
Building a Programmable
Logic Controller with a

PIC16F648A
Microcontroller

Murat Uzam

Building a Program
m

able Logic Controller w
ith a PIC16F648A M

icrocontroller
Uzam

ISBN: 978-1-4665-8985-8

9 781466 589858

9 0 0 0 0

K20428

Computer engineering

“This text allows those who do not have all of the resources
found in a mechatronics lab the possibility to use a PLC in their
machine or robot design with a simplified and easily mastered
programming language. ... It is a well thought-out and detailed
application of the PIC microcontroller to the programmable
logic controller.”
––Thomas sTouT, Tidewater Community College, Virginia Beach, USA

Programmable logic controllers (PLCs) are extensively used in industry
to perform automation tasks, with manufacturers offering a variety of
PLCs that differ in functions, program memories, and the number of
inputs/outputs (I/O). Not surprisingly, the design and implementation
of these PLCs have long been a secret of manufacturers. Unveiling
the mysteries of PLC technology, Building a Programmable Logic
Controller with a PIC16F648A Microcontroller explains how to design
and use a PIC16F648A-based PLC. The book builds and substantially
improves on a series of articles the author previously published in
Electronics World magazine describing a microcontroller-based
implementation of a PLC.

In this book, the author provides detailed explanations of hardware
and software structures. He also describes PIC Assembly macros for
all basic PLC functions and illustrates them with numerous examples
and flowcharts. The accompanying CD contains source and object
files for the examples in the book, as well as printed circuit board
(PCB) files of the CPU and I/O extension boards. Making PLCs more
easily accessible, this unique book is written for advanced students,
practicing engineers, and hobbyists who want to learn how to build
their own microcontroller-based PLC.

Building a Programmable
Logic Controller with a

PIC16F648A Microcontroller

K20428_Cover_mech.indd All Pages 7/16/13 9:57 AM

Building a Programmable
Logic Controller with a

PIC16F648A
Microcontroller

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton London New York

Building a Programmable
Logic Controller with a

PIC16F648A
Microcontroller

Murat Uzam

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20130710

International Standard Book Number-13: 978-1-4665-8986-5 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a pho-
tocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

© 2008 Taylor & Francis Group, LLC

To my parents and family

who love and support me

and

to my teachers and students

who enriched my knowledge

vii© 2008 Taylor & Francis Group, LLC

Contents

Preface ... xiii
Acknowledgments ..xv
Background and Use of the Book .. xvii
About the Author .. xxiii

1 Hardware of the PIC16F648A-Based PLC ..1

2 Basic Software ... 11
2.1 Basic Software Structure .. 11

2.1.1 Variable Definitions ... 12
2.1.2 Macro HC165 .. 21
2.1.3 Macro HC595 .. 21

2.2 Elimination of Contact Bouncing Problem in the
PIC16F648A-Based PLC ..22
2.2.1 Contact Bouncing Problem ...22
2.2.2 Understanding a Generic Single I/O Contact Debouncer24
2.2.3 Debouncer Macros dbncr0 and dbncr125

2.3 Basic Macros of the PIC16F648A-Based PLC 31
2.3.1 Macro initialize .. 31
2.3.2 Macro get_inputs .. 32
2.3.3 Macro send_outputs ...33

2.4 Example Program ...34

3 Contact and Relay-Based Macros .. 37
3.1 Macro ld (load) ...38
3.2 Macro ld_not (load not) ... 39
3.3 Macro not ..40
3.4 Macro or .. 41
3.5 Macro or_not ...42
3.6 Macro nor ..42
3.7 Macro and ..44
3.8 Macro and_not ..46
3.9 Macro nand .. 47
3.10 Macro xor .. 47
3.11 Macro xor_not .. 49
3.12 Macro xnor .. 49
3.13 Macro out .. 51
3.14 Macro out_not ..53
3.15 Macro in_out ...54
3.16 Macro inv_out ..56

viii Contents

© 2008 Taylor & Francis Group, LLC

3.17 Macro _set ... 57
3.18 Macro _reset ...58
3.19 Examples for Contact and Relay-Based Macros 59

4 Flip-Flop Macros ... 67
4.1 Macro r_edge (Rising Edge Detector) ..68
4.2 Macro f_edge (Falling Edge Detector) ... 70
4.3 Macro latch1 (D Latch with Active High Enable)72
4.4 Macro latch0 (D Latch with Active Low Enable)72
4.5 Macro dff_r (Rising Edge Triggered D Flip-Flop) 74
4.6 Macro dff_f (Falling Edge Triggered D Flip-Flop)77
4.7 Macro tff_r (Rising Edge Triggered T Flip-Flop)80
4.8 Macro tff_f (Falling Edge Triggered T Flip-Flop) 82
4.9 Macro jkff_r (Rising Edge Triggered JK Flip-Flop) 82
4.10 Macro jkff_f (Falling Edge Triggered JK Flip-Flop)86
4.11 Examples for Flip-Flop Macros ...88

5 Timer Macros ... 97
5.1 On-Delay Timer (TON) .. 97
5.2 Macro TON_8 (8-Bit On-Delay Timer) .. 98
5.3 Off-Delay Timer (TOF) ... 102
5.4 Macro TOF_8 (8-Bit Off-Delay Timer) .. 105
5.5 Pulse Timer (TP) .. 107
5.6 Macro TP_8 (8-Bit Pulse Timer) .. 108
5.7 Oscillator Timer (TOS) ... 111
5.8 Macro TOS_8 (8-Bit Oscillator Timer) .. 112
5.9 Example for Timer Macros .. 115

6 Counter Macros ... 121
6.1 Move and Load Macros .. 121
6.2 Counter Macros ... 123
6.3 Up Counter (CTU) ... 124
6.4 Macro CTU_8 (8-Bit Up Counter) .. 126
6.5 Down Counter (CTD) ... 129
6.6 Macro CTD_8 (8-Bit Down Counter) .. 130
6.7 Up/Down Counter (CTUD) ... 132
6.8 Macro CTUD_8 (8-Bit Up/Down Counter) 133
6.9 Examples for Counter Macros ... 136

7 Comparison Macros ... 143
7.1 Macro R1_GT_R2 .. 144
7.2 Macro R1_GE_R2 .. 144
7.3 Macro R1_EQ_R2 .. 146
7.4 Macro R1_LT_R2 .. 147
7.5 Macro R1_LE_R2 .. 148

ixContents

© 2008 Taylor & Francis Group, LLC

7.6 Macro R1_NE_R2 .. 150
7.7 Macro R_GT_K ... 151
7.8 Macro R_GE_K ... 151
7.9 Macro R_EQ_K ... 153
7.10 Macro R_LT_K ... 154
7.11 Macro R_LE_K ... 155
7.12 Macro R_NE_K ... 157
7.13 Examples for Comparison Macros ... 158

8 Arithmetical Macros .. 163
8.1 Macro R1addR2 .. 164
8.2 Macro RaddK ... 165
8.3 Macro R1subR2 .. 165
8.4 Macro RsubK ... 167
8.5 Macro incR .. 168
8.6 Macro decR .. 169
8.7 Examples for Arithmetical Macros ... 170

9 Logical Macros .. 175
9.1 Macro R1andR2 .. 176
9.2 Macro RandK ... 177
9.3 Macro R1nandR2 .. 177
9.4 Macro RnandK ... 179
9.5 Macro R1orR2 ... 180
9.6 Macro RorK .. 181
9.7 Macro R1norR2 .. 182
9.8 Macro RnorK ... 183
9.9 Macro R1xorR2 .. 185
9.10 Macro RxorK ... 186
9.11 Macro R1xnorR2 .. 187
9.12 Macro RxnorK ... 187
9.13 Macro inv_R ... 189
9.14 Example for Logical Macros .. 190

10 Shift and Rotate Macros .. 199
10.1 Macro shift_R .. 199
10.2 Macro shift_L ..200
10.3 Macro rotate_R .. 201
10.4 Macro rotate_L .. 207
10.5 Macro Swap .. 209
10.6 Examples for Shift and Rotate Macros ... 210

11 Multiplexer Macros ..225
11.1 Macro mux_2_1 ..225
11.2 Macro mux_2_1_E .. 226

x Contents

© 2008 Taylor & Francis Group, LLC

11.3 Macro mux_4_1 ..227
11.4 Macro mux_4_1_E ..228
11.5 Macro mux_8_1 .. 232
11.6 Macro mux_8_1_E ..233
11.7 Examples for Multiplexer Macros ...233

12 Demultiplexer Macros ... 243
12.1 Macro Dmux_1_2 .. 243
12.2 Macro Dmux_1_2_E ... 244
12.3 Macro Dmux_1_4 .. 245
12.4 Macro Dmux_1_4_E ... 246
12.5 Macro Dmux_1_8 .. 251
12.6 Macro Dmux_1_8_E ... 252
12.7 Examples for Demultiplexer Macros .. 252

13 Decoder Macros .. 263
13.1 Macro decod_1_2 ..264
13.2 Macro decod_1_2_AL .. 265
13.3 Macro decod_1_2_E ... 266
13.4 Macro decod_1_2_E_AL .. 268
13.5 Macro decod_2_4 .. 269
13.6 Macro decod_2_4_AL .. 270
13.7 Macro decod_2_4_E ... 273
13.8 Macro decod_2_4_E_AL .. 273
13.9 Macro decod_3_8 .. 276
13.10 Macro decod_3_8_AL ..280
13.11 Macro decod_3_8_E ...280
13.12 Macro decod_3_8_E_AL ..283
13.13 Examples for Decoder Macros .. 286

14 Priority Encoder Macros .. 295
14.1 Macro encod_4_2_p ... 296
14.2 Macro encod_4_2_p_E .. 298
14.3 Macro encod_8_3_p ...300
14.4 Macro encod_8_3_p_E ..303
14.5 Macro encod_dec_bcd_p ...303
14.6 Macro encod_dec_bcd_p_E ..304
14.7 Examples for Priority Encoder Macros .. 312

15 Application Example .. 319
15.1 Remotely Controlled Model Gate System 319
15.2 Control Scenarios for the Model Gate System 321
15.3 Solutions for the Control Scenarios .. 323

15.3.1 Solution for the First Scenario .. 324
15.3.2 Solution for the Second Scenario 324

xiContents

© 2008 Taylor & Francis Group, LLC

15.3.3 Solution for the Third Scenario .. 325
15.3.4 Solution for the Fourth Scenario .. 326
15.3.5 Solution for the Fifth Scenario ... 327
15.3.6 Solution for the Sixth Scenario ... 328
15.3.7 Solution for the Seventh Scenario 329
15.3.8 Solution for the Eighth Scenario ..330

About the CD-ROM .. 337

References ... 339

xiii© 2008 Taylor & Francis Group, LLC

Preface

Programmable logic controllers (PLCs) have been used extensively in indus-
try for the past five decades. PLC manufacturers offer different PLCs in terms
of functions, program memories, and the number of inputs/outputs (I/Os),
ranging from a few to thousands of I/Os. The design and implementation of
PLCs have long been a secret of the PLC manufacturers. Recently, a serious
work was reported by the author of this book to describe a microcontroller-
based implementation of a PLC. With a series of 22 articles published in
Electronics World magazine (http//www.electronicsworld.co.uk/) between
the years 2008 and 2010, the design and implementation of a PIC16F648A-
based PLC were described. This book is based on an improved version of the
project reported in Electronics World magazine.

This book is written for advanced students, practicing engineers, and hob-
byists who want to learn how to design and use a microcontroller-based
PLC. The book assumes the reader has taken courses in digital logic design,
microcontrollers, and PLCs. In addition, the reader is expected to be familiar
with the PIC16F series of microcontrollers and to have been exposed to writ-
ing programs using PIC assembly language within an MPLAB integrated
development environment.

The CD-ROM that accompanies this book contains all the program source
files and hex files for the examples described in the book. In addition, PCB
files of the CPU and I/O extension boards of the PIC16F648A-based PLC are
also included on the CD-ROM.

Dr. Murat Uzam
Melikşah Üniversitesi

Mühendislik-Mimarlık Fakültesi
Elektrik-Elektronik Mühendisliği Bölümü

Talas, Kayseri
Turkey

xv© 2008 Taylor & Francis Group, LLC

Acknowledgments

I am grateful to Dr. Gökhan Gelen (gokhan_gelen@hotmail.com) for his great
effort in drawing the printed circuit boards (PCBs) and for producing the pro-
totypes of the CPU board and the I/O extension board. Without his help this
project may have been delayed for years.

xvii© 2008 Taylor & Francis Group, LLC

Background and Use of the Book

This project was completed during the search for an answer to the follow-
ing question: How could one design and implement a programmable logic
controller (PLC)? The answer to this question was partially discovered about
15 years ago by the author in a freely available PLC project called PICBIT.
The file, called picbit.inc of PICBIT, contains the basic PLC macro definitions.
The PIC16F648A-based PLC project has been completed by the inspiration of
these macros. Of course many new features have been included within the
PIC16F648A-based PLC project to make it an almost perfect PLC. The reader
should be aware that this project does not include graphical interface PC
software as in PICBIT or in other PLCs for developing PLC programs. Rather,
PLC programs are developed by using macros as done in the Instruction
List (IL) PLC programming language. An interested and skilled reader could
well (and is encouraged to) develop graphical interface PC software for easy
use of the PIC16F648A-based PLC.

The PIC16F648A-based PLC project was first reported in a series of 22 arti-
cles published in Electronics World magazine (http://www.electronicsworld.
co.uk/) between the years 2008 and 2010 [1–22]. All details of this project
can be viewed at http//www.meliksah.edu.tr/muzam/UZAM_PLC_with_
PIC16F648A.htm [23]. This book is based on an improved version of the
project reported in Electronics World magazine. The improvements are sum-
marized as follows:

 1. The current hardware has two boards: the CPU board and the I/O
extension board. In the previous version of the hardware, the main
board consisted of the CPU board and eight inputs/eight outputs,
while in the current version, the CPU board excludes eight inputs/
eight outputs. Thus, the CPU board is smaller than the previous
main board. In addition, the current I/O extension board is also
smaller than in the previous version.

 2. The hardware explained in this book consists of one CPU board and
two I/O extension boards. Therefore, the current version of the soft-
ware supports 16 inputs and 16 outputs, while the previous one sup-
ported 8 inputs and 8 outputs.

 3. Clock frequency was 4 MHz in the previous version, but is 20 MHz
in the current version.

 4. Some of the macros are improved compared with the previous versions.
 5. Flowcharts are provided to help the understanding of all macros

(functions).

xviii Background and Use of the Book

© 2008 Taylor & Francis Group, LLC

In order to properly follow the topics explained in this book, it is expected
that the reader will construct his or her PIC16F648A-based PLC consist-
ing of the CPU board and two I/O extension boards using the PCB files
provided within the CD-ROM attached to this book. In this book, as the
PIC assembly is used as the programming language within the MPLAB
integrated development environment (IDE), the reader is referred to the
homepage of Microchip (http://www.microchip.com/) to obtain the latest
version of MPLAB IDE. References [24] and [25] may be useful to under-
stand some aspects of the PIC16F648A microcontroller and MPASM™
assembler, respectively.

The contents of the book’s 15 chapters are explained briefly, as follows:

 1. Hardware: In this chapter, the hardware structure of the PIC16F648A-
based PLC, consisting of 16 discrete inputs and 16 discrete outputs,
is explained in detail.

 2. Basic software: This chapter explains the basic software structure
of the PIC16F648A-based PLC. A PLC scan cycle includes the fol-
lowing: obtain the inputs, run the user program, and update the
outputs. In addition, it is also necessary to define and initialize all
variables used within a PLC. Necessary functions are all described
as PIC assembly macros to be used in the PIC16F648A-based PLC.
The macros described in this chapter can be summarized as follows:
HC165 (for handling the inputs), HC595 (for sending the outputs),
dbncr0 and dbncr1 (for debouncing 16 inputs), initialize,
get_inputs, and send_outputs.

 3. Contact and relay-based macros: The following contact and relay-
based macros are described in this chapter: ld (load), ld_not (load_
not), not, or, or_not, nor, and, and_not, nand, xor, xor_not,
xnor, out, out_not, in_out, inv_out, _set, _reset. These
macros are defined to operate on 1-bit (Boolean) variables.

 4. Flip-flop macros: The following flip-flop–based macros are
described in this chapter: r_edge (rising edge), f_edge (falling
edge), latch0, latch1, dff_r (rising edge triggered D flip-flop),
dff_f (falling edge triggered D flip-flop), tff_r (rising edge trig-
gered T flip-flop), tff_f (falling edge triggered T flip-flop), jkff_r
(rising edge triggered JK flip-flop), and jkff_f (falling edge trig-
gered JK flip-flop).

 5. Timer macros: The following timer macros are described in this
chapter: TON_8 (8-bit on-delay timer), TOF_8 (8-bit off-delay timer),
TP_8 (8-bit pulse timer), and TOS_8 (8-bit oscillator timer).

 6. Counter macros: The following counter macros are described in this
chapter: CTU_8 (8-bit up counter), CTD_8 (8-bit down counter), and
CTUD_8 (8-bit up/down counter).

xixBackground and Use of the Book

© 2008 Taylor & Francis Group, LLC

 7. Comparison macros: The comparison macros are described in this
chapter. The contents of two registers (R1 and R2) are compared
according to the following: GT (greater than, >), GE (greater than or
equal to, ≥), EQ (equal to, =), LT (less than, <), LE (less than or equal
to, ≤), and NE (not equal to, ≠). Similar comparison macros are also
described for comparing the contents of an 8-bit register (R) with an
8-bit constant (K).

 8. Arithmetical macros: The arithmetical macros are described in this
chapter. The following operators are applied to the contents of two
registers (R1 and R2): ADD, SUB (subtract), INC (increment), and
DEC (decrement). Similar arithmetical macros are also described, to
be used with the contents of an 8-bit register (R) and an 8-bit con-
stant (K).

 9. Logical macros: The following logical macros are described in this
chapter: inv_R, AND, NAND, OR, NOR, XOR, and XNOR. These macros
are applied to an 8-bit register (R1) with another register (R2) or an
8-bit constant (K).

 10. Shift and rotate macros: The following shift and rotate macros are
described in this chapter: SHIFT_R (shift right the content of reg-
ister R), SHIFT_L (shift left the content of register R), ROTATE_R
(rotate right the content of register R), ROTATE_L (rotate left the
content of register R), and SWAP (swap the nibbles of a register).

 11. Multiplexer macros: The following multiplexer macros are described in
this chapter: mux_2_1 (2×1 MUX), mux_2_1_E (2×1 MUX with enable
input), mux_4_1 (4×1 MUX), mux_4_1_E (4×1 MUX with enable input),
mux_8_1 (8×1 MUX), and mux_8_1_E (8×1 MUX with enable input).

 12. Demultiplexer macros: The following demultiplexer macros are
described in this chapter: Dmux_1_2 (1×2 DMUX), Dmux_1_2_E (1×2
DMUX with enable input), Dmux_1_4 (1×4 DMUX), Dmux_1_4_E
(1×4 DMUX with enable input), Dmux_1_8 (1×8 DMUX), and
Dmux_1_8_E (1×8 DMUX with enable input).

 13. Decoder macros: The following decoder macros are described
in this chapter: decod_1_2 (1×2 decoder), decod_1_2_AL (1×2
decoder with active low outputs), decod_1_2_E (1×2 decoder with
enable input), decod_1_2_E_AL (1×2 decoder with enable input
and active low outputs), decod_2_4 (2×4 decoder), decod_2_4_
AL (2×4 decoder with active low outputs), decod_2_4_E (2×4
decoder with enable input), decod_2_4_E_AL (2×4 decoder
with enable input and active low outputs), decod_3_8 (3×8
decoder), decod_3_8_AL (3×8 decoder with active low out-
puts), decod_3_8_E (3×8 decoder with enable input), and

xx Background and Use of the Book

© 2008 Taylor & Francis Group, LLC

decod_3_8_E_AL (3×8 decoder with enable input and active low
outputs).

 14. Priority encoder macros: The following priority encoder mac-
ros are described in this chapter: encod_4_2_p (4×2 priority
encoder), encod_4_2_p_E (4×2 priority encoder with enable
input), encod_8_3_p (8×3 priority encoder), encod_8_3_p_E
(8×3 priority encoder with enable input), encod_dec_bcd_p
(decimal to binary coded decimal [BCD] priority encoder), and
encod_dec_bcd_p_E (decimal to BCD priority encoder with
enable input).

 15. Application example: This chapter describes an example remotely
controlled model gate system and makes use of the PIC16F648A-
based PLC to control it for different control scenarios.

Table 1 shows the general characteristics of the PIC16F648A-based PLC.

TABLE 1

General Characteristics of the PIC16F648A-Based PLC

Inputs/Outputs/Functions
Byte Addresses/
Related Bytes

Bit Addresses or Function
Numbers

16 discrete inputs
(external inputs: 5 or 24 V DC)

I0
I1

I0.0, I0.1, …, I0.7
I1.0, I1.1, …, I1.7

16 discrete outputs
(relay type outputs)

Q0
Q1

Q0.0, Q0.1, …, Q0.7
Q1.0, Q1.1, …, Q1.7

32 internal relays
(memory bits)

M0
M1
M2
M3

M0.0, M0.1, …, M0.7
M1.0, M1.1, …, M1.7
M2.0, M2.1, …, M2.7
M3.0, M3.1, …, M3.7

8 rising edge detectors RED r_edge (0, 1, …, 7)
8 falling edge detectors FED f_edge (0, 1, …, 7)

8 rising edge triggered
D flip-flop

DFF_RED
dff_r (0, 1, …, 7), regi,biti,
rego,bito

8 falling edge triggered
D flip-flop

DFF_FED
dff_f (0, 1, …, 7), regi,biti,
rego,bito

8 rising edge triggered
T flip-flop

TFF_RED
tff_r (0, 1, …, 7), regi,biti,
rego,bito

8 falling edge triggered
T flip-flop

TFF_FED
tff_f (0, 1, …, 7), regi,biti, rego,bito

8 rising edge triggered
JK flip-flop

JKFF_RED
jkff_r (0, 1, …, 7), regi,biti,
rego,bito

8 falling edge triggered
JK flip-flop

JKFF_FED
jkff_f (0, 1, …, 7), regi,biti,
rego,bito

xxiBackground and Use of the Book

© 2008 Taylor & Francis Group, LLC

TABLE 1 (CONTINUED)

General Characteristics of the PIC16F648A-Based PLC

Inputs/Outputs/Functions
Byte Addresses/
Related Bytes

Bit Addresses or Function
Numbers

8 on-delay timers

TON8, TON8+1, …,
TON8+7
TON8_Q
TON8_RED

TON8_Q0
TON8_Q1, …
TON8_Q7

8 off-delay timers
TOF8, TOF8+1, …,
TOF8+7, TOF8_Q
TOF8_RED

TOF8_Q0
TOF8_Q1, …
TOF8_Q7

8 pulse timers

TP8, TP8+1, …, TP8+7,
TP8_Q
TP8_RED1
TP8_RED2

TP8_Q0
TP8_Q1, …
TP8_Q7

8 oscillator timers

TOS8, TOS8+1, …,
TOS8+7
TOS8_Q
TOS8_RED

TOS8_Q0
TOS8_Q1, …
TOS8_Q7

8 counters

CV8,
CV8+1, …, CV8+7

CTU8_Q0
CTU8_Q1, …
CTU8_Q7

CTU: up counter

CTU8_Q
CTU8_RED

CTD8_Q
CTD8_RED

or
CTD8_Q0
CTD8_Q1, …
CTD8_Q7

CTD: down counter
CTUD8_Q
CTUD8_RED

or
CTUD8_Q0
CTUD8_Q1, …
CTUD8_Q7

CTUD: up/down counter

Note: regi,biti, input bit; rego,bito, output bit.
 At any time, a total of eight different counters can be used.

xxiii© 2008 Taylor & Francis Group, LLC

About the Author

Murat Uzam was borned in Söke,
Turkey, in 1968. He received his BSc
and MSc degrees from the Electrical
Engineering Department of Yıldız
Technical University, İstanbul,
Turkey, in 1989 and 1991, respectively.
He received his PhD degree from the
University of Salford, Salford, UK,
in 1998. He is currently a professor
in the Department of Electrical and
Electronics Engineering at Melikşah
University in Kayseri, Turkey.

Dr. Uzam’s research interests
include the design and implementa-
tion of discrete event control systems
modeled by Petri nets (PN) and, in
particular, deadlock prevention/
liveness enforcement in flexible man-
ufacturing systems, Programmable
Logic Controllers (PLCs), microcontrollers (especially PIC microcontrollers),
and the design of microcontroller-based PLCs. The details of his studies are
accessible from his web page: http://www.meliksah.edu.tr/muzam.

1© 2008 Taylor & Francis Group, LLC

1
Hardware of the PIC16F648A-Based PLC

The hardware of the PIC16F648A-based programmable logic controller (PLC)
consists of two parts: the CPU board and the I/O extension board. The schematic
diagram and the photograph of the PIC16F648A-based PLC CPU board are
shown in Figures 1.1 and 1.2, respectively. The CPU board contains mainly
three sections: power, programming, and CPU (central processor unit).

The power section accepts 12 V AC input and produces two DC outputs: 12
V DC, to be used as the operating voltage of relays, and 5 V DC, to be used for
ICs, inputs, etc. The programming section deals with the programming of the
PIC16F648A microcontroller. For programming the PIC16F648A in circuit, it
is necessary to use PIC programmer hardware and software with In Circuit
Serial Programming (ICSP) capability. For related hardware and software to
be used for programming the PIC16F648A-based PLC, please visit the follow-
ing web page: http://www.meliksah.edu.tr/muzam/. For other types of USB,
serial, or parallel port PIC programmers the reader is expected to make nec-
essary arrangements. The ICSP connector takes the lines VPP(MCLR), VDD,
VSS(GND), DATA (RB7), and CLOCK (RB6) from the PIC programmer hard-
ware through a properly prepared cable, and it connects them to a four-pole
double-throw (4PDT) switch. There are two positions of the 4PDT switch.
As seen from Figure 1.1, in one position of the 4PDT switch, PIC16F648A is
ready to be programmed, and in the other position the loaded program is
run. For properly programming the PIC16F648A by means of a PIC program-
mer and the 4PDT switch, it is also a necessity to switch off the power switch.
The CPU section consists of the PIC16F648A microcontroller. In the project
reported in this book, the PLC is fixed to run at 20 MHz with an external
oscillator. This frequency is fixed because time delays are calculated based
on this speed. By means of two switches, SW1 and SW2, it is also possible
to use another internal or external oscillator with different crystal frequen-
cies. When doing so, time delay functions must be calculated accordingly.
SW3 connects the RA5 pin either to one pole of the 4PDT switch or to the
future extension connector. When programming PIC16F648A, RA5 should
be connected to the 4PDT switch. RB0, RB6, and RB7 pins are all reserved to
be used for 8-bit parallel-to-serial converter register 74HC/LS165. Through
these three pins and with added 74HC/LS165 registers, we can describe as
many inputs as necessary. RB0, RB6, and RB7 are the data in, clock in,
and shift/load pins, respectively. Similarly, RB3, RB4, and RB5 pins are
all reserved to be used for 8-bit serial-to-parallel converter register/driver
TPIC6B595. Through these three pins and with added TPIC6B595 registers,

2 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

12
V

AC
In Re

se
t

IC
SP

Co
nn

ec
to

r

4P
D

T
Sw

itc
h

Fu
tu

re
 E

xt
en

sio
n

Co
nn

ec
to

r

�
e

PI
C1

6F
64

8A
-B

as
ed

 P
LC

C
PU

 B
oa

rd

PI
C1

6F
64

8A

I/
O

 E
xt

en
sio

n
co

nn
ec

to
r

FI
G

U
R

E
1.

1
Sc

he
m

at
ic

 d
ia

gr
am

 o
f t

he
 C

PU
 b

oa
rd

.

3Hardware of the PIC16F648A-Based PLC

© 2008 Taylor & Francis Group, LLC

FIGURE 1.2
Photograph of the CPU board.

4 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

we can describe as many outputs as necessary. RB3, RB4, and RB5 are the
clock out, data out, and latch out pins, respectively. The remaining
unused pins of the PIC16F648A are connected to the future extension con-
nector. PIC16F648A provides the following: flash program memory (words),
4096; RAM data memory (bytes), 256; and EEPROM data memory (bytes),
256. The PIC16F648A-based PLC macros make use of registers defined in
RAM data memory. Note that it may be possible to use PIC16F628A as the
CPU, but one has to bear in mind that PIC16F628A provides the following:
flash program memory (words), 2048; RAM data memory (bytes), 224; and
EEPROM data memory (bytes), 128. In that case, it is necessary to take care of
the usage of RAM data memory.

