro RaddkK and its flowchart. In this macro, EN is a
Boolean input variable taken into the macro through W, and ENO is a Boolean
output variable sent out from the macro through W. Output ENO follows the
input EN. This means that when EN = 0, ENO is forced to be 0, and when EN
=1, ENO s forced to be 1. R and K are source values. R refers to an 8-bit source
variable, while K represents an 8-bit constant value. OUT refers to an 8-bit
destination variable to which the result of the macro is stored. When EN =1,
the macro Raddk adds the content of the 8-bit variable R and the 8-bit constant
value K and stores the result into the 8-bit output variable OUT (OUT =R + K).

8.3 Macro R1subR2

The algorithm and the symbol of the macro R1subR2 are depicted in
Table 8.3. Figure 8.4 shows the macro R1subR2 and its flowchart. In this
macro, EN is a Boolean input variable taken into the macro through W,

166

Building a Programmable Logic Controller

RaddK macro inl,in2,out

local
movwf
btfss
goto

movlw
addwf
movwf
movfw

Ll
endm

FIGURE 8.3

Ll
Temp 1
Temp 1,0
L1

in2
inl,W
out
Temp 1

(a) The macro RaddK and (b) its flowchart.

OUT<—R+K

W <—Temp_1

| L1
A 4
end

(b)

and ENO is a Boolean output variable sent out from the macro through W.
Output ENO follows the input EN. This means that when EN = 0, ENO is
forced to be 0, and when EN = 1, ENO is forced to be 1. R1 and R2 refer to
8-bit source variables from where the source values are taken into the macro,
while OUT refers to an 8-bit destination variable to which the result of the
macro is stored. When EN = 1, the macro R1subR2 subtracts the content of
the 8-bit variable R2 from the content of the 8-bit variable R1 and stores the
result into the 8-bit output variable OUT (OUT = R1 - R2).

TABLE 8.3
Algorithm and Symbol of the Macro
R1subR2
Algorithm Symbol
SUB
ifEN = 1 then W —EN ENO|—
OUT =R1 -R2; _IR1 OUT|—
ENO =1; _IRr2
else ENO = 0;
end if; R1, R2, OUT (8 bit register)
EN (through W) =0or1
ENO (through W) =0or1

Arithmetical Macros 167

RlsubR2 macro inl,in2,out
local Ll
movwf Temp 1

btfss Temp 1,0
goto 1 OUT<—R1-R2
movfw in2 W <—Temp_1
subwf inl,wW
movwf out » L1
movfw Temp 1 y
L1 end
endm
(a) (b)

FIGURE 8.4
(a) The macro R1subR2 and (b) its flowchart.

8.4 Macro Rsubk

The algorithm and the symbol of the macro RsubX are depicted in Table 8.4.
Figure 8.5 shows the macro RsubK and its flowchart. In this macro, EN is
a Boolean input variable taken into the macro through W, and ENO is a
Boolean output variable sent out from the macro through W. Output ENO
follows the input EN. This means that when EN = 0, ENO is forced to be
0, and when EN = 1, ENO is forced to be 1. R and K are source values. R
refers to an 8-bit source variable, while K represents an 8-bit constant value.

TABLE 8.4
Algorithm and Symbol of the Macro
RsubK
Algorithm Symbol
SUB
W —EN ENO|—w
if EN = 1 then
OUT =R-K; —|R OUTI—
ENO = J; —K
else ENO =0 R, OUT (8 bit register)
end if; K (8 bit constant)
EN (through W) =0or 1
ENO (through W) =0or 1

168 Building a Programmable Logic Controller

RsubK macro inl,in2,out
local L1
movwf Temp 1
btfss Temp 1,0
goto L1
movlw in2
subwf inl,W
movwf out
moviw Temp 1
L1l
endm
(a)

FIGURE 8.5
(@) The macro RsubX and (b) its flowchart.

OUT<—R-K
W <—Temp_1
L1
end

(b)

OUT refers to an 8-bit destination variable to which the result of the macro
is stored. When EN = 1, the macro RsubK subtracts the 8-bit constant value

K from the content of the 8-bit variable R
output variable OUT (OUT = R - K).

and stores the result into the 8-bit

8.5 Macro incR

The algorithm and the symbol of the macro incR are depicted in Table 8.5.
Figure 8.6 shows the macro incR and its flowchart. In this macro, EN is
a Boolean input variable taken into the macro through W, and ENO is a
Boolean output variable sent out from the macro through W. Output ENO

TABLE 8.5
Algorithm and Symbol of the Macro incR
Algorithm Symbol
INC
if EN = 1 then W —|EN ENO}|— w
OUT=IN+1;
ENO = 1, —IN OUT|—
else ENO =0 IN, OUT (8 bit register)
end if; EN (through W) =0or 1
ENO (through W) =0or1

Arithmetical Macros 169

N

incR macro 1in,out
local Ll
movwf Temp 1
btfss Temp:1 ,0 OUT<-R+1
goto Ll W <—Temp_1
incf in,W
movwf out » L1
moviw Temp 1 v

L1 end
endm

(a) (b)

FIGURE 8.6
(a) The macro incR and (b) its flowchart.

follows the input EN. This means that when EN = 0, ENO is forced to be 0,
and when EN = 1, ENO is forced to be 1. IN refers to an 8-bit source variable
from where the source value is taken into the macro, while OUT refers to an
8-bit destination variable to which the result of the macro is stored. When
EN = 1, the macro incR increments the content of the 8-bit variable IN and
stores the result into the 8-bit output variable OUT (OUT = IN + 1).

8.6 Macro decR

The algorithm and the symbol of the macro decR are depicted in Table 8.6.
Figure 8.7 shows the macro decR and its flowchart. In this macro, EN is
a Boolean input variable taken into the macro through W, and ENO is a

TABLE 8.6
Algorithm and Symbol of the Macro decR

Algorithm Symbol
DEC
if EN = 1 then W —EN ENO[—w/

OUT=IN-1;

ENO - 1; —IN OUT|—
else FNO =0 IN, OUT (8 bit register)
end if; EN (through W) =0or1

ENO (through W) =0or 1

170 Building a Programmable Logic Controller

N
decR macro in,out
local L1
movwf Temp 1
btfss Temp 1,0 OUT<-R-1
goto Ll W <—Temp_1
decf in,W
movwf out P L1
movfw Temp 1 v
L1 end
endm
(a) (b)

FIGURE 8.7
(@) The macro decr and (b) its flowchart.

Boolean output variable sent out from the macro through W. Output ENO
follows the input EN. This means that when EN = 0, ENO is forced to be 0,
and when EN = 1, ENO is forced to be 1. IN refers to an 8-bit source variable
from where the source value is taken into the macro, while OUT refers to an
8-bit destination variable to which the result of the macro is stored. When
EN = 1, the macro decR decrements the content of the 8-bit variable IN and
stores the result into the 8-bit output variable OUT (OUT = IN - 1).

8.7 Examples for Arithmetical Macros

In this section, we will consider two examples, UZAM_plc_16i160_ex14
.asm and UZAM_plc_16il60_ex15.asm, to show the usage of arithmeti-
cal macros. In order to test one of these examples, please take the related
file UZAM_plc_16i160_ex14.asm or UZAM_plc_16il60_ex15.asm from the
CD-ROM attached to this book, and then open the program by MPLAB
IDE and compile it. After that, by using the PIC programmer software,
take the compiled file UZAM_plc_16i160_ex14.hex or UZAM_plc_16i160_
ex15.hex, and by your PIC programmer hardware, send it to the program
memory of PIC16F648A microcontroller within the PIC16F648A-based PLC.
To do this, switch the 4PDT in PROG position and the power switch in
OFF position. After loading the file UZAM_plc_16i160_ex14.hex or UZAM _

plc_16i160_ex15.hex, switch the 4PDT in RUN and the power switch in ON

Arithmetical Macros 171

ittt user program starts here --

1d FRSTSCN ;rung 1
or I10.0

load R 00h,Q1

1d I0.1 ;rung 2
RladdR2 I1,Q01,Q1

1d I10.2 ;rung 3
r_edge 0

Rladdr2 I1,Q01,Q1

1d I10.3 ;rung 4
R1lsubR2 Q1,I1,01

1d I10.4 ;rung 5
r_edge 1

R1subR2 Q1,I11,01

1d I0.5 ;rung 6
RaddK Q1,.2,01

1d I10.6 ;rung 7
r_edge 2

RaddK Q1,.2,01

1d I10.7 ;rung 8
r_edge 3

Rsubk Q1,.3,01

e user program ends here ----

FIGURE 8.8
The user program of UZAM_plc_16i160_ex14.asm.

position. Please check the program’s accuracy by cross-referencing it with
the related macros.

Let us now consider these example programs: The first example program
UZAM_plc_16i160_ex14.asm is shown in Figure 8.8. It shows the usage of the
following arithmetical macros: R1addR2, RaddK, R1subR2, and RsubK. The
ladder diagram of the user program of UZAM_plc_16i160_ex14.asm, shown
in Figure 8.8, is depicted in Figure 8.9.

In the first rung, Q1 is cleared, i.e., 8-bit constant value 00h is loaded into
Q1, by using the macro 1oad_R. This process is carried out once at the first
program scan by using the FRSTSCN NO contact. Another condition to
carry out the same process is the NO contact of the input 10.0. This means
that when this program is run, during the normal PLC operation, if we force
the input 10.0 to be true, then the above-mentioned process will take place.

In rungs 2 and 3, we see how the arithmetical macro R1addR2 could be
used. In rung 2, the addition process Q1 =11 + Q1 is carried out, when 10.1
goes true. With this rung, if 10.1 goes and stays true, the content of I1 will be

172 Building a Programmable Logic Controller
FRSTSCN load_R
1 |} EN ENO |—
10.0 00h 4IN OUT — Q1
|l
|
01 ADD
2 | | EN ENO | —
11—{R1 OUT|— Q1
Q1 —{R2
102 r_edge ADD
3 || IN OUT EN ENO|—
0 —{num 11—Rl OUT|— QI
Q1 —R2
103 SUB
4 || EN ENO |—
Q1 —Rl1 OUT|— Q1
11—{R2
10.4 r_edge SUB
5 | | IN OUT EN ENO |—
1 — num Q1 —Rl OUT|— Q1
11— R2
05 ADD
6 || EN ENO |—
Ql—R OUT|—Q1
2—K
106 r_edge ADD
7 || IN OUT EN ENO | —
2 —num Ql—{R OUT|— Q1
2—K
107 r_edge SUB
8 | | IN OUT EN ENO |—
3 — num Q1—R OUT|— Q1
3—K
FIGURE 8.9

The ladder diagram of the user program of UZAM_plc_16i160_ex14.asm.

Arithmetical Macros 173

added to the content of Q1 on every PLC scan. Rung 3 provides a little bit dif-
ferent usage of the arithmetical macro R1addR2. Here, we use a rising edge
detector macro in order to detect the state change of input 10.2 from OFF to
ON. So this time, the addition process Q1 =I1 + Q1 is carried out only at the
rising edges of 10.2.

In rungs 4 and 5, we see how the arithmetical macro R1subR2 could be
used. In rung 4, the subtraction process Q1 = Q1 —1I1 is carried out when 10.3
goes true. With this rung, if 10.3 goes and stays true, the content of I1 will be
subtracted from the content of Q1, on every PLC scan. In rung 5, a rising edge
detector macro is used in order to detect the state change of input 10.4 from
OFF to ON. So this time, the subtraction process Q1 = Q1 — 11 is carried out
only at the rising edges of 10.4.

In rungs 6 and 7, we see how the arithmetical macro RaddK could be used.
In rung 6, the addition process Q1 = Q1 + 2 is carried out, when 10.5 goes
true. With this rung, if 10.5 goes and stays true, the constant value 2 will be
added to the content of Q1 on every PLC scan. In rung 7, a rising edge detec-
tor macro is used in order to detect the state change of input 10.6 from OFF to
ON. So this time, the addition process Q1 = Q1 + 2 is carried out only at the
rising edges of 10.6.

In the last rung, the subtraction process Q1 = Q1 — 3 is carried out at the
rising edges of 10.7.

The second example program, UZAM_plc_16il60_ex15.asm, is shown in
Figure 8.10. It shows the usage of the following arithmetical macros: incR and

e e user program starts here --

1d FRSTSCN ;rung 1
or I0.0

load R 00h,Q1

1d I0.1 ;rung 2
incR 1,01

1d I0.2 ;rung 3
r_edge 0

incR R1,01

1d I0.3 ;rung 4
decR 1,01

1d I0.4 ;rung 5
r_edge 1

decR 1,01

Jmmmmmm e user program ends here ----

FIGURE 8.10
The user program of UZAM_plc_16i160_ex15.asm.

174 Building a Programmable Logic Controller

FRSTSCN load R
1 ¥ EN ENO |—

0 00h —{IN OUT |— Q1
|
I

INC
| EN ENO |—
Q1 —IN OUT}|— Q1

r_edge INC
3 | | IN OUT EN ENO | —
0 —num Q1 —{IN OUT |— Q1

DEC
4 | | EN ENO |—
Q1 —{IN OUT |— Q1

104 r_edge DEC
5 | | IN OUT EN ENO|—
1 —num Q1 —{IN OUT |— Q1

FIGURE 8.11
The ladder diagram of the user program of UZAM_plc_16i160_ex15.asm.

decR. The ladder diagram of the user program of UZAM_plc_16i160_ex15
.asm, shown in Figure 8.10, is depicted in Figure 8.11.

In the first rung, Q1 is cleared, i.e., 8-bit constant value 00h is loaded into
Q1, by using the macro 1oad_R. This process is carried out once at the first
program scan by using the FRSTSCN NO contact. Another condition to
carry out the same process is the NO contact of the input 10.0. This means
that when this program is run, during the normal PLC operation, if we force
the input 10.0 to be true, then the above-mentioned process will take place.

Inrung 2, when 10.1 goes and stays true, Q1 is incremented on every PLC scan.

In rung 3, Q1 is incremented at each rising edge of 10.2.

In rung 4, when 10.3 goes and stays true, Q1 is decremented on every
PLC scan.

In rung 5, Q1 is decremented at each rising edge of 10.4.

9

Logical Macros

A logical function performs AND, NAND, OR, NOR, exclusive OR (XOR),
exclusive NOR (XNOR), logical operations on two registers (or one register
plus one constant value), and NOT (invert) logical operations on one register.
As an example, Figure 9.1 shows an AND logical function that will retrieve
AND and two values from sources labeled source A and source B and will
store the result in destination C. AND, NAND, OR, NOR, XOR, and XNOR
logical functions have the form of Figure 9.1, with two source values and
one destination register. In these, the logical function is applied to the two
source values and the result is put in the destination register. However, the
unary invert (INV) logical function has one source register and one destina-
tion register. It inverts all of the bits in the source register and puts the result
in the destination register.

In this chapter, the following logical macros are described for the
PIC16F648A-based PLC:

RlandR2
RandK
RlnandR2
RnandK
RlorR2
RorK
R1lnorR2
RnorK
R1xorR2
RxorK
R1lxnorR2
RxnorK
inv R
The file definitions.inc, included within the CD-ROM attached to this

book, contains all logical macros defined for the PIC16F648A-based PLC. Let
us now consider these macros in detail.

175

176 Building a Programmable Logic Controller

Source A =
Source B >

AND > Destination C

FIGURE 9.1
The AND function.

9.1 Macro RlandR2

The algorithm and the symbol of the macro R1andR2 are depicted in Table 9.1.
Figure 9.2 shows the macro R1andR2 and its flowchart. In this macro, EN
is a Boolean input variable taken into the macro through W, and ENO is a
Boolean output variable sent out from the macro through W. Output ENO

TABLE 9.1
Algorithm and Symbol of the Macro R1andR2
Algorithm Symbol
AND
if EN = 1 then W —EN ENO—w
OUT = R1 AND R; —IR1 OUT}|—
ENO =1; —1RrR2
else ENO = 0;
end if; R1, R2, OUT (8 bit register)
EN (through W) =0or 1
ENO (through W) =0or 1

RlandR2 macro inl,in2,out
local Ll
movwf Temp 1

btfss Temp 1,0
goto Ll OUT <— R1 AND R2
movfw inl W <—Temp_1
andwf in2,w
movwf out L1
movfw Temp 1 v

Lt end
endm

(a) (b)

FIGURE 9.2
(@) The macro R1andR2 and (b) its flowchart.

Logical Macros 177

TABLE 9.2
Algorithm and Symbol of the Macro Randk

Algorithm Symbol
AND
W —|EN ENO|— w

if EN = 1 then

OUT = RAND K; —|R OUT—

ENO=1; —X
else FNO =0; R, OUT (8 bit register)
end if; K (8 bit constant)

EN (through W) =0or1
ENO (through W) =0or1

follows the input EN. This means that when EN = 0, ENO is forced to be 0,
and when EN = 1, ENO is forced to be 1. This is especially useful if we want
to carry out more than one operation based on a single input condition. R1
and R2 refer to 8-bit source variables from where the source values are taken
into the macro, while OUT refers to an 8-bit destination variable to which the
result of the macro is stored. When EN = 1, the macro R1andR2 applies the
logical AND function to the two 8-bit input variables R1 and R2 and stores
the result in the 8-bit output variable OUT (OUT = R1 AND R2).

9.2 Macro RandK

The algorithm and the symbol of the macro RandK are depicted in Table 9.2.
Figure 9.3 shows the macro RandK and its flowchart. In this macro, EN is
a Boolean input variable taken into the macro through W, and ENO is a
Boolean output variable sent out from the macro through W. Output ENO
follows the input EN. This means that when EN = 0, ENO is forced to be
0, and when EN = 1, ENO is forced to be 1. R and K are source values. R
refers to an 8-bit source variable, while K represents an 8-bit constant value.
OUT refers to an 8-bit destination variable to which the result of the macro is
stored. When EN = 1 the macro RandK applies the logical AND function to
the 8-bit input variable R and the 8-bit constant value K and stores the result
in the 8-bit output variable OUT (OUT = R AND K).

9.3 Macro RlnandR2

The algorithm and the symbol of the macro RlnandR2 are depicted in
Table 9.3. Figure 9.4 shows the macro R1nandR2 and its flowchart. In this
macro, EN is a Boolean input variable taken into the macro through W,

178 Building a Programmable Logic Controller

RandK macro inl,in2,out
local L1l
movwf Temp 1
btfss Temp 1,0

goto .1 OUT<— RANDK
movlw in2 W <—Temp_1
andwf inl, W
movwf out > L1
moviw Temp_1 ¥

L1 end
endm

(a) (b)

FIGURE 9.3
(@) The macro RandX and (b) its flowchart.

and ENO is a Boolean output variable sent out from the macro through W.
Output ENO follows the input EN. This means that when EN = 0, ENO is
forced to be 0, and when EN = 1, ENO is forced to be 1. R1 and R2 refer
to 8-bit source variables from where the source values are taken into the
macro, while OUT refers to an 8-bit destination variable to which the result
of the macro is stored. When EN = 1, the macro R1nandR2 applies the logi-
cal NAND function to the two 8-bit input variables R1 and R2 and stores the
result in the 8-bit output variable OUT (OUT = R1 NAND R2).

TABLE 9.3
Algorithm and Symbol of the Macro R1nandR2
Algorithm Symbol
NAND
if EN = 1 then W —EN ENO—w
OUT = R1 NAND R2; —R1 OUT|—
ENO=1; —_1R2
else ENO = 0;
end if; R1, R2, OUT (8 bit register)
EN (through W) =0or1
ENO (through W) =0or 1

Logical Macros

RlnandR2 macro inl,in2,out

local
movwf
btfss
goto
moviw
andwf
movwf
comf
movfiw
Ll
endm

FIGURE 9.4

L1
Temp 1
Temp 1,0
Ll

inl
in2,W
out
out, £
Temp 1

()

OUT <— R1 NAND R2
W <—Temp_1

» L1
A
end

(b)

(@) The macro R1nandR2 and (b) its flowchart.

179

9.4 Macro RnandK

The algorithm and the symbol of the macro RnandK are depicted in Table 9.4.
Figure 9.5 shows the macro RnandkK and its flowchart. In this macro, EN
is a Boolean input variable taken into the macro through W, and ENO is a
Boolean output variable sent out from the macro through W. Output ENO
follows the input EN. This means that when EN = 0, ENO is forced to be
0, and when EN = 1, ENO is forced to be 1. R and K are source values. R
refers to an 8-bit source variable, while K represents an 8-bit constant value.

TABLE 9.4

Algorithm and Symbol of the Macro Rnandk

Algorithm Symbol
NAND
W —EN ENO |—w
if EN = 1 then
OUT = RNAND K; —R OUT—
ENO = 1; —K
else 'ENO =0 R, OUT (8 bit register)
end if; K (8 bit constant)
EN (through W) =0or1
ENO (through W) =0or 1

180 Building a Programmable Logic Controller

RnandK macro inl,in2,out
local L1l
movwf Temp 1
btfss Temp 1,0

goto L1
movlw in2 OUT <— RNAND K
andwf inl,w W <—Temp_1
movwf out
comf out, f » 11
movfw Temp 1 Y
L1 end
endm
() (b)

FIGURE 9.5
(@) The macro RnandK and (b) its flowchart.

OUT refers to an 8-bit destination variable to which the result of the macro
is stored. When EN = 1 the macro RnandK applies the logical NAND func-
tion to the 8-bit input variable R and the 8-bit constant value K and stores the
result in the 8-bit output variable OUT (OUT = R NAND K).

9.5 Macro RlorR2

The algorithm and the symbol of the macro R1orR2 are depicted in Table 9.5.
Figure 9.6 shows the macro R1lorR2 and its flowchart. In this macro, EN
is a Boolean input variable taken into the macro through W, and ENO is a

TABLE 9.5
Algorithm and Symbol of the Macro R1orR2

Algorithm Symbol
OR
if EN = 1 then W —EN ENO—w
OUT = R1 ORR2; —R1 OUT|—
ENO=1; _IR2
else ENO = 0;
end if; R1, R2, OUT (8 bit register)
EN (through W) =0or1
ENO (through W) =0or1

Logical Macros 181

R1orR2 macro inl,in2,out
local L1
movwf Temp 1
btfss Temp 1,0

goto .1 OUT <— R1ORR2
movEw inl W <—Temp_1
iorwf in2 ,W
movwf out > L1
moviw Temp 1 L

L1 end
endm

(a) (b)

FIGURE 9.6
(a) The macro R1orR2 and (b) its flowchart.

Boolean output variable sent out from the macro through W. Output ENO fol-
lows the input EN. This means that when EN = 0, ENO is forced to be 0, and
when EN = 1, ENO is forced to be 1. R1 and R2 refer to 8-bit source variables
from where the source values are taken into the macro, while OUT refers to
an 8-bit destination variable to which the result of the macro is stored. When
EN = 1, the macro R1orR2 applies the logical OR function to the two 8-bit
input variables R1 and R2 and stores the result in the 8-bit output variable
OUT (OUT = R1 OR R2).

9.6 Macro RorkK

The algorithm and the symbol of the macro RorK are depicted in Table 9.6.
Figure 9.7 shows the macro RorK and its flowchart. In this macro, EN is
a Boolean input variable taken into the macro through W, and ENO is a
Boolean output variable sent out from the macro through W. Output ENO
follows the input EN. This means that when EN = 0, ENO is forced to be
0, and when EN = 1, ENO is forced to be 1. R and K are source values. R
refers to an 8-bit source variable, while K represents an 8-bit constant value.
OUT refers to an 8-bit destination variable to which the result of the macro is
stored. When EN = 1 the macro RorK applies the logical OR function to the
8-bit input variable R and the 8-bit constant value K and stores the result in
the 8-bit output variable OUT (OUT = R OR K).

182 Building a Programmable Logic Controller

TABLE 9.6
Algorithm and Symbol of the Macro Rork

Algorithm Symbol
OR
W — EN ENO|— w
if EN = 1 then
OUT = RORK; —R OUT—
ENO = 1; —/K
else FNO =0 R, OUT (8 bit register)
end if; K (8 bit constant)
EN (through W) =0or1
ENO (through W) =0or 1

RorK macro inl,in2,out
local Ll
movwf Temp 1
btfss Temp 1,0

goto .1 OUT<— RORK
movlw in2 W <—Temp_1
iorwf inl,W
movwf out L1
movEw Temp 1 L

Ll end
endm

(@) (b)

FIGURE 9.7
(@) The macro RorK and (b) its flowchart.

9.7 Macro RlnorR2

The algorithm and the symbol of the macro R1norR2 are depicted in Table 9.7.
Figure 9.8 shows the macro R1norR2 and its flowchart. In this macro, EN
is a Boolean input variable taken into the macro through W, and ENO is a
Boolean output variable sent out from the macro through W. Output ENO
follows the input EN. This means that when EN = 0, ENO is forced to be
0, and when EN = 1, ENO is forced to be 1. R1 and R2 refer to 8-bit source
variables from where the source values are taken into the macro, while OUT

Logical Macros

TABLE 9.7

183

Algorithm and Symbol of the Macro R1norR2

Algorithm Symbol
NOR
if EN = 1 then W —{EN ENO|—
OUT = R1 NOR R2; _IR1 OUTL—
ENO =1; IRy
else ENO = 0;
end if; R1, R2, OUT (8 bit register)
EN (through W) =0or1
ENO (through W) =0 or 1

RlnorR2 macro inl,in2,out

local
movwf
btfss
goto
movEw
iorwf
movwf
comf
movfw
L1
endm

FIGURE 9.8

L1
Temp 1
Temp 1,0
Ll

inl

in2 ,W
out
out, f
Temp 1

(@) The macro R1norR2 and (b) its flowchart.

OUT <— R1 NOR R2
W <—Temp_1

L1

refers to an 8-bit destination variable to which the result of the macro is
stored. When EN = 1, the macro R1norR2 applies the logical NOR function
to the two 8-bit input variables R1 and R2 and stores the result in the 8-bit
output variable OUT (OUT = R1 NOR R2).

9.8 Macro Rnork

The algorithm and the symbol of the macro RnorK are depicted in Table 9.8.
Figure 99 shows the macro RnorK and its flowchart. In this macro, EN is
a Boolean input variable taken into the macro through W, and ENO is a

184

Boolean output variable sent out from the macro through W. Output ENO
follows the input EN. This means that when EN = 0, ENO is forced to be
0, and when EN = 1, ENO is forced to be 1. R and K are source values. R
refers to an 8-bit source variable, while K represents an 8-bit constant value.
OUT refers to an 8-bit destination variable to which the result of the macro is
stored. When EN = 1, the macro RnorK applies the logical NOR function to
the 8-bit input variable R and the 8-bit constant value K and stores the result

Building a Programmable Logic Controller

TABLE 9.8

Algorithm and Symbol of the Macro RnorK

else ENO = 0;
end if;

Algorithm Symbol
NOR
W —{EN ENO|— w
if EN = 1 then
OUT = R NORK; —|R OUT—
ENO = 1; —/K

R, OUT (8 bit register)

K (8 bit constant)

EN (through W) =0or1
ENO (through W) =0or 1

in the 8-bit output variable (OUT = R NOR K).

RnorK macro inl,in2,out

L1

FIGURE 9.9

local L1l
movwf Temp 1
btfss Temp 1,0
goto Ll
movlw in2
iorwf inl,w
movwf out

comf out, f
moviw Temp 1
endm

(a)

(@) The macro RnorK and (b) its flowchart.

OUT <— RNORK

W <—Temp_1

L1

Logical Macros 185

9.9 Macro R1xorR2

The algorithm and the symbol of the macro R1xorR2 are depicted in
Table 99. Figure 9.10 shows the macro R1xorR2 and its flowchart. In this
macro, EN is a Boolean input variable taken into the macro through W,
and ENO is a Boolean output variable sent out from the macro through W.
Output ENO follows the input EN. This means that when EN = 0, ENO is
forced to be 0, and when EN = 1, ENO is forced to be 1. R1 and R2 refer to
8-bit source variables from where the source values are taken into the macro,
while OUT refers to an 8-bit destination variable to which the result of the

TABLE 9.9
Algorithm and Symbol of the Macro R1xorR2
Algorithm Symbol
XOR
if EN = 1 then W —EN ENO—w
OUT = R1 EXOR R2; —{R1 OUT}—
ENO =1; _IR2
else ENO = 0;
end if; R1, R2, OUT (8 bit register)
EN (through W) =0or1
ENO (through W) =0or 1

R1xorR2 macro inl,in2,out
local L1l
movwf Temp 1

btfss Temp 1,0
goto 1 OUT <— R1 XOR R2
movfw inl W <—Temp_1
xorwf in2,W
movwf out » L1
movfw Temp 1 L
L1 end
endm
(a) (b)
FIGURE 9.10

(@) The macro R1xorR2 and (b) its flowchart.

186 Building a Programmable Logic Controller

macro is stored. When EN = 1, the macro R1xorR2 applies the logical EXOR
function to the two 8-bit input variables R1 and R2 and stores the result in
the 8-bit output variable OUT (OUT = R1 EXOR R2).

9.10 Macro RxorK

The algorithm and the symbol of the macro RxorK are depicted in Table 9.10.
Figure 9.11 shows the macro RxorK and its flowchart. In this macro, EN
is a Boolean input variable taken into the macro through W, and ENO is a

TABLE 9.10
Algorithm and Symbol of the Macro RxorkK
Algorithm Symbol
XOR
W —EN ENO|— w
if EN = 1 then
OUT = R EXORK; —|R OUT|—
ENO = 1; —K
else 'ENO =0 R, OUT (8 bit register)
end if; K (8 bit constant)
EN (through W) =0or 1
ENO (through W) =0or 1

RxorK macro inl,in2,out
local L1
movwf Temp 1

btfss Temp 1,0
goto 1 OUT<— R XORK
movlw in2 W <—Temp_1
xorwf inl,W
movwf out L1
movfw Temp 1 L
Ll end
endm
() (b)

FIGURE 9.11
(@) The macro RxorK and (b) its flowchart.

Logical Macros 187

TABLE 9.11
Algorithm and Symbol of the Macro R1xnorR2

Algorithm Symbol
XNOR
if EN = 1 then W —EN ENO—
OUT = R1 EXNOR R2; _Ir1 outl—
ENO =1; _Iro
else ENO = 0;
end if; R1, R2, OUT (8 bit register)
EN (through W) =0or1
ENO (through W) =0or 1

Boolean output variable sent out from the macro through W. Output ENO
follows the input EN. This means that when EN = 0, ENO is forced to be
0, and when EN = 1, ENO is forced to be 1. R and K are source values. R
refers to an 8-bit source variable, while K represents an 8-bit constant value.
OUT refers to an 8-bit destination variable to which the result of the macro is
stored. When EN = 1, the macro RxorK applies the logical EXOR function to
the 8-bit input variable R and the 8-bit constant value K and stores the result
in the 8-bit output variable OUT (OUT = R EXOR K).

9.11 Macro R1lxnorR2

The algorithm and the symbol of the macro R1xnorR2 are depicted in
Table 9.11. Figure 9.12 shows the macro RlxnorR2 and its flowchart. In
this macro, EN is a Boolean input variable taken into the macro through
W, and ENO is a Boolean output variable sent out from the macro through
W. Output ENO follows the input EN. This means that when EN = 0, ENO
is forced to be 0, and when EN = 1, ENO is forced to be 1. R1 and R2 refer
to 8-bit source variables from where the source values are taken into the
macro, while OUT refers to an 8-bit destination variable to which the result
of the macro is stored. When EN = 1, the macro R1xnorR2 applies the logical
EXNOR function to the two 8-bit input variables R1 and R2 and stores the
result in the 8-bit output variable OUT (OUT = R1 EXNOR R2).

9.12 Macro RxnorkK

The algorithm and the symbol of the macro RxnorK are depicted in
Table 9.12. Figure 9.13 shows the macro RxnorK and its flowchart. In this
macro, EN is a Boolean input variable taken into the macro through W,

188 Building a Programmable Logic Controller

RlxnorR2 macro inl,in2,out
local L1l
movwf Temp_1
btfss Temp 1,0

goto L1l
movfw inl OUT <— R1 XNOR R2
xorwf in2,W W <—Temp_1
movwf out
comf out,f » 1.1
movfw Temp 1 Y
L end
endm
(a) (b)
FIGURE 9.12

(a) The macro R1xnorR2 and (b) its flowchart.

and ENO is a Boolean output variable sent out from the macro through W.
Output ENO follows the input EN. This means that when EN = 0, ENO is
forced to be 0, and when EN = 1, ENO is forced to be 1. R and K are source
values. R refers to an 8-bit source variable, while K represents an 8-bit
constant value. OUT refers to an 8-bit destination variable to which the
result of the macro is stored. When EN = 1, the macro RxnorK applies the
logical EXNOR function to the 8-bit input variable R and the 8-bit constant
value K and stores the result in the 8-bit output variable OUT (OUT = R
EXNOR K).