Figures 1.3 and 1.4 show the schematic diagram and photograph of the I/O
extension board, respectively. The I/O extension board contains mainly two
sections: eight discrete inputs and eight discrete outputs. The I/O extension
connector DB9M seen on the left connects the I/O extension board to the
CPU board or to a previous I/O extension board. Similarly, the I/O extension

Q.0 Q.1 Q.2 Q.3 Q.4 Q.5 Q.6 Q.7

I.0 I.1 I.2 I.3 I.4 I.5 I.6 I.7

�e PIC16F648A Based PLC
I/O Extension Board

From the
CPU Board or
From
a previous
I/O Extension Board

TPIC6B595 To the next I/O Extension Board

FIGURE 1.3
Schematic diagram of the I/O extension board.

5Hardware of the PIC16F648A-Based PLC

© 2008 Taylor & Francis Group, LLC

connector DB9F seen on the right connects the I/O extension board to a next
I/O extension board. In this way we can connect as many I/O extension
boards as necessary. Five-volt DC and 12 V DC are taken from the CPU board
or from a previous I/O extension board, and they are passed to the next I/O
extension boards. All I/O data are sent to and taken from all the connected
extension I/O boards by means of I/O extension connectors DB9M and DB9F.

The inputs section introduces eight discrete inputs for the PIC16F648A-based
PLC (called I0.0, I0.1, …, I0.7 for the first I/O extension board). Five-volt DC
or 24 V DC input signals can be accepted by each input. These external input
signals are isolated from the other parts of the hardware by using NPN type
opto-couplers (e.g., 4N25). For simulating input signals, one can use onboard
push buttons as temporary inputs and slide switches as permanent inputs.
In the beginning of each PLC scan cycle (get_inputs) the 74HC/LS165 is
loaded (RB7 (shift/load) = 0) with the level of eight inputs and then these

FIGURE 1.4
Photograph of the I/O extension board.

6 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

�
e

PI
C1

6F
64

8A
-B

as
ed

 P
LC

I/
O

 E
xt

en
si

on
 B

oa
rd

 0
�

e
PI

C1
6F

64
8A

-B
as

ed
 P

LC
C

PU
 B

oa
rd

�
e

PI
C

16
F6

48
A

-B
as

ed
 P

LC
I/

O
 E

xt
en

si
on

 B
oa

rd
 1

FI
G

U
R

E
1.

5
Sc

he
m

at
ic

 d
ia

gr
am

 o
f t

he
 C

PU
 b

oa
rd

 p
lu

s
tw

o
I/

O
 e

xt
en

si
on

 b
oa

rd
s.

7Hardware of the PIC16F648A-Based PLC

© 2008 Taylor & Francis Group, LLC

FIGURE 1.6
Photograph of the CPU board plus two I/O extension boards.

8 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

FIGURE 1.7
Photograph of the CPU board plus two I/O extension boards and a USB PIC programmer.

9Hardware of the PIC16F648A-Based PLC

© 2008 Taylor & Francis Group, LLC

data are serially clocked in (when RB7 = 1; through RB0 data in and RB6
clock in pins). If there is only one I/O extension board used, then eight
clock_in signals are enough to get the eight input signals. For each addi-
tional I/O extension board, eight more clock_in signals are necessary. The
serial data coming from the I/O extension board(s) are taken from the SI input
of the 74HC/LS165.

The outputs section introduces eight discrete relay outputs for the PIC16F648A-
based PLC (called Q0.0, Q0.1, …, Q0.7 for the first I/O extension board). Each
relay operates with 12 V DC and is driven by an 8-bit serial-to-parallel converter
register/driver TPIC6B595. Relays have single-pole double-throw (SPDT) con-
tacts with C (common), NC (normally closed), and NO (normally open) termi-
nals. At the end of each PLC scan cycle (send_outputs) the output data are
serially clocked out (through RB3 clock out and RB4 data out pins) and
finally latched within the TPIC6B595. If there is only one I/O extension board
used, then eight clock_out signals are enough to send the eight output sig-
nals. For each additional I/O extension board, eight more clock_out signals
are necessary. The serial data going to the I/O extension board(s) are sent out
from the SER OUT (pin 18) of the TPIC6B595.

The PCB design files of both the CPU board and the I/O extension board
can be obtained from the CD-ROM attached to this book. Note that in the
PCB design of the CPU board and the I/O extension board, some lines of I/O
extension connectors DB9M and DB9F are different from the ones shown in
Figures 1.1 and 1.3.

The project reported in this book makes use of a CPU board and two
I/O extension boards, as can be seen from the schematic diagram and pho-
tograph depicted in Figures 1.5 and 1.6, respectively. Thus, in total there
are 16 inputs and 16 outputs. Figure 1.7 shows the PIC16F648A-based PLC
consisting of a CPU board, I/O extension boards, 12 V DC adapter, and USB
PIC programmer.

11© 2008 Taylor & Francis Group, LLC

2
Basic Software

In this chapter, the basic software of the PIC16F648A-based PLC is explained.
A PLC scan cycle includes the following: obtain the inputs, run the user pro-
gram, and update the outputs. It is also necessary to define and initialize
all variables used within a PLC. Necessary functions are all described as
PIC assembly macros to be used in the PIC16F648A-based PLC. The macros
described in this chapter could be summarized as follows: HC165 (for han-
dling the inputs), HC595 (for sending the outputs), dbncr0 and dbncr1 (for
debouncing the inputs), initialize, get_inputs, and send_outputs.
In addition, the concept of contact bouncing and how it is solved in the
PIC16F648A-based PLC is explained in detail.

2.1 Basic Software Structure

The basic software of the PIC16F648A-based PLC makes use of general pur-
pose 8-bit registers of static random-access memory (SRAM) data memory of
the PIC16F648A microcontroller. For the sake of simplicity, we restrict our-
selves to use only BANK 0; i.e., all macros, including the basic definitions
explained here, are defined by means of 8-bit SRAM registers of BANK 0.
The file definitions.inc, included within the CD-ROM attached to this book,
contains all basic macros and definitions necessary for the PIC16F648A-based
PLC. In this chapter, we will explain the contents of this file. First, let us look
at the file called UZAM_plc_16i16o_ex1.asm, the view of which is shown
in Figure 2.1. As is well known, a PLC scan cycle includes the following:
obtain the inputs, run the user program, and update the outputs. This cycle
is repeated as long as the PLC runs. Before getting into these endless PLC
scan cycles, the initial conditions of the PLC are set up in the initialization
stage. These main steps can be seen from Figure 2.1, where initialize is
a macro for setting up the initial conditions, get_inputs is a macro for get-
ting and handling the inputs, and send_outputs is a macro for updating
the outputs. The user PLC program must be placed between get_inputs
and send_outputs. The endless PLC scan cycles are obtained by means of
the label “scan” and the instruction “goto scan.”

The PIC16F648A-based PLC is fixed to run at 20 MHz with an external
oscillator. The watchdog timer is used to prevent user program lockups. As

12 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

will be explained later, the hardware timer TMR0 is utilized to obtain free-
running reference timing signals.

2.1.1 Variable Definitions

Next, let us now consider the inside of the file definitions.inc. The definitions
of 8-bit variables to be used for the basic software and their allocation in
BANK 0 of SRAM data memory are shown in Figure 2.2(a) and (b), respec-
tively. Although we can define as many inputs and outputs as we want, in
this book we restrict ourselves to BANK 0 and define two 8-bit input regis-
ters and two 8-bit output registers (Q0 and Q1).

It is well known that inputs taken from contacts always suffer from contact
bouncing. To circumvent this problem we define a debouncing mechanism
for the inputs; this will be explained later. In the get_inputs stage of the
PLC scan cycle, the input signals are serially taken from the related 74HC/
LS165 registers and stored in the SRAM registers. As a result, bI0 and bI1 will

FIGURE 2.1
View of the file UZAM_plc_16i16o_ex1.asm.

13Basic Software

© 2008 Taylor & Francis Group, LLC

hold these bouncing input signals. After applying the debouncing mecha-
nism to the bouncing input signals of bI0 and bI1 we obtain debounced input
signals, and they are stored in SRAM registers I0 and I1, respectively.

In the send_outputs stage of the PLC scan cycle, the output information
stored in the 8-bit SRAM registers Q0 and Q1 is serially sent out to and stored
in the related TPIC6B595 registers. This means that Q0 and Q1 registers will
hold output information, and they will be copied into the TPIC6B595 registers
at the end of each PLC scan cycle. Four 8-bit registers, namely, M0, M1, M2,
and M3, are defined for obtaining 32 memory bits (internal relays, in PLC jar-
gon). To be used for the debouncer macros dbncr0 and dbncr1, we define
sixteen 8-bit registers (DBNCR0, DBNCR0+1, …, DBNCR0+7) and (DBNCR1,
DBNCR1+1, …, DBNCR1+7). In addition, the registers DBNCRRED0 and
DBNCRRED1 are also defined to be used for the debouncer macros dbncr0
and dbncr1, respectively. Temp_1 is a general temporary register declared
to be used in the macros. Temp_2 is declared to be used especially for obtain-
ing special memory bits, as will be explained later. Timer_2 is defined for
storing the high byte of the free-running timing signals. The low byte of the
free-running timing signals is stored in TMR0 (recalled as Timer_1).

For accessing the SRAM data memory easily, BANK macros are defined as
shown in Figure 2.3.

(a)

FIGURE 2.2
(a) The definition of 8-bit variables to be used in the basic software. (Continued)

14 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

The definitions of 1-bit (Boolean) variables are depicted in Figure 2.4. The
following definitions are self-explanatory: 74HC165, TPIC6B595, 16 INPUTS,
16 OUTPUTS, and 32 memory bits.

The individual bits (1-bit variables) of 8-bit SRAM registers bI0, bI1, I0, I1,
Q0, Q1, M0, M1, M2, and M3 are shown below:

bI0 is an 8-bit register:

bI0

The individual bits of bI0 are as follows:

bI0.7 bI0.6 bI0.5 bI0.4 bI0.3 bI0.2 bI0.1 bI0.0

20h bI0
21h bI1
22h I0
23h I1
24h Q0
25h Q1
26h M0
27h M1
28h M2
29h M3
2Ah DBNCR0
2Bh DBNCR0+1
2Ch DBNCR0+2
2Dh DBNCR0+3
2Eh DBNCR0+4
2Fh DBNCR0+5
30h DBNCR0+6
31h DBNCR0+7
32h DBNCR1
33h DBNCR1+1
34h DBNCR1+2
35h DBNCR1+3
36h DBNCR1+4
37h DBNCR1+5
38h DBNCR1+6
39h DBNCR1+7
3Ah Temp_1
3Bh Temp_2
3Ch Timer_2
3Dh DBNCRRED0
3Eh DBNCRRED1

BANK 0

(b)

FIGURE 2.2 (Continued)
(b) Their allocation in BANK 0 of SRAM data memory.

15Basic Software

© 2008 Taylor & Francis Group, LLC

bI1 is an 8-bit register:

bI1

The individual bits of bI1 are as follows:

bI1.7 bI1.6 bI1.5 bI1.4 bI1.3 bI1.2 bI1.1 bI1.0

I0 is an 8-bit register:

I0

The individual bits of I0 are as follows:

I0.7 I0.6 I0.5 I0.4 I0.3 I0.2 I0.1 I0.0

I1 is an 8-bit register:

I1

The individual bits of I1 are as follows:

I1.7 I1.6 I1.5 I1.4 I1.3 I1.2 I1.1 I1.0

Q0 is an 8-bit register:

Q0

FIGURE 2.3
BANK macros.

16 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

(a)

(b)

FIGURE 2.4
Definitions of 1-bit (Boolean) variables: (a) 16 inputs, (b) 16 outputs. (Continued)

17Basic Software

© 2008 Taylor & Francis Group, LLC

The individual bits of Q0 are as follows:

Q0.7 Q0.6 Q0.5 Q0.4 Q0.3 Q0.2 Q0.1 Q0.0

Q1 is an 8-bit register:

Q1

The individual bits of Q1 are as follows:

Q1.7 Q1.6 Q1.5 Q1.4 Q1.3 Q1.2 Q1.1 Q1.0

M0 is an 8-bit SRAM register:

M0

The individual bits of M0 are as follows:

M0.7 M0.6 M0.5 M0.4 M0.3 M0.2 M0.1 M0.0

M1 is an 8-bit SRAM register:

M1

(c)

(d)

FIGURE 2.4 (Continued)
Definitions of 1-bit (Boolean) variables: (c) logic values and special bits, (d) definitions for
74HC165 and TPIC6B595. (Continued)

18 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

The individual bits of M1 are as follows:

M1.7 M1.6 M1.5 M1.4 M1.3 M1.2 M1.1 M1.0

M2 is an 8-bit SRAM register:

M2

The individual bits of M2 are as follows:

M2.7 M2.6 M2.5 M2.4 M2.3 M2.2 M2.1 M2.0

(e)

FIGURE 2.4 (Continued)
Definitions of 1-bit (Boolean) variables: (e) 32 memory bits (internal relays). (Continued)

19Basic Software

© 2008 Taylor & Francis Group, LLC

M3 is an 8-bit SRAM register:

M3

The individual bits of M3 are as follows:

M3.7 M3.6 M3.5 M3.4 M3.3 M3.2 M3.1 M3.0

Register Temp_2 has the following individual bits:

7 6 5 4 3 2 1 0

SCNOSC FRSTSCN LOGIC1 LOGIC0

LOGIC0: Set to 0 after the first scan.
LOGIC1: Set to 1 after the first scan.
FRSTSCN: Set to 1 during the first scan and set to 0 after the first scan.
SCNOSC: Toggled between 0 and 1 at each scan.

The variable LOGIC0 is defined to hold a logic 0 value throughout the PLC
operation. At the initialization stage it is deposited with this value. Similarly,
the variable LOGIC1 is defined to hold a logic 1 value throughout the PLC
operation. At the initialization stage it is deposited with this value. The spe-
cial memory bit FRSTSCN is arranged to hold the value of 1 at the first PLC
scan cycle only. In the other PLC scan cycles following the first one it is reset.
The special memory bit SCNOSC is arranged to work as a scan oscillator. This
means that in one PLC scan cycle this special bit will hold the value of 0, in

(f)

FIGURE 2.4 (Continued)
Definitions of 1-bit (Boolean) variables: (f) 16 reference timing signals.

20 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

the next one the value of 1, in the next one the value of 0, and so on. This will
keep on going for every PLC scan cycle.

Timer_1 (TMR0) is an 8-bit register:

Timer_1 (TMR0)

The individual bits of Timer_1 are as follows:

T0.7 T0.6 T0.5 T0.4 T0.3 T0.2 T0.1 T0.0

Timer_2 is an 8-bit register:

Timer_2

The individual bits of Timer_2 are as follows:

T1.7 T1.6 T1.5 T1.4 T1.3 T1.2 T1.1 T1.0

Let us now consider the 16 reference timing signals. As will be explained
later, TMR0 of PIC16F648A is set up to count the ¼ of 20 MHz oscillator sig-
nal, i.e., 5 MHz with a prescaler arranged to divide the signal to 256. As a
result, by means of TMR0 bits (also called Timer_1), we obtain eight free-
running reference timing signals with the T timing periods starting from
0.1024 ms to 13.1072 ms. As will be explained later, the register Timer_2 is
incremented on Timer_1 overflow. This also gives us (by means of Timer_2
bits) eight more free-running reference timing signals with the T timing
periods starting from 26.2144 ms to 3355.4432 ms. The timing diagram of the
free-running reference timing signals is depicted in Figure 2.5. Note that the
evaluation of TMR0 (Timer_1) is independent from the PLC scan cycles, but
Timer_2 is incremented within the get_inputs stage of the PLC scan cycle
on Timer_1 overflow. This is justified as long as the PLC scan cycle takes less
than 13.1072 ms.

T

O� (0) O� (0) O� (0)

On (1) On (1)

FIGURE 2.5
Timing diagram of the free-running reference timing signals (T = 0.1024, 0.2048, …, 3355.4432
ms).

21Basic Software

© 2008 Taylor & Francis Group, LLC

2.1.2 Macro HC165

The macro HC165 is shown in Figure 2.6. The input signals are serially taken
from the related 74HC/LS165 registers and stored in the SRAM registers
bI0 and bI1 by means of this macro. The num defines the number of 74HC/
LS165 registers to be considered. This means that with this macro we can
obtain inputs from as many 74HC/LS165 registers as we wish. However, as
explained before, in this book we restrict this number to be 2, because we
have 16 discrete inputs. var0 is the beginning of the registers to which the
state of inputs taken from 74HC/LS165 registers will be stored. This implies
that there should be enough SRAM locations reserved after var0, and also
there should be enough 74HC/LS165 registers to get the inputs from. There
are some explanations within the macro to describe how it works. As can be
seen, this macro makes use of previously defined data_in, clock_in, and
sfht_ld bits to obtain the input signals from 74HC/LS165 registers.

2.1.3 Macro HC595

The macro HC595 is shown in Figure 2.7. The output signals are stored in
the 8-bit SRAM registers Q0 and Q1 and serially sent out to and stored in
the related TPIC6B595 registers by means of this macro. The num defines
the number of TPIC6B595 registers to be used. This means that with this
macro we can send output data serially to as many TPIC6B595 registers as
we wish. However as explained before, in this book we restrict this number
to 2, because we have 16 discrete outputs. var0 is the beginning of the 8-bit
registers, such as Q0 in SRAM from which the state of outputs are taken
and serially sent out to TPIC6B595 registers. This implies that there should

FIGURE 2.6
The macro HC165.

22 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

be enough SRAM locations reserved after var0, and also there should be
enough TPIC6B595 registers to hold the outputs. There are some explana-
tions within the macro to describe how it works. As can be seen, this macro
makes use of previously defined data_out, clock_out, and latch_out
bits to send the output signals serially to TPIC6B595 registers.

2.2 Elimination of Contact Bouncing Problem
in the PIC16F648A-Based PLC

2.2.1 Contact Bouncing Problem

When a mechanical contact, such as a push-button switch, examples of which
are shown in Figure 2.8, user interface button, limit switch, relay, or contactor
contact, is opened or closed, the contact seldom demonstrates a clean tran-
sition from one state to another. There are two types of contacts: normally
open (NO) and normally closed (NC). When a contact is closed or opened,
it will close and open (technically speaking, make and break) many times
before finally settling in a stable state due to mechanical vibration. As can be
seen from Figure 2.9, this behavior of a contact is interpreted as multiple false
input signals, and a digital circuit will respond to each of these on-off or off-
on transitions. This problem is well known as contact bounce and has always
been a very important problem when interfacing switches, relays, etc., to a
digital control system.

FIGURE 2.7
The macro HC595.

23Basic Software

© 2008 Taylor & Francis Group, LLC

In some industrial applications debouncing is required to eliminate both
mechanical and electrical effects. Most switches seem to exhibit bounce dura-
tion under 10 ms, and therefore it is reasonable to pick a debounce period in
the 20 to 50 ms range. On the other hand, when dealing with relay contacts,
the debounce period should be large enough, i.e., within the 20 to 200 ms
range. Nevertheless, a reasonable switch will not bounce longer than 500 ms.
Both closing and opening contacts suffer from the bouncing problem, and
therefore in general, both rising and falling edges of an input signal should
be debounced, as seen from the timing diagram of Figure 2.10.

1 2 3

5 6 7 8

9 10 11 12

13 14 15 16

4

FIGURE 2.8
Different types and makes of switches and buttons.

1

0

Contact
bouncing

An input signal
su�ering from
contact bouncing

Contact
bouncing

FIGURE 2.9
Contact bouncing problem, causing an input signal to bounce between 0 and 1.

24 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

2.2.2 Understanding a Generic Single I/O Contact Debouncer

In order to understand how a debouncer works, let us now consider a generic
single I/O debouncer. We can think of the generic single I/O debouncer as
being a single INput/single OUTput system, whose state transition diagram
is shown in Figure 2.11. In the state transition diagram there are four states,

1

0

1

0

Contact
bouncing

Contact
bouncing

Debouncing
time 1 (dt1)

Debouncing
time 2 (dt2)

Debouncing time 1 (dt1) = CLK × tcnst_01
Debouncing time 2 (dt2) = CLK × tcnst_10

IN
An input signal
suffering from
contact bouncing

OUT
Output signal =
debounced input signal

FIGURE 2.10
The timing diagram of a single I/O debouncer (also the timing diagram of each channel of the
independent 8-bit I/O contact debouncers, dbncr0 and dbncr1).

IN = 1
OUT = 1

IN = 0
OUT = 0

IN = 0
OUT = 1

IN = 1
OUT = 0

IN =

IN =

S0

S1

S2

S3

START
debouncing
time 2 (dt2)

t1

t2 t3

t4

t5

START
debouncing
time 1 (dt1)

dt1 has elapsed

dt2 has elapsed

t6

IN =

IN =

FIGURE 2.11
State transition diagram of a generic single I/O debouncer.

25Basic Software

© 2008 Taylor & Francis Group, LLC

S0, S1, S2, and S3, drawn as circles, and six transitions, t1, t2, …, t6, drawn
as bars. States and transitions are connected by directed arcs. The following
explains the behavior of the generic single I/O debouncer (also each channel
of the independent 8-bit I/O contact debouncers, dbncr0 and dbncr1)
based on the state transition diagram shown in Figure 2.11:

 1. Initially, it is assumed that the input signal IN and the output signal
OUT are both LOW (state S0).

 2. When the system is in S0 (the IN is LOW and the OUT is LOW), if
the rising edge (↑) of IN is detected (transition t1), then the system
moves from S0 to S1 and the debouncer starts a time delay, called
debouncing time 1 (dt1).

 3. While the system is in S1 (the IN is HIGH and the OUT is LOW),
before the dt1 ms time delay ends, if the falling edge (↓) of IN is
detected (transition t5), then the system goes back to S0 from S1, and
the time delay dt1 is canceled and the OUT remains LOW (no state
change is issued).

 4. When the system is in S1 (the IN is HIGH and the OUT is LOW), if
the input signal is still HIGH and the time delay dt1 has elapsed
(transition t2), then the system moves from S1 to S2. In this case, the
state change is issued, i.e., the OUT is set to HIGH.

 5. When the system is in S2 (the IN is HIGH and the OUT is HIGH), if
the falling edge (↓) of IN is detected (transition t3), then the system
moves from S2 to S3 and the debouncer starts a time delay, called
debouncing time 2 (dt2).

 6. While the system is in S3 (the IN is LOW and the OUT is HIGH),
before the dt2 ms time delay ends, if the rising edge (↑) of IN is
detected (transition t6), then the system goes back to S2 from S3, and
the time delay dt2 is canceled and the OUT remains HIGH (no state
change is issued).

 7. When the system is in S3 (the IN is LOW and the OUT is HIGH),
if the input signal is still LOW and the time delay dt2 has elapsed
(transition t4), then the system moves from S3 to S0. In this case, the
state change is issued, i.e., the OUT is set to LOW.

2.2.3 Debouncer Macros dbncr0 and dbncr1

The macro dbncr0 and its flowchart are shown in Figures 2.12 and 2.13,
respectively. Table 2.1 shows the schematic symbol of the macro dbncr0.
The detailed timing diagram of one channel of this debouncer is provided
in Figure 2.14. It can be used for debouncing eight independent buttons,
switches, relay or contactor contacts, etc. It is seen that the output changes its
state only after the input becomes stable and waits in the stable state for the

26 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

predefined debouncing time dt1 or dt2. The debouncing is applied to both
rising and falling edges of the input signal. In this macro, each channel is
intended for a normally open contact connected to the PIC by means of a pull-
down resistor, as this is the case with the PIC16F648A-based PLC. It can also
be used without any problem for a normally closed contact connected to the
PIC by means of a pull-up resistor. The debouncing times, such as 20, 50, or
100 ms, can be selected as required depending on the application. It is possi-
ble to pick up different debouncing times for each channel. It is also possible
to choose different debouncing times for rising and falling edges of the same
input signal if necessary. This gives a good deal of flexibility. This is simply

FIGURE 2.12
The macro dbncr0.

27Basic Software

© 2008 Taylor & Francis Group, LLC

done by changing the related time constant tcnst_01 or tcnst_10 defin-
ing the debouncing time delay for each channel and for both edges within
the assembly program. Note that if the state change of the contact is shorter
than the predefined debouncing time, this will also be regarded as bounc-
ing, and it will not be taken into account. Therefore, no state change will be
issued in this case. Each of the eight input channels of the debouncer may be
used independently from other channels. The activity of one channel does
not affect that of the other channels.

Let us now briefly consider how the macro dbncr0 works. First, one of
the previously defined reference timing signals is chosen as t_reg,t_bit,
to be used within this macro. Then, we can set up both debouncing times
dt1 and dt2 by means of time constants tcnst_01 and tcnst_10, as

Y

end

SET rego,bito

SET DBNCRRED0,num

RESET DBNCRRED0,num
(DBNCR0+num) = (DBNCR0+num) + 1

RESET DBNCRRED0,num
(DBNCR0+num) = (DBNCR0+num) + 1

rego,bito = 0

regi,biti = 0

N

NN

DBNCR0+num 00h

Y

DBNCRRED0,

DBNCR0+

Y

RESET rego,bito

t_reg,t_bit = 1

t_reg,t_bit = 1

SET DBNCRRED0,num
Y

Y

Y

Y

Y

N N

N N

N N

N N

 Y

Y

Y

L1

L2 L3

L4

begin

?

?
regi,biti = 1

?

?t_reg,t_bit = 1?

?
t_reg,t_bit = 1

?

?

?

num = 1
DBNCRRED0,

?num = 1

num=tcnst_10

DBNCR0+
?

num=tcnst_01

FIGURE 2.13
The flowchart of the macro dbncr0.

28 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

dt1 = the period of (t_reg,t_bit) × tcnst_01 and dt2 = the period of
(t_reg,t_bit) × tcnst_10, respectively. If the input signal (regi,biti)
= 0 and the output signal (rego,bito) = 0 or the input signal (regi,biti)
= 1 and the output signal (rego,bito) = 1, then the related counter
DBNCR0+num is loaded with 00h and no state change is issued. If the output
signal (rego,bito) = 0 and the input signal (regi,biti) = 1, then with
each rising edge of the reference timing signal t_reg,t_bit the related
counter DBNCR0+num is incremented by one. In this case, when the count
value of DBNCR0+num is equal to the number tcnst_01, this means that
the input signal is debounced properly and then state change from 0 to 1
is issued for the output signal (rego,bito). Similarly, if the output signal
(rego,bito) = 1 and the input signal (regi,biti) = 0, then with each ris-
ing edge of the reference timing signal t_reg,t_bit the related counter
DBNCR0+num is incremented by one. In this case, when the count value of
DBNCR0+num is equal to the number tcnst_10, this means that the input
signal is debounced properly and then state change from 1 to 0 is issued for
the output signal (rego,bito). For this macro it is necessary to define the
following 8-bit variables in SRAM: Temp_1 and DBNCRRED0. In addition, it
is also necessary to define eight 8-bit variables in successive SRAM locations,
the first of which is to be defined as DBNCR0. It is not necessary to name the
other seven variables. Each bit of the variable DBNCRRED0 is used to detect
the rising edge of the reference timing signal t_reg,t_bit for the related
channel.

TABLE 2.1

Schematic Symbol of the Macro dbncr0

OUTIN rego,bito
num

dbncr0

t_reg,t_bit
tcnst_01
tcnst_10

regi,biti

IN (regi,biti): A Boolean variable passed into the macro through regi,biti.
It represents the input signal to be debounced.
num: Any number from 0 to 7. Eight independent debouncers are chosen by this number.
It is used to define the 8-bit variable “DBNCR0+num” and the edge detector bit
“DBNCRRED0,num”.
t_reg,t_bit: One of the reference timing signals T0.0, T0.1, …, T0.7, T1.0, T1.1, …, T1.7. It
defines the timing period.
tcnst_01: An integer constant value from 1 to 255. Debouncing time 1 (dt1) is obtained by this
formula: dt1 = the period of (t_reg,t_bit) × tcnst_01.
tcnst _10: An integer constant value from 1 to 255. Debouncing time 2 (dt2) is obtained by this
formula: dt2 = the period of (t_reg,t_bit) × tcnst_10.
OUT(rego,bito): A Boolean variable passed out of the macro through rego,bito. It represents
the output signal, which is the debounced version of the input signal.