TABLE 9.12
Algorithm and Symbol of the Macro Rxnork

Algorithm Symbol
XNOR
W —EN ENO}— w
if EN = 1 then
OUT = REXNORK; —|R OUT—
ENO = 1; X
else FNO =0 R, OUT (8 bit register)
end if; K (8 bit constant)

EN (through W) =0or1
ENO (through W) =0or1

Logical Macros

RxnorK macro inl,in2,out

local
movwf
btfss
goto
movlw
xorwf
movwf
comf
movfw
L1l
endm

FIGURE 9.13

L1
Temp 1
Temp 1,0
L1l

in2
inl,W
out

out, £
Temp 1

()

(@) The macro RxnorK and (b) its flowchart.

W <—Temp_1

OUT <— RXNORK

» L1
A
end

(b)

189

9.13 Macro inv_R

The algorithm and the symbol of the macro inv_R are depicted in Table 9.13.
Figure 9.14 shows the macro inv_R and its flowchart. In this macro, EN is a
Boolean input variable taken into the macro through W, and ENO is a Boolean
output variable sent out from the macro through W. Output ENO follows the
input EN. This means that when EN = 0, ENO is forced to be 0, and when
EN =1, ENO s forced to be 1. IN refers to an 8-bit source variable from where
the source value is taken into the macro, while OUT refers to an 8-bit desti-
nation variable to which the result of the macro is stored. When EN = 1, the

TABLE 9.13

Algorithm and Symbol of the Macro inv_R

Algorithm Symbol
inv_R
if EN = 1 then W — EN ENO}|— W

OUT = invert IN;

ENO - 1; —IN OUT|—
else ENO = 0; IN, OUT (8 bit register)
end if; EN (through W) =0or 1

ENO (through W) =0or 1

190 Building a Programmable Logic Controller

inv R macro in,out
" local Ll
movwf Temp 1
btfss Temp 1,0 OUT <— INV(IN)
goto L1 W <—Temp_1
comf in,W
movwf out » 1.1
movfEw Temp 1 Y
L end
endm
(a) (b)

FIGURE 9.14
(@) The macro inv_R and (b) its flowchart.

macro inv_R inverts all of the bits in the 8-bit source register IN and stores
the result in the 8-bit destination register OUT (OUT = invert IN).

9.14 Example for Logical Macros

In this section, we will consider an example, UZAM_plc_16il60_ex16.asm, to
show the usage of logical macros. In order to test the example, please take
the file UZAM_plc_16i160_ex16.asm from the CD-ROM attached to this
book, and then open the program by MPLAB IDE and compile it. After
that, by using the PIC programmer software, take the compiled file UZAM_
plc_16i160_ex16.hex, and by your PIC programmer hardware send it to the
program memory of the PIC16F648A microcontroller within the PIC16F648A-
based PLC. To do this, switch the 4PDT in PROG position and the power
switch in OFF position. After loading the file UZAM_plc_16i160_ex16.hex,
switch the 4PDT in RUN and the power switch in ON position. Please check
the program’s accuracy by cross-referencing it with the related macros.

Let us now consider this example program: The example program, UZAM_
plc_16i160_ex16.asm, is shown in Figure 9.15. It shows the usage of all logical
macros. The ladder diagram of the user program of UZAM_plc_16il60_ex16
.asm, shown in Figure 9.15, is depicted in Figure 9.16.

In the first rung, both Q1 and QO are cleared, i.e., 8-bit value 00h is loaded
into both Q0 and Q1, by using the macro 1oad_R. This process is carried out
once at the first program scan by using the FRSTSCN NO contact.

Logical Macros

1d_not
and
and_not
and

out

FIGURE 9.15

user program starts here --
FRSTSCN
00h,Q1
00h,Q0

10.
10.
10.
10.
03h,Q0

10.
10.
10.
10.
05h,Q0

10.
10.
10.
10.
0Fh,Q0

I0.
I0.
I0.
I0.
0FOh, Q0

I0.

I0.
I0.
MO.

I0.
I0.
I0.
I0.
MO.

I0.
I0.
I0.
I0.
MO.

I0.
I0.
I0.
I0.
MO.

I0.
I0.
I0.
I0.

s oo

o oo

0
1
2
3

1
0
2
3

2
0
1
3

3
0
1
2

ws oo N Oy

B b oy

;rung

;rung

;rung

;rung

;rung

;rung

;rung

;rung

;rung

;rung

The user program of UZAM_plc_16i160_ex16.asm. (Continued)

1

10

191

192 Building a Programmable Logic Controller

1d_not 10.7 ;rung 11
and I0.6
and I0.5
and not I0.4
out MO.6
1d_not I10.7 ;rung 12
and I0.6
and I0.5
and I0.4
out MO.7
1d I10.7 ;rung 13
and not I0.6
and:hot I0.5
and_not I10.4
out M1.0
1d I10.7 ;rung 14
and_not I0.6
and_not I0.5
and I10.4
out M1.1
1d I10.7 ;rung 15
and not I0.6
and I0.5
and_not I0.4
out M1.2
1d I10.7 ;rung 16
and_not I0.6
and I0.5
and I10.4
out M1.3
1d I10.7 ;rung 17
and I0.6
and_not I0.5
and_not I10.4
out M1.4
1d 10.7 ;rung 18
and I0.6
and not I0.5
and 10.4
out M1.5
1d I10.7 ;rung 19
and I0.6
and I0.5
and_not I0.4
out M1.6

FIGURE 9.15 (Continued)
The user program of UZAM_plc_16i160_ex16.asm. (Continued)

Logical Macros

1d
inv_R

1d
RlandR2

1d
RlandR2

inv R

1d
RandK

1d
RlnandR2

1d
RnandK

1d
RlorR2

1d
RorK

1d
RlnorR2

1d
RnorkK

1d
R1lxorR2

1d
RxorK

1d
R1xnorR2

FIGURE 9.15 (Continued)

MO.1
11,01

MO.2
I1,00,01

MO.3
I1,Q0,M3
M3,Q1

MO.4
I1,50h,Q1

MO.5
I1,00,01

MO.6
11,50h,Q1

MO.7
I1,00,01

M1.0
I1,50h,Q1

M1.1
I1,Q0,01

M1.2
I1,50h,Q1

M1.3
I1,00,01

M1.4
I1,50h,Q1

M1.5
I1,Q0,Q1

M1.6
I1,50h,Q1

user program ends here --

The user program of UZAM_plc_16i160_ex16.asm.

;rung

;rung

;rung

;rung

;rung

;rung

;rung

;rung

;rung

;rung

;rung

;rung

;rung

;rung

20

21

22

23

24

25

26

27

28

29

30

31

32

33

193

In each rung between 2 and 5, an 8-bit value, namely, 03h, 05h, 0Fh, and
FOh, is loaded into QO based on the inputs 10.3, 10.2, 10.1, and 10.0, by using
the macro load R, as shown in Table 9.14. If 10.3,10.2,10.1,10.0 = 0001 (0010,
0100, and 1000, respectively), then Q0 = 03h (05h, OFh, and FOh, respectively).

In the 14 rungs between 6 and 19, a 4-to-16 decoder is implemented,
whose inputs are 10.7, 10.6, 10.5, and 10.4, and whose outputs are M0.1, M0.2,
..., M0.7, M1.0, M11, ..., M1.6. Note that only 14 combinations are utilized,

194 Building a Programmable Logic Controller

TABLE 9.14

Selection of 8-Bit Values to Be Deposited in Q0 Based on the Inputs 10.0, 10.1, 10.2,
and 10.3

8-Bit Value Selected to Be

10.0 10.1 10.2 10.3 Deposited in Q0

1 0 0 0 Q0=03h(00000011)
0 1 0 0 Q0=05h(00000101)
0 0 1 0 Q0=0Fh (00001111)
0 0 0 1 Q0=FO0h(11110000)

while the following combinations for inputs (10.7, 10.6, 10.5, 10.4), 0000 and
1111, are not implemented. Therefore, for these combinations of the inputs
10.7, 10.6, 10.5, and 10.4, the program will not produce any output. This
arrangement is made to choose 14 different markers based on the input
data given through the inputs 10.7, 10.6, 10.5, and 10.4. Table 9.15 shows the

load_R load_R
FRSTSCN

1 | | EN ENO EN ENO|-
00h—IN OUT|Q1 00h—IN OUT}|-Qo

load_R
100 101 102 103
|] | | |
2 | | % % % EN ENO|-

03h -{IN OUT|-Qo

load_R
10.1 10.0 10.2 10.3
|1 | | |
3 | | /I |/1| |/1| EN ENO[
05h—IN OUT|~ Qo0
load R
10.2 10.0 10.1 10.3
|1 | | |
4 | | /} % N EN ENO|
OFh—IN OUT |- Qo
load R
10.3 10.0 10.1 10.2
|1 | |
5 | | /} l/} , EN ENO[

FOh—IN OUT [~ QO

FIGURE 9.16
The ladder diagram of the user program of UZAM_plc_16il60_ex16.asm. (Continued)

Logical Macros

10
11
12
13
14
15
16
17
18

19

FIGURE 9.16 (Continued)
The ladder diagram of the user program of UZAM_plc_16i160_ex16.asm. (Continued)

’\Z
j=]

/\Z
o

,\Z
=]

f\g
N

-~z
=]

/\Z
(=}

~z
=]

/\Z
-

,\Z
j—

/\Z
—_

,\g
—

/\Z
—_

’\Z
—

V43—
10.7 10.6 10.5 10.4
VI
10.7 10.6 10.5 10.4
V1
10.7 10.6 10.5 10.4
Vi
10.7 10.6 10.5 10.4
Vi
10.7 10.6 10.5 10.4
V— — —
10.7 10.6 10.5 10.4
V1
10.7 10.6 10.5 10.4
| —/——
10.7 10.6 10.5 10.4
| 4/
10.7 10.6 10.5 10.4
| —4——
10.7 10.6 10.5 10.4
| 4
10.7 10.6 10.5 10.4
| —— ——
10.7 10.6 10.5 10.4
| —— |
10.7 10.6 10.5 10.4
| —— —— —

/\Z
-

FCTrT I I rrrirrirrirrr

195

truth table based on the input data entered through 10.7, 10.6, 10.5, and 10.4,

and the 14 markers chosen.

In the 14 PLC rungs between 20 and 33, we define different logical opera-
tions according to the decoder outputs represented by the marker bits M0.1,
MO0.2,...,M0.7, M1.0,M11, ..., M1.6. In each of these 14 rungs, a logical process

196 Building a Programmable Logic Controller

MO.1 inv_R
20 |} EN ENO |—
11— IN OUT[—Q1
M0.2 AND
21 I | EN ENO[—
11—Rl OUT[—Q1
Q0 —R2
MO0.3 AND inv_R
22 i | EN ENO EN ENO }—
I1—Rl OUT—M7 M7—-IN OUT|—Q1
Q0—{R2
M0.4 AND
23 I} EN ENO[—
I11—R OUT}—Q1
50h — K
MO5 NAND
24 I} EN ENO[—
I1—Rl OUT—Q1
Q0—R2
MO6 NAND
25 I} EN ENO[—
I11—R OUT}—Q1
50h — K
M0.7 OR
26 I} EN ENO|—
I11—Rl OUT}—Q1
Q0—{R2
ML1.0 OR
27 | EN ENO[—
I1—R OUT[—Q1
50h — K
ML1 NOR
28 I} EN ENO[—
I1—Rl OUT|—Q1
Qo—R2
M12 NOR
29 i | EN ENO[—
I1—R OUT[—Q1
50h — K
ML3 XOR
30 I} EN ENO[—
I1—Rl OUT—Q1
Qo0 —{Rr2
Mi4 XOR
31 | EN ENO[—
I1—R OUT|—Q1
50h — K
ML5 XNOR
32 i | EN ENO[—
I11—Rl OUT}—Q1
Q0—R2
M16 XNOR
33 I} EN ENO[—
I1—R OUT|—Q1
50h — K

FIGURE 9.16 (Continued)
The ladder diagram of the user program of UZAM_plc_16i160_ex16.asm.

Logical Macros 197

TABLE 9.15

Selection of Markers Based on the Inputs 10.7, 10.6, 10.5, and 10.4

10.7 10.6 10.5 10.4 Marker
0 0 0 1 MO.1
0 0 1 0 MO0.2
0 0 1 1 MO0.3
0 1 0 0 MO0.4
0 1 0 1 MO0.5
0 1 1 0 MO0.6
0 1 1 1 MO0.7
1 0 0 0 M1.0
1 0 0 1 M1.1
1 0 1 0 M1.2
1 0 1 1 M1.3
1 1 0 0 M1.4
1 1 0 1 M1.5
1 1 1 0 M1.6

is carried out, as shown in Table 9.16. For example, if M0.7 = 1, then the fol-
lowing operation is done: Q1 = I1 OR Q0. This means that the macro R1orR2
applies the logical OR function to the two 8-bit input variables I1 and Q0
and stores the result to the 8-bit output variable QI. It should be obvious that
since only one of the markers (M0.1, M0.2, ..., M0.7, M1.0, M11, ..., M1.6) is
active at any time, only one of the processes shown in Table 9.16 can be car-
ried out at a time.

TABLE 9.16

Selection of Logical Processes Based on Markers
Marker Logical Process Selected

MO0.1 Q1=INVI1

MO0.2 Q1 =11 AND QO

MO0.3 Q1 =11 NAND Q0 = INV M7 (M7 =11 AND Q0)
Mo0.4 Q1 =11 AND 50h

MO0.5 Q1 =11 NAND QO

MO0.6 Q1 =11 NAND 50h

MO0.7 Q1 =11 OR QO

M1.0 Q1 =11 OR 50h

M1.1 Q1 =11 NOR QO

M1.2 Q1 =11 NOR 50h

M1.3 Q1 =I1 XOR Q0

M1.4 Q1 =11 XOR 50h

M1.5 Q1 =11 XNOR QO

M1.6 Q1 =11 XNOR 50h

10

Shift and Rotate Macros

A shift (SHIFT) function moves the bits in a register to the right or to the left. As
an example, Figure 10.1 shows a shift right function that retrieves the input data
from the source register A and shifts the bits of the source register A toward the
right as many numbers as specified by the number of shift, while the serial data
are taken from the left through the Boolean input variable shift in bit.
The result of the shift operation is stored in a destination register B. In this case,
the least significant bit (LSB) is shifted out as many numbers as specified by
the number of shift. A shift left function is identical, except that the shift in
bit, taken from the right, is moved in the opposite direction toward left, shift-
ing out the most significant bit (MSB) as many numbers as specified by the
number of shift. A rotate (ROTATE) function, like a shift function, shifts data
to the right or left, but instead of losing the shift out bit, this bit becomes
the shift in bit at the other end of the register (rotated bit). The number
of rotation defines how many bits will be rotated to the right or left. Similar to
the shift function, the result of the rotate operation is stored in the destination
register B.

In this chapter, the following shift and rotate macros are described for the
PIC16F648A-based PLC:

shift R
shift L
rotate R
rotate L

Swap

The file definitions.inc, included within the CD-ROM attached to this
book, contains all shift and rotate macros defined for the PIC16F648A-based
PLC. Let us now consider these macros in detail.

10.1 Macro shift R

The algorithm and the symbol of the macro shift R are depicted in
Table 10.1. Figure 10.2 shows the macro shift_ R and its flowchart. In this
macro, EN is a Boolean input variable taken into the macro through W, and

199

200 Building a Programmable Logic Controller

Source register A —>f > Destination register B
SHIFT
Shiftin bit = RiGHT

The number of shift —

FIGURE 10.1
The shift right function.

ENO is a Boolean output variable sent out from the macro through W. Output
ENO follows the input EN. This means that when EN = 0, ENO is forced to
be 0, and when EN = 1, ENO is forced to be 1. This is especially useful if we
want to carry out more than one operation based on a single input condition.
RIN refers to an 8-bit source variable from where the source value is taken
into the macro, while ROUT refers to an 8-bit destination variable to which
the result of the macro is stored. N represents the number of shift, which
can be any number in 1, 2, ..., 8. SIN is the Boolean input variable shift in
bit. When EN = 1, the macro shift_ R retrieves the 8-bit input data from
RIN and shifts the bits of RIN toward right as many numbers as specified
by N, while the serial data are taken from left through SIN. The result of the
shift right operation is stored in the 8-bit output register ROUT.

10.2 Macro shift L

The algorithm and the symbol of the macro shift L are depicted in
Table 10.2. Figure 10.3 shows the macro shift L and its flowchart. In this
macro, EN is a Boolean input variable taken into the macro through W,

TABLE 10.1
Algorithm and Symbol of the Macro shift R
Algorithm Symbol
SHIFT_R
W —EN ENO—W
if EN = 1 then — SIN
ROUT = N times shift right(RIN) — RIN ROUT|—
and take the serial data_in from SIN; N
ENO =1;
else ENO = 0; RIN, ROUT (8 bit register)
end if; SIN (reg,bit) =0 or 1
N (number of shift) = 1,2, ..., 8
EN (through W) =0or1
ENO (through W) =0or 1

Shift and Rotate Macros 201

shift R macro n,reg,bit,Rin,Rout
local Ll,L2
movwif Temp 1
btfss Temp 1,0
goto L1
movlw n
xorlw 00h

skpnz
goto L1
movlw .9
sublw n
skpnc
goto L1

movEw Rin
movwf Rout
movlw n
movwif Temp 1

L2 bef STATUS,C
btfsc reg,bit
bsf STATUS,C
rrf Rout, f
decfsz Temp 1,f
goto L2
bsf Temp 1,0

moviw Temp 1
Ll
endm

()

FIGURE 10.2
(@) The macro shift R and (b) its flowchart. (Continued)

and ENO is a Boolean output variable sent out from the macro through W.
Output ENO follows the input EN. This means that when EN = 0, ENO is
forced to be 0, and when EN = 1, ENO is forced to be 1. RIN refers to an 8-bit
source variable from where the source value is taken into the macro, while
ROUT refers to an 8-bit destination variable to which the result of the macro
is stored. N represents the number of shift, which can be any number in 1, 2,
..., 8. SIN is the Boolean input variable shift in bit. When EN =1, the
macro shift L retrieves the 8-bit input data from RIN and shifts the bits of
RIN toward left as many numbers as specified by N, while the serial data are
taken from right through SIN. The result of the shift left operation is stored
in the 8-bit output register ROUT.

10.3 Macro rotate R

The algorithm and the symbol of the macro rotate R are depicted in
Table 10.3. Figure 10.4 shows the macro rotate_ R and its flowchart. In
this macro, EN is a Boolean input variable taken into the macro through W,

202 Building a Programmable Logic Controller

? N
(n#0) & (n<9)

\ 4

ROUT <— RIN
Temp_1 <— n

> 12
Y

\ 4
| RESET STATUS,C |

| SET STATUS,C |

ROUT <— ROTATE right ROUT with Carry
Temp_1=Temp_1-1

SET Temp_1,0
W <—Temp_1

L1 [«
v
end

(b)

FIGURE 10.2 (Continued)
(@) The macro shift R and (b) its flowchart.

Shift and Rotate Macros

TABLE 10.2

Algorithm and Symbol of the Macro shift L

ENO =1;
else ENO = 0;
end if;

and take the serial data_in from SIN; |

N

Algorithm Symbol
SHIFT_L
W —EN ENO—W
if EN = 1 then — SIN
ROUT = N times shift left(RIN) — RIN ROUT |—

RIN, ROUT (8 bit register)
SIN (reg,bit) =0 or 1
N (number of shift) = 1,2, ..., 8
EN (through W) =0or1

ENO (through W) =0or1

203

and ENO is a Boolean output variable sent out from the macro through W.
Output ENO follows the input EN. This means that when EN = 0, ENO is
forced to be 0, and when EN = 1, ENO is forced to be 1. RIN refers to an 8-bit
source variable from where the source value is taken into the macro, while
ROUT refers to an 8-bit destination variable to which the result of the macro

shift L macro n,reg,bit,Rin,Rout

local
movwf
btfss
goto
movlw
xorlw
skpnz
goto
movlw
sublw
skpnc
goto
moviw
movwf
movlw
movwf
L2 bef
btfsc
bsf
rlf
decfsz
goto
bsf
movEw
Ll
endm

FIGURE 10.3

L1,L2
Temp_1
Temp_ 1,0
L1l

n

00h

L1l

Rin

Rout

n

Temp 1
STATUS,C
reg,bit
STATUS,C
Rout, £
Temp 1,f
L2

Temp 1,0
Temp 1

(@)

(@) The macro shift L and (b) its flowchart. (Continued)

204 Building a Programmable Logic Controller

? N
(n#0) & (n<9)

v

ROUT <— RIN
Temp_1 <— n

P 12
Y

A 4
| RESET STATUS,C |

| SET STATUS,C |

ROUT <— ROTATE left ROUT with Carry
Temp_1=Temp_1-1

SET Temp_1,0
W <—Temp_1

Ll [«
A 4
end

(b)

FIGURE 10.3 (Continued)
(@) The macro shift L and (b) its flowchart.

Shift and Rotate Macros

205

TABLE 10.3
Algorithm and Symbol of the Macro rotate R
Algorithm Symbol
ROTATE_R
W —EN ENO—W
if EN = 1 then _IRIN ROUT
ROUT = N times rotate right(RIN); B
ENO = 1; N
else ENO = 0; RIN, ROUT (8 bit register)
end if; N (number of rotation) = 1,2, ..., 7
EN (through W) =0or1
ENO (through W) =0or1

is stored. N represents the number of

rotation, which can be any number in

1,2, ..., 7. When EN = 1, the macro rotate_R retrieves the 8-bit input data
from RIN and rotates the bits of RIN toward right as many numbers as speci-
fied by N. The result of the rotate right operation is stored in the 8-bit output

register ROUT.

rotate R mac
local
movwf
btfss
goto
movlw
xorlw
skpnz
goto
movlw
sublw
skpnc
goto
movfw
movwf
movlw
movwf
bcf
btfsc
bsf
rrf
decfsz
goto
bsf
movfw

L2

Ll
endm

ro n,Rin,Rout
Ll,L2

Temp 1

Temp 1,0

Ll

n

00h

L1l

Rin

Rout

n

Temp 1
STATUS,C
Rout,0
STATUS,C
Rout, £
Temp 1,f
L2
Temp 1,0
Temp 1

()

FIGURE 10.4
(@) The macro rotate R and (b) its flowchart.

(Continued)

206 Building a Programmable Logic Controller

N
? N
(n#0) & (n<8) >
ROUT <— RIN
Temp_1 <— n
P 1.2
) 4
Y ? N
ROUT,0=0
A 4
| RESET STATUS,C | | SET STATUS,C |

|
V¢‘
ROUT <— ROTATE right ROUT with Carry
Temp_1=Temp_1-1

SET Temp_1,0
W <—Temp_1

Ll |«
A 4
end

(b)

FIGURE 10.4 (Continued)
(@) The macro rotate R and (b) its flowchart.

Shift and Rotate Macros 207

TABLE 10.4
Algorithm and Symbol of the Macro rotate L
Algorithm Symbol
ROTATE_L
FEN < 1th W —EN ENO—W
1 = en
ROUT = N times rotate left(RIN); —|RIN ROUT —
ENO = I; —N
else ENO =0 RIN, ROUT (8 bit register)
end if; N (number of rotation) = 1,2, ..., 7
EN (through W) =0or1
ENO (through W) =0or1

10.4 Macro rotate L

The algorithm and the symbol of the macro rotate L are depicted in
Table 10.4. Figure 10.5 shows the macro rotate_L and its flowchart. In this
macro, EN is a Boolean input variable taken into the macro through W, and
ENO is a Boolean output variable sent out from the macro through W. Output
ENO follows the input EN. This means that when EN = 0, ENO is forced to

rotate L macro n,Rin,Rout
local L1l,L2
movwf Temp 1
btfss Temp_ 1,0
goto L1
movlw n
xorlw 00h

skpnz
goto L1l
movlw .8
sublw n
skpnc
goto L1l

movEw Rin
movwf Rout
movlw n
movwf Temp 1

L2 bef STATUS,C
btfsc Rout,7
bsf STATUS,C
rlf Rout, f
decfsz Temp 1,f
goto L2
bsf Temp 1,0

movfw Temp 1
L1
endm

()

FIGURE 10.5
(@) The macro rotate L and (b) its flowchart. (Continued)

208 Building a Programmable Logic Controller

?
Temp_1,0=1

?
(n#0) & (n<8)

v

ROUT <— RIN
Temp_1 <— n

A 4
| RESET STATUS,C |

| SET STATUS,C |

ROUT <— ROTATE left ROUT with Carry
Temp_1=Temp_1-1

SET Temp_1,0
W <—Temp_1

Ll [«
\ 4
end

(b)

FIGURE 10.5 (Continued)
(@) The macro rotate L and (b) its flowchart.

Shift and Rotate Macros 209

TABLE 10.5
Algorithm and Symbol of the Macro Swap

Algorithm Symbol
SWAP
if EN = 1 then
W — — W
OUT = SWAP(IN); EN-ENO
ENO = 1; N OUTj—
else ENO = 0; IN, OUT (8 bit register)
end if; EN (through W) =0or1

ENO (through W) =0or1

be 0, and when EN = 1, ENO is forced to be 1. RIN refers to an 8-bit source
variable from where the source value is taken into the macro, while ROUT
refers to an 8-bit destination variable to which the result of the macro is stored.
N represents the number of rotation, which can be any numberin 1, 2, ..., 7
When EN = 1, the macro rotate_ L retrieves the 8-bit input data from RIN
and rotates the bits of RIN toward left as many numbers as specified by N. The
result of the rotate left operation is stored in the 8-bit output register ROUT.

10.5 Macro Swap

The algorithm and the symbol of the macro Swap are depicted in
Table 10.5. Figure 10.6 shows the macro Swap and its flowchart. In this
macro, EN is a Boolean input variable taken into the macro through W,

Swap macro in,out
local L1
movwf Temp 1
btfss Temp 1,0 OUT <— SWAP(IN)
goto L1l W <— Temp_1
swapf in,W
movwf out L1
movEw Temp 1 ¥

L end
endm

(a) (b)

FIGURE 10.6
(a) The macro Swap and (b) its flowchart.

210 Building a Programmable Logic Controller

and ENO is a Boolean output variable sent out from the macro through
W. Output ENO follows the input EN. This means that when EN = 0, ENO
is forced to be 0, and when EN = 1, ENO is forced to be 1. IN refers to an
8-bit source variable from where the source value is taken into the macro,
while OUT refers to an 8-bit destination variable to which the result of the
macro is stored. When EN = 1, the macro Swap retrieves the 8-bit input
data from IN and swaps (exchanges the upper and lower nibbles—4 bits)
the nibbles of IN. The result of the swap operation is stored in the 8-bit
output register OUT.

10.6 Examples for Shift and Rotate Macros

In this section, we will consider two examples, UZAM_plc_16il60_ex17.asm
and UZAM_plc_16il160_ex18.asm, to show the usage of shift and rotate mac-
ros. In order to test one of these examples, please take the related file UZAM_
plc_16i160_ex17.asm or UZAM_plc_16i160_ex18.asm from the CD-ROM
attached to this book, and then open the program by MPLAB IDE and com-
pile it. After that, by using the PIC programmer software, take the compiled
file UZAM_plc_16i160_ex17.hex or UZAM_plc_16i160_ex18.hex, and by your
PIC programmer hardware, send it to the program memory of PIC16F648A
microcontroller within the PIC16F648A-based PLC. To do this, switch the
4PDT in PROG position and the power switch in OFF position. After loading
the file UZAM_plc_16i160_ex17.hex or UZAM_plc_16i160_ex18.hex, switch
the 4PDT in RUN and the power switch in ON position. Please check the
program’s accuracy by cross-referencing it with the related macros. When
studying these two examples, note that the register QO (respectively, Q1, 10,
and I1) is made up of 8 bits: Q0.7, Q0.6, ..., Q0.0 (respectively, Q1.7, QL6, ...,
11.0; 10.7, 10.6, ..., 10.0; and I1.7, I1.6, ..., I1.0), and that Q0.7 (respectively, Q1.7,
10.7, and I1.7) is the most significant bit (MSB), while Q0.0 (respectively, Q1.0,
10.0, and I1.0) is the least significant bit (LSB).

Let us now consider these example programs: The first example program,
UZAM_plc_16i160_ex17.asm, is shown in Figure 10.7. It shows the usage of
two shift macros shift R and shift L. The ladder diagram of the user
program of UZAM_plc_16i160_ex17.asm, shown in Figure 10.7, is depicted
in Figure 10.8.

In the first rung, 8-bit numerical data 3Ch are loaded to Q1, by using the
macro load_R. This process is carried out once at the first program scan by
using the FRSTSCN NO contact.

In the eight rungs between 2 and 9, a 3-to-8 decoder is implemented, whose
inputs are 10.2, 10.1, and 10.0, and whose outputs are M0.0, M0.1, ..., M0.7. This
arrangement is made to choose the number of shift for the selected shift right
or shift left operation based on the input data given through the input bits

Shift and Rotate Macros 211

jemmm e user program starts here --

1d FRSTSCN ;rung 1
load R 3Ch,Q1

1ld not 10.2 ;rung 2
ana_not I0.1

and not I10.0

out MO.0

1d not I10.2 ;rung 3
ana_not I0.1

and I10.0

out MO.1

1d not 10.2 ;rung 4
and I0.1

and not I10.0

out MO.2

1d not I10.2 ;rung 5
and I0.1

and I0.0

out MO.3

1d I10.2 ;rung 6
and not I0.1

and not I10.0

out MO.4

1d I10.2 ;rung 7
and not I10.1

and I0.0

out MO.5

1d I10.2 ;rung 8
and I0.1

and not I0.0

out MO.6

1d I10.2 ;rung 9
and I0.1

and I0.0

out MO.7

FIGURE 10.7
The user program of UZAM_plc_16i160_ex17.asm. (Continued)

10.2,10.1, and 10.0. When these bits are 001, 010, 100, 100, 101, 110, 111, and 000,
we define the number of shift for the selected shift right or shift left opera-
tionas 1,2, 3,4,5,6,7 and 8 respectively.

In the eight rungs between 10 and 17, we define eight different shift right
operations according to the 3-to-8 decoder outputs represented by the
marker bits M0.0, M0.1, ..., M0.7. Shift right operations defined in these rungs
are applied to the 8-bit input variable Q1. The result of the shift right opera-
tions defined in these rungs will be stored in Q0. The shift in bit for
these shift right operations defined in these rungs is I1.7. The only difference

212 Building a Programmable Logic Controller

1d I10.3 ;rung 10
and not I10.4

and MO.1

r edge 0

shift R 1,11.7,9Q1,Q0

1d I10.3 ;rung 11
and_not 10.4

and MO.2

r_edge 0

shift R 2,I11.7,Q1,Q0

1d I10.3 ;rung 12
and_not I0.4

and MO.3

r_edge 0

shift R 3,I1.7,Q1,Q0

1d I10.3 ;rung 13
and not I10.4

and MO.4

r_edge 0

shift R 4,11.7,Q1,Q0

1d I10.3 ;rung 14
and not I10.4

and MO.5

r_edge 0

shift R 5,I11.7,Q1,Q0

1d I10.3 ;rung 15
and_not 10.4

and MO.6

r edge 0

shift R 6,I1.7,Q1,Q0

1d I10.3 ;rung 16
and_not I10.4

and MO.7

r_edge 0

shift R 7,I1.7,Q1,Q0

1d I10.3 ;rung 17
and _not I10.4

and MO.0

r_edge 0

shift R 8,I1.7,Q1,Q0

FIGURE 10.7 (Continued)
The user program of UZAM_plc_16i160_ex17.asm. (Continued)

Shift and Rotate Macros

1d

and not
and
r_edge
shift L

1d

and not
and
r_edge
shift L

1d

and not
and
r_edge
shift L

1d

and not
and

r edge
shift L

1d

and not
and

r edge
shift L

1d

and not
and
r_edge
shift L

1d

and not
and
r_edge
shift L

1d

and not
and
r_edge
shift L

FIGURE 10.7 (Continued)

10.4
10.3
MO.1
0

1,11

I0.4
10.3
MO.2
0

2,I1

10.4
10.3
MO.3
0

3,11

10.4
10.3
MO. 4
0

4,11

I0.4
10.3
MO.5
0

5,11

10.4
10.3
MO.6
0

6,I1

10.4
10.3
MO.7
0

7,11

I0.4
I10.3
MO.0O
0

8,I1

user program ends here --

;rung

.0,01,Q0

;rung

-0,01,00

;rung

-0,01,00

;rung

-0,01,Q0

;rung

-0,01,00

;rung

-0,01,00

;rung

-0,01,Q0

;rung

-0,01,00

The user program of UZAM_plc_16i160_ex17.asm.

18

19

20

21

22

23

24

25

213

214 Building a Programmable Logic Controller

load_R
FRSTSCN o
1 || EN ENO|-
3Ch—IN OUT}|Q1
1|0.2 1|0.1 I|O‘O MO0.0
2 V4 {
1|0.2 1|0.1 Ilo.lo Mo.1
3 /] % || {
1|0.2 Ilo.ll IIO.O M0.2
4 % | l/1l {
1|0.2 Ilo.ll IIO.IO M0.3
5 % T T {
1|0.|2 Ilo 1 IIO.O MO.4
6 1 | /A {
Ilo.lz IIO 1 I|O‘|O MO.5
7 1 I | {
Ilollz I|O I1 IIO.O MO.6
8 1 T % {
102 101 100 MO.7
s — —— —

FIGURE 10.8
The ladder diagram of the user program of UZAM_plc_16il60_ex17.asm. (Continued)

for these eight shift right operations is the number of shift. It can be seen that
for each rung one rising edge detector is used. This is to make sure that when
the related shift right operation is chosen, it will be carried out only once. In
order to choose one of these eight shift right operations the input bits 10.4 and
10.3 must be as follows: 104 = 0,10.3 = 1.

In the eight rungs between 18 and 25, we define eight different shift left
operations according to the 3-to-8 decoder outputs represented by the
marker bits M0.0, M0.1, ..., M0.7. Shift left operations defined in these rungs
are applied to the 8-bit input variable Q1. The result of the shift left opera-
tions defined in these rungs will be stored in Q0. The shift in bit for
these shift left operations defined in these rungs is I1.0. The only difference
for these eight shift left operations is the number of shift. It can be seen that
for each rung one rising edge detector is used. This is to make sure that when
the related shift left operation is chosen, it will be carried out only once. In
order to choose one of these eight shift left operations, the input bits 10.4 and
10.3 must be set as follows: 10.4 =1, 10.3 = 0.

Shift and Rotate Macros

10

11

12

13

14

15

16

17

103 104 Mol r_edge SHIFT_R
| | % | | IN OUT EN ENO|—
0 — num 1.7 —{ SIN
Q1 —|RIN ROUT |— Qo
1—N
103 104 0.2 r_edge SHIFT R
| | % | | IN OUT EN ENO|—
0 —{num 1.7 —{ SIN
Q1 —{RIN ROUT |— Qo
2 —{N
103 104 MO3 r_edge SHIFT R
| | /] | | IN OUT EN ENO|—
0 —num 1.7 —{ SIN
Q1 —{ RIN ROUT [— Q0
3—N
103 104 MO4 r_edge SHIFT_R
| | % | | IN OUT EN ENO|—
0 —{num 1.7 —{ SIN
Q1 — RIN ROUT — Q0
4 —{N
103 104 MOS5 r_edge SHIFT_R
| | % | | IN OUT EN ENO|—
0 — num 1.7 —{ SIN
Q1 —{RIN ROUT [— Qo
5 —{N
103 104 MO6 r_edge SHIFT_R
|| % | | IN OUT EN ENO|—
0 — num 11.7 —| SIN
Q1 —{RIN ROUT |— Qo
6 —{N
103 104 MO7 r_edge SHIFT_R
| | /] | | IN OUT EN ENO|—
0 — num 11.7 —| SIN
Q1 —{RIN ROUT |— Qo
7 —N
103 104 MO0 r_edge SHIFT R
| | /] | | IN OUT EN ENO|—
0 —!num 11.7 —| SIN
Q1 —RIN ROUT — Qo
8§ —{N

FIGURE 10.8 (Continued)
The ladder diagram of the user program of UZAM_plc_16i160_ex17.asm. (Continued)

215

216

18

19

20

21

22

23

24

25

Building a Programmable Logic Controller

104 103 MOl r_edge SHIFT L
| | % | | IN OUT EN ENO|—
0 —!num 1.0 — SIN
Q1 —{RIN ROUT |— Qo
1 —{N
104 103 0.2 r_edge SHIFT_L
| | /] | | IN OUT EN ENO |—
0 —!num 1.0 —{ SIN
Q1 —{RIN ROUT — Qo
2 —IN
104 103 0.3 r_edge SHIFT_L
| | % | | IN OUT EN ENOl—
0 —num 11.0 —{ SIN
Q1 —{RIN ROUT |— Qo0
3 —N
104 103 0.4 r_edge SHIFT_L
| —/— | IN OUT EN ENO|—
0 —!num 1.0 — SIN
Q1 —{RIN ROUT |— Qo
4 —N
104 103 MOS5 r_edge SHIFT L
I I M I I IN OUT EN ENO |—
0 — num 11.0 —{ SIN
Q1 —RIN ROUT — Qo0
5 —{N
104 103 0.6 r_edge SHIFT_L
I I I/1| I I IN OUT EN ENO |—
0 —!num 1.0 —{ SIN
Q1 — RIN ROUT |— Qo
6 — N
104 103 0.7 r_edge SHIFT_L
|| % | | IN OUT EN ENO |—
0 —1 num 1.0 — SIN
Q1 —RIN ROUT — Qo0
7 —N
104 103 MO0 r_edge SHIFT L
|| % | | IN OUT EN ENO |—
0 —num 11.0 —{ SIN
Q1 —{RIN ROUT [— Qo0
8§ —N

FIGURE 10.8 (Continued)
The ladder diagram of the user program of UZAM_plc_16i160_ex17.asm.

Shift and Rotate Macros 217

TABLE 10.6
Truth Table of the User Program of UZAM_plc_16i160_ex17.asm
10.4 10.3 10.2 10.1 10.0 Selected Process

o
o

No process is selected

No process is selected

Shift right Q1 once; shift in bit =11.7
Shift right Q1 twice; shift in bit = 11.7
Shift right Q1 3 times; shift in bit = 1.7
Shift right Q1 4 times; shift in bit = 1.7
Shift right Q1 5 times; shift in bit = I1.7
Shift right Q1 6 times; shift in bit = I1.7
Shift right Q1 7 times; shift in bit = [1.7
Shift right Q1 8 times; shift in bit = I1.7
Shift left Q1 once; shift in bit = I1.0
Shift left Q1 twice; shift in bit = 1.0
Shift left Q1 3 times; shift in bit = 1.0
Shift left Q1 4 times; shift in bit = I1.0
Shift left Q1 5 times; shift in bit = I1.0
Shift left Q1 6 times; shift in bit = 1.0
Shift left Q1 7 times; shift in bit = 1.0
Shift left Q1 8 times; shift in bit = 1.0

x: Don’t care. Note that the result of the shift operations will be stored in QO.

I T = T S e e = I = Ml o N e Bl o Sl e Bl o S < SIS
O O O O O O O R R o
m R R O 0 0O R R R R OOO O X X

—_ = 0O O R P OO R P OO~ FP OO X X
O R O R O R, ORFR ORFR ORFR ORFP O X X

(]
=
—_

Table 10.6 shows the truth table of the user program of UZAM_plc_16il60_
ex17.asm.

The second example program, UZAM_plc_16il60_ex18.asm, is shown in
Figure 10.9. It shows usage of the following macros: rotate R, rotate I,
and Swap. The ladder diagram of the user program of UZAM_plc_16il60_
ex18.asm, shown in Figure 10.9, is depicted in Figure 10.10.

In the first rung, 8-bit numerical data FOh are loaded to the 8-bit variable
Q1, by using the macro 1oad_R. This process is carried out once at the first
program scan by using the FRSTSCN NO contact.

In the second rung, if the 8-bit input register 10 is set to 80h, then I1 is
loaded to Q1, by using the macro load_R.

In the seven rungs between 3 and 9, a 3-to-8 decoder is implemented,
whose inputs are 10.2, 10.1, and 10.0, and whose outputs are M0.1, M0.2, ...,
MO.7. Note that the first combination of 3-to-8 decoder, namely, (10.2, 10.1, 10.0)
= 000, is not implemented. This arrangement is made to choose the number
of rotation for the selected rotate right or rotate left operation based on the
input data given through the input bits 10.2, 10.1, and 10.0. When these bits are
001, 010, 100, 100, 101, 110, and 111, we define the number of rotation for the
selected rotate right or rotate left operation as 1, 2, 3,4, 5, 6, and 7, respectively.

In the seven rungs between 10 and 16, we define seven different rotate
right operations according to the 3-to-8 decoder outputs represented by the

218 Building a Programmable Logic Controller

jmmmm user program starts here --

1d FRSTSCN ;rung 1
load R 0FOh,Q1

1d I10.7 ;rung 2
and not I0.6

and:not I0.5

and _not I0.4

and not I10.3

and:not I0.2

and not I10.1

and not I0.0

r_edge 0

move R I1,Q1

1d_not I10.2 ;rung 3
and not I0.1

and I0.0

out MO.1

1d not I1I0.2 ;rung 4
and I10.1

and not I10.0

out MO.2

1ld not 10.2 ;rung 5
and I0.1

and I10.0

out MO.3

1ld I10.2 ;rung 6
and_not I0.1

and not I10.0

out MO.4

1d 10.2 ;rung 7
and not I10.1

and I0.0

out MO.5

1d 10.2 ;rung 8
and I10.1

and not I10.0

out MO.6

1d I1I0.2 ;rung 9
and I10.1

and I10.0

out MO.7

FIGURE 10.9
The user program of UZAM_plc_16i160_ex18.asm. (Continued)

Shift and Rotate Macros

1d

and not
and

r edge
rgtate_R

1d

and _not
and
r_edge
rotate R

1d
and_not
and
r_edge
rotate_R

1d

and not
and
r_edge
rotate_R

1d

and not
and
r_edge
rotate_R

1d

and not
and

r edge
rgtate_R

1d
and_not
and
r_edge
rotate_R

FIGURE 10.9 (Continued)

10.3
10.4
MO.1

1
1,Q1,Q0

I10.3
I10.4
M0.2
2

2,01,90

10.3
10.4
MO0.3

3
3,Q1,90

10.3
10.4
MO.4
4

4,01,00

10.3
10.4
M0.5
5

5,01,Q0

10.3
10.4
MO.6

6
6,Q1,Q0

10.3
10.4
MO.7
7

7,91,Q0

;rung

;rung

;rung

;rung

;rung

;rung

;rung

The user program of UZAM_plc_16i160_ex18.asm. (Continued)

10

11

12

13

14

15

16

219

220 Building a Programmable Logic Controller

1d I0.4 ;rung 17
and not 10.3

and MO.1

r edge 1

rotate L 1,01,Q0

1d I10.4 ;rung 18
and not 10.3

and MO.2

r_edge 2

rotate_L 2,01,00

1d I0.4 ;rung 19
and not 10.3

and MO.3

r_edge 3

rotate_L 3,Q01,Q0

1d I10.4 ;rung 20
and_not 10.3

and MO.4

r_edge 4

rotate_L 4,01,Q0

1d I10.4 ;rung 21
and_not 10.3

and MO.5

r_edge 5

rotate_L 5,01,Q0

1d 10.4 ;rung 22
and not 10.3

and MO.6

r edge 6

rotate L 6,91,Q0

1d I10.4 ;rung 23
and_not 10.3

and MO.7

r edge 7

rotate_L 7,21,Q0

1d I10.6 ;rung 24
and_not I10.7

and not I10.5

and:not 10.4

and_not I10.3

and not I10.2

and:not I10.1

and_not I10.0

Swap Q1,Q0

mmmmm e user program ends here --

FIGURE 10.9 (Continued)
The user program of UZAM_plc_16i160_ex18.asm.

Shift and Rotate Macros 221

FRSTSCN load R
1 | | EN ENO
Foh-IN OUT|-Q1
107 106 105 104 103 102 101 100 _'-edge move R
2 F AV fvour| e ol
0—{num 4IN ouT}-Q1
102 101 100 H %{ 0.1
| | [l
3 /] % [()
102 101 100 M 0.2
4 —/— R
102 101 100 M 0.3
| Il Il
5 /] 1 1 (
102 101 100 MO0.4
Il | |
6 |1 % /] (=
I|O|2 1|o.1 I Io.lo MO0.5
{
7 1 % [()
I|O|2 IIO.II I I0.0 MO0.6
8 1 T % ()
I|Oi2 1|o|1 Il()io M0.7
(
9 1 I I (
FIGURE 10.10

The ladder diagram of the user program of UZAM_plc_16i160_ex18.asm. (Continued)

marker bits M0.1, M0.2, ..., M0.7. Rotate right operations defined in these
rungs are applied to the 8-bit input variable Q1. The result of the rotate right
operations defined in these rungs will be stored in Q0. The only difference
for these seven rotate right operations is the number of rotation. It can be
seen that for each rung one rising edge detector is used. This is to make sure
that when the related rotate right operation is chosen, it will be carried out
only once. In order to choose one of these seven rotate right operations, the
input bits 10.4 and 10.3 must be as follows: 10.4 = 0, 10.3 = 1.

In the seven rungs between 17 and 23, we define seven different rotate
left operations according to the 3-to-8 decoder outputs represented by the
marker bits M0.1, M0.2, ..., M0.7. Rotate left operations defined in these rungs
are applied to the 8-bit input variable Q1. The result of the rotate left opera-
tions defined in these rungs will be stored in Q0. The only difference for
these seven rotate left operations is the number of rotation. It can be seen that
for each rung one rising edge detector is used. This is to make sure that when
the related rotate left operation is chosen, it will be carried out only once. In

222

10

11

12

13

14

15

16

Building a Programmable Logic Controller

103 104 Mo1 _f-edee ROTATER
} } }/} } } IN OUT EN ENO|—
1 —num Q1 —{RIN ROUT |— Qo
1—N
103 104 MO2 r_edge ROTATE R
| | /A | | IN OUT EN ENO|—
2 —|num Q1 —RIN ROUT |— Qo
2—{N
103 104 Mo3 _‘-edee ROTATER
} } }/| } } IN OUT EN ENO|—
3 —|num Q1 —RIN ROUT |— Qo0
3—N
103 104 Mo4 ‘-edee ROTATER
|/] our EN - ENO|—
4 —num Q1 —RIN ROUT |— Qo0
4—N
103 104 Mos _t-edge ROTATE R
| | I/ | | IN OUT EN ENO|—
5 —{num Q1 —RIN ROUT [— Qo0
5—N
103 104 Moe _'-edge ROTATE R
} } }/} } } IN OUT EN ENO|—
6 —num Q1 —RIN ROUT |— Qo
6 —{N
103 104 Moy ‘-edge ROTATE R
| | /A | | IN OUT EN ENO|—
7 —num Q1 —RIN ROUT |I— Qo0
7—N

FIGURE 10.10 (Continued)
The ladder diagram of the user program of UZAM_plc_16i160_ex18.asm. (Continued)

Shift and Rotate Macros

17

18

19

20

21

22

23

24

223

104 103 Mo1 _'-edee ROTATE_L
|| /] | | IN OUT EN ENO|—
1 —num Q1 —RIN ROUT|—Q0
1—N
104 103 MO2 r_edge ROTATE_L
| 44— —IN our EN ENO|—
2 —num Q1 —RIN ROUT |— Qo
2 —IN
104 103 MO3 r_edge ROTATE_L
|| /] | | IN OUT EN ENO|—
3 —|num Q1 —{RIN ROUT }— Qo
3 —N
104 103 Moa _-odee ROTATE_L
| —4— | IN OUT EN ENOl—
4 —|num Q1 —{RIN ROUT — Qo
4 —IN
104 103 MOS5 r_edge ROTATE_L
| | | | |
1 % 1 IN OUT EN ENO}—
5 —{hum Q1 —{RIN ROUT |— Q0
5 —N
104 103 0.6 r_edge ROTATE L
| | /] | | IN OUT EN ENO—
6 —num Q1 —|RIN ROUT |— Q0
6 —N
104 103 Moy _‘-edee ROTATE_L
|| /] | | IN OUT EN ENO|—
7 —{num Q1 —RIN ROUT |— Qo
7—IN
SWAP

106 10.7 105 104 103 102 101 I0.0

— A

Q1

FIGURE 10.10 (Continued)
The ladder diagram of the user program of UZAM_plc_16i160_ex18.asm.

EN ENO|—
IN OUT|— Qo

224 Building a Programmable Logic Controller

TABLE 10.7
Truth Table of the User Program of UZAM_plc_16i160_ex18.asm

10.4 10.3 10.2 10.1 10.0 Selected Process
0 0 x x x No process is selected
1 1 x x x No process is selected
0 1 0 0 0 No process is selected
0 1 0 0 1 Rotate right Q1 once
0 1 0 1 0 Rotate right Q1 twice
0 1 0 1 1 Rotate right Q1 3 times
0 1 1 0 0 Rotate right Q1 4 times
0 1 1 0 1 Rotate right Q1 5 times
0 1 1 1 0 Rotate right Q1 6 times
0 1 1 1 1 Rotate right Q1 7 times
1 0 0 0 0 No process is selected
1 0 0 0 1 Rotate left Q1 once
1 0 0 1 0 Rotate left Q1 twice
1 0 0 1 1 Rotate left Q1 3 times
1 0 1 0 0 Rotate left Q1 4 times
1 0 1 0 1 Rotate left Q1 5 times
1 0 1 1 0 Rotate left Q1 6 times
1 0 1 1 1 Rotate left Q1 7 times

x: Don’t care. Note that the result of the rotate operations will be stored in Q0. In addi-
tion, when 10 = 40h, the process Q0 = SWAP Q1 is selected.

order to choose one of these seven rotate left operations, the input bits 10.4
and 10.3 must be set as follows: 104 =1,10.3 = 0.

In the last rung, the use of the swap function is shown. If the 8-bit input
register 10 is set to be 40h, then the “Swap Q1 and store the result in Q0”
process is selected.

Table 10.7 shows the truth table of the user program of UZAM_plc_16i160_
ex18.asm.

11

Multiplexer Macros

As a standard combinational component, the multiplexer (MUX), allows the
selection of one input signal among 1 signals, where n > 1, and is a power of
two. Select lines connected to the multiplexer determine which input signal
is selected and passed to the output of the multiplexer. As can be seen from
Figure 111, in general, an n-to-1 multiplexer has #n data input lines, m select
lines where m = log2 n, i.e., 2" = n, and one output line. Although not shown
in Figure 11.1, in addition to the other inputs, the multiplexer may have an
enable line, E, for enabling it. When the multiplexer is disabled with E set to
0 (for active high enable input E), no input signal is selected and passed to
the output.

In this chapter, the following multiplexer macros are described for the
PIC16F648A-based PLC:

mux_ 2 12 x1MUX)
mux_2 1 E (2 x 1 MUX with enable input)
mux_ 4 1 (4 x1MUX)
mux_4 1 E (4 x 1 MUX with enable input)
mux 8 1 (8 x1MUX)
mux_8 1 E (8 x 1 MUX with enable input)

The file definitions.inc, included within the CD-ROM attached to this book,
contains all multiplexer macros defined for the PIC16F648A-based PLC. Let
us now consider these macros in detail.

11.1 Macromux 2 1

The symbol and the truth table of the macro mux_2 1 are depicted in
Table 11.1. Figure 11.2 shows the macro mux_2 1 and its flowchart. In this
macro, the select input s, input signals d; and d,, and the output y are all
Boolean variables. When s, = 0, the input signal d,, is selected and passed to
the output y. When s; = 1, the input signal d, is selected and passed to the
outputy.

225

226 Building a Programmable Logic Controller

—>dy
—>d,;
ninput — > d,
signals

m select inputs

FIGURE 11.1
The general form of an n-to-1 multiplexer, where n = 2.

11.2 Macromux_2 1 E

The symbol and the truth table of the macro mux 2 1 E are depicted in
Table 11.2. Figure 11.3 shows the macro mux 2 1 E and its flowchart. In
this macro, the active high enable input E, the select input s, input signals d,
and d,, and the output y are all Boolean variables. When this multiplexer is
disabled with E set to 0, no input signal is selected and passed to the output.
When this multiplexer is enabled with E set to 1, it functions as described
for mux_2 1. This means that when E = 1: if s, = 0, then the input signal d,
is selected and passed to the output y. When E = 1: if 5; = 1, then the input

signal d, is selected and passed to the output y.

TABLE 11.1
Symbol and Truth Table of the Macro mux_2 1

Symbol Truth Table
s0 = regs0,bits0 input output
do v do = regi0,biti0 s0 y
4, . di = regil bitil 0 do
y= rego,bito 1 d1

Multiplexer Macros

mux 2 1 macro

227

regs0,bitsO,

regil,bitil,regiO,biti0, rego,bito

L4

L3

L2
L1

FIGURE 11.2

?
regil,bitil = 1

local
btfss
goto
btfss
goto
goto
btfss
goto
bsf
goto
bef

endm

L1,L2,L3,14
regs0,bits0

L4

regil,bitil ;sO
L2

L3

regiO,bitiO ;s0 =
L2

rego,bito

Ll

rego,bito

Il
H

|
o

?
regiO,biti0 = 1

»

L3
A A

| RESET rego,bito || SET rego,bito |

< |

L1 [«

A
end

(b)

(@) The macromux_2_1 and (b) its flowchart.

11.3 Macromux 4 1

The symbol and the truth table of the macro mux_4_1 are depicted in
Table 11.3. Figure 11.4 shows the macro mux_4_ 1 and its flowchart. In
this macro, select inputs s, and s, input signals d,, d;, d,, and dj, and the

228 Building a Programmable Logic Controller

TABLE 11.2
Symbol and Truth Table of the Macromux_2_ 1 E
Symbol Truth Table
W E inputs output
E s0 = regs0,bits0 E sO y
do v do = regi0,biti0 0 x 0
4 dl = regil,bitil 1 0 do
0
= rego,bito 1 1 d1
x: don't care.

output y are all Boolean variables. When s;s, = 00 (respectively, 01, 10, 11),
the input signal d, (respectively, d;, d,, d;) is selected and passed to the
outputy.

11.4 Macromux 4 1 E

The symbol and the truth table of the macro mux_4 1 E are depicted in
Table 11.4. Figures 11.5 and 11.6 show the macro mux_4 1 E and its flow-
chart, respectively. In this macro, the active high enable input E, select inputs
s, and sy, input signals d,, d;, d,, and d;, and the output y are all Boolean

variables. When this multiplexer is disabled with E set to 0, no input signal is

mux 2 1 E macro regs0,bitsO,
regil,bitil,regiO,bitiO,rego,bito
local L1,1.2,L3,L4
movwf Temp 1
btfss Temp 1,0

goto L2
btfss regs0,bits0
goto L4
btfss regil,bitil ;s0 =1
goto L2
goto L3
L4 btfss regiO,biti0 ;s0 = 0
goto L2
L3 bsf rego,bito
goto L1
L2 bef rego,bito
L1
endm

(@)

FIGURE 11.3
(@) The macromux_2_ 1 E and (b) its flowchart. (Continued)

Multiplexer Macros

?
regil,bitil = 1

?
regi0,biti0 = 1

| Y

FIGURE 11.3 (Continued)

» L2
A

L3

A

| RESET rego,bito || SET rego,bito |

L1

A
end

(b)

(@) The macromux_2_ 1 E and (b) its flowchart.

TABLE 11.3

Symbol and Truth Table of the Macro mux_4_1

229

Symbol Truth Table
sl = regsl,bitsl
inputs output

s0 = regs0,bitsO

sl sO y
d3 = regi3,biti3

0 0 do
d2 = regi2,biti2

0 1 dl
dl = regil,bitil

1 0 d2
do = regi0,biti0

1 1 d3
y= rego,bito

230 Building a Programmable Logic Controller

mux 4 1 macro regsl,bitsl,regsO,bits0,regi3, biti3,
regi2,biti2,regil,bitil,regiO,biti0,rego,bito

local L1,L2,L3,L4,L5,L6

btfss regsl, bitsl

goto L5
btfss regs0,bits0
goto L6
btfss regi3,biti3 ;sls0 = 11
goto L2
goto L3
L6 btfss regi2,biti2 ;sls0 = 10
goto L2
goto L3
L5 btfss regs0,bits0
goto L4
btfss regil,bitil ;sls0 = 01
goto L2
goto L3
L4 Dbtfss regiO,bitiO ;s1ls0 = 00
goto L2
L3 bsf rego,bito
goto L1
L2 bef rego,bito
Ll
endm

>

A A
RESET rego,bito SET rego,bito

FIGURE 11.4
(@) The macromux_4 1 and (b) its flowchart.

Multiplexer Macros 231

TABLE 11.4
Symbol and Truth Table of the Macromux_4_ 1 E
Symbol Truth Table

W E inputs output
sl = regsl,bitsl E sl sO y
s0 = regs0,bits0 0 x x 0
d3 = regi3,biti3 1 0 0 do
d2 = regi2,biti2 1 0 1 d1l
dl = regil,bitil 1 1 0 d2
do = regi0,biti0 1 1 1 d3
y= rego,bito x: don't care.

mux 4 1 E macro regsl,bitsl,regs0,bits0,regi3,biti3,
regi2,biti2,regil,bitil, regiO,biti0,rego,bito

local L1,.2,L3,L4,L5,L6

movwf Temp 1

btfss Temp_1,0

goto L2
btfss regsl,bitsl
goto L5
btfss regs0,bits0
goto L6
btfss regi3,biti3 ;sl1ls0 = 11
goto L2
goto L3

L6 btfss regi2,biti2 ;sl1ls0 = 10
goto L2
goto L3

L5 btfss regs0,bits0
goto L4
btfss regil,bitil ;sls0 = 01
goto L2
goto L3

L4 btfss regiO,bitiO ;s1s0 = 00
goto L2

L3 bsf rego,bito
goto L1

L2 bef rego,bito

Ll
endm

FIGURE 11.5

The macromux_4 1 E.

232 Building a Programmable Logic Controller

L3

go,bito

FIGURE 11.6
The flowchart of the macromux_4_1_E.

selected and passed to the output. When this multiplexer is enabled with E
set to 1, it functions as described for mux_4 1. This means that when E = 1:
if s;5, = 00 (respectively, 01, 10, 11), then the input signal d, (respectively, d,,
d,, d,) is selected and passed to the output y.

11.5 Macromux_ 8 1

The symbol and the truth table of the macro mux_8 1 are depicted in
Table 11.5. Figures 11.7 and 11.8 show the macro mux_8_1 and its flowchart,
respectively. In this macro, select inputs s,, s, and s, input signals d,, d,, d,,
d,, d,, ds, dg, and d;, and the output y are all Boolean variables. When s,s;s, =
000 (respectively, 001, 010, 011, 100, 101, 110, 111), the input signal d, (respec-
tively, d,, d,, d;, d,, ds, d,, d;) is selected and passed to the output y.

Multiplexer Macros

233

TABLE 11.5
Symbol and Truth Table of the Macromux_8_1
Symbol Truth Table
s2 = regs2,bits2
inputs output

sl = regsl,bitsl
s2 sl sO y

_ld s0 = regs0,bitsO
0 = biti7 0 0 0 do

_— = regi7,biti

4 g 0| o0 |1 d1

—d, d6= | regi6biti6
0 1 0 d2

—ds d5 = regi5,biti5
d Yi— 0 1 1 d3

% d4 = regi4,biti4
4 1o o d4

5 d3 = regi3,biti3
g S0 1|01 ds

Sy d2 = regi2,biti2
—d7 sy 1 1 0 de

dl = regil,bitil
1 1 1 d7

do = regi0,biti0

y= rego,bito

I

11.6 Macromux 8 1 E

The symbol and the truth table of the macro mux_8_1 E are depicted in
Table 11.6. Figures 11.9 and 11.10 show the macro mux_8_1_E and its flow-

chart, respectively. In this macro, the active high enable input E, select inputs
s, s, and s, input signals d, d,, d,, d;, d,, ds, dg, and d;, and the output y are
all Boolean variables. When this multiplexer is disabled with E set to 0, no
input signal is selected and passed to the output. When this multiplexer is
enabled with E set to 1, it functions as described for mux 8 1. This means
that when E = 1: if s,s;5, = 000 (respectively, 001, 010, 011, 100, 101, 110, 111),
then the input signal d, (respectively, d;, d,, d3, dy, ds, d, d) is selected and
passed to the output y.

11.7 Examples for Multiplexer Macros

In this section, we will consider three examples, namely, UZAM_plc_16i160_
exX.asm (X =19, 20, 21), to show the usage of multiplexer macros. In order
to test one of these examples, please take the related file UZAM_plc_16i160_
exX.asm (X = 19, 20, 21) from the CD-ROM attached to this book, and then

234 Building a Programmable Logic Controller

mux 8 1 macro regs2,bits2,regsl, bitsl,
regs0,bits0,regi7,biti7,regi6,biti6, reqgib,
biti5,regid,bitid,regi3,biti3,regi2,biti2,
regil,bitil,regiO,biti0O,rego,bito
local L1,L.2,.3,1.4,L5,L.6,L7,L8,L9,L10
btfss regs2,bits2

goto L7
btfss regsl, bitsl
goto LS
btfss regs0,bits0
goto L10
btfss regi7,biti?7 ;82s81ls0 = 111
goto L2
goto L3
L10 btfss regi6,bitié ;s2sls0 = 110
goto L2
goto L3
L9 btfss regs0,bits0
goto L8
btfss regi5,bitib ;82s81s0 = 101
goto L2
goto L3
L8 btfss regid ,biti4 ;82s81s0 = 100
goto L2
goto L3
L7 btfss regsl, bitsl
goto L5
btfss regs0,bits0
goto L6
btfss regi3,biti3 ;82s81s0 = 011
goto L2
goto L3
L6 btfss regi2,biti2 ;82s1ls0 = 010
goto L2
goto L3
L5 btfss regs0O,bits0
goto L4
btfss regil,bitil ;82s81s0 = 001
goto L2
goto L3
L4 btfss regiO,bitiO ;82s1s0 = 000
goto L2
L3 bsf rego,bito
goto L1l
L2 bef rego,bito
L1
endm

FIGURE 11.7
The macromux_8 1.

Multiplexer Macros 235

TABLE 11.6
Symbol and Truth Table of the Macromux_8_ 1 E
Symbol Truth Table
W E
inputs output
s2 = regs2,bits2
E s2 sl sO y
sl = regsl,bitsl
—1d 0 X X X 0
o E s0 = regs0,bits0
_la 1 0 0 0 do
1 d7 = regi7,biti7
—d, 1 0 0 1 d1
d6 = regi6,biti6
—ds 1 0 1 0 d2
d Yi— d5 = regi5,biti5
T4 1 0 1 1 d3
—1d d4 = regi4,biti4
5 1 1 0 0 d4
—dg So d3 = regi3,biti3
51 1 1 0 1 d5
—d; s, d2 = regi2,biti2
1 1 1 0 d6
dl = regil,bitil
1 1 1 1 d7
do= regi0,biti0
x: don't care.
y= rego,bito

open the program by MPLAB IDE and compile it. After that, by using the
PIC programmer software, take the compiled file UZAM_plc_16i160_exX.hex
(X'=19,20,21), and by your PIC programmer hardware, send it to the program
memory of the PIC16F648A microcontroller within the PIC16F648A-based
PLC. To do this, switch the 4PDT in PROG position and the power switch in
OFF position. After loading the file UZAM_plc_16i160_exX.hex (X =19, 20, 21),
switch the 4PDT in RUN and the power switch in ON position. Please check
the program’s accuracy by cross-referencing it with the related macros.

Let us now consider these example programs: The first example program,
UZAM_plc_16i160_ex19.asm, is shown in Figure 11.11. It shows the usage of
two multiplexer macros mux_2_ 1 and mux_2_1 E. The schematic diagram
of the user program of UZAM_plc_16il60_ex19.asm, shown in Figure 11.11,
is depicted in Figure 11.12.