29Basic Software

© 2008 Taylor & Francis Group, LLC

1 0 1 0

IN
 (r

eg
i,

bi
ti

)

0 1 0

O
U

T
 (r

eg
o,

bi
to

)
ou

tp
ut

 si
gn

al
de

bo
un

ce
d

in
pu

t s
ig

na
l

Co
nt

ac
t b

ou
nc

in
g

Co
nt

ac
t b

ou
nc

in
g

tc
ns

t_
10

tc
ns

t_
0125

5

D
eb

ou
nc

in
g

tim
e1

 (d
t1

)

de
bo

un
ci

ng
 ti

m
e1

 (d
t1

) =
 t

_
re

g,
 t_

bi
t ×

 tc
ns

t_
01

de
bo

un
ci

ng
 ti

m
e2

 (d
t2

) =
 t

_
re

g,
 t_

bi
t ×

 tc
ns

t_
10

D
eb

ou
nc

in
g

tim
e2

 (d
t2

)

In
pu

t s
ig

na
l

su
ffe

rin
g

fro
m

co
nt

ac
t b

ou
nc

in
g

t_
re

g,
t_

bi
t

re
fe

re
nc

e
tim

in
g

sig
na

l

D
B

N
C

R
0+

nu
m

8
bi

t c
ou

nt
er

FI
G

U
R

E
2.

14
D

et
ai

le
d

 t
im

in
g

d
ia

gr
am

 o
f o

ne
 o

f t
he

 c
ha

n
ne

ls
 o

f t
he

 m
ac

ro
 d
b
n
c
r
0

.

30 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

With the use of the macro dbncr0 it is possible to debounce 8 input sig-
nals; as we commit to have 16 discrete inputs in the PIC16F648A-based PLC
project, there are 8 more input signals to be debounced. To solve this prob-
lem the macro dbncr1 is introduced. It works in the same manner as the
macro dbncr0. The macro dbncr1 is shown in Figure 2.15. Table 2.2 shows
the schematic symbol of the macro dbncr1. For this macro it is necessary
to define the following 8-bit variables in SRAM: Temp_1 and DBNCRRED1.
Each bit of the variable DBNCRRED1 is used to detect the rising edge of the
reference timing signal t_reg,t_bit for the related channel. In addition, it

FIGURE 2.15
The macro dbncr1.

31Basic Software

© 2008 Taylor & Francis Group, LLC

is also necessary to define eight 8-bit variables in successive SRAM locations,
the first of which is to be defined as DBNCR1.

2.3 Basic Macros of the PIC16F648A-Based PLC

In this section the following basic three macros are considered: initial-
ize, get_inputs, and send_outputs.

2.3.1 Macro initialize

The macro initialize is shown in Figure 2.16. There are mainly two tasks
carried out within this macro. In the former, first, TMR0 is set up as a free-
running hardware timer with the ¼ of 20 MHz oscillator signal, i.e., 5 MHz,
and with a prescaler arranged to divide the signal to 256. In addition, PORTB
is initialized to make RB0 (data_in) as input, and the following as outputs:
RB3 (clock_out), RB4 (data_out), RB5 (latch_out), RB6 (clock_
in), and RB7 (shift/load). In the latter, all utilized SRAM registers are
loaded with initial “safe values.” In other words, all utilized SRAM registers
are cleared (loaded with 00h) except for Temp_2, which is loaded with 06h.

TABLE 2.2

Schematic Symbol of the Macro dbncr1

OUTIN rego,bito
num

dbncr1

t_reg,t_bit
tcnst_01
tcnst_10

regi,biti

IN (regi,biti): A Boolean variable passed into the macro through regi,biti. It represents the
input signal to be debounced.
num: Any number from 0 to 7. Eight independent debouncers are chosen by this number.
It is used to define the 8-bit variable “DBNCR1+num” and the edge detector bit
“DBNCRRED1,num”.
t_reg,t_bit: One of the reference timing signals T0.0, T0.1, …, T0.7, T1.0, T1.1, …, T1.7.
It defines the timing period.
tcnst_01: An integer constant value from 1 to 255. Debouncing time 1 (dt1) is obtained by this
formula: dt1 = the period of (t_reg,t_bit) × tcnst_01.
tcnst _10: An integer constant value from 1 to 255. Debouncing time 2 (dt2) is obtained by this
formula: dt2 = the period of (t_reg,t_bit) × tcnst_10.
OUT(rego,bito): A Boolean variable passed out of the macro through rego,bito. It represents
the output signal, which is the debounced version of the input signal.

32 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

As explained before, Temp_2 holds some special memory bits; therefore, the
initial values of these special memory bits are put into Temp_2 within this
macro. As a result, these special memory bits are loaded with the following
initial values: LOGIC0 (Temp_2,0) = 0, LOGIC1 (Temp_2,1) = 1, FRSTSCN
(Temp_2,2) = 1, SCNOSC (Temp_2,3) = 0.

2.3.2 Macro get_inputs

The macro get_inputs is shown in Figure 2.17. There are mainly three
tasks carried out within this macro. In the first one, the macro HC165 is
called with the parameters .2 and bI0. This means that we will use the CPU
board and two I/O extension boards; therefore, the macro HC165 is called
with the parameter .2. As explained before, the input information taken
from the macro is rated as bouncing information, and therefore these 16-bit
data are stored in bI0 and bI1 registers. For example, if we decide to use
the CPU board connected to four I/O extension boards, then we must call
the macro HC165 as follows: HC165.4,bI0. Then, this will take four 8-bit
bouncing input data from the 74HC/LS165 ICs and put them to the four suc-
cessive registers starting with the register bI0. In the second task within this
macro, each bit of bI0,i (i = 0, 1, …, 7) is debounced by the macro dbncr0,
and each debounced input signal is stored in the related bit I0,i (i = 0, 1, …, 7).
Likewise, each bit of bI1,i (i = 0, 1, …, 7) is debounced by the macro dbncr1,
and each debounced input signal is stored in the related bit I1,i (i = 0, 1, …, 7).
In general, a 10 ms time delay is enough for debouncing both rising and
falling edges of an input signal. Therefore, to achieve these time delays, the

FIGURE 2.16
The macro initialize.

33Basic Software

© 2008 Taylor & Francis Group, LLC

reference timing signal, obtained from Timer_1, is chosen as T0.2 (0.4096 ms
period), and both tcnst_01 and tcnst_10 are chosen to be 25. Then we
obtain the following: dt1 = T0.2 × tcnst_01 = (0.4096 ms) × 25 = 10.24 ms,
dt2 = T0.2 × tcnst_01 = (0.4096 ms) × 25 = 10.24 ms. The last task is about
incrementing the Timer_2 on overflow of Timer_1. In this task, Timer_2 is
incremented by one when the falling edge of the bit Timer_1,7 is detected. In
order to detect the falling edge of the bit Timer_1,7, Temp_2,4 bit is utilized.

2.3.3 Macro send_outputs

The macro send_outputs is shown in Figure 2.18. There are mainly four
tasks carried out within this macro. In the first one, the macro HC595 is
called with the parameters .2 and Q0. This means that we will use the CPU
board and two I/O extension boards; therefore, the macro HC595 is called
with the parameter .2. As explained before, 16-bit output data are taken from
the registers Q0 and Q1, and this macro sends the bits of Q0 and Q1 seri-
ally to TPIC6B595 registers. For example, if we decide to use the CPU board
connected to four I/O extension boards, then we must call the macro HC595

FIGURE 2.17
The macro get_inputs.

34 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

as follows: HC595.4,Q0. Then, the macro HC595 will take four 8-bit out-
put data stored in Q3, Q2, Q1, and Q0 and send them serially to the four
TPIC6B595 register ICs, respectively. In the second task within this macro,
the watchdog timer is cleared. In the third task, the FRSTSCN special mem-
ory bit is reset. As the final task, within this macro the SCNOSC special
memory bit is toggled after a program scan; i.e., when it is 1 it is reset, and
when it is 0 it is set.

2.4 Example Program

Up to now we have seen the hardware and basic software necessary for the
PIC16F648A-based PLC. It is now time to consider a simple example. Before
you can run the simple example considered here, you are expected to con-
struct your own PIC16F648A-based PLC hardware by using the necessary
PCB files, and producing your PCBs, with their components. The user pro-
gram of the example UZAM_plc_16i16o_ex2.asm is shown in Figure 2.19. The
file UZAM_plc_16i16o_ex2.asm is included within the CD-ROM attached to
this book. Please open it by MPLAB integrated development environment

FIGURE 2.18
The macro send_outputs.

FIGURE 2.19
The user program of UZAM_plc_16i16o_ex2.asm.

35Basic Software

© 2008 Taylor & Francis Group, LLC

(IDE) and compile it. After that, by using the PIC programmer software,
take the compiled file UZAM_plc_16i16o_ex2.hex, and by your PIC pro-
grammer hardware send it to the program memory of PIC16F648A micro-
controller within the PIC16F648A-based PLC. To do this, switch the 4PDT
in PROG position and the power switch in OFF position. After loading the
UZAM_plc_16i16o_ex2.hex file, switch the 4PDT in RUN position and the
power switch in ON position. Now, you are ready to test the first example
program. There are mainly two different operations done. In the first part,
eight inputs, namely, bits I0.0, I0.1, …, I0.7, are transferred to the respective
eight outputs, namely, bits Q0.0, Q0.1, …, Q0.7. That is, if I0.0 = 0, then Q0.0
= 0, and similarly, if I0.0 = 1, then Q0.0 = 1. This applies to all eight inputs
I0 – eight outputs Q0. In the second part, the contents of the Timer_2 register,
namely, T1.0, T1.1, …, T1.7, are transferred to eight outputs Q1, namely, Q1.0,
Q1.1, …, Q1.7, respectively.

37© 2008 Taylor & Francis Group, LLC

3
Contact and Relay-Based Macros

In this chapter, the following contact and relay-based macros are described:

ld (load)
ld_not (load not)
not

or

or_not

nor

and

and_not

nand

xor

xor_not

xnor

out

out_not

in_out

inv_out

_set

_reset

The file definitions.inc, included within the CD-ROM attached to this book,
contains all macros defined for the PIC16F648A-based PLC. The contact and
relay-based macros are defined to operate on Boolean (1-bit) variables. The
working register W is utilized to transfer the information to or from the con-
tact and relay-based macros, except for macros in_out and inv_out. Let us
now briefly consider these macros.

38 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

3.1 Macro ld (load)

The truth table and symbols of the macro ld are depicted in Table 3.1.
Figure 3.1 shows the macro ld and its flowchart. This macro has a Boolean
input variable passed into it as reg,bit and a Boolean output variable
passed out through W. In ladder logic, this macro is represented by a nor-
mally open (NO) contact. When the input variable is 0 (respectively 1), the
output (W) is forced to 0 (respectively to 1). Operands for the instruction ld
are shown in Table 3.2.

begin

W 0

end

W 1
Y

N
reg,bit = 0?

(a) (b)

FIGURE 3.1
(a) The macro ld and (b) its flowchart.

TABLE 3.1

Truth Table and Symbols of the Macro ld

Truth Table Ladder Diagram Symbol Schematic Symbol

IN OUT
reg,bit W

0 0

1 1

reg,bit
W reg,bit W

TABLE 3.2

Operands for the Instruction ld

Input
(reg,bit) Data Type Operands

Bit BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q,
CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

39Contact and Relay-Based Macros

© 2008 Taylor & Francis Group, LLC

3.2 Macro ld_not (load not)

The truth table and symbols of the macro ld_not are depicted in Table 3.3.
Figure 3.2 shows the macro ld_not and its flowchart. This macro has a
Boolean input variable passed into it as reg,bit, and a Boolean output vari-
able passed out through W. In ladder logic, this macro is represented by a
normally closed (NC) contact. When the input variable is 0 (respectively 1),
the output (W) is forced to 1 (respectively to 0). Operands for the instruction
ld_not are shown in Table 3.4.

begin

W 1

end

W 0
Y

N
reg,bit = 0?

(a) (b)

FIGURE 3.2
(a) The macro ld_not and (b) its flowchart.

TABLE 3.3

Truth Table and Symbols of the Macro ld_not

Truth Table Ladder Diagram Symbol Schematic Symbol

IN OUT
reg,bit W

0 1
1 0

reg,bit
W reg,bit W

40 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

3.3 Macro not

The truth table and symbols of the macro not are depicted in Table 3.5.
Figure 3.3 shows the macro not and its flowchart. This macro is used as a
logical NOT gate. The input is taken from W, and the output is send out by
W. When the input variable is 0 (respectively 1), the output (W) is forced to 1
(respectively to 0).

TABLE 3.4

Operands for the Instruction ld_not

Input
(reg,bit)

Data Type Operands

Bit BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q,
CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

TABLE 3.5

Truth Table and Symbols of the Macro not

Truth Table Ladder Diagram symbol Schematic Symbol

IN OUT
W W
0 1
1 0

NOTW W WW

W W xor 1

begin

end

(a) (b)

FIGURE 3.3
(a) The macro not and (b) its flowchart.

41Contact and Relay-Based Macros

© 2008 Taylor & Francis Group, LLC

3.4 Macro or

The truth table and symbols of the macro or are depicted in Table 3.6.
Figure 3.4 shows the macro or and its flowchart. This macro is used as a two-
input logical OR gate. One input is taken from W, and the other one is taken
from reg,bit. The result is passed out of the macro through W. Operands
for the instruction or are shown in Table 3.7.

Temp_1 W

W 1
Y

N

W 0

W Temp_1 or W

begin

end

?
reg,bit = 0?

(a) (b)

FIGURE 3.4
(a) The macro or and (b) its flowchart.

TABLE 3.6

Truth Table and Symbols of the Macro or

Truth Table Ladder diagram symbol Schematic symbol

IN1 IN2 OUT
W reg,bit W
0 0 0
0 1 1
1 0 1
1 1 1

W

reg,bit

W

W
W

reg,bit

Truth table and Symbols of the Macro or

42 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

3.5 Macro or_not

The truth table and symbols of the macro or_not are depicted in Table 3.8.
Figure 3.5 shows the macro or_not and its flowchart. This macro is also used
as a two-input logical OR gate, but this time one of the inputs is inverted.
One input is taken from W, and the inverted input is taken from reg,bit.
The result is passed out of the macro through W. Operands for the instruc-
tion or_not are shown in Table 3.9.

3.6 Macro nor

The truth table and symbols of the macro nor are depicted in Table 3.10.
Figure 3.6 shows the macro nor and its flowchart. This macro is used as a
two-input logical NOR gate. One input is taken from W, and the other input
is taken from reg,bit. The result is passed out of the macro through W.
Operands for the instruction nor are shown in Table 3.11.

TABLE 3.7

Operands for the Instruction or

Input
(reg,bit) Data Type Operands

Bit BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q,
CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

TABLE 3.8

Truth Table and Symbols of the Macro or_not

Truth Table Ladder Diagram Symbol Schematic Symbol

IN1 IN2 OUT
W reg,bit W
0 0 1
0 1 0
1 0 1
1 1 1

W

reg,bit

W

W
Wreg,bit

43Contact and Relay-Based Macros

© 2008 Taylor & Francis Group, LLC

Temp_1 W

W 0
Y

N

W 1

W Temp_1 or W

begin

end

reg,bit = 0?

(a) (b)

FIGURE 3.5
(a) The macro or_not and (b) its flowchart.

TABLE 3.9

Operands for the Instruction or_not

Input
(reg,bit) Data Type Operands

Bit BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q,
CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

TABLE 3.10

Truth Table and Symbols of the Macro nor

Truth Table Ladder Diagram Symbol Schematic Symbol

IN1 IN2 OUT
W reg,bit W
0 0 1
0 1 0
1 0 0
1 1 0

reg,bit

W
NOT W

W
W

reg,bit

44 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

3.7 Macro and

The truth table and symbols of the macro and are depicted in Table 3.12.
Figure 3.7 shows the macro and and its flowchart. This macro is used as a
two-input logical AND gate. One input is taken from W, and the other one
is taken from reg,bit. The result is passed out of the macro through W.
Operands for the instruction and are shown in Table 3.13.

Temp_1 W

W 1
Y

N

W 0

W Temp_1 or W

W W xor 1

begin

end

reg,bit = 0?

(a) (b)

FIGURE 3.6
(a) The macro nor and (b) its flowchart.

TABLE 3.11

Operands for the Instruction nor

Input
(reg,bit) Data Type Operands

Bit BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q,
CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

45Contact and Relay-Based Macros

© 2008 Taylor & Francis Group, LLC

TABLE 3.12

Truth Table and Symbols of the Macro and

Truth Table Ladder Diagram Symbol Schematic Symbol

IN1 IN2 OUT
W reg,bit W
0 0 0
0 1 0
1 0 0
1 1 1

reg,bitW
W

W W
reg,bit

Temp_1 W

W 1
Y

N

W 0

W Temp_1 and W

begin

end

reg,bit = 0?

(a) (b)

FIGURE 3.7
(a) The macro and and (b) its flowchart.

TABLE 3.13

Operands for the Instruction and

Input
(reg,bit) Data Type Operands

Bit BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q,
CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

46 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

3.8 Macro and_not

The truth table and symbols of the macro and_not are depicted in Table 3.14.
Figure 3.8 shows the macro and_not and its flowchart. This macro is also
used as a two-input logical AND gate, but this time one of the inputs is
inverted. One input is taken from W, and the inverted input is taken from
reg,bit. The result is passed out of the macro through W. Operands for the
instruction and_not are shown in Table 3.15.

TABLE 3.14

Truth Table and Symbols of the Macro and_not

Truth Table Ladder Diagram Symbol Schematic Symbol

IN1 IN2 OUT
W reg,bit W
0 0 0
0 1 0
1 0 1
1 1 0

reg,bitW
W

W
W

reg,bit

Temp_1 W

W 0
Y

N

W 1

W Temp_1 and W

begin

end

reg,bit = 0?

(a) (b)

FIGURE 3.8
(a) The macro and_not and (b) its flowchart.

47Contact and Relay-Based Macros

© 2008 Taylor & Francis Group, LLC

3.9 Macro nand

The truth table and symbols of the macro nand are depicted in Table 3.16.
Figure 3.9 shows the macro nand and its flowchart. This macro is used as a
two-input logical NAND gate. One input is taken from W, and the other one
is taken from reg,bit. The result is passed out of the macro through W.
Operands for the instruction nand are shown in Table 3.17.

3.10 Macro xor

The truth table and symbols of the macro xor are depicted in Table 3.18.
Figure 3.10 shows the macro xor and its flowchart. This macro is used as a
two-input logical EXOR gate. One input is taken from W, and the other one
is taken from reg,bit. The result is passed out of the macro through W.
Operands for the instruction xor are shown in Table 3.19.

TABLE 3.15

Operands for the Instruction and_not

Input
(reg,bit) Data Type Operands

Bit BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q,
CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

TABLE 3.16

Truth Table and Symbols of the Macro nand

Truth Table Ladder Diagram Symbol Schematic Symbol

IN1 IN2 OUT
W reg,bit W
0 0 1
0 1 1
1 0 1
1 1 0

reg,bitW
NOT W

W
W

reg,bit

48 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

TABLE 3.17

Operands for the Instruction nand

Input
(reg,bit) Data Type Operands

Bit BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q,
CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

TABLE 3.18

Truth Table and Symbols of the Macro xor

Truth Table Ladder Diagram Symbol Schematic Symbol

IN1 IN2 OUT
W reg,bit W
0 0 0
0 1 1
1 0 1
1 1 0

reg,bitW
W

reg,bitW
W

Wreg,bit

Temp_1 W

W 1
Y

N

W 0

W Temp_1 and W

W W xor 1

begin

end

reg,bit = 0?

(a) (b)

FIGURE 3.9
(a) The macro nand and (b) its flowchart.

49Contact and Relay-Based Macros

© 2008 Taylor & Francis Group, LLC

3.11 Macro xor_not

The truth table and symbols of the macro xor_not are depicted in Table 3.20.
Figure 3.11 shows the macro xor_not and its flowchart. This macro is also
used as a two-input logical EXOR gate, but this time one of the inputs is
inverted. One input is taken from W, and the inverted input is taken from
reg,bit. The result is passed out of the macro through W. Operands for the
instruction xor_not are shown in Table 3.21.

3.12 Macro xnor

The truth table and symbols of the macro xnor are depicted in Table 3.22.
Figure 3.12 shows the macro xnor and its flowchart. This macro is used as
a two-input logical EXNOR gate. One input is taken from W, and the other

TABLE 3.19

Operands for the Instruction xor

Input
(reg,bit) Data Type Operands

Bit BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q,
CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

Temp_1 W

W 1
Y

N

W 0

W Temp_1 xor W

begin

end

reg,bit = 0?

(a) (b)

FIGURE 3.10
(a) The macro xor and (b) its flowchart.

50 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

Temp_1 W

W 0
Y

N

W 1

W Temp_1 xor W

begin

end

reg,bit = 0?

(a) (b)

FIGURE 3.11
(a) The macro xor_not and (b) its flowchart.

TABLE 3.21

Operands for the Instruction xor_not

Input
(reg,bit) Data Type Operands

Bit BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q,
CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

TABLE 3.20

Truth Table and Symbols of the Macro xor_not

Truth Table Ladder Diagram Symbol Schematic Symbol

IN1 IN2 OUT
W reg,bit W
0 0 1
0 1 0
1 0 0
1 1 1

reg,bitW
W

reg,bitW
W

W
reg,bit

51Contact and Relay-Based Macros

© 2008 Taylor & Francis Group, LLC

one is taken from reg,bit. The result is passed out of the macro through W.
Operands for the instruction xnor are shown in Table 3.23.

3.13 Macro out

The truth table and symbols of the macro out are depicted in Table 3.24.
Figure 3.13 shows the macro out and its flowchart. This macro has a Boolean
input variable passed into it by W and a Boolean output variable passed out

TABLE 3.22

Truth Table and Symbols of the Macro xnor

Truth Table Ladder Diagram Symbol Schematic Symbol

IN1 IN2 OUT
W reg,bit W
0 0 1
0 1 0
1 0 0
1 1 1

reg,bitW

reg,bitW

NOT W
W

W
reg,bit

Temp_1 W

W 0
Y

N

W 1

W Temp_1 xor W

begin

end

reg,bit = 0?

(a) (b)

FIGURE 3.12
(a) The macro xnor and (b) its flowchart.

52 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

TABLE 3.24

Truth Table and Symbols of the Macro out

Truth Table Ladder diagram symbol Schematic symbol

IN OUT
W reg,bit
0 0
1 1

()
reg,bit

W W reg,bit

Truth table and Symbols of the Macro out

SET reg,bit
Y

N

RESET reg,bit

Temp_1 W

Y

N Temp_1,0 = 1

Temp_1,0 = 0

begin

end

?

?

(a) (b)

FIGURE 3.13
(a) The macro out and (b) its flowchart.

TABLE 3.23

Operands for the Instruction xnor

Input
(reg,bit) Data Type Operands

Bit BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q,
CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

53Contact and Relay-Based Macros

© 2008 Taylor & Francis Group, LLC

through reg,bit. In ladder logic, this macro is represented by an output
relay (internal or external relay). When the input variable is 0 (respectively 1),
the output (W) is forced to 0 (respectively to 1). Operands for the instruction
out are shown in Table 3.25.

3.14 Macro out_not

The truth table and symbols of the macro out_not are depicted in Table 3.26.
Figure 3.14 shows the macro out_not and its flowchart. This macro has a
Boolean input variable passed into it by W and a Boolean output variable
passed out through reg,bit. In ladder logic, this macro is represented by
an inverted output relay (internal or external relay). When the input variable
is 0 (respectively 1), the output (W) is forced to 1 (respectively to 0). Operands
for the instruction out_not are shown in Table 3.27.

TABLE 3.25

Operands for the Instruction out

Output
(reg,bit) Data Type Operands

Bit BOOL Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q,
CTUD8_Q

TABLE 3.26

The Truth Table and Symbols of the Macro out_not

Truth Table Ladder Diagram Symbol Schematic Symbol

IN OUT
W reg,bit
0 1
1 0

()
reg,bit

W W reg,bit

54 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

3.15 Macro in_out

The truth table and symbols of the macro in_out are depicted in Table 3.28.
Figure 3.15 shows the macro in_out and its flowchart. This macro has a
Boolean input variable passed into it by regi,biti and a Boolean out-
put variable passed out through rego,bito. When the input variable
regi,biti is 0 (respectively 1), the output variable rego,bito is forced
to 0 (respectively to 1). Operands for the instruction in_out are shown in
Table 3.29.

TABLE 3.27

Operands for the Instruction out_not

Output
(reg,bit) Data Type Operands

Bit BOOL Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q,
CTUD8_Q

RESET reg,bit
Y

N

SET reg,bit

Temp_1 W

Y

N Temp_1,0 = 1

Temp_1,0 = 0

begin

end

?

?

(a) (b)

FIGURE 3.14
(a) The macro out_not and (b) its flowchart.

55Contact and Relay-Based Macros

© 2008 Taylor & Francis Group, LLC

TABLE 3.28

Truth Table and Symbols of the Macro in_out

Truth Table Ladder Diagram Symbol Schematic Symbol

IN OUT
regi,biti rego,bito

0 0
1 1

regi,biti
()

rego,bito
regi,biti rego,bito

SET rigo,bito
Y

N

RESET rego,bito
Y

N regi,biti = 1

begin

end

?

regi,biti = 0?

(a) (b)

FIGURE 3.15
(a) The macro in_out and (b) its flowchart.

TABLE 3.29

Operands for the Instruction in_out

Input/Output Data Type Operands
Input

(regi,biti) Bit BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,
CTD8_Q, CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

Output
(rego,bito) Bit BOOL Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,

CTD8_Q, CTUD8_Q

56 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

3.16 Macro inv_out

The truth table and symbols of the macro inv_out are depicted in Table 3.30.
Figure 3.16 shows the macro inv_out and its flowchart. This macro has a
Boolean input variable passed into it by regi,biti and a Boolean output
variable passed out through rego,bito. When the input variable regi,biti

RESET rego,bito
Y

N

SET rego,bito
Y

N regi,biti = 1

regi,biti = 0

begin

end

?

?

(a) (b)

FIGURE 3.16
(a) The macro inv_out and (b) its flowchart.

TABLE 3.30

Truth Table and Symbols of the Macro inv_out

Truth Table Ladder Diagram Symbol Schematic Symbol

IN OUT
regi,biti rego,bito

0 1
1 0

regi,biti
()

rego,bito

or

regi,biti
()

rego,bito
regi,biti rego,bito

57Contact and Relay-Based Macros

© 2008 Taylor & Francis Group, LLC

is 0 (respectively 1), the output variable rego,bito is forced to 1 (respectively
to 0). Operands for the instruction inv_out are shown in Table 3.31.

3.17 Macro _set

The truth table and symbols of the macro _set are depicted in Table 3.32.
Figure 3.17 shows the macro _set and its flowchart. This macro has a Boolean
input variable passed into it by W and a Boolean output variable passed out
through reg,bit. When the input variable is 0, no action is taken, but when

TABLE 3.31

Operands for the Instruction inv_out

Input/Output Data Type Operands
Input

(regi,biti) Bit BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,
CTD8_Q, CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

Output
(rego,bito) Bit BOOL Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,

CTD8_Q, CTUD8_Q

TABLE 3.32

Truth Table and Symbols of the Macro _set

Truth Table Ladder Diagram Symbol Schematic Symbol

IN OUT
W reg,bit
0 no change
1 Set

(S)
reg,bit

W W

SET

IN reg,bit

SET reg,bitY

N

begin

end

W,0 = 0?

(a) (b)

FIGURE 3.17
(a) The macro _set and (b) its flowchart.

58 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

the input variable is 1, the output variable reg,bit is set to 1. Operands for
the instruction _set are shown in Table 3.33.

3.18 Macro _reset

The truth table and symbols of the macro _reset are depicted in Table 3.34.
Figure 3.18 shows the macro _reset and its flowchart. This macro has a
Boolean input variable passed into it by W and a Boolean output variable

RESET reg,bitY

N
W,0 = 0

begin

end

?

(a) (b)

FIGURE 3.18
(a) The macro _reset and (b) its flowchart.

TABLE 3.33

Operands for the Instruction _set

Output
(reg,bit) Data Type Operands

Bit BOOL Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q,
CTUD8_Q

TABLE 3.34

Truth Table and Symbols of the Macro _reset

Truth Table Ladder Diagram Symbol Schematic Symbol

IN OUT
W reg,bit
0 no change
1 Reset

(R)
reg,bit

W
W

RESET

reg,bitIN

59Contact and Relay-Based Macros

© 2008 Taylor & Francis Group, LLC

passed out through reg,bit. When the input variable is 0, no action is
taken, but when the input variable is 1, the output variable reg,bit is reset.
Operands for the instruction _reset are shown in Table 3.35.