In the first rung, the multiplexer macro mux_2_1 (2 x 1 multiplexer) is
used. In this multiplexer, input signals are d, = 10.1 and d, = 10.2, while the
output is y = Q0.0 and the select input is s, = 10.0.

In the second rung, another multiplexer macro mux_2_1 is used. In this
multiplexer, input signals are d, = T1.5 (838.8608 ms) and d, = T1.4 (419.4304
ms), while the output is y = Q0.3 and the select input is s, = 10.7.

In the third rung, the macro mux_2 1 E (2 x 1 multiplexer with active
high enable input) is used. In this multiplexer, input signals are d, =11.2 and
d, = I1.3, while the output is y = Q1.0 and the select input is s, = I1.1. In addi-
tion, the active high enable input E is defined to be E = I1.0.

‘T 8 XNu 0IdeW Y} JO JIeYDMOTJ d],
8’11 3ANDH

0319°0321 13STY

T = gniq‘gisar

T = pnIqp18al
(3

é

T = 101q‘T18aT
(3

T = on1q‘or8ar
<&

Building a Programmable Logic Controller

1q‘7sSar

§1 1q‘7s8a1

a1 T = zsnqigssol
N N\ X

236

Multiplexer Macros

FIGURE 11.9

mux_8 1 E macro regs2,bits2,regsl, bitsl,
regs0,bits0,regi7,biti7,regi6,biti6,
regi5,bitib,regid ,bitid,regi3,biti3,
regi2,biti2,regil,bitil,regiO,bitiO, rego,bito

L10

L9

L8

L7

L6

L5

L4

L3

L2
Ll

local
movwf
btfss
goto
btfss
goto
btfss
goto
btfss
goto
btfss
goto
goto
btfss
goto
goto
btfss
goto
btfss
goto
goto
btfss
goto
goto
btfss
goto
btfss
goto
btfss
goto
goto
btfss
goto
goto
btfss
goto
btfss
goto
goto
btfss
goto
bsf
goto
bef

endm

The macromux 8 1 E.

l1,.2,.3,L.4,L5,L.6,L7,L8,L9,L10
Temp 1
Temp_1,0

L2
regs2,bits2
L7
regsl,bitsl
L9
regs0,bits0
L10
regi7,biti7
L2

L3
regi6,bitié
L2

L3
regs0,bits0
L8
regi5,bitib ;82s81s0 = 101
L2

L3
regid,bitid
L2

L3
regsl,bitsl
L5
regs0,bits0
L6
regi3,biti3 ;s8281s0 = 011
L2

L3
regi2,biti2
L2

L3
regs0,bits0
L4
regil,bitil
L2

L3
regioO,biti0 ;s2sl1ls0 = 000
L2

rego,bito

Ll

rego,bito

;s2sls0 = 111

;s2sl1ls0 = 110

;82s81s0 = 100

;82s81s0 = 010

;s2sl1ls0 = 001

237

'H T 8 XNu 0IdeW dY} JO JTeYIMO[J A],
0L'LL 3INDH

pus

»!

1
onq‘odar 195 o11q‘08a1 1ISTA

1 = 1nIq‘Ti8a1
(3

1 = 0sNq‘0sSal
N \é N

Building a Programmable Logic Controller

61 1= 1snq-ssal
<

N X

238

Multiplexer Macros

user program starts here -------

mux 2 1 10.0,10.2,10.1,Q0.0 ;rung 1
mux 2 1 I0.7,T1.4,T1.5,00.3 ;rung 2
ld I1.0 ;rung 3
mux 2 1 E I1.1,11.3,11.2,Q1.0
ld_not I1.4 ;rung 4
mux 2 1 E I1.5,T1.4,T1.5,Q1.7
Jemmmmmmm e user program ends here ---------
FIGURE 11.11
The user program of UZAM_plc_16i160_ex19.asm.
INPUTS OUTPUTS
do
4
So
[100
T=838,8608 ms
d
T=419,4304 ms y Q0.3
TL4 4
So
[107
[110
E
[>——4 -
4 7 :
S
[111
[114
Q
T=838,8608 ms
d
=419,4304 ms Q1.7
4
So
[115

FIGURE 11.12

The schematic diagram of the user program of UZAM_plc_16i160_ex19.asm.

239

240 Building a Programmable Logic Controller

jommmm s user program starts here ------------------
mux_4_1 10.1,10.0,10.5,10.4,10.3,I0.2,Q0.0 rung 1

1d I1.0 ;rung 2
mux 4 1 E 11.2,11.1,71.3,71.2,T71.1,T1.0,Q1.0
jmmmmmmm - user program ends here --------------------

FIGURE 11.13
The user program of UZAM_plc_16i160_ex20.asm.

In the fourth and last rung, another multiplexer macro mux_2 1 E is
used. In this multiplexer, input signals are d, = T1.5 (838.8608 ms) and d, =
T1.4 (4194304 ms), while the output is y = Q1.7 and the select input is s, = I1.5.
In addition, the active high enable input E is defined to be E = inverted I1.4.
Note that this arrangement forces the enable input E to be active low.

The second example program, UZAM_plc_16il60_ex20.asm, is shown
in Figure 11.13. It shows the usage of two multiplexer macros mux 4 1
and mux_4 1 E. The schematic diagram of the user program of UZAM_
plc_16i160_ex20.asm, shown in Figure 11.13, is depicted in Figure 11.14. In the
first rung, the multiplexer macromux_4_1 (4 x 1 multiplexer) is used. In this

multiplexer, input signals are d, =10.2, d; =10.3, d, =104, and d; = 10.5, select

INPUTS OUTPUTS

10.2 d,
10.3 d
10.4 d,
10.5 d3 5, S0

I

[101

[100

[1o

- T:26,214:4 ms
- T=52,4288 ms
- =104,8576 ms
=209,7152 ms
[112

[[11a

FIGURE 11.14
The schematic diagram of the user program of UZAM_plc_16i160_ex20.asm.

Multiplexer Macros 241

1d I0.0 ;rung 1

mux 8 1 E I10.3,I10.2,10.1,11.7,11.6,11.5,711.4,11.3,11.2,11.1,11.0,Q0.0

o ———— user program ends here -------------—--——————————
FIGURE 11.15

The user program of UZAM_plc_16i160_ex21.asm.

inputs are s, = 10.1 and s, = 10.0, and the output is y = Q0.0. In the second
rung, the multiplexer macromux_4 1 E (4 x 1 multiplexer with active high
enable input) is used. In this multiplexer, input signals are d, = T1.0 (26.2144
ms), d; = T1.1 (52.4288 ms), d, = T1.2 (104.8576 ms), and d, = T1.3 (209.7152 ms),
select inputs are s; = [1.2 and s, = I1.1, and the output is y = Q1.0. In addition,
the active high enable input E is defined to be E = I1.0.

The third example program, UZAM_plc_16i160_ex2l.asm, is shown in
Figure 11.15. It shows the usage of the multiplexer macro mux_8 1 E. The
schematic diagram of the user program of UZAM_plc_16il60_ex21.asm,
shown in Figure 11.15, is depicted in Figure 11.16.

In this example, the multiplexer macromux 8 1 E (8 x 1 multiplexer with
active high enable input) is used. In this multiplexer, input signals are d, =
11.0,d,=111,d,=11.2,d, =11.3,d, =114, d; =11.5, d, = 11.6, and d, = 11.7, select
inputs are s, =10.3, s, =10.2, and s, = 10.1, and the output is y = QO0.0. In addi-
tion, the active high enable input E is defined to be E =10.0.

INPUTS OUTPUT
[100

[1o d, E

[11 d;

[n2 d,

— v T >
[114 dy

| 11.5 ds So

[e ds %

[17 d;

[103

[102

[101

FIGURE 11.16
The schematic diagram of the user program of UZAM_plc_16il60_ex21.asm.

12

Demultiplexer Macros

A demultiplexer (DMUX) is used when a circuit is to send a signal to one
of many devices. This description sounds similar to the description given
for a decoder, but a decoder is used to select among many devices, while a
demultiplexer is used to send a signal among many devices. However, any
decoder having an enable line can function as a demultiplexer. If the enable
line of a decoder is used as a data input, then the data can be routed to any
one of the outputs, and thus in that case the decoder can be used as a demul-
tiplexer. As the name infers, a demultiplexer performs the opposite function
as that of a multiplexer. A single input signal can be connected to any one of
the output lines provided by the choice of an appropriate select signal. The
general form of a 1-to-n demultiplexer can be seen from Figure 12.1. If there
are m select inputs, then the number of output lines to which the data can be
routed is n = 2". Although not shown in Figure 12.1, in addition to the other
inputs, the demultiplexer may have an enable line, E, for enabling it. When
the demultiplexer is disabled with E set to 0 (for active high enable input E),
no output line is selected, and therefore the input signal is not passed to any
output line.

In this chapter, the following demultiplexer macros are described for the
PIC16F648A-based PLC: Dmux_1_2 (1 x 2 DMUX), bmux_1_2_E (1 x
2 DMUX with enable input), Dmux_1 4 (1 x 4 DMUX), Dmux_1 4 E
(I x 4 DMUX with enable input), Dmux 1 8 (1 x 8 DMUX), and
Dmux_1 8 E (1 x 8 DMUX with enable input).

The file definitions.inc, included within the CD-ROM attached to this
book, contains all demultiplexer macros defined for the PIC16F648A-based
PLC. Let us now consider these macros in detail.

12.1 Macro Dmux 1 2

The symbol and the truth table of the macro Dmux_1_2 are depicted in
Table 12.1. Figure 12.2 shows the macro Dmux_1_2 and its flowchart. In this
macro, the select input s, output signals y, and y;, and the input signal i are
all Boolean variables. When the select input s, = 0, the input signal 7 is passed
to the output line y,. When the select input s, = 1, the input signal i is passed
to the output line y;.

243

244 Building a Programmable Logic Controller

Yo—————>
YW

input X : n qutput
signal . lines

m select inputs

FIGURE 12.1
The general form of a 1-to-n demultiplexer, where n = 2.

12.2 MacroDmux 1 2 E

The symbol and the truth table of the macro Dmux 1 2 E are depicted in
Table 12.2. Figure 12.3 shows the macro Dmux_1 2 E and its flowchart. In
this macro, the active high enable input E, the select input s,, output signals
y, and y;, and the input signal i are all Boolean variables. When this demul-
tiplexer is disabled with E set to 0, no output line is selected and the input
signal is not passed to any output. When this demultiplexer is enabled with
E set to 1, it functions as described for Dmux_1 2. This means that when E =
1: if the select input s, = 0, then the input signal i is passed to the output line
Vo- When E = 1: if the select input s, = 1, then the input signal i is passed to
the output line y;.

TABLE 12.1
Symbol and Truth Table of the Macro Dmux 1 2

Symbol Truth Table
i= regi,biti input outputs
s0 = regs0,bits0 s0 y0 yl
y0 = rego0,bito0 0 i 0
yl= regol,bitol 1 0 i

Demultiplexer Macros 245

Dmux 1 2 macro regs0,bitsO,
regi,biti,regol,bitol,rego0,bito0
local L1,1.2,L3
btfss regi,biti

goto L2
btfss regs0,bits0
goto L3
bsf regol,bitol
bef rego0,bito0
goto Ll
L3 bsf rego0O,bito0
bef regol,bitol
goto L1l
L2 bef regol,bitol
bef rego0O,bito0
Ll
endm

A

SET regol,bitol RESET regol,bitol RESET regol,bitol
RESET rego0,bito0 SET rego0,bito0 RESET rego0,bito0
\ L1
end

FIGURE 12.2
(@) The macro Dmux_1_2 and (b) its flowchart.

12.3 Macro Dmux_1 4

The symbol and the truth table of the macro Dmux 1 4 are depicted in
Table 12.3. Figure 12.4 shows the macro Dmux_1 4 and its flowchart. In
this macro, select inputs s, and s, output signals y,, y,, y,, and y;, and the
input signal i are all Boolean variables. When the select inputs are s;s, = 00
(respectively, 01, 10, 11), the input signal 7 is passed to the output line y,

(respectively, yy, Vs, Va)-

246 Building a Programmable Logic Controller

TABLE 12.2
Symbol and Truth Table of the Macro Dmux_1 2 E

Symbol Truth Table
inputs outputs
W E p P
E sO yo yl
i= regi,biti
0 X 0 0
s0 = regs0,bits0
o 0 bito0 1 0 i 0
= rego0,bito
Y g 1 1 0 i
yl = regol,bitol
x: don't care.

12.4 MacroDmux 1 4 E

The symbol and the truth table of the macro Dmux 1 4 E are depicted
in Table 12.4. Figures 12.5 and 12.6 show the macro Dmux_1 4 E and its
flowchart, respectively. In this macro, the active high enable input E, select
inputs s, and s, output signals y,, y;, y,, and y;, and the input signal i are
all Boolean variables. When this demultiplexer is disabled with E set to 0,
no output line is selected and the input signal is not passed to any output.
When this demultiplexer is enabled with E set to 1, it functions as described

Dmux 1 2 E macro regs0,bitsO,
regi,biti,regol,bitol,rego0,bito0
local L1,L2,L3
movwf Temp 1
btfss Temp 1,0

goto L2
btfss regi,biti
goto L2
btfss regs0,bits0
goto L3
bsf regol,bitol
bef rego0,bito0
goto L1
L3 bsf rego0,bito0
bef regol,bitol
goto L1
L2 bef regol,bitol
bef rego0O,bito0
L1l
endm

()

FIGURE 12.3
(@) The macro Dmux_1_2_E and (b) its flowchart. (Continued)

Demultiplexer Macros

247

SET regol,bitol RESET regol,bitol RESET regol,bitol
RESET rego0,bito0 SET rego0,bito0 RESET rego0,bito0
L1
end
(b)
FIGURE 12.3 (Continued)
(@) The macro Dmux_1_ 2 E and (b) its flowchart.
TABLE 12.3
Symbol and Truth Table of the Macro Dmux_1_4
Symbol Truth Table
i= regi,biti
inputs outputs
sl = regsl,bitsl ! o o ! 5 5
s s
s0 = regs0,bits0 b Y i bk
0 0 i 0 0 0
y3 = rego3,bito3
0 1 0 i 0 0
y2 = rego2,bito2
) bitol 1 0 0 0 i 0
= regol,bito
Y g 1 1 0 0 0 i
y0 = rego0,bito0

248 Building a Programmable Logic Controller

Dmux 1 4 macro regsl, bitsl,
regs0,bits0,regi,biti,
rego3,bito3,rego2,bito2,
regol,bitol,rego0,bito0
local L1l,L.2,1.3,1L4,L5
btfss regi,biti

goto L2
btfss regsl,bitsl
goto L5
bef regol,bitol
bef rego0,bito0
btfss regs0,bitsO
goto L4
bsf rego3,bito3
bef rego2,bito2
goto L1l

L5 bef rego3,bito3
bef rego2,bito2
btfss regs0,bits0
goto L3
bsf regol ,bitol
bef rego0,bito0
goto L1l

L4 bef rego3,bito3
bsf rego2,bito2
goto L1l

L3 bef regol,bitol
bsf rego0,bito0
goto L1l

L2 bef rego3,bito3
bef rego2,bito2
bef regol ,bitol
bef rego0,bito0

Ll
endm

(a)

FIGURE 12.4
(@) The macro Dmux_1_ 4 and (b) its flowchart. (Continued)

Demultiplexer Macros

?
regi,biti = 1

RESET regol,bitol
RESET rego0,bito0

RESET rego3,bito3
RESET rego2,bito2

249

L2

RESET rego3,bito3
RESET rego2,bito2
RESET regol,bitol
RESET rego0,bito0

FIGURE 12.4 (Continued)

(@) The macro Dmux_1_ 4 and (b) its flowchart.

(b)

SET rego3,bito3 RESET rego3,bito3 SET regol,bitol RESET regol,bitol
RESET rego2,bito2 SET rego2,bito2 RESET rego0,bito0 SET rego0,bito0
L1
y
end

TABLE 12.4
Symbol and Truth Table of the Macro Dmux_1 4 E
Symbol Truth Table

W E inputs outputs
i= regi,biti E | s1|s0O|yo |yl |vy2]| y3
sl = | regslbitsl 0 X X 0 0 0 0
sO= | regs0,bitsO 1 0|0 i 0] 0 0
y3 = | rego3,bito3 1 0 1 0 i 0 0
y2 = | rego2,bito2 1 1 0 0 0 i 0
yl = | regol,bitol 1 1 1 0 0 0 i
y0 = | rego0,bito0 x: don't care.

250 Building a Programmable Logic Controller

Dmux 1 4 E macro regsl, bitsl,
regs0,bits0,regi,biti,
rego3,bito3,rego2,bito2,
regol ,bitol, rego0,bito0
local L1,L2,1L3,L4,L5
movwf Temp 1
btfss Temp 1,0

goto L2
btfss regi,biti
goto L2
btfss regsl,bitsl
goto L5
bef regol,bitol
bef rego0,bito0
btfss regs0,bits0
goto L4
bsf rego3,bito3
bef rego2,bito2
goto L1l

L5 bcf rego3,bito3
bef rego2 ,bito2
btfss regs0,bits0
goto L3
bsf regol,bitol
bef rego0,bito0
goto L1l

L4 bef rego3,bito3
bsf rego2,bito2
goto L1

L3 bef regol,bitol
bsf rego0,bito0
goto L1

L2 bcf rego3,bito3
bef rego2,bito2
bef regol,bitol
bef rego0,bito0

L1
endm

FIGURE 12.5
The macro Dmux_1_4_E.

Demultiplexer Macros

RESET regol,bitol
RESET rego0,bito0

RESET rego3,bito3
RESET rego2,bito2

RESET rego3,bito3
RESET rego2,bito2
RESET regol,bitol
RESET rego0,bito0

251

SET rego3,bito3 RESET rego3,bito3 SET regol,bitol RESET regol,bitol
RESET rego2,bito2 SET rego2,bito2 RESET rego0,bito0 SET rego0,bito0
I v S v

L1
A
end

FIGURE 12.6
The flowchart of the macro Dmux_1_ 4 E.

for Dmux_1 4. This means that when E = 1: if the select inputs are s;s, = 00
(respectively, 01, 10, 11), the input signal 7 is passed to the output line y,

(respectively, yy, V., Va)-

12.5 Macro Dmux 1 8

The symbol and the truth table of the macro Dmux 1 8 are depicted in
Table 12.5. Figures 12.7 and 12.8 show the macro Dmux 1 8 and its flow-
chart, respectively. In this macro, the select inputs s,, s;, and s, output signals
Yo Y Voo V3 Yo Vs Ve and y,, and the input signal i are all Boolean variables.
When the select inputs are s,s,s, = 000 (respectively, 001, 010, 011, 100, 101, 110,
111), the input signal i is passed to the output line y, (respectively, v, y,, Vs,

Ya Y5 Yo Y7)-

252 Building a Programmable Logic Controller

TABLE 12.5
Symbol and Truth Table of the Macro Dmux_1_8

Symbol Truth Table
i= regi,biti -
inputs outputs
s2= | regs2,bits2
s2(s1|sO|y0|yl|y2|y3|y4|y5|y6|y7
sl = | regsl,bitsl -
Yo— ojlojo|i|oflofoflofofo]oO
v — s0= | regsO,bitsO -
o(o|1{o0|i|f0O|O[O|O]O]O
— 7 = 7,bito7
2 yL= | Teeolnro ol1][ofofofilo]o]oo]o0
Y3 — y6 = | rego6,bito6 ;
—i oOo|1{1(0|0|Ofi|O]O]|O]O
Ya— y5 = | rego5,bito5 -
vsl— 1|10|{o0[0fOf|O|O|i|O]|O]O
5 .
y4 = | rego4,bitod ;
s Yo — 1(0|1{0lO|O|Of|O|i|O]O
2 y3 = | rego3,bito3 -
S1 Y7t— 1|/1|{0[0f0|Of|O|O]|O]|i]|O
So y2 = | rego2,bito2
1(1|1[{0|0|0O|O|O|O]|O]
yl = | regol,bitol
x: don't care.
y0 = | rego0,bito0

12.6 MacroDmux 1 8 E

The symbol and the truth table of the macro Dmux_1_8_E are depicted in
Table 12.6. Figures 12.9 and 12.10 show the macro Dmux_1_8_ E and its flow-
chart, respectively. In this macro, the active high enable input E, select inputs
s,, s, and sy, output signals yo, y, Y2 Y3 Va Vs Ve and y, and the input signal
i are all Boolean variables. When this demultiplexer is disabled with E set to
0, no output line is selected, and the input signal is not passed to any output.
When this demultiplexer is enabled with E set to 1, it functions as described
for Dmux_1_8. This means that when E = 1: if the select inputs are s,s;5, = 000
(respectively, 001, 010, 011, 100, 101, 110, 111), the input signal i is passed to the

output line y, (respectively, y;, ¥,, V3, Yu V5 Vo and y,).

12.7 Examples for Demultiplexer Macros

In this section, we will consider three examples, namely, UZAM_plc_16i160_
exX.asm (X = 22, 23, 24), to show the usage of demultiplexer macros. In order
to test one of these examples, please take the related file UZAM_plc_16i160_
exX.asm (X = 22, 23, 24) from the CD-ROM attached to this book, and then
open the program by MPLAB IDE and compile it. After that, by using the PIC
programmer software, take the compiled file UZAM_plc_16i160_exX.hex (X
=22, 23, 24), and by your PIC programmer hardware, send it to the program

Demultiplexer Macros

Dmux 1 8 macro regs2,bits2,regsl,bitsl, regs0O,bitsO0,

regi,biti,rego7,bito7,rego6,bito6,rego5,bito5,regod ,bito4,

rego3,bito3,rego2,bito2,regol,bitol, rego0,bito0

Lo

L8

L7

L6

L5

L4

L3

L2

Ll

FIGURE 12.7

local
btfss
goto
btfss
goto
bef
bef
bef
bef
btfss
goto
bef
bef
btfss
goto
bsf
bef
goto
bef
bef
bef

btfss
goto
bef
bef
btfss
goto
bsf
bef
goto
bef
bef
btfss
goto
bsf
bef
goto
bef
bsf
goto
bef
bsf
goto
bef
bef
btfss
goto
bsf
bef
goto
bef
bsf
goto
bef
bsf
goto
bef
bef
bef
bef
bef
bef
bef
bef

endm

The macro Dmux_1_8.

L1,L.2,L3,14,L5,L6,L7,1L8,L9
regi, biti
L2
regs2,bits2
L9
rego3,bito3
rego2,bito2
regol,bitol
rego0,bito0
regsl,bitsl
L8
rego5,bitob
rego4d ,bitod
regs0,bits0
L7
rego7,bito7
rego6,bitoé
Ll
rego7,bito7
rego6,bitoé
rego5,bito5
regod ,bitod
regsl, bitsl
L5

regol, bitol
rego0,bito0
regs0,bits0
L4
rego3,bito3
rego2,bito2
Ll
rego7,bito7
rego6,bito6
regs0,bits0
L6
rego5,bitob
regod ,bito4d
Ll
rego7,bito7
rego6,bito6
L1l
rego5,bitob
rego4 ,bito4
L1l
rego3,bito3
rego2,bito2
regs0O,bits0
L3
regol,bitol
rego0O,bito0
Ll
rego3,bito3
rego2,bito2
Ll
regol,bitol
rego0O,bito0
Ll
rego7,bito7
rego6,bito6
rego5,bito5
rego4d ,bitod
rego3,bito3
rego2,bito2
regol,bitol
regoO,bito0

253

Building a Programmable Logic Controller

254

'8 T XNuwg 0Idew Y} JO JIeYdMO[J Y],

8°C1L [WNODI4
pua
A
1
00319'00821 T3 0011q'00821 ST 70Nq'70801 13 7onq'go801 1S | [ponqpodor 135 $031q50801 LASTA 90uq‘908a1 135 903q°90801 1T
tonq‘To8ar 1953y | | Tonq1o8ar 15 £0Nq'g0821 TSTY | | gonq'go8or 135 gonq‘gofar 13574 | | gonq‘goSar 135 romq‘zo801 1387 | | Lowng‘zo8a1 135

stﬁcme._.mmum
£071q'¢0821 LISTA

0031900821 TASTA
1031q‘T0821 LIS

0021900821 TISTA
ToNq‘T0801 T3S
7oNqTo8a1 1ISTA
€0Nq‘08a1 TSI
$ONq 031 TSI
GONq‘GoBax TSI
9021q'908a1 TISTA
LONq‘£0821 TASTY

al

$ONq 0301 TASTA
GONq‘G08a1 TASTA
9031q‘908a1 TISTA
£011q°£0821 TASTA

9011q‘908a1 IS
£011q°20821 19STA

$ONqH0B1 TISTA
GoNq‘godar 1357y

é

0031q°008a1 13STA
Tonq‘T08a1 1353
ToNq‘zo8a1 1387
£091q‘go8a1 13STA

= 1suq‘1sSar

Demultiplexer Macros 255

TABLE 12.6
Symbol and Truth Table of the Macro Dmux_1 8 _E
Symbol Truth Table
W E .
inputs outputs
i= regi,biti
E |s2|s1|sO|y0|yl|y2|y3|y4|y5|y6|y7
s2 = | regs2,bits2
Olx|x|x|O0O|OfO]O|O|O|O]|O
E Yor— | 1= regs1,bits1 -
Vi — 1{ofofofifOlOfO|Of[O|O]|O
s0 = | regs0,bitsO -
Yol— 1lolof1|lo|lilo]lololo]lo]o
y7 = | rego7,bito7 -
Y3 — 1|10(1|]0|0|O|i|O|O0O]O|O]O
| y6 = | rego6,bito6 ;
Yar— 1|oj1|{1]jofoflofli|loflo|O]|O
- 5= 5,bito5
Y5 ¥ = | 180070 1/1](ofofofofofoflilofo]o
— 4 = 4,bito4
SR Y2~ | regon o 1{1flof1flofoflofololilo]o
$1 ¥Y7— | y3 = | rego3,bito3
So 1(1]110]0|10|0|0|0]0]|i]|O0
y2 = | rego2,bito2 -
11111101 0]0]0|0]|0]|O0] i
yl = | regol,bitol
x: don't care.
y0 = | rego0,bito0

memory of PIC16F648A microcontroller within the PIC16F648A-based PLC.
To do this, switch the 4PDT in PROG position and the power switch in OFF
position. After loading the file UZAM_plc_16i160_exX.hex (X = 22, 23, 24),
switch the 4PDT in RUN and the power switch in ON position. Please check
the program’s accuracy by cross-referencing it with the related macros.

Let us now consider these example programs: The first example program,
UZAM_plc_16i160_ex22.asm, is shown in Figure 12.11. It shows the usage
of two demultiplexer macros Dmux_1 2 and Dmux _1 2 E. The schematic
diagram of the user program of UZAM_plc_16il60_ex22.asm, shown in
Figure 12.11, is depicted in Figure 12.12.

In the first rung, the demultiplexer macro Dmux_1 2 (1 x 2 demultiplexer)
is used. In this demultiplexer, the input signal is 7 = 10.1, and the select input
is s, = 10.0, while the output lines are y, = Q0.0 and y;, = QO0.1.

In the second rung, another demultiplexer macro Dmux_1 2 (1 x 2 demul-
tiplexer) is used. In this demultiplexer, the input signal is i = T1.4 (419.4304
ms), and the select input is s, = 10.7, while the output lines are y, = Q0.6 and
y1 =Q0.7.

In the third rung, the macro Dmux_1 2 E (1 x 2 demultiplexer with active
high enable input) is used. In this demultiplexer, the input signal is i = I1.2,
and the select input is s, = I1.1, while the output lines are y, = Q1.0 and y, =
Q1.1. In addition, the active high enable input E is defined to be E = I1.0.

In the fourth and last rung, another macro Dmux_1 2 E (1 x 2 demulti-
plexer with active high enable input) is used. In this demultiplexer, the input
signal is i = T1.3 (209.7152 ms), and the select input is s, = 1.6, while the

256 Building a Programmable Logic Controller

Dmux_1 8 E macro regs2,bits2,regsl,bitsl,regs0,bits0,
regi,biti,rego7,bito7,rego6,bito6,rego5,bito5,
regod ,bitod,rego3,bito3,rego2,bito2,regol,bitol, rego0,bito0
local 11,L2,L3,L4,L5,L6,L7,L8,L9
movwf Temp_1
btfss Temp_1,0

goto L2
btfss regi,biti
goto L2
btfss regs2,bits2
goto L9
bef rego3,bito3
bef rego2,bito2
bef regol,bitol
bef rego0,bito0
btfss regsl,bitsl
goto L8
bef rego5,bitob
bef regod ,bito4d
btfss regs0,bits0
goto L7
bsf rego7,bito7
bef rego6,bitoé
goto L1

L9 bef rego7,bito7
bef rego6,bito6
bef rego5,bito5
bef rego4d ,bito4
btfss regsl,bitsl
goto L5
bef regol , bitol
bef rego0,bito0
btfss regs0,bits0
goto L4
bsf rego3,bito3
bef rego2,bito2
goto L1

18 bef rego7,bito7
bef rego6,bito6
btfss regs0,bits0
goto L6
bsf rego5,bitob
bef rego4d ,bito4
goto Ll

L7 bcf rego7,bito7
bsf rego6,bito6
goto Ll

L6 Dbef rego5,bito5
bsf rego4 ,bito4
goto L1

L5 bef rego3,bito3
bef rego2,bito2
btfss regs0,bits0
goto L3
bsf regol ,bitol
bef regoO,bito0
goto Ll

L4 bcf rego3,bito3
bsf rego2,bito2
goto L1l

L3 Dbef regol,bitol
bsf rego0,bito0
goto L1l

L2 Dbef rego7,bito7
bef rego6,bitoé
bef rego5,bito5
bef rego4 ,bito4d
bef rego3,bito3
bef rego2,bito2
bef regol,bitol
bef rego0,bito0

Ll
endm

FIGURE 12.9
The macro Dmux_1_8_E.

257

Demultiplexer Macros

'H 8 T XnNuwQ 0Idew dj JO JTeYdMO[J L,
oL'gL INOH

U:m
A
1
0021900821 19 0021900821 TISTA ToNq7o8a1 19 ToNq'7o8a1 1ISTY | | ponqpoder 13 HONqp03a1 TASTA 9011q°903a1 13§ _ 901q‘908a1 TISTA
TONq‘T0821 LIS | | 101910821 19 £011q'¢08a1 TASTY | | gonq‘godar 133 GONq‘g08a1 TISAY | | gonq‘goda1 135 £ONq‘£0821 TASAY | | £onqL0Ba1 1S

ToNq708a1 TASAA
£021q'€0821 TISTA

0011900821 LISAA
1031970821 13STY

0021900801 TASAA
ToNq‘T0821 1387
TONqToBa1 TASTA
£0Nq‘g0Ba1 TASTA
$ONqF08a1 TASTA
GONq‘G0Ba1 TASTA
9021q'908a1 TSTA
LONq‘£0821 TASTA

1

HONqp03a1 TASAA
GONq‘G08a1 TASAA
9031q‘908a1 TASAA
£011q°£0821 TASAA

A

= 0snqpsSar
(3

$ONqH0Sa1 TISTA

9011q‘908a1 TS
GoNq‘goSar 1357

£0N1q°£0821 1S

= 1531/ s8aT

0021900821 TASTA
T0Nq‘T0821 1ASTA
ToNq‘'gosar TSI
£021q'€08a1 TISTA

258 Building a Programmable Logic Controller

jmmm - user program starts here ---

Dmux 1 2 10.0,I10.1,00.1,Q0.0 ;rung 1
Dmux 1 2 1I10.7,T1.4,Q0.7,Q0.6 ;rung 2
1d I1.0 ;rung 3
Dmux 1 2 E I1.1,11.2,Q1.1,Q1.0
1d not I1.7 ;rung 4
Dmux 1 2 E I1.6,T71.3,01.7,Q1.6

R user program ends here -----

FIGURE 12.11
The user program of UZAM_plc_16i160_ex22.asm.

INPUTS OUTPUTS
to—— 00>
Nip———{ Qo1 >
T=419,4304 ms Yob—— Qo6 >

i
’

FIGURE 12.12
The schematic diagram of the user program of UZAM_plc_16i160_ex22.asm.