3.19 Examples for Contact and Relay-Based Macros

In this section, we will consider two examples, UZAM_plc_16i16o_ex3.asm
and UZAM_plc_16i16o_ex4.asm, to show the usage of contact and relay-based
macros. In order to test the respective example, please take the files from
the CD-ROM attached to this book and then open the respective program
by MPLAB IDE and compile it. After that, by using the PIC programmer
software, take the compiled file UZAM_plc_16i16o_ex3.hex or UZAM_
plc_16i16o_ex4.hex, and by your PIC programmer hardware send it to the
program memory of the PIC16F648A microcontroller within the PIC16F648A-
based PLC. To do this, switch the 4PDT in the PROG position and the power
switch in the OFF position. After loading the UZAM_plc_16i16o_ex3.hex
or UZAM_plc_16i16o_ex4.hex, switch the 4PDT in RUN and the power
switch in the ON position. Please check each program’s accuracy by cross-
referencing it with the related macros.

Let us now consider these two example programs: The first example
program, UZAM_plc_16i16o_ex3.asm, is shown in Figure 3.19. It shows
the usage of the following contact and relay-based macros: ld, ld_not,
not, out, out_not, in_out, inv_out, or, or_not, and nor. The sche-
matic and ladder diagrams of the user program of UZAM_plc_16i16o_
ex3.asm, shown in Figure 3.19, are depicted in Figure 3.20(a) and (b),
respectively.

TABLE 3.35

Operands for the Instruction _reset

Output
(reg,bit) Data Type Operands

Bit BOOL Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q,
CTUD8_Q

60 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

FIGURE 3.19
The user program of UZAM_plc_16i16o_ex3.asm.

61Contact and Relay-Based Macros

© 2008 Taylor & Francis Group, LLC

I 0.0 Q 0.0

Q 0.1 I 0.1

I 0.2 M 2.7

Q 0.2 M 2.7

Q 0.3 I 0.3

I 0.4 Q 0.4

Q 0.5 I 0.5

T 1.5 Q 0.7

I 1.0

I 1.1
Q 1.0

I 1.0

I 1.2

Q 1.1 I 1.1

I 1.0

I 1.4
Q 1.2

I 1.2

I 1.4

Q 1.3 I 1.3

I 1.4

I 1.5
Q 1.4

I 1.4

I 1.5

Q 1.5
I 1.6

I 1.4

I 1.5

Q 1.6

I 1.6

I 1.7

Q 0.6 LOGIC1

T = 838,8608 ms

IN OUT

(a)

FIGURE 3.20
The user program of UZAM_plc_16i16o_ex3.asm: (a) schematic diagram. (Continued)

62 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

1 ()
I0.0 Q0.0

2 ()
I0.1 Q0.1

3 ()
I0.2 M2.7

4 ()
Q0.2M2.7

5 ()
I0.3 Q0.3

NOT

6 ()
I0.4 Q0.4

7 ()
I0.5 Q0.5

8 ()
LOGIC1 Q0.6

9 ()
Q0.7T1.5

10 ()
I1.0 Q1.0

I1.1

11 ()
I1.0 Q1.1

I1.1

I1.2

12 ()
I1.0 Q1.2

I1.4

13 ()
I1.2 Q1.3

I1.3

I1.4

NOT14 ()
I1.4 Q1.4

I1.5

NOT15
I1.4

I1.5
NOT

I1.6

16
I1.4

I1.5

I1.6

I1.7

NOT

()
Q1.5

()
Q1.6

T = 838,8608 ms

(b)

FIGURE 3.20 (Continued)
The user program of UZAM_plc_16i16o_ex3.asm: (b) ladder diagram.

63Contact and Relay-Based Macros

© 2008 Taylor & Francis Group, LLC

FIGURE 3.21
The user program of UZAM_plc_16i16o_ex4.asm.

64 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

I 0.0

I 0.1
Q 0.0

I 0.0

I 0.2
Q 0.1I 0.1

I 0.0

I 0.4
Q 0.2

I 0.2

I 0.4
Q 0.3I 0.3

I 0.4

I 0.5
Q 0.4

I 0.4

I 0.5
Q 0.5

I 0.6

I 0.4

I 0.5

Q 0.6
I 0.6

I 0.7

I 1.0

I 1.1
Q 1.0

I 1.2

I 1.3
Q 1.2

I 1.4

I 1.5
Q 1.4

I 1.6

SET

IN Q 1.7

RESET

IN Q 1.7I 1.7

IN
OUT

(a)

FIGURE 3.22
The user program of UZAM_plc_16i16o_ex4.asm: (a) schematic diagram. (Continued)

65Contact and Relay-Based Macros

© 2008 Taylor & Francis Group, LLC

The second example program, UZAM_plc_16i16o_ex4.asm, is shown in
Figure 3.21. It shows the usage of the following contact and relay-based mac-
ros: ld, and, and_not, nand, xor, xor_not, xnor, _set, and _reset. The
schematic and ladder diagrams of the user program of UZAM_plc_16i16o_
ex4.asm, shown in Figure 3.21, are depicted in Figure 3.22(a) and (b),
respectively.

1 ()
I 0.0 Q 0.0I 0.1

2
I 0.0 I 0.1 I 0.2

3
I 0.0 I 0.4

4
I 0.2 I 0.3 I 0.4

5
I 0.4 I 0.5

NOT

6
I 0.4 I 0.5

NOT
I 0.6

NOT

7
I 0.4 I 0.5 I 0.6

NOT
I 0.7

8
I 1.0

I 1.0

I 1.1

I 1.1

9
I 1.2

I 1.2

I 1.3

I 1.3

10
I 1.4

I 1.4

I 1.5

I 1.5
 NOT

11 (S)
I 1.6 Q 1.7

(R)
Q 1.7

12
I 1.7

()
Q 0.1

()
Q 0.2

()
Q 0.3

()
Q 0.4

()
Q 0.5

()
Q 0.6

()
Q 1.0

()
Q 1.2

()
Q 1.4

(b)

FIGURE 3.22 (Continued)
The user program of UZAM_plc_16i16o_ex4.asm: (b) ladder diagram.

67© 2008 Taylor & Francis Group, LLC

4
Flip-Flop Macros

In this chapter, the following flip-flop macros are described:

r_edge (rising edge detector)
f_edge (falling edge detector)
latch1 (D latch with active high enable)
latch0 (D latch with active low enable)
dff_r (rising edge triggered D flip-flop)
dff_f (falling edge triggered D flip-flop)
tff_r (rising edge triggered T flip-flop)
tff_f (falling edge triggered T flip-flop)
jkff_r (rising edge triggered JK flip-flop)
jkff_f (falling edge triggered JK flip-flop)

Each macro defined here requires an edge detection mechanism except for
latch0 and latch1. The following 8-bit variables are used for this purpose:

RED: Rising edge detector
FED: Falling edge detector
DFF_RED: Rising edge detector for D flip-flop
DFF_FED: Falling edge detector for D flip-flop
TFF_RED: Rising edge detector for T flip-flop
TFF_FED: Falling edge detector for T flip-flop
JKFF_RED: Rising edge detector for JK flip-flop
JKFF_FED: Falling edge detector for JK flip-flop

They are declared within the SRAM data memory as shown in Figure 4.1.
Each 8-bit variable enables us to declare and use eight different functions
defined by the related macro. The macros latch0 and latch1 are an excep-
tion to this, which means that we can use as many latches of latch0 or
latch1 as we wish. The file definitions.inc, included within the CD-ROM
attached to this book, contains all flip-flop macros defined for the PIC16F648A-
based PLC.

Let us now briefly consider these macros.

68 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

4.1 Macro r_edge (Rising Edge Detector)

The symbols and the timing diagram of the macro r_edge are depicted in
Table 4.1. Figure 4.2 shows the macro r_edge and its flowchart. The macro
r_edge defines eight rising edge detector functions (or contacts) selected
with the num = 0, 1, …, 7. It has a Boolean input variable, namely, IN, passed

(a)

3Fh RED
40h FED
41h DFF_RED
42h DFF_FED
43h TFF_RED
44h TFF_FED
45h JKFF_RED
46h JKFF_FED

BANK 0

(b)

FIGURE 4.1
(a) The definition of 8-bit variables to be used for the flip-flop-based macros. (b) Their alloca-
tion in BANK 0 of SRAM data memory.

TABLE 4.1

Symbols and Timing Diagram of the Macro r_edge

Symbols

num
IN OUT

r_edge

P WW
num

IN : W,
OUT : W,
num = 0, 1, …, 7

Timing diagram

0

0

1

1
IN

OUT
ON for one scan

69Flip-Flop Macros

© 2008 Taylor & Francis Group, LLC

(a)

Temp_1 W

SET RED,num
Y

 N

Y

N

Y

N

RESET RED,num
W 1W 0

Temp_1,0 = 1

Temp_1,0 = 1

RED,num = 1

L2

L1

begin

end

?

?

?

(b)

FIGURE 4.2
(a) The macro r_edge and (b) its flowchart.

70 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

into the macro through W, and a Boolean output variable, namely, OUT,
passed out of the macro through W. This means that the input signal IN
should be loaded into W before this macro is run, and the output signal OUT
will be provided within the W at the end of the macro. In ladder logic, this
macro is represented by a normally open (NO) contact with the identifier P,
meaning positive transition-sensing contact. As can be seen from the timing
diagram, the OUT is ON (1) for only one scan time when the IN changes its
state from OFF (0) to ON (1). In the other instances, the OUT remains OFF (0).

4.2 Macro f_edge (Falling Edge Detector)

The symbols and the timing diagram of the macro f_edge are depicted in
Table 4.2. Figure 4.3 shows the macro f_edge and its flowchart. The macro
f_edge defines eight falling edge detector functions (or contacts) selected
with the num = 0, 1, …, 7. It has a Boolean input variable, namely, IN, passed
into the macro through W, and a Boolean output variable, namely, OUT,
passed out of the macro through W. This means that the input signal IN
should be loaded into W before this macro is run, and the output signal OUT
will be provided within the W at the end of the macro. In ladder logic, this
macro is represented by a normally open (NO) contact with the identifier N,
meaning negative transition-sensing contact. As can be seen from the timing
diagram, the OUT is ON (1) for only one scan time when the IN changes its
state from ON (1) to OFF (0). In the other instances, the OUT remains OFF (0).

TABLE 4.2

Symbols and Timing Diagram of the Macro f_edge

Symbols

num
IN OUTW W

f_edge

N WW
num

IN : W
OUT : W
num = 0, 1, …, 7

Timing diagram

0

0
1

1
 IN

OUT ON for one scan

71Flip-Flop Macros

© 2008 Taylor & Francis Group, LLC

(a)

Temp_1 W

SET FED,numY

N

Y

N

 Y

N

RESET FED,num
W 1W 0

Temp_1,0 = 0

FED,num = 1

L2

L1

Temp_1,0 = 0

begin

end

?

?

?

(b)

FIGURE 4.3
(a) The macro f_edge and (b) its flowchart.

72 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

4.3 Macro latch1 (D Latch with Active High Enable)

The symbol of the macro latch1 and its truth table are depicted in Table 4.3.
Figure 4.4 shows the macro latch1 and its flowchart. The macro latch1
defines a D latch function with active high enable. Unlike the edge trig-
gered flip-flops and the edge detector macros, in which eight functions are
described, this function defines only one D latch function. However, we
are free to use this macro as much as we need with different input/output
variables. The macro latch1 has two Boolean input variables, namely, EN,
passed into the macro through W, and D (regi,biti), and a single Boolean
output variable, Q (rego,bito). The input signal EN (active high enable input)
should be loaded into W before this macro is run. When the active high
enable input EN is OFF (0), no state change is issued for the output Q and it
holds its current state. When the active high enable input EN is ON (1), the
output Q is loaded with the state of the input D. Operands for the instruction
latch1 are shown in Table 4.4.

4.4 The Macro latch0 (D Latch with Active Low Enable)

The symbol of the macro latch0 and its truth table are depicted in Table 4.5.
Figure 4.5 shows the macro latch0 and its flowchart. The macro latch0
defines a D latch function with active low enable. Unlike the edge triggered
flip-flops and the edge detector macros, in which eight functions are described,

TABLE 4.3

Symbol of the Macro latch1 and Its Truth Table

Symbol

D

EN

Q

latch1

regi,biti rego,bito

W

EN : W,
D : regi,biti
Q : rego,bito

Truth Table

EN D Qt Qt+1 Comment

0 × Qt Qt No change

1 0 × 0 Reset

1 1 × 1 Set

× : don’t care.

73Flip-Flop Macros

© 2008 Taylor & Francis Group, LLC

(a)

Y

N

NY

RESET rego,bitoSET rego,bito

W,0 = 1

regi,biti = 1

L1

L2

 begin

end

?

?

(b)

FIGURE 4.4
(a) The macro latch1 and (b) its flowchart.

TABLE 4.4

Operands for the Instruction latch1

Input/Output Data Type Operands
D

regi,biti (Bit) BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,
CTD8_Q, CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

Q
rego,bito (Bit) BOOL Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,

CTD8_Q, CTUD8_Q

74 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

this function defines only one D latch function. However, we are free to use
this macro as much as we need with different input/output variables. The
macro latch0 has two Boolean input variables, namely, EN, passed into the
macro through W and D (regi,biti), and a single Boolean output variable, Q
(rego,bito). The input signal EN (active low enable input) should be loaded into
W before this macro is run. When the active low enable input EN is ON (1),
no state change is issued for the output Q and it holds its current state. When
the active low enable input EN is OFF (0), the output Q is loaded with the state
of the input D. Operands for the instruction latch0 are shown in Table 4.6.

4.5 Macro dff_r (Rising Edge Triggered D Flip-Flop)

The symbol of the macro dff_r and its truth table are depicted in Table 4.7.
Figure 4.6 shows the macro dff_r and its flowchart. The macro dff_r
defines eight rising edge triggered D flip-flop functions selected with the

TABLE 4.5

Symbol of Macro latch0 and Its Truth Table

Symbol

D

EN

Q

latch0

regi,biti rego,bito

W

EN : W
D : regi,biti
Q : rego,bito

Truth Table

EN D Qt Qt+1 Comment

1 × Qt Qt No change

0 0 × 0 Reset

0 1 × 1 Set

× : don’t care.

TABLE 4.6

Operands for the Instruction latch0

Input/Output Data Type Operands
D

regi,biti (Bit) BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,
CTD8_Q, CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

Q
rego,bito (Bit) BOOL Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,

CTD8_Q, CTUD8_Q

75Flip-Flop Macros

© 2008 Taylor & Francis Group, LLC

num = 0, 1, …, 7. It has two Boolean input variables, namely, clock input C,
passed into the macro through W, and data input D (regi,biti), and a single
Boolean output variable, flip-flop output Q (rego,bito). The clock input signal
C should be loaded into W before this macro is run. When the clock input
signal C is ON (1) or OFF (0), or changes its state from ON to OFF (↓), no state
change is issued for the output Q and it holds its current state. When the
state of clock input signal C is changed from OFF to ON (↑), the output Q is
loaded with the state of the input D. Operands for the instruction dff_r are
shown in Table 4.8.

(a)

Y

N

NY

RESET rego,bitoSET rego,bito

W,0 = 0

regi,biti = 1

L1

L2

 begin

end

?

?

(b)

FIGURE 4.5
(a) The macro latch0 and (b) its flowchart.

76 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

TABLE 4.7

Symbol of the Macro dff_r and Its Truth Table

Symbol

D
C

Q regi,biti rego,bito

dff_r

W
num

C : W,
D : regi,biti,
Q : rego,bito,
num = 0, 1, …, 7

Truth Table

D C Qt Qt+1 Comment
× 0 Qt Qt No change
× 1 Qt Qt No change
× Qt Qt No change

0 × 0 Reset

1 × 1 Set

× : don’t care.

Symbol of the Macro dff _ r and Its Truth Table

(a)

FIGURE 4.6
(a) The macro dff_r and (b) its flowchart. (Continued)

TABLE 4.8

Operands for the Instruction dff_r

Input/Output Data Type Operands
D

regi,biti (Bit) BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,
CTD8_Q, CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

Q
rego,bito (Bit) BOOL Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,

CTD8_Q, CTUD8_Q

77Flip-Flop Macros

© 2008 Taylor & Francis Group, LLC

4.6 Macro dff_f (Falling Edge Triggered D Flip-Flop)

The symbol of the macro dff_f and its truth table are depicted in Table 4.9.
Figure 4.7 shows the macro dff_f and its flowchart. The macro dff_f defines
eight falling edge triggered D flip-flop functions selected with the num = 0, 1,
…, 7. It has two Boolean input variables, namely, clock input C, passed into the

 Y

Temp_1 W

Y

N

N

SET DFF_RED,num

RESET DFF_RED,num

Y

N

Temp_1,0 = 1

Temp_1,0 = 1

DFF_RED,num = 1

NY

RESET rego,bitoSET rego,bito

 regi,biti = 1

L1

L2

begin

end

?

?

?

?

(b)

FIGURE 4.6 (Continued)
(a) The macro dff_r and (b) its flowchart.

78 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

macro through W, and data input D (regi,biti), and a single Boolean output vari-
able, flip-flop output Q (rego,bito). The clock input signal C should be loaded
into W before this macro is run. When the clock input signal C is ON (1) or OFF
(0), or changes its state from OFF to ON (↑), no state change is issued for the
output Q and it holds its current state. When the state of clock input signal C is
changed from ON to OFF (↓), the output Q is loaded with the state of the input
D. Operands for the instruction dff_f are shown in Table 4.10.

(a)

FIGURE 4.7
(a) The macro dff_f and (b) its flowchart. (Continued)

TABLE 4.9

Symbol of the Macro dff_f and Its Truth Table

Symbol

D
C

Q regi,biti rego,bito
W

num

C : W
D : regi,biti
Q : rego,bito
num = 0, 1, …, 7

Truth Table

D C Qt Qt+1 Comment
× 0 Qt Qt No change
× 1 Qt Qt No change
× Qt Qt No change

0 × 0 Reset

1 × 1 Set

× : don’t care.

dff_f

Symbol of the Macro dff _ f and Its Truth Table

79Flip-Flop Macros

© 2008 Taylor & Francis Group, LLC

Y

Temp_1 W

Y

N

N

SET DFF_FED,num

RESET DFF_FED,num

Y

N

Temp_1,0 = 0

Temp_1,0 = 0

DFF_FED,num = 1

NY

RESET rego,bitoSET rego,bito

 regi,biti = 1

L1

L2

begin

end

?

?

?

?

(b)

FIGURE 4.7 (Continued)
(a) The macro dff_f and (b) its flowchart.

TABLE 4.10

Operands for the Instruction dff_f

Input/Output Data Type Operands
D

regi,biti (Bit) BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,
CTD8_Q, CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

Q
rego,bito (Bit) BOOL Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,

CTD8_Q, CTUD8_Q

80 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

4.7 Macro tff_r (Rising Edge Triggered T Flip-Flop)

The symbol of the macro tff_r and its truth table are depicted in Table 4.11.
Figure 4.8 shows the macro tff_r and its flowchart. The macro tff_r
defines eight rising edge triggered T flip-flop functions selected with the

TABLE 4.11

Symbol of the Macro tff_r and Its Truth Table

Symbol

T
C

Q regi,biti rego,bito

tff_r

W
num

C : W
T : regi,biti
Q : rego,bito
num = 0, 1, …, 7

Truth Table

T C Qt Qt+1 Comment
× 0 Qt Qt No change
× 1 Qt Qt No change
× Qt Qt No change

0 Qt Qt No change

1 Qt Qt Toggle

× : don’t care.

Symbol of the Macro tff _ r and Its Truth Table

(a)

FIGURE 4.8
(a) The macro tff_r and (b) its flowchart. (Continued)

81Flip-Flop Macros

© 2008 Taylor & Francis Group, LLC

Y

Temp_1 W

Y

N

N

SET TFF_RED,num

RESET TFF_RED,num

Y

Y

N

Temp_1,0 = 1

Temp_1,0 = 1

TFF_RED,num = 1

NY

RESET rego,bitoSET rego,bito

 rego,bito = 0

L1

L2

N
regi,biti = 1

begin

end

?

?

?

?

?

(b)

FIGURE 4.8 (Continued)
(a) The macro tff_r and (b) its flowchart.

82 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

num = 0, 1, …, 7. It has two Boolean input variables, namely, clock input C,
passed into the macro through W, and toggle input T (regi,biti), and a single
Boolean output variable, flip-flop output Q (rego,bito). The clock input signal C
should be loaded into W before this macro is run. When the clock input signal
C is ON (1) or OFF (0), or changes its state from ON to OFF (↓), no state change
is issued for the output Q and it holds its current state. When the state of clock
input signal C is changed from OFF to ON (↑), if T = 0, then no state change is
issued for the output Q and it holds its current state. When the state of clock
input signal C is changed from OFF to ON (↑), if T = 1, then the output Q is
toggled. Operands for the instruction tff_r are shown in Table 4.12.

4.8 Macro tff_f (Falling Edge Triggered T Flip-Flop)

The symbol of the macro tff_f and its truth table are depicted in Table 4.13.
Figure 4.9 shows the macro tff_f and its flowchart. The macro tff_f
defines eight falling edge triggered T flip-flop functions selected with the
num = 0, 1, …, 7. It has two Boolean input variables, namely, clock input C,
passed into the macro through W, and toggle input T (regi,biti), and a single
Boolean output variable, flip-flop output Q (rego,bito). The clock input signal
C should be loaded into W before this macro is run. When the clock input
signal C is ON (1) or OFF (0), or changes state from OFF to ON (↑), no state
change is issued for the output Q and it holds its current state. When the
state of clock input signal C is changed from ON to OFF (↓): if T = 0, then no
state change is issued for the output Q; if T = 1, then the output Q is toggled.
Operands for the instruction tff_f are shown in Table 4.14.

4.9 Macro jkff_r (Rising Edge Triggered JK Flip-Flop)

The symbol of the macro jkff_r and its truth table are depicted in Table 4.15.
Figure 4.10 shows the macro jkff_r and its flowchart. The macro jkff_r
defines eight rising edge triggered JK flip-flop functions selected with the
num = 0, 1, …, 7. It has three Boolean input variables, namely, clock input C,
passed into the macro through W, and data inputs J (regj,bitj) and K (regk,bitk),

TABLE 4.12

Operands for the Instruction tff_r

Input/Output Data Type Operands
T

regi,biti (Bit) BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,
CTD8_Q, CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

Q
rego,bito (Bit) BOOL Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,

CTD8_Q, CTUD8_Q

83Flip-Flop Macros

© 2008 Taylor & Francis Group, LLC

TABLE 4.13

Symbol of the Macro tff_f and Its Truth Table

Symbol

T
C

Q regi,biti rego,bito

tff_f

W
num

C : W
T : regi,biti
Q : rego,bito
num = 0, 1, …, 7

Truth Table

T C Qt Qt+1 Comment
× 0 Qt Qt No change
× 1 Qt Qt No change
× Qt Qt No change

0 Qt Qt No change

1 Qt Qt Toggle

× : don’t care.

Symbol of the Macro tff _ f and Its Truth Table

(a)

FIGURE 4.9
(a) The macro tff_f and (b) its flowchart. (Continued)

84 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

Y

Temp_1 W

Y

N

N

SET TFF_FED,num

RESET TFF_FED,num

Y

Y

N

Temp_1,0 = 0

Temp_1,0 = 0

TFF_FED,num = 1

NY

RESET rego,bitoSET rego,bito

 rego,bito = 0

L1

L2

N
regi,biti = 1

begin

end

?

?

?

?

?

(b)

FIGURE 4.9 (Continued)
(a) The macro tff_f and (b) its flowchart.

85Flip-Flop Macros

© 2008 Taylor & Francis Group, LLC

and a single Boolean output variable, flip-flop output Q (rego,bito). The clock
input signal C should be loaded into W before this macro is run. When the
clock input signal C is ON (1) or OFF (0), or changes state from ON to OFF
(↓), no state change is issued for the output Q and it holds its current state.
When the state of clock input signal C is changed from OFF to ON (↑): if JK
= 00, then no state change is issued; if JK = 01, then Q is reset; if JK = 10, then
Q is set; and finally if JK = 11, then Q is toggled. Operands for the instruction
jkff_r are shown in Table 4.16.

TABLE 4.14

Operands for the Instruction tff_f

Input/Output Data Type Operands
T

regi,biti (Bit) BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,
CTD8_Q, CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

Q
rego,bito (Bit) BOOL Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,

CTD8_Q, CTUD8_Q

TABLE 4.15

Symbol of the Macro jkff_r and Its Truth Table

Symbol

J Q
C

K

regj,bitj rego,bito
jkff_r

W
regk,bitk

num

C : W
J : regj,bitj
K : regk,bitk
Q : rego,bito
num= 0, 1, …, 7

Truth Table

J K C Qt Qt+1 Comment
× × 0 Qt Qt No change
× × 1 Qt Qt No change
× × Qt Qt No change

0 0 Qt Qt No change

0 1 × 0 Reset

1 0 × 1 Set

1 1 Qt Qt Toggle

× : don’t care.

86 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

4.10 Macro jkff_f (Falling Edge Triggered JK Flip-Flop)

The symbol of the macro jkff_f and its truth table are depicted in Table 4.17.
Figure 4.11 shows the macro jkff_f and its flowchart. The macro jkff_f
defines eight falling edge triggered JK flip-flop functions selected with the
num = 0, 1, …, 7. It has three Boolean input variables, namely, clock input C,
passed into the macro through W, and data inputs J (regj,bitj) and K (regk,bitk),
and a single Boolean output variable, flip-flop output Q (rego,bito). The clock
input signal C should be loaded into W before this macro is run. When the
clock input signal C is ON (1) or OFF (0), or changes state from OFF to ON
(↑), no state change is issued for the output Q and it holds its current state.
When the state of clock input signal C is changed from ON to OFF (↓): if JK
= 00, then no state change is issued; if JK = 01, then Q is reset; if JK = 10, then
Q is set; and finally if JK = 11, then Q is toggled. Operands for the instruction
jkff_f are shown in Table 4.18.

(a)

FIGURE 4.10
(a) The macro jkff_r and (b) its flowchart. (Continued)

87Flip-Flop Macros

© 2008 Taylor & Francis Group, LLC

Y

Temp_1 W

Y

N

N

SET JKFF_RED,num

RESET JKFF_RED,num

Y

N

Temp_1,0 = 1

Temp_1,0 = 1

JKFF_RED,num = 1

NY

RESET rego,bitoSET rego,bito

rego,bito = 0

L1

L2

regk,bitk = 1
N

regj,bitj = 1
Y N

regk,bitk = 1

N

L4

 Y

L3

Y

begin

end

?

?

? ?

?

?

?

(b)

FIGURE 4.10 (Continued)
(a) The macro jkff_r and (b) its flowchart.

88 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

4.11 Examples for Flip-Flop Macros

In this section, we will consider two examples, UZAM_plc_16i16o_ex5.asm
and UZAM_plc_16i16o_ex6.asm, to show the usage of flip-flop macros. In
order to test the respective example please take the files from the CD-ROM
attached to this book and then open the respective program by MPLAB IDE
and compile it. After that, by using the PIC programmer software, take the
compiled file UZAM_plc_16i16o_ex5.hex or UZAM_plc_16i16o_ex6.hex,
and by your PIC programmer hardware send it to the program memory of

TABLE 4.16

Operands for the Instruction jkff_r

Input/Output Data Type Operands

J,K
regj,bitj

regk,bitk (Bit)
BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,

CTD8_Q, CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

Q
rego,bito (Bit) BOOL Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,

CTD8_Q, CTUD8_Q

TABLE 4.17
Symbol of the Macro jkff_f and Its Truth Table

Symbol

J Q
C

K

regj,bitj rego,bito
jkff_f

W
regk,bitk

num

C : W
J : regj,bitj
K : regk,bitk
Q : rego,bito
num= 0, 1, …, 7

Truth Table

J K C Qt Qt+1 Comment
× × 0 Qt Qt No change
× × 1 Qt Qt No change
× × 0 Qt Qt No change

0 0 Qt Qt No change

0 1 × 0 Reset

1 0 × 1 Set

1 1 Qt Qt Toggle

× : don’t care.

89Flip-Flop Macros

© 2008 Taylor & Francis Group, LLC

PIC16F648A microcontroller within the PIC16F648A-based PLC. To do this,
switch the 4PDT in PROG position and the power switch in OFF position.
After loading the UZAM_plc_16i16o_ex5.hex or UZAM_plc_16i16o_ex6.hex,
switch the 4PDT in RUN and the power switch in ON position. Please check
each program’s accuracy by cross-referencing it with the related macros.

Let us now consider these two example programs: The first example
program, UZAM_plc_16i16o_ex5.asm, is shown in Figure 4.12. It shows
the usage of the following flip-flop macros: r_edge, f_edge, latch1,
latch0, dff_r, dff_f. The ladder and schematic diagrams of the user pro-
gram of UZAM_plc_16i16o_ex5.asm, shown in Figure 4.12, are depicted in
Figure 4.13(a) and (b), respectively. It may not possible to observe the effects
of r_edge and f_edge shown in rungs 1 and 2 due to the time delays
caused by the macro HC595, explained in the Chapter 2. On the other hand,
you can observe their effects from rungs 5 and 6, respectively, where r_edge
and f_edge are both used together with the macro latch1. Observe that
in rung 5 we obtain a rising edge triggered D flip-flop by using an r_edge
and a latch1. Similarly, in rung 6 we obtain a falling edge triggered D flip-
flop by using an f_edge and a latch1. Note that in this example, _set and
_reset functions are both used as asynchronous SET and RESET inputs for
the D type flip-flops.

(a)

FIGURE 4.11
(a) The macro jkff_f and (b) its flowchart. (Continued)

90 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

Y

Temp_1 W

Y

N

N

SET JKFF_FED,num

RESET JKFF_FED,num

Y

N

Temp_1,0 = 0

Temp_1,0 = 0

JKFF_FED,num = 1

Y

RESET rego,bitoSET rego,bito

rego,bito = 0

L1

L2

regk,bitk = 1
N

regj,bitj = 1
Y N

regk,bitk = 1

N

L4

 Y

L3

Y

begin

end

?

?

?

?

?

? ?

(b)

FIGURE 4.11 (Continued)
(a) The macro jkff_f and (b) its flowchart.

91Flip-Flop Macros

© 2008 Taylor & Francis Group, LLC

TABLE 4.18

Operands for the Instruction jkff_f

Input/Output Data Type Operands
J,K

regj,bitj
regk,bitk (Bit)

BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,
CTD8_Q, CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

Q
rego,bito (Bit) BOOL Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q,

CTD8_Q, CTUD8_Q

FIGURE 4.12
The user program of UZAM_plc_16i16o_ex5.asm.

92 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

1 ()
I0.0 Q0.0

num
IN OUT

r_edge

 0

 2
I0.1

num
IN OUT

f_edge

 0

D Q

EN

latch1
 3

I0.3

I0.2

I0.5

I0.4

I0.1

I0.0

I0.7

I0.6

I1.1

I1.0

I1.2

I1.3

I1.5

I1.4

I1.6

I1.7

D Q

EN

latch0
 4

D Q

EN

latch1
5

num
IN OUT

r_edge

 1

D Q

EN

latch1
6

num
IN OUT

f_edge

 1

D Q
C

dff_r

num

 7

0

0

 8

 9

D Q
C

dff_f

num

10

11

12

()
Q0.1

()
Q0.2

()
Q0.3

()
Q0.4

()
Q0.7

()
Q1.0

()
Q1.7

(S)
Q1.0

(R)
Q1.0

(S)
Q1.7

(R)
Q1.7

(a)

FIGURE 4.13
The user program of UZAM_plc_16i16o_ex5.asm: (a) ladder diagram. (Continued)

93Flip-Flop Macros

© 2008 Taylor & Francis Group, LLC

I0.0 Q0.0
IN OUT

I0.3

I0.2

Q0.2D
EN

Q
latch1

num
IN OUT

r_edge

0

I0.1 Q0.1
num
IN OUT

f_edge

0

I0.5

I0.4

Q0.3D
EN

Q
latch0

I0.1

I0.0

Q0.4D
EN

Q
latch1

num
IN OUT
r_edge

1

I0.7

I0.6

Q0.7D
EN

Q
latch1

num
IN OUT

f_edge

1

D Q
C

dff_r

num0

Q1.0I1.1

I1.0

I1.2 IN

RESET

 IN I1.3 Q1.0

Q1.0

SET

D Q
C

dff_f

num0

Q1.7I1.5

I1.4

I1.6 IN

RESET

 IN I1.7 Q1.7

Q1.7

SET

(b)

FIGURE 4.13 (Continued)
The user program of UZAM_plc_16i16o_ex5.asm: (b) schematic diagram.

94 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

FIGURE 4.14
The user program of UZAM_plc_16i16o_ex6.asm.

95Flip-Flop Macros

© 2008 Taylor & Francis Group, LLC

 T Q
C

tff_r

num

()
Q0.0

()
Q0.7

()
Q1.0

()
Q1.7

1
I0.1

I0.0
0

0

0

0

2 (S)
I0.2

3
I0.3

Q0.0

(S)
Q0.7

(R)
Q0.7

(S)
Q1.0

(R)
Q1.0

(R)
Q0.0

T Q
C

tff_f

num

4
I0.5

I0.4

5
I0.6

6
I0.7

7
I1.1

I1.0

8
I1.3

9
I1.4

J Q
C

K

jkff_r

numI1.2

10
I1.6

I1.5
J Q

C

K

jkff_f

numI1.7

(a)

FIGURE 4.15
The user program of UZAM_plc_16i16o_ex6.asm: (a) ladder diagram. (Continued)

96 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

The second example program, UZAM_plc_16i16o_ex6.asm, is shown in
Figure 4.14. It shows the usage of the following flip-flop macros: tff_r,
tff_f, jkff_r, and jkff_f. The ladder and schematic diagrams of the
user program of UZAM_plc_16i16o_ex6.asm, shown in Figure 4.14, are
depicted in Figure 4.15(a) and (b), respectively. Note that in this example,
_set and _reset functions are both used as asynchronous SET and RESET
inputs for the T and JK type flip-flops.

IN OUT
T Q

C

tff_r

num

T Q
C

num

0

Q0.0 I0.1

I0.0

I0.2 IN

RESET

 IN I0.3 Q0.0

Q0.0

SET

tff_f

0

Q0.7 I0.5

I0.4

I0.6 IN

RESET

 IN I0.7 Q0.7

Q0.7

SET

0

Q1.0 I1.1
I1.0

I1.3 IN

RESET

 IN I1.4 Q1.0

Q1.0

SET

Q1.7

J Q
C

K

jkff_r

numI1.2

0

I1.6
I1.5

J Q
C

K

jkff_f

numI1.7

(b)

FIGURE 4.15 (Continued)
The user program of UZAM_plc_16i16o_ex6.asm: (b) schematic diagram.

97© 2008 Taylor & Francis Group, LLC

5
Timer Macros

In this chapter, the following timer macros are described:

TON_8 (on-delay timer)
TOF_8 (off-delay timer)
TP_8 (pulse timer)
TOS_8 (oscillator timer)

Timers can be used in a wide range of applications where a time delay func-
tion is required based on an input signal. The definition of 8-bit variables
to be used for the timer macros, and their allocation in BANK 0 of SRAM
data memory are shown in Figure 5.1(a) and (b), respectively. The status bits,
which will be explained in the next sections, of all timers are defined as
shown in Figure 5.2(a). All 8-bit variables defined for timers must be cleared
at the beginning of the PLC operation for a proper operation. Therefore, all
variables of timer macros are initialized within the macro initialize, as
shown in Figure 5.2(b). The file definitions.inc, included within the CD-ROM
attached to this book, contains all timer macros defined for the PIC16F648A-
based PLC.

Let us now consider the timer macros. In the following, first, a general
description is given for the considered timer function, and then its 8-bit
implementation in the PIC16F648A-based PLC is provided.

5.1 On-Delay Timer (TON)

The on-delay timer can be used to delay setting an output true (ON—1)
for a fixed period of time after an input signal becomes true (ON—1). The
symbol and timing diagram of the on-delay timer (TON) are both shown
in Figure 5.3. As the input signal IN goes true (ON—1), the timing func-
tion is started, and therefore the elapsed time ET starts to increase. When
the elapsed time ET reaches the time specified by the preset time input PT,
the output Q goes true (ON—1) and the elapsed time is held. The output Q
remains true (ON—1) until the input signal IN goes false (OFF—0). If the
input signal IN is not true (ON—1) longer than the delay time specified in

98 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

PT, the output Q remains false (OFF—0). The following section explains the
implementation of eight 8-bit on-delay timers for the PIC16F648A-based PLC.

5.2 Macro TON_8 (8-Bit On-Delay Timer)

The macro TON_8 defines eight on-delay timers selected with the num =
0, 1, …, 7. The macro TON_8 and its flowchart are shown in Figure 5.4. The
symbol of the macro TON_8 is depicted in Table 5.1. IN (input signal), Q (out-
put signal = timer status bit), and CLK (free-running timing signals—ticks:
T0.0, T0.1, …, T0.7, T1.0, T1.1, …, T1.7) are all defined as Boolean variables.
The time constant tcnst is an integer constant (here, for 8-bit resolution,
it is chosen as any number in the range 1–255) and is used to define preset
time PT, which is obtained by the formula PT = tcnst × CLK, where CLK
should be used as the period of the free-running timing signals—ticks. The
on-delay timer outputs are represented by the status bits: TON8_Q,num
(num = 0, 1, …, 7), namely, TON8_Q0, TON8_Q1, …, TON8_Q7, as shown
in Figure 5.2(a). A Boolean variable, TON8_RED,num (num = 0, 1, …, 7), is
used as a rising edge detector for identifying the rising edges of the chosen
CLK. An 8-bit integer variable TON8+num (num = 0, 1, …, 7) is used to
count the rising edges of the CLK. The count value of TON8+num (num = 0,
1, …, 7) defines the elapsed time ET as follows: ET = CLK × count value of

(a)

FIGURE 5.1
(a) The definition of 8-bit variables to be used for the timer macros. (Continued)

99Timer Macros

© 2008 Taylor & Francis Group, LLC

47h TON8_Q
48h TOF8_Q
49h TP8_Q
4Ah TOS8_Q
4Bh TON8
4Ch TON8+1
4Dh TON8+2
4Eh TON8+3
4Fh TON8+4
50h TON8+5
51h TON8+6
52h TON8+7
53h TOF8
54h TOF8+1
55h TOF8+2
56h TOF8+3
57h TOF8+4
58h TOF8+5
59h TOF8+6
5Ah TOF8+7
5Bh TP8
5Ch TP8+1
5Dh TP8+2
5Eh TP8+3
5Fh TP8+4
60h TP8+5
61h TP8+6
62h TP8+7
63h TOS8
64h TOS8+1
65h TOS8+2
66h TOS8+3
67h TOS8+4
68h TOS8+5
69h TOS8+6
6Ah TOS8+7
6Bh TON8_RED
6Ch TOF8_RED
6Dh TP8_RED1
6Eh TP8_RED2
6Fh TOS8_RED

BANK 0

(b)

FIGURE 5.1 (Continued)
(b) Their allocation in BANK 0 of SRAM data memory.

100 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

TON8+num (num = 0, 1, …, 7). Let us now briefly consider how the macro
TON_8 works. First, preset time PT is defined by means of a reference tim-
ing signal CLK = t_reg,t_bit and a time constant tcnst. If the input
signal IN, taken into the macro by means of W, is false (OFF—0), then the
output signal TON8_Q,num (num = 0, 1, …, 7) is forced to be false (OFF—0),
and the counter TON8+num (num = 0, 1, …, 7) is loaded with 00h. If the
input signal IN is true (ON—1) and the output signal Q, i.e., the status bit
TON8_Q,num (num = 0, 1, …, 7), is false (OFF—0), then with each rising

(a)

FIGURE 5.2
(a) The definition of status bits of timer macros. (Continued)

101Timer Macros

© 2008 Taylor & Francis Group, LLC

(b)

FIGURE 5.2 (Continued)
(b) The initialization of all variables of timer macros within the macro initialize.

0

0

0

PT

1

1

t0 t1

t1

t2 t3 t4 t5

t5

t0 t1 t2 t3 t4 t5

t4 + PTt0 + PT

IN

Q

ET

IN: INput
Q: Output
PT: Preset Time
ET: Elapsed Time

IN
PT

Q
ET

TON
BOOL
TIME

BOOL
TIME

FIGURE 5.3
The symbol and timing diagram of the on-delay timer (TON).

102 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

edge of the reference timing signal CLK = t_reg,t_bit the related coun-
ter TON8+num is incremented by one. In this case, when the count value
of TON8+num is equal to the number tcnst, then state change from 0 to
1 is issued for the output signal (timer status bit) TON8_Q,num (num = 0,
1, …, 7). If the input signal IN and the output signal Q, i.e., the status bit
TON8_Q,num (num = 0, 1, …, 7) are both true (ON—1), then no action is
taken and the elapsed time ET is held. In this macro a previously defined
8-bit variable Temp_1 is also utilized.

5.3 Off-Delay Timer (TOF)

The off-delay timer can be used to delay setting an output false (OFF—0)
for a fixed period of time after an input signal goes false (OFF—0); i.e., the
output is held ON for a given period longer than the input. The symbol and

(a)

FIGURE 5.4
(a) The macro TON_8 and (b) its flowchart. (Continued)

103Timer Macros

© 2008 Taylor & Francis Group, LLC

Temp_1 W

(TON8+num) 00h
RESET TON8_Q,num

 Y

N

N

Y

N

Y

N

SET TON8_Q,num

Y

SET TON8_RED,num

N

Y
RESET TON8_RED,num

(TON8+num)=(TON8+num)+1

N

Y

Temp_1,0 = 1

 L2

L1

TON8_Q,num = 0

t_reg,t_bit = 1

t_reg,t_bit = 1

TON8_RED,num = 1

(TON8+num) = tcnst

begin

end

?

?

?

?

?

?

(b)

FIGURE 5.4 (Continued)
(a) The macro TON_8 and (b) its flowchart.

104 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

timing diagram of the off-delay timer (TOF) are both shown in Figure 5.5.
As the input signal IN goes true (ON—1), the output Q follows and remains
true (ON—1), until the input signal IN is false (OFF—0) for the period speci-
fied in preset time input PT. As the input signal IN goes false (OFF—0), the
elapsed time ET starts to increase. It continues to increase until it reaches
the preset time input PT, at which point the output Q is set false (OFF—0)
and the elapsed time is held. If the input signal IN is only false (OFF—0) for
a period shorter than the input PT, the output Q remains true (ON—1). The
following section explains the implementation of eight 8-bit off-delay timers
for the PIC16F648A-based PLC.

0

0

0

PT

1

1

t0 t1 t2

t0 t2

t3 t4 t5

t1 t2 t3 t4 t5

t5+PTt1+PT

IN Q

PT ET

TOF
BOOL

TIME

BOOL

TIME

IN

Q

ET

IN: INput
Q: Output
PT: Preset Time
ET: Elapsed Time

FIGURE 5.5
The symbol and timing diagram of the off-delay timer (TOF).

TABLE 5.1

Symbol of the Macro TON_8

IN Q

CLK

tcnst
num

TON_8

PT = tcnst × CLK

IN (through W) = 0 or 1
CLK (t_reg,t_bit) = T0.0(1.024 ms), …, T1.7(3355.4432 ms)
tcnst (8bit) = 1, 2, ..., 255
num = 0, 1, …, 7
Q = TON8_Q,num (num= 0, 1, …, 7)

105Timer Macros

© 2008 Taylor & Francis Group, LLC

5.4 Macro TOF_8 (8-Bit Off-Delay Timer)

The macro TOF_8 defines eight off-delay timers selected with the num = 0, 1,
…, 7. The macro TOF_8 and its flowchart are shown in Figure 5.6. The sym-
bol of the macro TOF_8 is depicted in Table 5.2. IN (input signal), Q (output
signal = timer status bit), and CLK (free-running timing signals—ticks: T0.0,
T0.1, …, T0.7, T1.0, T1.1, …, T1.7) are all defined as Boolean variables. The time
constant tcnst is an integer constant (here, for 8-bit resolution, it is chosen as
any number in the range 1–255) and is used to define preset time PT, which
is obtained by the formula PT = tcnst × CLK, where CLK should be used
as the period of the free-running timing signals—ticks. The off-delay timer
outputs are represented by the status bits: TOF8_Q,num (num = 0, 1, …, 7),
namely, TOF8_Q0, TOF8_Q1, …, TOF8_Q7, as shown in Figure 5.2(a). We use
a Boolean variable, TOF8_RED,num (num = 0, 1, …, 7), as a rising edge detec-
tor for identifying the rising edges of the chosen CLK. An 8-bit integer vari-
able TOF8+num (num = 0, 1, …, 7) is used to count the rising edges of the

(a)

FIGURE 5.6
(a) The macro TOF_8 and (b) its flowchart. (Continued)

106 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

Temp_1 W

(TOF8+num) 00h
SET TOF8_Q,num

 Y

N

N

Y

N

Y

N

RESET TOF8_Q,num

Y

SET TOF8_RED,num

N

Y
RESET TOF8_RED,num

(TOF8+num)=(TOF8+num)+1

N

Y

Temp_1,0 = 0

 L2

L1

TOF8_Q,num = 1

t_reg,t_bit = 1

t_reg,t_bit = 1

TOF8_RED,num = 1

(TOF8+num) = tcnst

begin

end

?

?

?

?

?

?

(b)

FIGURE 5.6 (Continued)
(a) The macro TOF_8 and (b) its flowchart.

107Timer Macros

© 2008 Taylor & Francis Group, LLC

CLK. The count value of TOF8+num (num = 0, 1, …, 7) defines the elapsed
time ET as follows: ET = CLK × count value of TOF8+num (num = 0, 1, …, 7).
Let us now briefly consider how the macro TOF_8 works. First, preset time
PT is defined by means of a reference timing signal CLK = t_reg,t_bit
and a time constant tcnst. If the input signal IN, taken into the macro by
means of W, is true (ON—1), then the output signal TOF8_Q,num (num = 0,
1, …, 7) is forced to be true (ON—1), and the counter TOF8+num (num = 0,
1, …, 7) is loaded with 00h. When IN = 1 and TOF8_Q,num = 1, if IN goes
false (OFF—0), then with each rising edge of the reference timing signal CLK
= t_reg,t_bit the related counter TOF8+num is incremented by one. In
this case, when the count value of TOF8+num is equal to the number tcnst,
then state change from 1 to 0 is issued for the output signal (timer status bit)
TOF8_Q,num (num = 0, 1, …, 7). In this macro a previously defined 8-bit vari-
able Temp_1 is also utilized.

5.5 Pulse Timer (TP)

The pulse timer can be used to generate output pulses of a given time dura-
tion. The symbol and timing diagram of the pulse timer (TP) are both shown
in Figure 5.7. As the input signal IN goes true (ON—1) (t0, t2, t4), the output Q
follows and remains true (ON—1) for the pulse duration as specified by the
preset time input PT. While the pulse output Q is true (ON—1), the elapsed
time ET is increased (between t0 and t0 + PT, between t2 and t2 + PT, and
between t4 and t4 + PT). On the termination of the pulse, the elapsed time
ET is reset. The output Q will remain true (ON—1) until the pulse time has
elapsed, irrespective of the state of the input signal IN. The following section
explains the implementation of eight 8-bit pulse timers for the PIC16F648A-
based PLC.

TABLE 5.2

Symbol of the Macro TOF_8

IN Q

CLK

tcnst
num

TOF_8

PT = tcnst × CLK

IN (through W) = 0 or 1
CLK (t_reg,t_bit) = T0.0(1.024 ms), …, T1.7(3355.4432 ms)
tcnst (8bit) = 1, 2, ..., 255
num = 0, 1, …, 7
Q = TOF8_Q,num (num = 0, 1, …, 7)

108 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

5.6 Macro TP_8 (8-Bit Pulse Timer)

The macro TP_8 defines eight pulse timers selected with the num = 0,
1, …, 7. The macro TP_8 and its flowchart are shown in Figure 5.8. The sym-
bol of the macro TP_8 is depicted in Table 5.3. The macro TP_8 defines eight
pulse timers selected with the num = 0, 1, …, 7. IN (input signal), Q (out-
put signal = timer status bit), and CLK (free-running timing signals—ticks:
T0.0, T0.1, …, T0.7, T1.0, T1.1, …, T1.7) are all defined as Boolean variables.
The time constant tcnst is an integer constant (here, for 8-bit resolution,
it is chosen as any number in the range 1–255) and is used to define preset
time PT, which is obtained by the formula PT = tcnst × CLK, where CLK
should be used as the period of the free-running timing signals—ticks. The
pulse timer outputs are represented by the status bits: TP8_Q,num (num =
0, 1, …, 7), namely, TP8_Q0, TP8_Q1, …, TP8_Q7, as shown in Figure 5.2(a).
A Boolean variable, TP8_RED1,num (num = 0, 1, …, 7), is used as a rising
edge detector for identifying the rising edges of the chosen CLK. Similarly,
another Boolean variable, TP8_RED2,num (num = 0, 1, …, 7), is used as a
rising edge detector for identifying the rising edges of the input signal IN,
taken into the macro by means of W. An 8-bit integer variable TP8+num
(num = 0, 1, …, 7) is used to count the rising edges of the CLK. The count

0

0

0

PT

1

1

t0 t1 t2 t3 t4 t5

t0+PT

IN
PT

Q
ET

TP
BOOL
TIME

BOOL
TIME

IN

Q

ET

t0

IN: INput
Q: Output
PT: Preset Time
ET: Elapsed Time

t0

t6 t7

t2+PT

t4t2

t4+PT

t0+PT t2+PT t4+PT

FIGURE 5.7
The symbol and timing diagram of the pulse timer (TP).

109Timer Macros

© 2008 Taylor & Francis Group, LLC

value of TP8+num (num = 0, 1, …, 7) defines the elapsed time ET as follows:
ET = CLK × count value of TP8+num (num = 0, 1, …, 7). Let us now briefly
consider how the macro TP_8 works. First, preset time PT is defined by
means of a reference timing signal CLK = t_reg,t_bit and a time con-
stant tcnst. If the rising edge of the input signal IN is detected, by means
of TP8_RED2,num, then the output signal TP8_Q,num (num = 0, 1, …, 7) is
forced to be true (ON—1). After the output becomes true, i.e., TP8_Q,num =
1, the related counter TP8+num is incremented by one with each rising edge
of the reference timing signal CLK = t_reg,t_bit detected by means of
TP8_RED1,num. When the count value of TP8+num is equal to the number
tcnst, then state change from 1 to 0 is issued for the output signal (timer

(a)

FIGURE 5.8
(a) The macro TP_8 and (b) its flowchart. (Continued)

110 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

Y

N

Y

N

RESET TP8_Q,num
RESET TP8_RED2,num

SET TP8_RED1,num

N

Y
RESET TP8_RED1,num

(TP8+num)=(TP8+num)+1

N

Y

SET TP8_RED2,numY

N

Temp_1 W

N

N

Y

Y

N

Y

N

Y

Temp_1,0 = 1

Temp_1,0 = 1

TP8_RED2,num = 1

SET TP8_Q,num

L3

L2

Temp_1,0 = 1

TP8_Q,num = 0

L1

t_reg,t_bit = 1

t_reg,t_bit = 1

TP8_RED1,num = 1

(TP8+num) = tcnst

Y

TP8_Q,num = 1N

(TP8+num) 00h

begin

end

?

?

?

?

?

?

?

?

?

?

(b)

FIGURE 5.8 (Continued)
(a) The macro TP_8 and (b) its flowchart.

111Timer Macros

© 2008 Taylor & Francis Group, LLC

status bit) TP8_Q,num (num = 0, 1, …, 7), and at the same time the counter
TP8+num (num = 0, 1, …, 7) is cleared. In this macro a previously defined
8-bit variable Temp_1 is also utilized.

5.7 Oscillator Timer (TOS)

The oscillator timer can be used to generate pulse trains with given dura-
tions for true (ON) and false (OFF) times. Therefore, the oscillator timer can
be used in pulse width modulation (PWM) applications. The symbol and
timing diagram of the oscillator timer (TOS) are both shown in Figure 5.9.
PT0 (respectively PT1) defines the false (OFF) time (respectively true (ON)
time) of the pulse. As the input signal IN goes and remains true (ON—1),
the OFF timing function is started, and therefore the elapsed time ET0 is
increased. When the elapsed time ET0 reaches the time specified by the pre-
set time input PT0, the output Q goes true (ON—1) and ET0 is cleared. At
the same time, as long as the input signal IN remains true (ON—1), the ON
timing function is started, and therefore the elapsed time ET1 is increased.
When the elapsed time ET1 reaches the time specified by the preset time
input PT1, the output Q goes false (OFF—1) and ET1 is cleared. Then it is
time for the next operation for OFF and ON times. This operation will carry
on as long as the input signal IN remains true (ON—1), generating the pulse
trains based on PT0 and PT1. If the input signal IN goes and remains false
(OFF—0), then the output Q is forced to be false (OFF—0). The following sec-
tion explains the implementation of eight 8-bit oscillator timers (TOS) for the
PIC16F648A-based PLC.

TABLE 5.3

Symbol of the Macro TP_8

IN Q

CLK

tcnst
num

TP_8

PT = tcnst × CLK

IN (through W) = 0 or 1
CLK (t_reg,t_bit) = T0.0(1.024 ms), …, T1.7(3355.4432 ms)
tcnst (8bit) = 1, 2, ..., 255
num = 0, 1, …, 7
Q = TP8_Q,num (num = 0, 1, …, 7)

112 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

5.8 Macro TOS_8 (8-Bit Oscillator Timer)

The macro TOS_8 defines eight oscillator timers selected with the num = 0, 1,
…, 7. The macro TOS_8 and its flowchart are shown in Figure 5.10. The sym-
bol of the macro TOS_8 is depicted in Table 5.4. IN (input signal), Q (output
signal = timer status bit), and CLK (free-running timing signals—ticks: T0.0,
T0.1, …, T0.7, T1.0, T1.1, …, T1.7) are all defined as Boolean variables. The
time constant tcnst0 is an integer constant (here, for 8-bit resolution, it is
chosen as any number in the range 1–255) and is used to define preset time
PT0, which is obtained by the formula PT0 = tcnst0 × CLK, where CLK
should be used as the period of the free-running timing signals—ticks. The
time constant tcnst1 is an integer constant (here, for 8-bit resolution, it is cho-
sen as any number in the range 1–255) and is used to define preset time PT1,
which is obtained by the formula PT1 = tcnst1 × CLK, where CLK should
be used as the period of the free-running timing signals—ticks. The oscillator
timer outputs are represented by the status bits: TOS8_Q,num (num = 0, 1,
…, 7), namely, TOS8_Q0, TOS8_Q1, …, TOS8_Q7, as shown in Figure 5.2(a).
We use a Boolean variable, TOS8_RED,num (num = 0, 1, …, 7), as a rising
edge detector for identifying the rising edges of the chosen CLK. An 8-bit

0

0

0

PT0

1

1

t0

t0+PT0

IN Q

PT0 ET0

TOS
BOOL

TIME

IN

Q

ET0

t0

IN: INput
Q: Output
PT0: Preset Time0
ET0: Elapsed Time0
PT1: Preset Time1
ET1: Elapsed Time1

t1

TIME

BOOL

TIME
TIMEPT1 ET1

t0+PT0+PT1 t0+2PT0+2PT1

t0+2PT0+PT1 t0+3PT0+2PT1
t1

ET1

PT1

t1

FIGURE 5.9
Symbol and timing diagram of the oscillator timer (TOS).

113Timer Macros

© 2008 Taylor & Francis Group, LLC

integer variable TOS8+num (num = 0, 1, …, 7) is used to count the rising
edges of the CLK. Note that we use the same counter TOS8+num (num = 0,
1, …, 7) to obtain the time delays for both OFF and ON times, as these dura-
tions are mutually exclusive. The count value of TOS8+num (num = 0, 1, …,
7) defines the elapsed time ET0 or ET1 as follows: ET(0 or 1) = CLK × count
value of TOS8+num (num = 0, 1, …, 7). Let us now briefly consider how the
macro TOS_8 works. First, preset time PT0 (respectively PT1) is defined
by means of a reference timing signal CLK = t_reg,t_bit and a time

(a)

FIGURE 5.10
(a) The macro TOS_8 and (b) its flowchart. (Continued)

114 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

Temp_1 W

(TOS+num) 00h
RESET TOS8_Q,num

Y

N

Y

 N

Y

N

SET TOS8_Q,num
(TOS8+num) 00h

SET TOS8_RED,num

N

Y

N

Y

N

Y

N

Y

RESET TOS8_RED,num
(TOS8+num)=(TOS8+num)+1

Temp_1,0 = 1

t_reg,t_bit = 1

t_reg,t_bit = 1

L1

TOS8_RED,num = 1

TOS8_Q,num = 0

L2

(TOS8+num) = tcnst0(TOS8+num) = tcnst1

RESET TOS8_Q,num
(TOS8+num) 00h

begin

end

?

?

?

?

?

??

(b)

FIGURE 5.10 (Continued)
(a) The macro TOS_8 and (b) its flowchart.