Demultiplexer Macros 259

e il user program starts here -----------------——-
Dmux_1 4 10.1,10.0,10.2,Q00.3,00.2,00.1,0Q0.0 ;rung 1
Dmux 1 4 10.7,10.6,T1.2,Q00.7,Q0.6,00.5,Q00.4 ;rung 2
1d 11.0 ;rung 3
Dmux_1 4 E r1.2,11.1,11.3,01.3,01.2,01.1,01.0
ld_not I1.7 ;rung 4
Dmux 1 4 E I1.6,11.5,T1.3,01.7,01.6,01.5,Q1.4

e il user program ends here -----------—---—---—-

FIGURE 12.13

The user program of UZAM_plc_16i160_ex23.asm.

output lines are y, = Q1.6 and y; = Q1.7. In addition, the active high enable
input E is defined to be E = inverted I1.7. Note that this arrangement forces
the enable input E to be active low.

The second example program, UZAM_plc_16i160_ex23.asm, is shown in
Figure 12.13. It shows the usage of two demultiplexer macros Dmux_1_4
and Dmux _1 4 E. The schematic diagram of the user program of UZAM _
plc_16i160_ex23.asm, shown in Figure 12.13, is depicted in Figure 12.14.

In the first rung, the demultiplexer macro Dmux_1_4 (1 x 4 demultiplexer)
is used. In this demultiplexer, the input signal is 7 = 10.2, and the select inputs
are s; = 10.1 and s, = 10.0, while the output lines are y, = Q0.0, y; = Q0.1, y, =
Q0.2, and y; = Q0.3.

In the second rung, another demultiplexer macro Dmux_1_4 (1 x 4 demul-
tiplexer) is used. In this demultiplexer, the input signal is i = T1.2 (104.8576
ms), and the select inputs are s; = 10.7 and s, = 10.6, while the output lines are
Vo =0Q04, y; =Q0.5,y, =Q0.6, and y; = Q0.7.

In the third rung, the macro Dmux_1_4_ E (1 x 4 demultiplexer with active
high enable input) is used. In this demultiplexer, the input signal is i = I1.3,
and the select inputs are s; = I1.2 and s, = I1.1, while the output lines are y,
=QL0,y; =Ql1,y,=Ql2, and y; = Q1.3. In addition, the active high enable
input E is defined to be E =I1.0.

In the fourth and last rung, another macro Dmux_1 4 E (1 x 4 demulti-
plexer with active high enable input) is used. In this demultiplexer, the input
signal is i = T1.3 (209.7152 ms), and the select inputs are s; = I1.6 and s, = I1.5,
while the output lines are y, = Q1.4, y, = QL.5,y, = QL.6, and y; = Q1.7 In addi-
tion, the active high enable input E is defined to be E = inverted I1.7. Note that
this arrangement forces the enable input E to be active low.

260 Building a Programmable Logic Controller

INPUTS OUTPUTS
Q0.7

QL4
QL5
QL6
QL7

T=209,7152 ms

gl

[115

FIGURE 12.14
The schematic diagram of the user program of UZAM_plc_16i160_ex23.asm.

Demultiplexer Macros 261

Jomm e user program starts here -----------------—————————————————
Dmux 1 8 10.2,10.1,10.0,I0.3,Q00.7,00.6,00.5,00.4,00.3,Q0.2,00.1,00.0 ;rung 1

1d I1.0 ;rung 2
Dmux 1 8 E I11.3,I1.2,11.1,T1.3,Q1.7,01.6,01.5,01.4,01.3,Q1.2,01.1,Q1.0
o m oo user program ends here ---------------—--—————————————————

FIGURE 12.15
The user program of UZAM_plc_16i160_ex24.asm.

The third example program, UZAM_plc_16il60_ex24.asm, is shown in
Figure 12.15. It shows the usage of two demultiplexer macros Dmux 1 8
and Dmux _1 8 E.The schematic diagram of the user program of UZAM_
plc_16i160_ex24.asm, shown in Figure 12.15, is depicted in Figure 12.16.

In the first rung, the demultiplexer macro Dmux_1 8 (1 x 8 demulti-

plexer) is used. In this demultiplexer, the input signal is i = 10.3, and the

INPUTS OUTPUTS
S ——T 0>
Vi
o —
s Q03 >
[1038 >——— w Fou>
B Qo5 >
Yo 0>

7
N\

11.0

o ———T >
Ey
ni——— Q2 >
T=209,7152 ms Y3
113 Pov——— fqua >
15 >
Jo ——{ Q16 >
N S 7y

FIGURE 12.16
The schematic diagram of the user program of UZAM_plc_16i160_ex24.asm.

262 Building a Programmable Logic Controller

select inputs are s, =10.2, s, = 10.1, and s, = 10.0, while the output lines are
vo=Q0.0,y; =Q0.1,y,=0Q0.2, y; =Q0.3, y, = Q04, y; = Q0.5, y, = Q0.6, and
¥, = Q0.7.

In the second and last rung, the macro Dmux_1 8 E (1 x 8 demultiplexer
with active high enable input) is used. In this demultiplexer, the input sig-
nal is i = T1.3 (209.7152 ms), and the select inputs are s, = [1.3, s, = I1.2, and
s, = I1.1, while the output lines are y, = Q1.0, y; = Q1.1, y, = Q1.2, y; = Q1.3,
ys=Q14, y;=QL5,y,=QL.6, and y, = Q1.7 In addition, the active high enable
input E is defined to be E = I1.0.

13

Decoder Macros

A decoder is a circuit that changes a code into a set of signals. It is called
a decoder because it does the reverse of encoding. A common type of
decoder is the line decoder, which takes an m-bit binary input datum and
decodes it into 2" data lines. As a standard combinational component, a
decoder asserts one out of n output lines, depending on the value of an
m-bit binary input datum. The general form of an m-to-n decoder can be
seen in Figure 13.1. In general, an m-to-n decoder has m input lines, i,,_,, ...,
i), iy, and n output lines, d, 4, ..., d;, dy, where n = 2". Although not shown
in Figure 13.1, in addition, it may have an enable line, E, for enabling the
decoder. When the decoder is disabled with E set to 0 (for active high enable
input E), all the output lines are de-asserted. When the decoder is enabled,
then the output line whose index is equal to the value of the input binary
data is asserted (set to 1 for active high), while the rest of the output lines
are de-asserted (set to 0 for active high). A decoder is used in a system hav-
ing multiple components, and we want only one component to be selected
or enabled at any time.

In this chapter, the following decoder macros are described for the
PIC16F648A-based PLC:

decod 1 2 (1 x 2 decoder)
decod 1 2 AL (1 x 2 decoder with active low outputs)
decod 1 2 E(1 x 2 decoder with enable input)

decod 1 2 E AL (1 x 2 decoder with enable input and active low
outputs)

decod 2 4 (2 x 4 decoder)
decod 2 4 AL (2 x 4 decoder with active low outputs)
decod 2 4 E (2 x 4 decoder with enable input)

decod 2 4 E AL (2 x 4 decoder with enable input and active low
outputs)

decod_3 8 (3 x 8 decoder)
decod 3 8 AL (3 x 8 decoder with active low outputs)
decod 3 8 E (3 x 8 decoder with enable input)

decod 3 8 E AL (3 x 8 decoder with enable input and active low
outputs)

263

264 Building a Programmable Logic Controller

—>i : n output lines
—> i
m select inputs
——>{in1 4

FIGURE 13.1
The general form of an m-to-n decoder, where 1 = 2.

The file definitions.inc, included within the CD-ROM attached to this
book, contains all decoder macros defined for the PIC16F648A-based PLC.
Let us now consider these macros in detail.

13.1 Macro decod_1 2

The symbol and the truth table of the macro decod_1_ 2 are depicted in
Table 13.1. Figure 13.2 shows the macro decod_1_2 and its flowchart. This
macro defines a 1 x 2 decoder with active high outputs. In this macro, the
select input A and output signals d, and d, are all Boolean variables. In this
decoder, when the select input is A = 0, the output line d, is asserted (set to
1) and the output line d, is de-asserted (set to 0). Similarly, when the select
input is A =1, the output line d, is asserted (set to 1) and the output line d, is
de-asserted (set to 0).

TABLE 13.1
Symbol and Truth Table of the Macro decod 1 2
Symbol Truth Table
1x2 input outputs
DECODER A= regs0,bits0
A do d1
d.— do = regd0,bitd0
’ d1 d1,bitd1 0 ! 0
| - = re; ,bit
A d; 8) 0 1

Decoder Macros

decod_1 2 macro regs0,bitsO,

regdl,bitdl,regd0O,bitd0
local L1l,L2
btfss regs0,bits0

goto L2
bsf regdl,bitdl
bef regdO,bitd0
goto L1

L2 bsf regdO,bitd0
bef regdl,bitdl

L1l
endm

(@)
FIGURE 13.2

?
regs0,bits0 = 1

265

L2

SET regdl,bitd1

RESET regd0,bitd0

RESET regdl,bitd1
SET regd0,bitd0

(@) The macro decod_1_ 2 and (b) its flowchart.

L1

end

13.2 Macro decod 1 2 AL

The symbol and the truth table of the macro decod_1_2_ AL are depicted in
Table 13.2. Figure 13.3 shows the macro decod_1_2 AL and its flowchart.
This macro defines a 1 x 2 decoder with active low outputs. In this macro,
the select input A and active low output signals d, and d, are all Boolean
variables. In this decoder, when the select input is A = 0, the output line d,
is asserted (set to 0) and the output line d, is de-asserted (set to 1). Similarly,
when the select input is A = 1, the output line d, is asserted (set to 0) and the
output line d, is de-asserted (set to 1).

TABLE 13.2
Symbol and Truth Table of the Macro decod_ 1 2 AL
Symbol Truth Table
1x2 input outputs
DECODER A= regs0,bits0
do d0,bitd0 A % a
o— = re ,biti
v d1 gdl bitd1 0 0 !
— o— = re ,biti
A d; 8 1 1 0

266 Building a Programmable Logic Controller

decod 1 2 ALL. macro regs0,bitsO0,

?
regdl, bitdl, regdo,bitd0 regs0,bits0 = 1

local 1L1,L2 L2
btfss regs0,bits0
goto L2 - :
bef regdl,bitdl RESET regdl,bitd1 SET regd1,bitd1
bsf regd0,bitdo SET regd0,bitd0 RESET regd0,bitd0
goto L1

L2 bef regd0,bitd0
bsf regdl,bitdl L1

L1
endm end

() (b)
FIGURE 13.3

(@) The macro decod_1 2 AL and (b) its flowchart.

13.3 Macrodecod 1 2 E

The symbol and the truth table of the macro decod_1_2 E are depicted
in Table 13.3. Figure 13.4 shows the macro decod_1 2 E and its flow-
chart. This macro defines a 1 x 2 decoder with enable input and active high
outputs. In this macro, the active high enable input E, the select input A,
and active high output signals d, and d, are all Boolean variables. In addi-
tion to the decod_1_2, this decoder macro has an active high enable line,
E, for enabling it. When this decoder is disabled with E set to 0, all output
lines are de-asserted (set to 0). When this decoder is enabled with E set to
1, it functions as described for decod 1 2. This means that when E = 1: if
the select input is A = 0, then the output line d, is asserted (set to 1) and the
output line d, is de-asserted (set to 0). Similarly, when E = 1: if the select input

TABLE 13.3
Symbol and Truth Table of the Macro decod_1 2 E

Symbol Truth Table
1x2 inputs outputs
DECODER W E E A do | d1
d.— A= regs0,bitsO 0 X 0 0

0

—A & do = regd0,bitd0 1 0 1 0
E dl= | regdl,bitdl 1 110 |1

| x: don't care.

Decoder Macros 267

decod 1 _2 E macro regs0,bitsO,
regdl,bitdl, regdO,bitd0

local Ll1,L2,L3

movwf Temp_ 1

btfss Temp_1,0

goto L2
btfss regs0,bits0
goto L3
bsf regdl,bitdl
bef regdO,bitd0
goto L1l
L3 bsf regdO,bitd0
becf regdl ,bitdl
goto L1
L2 bef regdl,bitdl
bef regdO,bitd0
L1
endm

L2
y

SET regdl,bit,d1 RESET regd1,bitd1 RESET regdl,bitd1

RESET regd0,bitd0 SET regd0,bitd0 RESET regd0,bitd0
alad
)l

. L1

end

(b)

FIGURE 13.4
(@) The macro decod_1 2 E and (b) its flowchart.

268 Building a Programmable Logic Controller

is A =1, then the output line d, is asserted (set to 1) and the output line d,, is
de-asserted (set to 0).

13.4 Macrodecod 1 2 E AL

The symbol and the truth table of the macro decod 1 2 E AL are
depicted in Table 13.4. Figure 13.5 shows the macro decod_1 2 E AL and
its flowchart. This macro defines a 1 x 2 decoder with enable input and
active low outputs. In this macro, the active high enable input E, the select
input A, and active low output signals d, and d, are all Boolean variables.
In addition to the decod_1_2 AL, this decoder macro has an active high

enable line, E, for enabling it. When this decoder is disabled with E set to 0,

TABLE 13.4
Symbol and Truth Table of the Macro decod_1_2_ E_AL
Symbol Truth Table
1x2 inputs outputs
DECODER W E E A do | di
doP— A= regs0,bits0 0 x 1 1
—a d,p— do = regd0,bitd0 1 0 0 1
E dl= | regdi,bitdl 11110
| x: don't care.

decod_1 2 E_AL macro regs0,bitsO,
regdl,bitdl,regdO,bitd0

local L1,L2,L3

movwf Temp_ 1

btfss Temp 1,0

goto L2
btfss regs0,bits0
goto L3
bef regdl,bitdl
bsf regdO,bitd0
goto Ll
L3 bef regdO,bitd0
bsf regdl,bitdl
goto Ll
L2 bsf regdl,bitdl
bsf regdO,bitd0
Ll
endm

(a)

FIGURE 13.5
(@) The macro decod_1 2 E AL and (b) its flowchart. (Continued)

Decoder Macros 269

L2

y

RESET regdl,bitd1 SET regd1,bitd1 SET regd1,bitd1
SET regd0,bitd0 RESET regd0,bitd0 SET regd0,bitd0
Y L1
end

FIGURE 13.5 (Continued)
(@) The macro decod_1 2 E AL and (b) its flowchart.

all output lines are de-asserted (set to 1). When this decoder is enabled with
E set to 1, it functions as described for decod 1 2 AL. This means that
when E = 1: if the select input is A = 0, then the output line d, is asserted
(set to 0) and the output line d, is de-asserted (set to 1). Similarly, when E =
1: if the select input is A = 1, then the output line d, is asserted (set to 0) and

the output line d is de-asserted (set to 1).

13.5 Macro decod 2 4

The symbol and the truth table of the macro decod_2_4 are depicted in
Table 13.5. Figure 13.6 shows the macro decod_2 4 and its flowchart.
This macro defines a 2 x 4 decoder with active high outputs. In this macro,
select inputs A and B, and active high output signals d,, d,, d,, and d; are
all Boolean variables. In this decoder, when the select inputs are AB = 00
(respectively, 01, 10, 11), the output line, d,, (respectively, d,, d,, ds), is asserted
(set to 1) and all other output lines are de-asserted (set to 0).

270 Building a Programmable Logic Controller

TABLE 13.5
Symbol and Truth Table of the Macro decod_2_4

Symbol Truth Table
2x4 A= regsl,bitsl inputs outputs
DECODER

B= regs0,bits0 A | B |do | dl | d2 | d3

o[~ | @3- | regd3bitd3 olol1]o]o]o

4= d2= | regd2,bitd2 ol1]|o|1|o0]o0

A b dl= | regdlbitdl 1lofloflofl1]o
B b do= | regdo,bitdo 1| 1]oflo]ol1

|

13.6 Macro decod 2 4 AL

The symbol and the truth table of the macro decod_2_4 AL are
depicted in Table 13.6. Figure 13.7 shows the macro decod_2_ 4 AL and
its flowchart. This macro defines a 2 x 4 decoder with active low outputs. In
this macro, select inputs A and B, and active low output signals d,, d,, d,,
and d; are all Boolean variables. In this decoder, when the select inputs are

decod 2 4 macro regsl,bitsl,
regs0,bits0,regd3,bitd3,
regd2,bitd2,regdl,bitdl,regd0,bitd0
local L1,L2,L3,L4
btfss regsl, bitsl

goto L4
bef regdl,bitdl
bef regdO,bitd0
btfss regs0,bits0
goto L3
bsf regd3,bitd3
bef regd2,bitd2
goto L1

L4 bef regd3,bitd3
bef regd2,bitd2
btfss regs0,bits0
goto L2
bsf regdl,bitdl
bef regdO,bitd0
goto L1

L3 bef regd3,bitd3
bsf regd2,bitd2
goto L1

L2 bef regdl,bitdl
bsf regdO,bitd0

Ll
endm

()

FIGURE 13.6
(@) The macro decod_2_4 and (b) its flowchart. (Continued)

Decoder Macros 271

L4
A 4 A
RESET regd1,bitd1 RESET regd3,bitd3
RESET regd0,bitd0 RESET regd2,bitd2

? ?
regs0,bits0 = 1 regs0,bits0 = 1

L3 L2
SET regd3,bitd3 RESET regd3,bitd3 SET regd1,bitd1 RESET regdl,bitd1
RESET regd2,bitd2 SET regd2,bitd2 RESET regd0,bitd0 SET regd0,bitd0
L1
A 4
end

(b)

FIGURE 13.6 (Continued)
(@) The macro decod_2_4 and (b) its flowchart.

TABLE 13.6
Symbol and Truth Table of the Macro decod 2 4 AL
Symbol Truth Table
2x4 A= regsl,bits1 inputs outputs

DECODER B= regs0,bits0 A B do | d1 | d2 | d3
P | @3- | regd3bitd3 olofol1]1]1
4P d2= | regd2bitd2 0| 1 110 1 1
] LP™ T qi < | regdibitdl o110l
B P do= | regdo,bitdo 1|11 |l1]1]o0

272 Building a Programmable Logic Controller

decod 2 4 AL macro regsl, bitsl,
regs0,bits0,regd3,bitd3,regd2,bitd2,
regdl,bitdl, regd0O,bitd0

local L1,L2,L3,1L4

btfss regsl,bitsl

goto L4
bsf regdl,bitdl
bsf regdO,bitd0
btfss regs0,bits0
goto L3
bef regd3,bitd3
bsf regd2,bitd2
goto Ll

L4 bsf regd3,bitd3
bsf regd2,bitd2
btfss regs0,bits0
goto L2
bef regdl,bitdl
bsf regdO,bitd0
goto Ll

L3 bsf regd3,bitd3
bef regd2,bitd2
goto Ll

L2 bsf regdl,bitdl
bef regdO,bitd0

L1
endm

L4
A\ 4 A
SET regd1,bitd1 SET regd3,bitd3
SET regd0,bitd0 SET regd2,bitd2

?
regs0,bits0 = 1

RESET regd3,bitd3 SET regd3,bitd3 RESET regd1,bitd1 SET regd1,bitd1
SET regd2,bitd2 RESET regd2,bitd2 SET regd0,bitd0 RESET regd0,bitd0
| v > < ¥ |
L1

A 4

end

(b)

FIGURE 13.7

(@) The macro decod_2 4 AL and (b) its flowchart.

Decoder Macros 273

TABLE 13.7
Symbol and Truth Table of the Macro decod_2_4 E
Symbol Truth Table
inputs outputs
e bl t F[)\ B | do | d1 T d2 | d3
E
DECODER A= regsl,bitsl
0 X X 0 0 0 0
do— B= regs0,bits0
d — 1 0 0 1 0 0 0
1 d3 = regd3,bitd3
—1A 4 — 1 0 1 0 1 0 0
2 d2 = | regd2,bitd2
B P : 1|{1]ofloflo]|1]o0
E 3 dl = regdl,bitd1
1 1 1 0 0 0 1
| d0= | regdo,bitdo
x: don't care.

AB = 00 (respectively, 01, 10, 11), the output line, d, (respectively, d,, d,, ds),
is asserted (set to 0) and all other output lines are de-asserted (set to 1).

13.7 Macro decod 2 4 E

The symbol and the truth table of the macro decod_2_4_E are depicted
in Table 13.7. Figures 13.8 and 13.9 show the macro decod_2_4_E and its
flowchart, respectively. This macro defines a 2 x 4 decoder with enable
input and active high outputs. In this macro, the active high enable input
E, select inputs A and B, and active high output signals d,, d;, d,, and
d; are all Boolean variables. In addition to the decod_2 4, this decoder
macro has an active high enable line, E, for enabling it. When this decoder
is disabled with E set to 0, all active high output lines are de-asserted
(set to 0). When this decoder is enabled with E set to 1, it functions as
described for decod_2_4. This means that when E = 1: if the select inputs
are AB = 00 (respectively, 01, 10, 11), then the output line, d, (respectively,
d;, d,, dj), is asserted (set to 1) and all other output lines are de-asserted
(set to 0).

13.8 Macro decod 2 4 E AL

The symbol and the truth table of the macrodecod_2_ 4 E ALaredepicted
in Table 13.8. Figures 13.10 and 13.11 show the macro decod_2_4 E AL

and its flowchart, respectively. This macro defines a 2 x 4 decoder with
enable input and active low outputs. In this macro, the active high enable

274 Building a Programmable Logic Controller

decod 2 4 E macro regsl,bitsl,
regs0,bits0,regd3,bitd3,regd2,bitd2,
regdl,bitdl,regdO,bitd0

local Ll1,L.2,L3,L4,L5

movwf Temp 1

btfss Temp:1 ,0

goto L2
btfss regsl,bitsl
goto L5
bef regdl,bitdl
bef regdO,bitd0
btfss regs0,bits0
goto L4
bsf regd3,bitd3
bef regd2,bitd2
goto L1

L5 bef regd3,bitd3
bef regd2,bitd2
btfss regs0,bits0
goto L3
bsf regdl,bitdl
bef regdO,bitd0
goto L1

L4 bef regd3,bitd3
bsf regd2,bitd2
goto L1

L3 bef regdl,bitdl
bsf regdO,bitd0
goto L1

L2 bef regd3,bitd3
becf regd2,bitd2
bef regdl,bitdl
becf regdO,bitd0

Ll
endm

FIGURE 13.8
The macro decod_2_4_E.

input E, select inputs A and B, and active low output signals d,, d,, d,,
and d; are all Boolean variables. In addition to the decod_2 4 AL, this
decoder macro has an active high enable line, E, for enabling it. When
this decoder is disabled with E set to 0, all active low output lines are
de-asserted (set to 1). When this decoder is enabled with E set to 1, it func-
tions as described for decod_2 4 AL. This means that when E = 1: if the
select inputs are AB = 00 (respectively, 01, 10, 11), then the output line, d,
(respectively, d,, d,, d;), is asserted (set to 0) and all other output lines are

de-asserted (set to 1).

Decoder Macros

RESET regd1,bitd1
RESET regd0,bitd0

RESET regd3,bitd3
RESET regd2,bitd2

L2

RESET regd3,bitd3
RESET regd2,bitd2
RESET regd1,bitd1
RESET regd0,bitd0

?
regs0,bits0 =

L4
SET regd3,bitd3 RESET regd3,bitd3 SET regd1,bit,d1 RESET regd1,bitd1
RESET regd2,bitd2 SET regd2,bitd2 RESET regd0,bitd0 SET regd0,bitd0
v L1
end
FIGURE 13.9
The flowchart of the macro decod_2_4_E.
TABLE 13.8
Symbol and Truth Table of the Macro decod_2_ 4 E AL
Symbol Truth Table
inputs outputs
. il £ E I; B | do dlpdz a3
DECODER A= regsl,bits1
0 X X 1 1 1 1
doP— B= regs0,bitsO
d. b— 1 0 0 0 1 1 1
1 d3 = regd3,bitd3 ! o ! ! o ! !
—A d, o— d2 = regd2,bitd2 ! ! 0) ! o !
B g 6P | di= | regdlbitdl
1 1 1 1 1 1 0
| d0= | regdo,bitdo
x: don't care.

276 Building a Programmable Logic Controller

decod 2 4 E AL macro regsl,bitsl,
regs0,bits0,regd3,bitd3,regd2,bitd2,
regdl,bitdl,regdO,bitd0

local Ll1,L.2,L3,L4,L5

movwf Temp 1

btfss Temp 1,0

goto L2
btfss regsl,bitsl
goto L5
bsf regdl,bitdl
bsf regdO,bitd0
btfss regs0,bits0
goto L4
bef regd3,bitd3
bsf regd2,bitd2
goto L1

L5 bsf regd3,bitd3
bsf regd2,bitd2
btfss regs0,bits0
goto L3
becf regdl,bitdl
bsf regdO,bitd0
goto L1

L4 bsf regd3,bitd3
bef regd2,bitd2
goto L1

L3 bsf regdl,bitdl
bef regdO,bitd0
goto L1

L2 bsf regd3,bitd3
bsf regd2,bitd2
bsf regdl,bitdl
bsf regdO,bitd0

Ll
endm

FIGURE 13.10
The macro decod_2_ 4 E AL.

13.9 Macro decod 3 8

The symbol and the truth table of the macro decod_3_8 are depicted in
Table 13.9. Figures 13.12 and 13.13 show the macro decod_3_8 and its flow-
chart, respectively. This macro defines a 3 x 8 decoder with active high out-
puts. In this macro, select inputs A, B, and C, and active high output signals
d,, d,, d,, d;, d,, ds, d¢, and d, are all Boolean variables. In this decoder, when
the select inputs are ABC = 000 (respectively, 001, 010, 011, 100, 101, 110, 111),
the output line, d, (respectively, d,, d,, d;, d,, ds, d¢, d), is asserted (set to 1)
and all other output lines are de-asserted (set to 0).

Decoder Macros

SET regd1,bitd1
SET regd0,bitd0

SET regd3,bitd3
SET regd2,bitd2

L2

SET regd3,bitd3
SET regd2,bitd2
SET regd1,bitd1
SET regd0,bitd0

regs0,bits0 =
L4
RESET regd3,bitd3 SET regd3,bitd3 RESET regd1,bitd1 SET regd1,bitd1
SET regd2,bitd2 RESET regd2,bitd2 SET regd0,bitd0 RESET regd0,bitd0
v L1
end
FIGURE 13.11
The flowchart of the macro decod_2_4_E_AL.
TABLE 13.9
Symbol and Truth Table of the Macro decod_3_8
Symbol Truth Table
A = | regs2,bits2
3x8 3 T hitel inputs outputs
DECODER = | regsl,bits
g A|[B|[C|do|dl|d2|d3|d4|d5]|d6|d7
d.l— | €= | regsO,bits0
0 ofojoj1|o0(0fO0OfO0OjO]O0O]O0
d, — | d7 = | rego7,bito7
1 ofojrj{o|1(0(O0fO0O]O0O]O0O]O0
d,— | d6 = | rego6,bito6
2 o(1{0j0|0|1]|0]O0O]|]O0O]|O0]O
d.— | d5 = | rego5,bito5
3 ofi1{1j{o0|jo0|O0Of1T|[O0O]O0O]O0O]O
d,— | d4 = | rego4,bitod
4 1lofofo|ofo|O0|1|O0|O]O
| ds— d3 = | rego3,bito3
110|100 O]O]O]1T|0]|O
—B dgt— d2 = | rego2,bito2
ir|j1j0/0(0fO0O]O]JO]O|1]|O
—C d,— | dl = | regol,bitol
1|j1|j1,0(0[O0OJO]JO]O|O0]|1
d0 = | rego0,bito0

278 Building a Programmable Logic Controller

decod 3 8 macro regs2,bits2,regsl, bitsl,
regs0,bits0,regd7,bitd7,regd6,bitds6,
regd5,bitd5,regd4 ,bitd4,regd3,bitd3,
regd2,bitd2,regdl,bitdl, regd0,bitd0

local L1,L.2,L.3,1.4,1.5,L6,L7,1L8

btfss regs2,bits2

goto L8
bef regd3,bitd3
bef regd2,bitd2
bef regdl,bitdl
bef regdO,bitd0
btfss regsl,bitsl
goto L7
bef regd5,bitd5
bef regd4 ,bitd4
btfss regs0,bits0
goto L6
bsf regd7,bitd7
bef regd6,bitdé
goto Ll

L8 Dbecf regd7,bitd7
bef regd6,bitd6
bef regd5,bitd5
bef regd4 ,bitd4
btfss regsl,bitsl
goto L4
bef regdl,bitdl
bef regdO,bitd0
btfss regs0,bits0
goto L3
bsf regd3,bitd3
bef regd2,bitd2
goto L1

L7 bef regd7,bitd7
bef regd6,bitdé
btfss regs0,bits0
goto L5
bsf regd5,bitd5
bef regd4 ,bitd4
goto L1l

L6 bef regd7,bitd?7
bsf regd6,bitdé
goto L1

L5 bef regd5,bitd5
bsf regd4 ,bitd4
goto L1

L4 bef regd3,bitd3
bef regd2,bitd2
btfss regs0,bits0
goto L2
bsf regdl,bitdl
bef regd0,bitd0
goto Ll

L3 bcf regd3,bitd3
bsf regd2,bitd2
goto L1

L2 bef regdl ,bitdl
bsf regd0,bitd0

L1l
endm

FIGURE 13.12
The macro decod_3_8.

279

.w|m|muOU®mu oIdeuw oy} JO HIeYOdMO[J 9y],

€reL [PNOIH
Wﬂw
1
| t i t t t t |
0PNq‘0pSa1 13S opnq'op8ar 1asTA| | zpnqzpser 13 TpnqgpSar 1ASTA | [FPnqyp8ar 1S FPUQPPSar LASAA | | 9paqiopSar 145 9pNq‘opSar 1ASTA
1P3qTpSar 13574 | | TPqTpSar 1S €pNq‘gpSor 1ASTY | | epaqepSer 1S Spaq‘spSer 1ASTY | | spaq‘gpSer 1S LPNqLPSo1 1ASTY | | LPNq‘LpSer 1S

3

1 = 0s31q°0s8a1

TPNq‘gpSar 1ASTY

0PMq‘0P3a1 LASTY
IPNQIPSaI 1ASTY

9pNq‘opdar 1ISTA
LPNq‘Lp3ar TSI

FPNqFPSar 1ASTY
SpNq‘spSar 1ASTA

€pNq‘epSar 1ISTA

Decoder Macros

71

= [SNq‘Is8a1
(4

PPNQFPSaI LASTA
gpuq‘gpdar 13S3d
9pPNq‘OpSar LISTA
LpNq‘Lpdar 13SAY

g

1 = ¢snq‘gsdaa
4

0pMq‘opsar LASTY
1pNq‘TpSar 13534
TpPNq‘Tpder 1LASTY
¢puq‘gpar 14T

]

280 Building a Programmable Logic Controller

TABLE 13.10
Symbol and Truth Table of the Macro decod_3_8_ AL

Symbol Truth Table
bE CSS?)ER [; : izzi::zj inputs outputs

A|B|C|do|dl|d2|d3|d4|d5(|d6|d7

dop— | S= | reBsObIS0 [T T T T (1 1 1 1|1

dyp- [47= | regombito? | T T T o [1 (1|11 |1

dy P | 0= | regoObitos [T T o (1 [1] 1 1] 1

dyp— | 952 | regosbitos [o T T T (o [1] 1 1] 1

dyp- | 4= | regodbitod | I T T (1 1 o |11 |1

—JA P | 3= | regodbitod [of1|1|1|1|1]|1flof1]1
—IB dep |22 | regodbito? | T T T (1 (1 (1] 0|1
—€¢ &P [dl= [regobbitol Hmmm T T T T T T T

dO = | rego0,bito0
|

13.10 Macro decod 3 8 AL
The symbol and the truth table of the macro decod_3_8_AL are depicted

in Table 13.10. Figures 13.14 and 13.15 show the macro decod 3 8 AL
and its flowchart, respectively. This macro defines a 3 x 8 decoder with
active low outputs. In this macro, select inputs A, B, and C, and active
low output signals d,, d,, d,, d;, d,, ds, dg, and d; are all Boolean variables.
In this decoder, when the select inputs are ABC = 000 (respectively, 001,
010, 011, 100, 101, 110, 111), the output line, d, (respectively, d,, d,, d;, d,,
ds, dg, d;), is asserted (set to 0) and all other output lines are de-asserted
(set to 1).