115Timer Macros

© 2008 Taylor & Francis Group, LLC

constant tcnst0 (respectively tcnst1). If the input signal IN, taken into the
macro by means of W, is false (OFF—0), then the output signal TOS8_Q,num
(num = 0, 1, …, 7) is forced to be false (OFF—0), and the counter TOS8+num
(num = 0, 1, …, 7) is loaded with 00h. If the input signal IN is true (ON—1)
and the output signal Q, i.e., the status bit TON8_Q,num (num = 0, 1, …,
7), is false (OFF—0), then with each rising edge of the reference timing sig-
nal CLK = t_reg,t_bit the related counter TON8+num is incremented
by one. In this case, when the count value of TON8+num is equal to the
number tcnst0, then TON8+num is cleared and a state change from 0 to
1 is issued for the output signal (timer status bit) TON8_Q,num (num = 0,
1, …, 7). If both the input signal IN and the output signal Q, i.e., the status
bit TON8_Q,num (num = 0, 1, …, 7), are true (ON—1), then with each rising
edge of the reference timing signal CLK = t_reg,t_bit the related coun-
ter TON8+num is incremented by one. In this case, when the count value
of TON8+num is equal to the number tcnst1, then TON8+num is cleared
and a state change from 1 to 0 is issued for the output signal (timer status
bit) TON8_Q,num (num = 0, 1, …, 7). This process will continue as long as
the input signal IN remains true (ON—1). In this macro a previously defined
8-bit variable Temp_1 is also utilized.

5.9 Example for Timer Macros

In this section, we will consider an example, namely, UZAM_plc_16i16o_ex7
.asm, to show the usage of timer macros. In order to test this example, please
take the file from the CD-ROM attached to this book and then open the pro-
gram by MPLAB IDE and compile it. After that, by using the PIC program-
mer software, take the compiled file UZAM_plc_16i16o_ex7.hex, and by your
PIC programmer hardware, send it to the program memory of PIC16F648A

TABLE 5.4

Symbol of the Macro TOS_8

IN Q

CLK

num

TOS_8

tcnst0
tcnst1

PT0 = tcnst0 × CLK
PT1 = tcnst1 × CLK

IN (through W) = 0 or 1
CLK (t_reg,t_bit) = T0.0(1.024 ms), …, T1.7(3355.4432 ms)
tcnst0 (8bit) = 1, 2, ..., 255
tcnst1 (8bit) = 1, 2, ..., 255
num = 0, 1, …, 7
Q = TOS8_Q,num (num = 0, 1, …, 7)

116 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

microcontroller within the PIC16F648A-based PLC. To do this, switch the
4PDT in PROG position and the power switch in OFF position. After load-
ing the UZAM_plc_16i16o_ex7.hex, switch the 4PDT in RUN and the power
switch in the ON position. Please check the program’s accuracy by cross-
referencing it with the related macros.

Let us now consider this example program: The example program UZAM_
plc_16i16o_ex7.asm is shown in Figure 5.11. It shows the usage of all timer
macros described above. The ladder diagram of the user program of UZAM_
plc_16i16o_ex7.asm, shown in Figure 5.11, is depicted in Figure 5.12.

In the first two rungs, an on-delay timer TON_8 is implemented as fol-
lows: the input signal IN is taken from I0.0 num = 0, and therefore we choose
the first on-delay timer, whose timer status bit (or output Q) is TON8_Q0.
The preset time PT = tcnst × CLK = 50 × 104.8576 ms (T1.2) = 5242.88 ms =
5.24288 s. As can be seen from the second rung, the timer status bit TON8_Q0
is sent to output Q0.0.

In rungs 3 and 4, an off-delay timer TOF_8 is implemented as follows: the
input signal IN is taken from I0.2 num = 1, and therefore we choose the sec-
ond off-delay timer, whose timer status bit (or output Q) is TOF8_Q1. The
preset time PT = tcnst × CLK = 50 × 104.8576 ms (T1.2) = 5242.88 ms =
5.24288 s. As can be seen from rung 4, the timer status bit TOF8_Q1 is sent to
output Q0.2.

In rungs 5 and 6, a pulse timer TP_8 is implemented as follows: the input
signal IN is taken from I0.4 num = 2, and therefore we choose the third pulse
timer, whose timer status bit (or output Q) is TP8_Q2. The preset time PT =
tcnst × CLK = 50 × 104.8576 ms (T1.2) = 5242.88 ms = 5.24288 s. As can be
seen from rung 6, the timer status bit TP8_Q2 is sent to output Q0.4.

In rungs 7 and 8, an oscillator timer TOS_8 is implemented as follows:
the input signal IN is taken from I0.6 num = 3, and therefore we choose the
fourth oscillator timer, whose timer status bit (or output Q) is TOS8_Q3. The
preset time PT0 = tcnst0 × CLK = 50 × 104.8576 ms (T1.2) = 5242.88 ms =
5.24288 s. The preset time PT1 = tcnst1 × CLK = 50 × 104.8576 ms (T1.2) =
5242.88 ms = 5.24288 s. In this setup, the pulse trains we will obtain have a
50% duty cycle with the time period of T = 100 × 104.8576 ms = 10,485.76 ms
= 10.48576 s. As can be seen from rung 8, the timer status bit TOS8_Q3 is sent
to output Q0.6.

In rungs 9 and 10, another on-delay timer TON_8 is implemented as fol-
lows: the input signal IN is taken from I1.1 num = 4, and therefore we choose
the fifth on-delay timer, whose timer status bit (or output Q) is TON8_Q4.
The preset time PT = tcnst × CLK = 10 × 419.4304 ms (T1.4) = 4194.304 ms =
4.194304 s. As can be seen from rung 10, the timer status bit TON8_Q4 is sent
to output Q1.1.

In rungs 11 and 12, another off-delay timer TOF_8 is implemented as
follows: the input signal IN is taken from I1.3 num = 5, and therefore
we choose the sixth off-delay timer, whose timer status bit (or output
Q) is TOF8_Q5. The preset time PT = tcnst × CLK = 10 × 419.4304 ms

117Timer Macros

© 2008 Taylor & Francis Group, LLC

FIGURE 5.11
The user program of UZAM_plc_16i16o_ex7.asm.

118 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

()
Q0.0

1
I0.0

T1.2

0

IN
CLK

tcnst
num

TON_8

50

TON8_Q0

104,8576 ms

2

()
Q0.2

3
I0.2

1

IN
CLK

tcnst
num

TOF_8

50

TOF8_Q1
4

()
Q0.4

5
I0.4

2

IN
CLK

tcnst
num

TP_8

50

TP8_Q2
6

3

50

IN
CLK

num

TOS_8

tcnst0
tcnst150

7
I0.6

()
Q0.6TOS8_Q3

8

()
Q1.1

9
I1.1

T1.4

4

IN
CLK

tcnst
num

TON_8

10

TON8_Q4

419,4304 ms

10

()
Q1.3

11
I1.3

5

IN
CLK

tcnst
num

TOF_8

10

TOF8_Q5
12

()
Q1.5

13
I1.5

6

IN
CLK

tcnst
num

TP_8

10

TP8_Q6
14

7

10

IN
CLK

num

TOS_8

tcnst0
tcnst110

15
I1.7

()
Q1.7TOS8_Q7

16

T1.2

104,8576 ms

T1.2

104,8576 ms

T1.2

104,8576 ms

T1.4

419,4304 ms

T1.4

419,4304 ms

T1.4

419,4304 ms

FIGURE 5.12
The ladder diagram of the user program of UZAM_plc_16i16o_ex7.asm.

119Timer Macros

© 2008 Taylor & Francis Group, LLC

(T1.4) = 4194.304 ms = 4.194304 s. As can be seen from rung 12, the timer
status bit TOF8_Q5 is sent to output Q1.3.

In rungs 13 and 14, another pulse timer TP_8 is implemented as follows: the
input signal IN is taken from I1.5 num = 6, and therefore we choose the sev-
enth pulse timer, whose timer status bit (or output Q) is TP8_Q6. The preset
time PT = tcnst × CLK = 10 × 419.4304 ms (T1.4) = 4194.304 ms = 4.194304 s.
As can be seen from rung 14, the timer status bit TP8_Q6 is sent to output Q1.5.

In rungs 15 and 16, another oscillator timer TOS_8 is implemented as fol-
lows: the input signal IN is taken from I1.7 num = 7, and therefore we choose
the eighth oscillator timer, whose timer status bit (or output Q) is TOS8_Q7.
The preset time PT0 = tcnst0 × CLK = 10 × 419.4304 ms (T1.4) = 4194.304 ms
= 4.194304 s. The preset time PT1 = tcnst1 × CLK = 10 × 419.4304 ms (T1.4) =
4194.304 ms = 4.194304 s. In this setup, the pulse trains we will obtain have a
50% duty cycle with the time period of T = 20 × 419,4304 ms = 8,388608 s. As
can be seen from rung 16, the timer status bit TOS8_Q7 is sent to output Q1.7.

121© 2008 Taylor & Francis Group, LLC

6
Counter Macros

In this chapter, the following counter macros are described:

CTU_8 (up counter)
CTD_8 (down counter)
CTUD_8 (up/down counter)

In addition two macros, move_R and load_R, are also described for data
transfer.

6.1 Move and Load Macros

In a PLC, numbers are often required to be moved from one location to
another; a timer preset value may be required to be changed according to
plant conditions, or the result of some calculations may be used in another
part of a program. To satisfy this need for 8-bit variables, in the PIC16F648A-
based PLC we define the macro move_R. Similarly, the macro load_R is also
described to load an 8-bit number into an 8-bit variable.

The algorithm and the symbol of the macro move_R are depicted in
Table 6.1. Figure 6.1 shows the macro move_R and its flowchart. In this macro,
EN is a Boolean input variable taken into the macro through W, and ENO is
a Boolean output variable sent out from the macro through W. Output ENO
follows the input EN. This means that when EN = 0, ENO is forced to be
0, and when EN = 1, ENO is forced to be 1. This is especially useful if we
want to carry out more than one operation based on a single input condition.
When EN = 1, the macro move_R transfers the data from the 8-bit input vari-
able IN to the 8-bit output variable OUT.

The algorithm and the symbol of the macro load_R are depicted in
Table 6.2. Figure 6.2 shows the macro load_R and its flowchart. In this macro,
EN is a Boolean input variable taken into the macro through W, and ENO is
a Boolean output variable sent out from the macro through W. Output ENO
follows the input EN. This means that when EN = 0, ENO is forced to be 0,
and when EN = 1, ENO is forced to be 1. When EN = 1, the macro load_R
transfers the 8-bit constant data IN, within the 8-bit output variable OUT.

122 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

TABLE 6.1

Algorithm and Symbol of the Macro move_R

Algorithm Symbol

if EN = 1 then
OUT = IN;
ENO = 1;

else ENO = 0;
end if ;

EN ENO

IN OUT

W W

move_R
IN, OUT (8 bit register)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and the Symbol of the Macro move _ R

Temp_1 W

 Y

N

OUT IN
W Temp_1

L1

Temp_1,0 = 1?

begin

end

(a) (b)

FIGURE 6.1
(a) The macro move_R and (b) its flowchart.

TABLE 6.2

Algorithm and Symbol of the Macro load_R

Algorithm Symbol

if EN = 1 then
OUT = IN;
ENO = 1;

else ENO = 0;
end if ;

EN ENO

IN OUT

W W

load_R
IN (8 bit constant)
OUT (8 bit register)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and the Symbol of the Macro load _ R

123Counter Macros

© 2008 Taylor & Francis Group, LLC

The file definitions.inc, included within the CD-ROM attached to this
book, contains these two macros.

6.2 Counter Macros

Counters can be used in a wide range of applications. In this chapter, three
counter functions, up counter, down counter, and up/down counter, are
described. The definition of 8-bit variables to be used for the counter mac-
ros, and their allocation in BANK 0 of SRAM data memory are both shown
in Figure 6.3(a) and (b), respectively. Here, it is important to note that as we
restrict ourselves to use the BANK 0, where there are not enough registers
left, we cannot define different sets of 8-bit variables to be used in the count-
ing process for each counter type. Rather, we define eight 8-bit variables and
share them for each counter type. As a result, in total we can define eight dif-
ferent counters at most, irrespective of the counter type. The status bits, which
will be explained in the next sections, of all counters are defined as shown
in Figure 6.4(a). All the 8-bit variables defined for counters must be cleared
at the beginning of the PLC operation for a proper operation. Therefore,
all variables of counter macros are initialized within the macro initial-
ize, as shown in Figure 6.4(b). The file definitions.inc, included within the
CD-ROM attached to this book, contains all counter macros defined for the
PIC16F648A-based PLC.

Temp_1 W

Temp_1,0 = 1

Y

N

OUT IN
W Temp_1

L1

?

begin

end

(a) (b)

FIGURE 6.2
(a) The macro load_R and (b) its flowchart.

124 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

Let us now consider the counter macros. In the following, first, a general
description will be given for the considered counter function, and then its
implementation in the PIC16F648A-based PLC will be provided.

6.3 Up Counter (CTU)

The up counter (CTU) can be used to signal when a count has reached
a maximum value. The symbol of the up counter (CTU) is shown in
Figure 6.5, while its truth table is given in Table 6.3. The up counter counts

(a)

CTU8_Q
CTD8_Q

CTUD8_Q
CV_8

CV_8+1
CV_8+2
CV_8+3
CV_8+4
CV_8+5
CV_8+6
CV_8+7

CTU8_RED
CTD8_RED

CTUD8_RED

BANK 0

70h
71h
72h
73h
74h
75h
76h
77h
78h
79h
7Ah
7Bh
7Ch
7Dh
7Eh
7Fh

(b)

FIGURE 6.3
(a) Definition of 8-bit variables to be used for the counter macros. (b) Their allocation in BANK
0 of SRAM data memory.

125Counter Macros

© 2008 Taylor & Francis Group, LLC

(a)

(b)

FIGURE 6.4
(a) Definition of status bits of counter macros. (b) The initialization of all variables of counter
macros within the macro initialize.

126 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

the number of rising edges (↑) detected at the input CU. PV defines the
maximum value for the counter. Each time the counter is called with a new
rising edge (↑) on CU, the count value CV is incremented by one. When
the counter reaches the PV value, the counter output Q is set true (ON—1)
and the counting stops. The reset input R can be used to set the output Q
false (OFF—0) and clear the count value CV to zero. The following section
explains the implementation of eight 8-bit up counters for the PIC16F648A-
based PLC.

6.4 Macro CTU_8 (8-Bit Up Counter)

The macro CTU_8 defines eight up counters selected with the num =
0, 1, …, 7. Table 6.4 shows the symbol of the macro CTU_8. The macro
CTU_8 and its flowchart are depicted in Figure 6.6. CU (count up input),
Q (output signal = counter status bit), and R (reset input) are all defined as
Boolean variables. The PV (preset value) is an integer constant (here, for
8-bit resolution, it is chosen as any number in the range 1–255) and is used
to define a maximum count value for the counter. The counter outputs are
represented by the counter status bits: CTU8_Q,num (num = 0, 1, …, 7),
namely, CTU8_Q0, CTU8_Q1, …, CTU8_Q7, as shown in Figure 6.4(a). We

CTU
CU Q

R

PV CV

BOOL BOOL

INT INT

BOOL

CU: Count Up Input
R: Reset Input
PV: Preset Value
Q: Counter Output
CV: Count Value

FIGURE 6.5
The up counter (CTU).

TABLE 6.3

Truth Table of the Up Counter (CTU)

CU R Operation

× 1 1. Set the output Q false (OFF – LOW)
2. Clear the count value CV to zero

0 0 NOP (No Operation is done)
1 0 NOP

0 NOP

0 If CV < PV, then increment CV (i.e. CV = CV + 1).
If CV = PV, then hold CV and set the output Q true (ON – HIGH).

127Counter Macros

© 2008 Taylor & Francis Group, LLC

use a Boolean variable, CTU8_RED,num (num = 0, 1, …, 7), as a rising
edge detector for identifying the rising edges of the CU. An 8-bit integer
variable CV_8+num (num = 0, 1, …, 7) is used to count the rising edges of
the CU. Let us now briefly consider how the macro CTU_8 works. If the
input signal R is true (ON—1), then the output signal CTU8_Q,num (num
= 0, 1, …, 7) is forced to be false (OFF—0), and the counter CV_8+num
(num = 0, 1, …, 7) is loaded with 00h. If the input signal R is false (OFF—
0), then with each rising edge of the CU, the related counter CV_8+num
is incremented by one. In this case, when the count value of CV_8+num
is equal to the PV, then state change from 0 to 1 is issued for the output

(a)

FIGURE 6.6
(a) The macro CTU_8 and (b) its flowchart. (Continued)

TABLE 6.4

Symbol of the Macro CTU_8

CU

CTU_8

Q

R
PV
num

num = 0, 1, ..., 7
CU (cu_reg,cu_bit) = 0, 1
R (rs_reg,rs_bit) = 0, 1
PV (8 bit constant) = 1, 2, ..., 255
Q = CTU8_Q,num (num = 0, 1, ..., 7)

Symbol of the Macro CTU _ 8

128 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

N

SET CTU8_Q,num

Y

N

Y

RESET CTU8_RED,num
(CV_8+num)=(CV_8+num)+1

N

Y

N

Y

(CV_8+num) 00h
RESET CTU8_Q,num

Y

N

SET CTU8_RED,num

Y

N

rs_reg,rs_bit = 0?

L1

CTU8_Q,num = 0?

cu_reg,cu_bit = 1?

cu_reg,cu_bit = 1?

CTU8_RED,num = 1
?

(CV_8+num) = PV
?

L2

begin

end

(b)

FIGURE 6.6 (Continued)
(a) The macro CTU_8 and (b) its flowchart.

129Counter Macros

© 2008 Taylor & Francis Group, LLC

signal (counter status bit) CTU8_Q,num (num = 0, 1, …, 7) and the count-
ing stops.

6.5 Down Counter (CTD)

The down counter (CTD) can be used to signal when a count has reached
zero, on counting down from a preset value. The symbol of the down coun-
ter (CTD) is shown in Figure 6.7, while its truth table is given in Table 6.5.
The down counter counts down the number of rising edges (↑) detected at
the input CD. PV defines the starting value for the counter. Each time the
counter is called with a new rising edge (↑) on CD, the count value CV is
decremented by one. When the counter reaches zero, the counter output Q
is set true (ON—1) and the counting stops. The load input LD can be used
to clear the output Q to false (OFF—0) and load the count value CV with the
preset value PV. The following section explains the implementation of eight
8-bit down counters for the PIC16F648A-based PLC.

CTD
CD Q

LD

PV CV

BOOL

INT

BOOL

INT

BOOL

CD: Count Down Input
LD: Load Input
PV: Preset Value
Q: Counter Output
CV: Count Value

FIGURE 6.7
The down counter (CTD).

TABLE 6.5

Truth Table of the Down Counter (CTD)

CD LD Operation

× 1 1. Clear the output Q to false (OFF – LOW)
2. Load the count value CV with the preset value PV

0 0 NOP (No Operation is done)
1 0 NOP

0 NOP

0 If CV > 0, then decrement CV (i.e., CV = CV – 1).
If CV = 0, then hold CV and set the output Q true (ON – HIGH).

130 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

6.6 Macro CTD_8 (8-Bit Down Counter)

The macro CTD_8 defines eight down counters selected with the num = 0, 1,
…, 7. Table 6.6 shows the symbol of the macro CTD_8. The macro CTD_8 and
its flowchart are depicted in Figure 6.8. CD (count down input), Q (output
signal = counter status bit), and LD (load input) are all defined as Boolean

(a)

FIGURE 6.8
(a) The macro CTD_8 and (b) its flowchart. (Continued)

TABLE 6.6

Symbol of the Macro CTD_8

CD

CTD_8

Q

LD
PV
num

num = 0, 1, ..., 7
CD (cd_reg,cd_bit) = 0, 1
LD (ld_reg,ld_bit) = 0, 1
PV (8 bit constant) = 1, 2, ..., 255
Q = CTD8_Q,num (num = 0, 1, ..., 7)

Symbol of the Macro CTD _ 8

131Counter Macros

© 2008 Taylor & Francis Group, LLC

Y

N

N

Y

N

Y

N

 SET CTD8_Q,num

(CV_8+num) PV
RESET CTD8_Q,num

Y

SET CTD8_RED,num

N

Y
RESET CTD8_RED,num

(CV8+num)=(CV8+num) – 1

N

Y

ld_reg,ld_bit = 0?

L2

CTD8_Q,num = 0?

cd_reg,cd_bit = 1?

cd_reg,cd_bit = 1?

CTD8_RED,num = 1?

(CV8+num) = 0?

L1

N

Y

(CV8+num) ≠ 0
?

begin

end

(b)

FIGURE 6.8 (Continued)
(a) The macro CTD_8 and (b) its flowchart.

132 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

variables. The PV (preset value) is an integer constant (here, for 8-bit resolu-
tion, it is chosen as any number in the range 1–255) and is used to define a start-
ing value for the counter. The counter outputs are represented by the counter
status bits: CTD8_Q,num (num = 0, 1, …, 7), namely, CTD8_Q0, CTD8_Q1,
…, CTD8_Q7, as shown in Figure 6.4(a). We use a Boolean variable, CTD8_
RED,num (num = 0, 1, …, 7), as a rising edge detector for identifying the ris-
ing edges of the CD. An 8-bit integer variable CV_8+num (num = 0, 1, …, 7) is
used to count the rising edges of the CD. Let us now briefly consider how the
macro CTD_8 works. If the input signal LD is true (ON—1), then the output
signal CTU8_Q,num (num = 0, 1, …, 7) is forced to be false (OFF—0), and the
counter CV_8+num (num = 0, 1, …, 7) is loaded with PV. If the input signal
LD is false (OFF—0), then with each rising edge of the CD, the related coun-
ter CV_8+num is decremented by one. In this case, when the count value of
CV_8+num is equal to zero, then state change from 0 to 1 is issued for the
output signal (counter status bit) CTU8_Q,num (num = 0, 1, …, 7) and the
counting stops.

6.7 Up/Down Counter (CTUD)

The up/down counter (CTUD) has two inputs CU and CD. It can be used to
both count up on one input and count down on the other. The symbol of the
up/down counter (CTUD) is shown in Figure 6.9, while its truth table is given
in Table 6.7. The up/down counter counts up the number of rising edges (↑)
detected at the input CU. The up/down counter counts down the number of
rising edges (↑) detected at the input CD. PV defines the maximum value for
the counter. When the counter reaches the PV value, the counter output Q is
set true (ON—1) and the counting up stops. The reset input R can be used
to set the output Q false (OFF—0) and clear the count value CV to zero. The
load input LD can be used to load the count value CV with the preset value
PV. When the counter reaches zero, the counting down stops. The following

CTUD
CU

CD

Q

LD
PV CV

BOOL

INT
BOOL

RBOOL

BOOL

BOOL

INT

CU: Count Up Input
CD: Count Down Input
R: Reset Input
LD: Load Input
PV: Preset Value
Q: Counter Output
CV: Count Value

FIGURE 6.9
The up/down counter (CTUD).

133Counter Macros

© 2008 Taylor & Francis Group, LLC

section explains the implementation of eight 8-bit up/down counters for the
PIC16F648A-based PLC.

6.8 Macro CTUD_8 (8-Bit Up/Down Counter)

The macro CTUD_8 defines eight up/down counters selected with the num =
0, 1, …, 7. Table 6.8 shows the symbol of the macro CTUD_8. The macro CTUD8
and its flowchart are depicted in Figure 6.10. CU (count up input), CD (count
down input), Q (output signal = counter status bit), R (reset input), and LD

TABLE 6.7

Truth Table of the Up/Down Counter (CTUD)

CU CD R LD Operation

× × 1 × 1. Set the output Q false (OFF – LOW)
2. Clear the count value CV to zero

× × 0 1 Load the count value CV with the preset value PV
0 0 0 0 NOP (No Operation is done)
0 1 0 0 NOP
1 0 0 0 NOP
1 1 0 0 NOP
1 0 0 NOP

1 0 0 NOP
× 0 0 NOP

× 0 0 NOP

0 0 0 If CV < PV, then increment CV.
If CV = PV, then hold CV and set the output Q true (ON – HIGH).

0 0 0 If CV > 0, then decrement CV.

TABLE 6.8

Symbol of the Macro CTUD8

CD

CTUD_8

Q
CD

R
LD

PV
num

num = 0, 1, ..., 7
CU (cu_reg,cu_bit) = 0, 1
CD (cd_reg,cd_bit) = 0, 1
R (rs_reg,rs_bit) = 0, 1
LD (ld_reg,ld_bit) = 0, 1
PV (8 bit constant) = 1, 2, ..., 255
Q = CTUD8_Q,num (num = 0, 1, ..., 7)

134 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

(load input) are all defined as Boolean variables. The PV (preset value) is an
integer constant (here, for 8-bit resolution, it is chosen as any number in the
range 1–255) and is used to define a maximum count value for the counter. The
counter outputs are represented by the counter status bits: CTUD8_Q,num
(num = 0, 1, …, 7), namely, CTUD8_Q0, CTUD8_Q1, …, CTUD8_Q7, as shown

(a)

FIGURE 6.10
(a) The macro CTUD8 and (b) its flowchart. (Continued)

135Counter Macros

© 2008 Taylor & Francis Group, LLC

N

Y

N

 Y

N

 SET CTUD8_Q,num

Y

SET CTUD8_RED,num

N

NY

(CV_8+num) 00h

N

Y

Temp_1 cu_reg,cu_bit OR cd_reg,cd_bit

N

Y Y

N

(CV_8+num)=(CV_8+num)+1

rs_reg,rs_bit = 0
?

L1

L4

ld_reg,ld_bit = 0
?

L3

(CV_8+num) PV

Temp_1,0 = 1
?

CTUD8_RED,num = 1?

 CTUD8_Q,num = 0? (CV_8+num) ≠ 0
?

(CV_8+num)=(CV_8+num) – 1

RESET CTUD8_Q,num

(CV8+num) = PV?

RESET CTUD8_RED,num
Y

NY
cu_reg,cu_bit = 1?

L2

Temp_1,0 = 1
?

begin

end

(b)

FIGURE 6.10 (Continued)
(a) The macro CTUD8 and (b) its flowchart.

136 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

in Figure 6.4(a). We use a Boolean variable, CTUD8_RED,num (num = 0, 1, …,
7), as a rising edge detector for identifying the rising edges of the inputs CU
or CD. An 8-bit integer variable CV_8+num (num = 0, 1, …, 7) is used to count
up the rising edges of the CU and count down the rising edges of the CD.
Let us now briefly consider how the macro CTUD_8 works. If the input signal
R is true (ON—1), then the output signal CTU8_Q,num (num = 0, 1, …, 7) is
forced to be false (OFF—0), and the counter CV_8+num (num = 0, 1, …, 7) is
loaded with 00h. If the input signal R is false (OFF—0) and the input signal
LD is true (ON—1), then the counter CV_8+num (num = 0, 1, …, 7) is loaded
with PV. If the input signal R is false (OFF—0), the input signal LD is false
(OFF—0), and the CD is false (OFF—0), then with each rising edge of the CU,
the related counter CV_8+num is incremented by one. In this case, when the
count value of CV_8+num is equal to the PV, then state change from 0 to 1
is issued for the output signal (counter status bit) CTU8_Q,num (num = 0,
1, …, 7) and the counting up stops. If the input signal R is false (OFF—0), the
input signal LD is false (OFF—0), and the CU is false (OFF—0), then with
each rising edge of the CD, the related counter CV_8+num is decremented by
one. The counting down stops when the CV reaches zero.

6.9 Examples for Counter Macros

In this section, we will consider four examples, namely, UZAM_plc_16i16o_
exX.asm (X = 8, 9, 10, 11), to show the usage of counter macros. In order to test
one of these examples, please take the related file UZAM_plc_16i16o_exX
.asm (X = 8, 9, 10, 11) from the CD-ROM attached to this book, and then open
the program by MPLAB IDE and compile it. After that, by using the PIC
programmer software, take the compiled file UZAM_plc_16i16o_exX.hex
(X = 8, 9, 10, 11), and by your PIC programmer hardware, send it to the pro-
gram memory of PIC16F648A microcontroller within the PIC16F648A-based
PLC. To do this, switch the 4PDT in PROG position and the power switch in
OFF position. After loading the file UZAM_plc_16i16o_exX.hex (X = 8, 9, 10,
11), switch the 4PDT in RUN and the power switch in ON position. Please
check the program’s accuracy by cross-referencing it with the related macros.

Let us now consider these example programs: The first example program,
UZAM_plc_16i16o_ex8.asm, is shown in Figure 6.11. It shows the usage
of the macro CTU_8. The ladder diagram of the user program of UZAM_
plc_16i16o_ex8.asm, shown in Figure 6.11, is depicted in Figure 6.12. In the
first two rungs, an up counter CTU_8 is implemented as follows: the count
up input CU is taken from I0.0, while the reset input R is taken from I0.1 num
= 0, and therefore we choose the first up counter, whose counter status bit (or
output Q) is CTU8_Q0. The preset value PV = 15. As can be seen from the sec-
ond rung, the state of the counter status bit CTU8_Q0 is sent to output Q0.0.
In the third rung, by using the move_R function, the contents of the register

137Counter Macros

© 2008 Taylor & Francis Group, LLC

CV_8, which keeps the current count value (CV) of the first up counter, are
sent to the output register Q1.