13.11 Macro decod 3 8 E
The symbol and the truth table of the macro decod_3_8_E are depicted

in Table 13.11. Figures 13.16 and 13.17 show the macro decod 3 8 E and
its flowchart, respectively. This macro defines a 3 x 8 decoder with enable
input and active high outputs. In this macro, the active high enable input
E, select inputs A, B, and C, and active high output signals d,, d,, d,, ds,
d,, ds, di, and d; are all Boolean variables. In addition to the decod_3_8,
this decoder macro has an active high enable line, E, for enabling it. When

this decoder is disabled with E set to 0, all active high output lines are

Decoder Macros

decod 3 8 AL macro

L8

L7

L6

L5

L4

L3

L2

L1

FIGURE 13.14

local
btfss
goto
bsf
bsf
bsf
bsf
btfss
goto
bsf
bsf
btfss
goto
bef
bsf
goto
bsf
bsf
bsf
bsf
btfss
goto
bsf
bsf
btfss
goto
bef
bsf
goto
bsf
bsf
btfss
goto
becf
bsf
goto
bsf
bef
goto
bsf
becf
goto
bsf
bsf
btfss
goto
becf
bsf
goto
bsf
bef
goto
bsf
bef

endm

The macro decod_3_8_AL.

regs2,bits2
L8

regd3,bitd3
regd2,bitd2
regdl,bitdl
regdO,bitd0
regsl,bitsl
L7

regd5,bitd5
regd4 ,bitd4
regs0,bits0
L6

regd7,bitd7
regd6,bitdé
Ll

regd7,bitd7
regd6,bitdé
regd5,bitd5
regd4 ,bitd4
regsl,bitsl
L4

regdl,bitdl
regdO,bitd0
regs0,bits0
L3

regd3,bitd3
regd2,bitd2
Ll

regd7,bitd7
regd6,bitdé
regs0,bits0
L5

regd5,bitd5
regd4 ,bitd4
Ll

regd7,bitd7
regd6,bitd6
Ll

regd5,bitd5
regd4 ,bitd4
Ll

regd3,bitd3
regd2,bitd2
regs0,bitsO
L2

regdl,bitdl
regdO,bitd0
L1

regd3,bitd3
regd2,bitd2
Ll

regdl,bitdl
regdO,bitd0

regs2,bits2,regsl,
bitsl,regs0,bits0,regd7,bitd7,regd6,bitd6,
regd5,bitd5,regdd,bitd4,regd3,bitd3,regd2,
bitd2,regdl,bitdl,regd0,bitd0
L1,1.2,L3,1.4,L5,L6,L7,L8

281

Building a Programmable Logic Controller

282

I¥Y 8 € PODSP OIDBW dU) JO LIBYIMO[J dY L,

SL°€L 3ANOI4

*

7}
]

*

*

*

*

0PYq°0pSa1 1S
IPNq‘Tp3a1 145

0PHq‘0pSar 1S
TPq‘TP3a1 15T

TPNq‘gpSar 1S
€pNq‘gpsar 135

TPNq‘TpSaI L3S
€puq‘gpdar 1453y

PPIQPPSaI 1S
SpNq‘gpsar 145

FPUqEpSar 1S
SpNq‘spSar 1ASTA

9pNq‘9pSar 1S
LPNq‘LpSa1 1S

9pNq‘opsar 145
LPNq‘Lp8a1 1AST

TpNq‘pSar 13S
€pNq‘EpSar 135

71

= [SNq‘Is8a1
(4

3

1 = 0s31q°0s8a1

0PHq‘OpSer 1S
1p3q‘Tpdar 145

TPNqTPSer 13
Spuq‘gpsar L3S
9puq‘9psar L3S
LPNq‘LpSar L3S

g

1 = ¢snq‘gsdaa
4

9puq‘9psar 1S
LPNq‘Lp3a1 1S

PPIqpPSaT 1S
SPNq‘Sp8a 1S

0PNq‘opSa1 L3S
1pNq‘Tpsar 138
TPNqTPSaI L3S
€pNq‘gpsaI L3S

Decoder Macros 283

TABLE 13.11
Symbol and Truth Table of the Macro decod_3_8_E
Symbol Truth Table
W E inputs outputs
S, - | regs2bits2 ||| E[A|B|c|do|d1]d2|ds|da]ds]d6]ar
dy|— = | regsl,bitsl Olx|x|x|OoOlO|JO|O|O|O|O|O
4 = | regs0,bitsO 1(0{0|j0|1|J0jO0O|O|O]O]|O]O
d— d7 =|regd7,bitd7 1(0({0|1y0|1(0f0|0]0O0]O0O]O
dsl— d6 = | regd6,bitd6 1(0({1{0j0)JO0O}2|O0O|0]0O]|]O0O]O
a,|— |95 =|regdsbids ||| 1]o|1|1|0]ofo|1]ofo]o]0
| ds— d4 =|regd4,bitd4 1|1{0[0jO0O|O|jO|Of1T]|O]|]O]|O
—B de— d3 =|regd3,bitd3 1(1{0|1J0|JO0OjO0OfO|O]1]|]0O0]O
—c : d,— d2 =|regd2,bitd2 1(1{1{0y0|jO0OjOfO|O]O]|1]O
| d1 =|regdl,bitdl 1(1{1{1)0]0jO0O|O|0O0O]O0O]|O0]T1
dO = | regd0,bitd0 x: don't care.

de-asserted (set to 0). When this decoder is enabled with E set to 1, it func-
tions as described for decod_3 8. This means that when E = 1: if the select
inputs are ABC = 000 (respectively, 001, 010, 011, 100, 101, 110, 111), then the
output line, d, (respectively, d;, d,, ds, d,, ds, dg, d;), is asserted (set to 1) and
all other output lines are de-asserted (set to 0).

13.12 Macro decod 3 8 E AL

The symbol and the truth table of the macro decod 3_8 E AL
are depicted in Table 13.12. Figures 13.18 and 13.19 show the macro
decod_3_8_E_AL and its flowchart, respectively. This macro defines a 3
x 8 decoder with enable input and active low outputs. In this macro, the
active high enable input E, select inputs A, B, and C, and active low output
signals d,, d,, d,, d3, d,, ds, dg, and d; are all Boolean variables. In addition
to the decod 3 8 AL, this decoder macro has an active high enable line,
E, for enabling it. When this decoder is disabled with E set to 0, all active
high output lines are de-asserted (set to 1). When this decoder is enabled
with E set to 1, it functions as described for decod_3_8 AL. This means
that when E = 1: if the select inputs are ABC = 000 (respectively, 001, 010,
011, 100, 101, 110, 111), then the output line, d, (respectively, d;, d,, d;, d,,
ds, dg, d;), is asserted (set to 0) and all other output lines are de-asserted
(set to 1).

284

Building a Programmable Logic Controller

decod_3_8 E macro regs2,bits2,regsl, bitsl,
regs0,bits0,regd7,bitd7,regd6,bitd6,
regd5,bitd5,regd4 ,bitd4,regd3,bitd3,
regd2,bitd2,regdl,bitdl, regd0,bitd0

Lo

L8

L7
L6

L5

L4
L3

L2

Ll

FIGURE 13.16
The macro decod_3_8_E.

local
movwf
btfss
goto
btfss
goto
bef
bef
bef
bef
btfss
goto
bef

btfss
goto
bsf
bef
goto
bef
bef
bef
bef
btfss
goto
bef

btfss
goto
bsf
bef
goto
bef
bef
btfss
goto
bsf
bef
goto
bef
bsf
goto
bef

goto
bef
bef
btfss
goto
bsf
bef
goto
bef
bsf
goto
bef
bsf
goto
bef
bef
bef
bef
bef
bef
bef
bef

endm

L1,L2,L3,L4,L5,L6,L7,L8,L9
Temp_1

Temp 1,0
L2
regs2,bits2
L9
regd3,bitd3
regd2,bitd2
regdl,bitdl
regdO,bitd0
regsl,bitsl
L8
regd5,bitd5
regd4 ,bitd4
regsO,bits0O
L7
regd7,bitd7
regd6,bitdé
L1
regd7,bitd7
regd6,bitdé
regd5,bitd5
regd4 ,bitd4
regsl,bitsl
L5
regdl,bitdl
regdO,bitd0
regs0,bits0
L4
regd3,bitd3
regd2,bitd2
L1l
regd7,bitd7
regd6,bitdé
regsO,bitsO
L6
regd5,bitd5
regd4 ,bitd4
L1
regd7,bitd7
regd6,bitd6
L1l
regd5,bitd5
regd4 ,bitd4
L1
regd3,bitd3
regd2,bitd2
regs0,bits0
L3
regdl,bitdl
regdO,bitd0
L1l
regd3,bitd3
regd2,bitd2
L1l
regdl,bitdl
regdO,bitd0
L1l
regd7,bitd7
regd6,bitdé
regd5,bitd5
regd4 ,bitd4
regd3,bitd3
regd2,bitd2
regdl,bitdl
regdO,bitd0

285

Decoder Macros

‘'H 8 € POO9P 0IDRW 3} JO JLIRYIMO[J dY L,
L1'€1L IINDH

A

A

LY

+

L)

+

0pPHq‘opSar 1S
TpNq‘TPSa1 LISTY

0PHq‘0pSa1 13T
TPNq‘Tp3a1 135

TPNq‘gpSer 13s
€pNq‘gpSer 1ISTY

TPNq‘gpSer 13SaY
€pNq‘gpSar L3S

PPUqPPSaT 138
Spiq‘spSer 1ISTY

BPIqPPST 1ISTA
Spiq‘spSer L3S

9puqopSer 1S
LpNq‘ZpSa1 13T

9puq‘9pSar 13534
LpNq‘ZpSe1 L3S

TPNq‘TPSa1 13T
€pNq‘gpsa1 1357y

|

1

0Pq‘opSa1 1ASTY
TP3q‘TpSa1 1ASTY
TPNq‘cpSer 13SaY
€pNq‘gpSer 1ISTY
PPUqPPSaT 15T
SpNq‘spSar 13SAY
9puq‘9psar 1ISTA
LPNq‘LpSa1 TASTA

Nqﬁ

1 = IsHq‘Tsdar
4

0pPHq‘opSaT 1S
NqTpSer 13534

PPIqFPFaI 1ASTY
SpNq‘gpSar 4S9y
9puq‘9pSar 1ISTA
LpNq‘ZpSe1 1ISTY

X
671

13 0T dwa,

M —>1 dwag,

1 = gsnq‘gsdal
3

9puq‘9pBar 15T
£PNq‘/ZpSar 13STY

8T

0PMq‘0P3a1 1ASTA
TPNq‘TPSa1 LISTA
TpNq‘ZpSa1 1957
€pNq‘epSar 1453y

]

PPUqFPSaT 1957
SpNq‘spSar 14S3Y

286 Building a Programmable Logic Controller

TABLE 13.12
Symbol and Truth Table of the Macro decod_3_8_E AL
Symbol Truth Table
\\4 E inputs outputs
S, ~ | regsabits2 ||| E[A | B|c|do|d1]d2]|ds|da]as]d6|ar
4P = | regsl,bitsl Ofx|x|x|1|1|1|1|1|1]|1]|1
d, - = | regs0,bitsO 1(o0(ojojof1f{1(1|1|1}{1|1
&P d7 =|regd7,bitd7 1(o0(ofj1|1f{of1 (1 |1]1|1]|1
dsp— d6 =|regd6,bitd6 1(o0(1jo|1|{1{0 |1 |1]|]1f1]|1
d,p— d5 =|regd5,bitd5 1(o0(1|1|1f{1f(1(0|1T]|]1f1]|1
_ | dsp— d4 =|regd4,bitd4 i1(1j0jo0|1|{1f{1(1|0]1|1]|1
—1B dgp— d3 =|regd3,bitd3 i1(1j0j1|1f{1f{1f(1|1]0f1]|1
¢ . d, p— d2 =|regd2,bitd2 1(1f(1jo0|1|1f{1(1|1]|]1}(0]|1
| d1 =|regdl,bitdl 1(1(1|1|1{1f{1 11110
dO0 = | regd0,bitd0 x: don't care.
I

13.13 Examples for Decoder Macros

In this section, we will consider four examples, namely, UZAM_plc_16i160_
exX.asm (X = 25, 26, 27, 28), to show the usage of decoder macros. In order
to test one of these examples, please take the related file UZAM_plc_16i160_
exX.asm (X = 25, 26, 27, 28) from the CD-ROM attached to this book, and then
open the program by MPLAB IDE and compile it. After that, by using the PIC
programmer software, take the compiled file UZAM_plc_16i160_exX.hex (X
= 25, 26, 27, 28), and by your PIC programmer hardware, send it to the pro-
gram memory of PIC16F648A microcontroller within the PIC16F648A-based
PLC. To do this, switch the 4PDT in PROG position and the power switch in
OFF position. After loading the file UZAM_plc_16i160_exX.hex (X = 25, 26,
27, 28), switch the 4PDT in RUN and the power switch in ON position. Please
check the program’s accuracy by cross-referencing it with the related macros.

Let us now consider these example programs: The first example program,
UZAM_plc_16i160_ex25.asm, is shown in Figure 13.20. It shows the usage
of four decoder macros, decod 1 2,decod 1 2 AL,decod 1 2 E, and
decod 1 2 E AL. The schematic diagram of the user program of UZAM_
plc_16i160_ex25.asm, shown in Figure 13.20, is depicted in Figure 13.21.

In the first rung, the decoder macro decod_1_ 2 (1 x 2 decoder) is used. In
this decoder, the select input is A = 10.0, while the output lines are d;, = Q0.0
and d; = Q0.1.

Decoder Macros

decod 3 8 E AL macro regs2,bits2,regsl,
bitsl,regs0,bits0,regd7,bitd7,regd6,bitd6,
regd5,bitd5,regd4 ,bitd4,regd3,bitd3,regd2,
bitd2, regdl,bitdl, regd0,bitd0

L9

L8

L7

L6

L5

L4

L3

L2

Ll

FIGURE 13.18

local
movwf
btfss
goto
btfss
goto
bsf
bsf
bsf
bsf
btfss
goto
bsf
bsf
btfss
goto
bef
bsf
goto
bsf
bsf
bsf
bsf
btfss
goto
bsf
bsf
btfss
goto
bef
bsf
goto
bsf
bsf
btfss
goto
bef
bsf
goto
bsf
bef
goto
bsf
bef
goto
bsf
bsf
btfss
goto
bef
bsf
goto
bsf
bef
goto
bsf
bef
goto
bsf
bsf
bsf
bsf
bsf
bsf
bsf
bsf

endm

The macro decod_3_8_E_AL.

11,L2,L3,L4,L5,L6,L7,L8,L9
Temp_1
Temp_1,0

L2
regs2,bits2
Lo
regd3,bitd3
regd2,bitd2
regdl,bitdl
regdO,bitd0
regsl,bitsl
L8
regd5,bitd5
regd4 ,bitd4
regsO0,bits0
L7
regd7,bitd7
regd6,bitdé
Ll
regd7,bitd7
regd6,bitdé
regd5,bitd5
regd4 ,bitd4
regsl,bitsl
L5
regdl,bitdl
regdO,bitd0
regs0,bits0
L4
regd3,bitd3
regd2,bitd2
Ll
regd7,bitd7
regd6,bitdé
regsO,bits0
L6
regd5,bitd5
regd4 ,bitd4
Ll
regd7,bitd7
regd6,bitd6é
Ll
regd5,bitd5
regd4 ,bitd4
Ll
regd3,bitd3
regd2,bitd2
regs0,bits0
L3
regdl,bitdl
regdO,bitd0
Ll
regd3,bitd3
regd2,bitd2
Ll
regdl,bitdl
regdO,bitd0
Ll
regd7,bitd7
regd6,bitdé
regd5,bitd5
regd4 ,bitd4
regd3,bitd3
regd2,bitd2
regdl,bitdl
regdO,bitd0

287

Building a Programmable Logic Controller

288

IY @ 8 € PODSP OIdew Y} JO JIeYdMOTJ 3],
61°€L ANDH

pus
1
[4 4 4 L [L |
opnq‘opdar LASAA| | 0PIqOPSaI 1AS TPNqTPSar 1S | | zpaqgpSer 14 FPNQHpSar 1ASAA | | PPIqppSar 14S 9pNq‘9pSa1 1ASAA | | 9paq'opSar 1S
IPNqTpSr 195 PG TPSa1 TASTY | | €PNq‘epSa 14S €PNq‘gPSal 1S | | SPNq‘GpSa 14S SPNQ‘SpSal 1ASTY | | LpNq‘LpSer 1S LPNq‘Lp8a1 1ISTY

1 = 0s31q‘ps3a1
4

TPNq‘Zp8a1 L3S
€puq‘epsar 14

ST

1= IsHq
<

- —
0pPHq‘opSa1 148
TpNq‘TpSa1 L3S
TPIqTPSaI 148
€puq‘epsal 145
PPUqFPSaT 145
Spuq‘spsar 13s
9puq‘9psar 195
LPNq‘/pSal 13S

=

¢

OPNq‘OPSa1 145
TPNq‘TPSaI L3S

1sSax

PPIQHPaT 195
Spuq‘spsar 13S
9puq‘9psa1 195
LPNq‘Lp3a1 1S
A

61

N &

91

1 = 0s1q‘0sda1
3

9puq‘9psa1 195
LPNq‘LpSa1 L3S

PPUqFPSa1 148
Spuq‘spsar 13S

87

T

= Is31q‘1s8a1
4

0PNq‘Op3a1 1S
TPHqTP3a1 LIS
TpNqgpdar 19
€paq‘gpSar 1S

1 = gsnqgsdan

Decoder Macros 289

jomm e user program starts here -----

decod 1 2 10.0,00.1,00.0 ;rung 1
decod 1 2 AL I10.7,Q00.7,Q0.6 ;rung 2
1d I1.0 ;rung 3

decod 1 2 E I1.1,01.1,01.0

1d not I1.7 ;rung 4
decod 1 2 E AL I11.6,Q1.7,Q01.6
o T user program ends here -------

FIGURE 13.20
The user program of UZAM_plc_16i160_ex25.asm.

INPUTS 1x2 OUTPUTS
DECODER
df—— Qo0 >
0 >——1a 4
1x2
DECODER
dp——— Q6 >
07 >———1a 4
1x2
DECODER
d
> 4
E
[1o |
1x2
DECODER
dp——— Q6 >
e >4 dp Gz >
E

[17 i

FIGURE 13.21
The schematic diagram of the user program of UZAM_plc_16i160_ex25.asm.

290 Building a Programmable Logic Controller

In the second rung, the decoder macro decod_1_2 AL (1 x 2 decoder with
active low outputs) is used. In this decoder, the select input is A =10.7, while
the output lines are d, = Q0.6 and d; = Q0.7.

In the third rung, the macro decod_1_2 E (1 x 2 decoder with active high
enable input) is used. In this decoder, the select input is A = I1.1, while the
output lines are dy = Q1.0 and d, = Q1.1. In addition, the active high enable
input E is defined to be E = I1.0.

In the fourth and last rung, the macro decod 1 2 E AL (1 x 2 decoder
with active high enable input and active low outputs) is used. In this decoder,
the select input is A =11.6, while the output lines are d; = Ql.6 and d, = Q1.7 In
addition, the active high enable input E is defined to be E = inverted I1.7. Note
that this arrangement forces the enable input E to be active low.

The second example program, UZAM_plc_16il60_ex26.asm, is shown
in Figure 13.22. It shows the usage of four decoder macros, decod 2 4,
decod 2 4 AL, decod 2 4 E, and decod 2 4 E AL. The schematic
diagram of the user program of UZAM_plc_16i160_ex26.asm, shown in
Figure 13.22, is depicted in Figure 13.23.

In the first rung, the decoder macro decod_2_ 4 (2 x 4 decoder) is used. In
this decoder, select inputs are A =10.1 and B = 10.0, while the output lines are
dy,=Q0.0,d; =Q0.1, d, = Q0.2, and d; = Q0.3.

In the second rung, the decoder macro decod 2 4 AL (2 x 4 decoder with
active low outputs) is used. In this decoder, select inputs are A =10.7 and B =
10.6, while the output lines are d, = Q04, d, = Q0.5, d, = Q0.6, and d; = Q0.7.

In the third rung, the macro decod_2 4 E (2 x 4 decoder with active high
enable input) is used. In this decoder, select inputs are A =11.2 and B =111,
while the output lines are d, = Q1.0, d; = Q1.1, d, = Q1.2, and d; = Q1.3. In
addition, the active high enable input E is defined to be E = I1.0.

In the fourth and last rung, the macro decod 2 4 E AL (2 x 4 decoder
with active high enable input and active low outputs) is used. In this decoder,
select inputs are A = I1.6 and B = I1.5, while the output lines are d, = Q14, d,
=QL5,d, =Q1.6, and d; = Q1.7. In addition, the active high enable input E is
defined to be E = inverted I1.7. Note that this arrangement forces the enable
input E to be active low.

e e user program starts here ----------—------—--—-

decod 2 4 10.1,10.0,00.3,00.2,00.1,Q0.0 ;rung 1
decod 2 4 AL 10.7,10.6,Q00.7,Q00.6,00.5,Q00.4 ;rung 2
1d I1.0 ;rung 3

decod 2 4 E 11.2,11.1,01.3,01.2,01.1,Q1.0

1d not I1.7 ;rung 4
decod 2 4 E AL I1.6,11.5,01.7,01.6,Q01.5,Q1.4
o user program ends here ---------------—---—---

FIGURE 13.22
The user program of UZAM_plc_16i160_ex26.asm.

Decoder Macros 291

INPUTS ot OUTPUTS
DECODER
do—— o >
G i >
(o >——r & >
[oo >—fp &—— L5 >
2x4
DECODER
i >
4
(107 >————a dp———o Q6 >
[106 >—B & Q07
2x4
DECODER
>
G >
[12 A 4 Ql2 >
[1 B ds Ql3 >
E
[no
2x4
DECODER
4y p——{ "tz >
dp——" Q5 >
[>——2 ap—— [>
iz > ap
E
[17 7

FIGURE 13.23
The schematic diagram of the user program of UZAM_plc_16i160_ex26.asm.

The third example program, UZAM_plc_16il60_ex27.asm, is shown in
Figure 13.24. It shows the usage of two decoder macros decod_3_8 and
decod_3_8_AL. The schematic diagram of the user program of UZAM_
plc_16i160_ex27.asm, shown in Figure 13.24, is depicted in Figure 13.25.

In the first rung, the decoder macro decod_3_8 (3 x 8 decoder) is used. In
this decoder, select inputs are A =10.2, B =10.1, and C = 10.0, while the output
lines are d, = Q0.0, d;, = Q0.1, d, = Q0.2, d; = Q0.3, d, = Q0.4, d; = Q0.5, d, =
Q0.6, and d, = Q0.7.

292 Building a Programmable Logic Controller

e user program starts here ----—-----—-———————————-
decod_3 8 10.2,10.1,10.0,00.7,Q0.6,00.5,00.4,00.3,00.2,00.1,Q00.0 ;rung 1
decod 3 8 AL 11.2,11.1,11.0,01.7,01.6,01.5,01.4,01.3,01.2,01.1,01.0 ;rung 2
= —-—-"-—- user program ends here ------—-—-—————————————————

FIGURE 13.24
The user program of UZAM_plc_16i160_ex27.asm.

In the second and last rung, the decoder macro decod 3 8 AL (3 x 8
decoder with active low outputs) is used. In this decoder, select inputs are A
=11.2, B =111, and C =I1.0, while the output lines are d, = Q1.0, d, = Q1.1, d,
=Q1.2,d;=0Q1.3,d,=Q14,d; =Q15,d, =Q1.6,and d, = QL.7.

The fourth example program, UZAM_plc_16il60_ex28.asm, is shown in
Figure 13.26. It shows the usage of two decoder macros, decod 3 8 E and

decod_3_ 8 E AL. The schematic diagram of the user program of UZAM_
plc_16i160_ex28.asm, shown in Figure 13.26, is depicted in Figure 13.27.

INPUTS 3x8 OUTPUTS
DECODER
do——— Q0>
4
“
5
T — T
3x8
DECODER
dy IO Q1.0
4 o QL1
dy Q1.2
4
4p
11.2 A ds [0 Q1.5
11.0 C d QL7

FIGURE 13.25
The schematic diagram of the user program of UZAM_plc_16il60_ex27.asm.

Decoder Macros

1d
decod 3 8 E

1d not
decod 3 8 E AL

FIGURE 13.26

user program starts here

I0.0

293

;rung 1

10.3,10.2,I0.1,00.7,00.6,00.5,00.4,00.3,00.2,Q0.1,Q0.0

I1.0

;rung 2

11.3,11.2,11.1,01.7,01.6,01.5,01.4,01.3,01.2,01.1,01.0

user program ends here

The user program of UZAM_plc_16i160_ex28.asm.

OUTPUTS

ﬁé

o
S

it

(=]
~N

Q0.2

Q

Q

QL0
QL1

R
[\S]

|

INPUTS 3x8
DECODER
do
4
dy |
d3
dy
10.3 A d
[102 B d
10.1 C d
E
[100 |
3x8
DECODER
dy 1O
4 o
4,
ds
4,0
11.3 A ds O
1.2 B dg
1.1 C d
E
[100 Y
FIGURE 13.27

=
=

R
&

QL6
QL7

The schematic diagram of the user program of UZAM_plc_16i160_ex28.asm.

294 Building a Programmable Logic Controller

In the first rung, the decoder macro decod _3_8 E (3 x 8 decoder with
active high enable input) is used. In this decoder, select inputs are A =10.3, B
=10.2, and C =10.1, while the output lines are d, = Q0.0, d, = Q0.1, d, = Q0.2,
d; =Q0.3, d, = Q04, d; = Q0.5, d; = Q0.6, and d, = Q0.7. In addition, the active
high enable input E is defined to be E = 10.0.

In the second and last rung, the decoder macro decod 3 8 E AL (3x8
decoder with active high enable input and active low outputs) is used. In this
decoder, select inputs are A =11.3, B =11.2, C =I1.1, while the output lines are
d,=0Q10,d,=0Q11,d,=Q1.2,d;=0Q1.3,d,=Q14,d;=Q15,d,=Ql.6,and d, =
Q1.7. In addition, the active high enable input E is defined to be E = inverted
I1.0. Note that this arrangement forces the enable input E to be active low.

14

Priority Encoder Macros

An encoder is a circuit that changes a set of signals into a code. As a stan-
dard combinational component, an encoder is almost like the inverse of a
decoder, where it encodes a 2"-bit input datum into an n-bit code. As shown
by the general form of an m-to-n encoder in Figure 14.1, the encoder has m
= 2" input lines and n output lines. For active high inputs, the operation
of the encoder is such that exactly one of the input lines should have a 1,
while the remaining input lines should have 0s. The output is the binary
value of the index of the input line that has the 1. It is assumed that only
one input line can be a 1. Encoders are used to reduce the number of bits
needed to represent some given data either in data storage or in data trans-
mission. Encoders are also used in a system with 2" input devices, each
of which may need to request for service. One input line is connected to
one input device. The input device requesting for service will assert the
input line that is connected to it. The corresponding n-bit output value will
indicate to the system which of the 2" devices is requesting for service.
However, this only works correctly if it is guaranteed that only one of the
2" devices will request for service at any one time. If two or more devices
request for service at the same time, then the output will be incorrect. To
resolve this problem, a priority is assigned to each of the input lines so that
when multiple requests are made, the encoder outputs the index value of
the input line with the highest priority. This modified encoder is known
as a priority encoder. In this chapter, we are concerned with the priority
encoders. Although not shown in Figure 14.1, the priority encoder may
have an enable line, E, for enabling it. When the priority encoder is disabled
with E set to 0 (for active high enable input E), all the output lines will have
Os (for active high outputs). When the priority encoder is enabled, then
the output lines issue the binary data representation of the highest-priority
input signal asserted (set to 1 for active high).

In this chapter, the following priority encoder macros are described for the
PIC16F648A-based PLC:

encod_4_2_ p (4 x 2 priority encoder)
encod_4 2 p E (4 x 2 priority encoder with enable input)
encod_8_3_p (8 x 3 priority encoder)
encod_8 3 p E (8 x 3 priority encoder with enable input)

295

296 Building a Programmable Logic Controller

Yo ———>
h——> .
. n output lines
m input lines | [
—>d,,

FIGURE 14.1
The general form of an m-to-n encoder, where m = 2.

encod_dec_bcd_p (decimal to binary coded decimal (BCD) priority
encoder)

encod_dec_bed p E (decimal to BCD priority encoder with enable
input)

The file definitions.inc, included within the CD-ROM attached to this
book, contains all priority encoder macros defined for the PIC16F648A-based
PLC. Let us now consider these macros in detail.

14.1 Macroencod 4 2 p

The symbol and the truth table of the macro encod_4_ 2 p are depicted
in Table 14.1. Figure 14.2 shows the macro encod_4_2_p and its flowchart.
This macro defines a 4 x 2 priority encoder. In this macro, active high input
signals 3, 2, 1, and 0, and active high output signals A, (most significant

TABLE 14.1
Symbol and Truth Table of the Macro encod_4_2 p

Symbol Truth Table
4x2
PRIORITY i inputs outputs
ENCODER 3= reg3,bit3 p p
2= reg2,bit2 0 1 2|3 | A1]| A0
E 1= regl,bitl x | x| x |1 1 1
—2 A — 0= reg0,bit0 x | x 1 (0 1 0
—1 Ag— Al= | regAlbitAl x| 1100} O 1
—lo A0 = | regAl,bitA0 110[0]0] O 0
x: don't care

Priority Encoder Macros 297

encod 4 2 p macro reg3,bit3,reg2,bit2,
regl,bitl,reg0,bit0,regAl,bitAl, regAl0,bitA0
local Ll1,L2,L3,1L4

btfss reg3,bit3

goto L4
bsf regAl,bitAl
bsf regAO,bitA0
goto L1

L4 btfss reg2,bit2
goto L3
bsf regAl,bitAl
bef regA0,bitA0
goto L1l

L3 btfss regl,bitl
goto L2
bef regAl,bitAl
bsf regAO0,bitA0
goto L1

L2 bef regAl ,bitAl
bef regAO,bitA0

Ll
endm

()

?
reg3,bit3 = 1

A 4

SET regAl,bitAl
SET regAO0,bitA0
L3
A 4
SET regAl,bitAl
RESET regA0,bitA0O Y ? N
regl,bitl =1 L2
RESET regAl,bitAl RESET regAl,bitAl
SET regA0,bitA0O RESET regA0,bitA0O
L1
A 4
end

(b)

FIGURE 14.2
(@) The macro encod_4 2 p and (b) its flowchart.

298 Building a Programmable Logic Controller

bit (MSB)) and A, (least significant bit (LSB)) are all Boolean variables. The
input line 3 has the highest priority, while the input line 0 has the lowest
priority. How the macro encod_4_ 2 p works is shown in the truth table. It
can be seen that the output binary code is generated based on the highest-
priority input signal present in the four input lines. If the input signals pres-
ent in the input lines 0, 1, 2, 3 are as follows, xxx1 (respectively, xx10, x100,
1000), then the output lines generate the following binary code: AjA, = 11
(respectively, 10, 01, 00).

14.2 Macro encod 4 2 p E

The symbol and the truth table of the macro encod 4 2 p E are
depicted in Table 14.2. Figure 14.3 shows the macro encod 4 2 p Eand
its flowchart. This macro defines a 4 x 2 priority encoder with enable
input. In this macro, the active high enable input E, active high input sig-
nals 3, 2, 1, and 0, and active high output signals A; (MSB) and A, (LSB)
are all Boolean variables. The input line 3 has the highest priority, while
the input line 0 has the lowest priority. In addition to the encod_4 2 p,
this encoder macro has an active high enable line, E, for enabling it.
When this encoder is disabled with E set to 0, all output lines are set to 0.
When this encoder is enabled with E set to 1, it functions as described for
encod_4_ 2 p. This means that when E = 1: if the input signals present
in the input lines 0, 1, 2, 3 are as follows, xxx1 (respectively, xx10, x100,
1000), then the output lines generate the following binary code: A;A; =11
(respectively, 10, 01, 00).