The second example program, UZAM_plc_16i16o_ex9.asm, is shown in
Figure 6.13. It shows the usage of the macro CTD_8. The ladder diagram
of the user program of UZAM_plc_16i16o_ex9.asm, shown in Figure 6.13,

FIGURE 6.11
The user program of UZAM_plc_16i16o_ex8.asm.

()
Q0.0

1
I0.0

CTU8_Q0
2

0
15

CTU_8

CU Q
R

PV
num

I0.1

3
LOGIC1

EN ENO

IN OUT

move_R

Q1CV_8

FIGURE 6.12
The ladder diagram of the user program of UZAM_plc_16i16o_ex8.asm.

FIGURE 6.13
The user program of UZAM_plc_16i16o_ex9.asm.

138 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

is depicted in Figure 6.14. In the first two rungs, a down counter CTD_8 is
implemented as follows: the count down input CD is taken from I0.2, while
the load input LD is taken from I0.3 num = 4, and therefore we choose the
fifth down counter, whose counter status bit (or output Q) is CTD8_Q4. The
preset value PV = 10. As can be seen from the second rung, the state of the
counter status bit CTD8_Q4 is sent to output Q0.4. In the third rung, by using
the move_R function the contents of the register CV_8+4, which keeps the
current count value (CV) of the fifth down counter, are sent to the output
register Q1.

The third example program, UZAM_plc_16i16o_ex10.asm, is shown in
Figure 6.15. It shows the usage of the macro CTUD_8. The ladder diagram of
the user program of UZAM_plc_16i16o_ex10.asm, shown in Figure 6.15, is
depicted in Figure 6.16. In the first two rungs, an up/down counter CTUD_8
is implemented as follows: the count up input CU is taken from I0.4, the
count down input CD is taken from I0.5, while the reset input R is taken

Q0.4

1
I0.2

CTD8_Q4
2

4
10

CTD_8

CD Q
LD

PV
num

I0.3

3
LOGIC1

EN ENO

IN OUT

move_R

Q1CV_8+4

FIGURE 6.14
The ladder diagram of the user program of UZAM_plc_16i16o_ex9.asm.

FIGURE 6.15
The user program of UZAM_plc_16i16o_ex10.asm.

139Counter Macros

© 2008 Taylor & Francis Group, LLC

from I0.6 and the load input LD is taken from I0.7 num = 7, and therefore
we choose the eighth up/down counter, whose counter status bit (or output
Q) is CTUD8_Q7. The preset value PV = 20. As can be seen from the second
rung, the state of the counter status bit CTUD8_Q7 is sent to output Q0.7. In
the third rung, by using the move_R function the contents of the register
CV_8+7, which keeps the current count value (CV) of the eighth up/down
counter, are sent to the output register Q1.

The fourth and last example program, UZAM_plc_16i16o_ex11.asm, is
shown in Figure 6.17. It shows the usage of all counter macros. The ladder
diagram of the user program of UZAM_plc_16i16o_ex11.asm, shown in
Figure 6.17, is depicted in Figure 6.18. This example contains the previous
three examples in one program.

In the first two rungs, an up counter CTU_8 is implemented as follows: the
count up input CU is taken from I0.0, while the reset input R is taken from
I0.1. As num = 0, the first up counter is chosen, whose counter status bit (or
output Q) is CTU8_Q0. The preset value PV = 15. As can be seen from the sec-
ond rung, the state of the counter status bit CTU8_Q0 is sent to output Q0.0.

In rungs 3 and 4, a down counter CTD_8 is implemented as follows: the
count down input CD is taken from I0.2, while the load input LD is taken from
I0.3. As num = 4, the fifth down counter is chosen, whose counter status bit
(or output Q) is CTD8_Q4. The preset value PV = 10. As can be seen from the
fourth rung, the state of the counter status bit CTD8_Q4 is sent to output Q0.4.

In rungs 5 and 6, an up/down counter CTUD_8 is implemented as follows:
the count up input CU is taken from I0.4, the count down input CD is taken

7
20

CU Q

 LD
PV

 R

CD

 num

CTUD_8

1
I0.4

I0.5

I0.7

Q0.7CTUD8_Q7
2

I0.6

3
LOGIC1

EN ENO
IN OUT

move_R

Q1CV_8+7

FIGURE 6.16
The ladder diagram of the user program of UZAM_plc_16i16o_ex10.asm.

140 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

from I0.5, while the reset input R is taken from I0.6 and the load input LD is
taken from I0.7. As num = 7, the eighth up/down counter is chosen, whose
counter status bit (or output Q) is CTUD8_Q7. The preset value PV = 20. As
can be seen from the sixth rung, the state of the counter status bit CTUD8_Q7
is sent to output Q0.7.

In rungs 7 to 9, based on the input bits I1.1 and I1.0, one of three situations
is chosen: If I1.1,I1.0 = 01, then M0.1 is activated. If I1.1,I1.0 = 10, then M0.2 is
activated. Finally, if I1.1,I1.0 = 11, then M0.3 is activated.

In rung 10, if M0.1 = 1, then by using the move_R function, the contents of
the register CV_8, which keeps the current count value (CV) of the first up
counter, are sent to the output register Q1.

FIGURE 6.17
The user program of UZAM_plc_16i16o_ex11.asm.

141Counter Macros

© 2008 Taylor & Francis Group, LLC

Q0.0

1
I0.0

CTU8_Q0
2

0
15

CTU_8

CU Q
R
PV
num

I0.1

Q0.4

3
I0.2

CTD8_Q4
4

4
10

CTD_8

CD
LD
PV
num

I0.3

7
20

CU Q

LD
PV

R

CD

num

CTUD_8

5
I0.4

I0.5

I0.7

Q0.7CTUD8_Q7
6

I0.6

12

move_R

Q1CV_8+7

11 EN ENO
IN OUT

EN ENO
IN OUT

move_R

Q1CV_8+4

10 EN ENO
IN OUT

move_R

Q1CV_8

7
M0.1I1.1 I1.0

9
M0.3I1.1 I1.0

8
M0.2I1.1 I1.0

M0.1

M0.2

M0.3

FIGURE 6.18
The ladder diagram of the user program of UZAM_plc_16i16o_ex11.asm.

142 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

In rung 11, if M0.2 = 1, then by using the move_R function, the contents of
the register CV_8+4, which keeps the current count value (CV) of the fifth
down counter, are sent to the output register Q1.

In rung 12, if M0.3 = 1, then by using the move_R function, the contents of
the register CV_8+7, which keeps the current count value (CV) of the eighth
up/down counter, are sent to the output register Q1.

143© 2008 Taylor & Francis Group, LLC

7
Comparison Macros

Numerical values often need to be compared in PLC programs; typical
examples are a batch counter saying the required number of items has been
delivered, or alarm circuits indicating, for example, a temperature has gone
above some safety level. These comparisons are performed by elements that
have the generalized form of Figure 7.1, with two numerical inputs A and B
corresponding to the values to be compared, and a Boolean (on/off) output
that is true if the specified condition is met. The comparisons provided in
this chapter are as follows:

A greater than B (A > B)
A greater than or equal to B (A > = B)
A equal to B (A = B)
A less than B (A < B)
A less than or equal to B (A < = B)
A not equal to B (A <> B)

where A and B are 8-bit numerical data.
In this chapter, two groups of comparison macros are described for the

PIC16F648A-based PLC. In the former, the contents of two registers (R1 and
R2) are compared according to the following:

GT (greater than, >)
GE (greater than or equal to, > =)
EQ (equal to, =)
LT (less than, <)
LE (less than or equal to, < =)
NE (not equal to, < >)

In the latter, similar comparison macros are also described for comparing
the content of an 8-bit register (R) with an 8-bit constant (K). The file defini-
tions.inc, included within the CD-ROM attached to this book, contains all
comparison macros defined for the PIC16F648A-based PLC. Let us now con-
sider these comparison macros in detail.

144 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

7.1 Macro R1_GT_R2

The definition, symbols, and algorithm of the macro R1_GT_R2 are depicted
in Table 7.1. Figure 7.2 shows the macro R1_GT_R2 and its flowchart. The
macro R1_GT_R2 has a Boolean input variable (active high enabling input),
EN, passed into the macro through W, and a Boolean output variable, Q,
passed out of the macro through W. This means that the input signal EN
should be loaded into W before this macro is run, and the output signal Q
will be provided within the W at the end of the macro. R1 and R2 are both
8-bit input variables. When EN = 0, no action is taken and the output Q (W)
is forced to be 0. When EN = 1, if the content of R1 is greater than the content
of R2 (R1 > R2), then the output Q (W) is forced to be 1. Otherwise, the output
Q (W) is forced to be 0.

7.2 Macro R1_GE_R2

The definition, symbols, and algorithm of the macro R1_GE_R2 are depicted
in Table 7.2. Figure 7.3 shows the macro R1_GE_R2 and its flowchart. The
macro R1_GE_R2 has a Boolean input variable (active high enabling input),
EN, passed into the macro through W, and a Boolean output variable, Q,
passed out of the macro through W. This means that the input signal EN

A
Compare

Binary result:
true or false
1 or 0B

FIGURE 7.1
The generalized form of data comparison.

TABLE 7.1

Definition, Symbols, and Algorithm of the Macro R1_GT_R2

Definition Ladder Diagram
Symbol Schematic Symbol Algorithm

is the content of
register R1 Greater
Than the content

of register R2?

R1

R2
>W W

EN Q
R1 >R2

W W

R1, R2 (8 bit register)
EN (through W) = 0 or 1
Q (through W) = 0 or 1

if EN = 1 then
if R1 > R2 then

Q = 1;
else Q = 0;

end if ;

145Comparison Macros

© 2008 Taylor & Francis Group, LLC

should be loaded into W before this macro is run, and the output signal Q
will be provided within the W at the end of the macro. R1 and R2 are both
8-bit input variables. When EN = 0, no action is taken and the output Q (W) is
forced to be 0. When EN = 1, if the content of R1 is greater than or equal to the
content of R2 (R1 ≥ R2), then the output Q (W) is forced to be 1. Otherwise,
the output Q (W) is forced to be 0.

Temp_1 W

Y

N

R1 > R2

Y

N

W 0 W 1

L1

L2

Temp_1,0 = 1?

?

begin

end

(a) (b)

FIGURE 7.2
(a) The macro R1_GT_R2 and (b) its flowchart.

TABLE 7.2

Definition, Symbols, and Algorithm of the Macro R1_GE_R2

Definition Ladder diagram
symbol Schematic symbol Algorithm

is the content of
register R1 Greater

than or Equal to
the

content of register
R2?

R1

R2
W W

EN Q
R1 >=R2

W W

R1, R2 (8 bit register)
EN (through W) = 0 or 1
Q (through W) = 0 or 1

if EN = 1 then
if R1 ≥ R2 then

Q = 1;
else Q = 0;

end if ;

Definition, Symbols, and Algorithm of the Macro R1 _ GE _ R2

>=

146 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

7.3 Macro R1_EQ_R2

The definition, symbols, and algorithm of the macro R1_EQ_R2 are depicted
in Table 7.3. Figure 7.4 shows the macro R1_EQ_R2 and its flowchart. The
macro R1_EQ_R2 has a Boolean input variable (active high enabling input),
EN, passed into the macro through W, and a Boolean output variable, Q,
passed out of the macro through W. This means that the input signal EN

Temp_1 W

Y

N

R1 >= R2

Y

N

W 0 W 1

L1

L2

Temp_1,0 = 1?

?

begin

end

(a) (b)

FIGURE 7.3
(a) The macro R1_GE_R2 and (b) its flowchart.

TABLE 7.3

Definition, Symbols, and Algorithm of the Macro R1_EQ_R2

Definition Ladder diagram
symbol Schematic symbol Algorithm

is the content of
register R1 EQual
to the content of

register R2?

R1

R2
=W W

EN Q
R1 =R2

W W

R1, R2 (8 bit register)
EN (through W) = 0 or 1
Q (through W) = 0 or 1

if EN = 1 then
if R1 = R2 then

Q = 1;
else Q = 0;

end if ;

Definition, Symbols, and Algorithm of the Macro R1 _ EQ _ R2

147Comparison Macros

© 2008 Taylor & Francis Group, LLC

should be loaded into W before this macro is run, and the output signal Q
will be provided within the W at the end of the macro. R1 and R2 are both
8-bit input variables. When EN = 0, no action is taken and the output Q (W)
is forced to be 0. When EN = 1, if the content of R1 is equal to the content of
R2 (R1 = R2), then the output Q (W) is forced to be 1. Otherwise, the output
Q (W) is forced to be 0.

7.4 Macro R1_LT_R2

The definition, symbols, and algorithm of the macro R1_LT_R2 are depicted
in Table 7.4. Figure 7.5 shows the macro R1_LT_R2 and its flowchart. The
macro R1_LT_R2 has a Boolean input variable (active high enabling input),
EN, passed into the macro through W, and a Boolean output variable, Q,
passed out of the macro through W. This means that the input signal EN
should be loaded into W before this macro is run, and the output signal Q
will be provided within the W at the end of the macro. R1 and R2 are both
8-bit input variables. When EN = 0, no action is taken and the output Q (W)
is forced to be 0. When EN = 1, if the content of R1 is less than the content of

Temp_1 W

Y

N

R1 = R2

Y

N

W 0 W 1

L1

L2

Temp_1,0 = 1?

?

begin

end

(a) (b)

FIGURE 7.4
(a) The macro R1_EQ_R2 and (b) its flowchart.

148 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

R2 (R1 < R2), then the output Q (W) is forced to be 1. Otherwise, the output
Q (W) is forced to be 0.

7.5 Macro R1_LE_R2

The definition, symbols, and algorithm of the macro R1_LE_R2 are depicted
in Table 7.5. Figure 7.6 shows the macro R1_LE_R2 and its flowchart. The
macro R1_LE_R2 has a Boolean input variable (active high enabling input),

Temp_1 W

Y

N

R1 < R2

Y

N

W 0 W 1

L1

L2

Temp_1,0 = 1
?

?

begin

end

(b)(a)

FIGURE 7.5
(a) The macro R1_LT_R2 and (b) its flowchart.

TABLE 7.4

Definition, Symbols, and Algorithm of the Macro R1_LT_R2

Definition Ladder diagram
symbol Schematic symbol Algorithm

is the content of
register R1 Less

Than the content
of register R2?

R1

R2
<W W

EN Q
R1 <R2

W W

R1, R2 (8 bit register)
EN (through W) = 0 or 1
Q (through W) = 0 or 1

if EN = 1 then
if R1 < R2 then

Q = 1;
else Q = 0;

end if ;

Definition, Symbols, and Algorithm of the Macro R1 _ LT _ R2

149Comparison Macros

© 2008 Taylor & Francis Group, LLC

EN, passed into the macro through W, and a Boolean output variable, Q,
passed out of the macro through W. This means that the input signal EN
should be loaded into W before this macro is run, and the output signal Q
will be provided within the W at the end of the macro. R1 and R2 are both
8-bit input variables. When EN = 0, no action is taken and the output Q (W)
is forced to be 0. When EN = 1, if the content of R1 is less than or equal to the
content of R2 (R1 ≤ R2), then the output Q (W) is forced to be 1. Otherwise,
the output Q (W) is forced to be 0.

Temp_1 W

Y

N

R1 <= R2

Y

N

W 0 W 1

L1

L2

Temp_1,0 = 1
?

?

begin

end

(b)(a)

FIGURE 7.6
(a) The macro R1_LE_R2 and (b) its flowchart.

TABLE 7.5

Definition, Symbols, and Algorithm of the Macro R1_LE_R2

Definition Ladder diagram
symbol Schematic symbol Algorithm

is the content of
register R1 Less
than or Equal to

the content of
register R2?

R1

R2
<=W W

EN Q
R1 <=R2

W W

R1, R2 (8 bit register)
EN (through W) = 0 or 1
Q (through W) = 0 or 1

if EN = 1 then
if R1 ≤ R2 then

Q = 1;
else Q = 0;

end if ;

Definition, Symbols, and Algorithm of the Macro R1 _ LE _ R2

150 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

7.6 Macro R1_NE_R2

The definition, symbols, and algorithm of the macro R1_NE_R2 are depicted
in Table 7.6. Figure 7.7 shows the macro R1_NE_R2 and its flowchart. The
macro R1_NE_R2 has a Boolean input variable (active high enabling input),
EN, passed into the macro through W, and a Boolean output variable, Q,
passed out of the macro through W. This means that the input signal EN

TABLE 7.6

Definition, Symbols, and Algorithm of the Macro R1_NE_R2

Definition Ladder diagram
symbol Schematic symbol Algorithm

is the content
of register R1

Not Equal to the
content of register

R2?

R1

R2
<>W W

EN Q
R1 <>R2

W W

R1, R2 (8 bit register)
EN (through W) = 0 or 1
Q (through W) = 0 or 1

if EN = 1 then
if R1 ≠ R2 then

Q = 1;
else Q = 0;

end if ;

Definition, Symbols, and Algorithm of the Macro R1 _ NE _ R2

Temp_1 W

Y

N

R1 ≠ R2

Y

N

W 0 W 1

L1

L2

Temp_1,0 = 1
?

?

begin

end
(b)(a)

FIGURE 7.7
(a) The macro R1_NE_R2 and (b) its flowchart.

151Comparison Macros

© 2008 Taylor & Francis Group, LLC

should be loaded into W before this macro is run, and the output signal Q
will be provided within the W at the end of the macro. R1 and R2 are both
8-bit input variables. When EN = 0, no action is taken and the output Q (W)
is forced to be 0. When EN = 1, if the content of R1 is not equal to the content
of R2 (R1 ≠ R2), then the output Q (W) is forced to be 1. Otherwise, the output
Q (W) is forced to be 0.

7.7 Macro R_GT_K

The definition, symbols, and algorithm of the macro R_GT_K are depicted in
Table 7.7. Figure 7.8 shows the macro R_GT_K and its flowchart. The macro
R_GT_K has a Boolean input variable (active high enabling input), EN, passed
into the macro through W, and a Boolean output variable, Q, passed out of
the macro through W. This means that the input signal EN should be loaded
into W before this macro is run, and the output signal Q will be provided
within the W at the end of the macro. R is an 8-bit input variable, while K
is an 8-bit constant value. When EN = 0, no action is taken and the output
Q (W) is forced to be 0. When EN = 1, if the content of R is greater than the
constant value K (R > K), then the output Q (W) is forced to be 1. Otherwise,
the output Q (W) is forced to be 0.

7.8 Macro R_GE_K

The definition, symbols, and algorithm of the macro R_GE_K are depicted in
Table 7.8. Figure 7.9 shows the macro R_GE_K and its flowchart. The macro
R_GE_K has a Boolean input variable (active high enabling input), EN, passed

TABLE 7.7

Definition, Symbols, and Algorithm of the Macro R_GT_K

Definition Ladder Diagram
Symbol Schematic Symbol Algorithm

is the content of
register R Greater
Than the constant

K?

R

K
>W W

EN Q
R >K

W W

R (8 bit register)
K (8 bit constant)
EN (through W) = 0 or 1
Q (through W) = 0 or 1

if EN = 1 then
if R > K then

Q = 1;
else Q = 0;

end if ;

152 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

into the macro through W, and a Boolean output variable, Q, passed out of
the macro through W. This means that the input signal EN should be loaded
into W before this macro is run, and the output signal Q will be provided
within the W at the end of the macro. R is an 8-bit input variable, while K
is an 8-bit constant value. When EN = 0, no action is taken and the output
Q (W) is forced to be 0. When EN = 1, if the content of R is greater than or
equal to the constant value K (R ≥ K), then the output Q (W) is forced to be 1.
Otherwise, the output Q (W) is forced to be 0.

TABLE 7.8

Definition, Symbols, and Algorithm of the Macro R_GE_K

Definition Ladder diagram
symbol Schematic symbol Algorithm

is the content of
register R Greater
than or Equal to
the constant K?

R

K
>=W W

EN Q
R >=K

W W

R (8 bit register)
K (8 bit constant)
EN (through W) = 0 or 1
Q (through W) = 0 or 1

if EN = 1 then
if R ≥ K then

Q = 1;
else Q = 0;

end if ;

Definition, Symbols, and Algorithm of the Macro R _ GE _ K

Temp_1 W

Y

N

R > K

Y

N

W 0 W 1

L1

L2

Temp_1,0 = 1
?

?

begin

end
(b)(a)

FIGURE 7.8
(a) The macro R_GT_K and (b) its flowchart.

153Comparison Macros

© 2008 Taylor & Francis Group, LLC

7.9 Macro R_EQ_K

The definition, symbols, and algorithm of the macro R_EQ_K are depicted
in Table 7.9. Figure 7.10 shows the macro R_EQ_K and its flowchart. The
macro R_EQ_K has a Boolean input variable (active high enabling input), EN,
passed into the macro through W, and a Boolean output variable, Q, passed
out of the macro through W. This means that the input signal EN should

TABLE 7.9

Definition, Symbols, and Algorithm of the Macro R_EQ_K

Definition Ladder diagram
symbol Schematic symbol Algorithm

is the content of
register R EQual

to the constant K?

R

K
=W W

EN Q
R =K

W W

R (8 bit register)
K (8 bit constant)
EN (through W) = 0 or 1
Q (through W) = 0 or 1

if EN = 1 then
if R = K then

Q = 1;
else Q = 0;

end if ;

Definition, Symbols, and Algorithm of the Macro R _ EQ _ K

Temp_1 W

Y

N

R >= K

Y

N

W 0 W 1

L1

L2

Temp_1,0 = 1
?

?

begin

end
(b)(a)

FIGURE 7.9
(a) The macro R_GE_K and (b) its flowchart.

154 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

be loaded into W before this macro is run, and the output signal Q will be
provided within the W at the end of the macro. R is an 8-bit input variable,
while K is an 8-bit constant value. When EN = 0, no action is taken and the
output Q (W) is forced to be 0. When EN = 1, if the content of R is equal to the
constant value K (R = K), then the output Q (W) is forced to be 1. Otherwise,
the output Q (W) is forced to be 0.

7.10 Macro R_LT_K

The definition, symbols, and algorithm of the macro R_LT_K are depicted
in Table 7.10. Figure 7.11 shows the macro R_LT_K and its flowchart. The
macro R_LT_K has a Boolean input variable (active high enabling input), EN,
passed into the macro through W, and a Boolean output variable, Q, passed
out of the macro through W. This means that the input signal EN should be
loaded into W before this macro is run, and the output signal Q will be pro-
vided within the W at the end of the macro. R is an 8-bit input variable, while
K is an 8-bit constant value. When EN = 0, no action is taken and the output
Q (W) is forced to be 0. When EN = 1, if the content of R is less than the

Temp_1 W

Y

N

R = K

Y

N

W 0 W 1

L1

L2

Temp_1,0 = 1
?

?

begin

end
(b)(a)

FIGURE 7.10
(a) The macro R_EQ_K and (b) its flowchart.

155Comparison Macros

© 2008 Taylor & Francis Group, LLC

constant value K (R < K), then the output Q (W) is forced to be 1. Otherwise,
the output Q (W) is forced to be 0.

7.11 Macro R_LE_K

The definition, symbols, and algorithm of the macro R_LE_K are depicted
in Table 7.11. Figure 7.12 shows the macro R_LE_K and its flowchart. The
macro R_LE_K has a Boolean input variable (active high enabling input), EN,

TABLE 7.10

Definition, Symbols, and Algorithm of the Macro R_LT_K

Definition Ladder diagram
symbol Schematic symbol Algorithm

is the content of
register R Less

Than the constant
K?

R

K
<W W

EN Q
R <K

W W

R (8 bit register)
K (8 bit constant)
EN (through W) = 0 or 1
Q (through W) = 0 or 1

if EN = 1 then
if R < K then

Q = 1;
else Q = 0;

end if ;

Definition, Symbols, and Algorithm of the Macro R _ LX _ K

Temp_1 W

Y

N

R < K

Y

N

W 0 W 1

L1

L2

Temp_1,0 = 1
?

?

begin

end
(b)(a)

FIGURE 7.11
(a) The macro R_LT_K and (b) its flowchart.

156 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

passed into the macro through W, and a Boolean output variable, Q, passed
out of the macro through W. This means that the input signal EN should
be loaded into W before this macro is run, and the output signal Q will be
provided within the W at the end of the macro. R is an 8-bit input variable,
while K is an 8-bit constant value. When EN = 0, no action is taken and the
output Q (W) is forced to be 0. When EN = 1, if the content of R is less than or
equal to the constant value K (R ≤ K), then the output Q (W) is forced to be 1.
Otherwise, the output Q (W) is forced to be 0.

Temp_1 W

Y

N

R <= K

Y

N

W 0 W 1

L1

L2

Temp_1,0 = 1
?

?

begin

end
(b)(a)

FIGURE 7.12
(a) The macro R_LE_K and (b) its flowchart.

TABLE 7.11

Definition, Symbols, and Algorithm of the Macro R_LE_K

Definition Ladder diagram
symbol Schematic symbol Algorithm

is the content of
register R Less

than or Equal to
the constant K?

R

K
<=W W

EN Q
R <=K

W W

R (8 bit register)
K (8 bit constant)
EN (through W) = 0 or 1
Q (through W) = 0 or 1

if EN = 1 then
if R ≤ K then

Q = 1;
else Q = 0;

end if ;

Definition, Symbols, and Algorithm of the Macro R _ LE _ K

157Comparison Macros

© 2008 Taylor & Francis Group, LLC

7.12 Macro R_NE_K

The definition, symbols, and algorithm of the macro R_NE_K are depicted
in Table 7.12. Figure 7.13 shows the macro R_NE_K and its flowchart. The
macro R_NE_K has a Boolean input variable (active high enabling input), EN,
passed into the macro through W, and a Boolean output variable, Q, passed
out of the macro through W. This means that the input signal EN should be
loaded into W before this macro is run, and the output signal Q will be pro-
vided within the W at the end of the macro. R is an 8-bit input variable, while
K is an 8-bit constant value. When EN = 0, no action is taken and the output

Temp_1 W

Y

N

R ≠ K

Y

N

W 0 W 1

L1

L2

Temp_1,0 = 1
?

?

begin

end
(b)(a)

FIGURE 7.13
(a) The macro R_NE_K and (b) its flowchart.

TABLE 7.12

Definition, Symbols, and Algorithm of the Macro R_NE_K

Definition Ladder diagram
symbol Schematic symbol Algorithm

is the content of
register R Not

Equal to the con-
stant K?

R

K
<>W W

EN Q
R <>K

W W

R (8 bit register)
K (8 bit constant)
EN (through W) = 0 or 1
Q (through W) = 0 or 1

if EN = 1 then
if R ≠ K then

Q = 1;
else Q = 0;

end if ;

Definition, Symbols, and Algorithm of the Macro R _ NE _ K

158 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

Q (W) is forced to be 0. When EN = 1, if the content of R is not equal to the
constant value K (R ≠ K), then the output Q (W) is forced to be 1. Otherwise,
the output Q (W) is forced to be 0.

7.13 Examples for Comparison Macros

In this section, we will consider two examples, UZAM_plc_16i16o_ex12.asm
and UZAM_plc_16i16o_ex13.asm, to show the usage of comparison macros.
In order to test one of these examples, please take the related file UZAM_
plc_16i16o_ex12.asm or UZAM_plc_16i16o_ex13.asm from the CD-ROM
attached to this book, and then open the program by MPLAB IDE and com-
pile it. After that, by using the PIC programmer software, take the compiled
file UZAM_plc_16i16o_ex12.hex or UZAM_plc_16i16o_ex13.hex, and by your
PIC programmer hardware, send it to the program memory of PIC16F648A
microcontroller within the PIC16F648A-based PLC. To do this, switch the
4PDT in PROG position and the power switch in OFF position. After loading
the file UZAM_plc_16i16o_ex12.hex or UZAM_plc_16i16o_ex13.hex, switch
the 4PDT in RUN and the power switch in ON position. Please check the
program’s accuracy by cross-referencing it with the related macros.

Let us now consider these example programs: The first example program,
UZAM_plc_16i16o_ex12.asm, is shown in Figure 7.14. It shows the usage of

FIGURE 7.14
The user program of UZAM_plc_16i16o_ex12.asm.