TABLE 14.2
Symbol and Truth Table of the Macro encod 4 2 p E

Symbol Truth Table
4x2
PRIORITY :
inputs outputs
ENCODER w E P P
3= reg3,bit3 E| O 1 (2|3]| A1]| A0
—3 2= reg2,bit2 0| x X X X 0 0
—2 A — 1= regl,bitl 1| x| x| x]|1 1 1
—1 Ay l— 0= reg0,bit0 1| x| x|1]0 1 0
—o Al= | regAlbitAl 1|x|1[0]|0] O 1
E AO0= | regAl,bitA0 1|1|{0f0|0]| OO
x: don't care

Priority Encoder Macros

encod 4 2 p E macro

reg3,bit3,reg2,bit2,

regl,bitl,reg0,bit0,regAl,bitAl, regAl,bitA0

L4

L3

L2

Ll

local
movwf
btfss
goto
btfss
goto
bsf
bsf
goto
btfss
goto
bsf
bef
goto
btfss
goto
bef
bsf
goto
bef
bef

endm

L1,L2,L3,L4
Temp_1
Temp_1,0

L2
reg3,bit3
L4

regAl ,bitAl
regAO,bitA0
Ll
reg2,bit2
L3

regAl ,bitAl
regA0,bitA0
Ll
regl,bitl
L2

regAl ,bitAl
regA0,bitA0
Ll

regAl ,bitAl
regAO0,bitA0

FIGURE 14.3

(@) The macro encod_4 2 p Eand (b) its flowchart.

SET regAl,bitAl
SET regA0,bitA0 Y ?
reg2,bit2 =1 L3
A 4 l
SET regAl,bitAl
RESET regAO0,bitAQ Y ?
BA regl bitl = 1 Y.
A 4
RESET regAl,bitAl RESET regAl,bitAl
SET regAQ,bitA0 RESET regA0,bitA0
v L1
end
(b)

299

300 Building a Programmable Logic Controller

14.3 Macro encod 8 3 p

The symbol and the truth table of the macro encod_8_3_p are depicted
in Table 14.3. Figures 14.4 and 14.5 show the macro encod_8_3_p and its
flowchart, respectively. This macro defines an 8 x 3 priority encoder. In this
macro, active high input signals 7, 6, 5, 4, 3, 2, 1, and 0, and active high out-
put signals A, (MSB), A;, and A, (LSB) are all Boolean variables. The input
line 7 has the highest priority, while the input line 0 has the lowest priority.
How the macro encod_8 3 p works is shown in the truth table. It can be
seen that the output binary code is generated based on the highest-priority

TABLE 14.3
Symbol and Truth Table of the Macro encod_8_3_p
Symbol
8x3
PRIORITY
ENCODER 7 = reg7,bit7
6= reg6,bit6
-7 5= reg5,bit5
— 6 4= reg4,bit4
—5 3= reg3,bit3
14 Al 2= reg2,b%t2
= regl,bitl
—3 Ay— 0= reg0,bit0
— 2 Agt— A2 = regA2,bitA2
11 Al = regAl,bitAl
o A0 = regA1,bitA0O
Truth Table
inputs outputs
0 1 2 3 4 5 6 7 A2 | A1l | AO
X X X X X X X 1 1 1 1
X X X X X X 1 0 1 1 0
X X X X X 1 0 0 1 0 1
X X X X 1 0 0 0 1 0 0
X X X 1 0 0 0 0 0 1 1
X X 1 0 0 0 0 0 0 1 0
X 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
x: don't care.

Priority Encoder Macros

encod 8 3 p macro

bitAl,regA0,bitA0

L8

L7

L6

L5

L4

L3

L2

L1

FIGURE 14.4

local
btfss
goto
bsf
bsf
bsf
goto
btfss
goto
bsf
bsf
bef
goto
btfss
goto
bsf
bef
bsf
goto
btfss
goto
bsf
bef
bef
goto
btfss
goto
bef
bsf
bsf
goto
btfss
goto
bef
bsf
bef
goto
btfss
goto
bef
bef
bsf
goto
bef
bef
bef

endm

The macro encod_8 3 p.

11,1L2,L3,L4,L5,L6,L7,L8

reg7,bit7
L8
regA2,bitA2
regAl,bitAl
regAO,bitA0
Ll
reg6,bité
L7
regA2,bitA2
regAl,bitAl
regAO,bitAl
Ll
reg5,bith
L6
regA2,bitA2
regAl,bitAl
regAO,bitA0
Ll

reg4d ,bit4
L5
regA2,bitA2
regAl,bitAl
regAO,bitA0
Ll
reg3,bit3
L4
regA2,bitA2
regAl,bitAl
regAO,bitA0
L1l
reg2,bit2
L3
regA2,bitA2
regAl,bitAl
regAO,bitA0
L1l
regl,bitl
L2
regA2,bitA2
regAl,bitAl
regAO,bitA0
L1l
regA2,bitA2
regAl,bitAl
regAO,bitA0

] reg7,bit7,reg6,bit6,
regb5,bith,regd ,bitd,reg3,bit3,reg2,bit2,
regl,bitl,reg0,bit0,regA2,bitA2,regAl,

301

'd ¢ 8 poous 0IdRW 3] JO MBYIMO[J dY L
S'vL NDOH

0vNq'ovSar LIS 0OvNqovSaI 19
TVHQTVS1 1353
TYNqTY8a1 1ASTY

Building a Programmable Logic Controller

302

0VNq0VBa1 1ASTA
TVHQTVEa1 1S
TYNqTYSa1 1353

0VNq0VSe1 135
TVNqTYSa1 135
TYNqTY8e1 1ASTY

€1

1 =nq'gder
¢

0VNq0VSa1 1ASTA
TVHQTVE1 [ISTA
TyNqTyser 149

¥1

ovnqovsar 13
TVNqTVS21 1357y
Tynqgyser 13

ST

0VNq0VBa1 1ASTY
TVHQTV1 1S
TyNqTYser 149

0VHqoVSa1 13
TVNqTVSe1 135
[AZISKALEENEN

L1

Priority Encoder Macros 303

input signal present in the eight input lines. If the input signals present in the
inputlines 0,1, 2, 3,4, 5, 6,7 are as follows, xxxxxxx1 (respectively, xxxxxx10,
xxxxx100, xxxx1000, xxx10000, xx100000, x1000000, 10000000), then the out-
put lines generate the following binary code: A,A;A = 111 (respectively, 110,
101, 100, 011, 010, 001, 000).

14.4 Macro encod 8 3 p E

The symbol and the truth table of the macro encod_8 3 p_E are depicted
in Table 14.4. Figures 14.6 and 14.7 show the macro encod 8 3 p E and
its flowchart, respectively. This macro defines an 8 x 3 priority encoder
with enable input. In this macro, the active high enable input E, active high
input signals 7, 6, 5,4, 3, 2, 1, and 0, and active high output signals A, (MSB),
A,, and A, (LSB) are all Boolean variables. The input line 7 has the high-
est priority, while the input line 0 has the lowest priority. In addition to the
encod_8 3 p, this encoder macro has an active high enable line, E, for
enabling it. When this encoder is disabled with E set to 0, all output lines are
set to 0. When this encoder is enabled with E set to 1, it functions as described
for encod_8_3_p. This means that when E = 1: if the input signals present in
the input lines 0,1,2,3,4,5,6,7 are as follows, xxxxxxx1 (respectively, xxxxxx10,
xxxxx00, xxxx1000, xxx10000, xx100000, x1000000, 10000000), then the out-
put lines generate the following binary code: A,A;A = 111 (respectively, 110,
101, 100, 011, 010, 001, 000).

14.5 Macro encod _dec_bed p

The symbol and the truth table of the macro encod_dec_bcd p are
depicted in Table 14.5. Figures 14.8 and 14.9 show the macro encod_dec
bcd_p and its flowchart, respectively. This macro defines a decimal to BCD
priority encoder. In this macro, active high input signals 9, 8,7,6, 5,4, 3,2, 1,
and 0, and active high output signals A; (MSB), A,, A,, and A, (LSB) are all
Boolean variables. The input line 9 has the highest priority, while the input
line 0 has the lowest priority. How the macro encod_dec_bcd_p works is
shown in the truth table. It can be seen that the output binary code is gener-
ated based on the highest-priority input signal present in the 10 input lines.
If the input signals present in the input lines 0, 1, 2, 3,4, 5, 6, 7, 8, 9 are as
follows, xxxxxxxxx1l (respectively, xxxxxxxx10, xxxxxxx100, xxxxxx1000,
xxxxx10000, xxxx100000, xxx1000000, xx10000000, x100000000, 1000000000),
then the output lines generate the following binary code: A;A,A;A; = 1001
(respectively, 1000, 0111, 0110, 0101, 0100, 0011, 0010, 0001, 0000).

304 Building a Programmable Logic Controller

TABLE 14.4
Symbol and Truth Table of the Macro encod_8 3 p E
Symbol
8x3
PRIORITY
ENCODER w E

7= reg7,bit7
—7 6= reg6,bit6
—e 5= regb,bit5

4= reg4,bit4
—° 3= reg3,bit3
—4 A= 2= reg2,bit2
— 3 A — 1= regl,bitl
—19 Ag— 0= reg0,bit0
1y A2 = regA2,bitA2

Al = regAl,bitAl
—° . A0 = regA1,bitAO

|
Truth Table
inputs outputs
E 0 1 2 3 4 5 6 7 | A2 | A1 | A0
0 X X X X X 0 0 0
1 X X X X X X X 1 1 1 1
1 X X X X X X 1 0 1 1 0
1 X X X X X 1 0 0 1 0 1
1 X X X X 1 0 0 0 1 0 0
1 X X X 1 0 0 0 0 0 1 1
1 X X 1 0 0 0 0 0 0 1 0
1 X 1 0 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 0 0 0
x: don't care.

14.6 Macro encod dec_bcd p E

The symbol and the truth table of the macro encod dec_bcd p E
are depicted in Table 14.6. Figures 14.10 and 14.11 show themacroencod_dec__
bcd_p_Eand its flowchart, respectively. This macro defines a decimal to
BCD priority encoder with enable input. In this macro, the active high enable
input E, active high input signals 9,8, 7,6, 5, 4, 3, 2, 1, and 0, and active high
output signals A; (MSB), A,, A;, and A, (LSB) are all Boolean variables. The

Priority Encoder Macros

FIGURE 14.6

encod 8 3 p E macro

regAl ,bitAl, regA0,bitA0

L8

L7

L6

L5

L4

L3

L2

L1

local
movwf
btfss
goto
btfss
goto
bsf
bsf
bsf
goto
btfss
goto
bsf
bsf
bef
goto
btfss
goto
bsf
bef
bsf
goto
btfss
goto
bsf
bef
bef
goto
btfss
goto
bef
bsf
bsf
goto
btfss
goto
bef
bsf
bef
goto
btfss
goto
bef
bef
bsf
goto
bef
bef
bcf

endm

The macro encod 8 3 p E.

11,L2,L3,14,L5,L6,L7,L8

Temp 1

Temp 1,0

L2
reg7,bit7
L8
regA2,bitA2
regAl ,bitAl
regAO,bitA0
Ll
reg6,bité
L7
regA2,bitA2
regAl ,bitAl
regAO,bitA0
Ll
reg5,bith
L6
regA2,bitA2
regAl ,bitAl
regAO,bitA0
Ll

regd ,bit4
L5
regA2,bitA2
regAl ,bitAl
regAO,bitaA0
Ll
reg3,bit3
L4
regA2,bitA2
regAl ,bitAl
regAO,bitaA0
Ll
reg2,bit2
L3
regA2,bitA2
regAl ,bitAl
regAO,bitaA0
Ll
regl,bitl
L2
regA2,bitaA2
regAl ,bital
regAO,bitA0
L1
regA2,bitA2
regAl,bitAl
regAO,bitA0

reg7,bit7,reg6,bité,
reg5,bitb,regd ,bitd ,reg3,bit3,reg2,bit2,
regl,bitl,reg0,bit0,regA2,bitA2,

305

Building a Programmable Logic Controller

306

‘H d € 8 PpooUS OIdeW Y} JO JIEYDMOTJ Y],
L1 3ANOH

1

puo
4t
_ A A A A
OVHqOYSa1 1SN 0VHqGOVSaI LIS
TVHQTY321 LIS TVHQ'TV321 L3S
TVIqTy8a1 13538 TVIqTY8a1 1SN
ovnqovSer 1ISTY
1= mHq8ar TVHq‘TYS01 1S
¢ TvIqTySar 1358
oviqoy8ar 135
€1 1 =nqgsar TYNqTVSe1 135
N TyNqTy8er 15y
0OvVHqov8a1 1353y
v1 1 =enq‘gdar TVIqQTV8a1 1S3y
¢ TvNqTV8aI 13

ST

1= pqpsar
B

ovnqovaa1 135
TVNQTVSa1 L3STY
TYNqTV8aI 138

o1 1= gnq'gsar

LT

0VHq'oVSa1 15T
TYNQTYS1 L3S
TyNqzy8a1 138

1 = 9nq‘93a1

é

0VHqoVSa1 L3S
TVNqTVSa1 1S
TYNqTVE1 138

Priority Encoder Macros 307

TABLE 14.5
Symbol and Truth Table of the Macro encod_dec_bcd_p
Symbol
DECIMAL TO BCD 9z reg9,bit9
PRIORITY ENCODER d
8= reg8,bit8
—9 7 = reg7,bit7
g 6 = reg6,bit6
5= reg5,bit5
- 4= reg4,bit4
—6 A 3= reg3,bit3
—5 Ay — 2= reg2,bit2
—g A — 1= regl,bitl
13 Ag— 0= reg0,bit0
A3 = regA3,bitA3
12 A2 = regA2,bitA2
—! Al= regA1,bitAl
—0 A0 = regA1,bitA0
Truth Table
inputs outputs
0 1 2 (3|4 |5|6|7 8 9 [A3|A2|Al1| A0
X X X X X X 1 1 0 0 1
X X X X X X X X 1 0 1 0 0 0
X X X X X X 1 0 0 0 1 1 1
X X X X X X 1 0 0 0 0 1 1 0
X X X X 1 0 0 0 0 0 1 0 1
X X X X 1 0 0 0 0 0 0 1 0 0
X X X 1 0 0 0 0 0 0 0 0 1 1
X X 1 0 0 0 0 0 0 0 0 0 1 0
X 1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0
x: don't care.

input line 9 has the highest priority, while the input line 0 has the lowest
priority. In addition to the encod _dec_becd_p, this encoder macro has an
active high enable line, E, for enabling it. When this encoder is disabled with
E set to 0, all output lines are set to 0. When this encoder is enabled with E set
to 1, it functions as described for encod_dec_bcd_p. This means that when
E =1:if the input signals present in the input lines 0, 1, 2, 3,4, 5, 6,7, 8,9 are as

308

Building a Programmable Logic Controller

encod_dec bed p macro reg9,bit9,reg8,bit8,
reg7,bit7,reg6,bit6,reg5,bit5,regd ,bit4d,
reg3,bit3,reg2,bit2,regl,bitl,reg0,bit0,
regA3,bitA3,regA2,bitA2,regAl ,bitAl, regA0,bitAQ

Ll10

L9

L8

L7

L6

L5

L4

L3

L2

Ll

FIGURE 14.8

local
btfss
goto
bsf
bef
bef
bsf
goto
btfss
goto
bsf
bef
bef
bef
goto
btfss
goto
bef
bsf
bsf
bsf
goto
btfss
goto
bef
bsf
bsf
bef
goto
btfss
goto
bef
bsf
bef
bsf
goto
btfss
goto
bef
bsf
bef
bef
goto
btfss
goto
bef
bef
bsf
bsf
goto
btfss
goto
bef
bef
bsf
bef
goto
btfss
goto
bef
bef
bef
bsf
goto
bef
bef
bef
bef

endm

The macro encod_dec_bcd_p.

11,1.2,L3,L4,L5,L6,L7,L8,L9,L10
reg9,bit9
L10
regA3,bitA3
regA2,bita2
regAl,bitAal
regA0,bitA0
L1l
reg8,bit8
L9
regA3,bitA3
regA2,bita2
regAl,bitAal
regA0,bitA0
Ll
reg7,bit7
L8
regA3,bitA3
regA2,bita2
regAl,bital
regA0,bitAl0
L1l
reg6,bité
L7
regA3,bitA3
regA2,bita2
regAl,bital
regA0,bitA0
L1l
reg5,bit5
L6
regA3,bitA3
regA2,bita2
regAl,bital
regA0,bitA0

L1l

regd ,bit4
L5
regA3,bitA3

regA2,bita2
regAl,bitAal
regA0,bitA0
Ll
reg3,bit3
L4
regA3,bitA3
regA2,bita2
regAl,bitAal
regA0,bitA0
Ll
reg2,bit2
L3
regA3,bitA3
regA2,bita2
regAl,bital
regA0,bitA0

L1l
regl,bitl
L2
regA3,bitA3

regA2,bita2
regAl,bitAl
regA0,bitA0
L1l

regA3,bitA3
regA2,bita2
regAl,bitAl
regA0,bitA0

W 'd poq 09p PODUS OIdEW Y} JO JIBYIMO[J Y],
® 6L 3NDH
pua
T
[e
OvIqovSa1 1957 0VHq0VSa1 135
TVIQ TV 1ASTd TVHQTVS1 1353
TvnqTyar 1359 TVNQTYBa1 [ISTY
evnqeysar 14STy £VIQ'EVBa1 LISTY
0VHq0VSaI 1ASTY

71
TYNqTY801 L3S

TVNqTV8a1 LASTY
€VIq'EVSa1 LISTY

€1 ovuqovSaI 135
TYNq Y81 138
TVHQTY3a1 LIS
£VHQ'EVSa1 LISTY

0VIqoVSal L3STA
TYNQTY301 L3STY
TYNqTydar L3S

£vIq'evsar 1353

ST 0VIq'0VSa1 LIS
TVIqTVS01 1ISTY
TYNqTyBar 1as
£VNQ'EVDaI 1ISTY

91 0Vq‘0VSa1 1aSTY
TVIQ'TV31 13§
TYNqTY81 L3S

£VNQ'EVDa1 LISTY

oviqovaar 135
TYNq Y81 13IS
TVHQTY3a1 LIS
€VIq'eVSa1 L35I

LT

81 0VHq'0V3a1 LISTY

v8a1 1353

o1 145
TYNqTY801 1ISTA

Priority Encoder Macros
3
o
B
£

310 Building a Programmable Logic Controller

TABLE 14.6
Symbol and Truth Table of the Macro encod_dec_bcd _p_ E

Symbol
DECIMAL TO BCD W E
PRIORITY ENCODER . reg9,bitd
—o 8= reg8,bit8
7= reg7,bit7
8 6= reg6,bit6
-7 5= reg5,bit5
—6 Ag— 4= reg,bit4
—I5 Ay — 3= reg3,bit3
—a A l— 2= reg2,bit2
1= regl,bitl
3 A 0= reg0,bit0
2 A3 = regA3,bitA3
—1 A2 = regA2,bitA2
—o . Al = regAl,bitAl
I A0 = regA1,bitA0
Truth Table
inputs outputs
E| O 1 2 3 4 5 6 7 8 9 [A3 | A2 | Al | A0
0 X X X X X X X X X [Y 0|0
1 X X X X X X X X X 1 1 0 0 1
1 X X X X X X X X 1 0 1 O[O0 |0
1 X X X X X X X 1 0 0 0 1 1 1
1 X X X X X X 1 0| 0]|O 0 1 1 0
1 X X X X X 1 0 0 0 0 0 1 0 1
1 X X X X 1 0|0 O[O0]0]|O 1 (VN
1 X X X 1 0 0 0 0 0 0 0 0 1 1
l1|x|x|[1|O0O|]O|O]|]O|O|]O|JO]|]O|JO]|]1]O
1 X 1 0 0 0 0 0 0 0 0 0 0 0 1
1|1 ojofofojofO|O|O]O|O]|]O|O]|O
x: don't care.

Priority Encoder Macros

encod_dec bed p E macro
reg7,bit7,reg6,bit6,reg5,bit5,regd,bitd, reg3,bit3,

reg2,bit2,regl,bitl,reg0,bit0, regA3,bitA3,
regA2,bitA2,regAl,bitAl, regAl,bitA0

L9

L8

L7

L6

L5

L4

L3

L2

Ll

FIGURE 14.10

The macro encod_dec_bcd_p_E.

local
movwf
btfss
goto
btfss
goto
bsf
bef
bef
bsf
goto
btfss
goto
bsf
bef
bef
bef
goto
btfss
goto
bef
bsf
bsf
bsf
goto
btfss
goto
bef
bsf
bsf
bef
goto
btfss
goto
bef
bsf
bef
bsf
goto
btfss
goto

goto
btfss
goto
bef
bef
bsf

goto
btfss
goto

11,12,1L3,L4,15,L6,17,18,L9,L10
Temp_1

Temp 1,0

L2

reg9,bit9

L1o

regA3,bitA3

regA2,bitA2

regAl,bitAl

regAO,bitA0

Ll
reg8,bit8
LS
regA3,bitA3

regA2,bitA2
regAl,bitAl
regAO,bitA0
Ll
reg7,bit7
L8
regA3,bitA3
regA2,bitA2
regAl,bitAl
regAO,bitA0

Ll
reg6,bité
L7
regA3,bitA3

regA2,bitA2
regAl,bitAl
regAO,bitA0

Ll
reg5,bit5
Lé
regA3,bitA3

regA2,bitA2
regAl,bitAl
regAO,bitA0

Ll

reg4 ,bit4d
L5
regA3,bitA3

regA2,bitA2
regAl,bitAl
regAO,bitA0
Ll
reg3,bit3
L4
regA3,bitA3
regA2,bitA2
regAl,bitAl
regAO,bitA0
Ll
reg2,bit2
L3
regA3,bitA3
regA2,bitA2
regAl,bitAl
regAO,bitA0
Ll
regl,bitl
L2
regA3,bitA3
regA2,bitA2
regAl,bitAl
regA0l,bitA0
Ll
regA3,bitA3
regA2,bitA2
regAl,bitAl
regAO,bitA0

reg9,bit9,reg8,bit8,

311

312 Building a Programmable Logic Controller

?
Tegd,bit9 = 1

SET regA3,bitA3
RESET regA2,bitA2
RESET regALbitAl Y

SET regA0,bitA0

SET regA3,bitA3
RESET regA2,bitA2
RESET regALbitAl
RESET regA0,bitAO
RESET regA3,bitA3
SET regA2,bitA2
SET regA1,bitAl Y

SET regA0,bitA0 L7

RESET regA3,bitA3
SET regA2,bitA2
SET regAlbitAl

RESET regA0,bitA0

L6

RESET regA3,bitA3
SET regA2,bitA2
RESET regAl,bitA1

SET regAO,bitAO Ls

RESET regA3,bitA3

SET regA2,bitA2
RESET regALbitAl ~ 3
RESET regA0,bitA0 reg3 bit3 = 1
RESET regA3,bitA3

RESET regA2,bitA2
SET regAl,bitAl Y
SET regAO0,bitA0

L3

>
RESET regA3,bitA3
RESET regA2,bitA2
SET regALbitAl Y N
RESET regA0,bitAO L2
RESET regA3,bitA3 RESET regA3,bitA3

RESET regA2,bitA2 RESET regA2,bitA2

RESET regAl,bitAl RESET regAl,bitAl
SET regA0,bitA0 RESET regAO0,bitA0
e T
L1

FIGURE 14.11
The flowchart of the macro encod_dec_bcd p E.

follows, xxxxxxxxx1l (respectively, xxxxxxxx10, xxxxxxx100, xxxxxx1000,
xxxxx10000, xxxx100000, xxx1000000, xx10000000, x100000000, 1000000000),
then the output lines generate the following binary code: A;A,A;A, = 1001
(respectively, 1000, 0111, 0110, 0101, 0100, 0011, 0010, 0001, 0000).

14.7 Examples for Priority Encoder Macros

In this section, we will consider five examples, namely, UZAM_plc_16il60_
exX.asm (X = 29, 30, 31, 32, 33), to show the usage of priority encoder macros.
In order to test one of these examples, please take the related file UZAM_
plc_16il60_exX.asm (X = 29, 30, 31, 32, 33) from the CD-ROM attached to
this book, and then open the program by MPLAB IDE and compile it. After
that, by using the PIC programmer software, take the compiled file UZAM _
plc_16i160_exX.hex (X = 29, 30, 31, 32, 33), and by your PIC programmer

Priority Encoder Macros 313

P user program starts here ---------—-—-———-————————

encod 4 2 p 10.3,I10.2,10.1,10.0,Q0.1,Q0.0 ;rung 1
1d I1.7 ;rung 2
encod 4 2 p E I11.3,11.2,11.1,11.0,Q1.1,Q01.0

jmmm———————————— user program ends here =---------c---mmmmmmmmcmm———

FIGURE 14.12
The user program of UZAM_plc_16i160_ex29.asm.

hardware, send it to the program memory of PIC16F648A microcontroller
within the PIC16F648A-based PLC. To do this, switch the 4PDT in PROG
position and the power switch in OFF position. After loading the file UZAM_
plc_16i160_exX.hex (X = 29, 30, 31, 32, 33), switch the 4PDT in RUN and the
power switch in ON position. Please check the program’s accuracy by cross-
referencing it with the related macros.

Let us now consider these example programs: The first example program,
UZAM_plc_16i160_ex29.asm, is shown in Figure 14.12. It shows the usage
of two priority encoder macros, encod 4 2 p and encod 4 2 p E.The
schematic diagram of the user program of UZAM_plc_16il60_ex29.asm,
shown in Figure 14.12, is depicted in Figure 14.13.

4x2
INPUTS PRIORITY OUTPUTS
ENCODER
;
A
0
4x2
PRIORITY
ENCODER
1.3 3
1.2 2 A, Q1.1
1.1 1 Aq Q1.0
11.0 0
E
[17 |

FIGURE 14.13
The schematic diagram of the user program of UZAM_plc_16il60_ex29.asm.

314 Building a Programmable Logic Controller

Rt user program starts here ---------—-—--—-—----——————-
encod 8 3 p 10.7,10.6,10.5,10.4,10.3,10.2,10.1,10.0,Q0.2,00.1,Q0.0 ;rung 1
e m—————————— user program ends here -------------emmmmmmm————

FIGURE 14.14
The user program of UZAM_plc_16i160_ex30.asm.

In the first rung, the priority encoder macro encod_4_2_p (4 x 2 priority
encoder) is used. In this priority encoder, four input lines, 3, 2, 1, and 0, are
defined as 10.3, 10.2, 10.1, and 10.0 respectively, while the output lines A; and
A, are defined as Q0.1 and QO.0, respectively.

In the second rung, the priority encoder macro encod_4_2 p E (4 x 2 pri-
ority encoder with enable input) is used. In this priority encoder, four input
lines, 3, 2, 1, and 0, are defined as I1.3, I1.2, I1.1, and I1.0, respectively, while
the output lines A, and A are defined as Q1.1 and Q1.0, respectively. In addi-
tion, the active high enable input E is defined to be E = I1.7.

The second example program, UZAM_plc_16i160_ex30.asm, is shown in
Figure 14.14. It shows the usage of the priority encoder macro encod_8_3_p
(8 x 3 priority encoder). The schematic diagram of the user program of UZAM_
plc_16i160_ex30.asm, shown in Figure 14.14, is depicted in Figure 14.15. In this
priority encoder, eight input lines, 7, 6, 5,4, 3,2, 1, and 0, are defined as 10.7,10.6,
10.5,104, 10.3,10.2, 10.1, and 10.0, respectively, while the output lines A,, A, and
A, are defined as Q0.2, Q0.1, and Q0.0, respectively.

The third example program, UZAM_plc_16il60_ex3l.asm, is shown
in Figure 14.16. It shows the usage of the priority encoder macro
encod_8_3_p_ E (8 x 3 priority encoder with enable input). The schematic
diagram of the user program of UZAM_plc_16il60_ex3l.asm, shown in

INPUTS pRI?)XRBITY OUTPUTS
ENCODER

7

[106 6

(05 >——s

[>——

10.0 0

FIGURE 14.15
The schematic diagram of the user program of UZAM_plc_16i160_ex30.asm.

Priority Encoder Macros 315

o user program starts here -------------——---—————-
1d I1.7 ;rung 1
encod 8 3 p E 10.7,10.6,10.5,10.4,10.3,10.2,10.1,10.0,00.2,00.1,Q0.0
e user program ends here -----—--——————————o—o———-

FIGURE 14.16
The user program of UZAM_plc_16i160_ex31.asm.

Figure 14.16, is depicted in Figure 14.17. In this priority encoder, eight input
lines, 7,6, 5,4, 3,2,1, and 0, are defined as 10.7, 10.6, 10.5, 10.4, 10.3, 10.2, 10.1,
and 10.0, respectively, while the output lines A,, A;, and A, are defined as
Q0.2, Q0.1, and QO.0, respectively. In addition, the active high enable input
E is defined to be E =I1.7.

The fourth example program, UZAM_plc_16i160_ex32.asm, is shown in
Figure 14.18. It shows the usage of the priority encoder macro encod_dec
bed_p (decimal to BCD priority encoder). The schematic diagram of the user
program of UZAM_plc_16i160_ex32.asm, shown in Figure 14.18, is depicted
in Figure 14.19. In this priority encoder, 10 input lines, 9,8,7,6,5,4, 3,2, 1, and
0, are defined as I1.1, I1.0, 10.7, 10.6, 10.5, 10.4, 10.3, 10.2, 10.1, and 10.0, respec-
tively, while the output lines A;, A,, A,, and A, are defined as Q0.3, Q0.2,
Q0.1, and QO0.0, respectively.

The fifth and last example program, UZAM_plc_16il60_ex33.asm, is
shown in Figure 14.20. It shows the usage of the priority encoder macro
encod_dec_bcd_p_E (decimal to BCD priority encoder with enable input).

INPUTS PRIi;IfITY OUTPUTS
ENCODER
o >
T S—
T S—
(o > & G
[> & @
1
10.0 0
E
| 11.7 |
FIGURE 14.17

The schematic diagram of the user program of UZAM_plc_16il60_ex31.asm.

316 Building a Programmable Logic Controller

jemmm e —————— user program starts here ---------—-------oo—-—o
encod dec_bed p I1.1,I11.0,I10.7,10.6,I10.5,10.4,10.3,10.2,10.1,10.0,Q0.3,00.2,00.1,Q0.0 ;rung 1
Jmmmmmm e user program ends here -----------—--———-—-——————

FIGURE 14.18
The user program of UZAM_plc_16i160_ex32.asm.

DECIMAL TO

INPUTS PRFOCISTY OUTPUTS
ENCODER

11.1 9

Cio >

o>

[oe >

T S

10.0 0

FIGURE 14.19
The schematic diagram of the user program of UZAM_plc_16i160_ex32.asm.

jmmm e user program starts here ----------—-——c-——————

1d I1.7 ;rung 1
encod _dec bed p E 11.1,11.0,I10.7,10.6,10.5,10.4,10.3,10.2,10.1,10.0,Q0.3,00.2,00.1,00.0

R e e e user program ends here - -————-------——-o———

FIGURE 14.20
The user program of UZAM_plc_16i160_ex33.asm.

Priority Encoder Macros 317

DECIMAL TO
BCD
INPUTS PRIORITY OUTPUTS

ENCODER

—
—_

9

—
—_

i

8
10.7 7
10.6 6 A, Q0.3

Q0.2
0.1

I

[
(=}

w
>

o

10.2 2
10.1 1
10.0 0

E

[17 |

FIGURE 14.21
The schematic diagram of the user program of UZAM_plc_16i160_ex33.asm.

The schematic diagram of the user program of UZAM_plc_16i160_ex33.asm,
shown in Figure 14.20, is depicted in Figure 14.21. In this priority encoder, 10
inputlines, 9,8,7,6,5,4,3,2,1,and 0, are defined as I1.1, 1.0, 10.7, 10.6, 10.5, 104,
10.3,10.2, 10.1, and 10.0, respectively, while the output lines A;, A,, A;, and A,
are defined as Q0.3, Q0.2, Q0.1, and QO0.0, respectively. In addition, the active
high enable input E is defined to be E = 11.7.

15

Application Example

This chapter describes an example remotely controlled model gate system
and makes use of the PIC16F648A-based PLC to control it for different con-
trol scenarios.

15.1 Remotely Controlled Model Gate System

Figure 15.1 shows the remotely controlled model gate system, used in this
chapter as an example to show how the PIC16F648A-based PLC can be uti-
lized in the control of real systems. In this system, when the DC motor turns
backward (respectively forward) the gate is opened (respectively closed).
To control the DC motor in backward and forward directions, PLC outputs
Q0.0 and Q0.1 are used, respectively. In the system, there are two buttons,
B0 and B1, and they both have only one normally open (NO) contact. When
pressed, the button B0 (respectively, Bl) is used to give the control system the
following order: “open the gate” (respectively, “close the gate”). PLC inputs
10.0 and 10.1 are used for identifying the ON or OFF states of the buttons
B0 and BI, respectively. When the gate is completely open, it applies the F1
force, shown in Figure 15.1, to the limit switch 1 (LS1). In this case, the NO
contact of LS1 is closed. To detect whether or not the gate is completely open,
the input 10.2 is utilized. When the gate is completely closed, it applies the
F2 force, shown in Figure 15.1, to the limit switch 2 (LS2). In this case, the
NO contact of LS2 is closed. To detect whether or not the gate is completely
closed, the PLC input 10.3 is utilized. An infrared (IR) transmitter/receiver
sensor is used to detect if there is any obstacle in the gate’s path. This is very
important because when the gate is closing, there should not be any obstacle
in its path in order not to cause any damage to anybody or anything. When
the light emitted from the IR transmitter is received from the IR receiver, the
NO contact of the sensor is closed. In this case, we conclude that there is no
obstacle in the path. When the light emitted from the IR transmitter is not
received from the IR receiver, the NO contact of the sensor is open, i.e., in its
normal condition. This means that there is an obstacle in the path. To detect
whether or not there is an obstacle in the path, the PLC input 10.4 is utilized.
In addition, there is also a radio frequency (RF) transmitter/receiver used as
a remote control mechanism within the system. In the RF transmitter, there

319

320 Building a Programmable Logic Controller

Gate is opened €= = Gate is closed
— Q0.0 Q0.1

» 0 o - s
o s s
T S e s
s s e S |
L T T -
. —— 1
K o o o o s
» - « X b -
NO prEaa
T T T T T 1T
. . I I I
- - - X X
e T T I T
I I I I
L B - -
. o X ? wow—
1T
IR I T ITT
T T T T 1T
. . = s e S
transmitter/receiver [T T T LTI
s o s S S
o e

0
NO f’-- <«— 1 F2 —p -

O —

Motor
2 /A /A 15 1
BO < < 10.0 .
A e
B1 < = 10.1

RF transmitter RF receiver

FIGURE 15.1
The remotely controlled model gate system.

is a button. When this button is pressed, the RF waves are emitted from
the transmitter, and they are received from the RF receiver. In this case, NO
contact at the RF receiver is closed, signaling the button press from the RF
transmitter counterpart. To detect whether or not the RF transmitter button
is pressed, the PLC input 10.5 is utilized.

The DC motor control circuit embedded within the model gate system
is depicted in Figure 15.2, where there are two relays, Relay 1 and Relay 2,

+
Motor voltage
+Vc
Relay 1 Relay 2
¥
b PC
- 24V

l |
i DC Motor i
|

FIGURE 15.2
The DC motor control circuit embedded within the model gate system.

Application Example 321

TABLE 15.1

State of the DC Motor Based on the Two Relays

Relay 1 Relay 2 DC Motor

OFF (Q0.1=0) OFF (Q0.0 = 0) OFF (not working)

OFF (Q0.1 =0) ON (Q0.0=1) Turns backward (the gate is opened)
ON (Q0.1=1) OFF (Q0.0 =0) Turns forward (the gate is closed)
ON (Q0.1=1) ON (Q0.0=1) OFF (not working)

operating on 24 V DC. These relays both have a single-pole double-throw
(SPDT) contact, with the terminals named normally open (NO), com-
mon (C), and normally closed (NC). As can be seen, terminal C is shared
between the other two contacts. The normal states of the contacts are shown
in Figure 15.2. In this case, the C and NC terminals of both relays are closed,
while C and NO terminals are open. If any of these relays’ coils are ener-
gized, then the contacts are actuated, and thus the C and NC terminals of
the relay are open, while C and NO terminals are closed. With this setup, by
means of the two relays we can have the DC motor turning forward or back-
ward, as shown in Table 15.1. It is important to note that if both relays are
ON, then the DC motor will not be working. One terminal of each relay coil
is connected to 24 V DC, while the other one is left unconnected. To operate
any relay it is necessary to connect its open terminal to the ground of the
24 V DC. The control of the DC motor is achieved by means of the Q0.0 and
Q0.1 outputs of the PLC. As can be seen from Figure 15.2, when Q0.0 is ON
(and Q0.1 is OFF), the NO contact of Q0.0 will switch on Relay 2, in which
case the motor turns backward and the gate is opened. Similarly, when Q0.1
is ON (and Q0.0 is OFF), the NO contact of Q0.1 will switch on Relay 1,
in which case the motor turns forward and the gate is closed. Figure 15.3
shows the wiring of the PIC16F648A-based PLC with the remotely con-
trolled model gate system. In this setup, when any of the NO contact of
the model gate system is closed or a button is pressed, 5 V DC is applied to
related PLC input.

15.2 Control Scenarios for the Model Gate System

In this section we will declare eight different control scenarios for the
remotely controlled model gate system as follows:

1. When B0 is being pressed, the gate shall open.
2. Once B0 is pressed, the gate shall open.

3. Once BO is pressed, the gate shall open. The motor shall stop when
the gate is completely open.

Building a Programmable Logic Controller

322

“wRsAs 2188 [PPOW A3 YIM I POSeq-VEF9IAILIId 2Ul JO SuLipm
£'S1L 3NOH

DN ON
o] o]
ON ON

10J0 DA [Ave Lo
—_—
o4 =T
T Aepoy 1 Aepy
DA+
aSejjoa 10J0

I9ATODI I IoNTwIsuer) 1y 101
s DK §
....... e
oN] gor T @ wll b
My v oor
€01 <01
ON\-- ¢— 74 =/ ON
[est ST
JIATIIX
j131Isue,
I - ar__
S ON
e vor :
e s e H«ONV O.CNV

Pasop st ajen) «— — pauado st ajen

Application Example 323

4. Once B0 is pressed, the gate shall open. The motor shall stop when
the gate is completely open. Once Bl is pressed, the gate shall close.
The motor shall stop when the gate is completely closed.

5. If the gate is not closing, then once B0 is pressed, the gate shall open.
The motor shall stop when the gate is completely open. If the gate is
not opening, then once Bl is pressed, the gate shall close. The motor
shall stop when the gate is completely closed.

6. If the gate is not closing, then once BO or the RF transmitter button
is pressed, the gate shall open. The motor shall stop when the gate is
completely open. When the gate is completely open, it shall wait 5 s
before automatically closing. The motor shall stop when the gate is
completely closed.

7. If the gate is not closing, then once BO or the RF transmitter button
is pressed, the gate shall open. The motor shall stop when the gate is
completely open. When the gate is completely open, it shall wait 5 s
before automatically closing. The motor shall stop when the gate is
completely closed. When the gate is closing, if there is an obstacle in
the gate’s path, the gate shall open. In this case it shall wait 5 s before
automatically closing as defined above.

8. Combine the previous seven control scenarios in a single program.

By using three inputs, 1.2, I1.1, and I1.0, only one of the scenarios
will be selected and will work at any time.

15.3 Solutions for the Control Scenarios

In this section, we will consider the solutions to the above-declared eight con-
trol scenarios for the remotely controlled model gate system, namely, UZAM_
plc_16i160_exX.asm (X = 34, 35, 36, 37, 38, 39, 40, 41). In order to test one of
these examples, please take the related file UZAM_plc_16il60_exX.asm (X =
34, 35, 36, 37, 38, 39, 40, 41) from the CD-ROM attached to this book, and then
open the program by MPLAB IDE and compile it. After that, by using the
PIC programmer software, take the compiled file UZAM_plc_16i160_exX
Jhex (X =34, 35, 36, 37, 38, 39, 40, 41), and by your PIC programmer hardware
send it to the program memory of PIC16F648A microcontroller within the
PIC16F648A-based PLC. To do this, switch the 4PDT in PROG position and
the power switch in OFF position. After loading the file UZAM_plc_16i160_
exX.hex (X = 34, 35, 36, 37, 38, 39, 40, 41), switch the 4PDT in RUN and the
power switch in ON position. Finally, you are ready to test the respective
example program.
Let us now consider the example programs in the following sections.

324 Building a Programmable Logic Controller

Jomm e user program starts here -
1d I0.0 ;rung 1
out Q0.0

e user program ends here ---

FIGURE 15.4
The user program of UZAM_plc_16i160_ex34.asm.

1 I (
I \

FIGURE 15.5
The ladder diagram of the user program of UZAM_plc_16i160_ex34.asm.

15.3.1 Solution for the First Scenario

The user program of UZAM_plc_16i160_ex34.asm, shown in Figure 154, is
provided as a solution for the first scenario. The ladder diagram of the user
program of UZAM_plc_16il60_ex34.asm is depicted in Figure 15.5. In this
example, when B0 (I0.0) is being pressed, the gate will open (Q0.0 will be
ON). However, in this case, if B0 is released, then the gate will stop. This
means that the program does not remember whether or not BO was pressed.

15.3.2 Solution for the Second Scenario

The user program of UZAM_plc_16i160_ex35.asm, shown in Figure 15.6, is
provided as a solution for the second scenario. The ladder diagram of the
user program of UZAM_plc_16il60_ex35.asm is depicted in Figure 15.7. In
this example, once B0 (10.0) is pressed, with the help of NO contact Q0.0 con-
nected parallel to NO contact 10.0, the gate will open (Q0.0 will be ON). Here,

Jmmm e user program starts here --

1d I10.0 ;rung 1
or Q0.0
out Q0.0

e e b user program ends here ----

FIGURE 15.6
The user program of UZAM_plc_16i160_ex35.asm.

Application Example 325

10.0 Q0.0
ol

Q0.0

|_

A

FIGURE 15.7
The ladder diagram of the user program of UZAM_plc_16i160_ex35.asm.

the NO contact Q0.0 is a “sealing contact,” and helps the program to remem-
ber whether B0 was pressed. The problem is that when the gate is completely
opened, the motor will not stop.

15.3.3 Solution for the Third Scenario

The user program of UZAM_plc_16i160_ex36.asm, shown in Figure 15.8, is
provided as a solution for the third scenario. The ladder diagram of the user
program of UZAM_plc_16i160_ex36.asm is depicted in Figure 15.9. In this
example, once BO (I0.0) is pressed, with the help of NO contact Q0.0 con-
nected parallel to NO contact 10.0, the gate will open (Q0.0 will be ON). Here,
when the gate is opened completely, the motor will stop with the help of the
NC contact of 10.2 inserted before the output QO0.0.

jmmmeesccccccan- user program starts here --

1d I10.0 ;jrung 1
or Q0.0
and_not I10.2
out Q0.0

P user program ends here ----

FIGURE 15.8
The user program of UZAM_plc_16i160_ex36.asm.

I |/ Q0.0
L | / (

FIGURE 15.9
The ladder diagram of the user program of UZAM_plc_16i160_ex36.asm.

326 Building a Programmable Logic Controller

e user program starts here --

1d I10.0 ;rung 1
or Q0.0
and not I0.2
out Q0.0
1d 10.1 ;rung 2
or Q0.1
and not I10.3
out ©0.1

je=mmmsmsm—e———o user program ends here ----

FIGURE 15.10
The user program of UZAM_plc_16i160_ex37.asm.

15.3.4 Solution for the Fourth Scenario

The user program of UZAM_plc_16il60_ex37.asm, shown in Figure 15.10, is
provided as a solution for the fourth scenario. The ladder diagram of the
user program of UZAM_plc_16il60_ex37.asm is depicted in Figure 15.11. In
this example, once B0 (10.0) is pressed, with the help of NO contact Q0.0 con-
nected parallel to NO contact 10.0, the gate will open (Q0.0 will be ON). Here,
when the gate is opened completely, the motor will stop with the help of the
NC contact of 10.2 inserted before the output Q0.0. Similarly, once Bl (I0.1)
is pressed, with the help of the NO contact of Q0.1 connected parallel to
NO contact 10.1, the gate will close (Q0.1 will be ON). Here, when the gate
is closed completely, the motor will stop with the help of the NC contact of
10.3 inserted before the output Q0.1. The problem with this example is that if
both B0 and Bl are pressed at the same time, then both outputs will be ON.
This is not a desired situation. The solution to this problem is given in the
next example.

10.0 102 Q0.0
T &
Q0.0
R
10.1 10.3 Q0.1
I '
QO0.1
R

FIGURE 15.11
The ladder diagram of the user program of UZAM_plc_16il60_ex37.asm.

Application Example 327

jommmmmm e user program starts here --

1d I0.0 ;rung 1
or Q0.0
and not I10.2
and_not Q0.1
out Q0.0
1d I0.1 ;rung 2
or Q0.1
and_not I10.3
and not Q0.0
out Q0.1

e user program ends here ----

FIGURE 15.12
The user program of UZAM_plc_16i160_ex38.asm.

15.3.5 Solution for the Fifth Scenario

The user program of UZAM_plc_16i160_ex38.asm, shown in Figure 15.12, is
provided as a solution for the fifth scenario. The ladder diagram of the user
program of UZAM_plc_16il60_ex38.asm is depicted in Figure 15.13. In this
example, if the gate is not closing (Q0.1 = 0), once BO (10.0) is pressed, then
the gate will open (Q0.0 will be ON) with the help of the NO contact of Q0.0
connected parallel to NO contact 10.0. In this case, when the gate is opened
completely (I0.2 =1, and therefore the NC contact of 10.2 will open), the motor
will stop with the help of the NC contact of 10.2 inserted before the output
Q0.0. Similarly, if the gate is not opening (Q0.0 = 0), once B1 (I0.1) is pressed,
then the gate will close (Q0.1 will be ON) with the help of NO contact Q0.1
connected parallel to the NO contact of 10.1. Here, when the gate is closed
completely (I0.3 =1, and therefore the NC contact of 10.3 will open), the motor

10.0 10.2 Q0.1 Q0.0
ol e o e 7 ¢

Q0.0

—

10.1 10.3 Q0.0 Qo.1
2 A/ ¢

Qo.1

—

FIGURE 15.13
The ladder diagram of the user program of UZAM_plc_16i160_ex38.asm.

328 Building a Programmable Logic Controller

will stop with the help of the NC contact of 10.3 inserted before the output
Q0.1. Therefore, once the gate is being opened, we cannot force it to close,
and vice versa.

15.3.6 Solution for the Sixth Scenario

The user program of UZAM_plc_16i160_ex39.asm, shown in Figure 15.14, is
provided as a solution for the sixth scenario. The ladder diagram of the user
program of UZAM_plc_16i160_ex39.asm is depicted in Figure 15.15. In this
example, if the gate is not closing (Q0.1 = 0), once B0 (10.0) or the RF transmit-
ter button (I0.5) is pressed, then the gate will open (Q0.0 will be ON) with
the help of the NO contact of Q0.0 connected parallel to the NO contact of
10.0. In this case, when the gate is opened completely (I0.2 = 1, and therefore
the NC contact of 10.2 will open), the motor will stop with the help of the NC
contact of 10.2 inserted before the output Q0.0. When the gate is completely
open (I0.2 = 1), an on-delay timer (TON_S§) is used to obtain a (100 x 52.4288
ms) 5.24 s time delay. After waiting 5.24 s, the status bit TON8_QO of the
on-delay timer becomes true. If the gate is not opening (Q0.0 = 0), and if the
NO contact of TON_8QO0 is closed (i.e., 5.24 s time delay has elapsed), then
the gate will close (Q0.1 will be ON) with the help of the NO contact of Q0.1
connected parallel to the NO contact of TONS_QO. Here, when the gate is

jrmm e ————— user program starts here --
1d 10.0 ;rung 1
or I0.5
or Q0.0
and not I0.2
and not Q0.1
out Q0.0
1d I0.2 ;rung 2
TON_8 0,T1.1,.100
1d TONS QO ;rung 3
or Q0.1_
and_not I0.3
and not Q0.0
out Q0.1

jmmm e user program ends here ----

FIGURE 15.14
The user program of UZAM_plc_16i160_ex39.asm.

Application Example 329

10.0 10.2 QO0.1 Q0.0
H
10.5
i

Q0.0

—

102
2 | N Q

T|1}1,— CLK
100 —

tenst

TON_8

T = 52,4288 ms
num
TONS_QO0 10.3 Q0.0 Qo1
| | | (o
sH ¢
Qo0.1

H

FIGURE 15.15
The ladder diagram of the user program of UZAM_plc_16i160_ex39.asm.

closed completely (I0.3 = 1, and therefore the NC contact of 10.3 will open),
the motor will stop with the help of the NC contact of 0.3 inserted before the
output QO0.1.

15.3.7 Solution for the Seventh Scenario

The user program of UZAM_plc_16i160_ex40.asm, shown in Figure 15.16, is
provided as a solution for the seventh scenario. The ladder diagram of the
user program of UZAM_plc_16i160_ex40.asm is depicted in Figure 15.17.
In this example, if the gate is not closing (Q0.1 = 0), once BO (10.0) or the
RF transmitter button (I0.5) is pressed, then the gate will open (Q0.0 will
be ON) with the help of NO contact Q0.0 connected parallel to NO con-
tact 10.0. In this case, when the gate is opened completely (10.2 = 1, and
therefore the NC contact of 10.2 will open), the motor will stop with the
help of the NC contact of 10.2 inserted before the output QO0.0. If the gate is
closing (Q0.1 = 1) and the presence of an obstacle is detected in the gate’s
path (10.4 = 0), then the gate will open (Q0.0 will be ON). When the gate is
completely open (10.2 = 1), an on-delay timer (TON_8) is used to obtain a

330 Building a Programmable Logic Controller

jommmm e user program starts here --

1d Q0.1 ;rung 1
and not I0.4

out MO.0

1ld I0.0 ;rung 2
or I0.5

or Q0.0

and not I0.2

and not Q0.1

or MO.0

out Q0.0

1d I0.2 ;rung 3
TON_8 0,T1.1,.100

1d TONB_QO ;rung 4
or Q0.1

and not I0.3

and:not Q0.0

and I0.4

out Q0.1

e user program ends here ----

FIGURE 15.16
The user program of UZAM_plc_16i160_ex40.asm.

(10 x 52.4288 ms) 5.24 s time delay. After waiting 5.24 s, the status bit TONS_
QO of the on-delay timer becomes true. If the gate is not opening (Q0.0 =
0), and if the NO contact of TON8_QO is closed (i.e., the 5.24 s time delay
has elapsed), then the gate will close (Q0.1 will be ON) with the help of
NO contact Q0.1 connected parallel to the NO contact of TONS_QO0. Here,
when the gate is closed completely (I0.3 = 1, and therefore the NC contact
of 10.3 will open), the motor will stop with the help of the NC contact of
10.3 inserted before the output QO0.1. If the gate is closing (Q0.1 = 1) and the
presence of an obstacle is detected in the gate’s path (10.4 = 0), then the out-
put Q0.1 will be switched OFF by means of the NO contact of 10.4 inserted
before the output QO.1.

15.3.8 Solution for the Eighth Scenario

In this last solution, the previous seven solutions are all combined in a single
program. In order to choose one of the previous solutions, three inputs, 11.2,
I1.1, and I1.0, are used. Table 15.2 shows the selected scenarios based on the
logic signals applied to these three inputs.

Application Example 331

Qo.1 104 M 0.0
L
10.0 102 Qo1 Qo.
2 A/

105
| |

Q0.0

H

AN

T 1

A

10.2

|
3+ | IN Q
T1.1 >CLK

1

T=52,4288 ms

TON8_QO 10.3 Q0.0 10.4 Q0.1

| | | |
¢ = =
Q0.1

H

FIGURE 15.17
The ladder diagram of the user program of UZAM_plc_16i160_ex40.asm.

TABLE 15.2
Scenarios Chosen Based on the Input Signals
Input Signals
Selected Memory Bit Chosen Scenario
I1.2 I1.1 11.0

0 0 0 MO0.0 —
0 0 1 MO0.1 1
0 1 0 Mo.2 2
0 1 1 MO0.3 3
1 0 0 MO0.4 4
1 0 1 MO0.5 5
1 1 0 MO.6 6
1 1 1 Mo0.7 7

332 Building a Programmable Logic Controller

The user program of UZAM_plc_16i160_ex41.asm, shownin Figure 15.18,
is provided as a solution for the eighth scenario. The ladder diagram of the
user program of UZAM_plc_16i160_ex41.asm is depicted in Figure 15.19.
In the first rung, a 3 x 8 decoder is implemented, whose inputs are I1.2,
I1.1, and I1.0, and whose outputs are markers M0.0, M0.1, M0.2, M0.3,
MO0.4, M0.5, M0.6, and M0.7. The Boolean signals applied to the inputs

jommmmm - user program starts here -------------------————-
jrmmmm e code block for 3x8 decoder ------------
decod 3 8 11.2,11.1,11.0,M0.7,M0.6,M0.5,M0.4,M0.3,M0.2,M0.1,M0.0;rung 1

Jmmm code block for the 1lst scenario -----------
1d I0.0 ;rung 2
and MO.1
out M1l.1

;rung 3
block for the 3rd scenario --—----—-—---
;rung 4
block for the 4th scenario ------——----
.0 ;rung 5
.0
.2
.4
out M1.4
1d I0.1 ;rung 6
or Q0.1
and_not I10.3
and MO.4
out M2.4
o m - code block for the 5th scenario -----------
1d I0.0 ;rung 7
or Q0.0
and_not 10.2
and_not Q0.1
and MO.5
out M1.5
1d I0 ;rung 8

FIGURE 15.18
The user program of UZAM_plc_16i160_ex41.asm. (Continued)

Application Example

and_not
and_not
and
out

1d
and
TON_B

;rung 9

;rung 10

;rung 11

and_not
and not
or
and
out

I0.
I0.
M1.

I0

M3

MO.
M1.

O~ b

NNOoONNSNWUOo

code block for the 7th scenario --————-—-—----—-

.1,.100

TON8_Q1

M2,
I0.
M1.
I0.

;rung 12

;rung 13

;rung 14

;rung 15

out

Q0.

FIGURE 15.18 (Continued)
The user program of UZAM_plc_16i160_ex41.asm.

;rung 1€

;rung 17

333

334

FIGURE 15.19

The ladder diagram of the user program of UZAM_plc_16i160_ex41.asm. (Continued)

Building a Programmable Logic Controller

1ol

3x8
DECODER
M 0.0
do——
Mo.1
d—
MO0.2
dy ——
MO0.3
d (
11.2 M 0.4
[| PO e P
1 MO0.5
111 ds ——
|1 B MO0.6
11 dg ——— —
11.0 MO.7
—c af—
100 MO.1 M1.1
| | 1)

— | 1 (S
Io.lo Mlol.z M1.2
— | T)

Q0.0
100 102 MO3 M13
H Y ——
Q0.0
100 102 MO04 M14
| | | |
— | /] 1 R
Q0.0
101 103 MO04 M2.4
H
Qo0.1
100 102 QO01 MO5 ML5
| | | |
— | /] =
Q0.0
101 103 Q00 MO05 M2
|
I
1

5
S

Application Example 335

10.0 10.2 Q01 MO06 M16

> H I -

10.5
M 1.6
102 MO6 TON_8
10 — | | | IN Q
Tlll_,i CLK
_| tcenst
T=52,4288 ms um

TON8 Q0103 M1l6 MO06 M26

i H b —
M2.6

_|

Qo0.1 10.4 MO0.7 M 3.0
12— ——

10.0 10.2 M27 M07 M17

13 H b/

105
M17
M3.0
| |
I
102 MO0.7 TON_8
14— | | | IN Q
T1|1_,7 CLK
_| 100 — tcnst
T=52,4288 ms | hum

TON8 Q1103 M17104 MO7 M27

15 1 -

M2.7

_|

FIGURE 15.19 (Continued)
The ladder diagram of the user program of UZAM_plc_16i160_ex41.asm. (Continued)

336 Building a Programmable Logic Controller

0.

—_
~0

0
16 jo-

o e
[\

T

=
w

=
K

T

=
n

zlzl=zl=zl=z1%=
TeTsT

=Lz
\1—|_'cx

L
T

Ti—t

<
.
S
e
S

17

g N
(o)} (%21

N
~

T

1=1=z1=
T

FIGURE 15.19 (Continued)
The ladder diagram of the user program of UZAM_plc_16i160_ex41.asm.

I1.2, I1.1, and I1.0 select one of the outputs, and that particular output
represents one of the scenarios as shown in Table 15.2. If I1.2,11.1,11.0 = 000
(respectively, 001, 010, 011, 100, 101, 110, and 111), then MO.0 (respectively,
MO0.1, M0.2, M0.3, M0.4, M0.5, M0.6, and M0.7) is set to 1. When M0.0 = 1,
none of the scenarios are selected. When M0.1 (respectively, M0.2, M0.3,
MO0.4, M0.5, M0.6, and M0.7) is set, the code block for the first (respec-
tively, second, third, fourth, fifth, sixth, seventh) scenario is activated,
shown in rung 2 (respectively, 3; 4; 5 and 6; 7 and 8; 9, 10, and 11; 12, 13,
14, and 15). In this example, in order to operate the motor backward and
forward, PLC outputs Q0.0 and Q0.1 are used as shown in rungs 16 and
17, respectively.

About the CD-ROM

The CD-ROM accompanying this book contains source files (ASM) and
object files (HEX) of all the examples in the book. In addition, printed circuit
board (PCB) (gerber and .pdf) files are also provided in order for the reader
to obtain both the CPU board and I/O extension boards produced by a PCB
manufacturer. A skilled reader may produce his or her own boards by using
the provided .pdf files.

The files on the CD-ROM are organized in the following folders:

EXAMPLES
PLC definitions (definitions.inc)
Example source files (ASM)
Example object files (HEX)

PIC16F648A_Based_PLC_16I_160
Web-based explanation of the PIC16F648A-based PLC project including
The schematic diagram of the CPU board
Photographs of the CPU board
The schematic diagram of the I/O extension board
Photographs of the I/O extension board
PCB design files for the CPU board (gerber files and .pdf files)
PCB design files for the I/O extension board (gerber files and .pdf files)

337

References

M. Uzam. PLC with PIC16F648 A Microcontroller—Part 1. Electronics World, 114(1871),
21-25, 2008.

M. Uzam. PLC with PIC16F648 A Microcontroller—Part 2. Electronics World, 114(1872),
29-35, 2008.

M. Uzam. PLC with PIC16F648 A Microcontroller—Part 3. Electronics World, 115(1873),
30-34, 2009.

M. Uzam. PLC with PIC16F648 A Microcontroller—Part 4. Electronics World, 115(1874),
34-40, 2009.

M. Uzam. PLC with PIC16F648 A Microcontroller—Part 5. Electronics World, 115(1875),
30-33, 2009.

M. Uzam. PLC with PIC16F648 A Microcontroller—Part 6. Electronics World, 115(1876),
26-30, 2009.

M. Uzam. PLC with PIC16F648 A Microcontroller—Part 7. Electronics World, 115(1877),
30-32, 2009.

M. Uzam. PLC with PIC16F648 A Microcontroller—Part 8. Electronics World, 115(1878),
30-32, 2009.

M. Uzam. PLC with PIC16F648 A Microcontroller—Part 9. Electronics World, 115(1879),
29-34, 2009.

M. Uzam. PLC with PIC16F648 AMicrocontroller—Part 10. Electronics World, 115(1880),
29-34, 2009.

M. Uzam. PLC with PIC16F648 A Microcontroller—Part 11. Electronics World, 115(1881),
38-42, 2009.

M. Uzam. PLC with PIC16F648 A Microcontroller—Part 12. Electronics World, 115(1882),
36-41, 2009.

M. Uzam. PLC with PIC16F648 A Microcontroller—Part 13. Electronics World, 115(1883),
42-44,2009.

M. Uzam. PLC with PIC16F648 A Microcontroller—Part 14. Electronics World, 115(1884),
40-42, 2009.

M. Uzam. PLC with PIC16F648 A Microcontroller—Part 15. Electronics World, 116(1885),
35-39, 2010.

M. Uzam. PLC with PIC16F648 A Microcontroller—Part 16. Electronics World, 116(1886),
41-42, 2010.

M. Uzam. PLC with PIC16F648 A Microcontroller—Part 17. Electronics World, 116(1887),
41-43, 2010.

M. Uzam. PLC with PIC16F648 A Microcontroller—Part 18. Electronics World, 116(1888),
41-43, 2010.

M. Uzam. PLC with PIC16F648A Microcontroller—Part 19. Electronics World, 116(1889),
39-43,2010.

M. Uzam. PLC with PIC16F648 A Microcontroller—Part 20. Electronics World, 116(1890),
38-40, 2010.

M. Uzam. PLC with PIC16F648 AMicrocontroller—Part 21. Electronics World, 116(1891),
40-41, 2010.

339

340 References

M. Uzam. PLC with PIC16F648A Microcontroller—Part 22. Electronics World, 116
(1892), 40-42, 2010.

M. Uzam. The earlier version of the PIC16F648A based PLC project as published
in Electronics World magazine is available from http//www.meliksah.edu.tr/
muzam/UZAM_PLC_with_PIC16F648A . htm.

PIC16F627A/628A/648A Data Sheet. DS40044F. Microchip Technology, Inc., 2007. http:/ /
wwl.microchip.com/downloads/en/devicedoc/40044f.pdf.

MPASM"™ Assembler, MPLINK" Object Linker, MPLIB" Object Librarian User’s Guide. DS33014].
Microchip Technology, Inc., 2005. http:/ /ww1.microchip. com/downloads/en/
devicedoc/33014j.pdf.

COMPUTER ENGINEERING

Building a Programmable
Logic Controller with a
PIC16F648A Microcontroller

“This text allows those who do not have all of the resources
found in a mechatronics lab the possibility to use a PLC in their
machine or robot design with a simplified and easily mastered
programming language. ... It is a well thought-out and detailed
application of the PIC microcontroller to the programmable
logic controller.”

—THOMAS STOUT, Tidewater Community College, Virginia Beach, USA

Programmable logic controllers (PLCs) are extensively used in industry
to perform automation tasks, with manufacturers offering a variety of
PLCs that differ in functions, program memories, and the number of
inputs/outputs (I/0). Not surprisingly, the design and implementation
of these PLCs have long been a secret of manufacturers. Unveiling
the mysteries of PLC technology, Building a Programmable Logic
Controller with a PIC16F648A Microcontroller explains how to design
and use a PIC16F648A-based PLC. The book builds and substantially
improves on a series of articles the author previously published in
Electronics World magazine describing a microcontroller-based
implementation of a PLC.

In this book, the author provides detailed explanations of hardware
and software structures. He also describes PIC Assembly macros for
all basic PLC functions and illustrates them with numerous examples
and flowcharts. The accompanying CD contains source and object
files for the examples in the book, as well as printed circuit board
(PCB) files of the CPU and /0O extension boards. Making PLCs more
easily accessible, this unique book is written for advanced students,
practicing engineers, and hobbyists who want to learn how to build
their own microcontroller-based PLC.

K20428

6000 Broken Sound Parkway, NW : -1- - -
@ CRC Press | suie300, Boca Raton, fL 33487 | LSBNE d78-1-4bb3-81985- &

Taylor & Francis Group 711 Third Avenue ‘ ‘ ‘ ‘ ‘ ‘ 90000

New York, NY 10017 | |
91781466"589858

an informa business

2 Park Square, Milton Park
Www.crcpress.com Abingdon, Oxon OX14 4RN, UK

	Front Cover
	Contents
	Preface
	Acknowledgments
	Background and Use of the Book
	About the Author
	Chapter 1 - Hardware of the PIC16F648A-Based PLC
	Chapter 2 - Basic Software
	Chapter 3 - Contact and Relay-Based Macros
	Chapter 4 - Flip-Flop Macros
	Chapter 5 - Timer Macros
	Chapter 6 - Counter Macros
	Chapter 7 - Comparison Macros
	Chapter 8 - Arithmetical Macros
	Chapter 9 - Logical Macros
	Chapter 10 - Shift and Rotate Macros
	Chapter 11 - Multiplexer Macros
	Chapter 12 - Demultiplexer Macros
	Chapter 13 - Decoder Macros
	Chapter 14 - Priority Encoder Macros
	Chapter 15 - Application Example
	About the CD-ROM
	References
	Back Cover