159Comparison Macros

© 2008 Taylor & Francis Group, LLC

1
LOGIC1 I 1

I 0
>

Q1.7

2
LOGIC1 Q1.4

3
LOGIC1 Q1.1

4
LOGIC1 Q0.6

5
LOGIC1 Q0.3

6
LOGIC1 Q0.0

>=

=

<

<=

< >

I 1

I 0
I 1

I 0
I 1

I 0
I 1

I 0
I 1

I 0

(a)

LOGIC1 EN Q
R1

>R2

Q1.7

LOGIC1 EN Q
R1

>=R2

Q1.4

LOGIC1 EN Q
R1

=R2

Q1.1

LOGIC1 EN Q
R1

<R2

Q0.6

LOGIC1 EN Q
R1
R2

Q0.3

LOGIC1 EN Q
 R1
 R2

Q0.0

<=

<>

I 1
I 0

I 1
I 0

I 1
I 0

I 1
I 0

I 1
I 0

I 1
I 0

(b)
FIGURE 7.15
The user program of UZAM_plc_16i16o_ex12.asm: (a) ladder diagram and (b) schematic
diagram.

160 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

the macros in which the contents of two registers (R1 and R2) are compared.
The ladder diagram and schematic diagram of the user program of UZAM_
plc_16i16o_ex12.asm, shown in Figure 7.14, are depicted in Figure 7.15(a) and
(b), respectively. In rungs 1 to 6, the content of I1 is compared with the content
of I0 based on the following criteria, respectively: >, ≥, =, <, ≤, ≠. The result of
each comparison is observed from the outputs Q1.7, Q1.4, Q1.1, Q0.6, Q0.3, and
Q0.0, respectively. These outputs will be true or false based on the comparison
being made and the input data entered from the inputs I1 and I0.

The second example program, UZAM_plc_16i16o_ex13.asm, is shown in
Figure 7.16. It shows the usage of the macros in which the content of a reg-
ister R is compared with a constant value K. The ladder diagram and sche-
matic diagram of the user program of UZAM_plc_16i16o_ex13.asm, shown
in Figure 7.16, are depicted in Figure 7.17(a) and (b), respectively. In rungs 1

FIGURE 7.16
The user program of UZAM_plc_16i16o_ex13.asm.

161Comparison Macros

© 2008 Taylor & Francis Group, LLC

1
LOGIC1 I 1

>
0Fh

Q1.7

2
LOGIC1 Q1.4

3
LOGIC1 Q1.1

4
LOGIC1 Q0.6

5
LOGIC1 Q0.3

6
LOGIC1 Q0.0

>=
0Fh

=
0Fh

<
0Fh

<=
0Fh

< >
0Fh

I 1

I 1

I 1

I 1

I 1

(a)

I 1
0Fh

LOGIC1 EN Q

I 1
0Fh

LOGIC1

I 1
0Fh

LOGIC1

I 1
0Fh

LOGIC1

I 1
0Fh

LOGIC1

I 1
0Fh

LOGIC1

>

Q1.7

>=

Q1.4

=

Q1.1

<

Q0.6

Q0.3

Q0.0

<=

<>

R
K

EN Q
R
K

EN Q
R
K

EN Q
R
K

EN Q
R
K

EN Q
R
K

(b)
FIGURE 7.17
The user program of UZAM_plc_16i16o_ex13.asm: (a) ladder diagram and (b) schematic
diagram.

162 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

to 6, the content of I1 is compared with the constant value 0Fh based on the
following criteria, respectively: >, ≥, =, <, ≤, ≠. The result of each comparison is
observed from the outputs Q1.7, Q1.4, Q1.1, Q0.6, Q0.3, and Q0.0, respectively.
These outputs will be true or false based on the comparison being made and
the input data entered from the input register I1.

163© 2008 Taylor & Francis Group, LLC

8
Arithmetical Macros

Numerical data imply the ability to do arithmetical operations, and almost
all PLCs provide some arithmetical operations, such as add, subtract, multi-
ply, and divide. Arithmetical functions will retrieve one or more values, per-
form an operation, and store the result in memory. As an example, Figure 8.1
shows an ADD function that will retrieve and add two values from sources
labeled source A and source B and will store the result in destination C. The list
of arithmetical functions (macros) described for the PIC16F648A-based PLC
is as follows. The increment and decrement functions are unary, so there is
only one source.

ADD (source value 1, source value 2, destination): Add two source val-
ues and put the result in the destination.

SUB (source value 1, source value 2, destination): Subtract the second
source value from the first one and put the result in the destination.

INC (source value, destination): Increment the source and put the result
in the destination.

DEC (source value, destination): Decrement the source and put the
result in the destination.

In this chapter, the following six arithmetical macros are described for the
PIC16F648A-based PLC:

R1addR2

RaddK

R1subR2

RsubK

incR

decR

The file definitions.inc, included within the CD-ROM attached to this book,
contains all arithmetical macros defined for the PIC16F648A-based PLC. Let
us now consider these macros in detail.

164 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

8.1 Macro R1addR2

The algorithm and the symbol of the macro R1addR2 are depicted in Table 8.1.
Figure 8.2 shows the macro R1addR2 and its flowchart. In this macro, EN
is a Boolean input variable taken into the macro through W, and ENO is a
Boolean output variable sent out from the macro through W. Output ENO

Temp_1 W

Y

N

OUT R1 + R2
W Temp_1

L1

Temp_1,0 = 1?

begin

end
(b)(a)

FIGURE 8.2
(a) The macro R1addR2 and (b) its flowchart.

Source A
ADD

Source B
Destination C

FIGURE 8.1
The ADD function.

TABLE 8.1

Algorithm and Symbol of the Macro
R1addR2

Algorithm Symbol

if EN = 1 then
OUT = R1 + R2;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
R1 OUT

W W

ADD

R2

R1, R2, OUT (8 bit register)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and the Symbol of the Macro R1addR2

165Arithmetical Macros

© 2008 Taylor & Francis Group, LLC

follows the input EN. This means that when EN = 0, ENO is forced to be 0,
and when EN = 1, ENO is forced to be 1. This is especially useful if we want
to carry out more than one operation based on a single input condition. R1
and R2 refer to 8-bit source variables from where the source values are taken
into the macro, while OUT refers to an 8-bit destination variable to which
the result of the macro is stored. When EN = 1, the macro R1addR2 adds the
contents of two 8-bit variables R1 and R2 and stores the result into the 8-bit
output variable OUT (OUT = R1 + R2).

8.2 Macro RaddK

The algorithm and the symbol of the macro RaddK are depicted in Table 8.2.
Figure 8.3 shows the macro RaddK and its flowchart. In this macro, EN is a
Boolean input variable taken into the macro through W, and ENO is a Boolean
output variable sent out from the macro through W. Output ENO follows the
input EN. This means that when EN = 0, ENO is forced to be 0, and when EN
= 1, ENO is forced to be 1. R and K are source values. R refers to an 8-bit source
variable, while K represents an 8-bit constant value. OUT refers to an 8-bit
destination variable to which the result of the macro is stored. When EN = 1,
the macro RaddK adds the content of the 8-bit variable R and the 8-bit constant
value K and stores the result into the 8-bit output variable OUT (OUT = R + K).

8.3 Macro R1subR2

The algorithm and the symbol of the macro R1subR2 are depicted in
Table 8.3. Figure 8.4 shows the macro R1subR2 and its flowchart. In this
macro, EN is a Boolean input variable taken into the macro through W,

TABLE 8.2

Algorithm and Symbol of the Macro
RaddK

Algorithm Symbol

if EN = 1 then
OUT = R + K;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
R OUT

W W

ADD

K

R, OUT (8 bit register)
K (8 bit constant)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

166 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

and ENO is a Boolean output variable sent out from the macro through W.
Output ENO follows the input EN. This means that when EN = 0, ENO is
forced to be 0, and when EN = 1, ENO is forced to be 1. R1 and R2 refer to
8-bit source variables from where the source values are taken into the macro,
while OUT refers to an 8-bit destination variable to which the result of the
macro is stored. When EN = 1, the macro R1subR2 subtracts the content of
the 8-bit variable R2 from the content of the 8-bit variable R1 and stores the
result into the 8-bit output variable OUT (OUT = R1 – R2).

TABLE 8.3

Algorithm and Symbol of the Macro
R1subR2

Algorithm Symbol

if EN = 1 then
OUT = R1 – R2;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
R1 OUT

W W

SUB

R2

R1, R2, OUT (8 bit register)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and the Symbol of the Macro R1subR2

Temp_1 W

 Y

H

OUT R + K
W Temp_1

L1

Temp_1,0 = 1?

begin

end
(b)(a)

FIGURE 8.3
(a) The macro RaddK and (b) its flowchart.

167Arithmetical Macros

© 2008 Taylor & Francis Group, LLC

8.4 Macro RsubK

The algorithm and the symbol of the macro RsubK are depicted in Table 8.4.
Figure 8.5 shows the macro RsubK and its flowchart. In this macro, EN is
a Boolean input variable taken into the macro through W, and ENO is a
Boolean output variable sent out from the macro through W. Output ENO
follows the input EN. This means that when EN = 0, ENO is forced to be
0, and when EN = 1, ENO is forced to be 1. R and K are source values. R
refers to an 8-bit source variable, while K represents an 8-bit constant value.

Temp_1 W

 Y

N

OUT R1 – R2
W Temp_1

L1

Temp_1,0 = 1?

begin

end

(b)(a)

FIGURE 8.4
(a) The macro R1subR2 and (b) its flowchart.

TABLE 8.4

Algorithm and Symbol of the Macro
RsubK

Algorithm Symbol

if EN = 1 then
OUT = R – K;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
R OUT

W W

SUB

K

R, OUT (8 bit register)
K (8 bit constant)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and the Symbol of the Macro RsubK

168 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

OUT refers to an 8-bit destination variable to which the result of the macro
is stored. When EN = 1, the macro RsubK subtracts the 8-bit constant value
K from the content of the 8-bit variable R and stores the result into the 8-bit
output variable OUT (OUT = R – K).

8.5 Macro incR

The algorithm and the symbol of the macro incR are depicted in Table 8.5.
Figure 8.6 shows the macro incR and its flowchart. In this macro, EN is
a Boolean input variable taken into the macro through W, and ENO is a
Boolean output variable sent out from the macro through W. Output ENO

TABLE 8.5

Algorithm and Symbol of the Macro incR

Algorithm Symbol

if EN = 1 then
OUT = IN + 1;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
IN OUT

W W

INC

IN, OUT (8 bit register)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and the Symbol of the Macro incR

Temp_1 W

 Y

N

OUT R – K
W Temp_1

L1

Temp_1,0 = 1?

begin

end

(b)(a)

FIGURE 8.5
(a) The macro RsubK and (b) its flowchart.

169Arithmetical Macros

© 2008 Taylor & Francis Group, LLC

follows the input EN. This means that when EN = 0, ENO is forced to be 0,
and when EN = 1, ENO is forced to be 1. IN refers to an 8-bit source variable
from where the source value is taken into the macro, while OUT refers to an
8-bit destination variable to which the result of the macro is stored. When
EN = 1, the macro incR increments the content of the 8-bit variable IN and
stores the result into the 8-bit output variable OUT (OUT = IN + 1).

8.6 Macro decR

The algorithm and the symbol of the macro decR are depicted in Table 8.6.
Figure 8.7 shows the macro decR and its flowchart. In this macro, EN is
a Boolean input variable taken into the macro through W, and ENO is a

TABLE 8.6

Algorithm and Symbol of the Macro decR

Algorithm Symbol

if EN = 1 then
OUT = IN – 1;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
IN OUT

W W

DEC

IN, OUT (8 bit register)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and the Symbol of the Macro decR

Temp_1 W

 Y

N

OUT R + 1
W Temp_1

L1

Temp_1,0 = 1?

begin

end

(b)(a)

FIGURE 8.6
(a) The macro incR and (b) its flowchart.

170 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

Boolean output variable sent out from the macro through W. Output ENO
follows the input EN. This means that when EN = 0, ENO is forced to be 0,
and when EN = 1, ENO is forced to be 1. IN refers to an 8-bit source variable
from where the source value is taken into the macro, while OUT refers to an
8-bit destination variable to which the result of the macro is stored. When
EN = 1, the macro decR decrements the content of the 8-bit variable IN and
stores the result into the 8-bit output variable OUT (OUT = IN – 1).

8.7 Examples for Arithmetical Macros

In this section, we will consider two examples, UZAM_plc_16i16o_ex14
.asm and UZAM_plc_16i16o_ex15.asm, to show the usage of arithmeti-
cal macros. In order to test one of these examples, please take the related
file UZAM_plc_16i16o_ex14.asm or UZAM_plc_16i16o_ex15.asm from the
CD-ROM attached to this book, and then open the program by MPLAB
IDE and compile it. After that, by using the PIC programmer software,
take the compiled file UZAM_plc_16i16o_ex14.hex or UZAM_plc_16i16o_
ex15.hex, and by your PIC programmer hardware, send it to the program
memory of PIC16F648A microcontroller within the PIC16F648A-based PLC.
To do this, switch the 4PDT in PROG position and the power switch in
OFF position. After loading the file UZAM_plc_16i16o_ex14.hex or UZAM_
plc_16i16o_ex15.hex, switch the 4PDT in RUN and the power switch in ON

Temp_1 W

 Y

N

OUT R – 1
W Temp_1

L1

Temp_1,0 = 1?

begin

end

(b)(a)

FIGURE 8.7
(a) The macro decR and (b) its flowchart.

171Arithmetical Macros

© 2008 Taylor & Francis Group, LLC

position. Please check the program’s accuracy by cross-referencing it with
the related macros.

Let us now consider these example programs: The first example program
UZAM_plc_16i16o_ex14.asm is shown in Figure 8.8. It shows the usage of the
following arithmetical macros: R1addR2, RaddK, R1subR2, and RsubK. The
ladder diagram of the user program of UZAM_plc_16i16o_ex14.asm, shown
in Figure 8.8, is depicted in Figure 8.9.

In the first rung, Q1 is cleared, i.e., 8-bit constant value 00h is loaded into
Q1, by using the macro load_R. This process is carried out once at the first
program scan by using the FRSTSCN NO contact. Another condition to
carry out the same process is the NO contact of the input I0.0. This means
that when this program is run, during the normal PLC operation, if we force
the input I0.0 to be true, then the above-mentioned process will take place.

In rungs 2 and 3, we see how the arithmetical macro R1addR2 could be
used. In rung 2, the addition process Q1 = I1 + Q1 is carried out, when I0.1
goes true. With this rung, if I0.1 goes and stays true, the content of I1 will be

FIGURE 8.8
The user program of UZAM_plc_16i16o_ex14.asm.

172 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

1

I0.0

FRSTSCN
EN ENO
IN OUT00h

load_R

Q1

2
I0.1

EN ENO
R1 OUT

ADD

R2
I 1 Q1
Q1

3

4

I0.2
EN ENO
R1 OUT

ADD

R2

r_edge

 0

5

I0.3
EN ENO
R1 OUT

SUB

R2

6

7

I0.4
EN ENO
R1 OUT

SUB

R2

r_edge

 1

I 1 Q1
Q1

Q1 Q1
I 1

Q1 Q1
I 1

8

I0.5
EN ENO
R OUT

ADD

K
Q1 Q1

2

I0.6
EN ENO
R OUT

ADD

K
Q1 Q1

IN OUT
r_edge

2
2

I0.7
EN ENO
R OUT

SUB

K
Q1 Q1num

num

IN OUT
num

IN OUT
num

IN OUT
r_edge

3
3

FIGURE 8.9
The ladder diagram of the user program of UZAM_plc_16i16o_ex14.asm.

173Arithmetical Macros

© 2008 Taylor & Francis Group, LLC

added to the content of Q1 on every PLC scan. Rung 3 provides a little bit dif-
ferent usage of the arithmetical macro R1addR2. Here, we use a rising edge
detector macro in order to detect the state change of input I0.2 from OFF to
ON. So this time, the addition process Q1 = I1 + Q1 is carried out only at the
rising edges of I0.2.

In rungs 4 and 5, we see how the arithmetical macro R1subR2 could be
used. In rung 4, the subtraction process Q1 = Q1 – I1 is carried out when I0.3
goes true. With this rung, if I0.3 goes and stays true, the content of I1 will be
subtracted from the content of Q1, on every PLC scan. In rung 5, a rising edge
detector macro is used in order to detect the state change of input I0.4 from
OFF to ON. So this time, the subtraction process Q1 = Q1 – I1 is carried out
only at the rising edges of I0.4.

In rungs 6 and 7, we see how the arithmetical macro RaddK could be used.
In rung 6, the addition process Q1 = Q1 + 2 is carried out, when I0.5 goes
true. With this rung, if I0.5 goes and stays true, the constant value 2 will be
added to the content of Q1 on every PLC scan. In rung 7, a rising edge detec-
tor macro is used in order to detect the state change of input I0.6 from OFF to
ON. So this time, the addition process Q1 = Q1 + 2 is carried out only at the
rising edges of I0.6.

In the last rung, the subtraction process Q1 = Q1 – 3 is carried out at the
rising edges of I0.7.

The second example program, UZAM_plc_16i16o_ex15.asm, is shown in
Figure 8.10. It shows the usage of the following arithmetical macros: incR and

FIGURE 8.10
The user program of UZAM_plc_16i16o_ex15.asm.

174 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

decR. The ladder diagram of the user program of UZAM_plc_16i16o_ex15
.asm, shown in Figure 8.10, is depicted in Figure 8.11.

In the first rung, Q1 is cleared, i.e., 8-bit constant value 00h is loaded into
Q1, by using the macro load_R. This process is carried out once at the first
program scan by using the FRSTSCN NO contact. Another condition to
carry out the same process is the NO contact of the input I0.0. This means
that when this program is run, during the normal PLC operation, if we force
the input I0.0 to be true, then the above-mentioned process will take place.

In rung 2, when I0.1 goes and stays true, Q1 is incremented on every PLC scan.
In rung 3, Q1 is incremented at each rising edge of I0.2.
In rung 4, when I0.3 goes and stays true, Q1 is decremented on every

PLC scan.
In rung 5, Q1 is decremented at each rising edge of I0.4.

1

I0.0

FRSTSCN
EN ENO
IN OUT00h

load_R

Q1

2
I0.1

EN ENO
IN OUT

INC

Q1 Q1

3

4

I0.2
EN ENO
IN OUT

INCr_edge

 0

5

I0.3
EN ENO
IN OUT

DEC

I0.4
EN ENO
IN OUT

DECr_edge

 1

Q1 Q1

Q1 Q1

Q1 Q1

IN OUT
num

IN OUT
num

FIGURE 8.11
The ladder diagram of the user program of UZAM_plc_16i16o_ex15.asm.

175© 2008 Taylor & Francis Group, LLC

9
Logical Macros

A logical function performs AND, NAND, OR, NOR, exclusive OR (XOR),
exclusive NOR (XNOR), logical operations on two registers (or one register
plus one constant value), and NOT (invert) logical operations on one register.
As an example, Figure 9.1 shows an AND logical function that will retrieve
AND and two values from sources labeled source A and source B and will
store the result in destination C. AND, NAND, OR, NOR, XOR, and XNOR
logical functions have the form of Figure 9.1, with two source values and
one destination register. In these, the logical function is applied to the two
source values and the result is put in the destination register. However, the
unary invert (INV) logical function has one source register and one destina-
tion register. It inverts all of the bits in the source register and puts the result
in the destination register.

In this chapter, the following logical macros are described for the
PIC16F648A-based PLC:

R1andR2

RandK

R1nandR2

RnandK

R1orR2

RorK

R1norR2

RnorK

R1xorR2

RxorK

R1xnorR2

RxnorK

inv_R

The file definitions.inc, included within the CD-ROM attached to this
book, contains all logical macros defined for the PIC16F648A-based PLC. Let
us now consider these macros in detail.

176 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

9.1 Macro R1andR2

The algorithm and the symbol of the macro R1andR2 are depicted in Table 9.1.
Figure 9.2 shows the macro R1andR2 and its flowchart. In this macro, EN
is a Boolean input variable taken into the macro through W, and ENO is a
Boolean output variable sent out from the macro through W. Output ENO

Temp_1 W

Y

N

OUT R1 AND R2
W Temp_1

L1

Temp_1,0 = 1?

begin

end

(b)(a)

FIGURE 9.2
(a) The macro R1andR2 and (b) its flowchart.

Source A
AND

Source B
Destination C

FIGURE 9.1
The AND function.

TABLE 9.1

Algorithm and Symbol of the Macro R1andR2

Algorithm Symbol

if EN = 1 then
OUT = R1 AND R2;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
R1 OUT

W W

AND

R2

R1, R2, OUT (8 bit register)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and Symbol of the Macro R1andR2

177Logical Macros

© 2008 Taylor & Francis Group, LLC

follows the input EN. This means that when EN = 0, ENO is forced to be 0,
and when EN = 1, ENO is forced to be 1. This is especially useful if we want
to carry out more than one operation based on a single input condition. R1
and R2 refer to 8-bit source variables from where the source values are taken
into the macro, while OUT refers to an 8-bit destination variable to which the
result of the macro is stored. When EN = 1, the macro R1andR2 applies the
logical AND function to the two 8-bit input variables R1 and R2 and stores
the result in the 8-bit output variable OUT (OUT = R1 AND R2).

9.2 Macro RandK

The algorithm and the symbol of the macro RandK are depicted in Table 9.2.
Figure 9.3 shows the macro RandK and its flowchart. In this macro, EN is
a Boolean input variable taken into the macro through W, and ENO is a
Boolean output variable sent out from the macro through W. Output ENO
follows the input EN. This means that when EN = 0, ENO is forced to be
0, and when EN = 1, ENO is forced to be 1. R and K are source values. R
refers to an 8-bit source variable, while K represents an 8-bit constant value.
OUT refers to an 8-bit destination variable to which the result of the macro is
stored. When EN = 1 the macro RandK applies the logical AND function to
the 8-bit input variable R and the 8-bit constant value K and stores the result
in the 8-bit output variable OUT (OUT = R AND K).

9.3 Macro R1nandR2

The algorithm and the symbol of the macro R1nandR2 are depicted in
Table 9.3. Figure 9.4 shows the macro R1nandR2 and its flowchart. In this
macro, EN is a Boolean input variable taken into the macro through W,

TABLE 9.2

Algorithm and Symbol of the Macro RandK

Algorithm Symbol

if EN = 1 then
OUT = R AND K;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
R OUT

W W

AND

K

R, OUT (8 bit register)
K (8 bit constant)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

178 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

and ENO is a Boolean output variable sent out from the macro through W.
Output ENO follows the input EN. This means that when EN = 0, ENO is
forced to be 0, and when EN = 1, ENO is forced to be 1. R1 and R2 refer
to 8-bit source variables from where the source values are taken into the
macro, while OUT refers to an 8-bit destination variable to which the result
of the macro is stored. When EN = 1, the macro R1nandR2 applies the logi-
cal NAND function to the two 8-bit input variables R1 and R2 and stores the
result in the 8-bit output variable OUT (OUT = R1 NAND R2).

Temp_1 W

Y

N

OUT R AND K
W Temp_1

L1

Temp_1,0 = 1?

begin

end

(b)(a)

FIGURE 9.3
(a) The macro RandK and (b) its flowchart.

TABLE 9.3

Algorithm and Symbol of the Macro R1nandR2

Algorithm Symbol

if EN = 1 then
OUT = R1 NAND R2;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
R1 OUT

W W

NAND

R2

R1, R2, OUT (8 bit register)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and Symbol of the Macro R1nandR2

179Logical Macros

© 2008 Taylor & Francis Group, LLC

9.4 Macro RnandK

The algorithm and the symbol of the macro RnandK are depicted in Table 9.4.
Figure 9.5 shows the macro RnandK and its flowchart. In this macro, EN
is a Boolean input variable taken into the macro through W, and ENO is a
Boolean output variable sent out from the macro through W. Output ENO
follows the input EN. This means that when EN = 0, ENO is forced to be
0, and when EN = 1, ENO is forced to be 1. R and K are source values. R
refers to an 8-bit source variable, while K represents an 8-bit constant value.

Temp_1 W

Y

N

OUT R1 NAND R2
W Temp_1

L1

Temp_1,0 = 1?

begin

end

(b)(a)

FIGURE 9.4
(a) The macro R1nandR2 and (b) its flowchart.

TABLE 9.4

Algorithm and Symbol of the Macro RnandK

Algorithm Symbol

if EN = 1 then
OUT = R NAND K;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
R OUT

W W

NAND

K

R, OUT (8 bit register)
K (8 bit constant)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and Symbol of the Macro RnandK

180 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

OUT refers to an 8-bit destination variable to which the result of the macro
is stored. When EN = 1 the macro RnandK applies the logical NAND func-
tion to the 8-bit input variable R and the 8-bit constant value K and stores the
result in the 8-bit output variable OUT (OUT = R NAND K).

9.5 Macro R1orR2

The algorithm and the symbol of the macro R1orR2 are depicted in Table 9.5.
Figure 9.6 shows the macro R1orR2 and its flowchart. In this macro, EN
is a Boolean input variable taken into the macro through W, and ENO is a

Temp_1 W

Y

N

OUT R NAND K
W Temp_1

L1

Temp_1,0 = 1?

begin

end
(b)(a)

FIGURE 9.5
(a) The macro RnandK and (b) its flowchart.

TABLE 9.5

Algorithm and Symbol of the Macro R1orR2

Algorithm Symbol

if EN = 1 then
OUT = R1 OR R2;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
R1 OUT

W W

OR

R2

R1, R2, OUT (8 bit register)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and Symbol of the Macro R1orR2

181Logical Macros

© 2008 Taylor & Francis Group, LLC

Boolean output variable sent out from the macro through W. Output ENO fol-
lows the input EN. This means that when EN = 0, ENO is forced to be 0, and
when EN = 1, ENO is forced to be 1. R1 and R2 refer to 8-bit source variables
from where the source values are taken into the macro, while OUT refers to
an 8-bit destination variable to which the result of the macro is stored. When
EN = 1, the macro R1orR2 applies the logical OR function to the two 8-bit
input variables R1 and R2 and stores the result in the 8-bit output variable
OUT (OUT = R1 OR R2).

9.6 Macro RorK

The algorithm and the symbol of the macro RorK are depicted in Table 9.6.
Figure 9.7 shows the macro RorK and its flowchart. In this macro, EN is
a Boolean input variable taken into the macro through W, and ENO is a
Boolean output variable sent out from the macro through W. Output ENO
follows the input EN. This means that when EN = 0, ENO is forced to be
0, and when EN = 1, ENO is forced to be 1. R and K are source values. R
refers to an 8-bit source variable, while K represents an 8-bit constant value.
OUT refers to an 8-bit destination variable to which the result of the macro is
stored. When EN = 1 the macro RorK applies the logical OR function to the
8-bit input variable R and the 8-bit constant value K and stores the result in
the 8-bit output variable OUT (OUT = R OR K).

Temp_1 W

Y

N

OUT R1 OR R2
W Temp_1

L1

Temp_1,0 = 1?

begin

end

(b)(a)

FIGURE 9.6
(a) The macro R1orR2 and (b) its flowchart.

182 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

9.7 Macro R1norR2

The algorithm and the symbol of the macro R1norR2 are depicted in Table 9.7.
Figure 9.8 shows the macro R1norR2 and its flowchart. In this macro, EN
is a Boolean input variable taken into the macro through W, and ENO is a
Boolean output variable sent out from the macro through W. Output ENO
follows the input EN. This means that when EN = 0, ENO is forced to be
0, and when EN = 1, ENO is forced to be 1. R1 and R2 refer to 8-bit source
variables from where the source values are taken into the macro, while OUT

TABLE 9.6

Algorithm and Symbol of the Macro RorK

Algorithm Symbol

if EN = 1 then
OUT = R OR K;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
R OUT

W W

OR

K

R, OUT (8 bit register)
K (8 bit constant)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and Symbol of the Macro RorK

Temp_1 W

Y

N

OUT R OR K
W Temp_1

L1

Temp_1,0 = 1?

begin

end

(b)(a)

FIGURE 9.7
(a) The macro RorK and (b) its flowchart.

183Logical Macros

© 2008 Taylor & Francis Group, LLC

refers to an 8-bit destination variable to which the result of the macro is
stored. When EN = 1, the macro R1norR2 applies the logical NOR function
to the two 8-bit input variables R1 and R2 and stores the result in the 8-bit
output variable OUT (OUT = R1 NOR R2).

9.8 Macro RnorK

The algorithm and the symbol of the macro RnorK are depicted in Table 9.8.
Figure 9.9 shows the macro RnorK and its flowchart. In this macro, EN is
a Boolean input variable taken into the macro through W, and ENO is a

TABLE 9.7

Algorithm and Symbol of the Macro R1norR2

Algorithm Symbol

if EN = 1 then
OUT = R1 NOR R2;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
R1 OUT

W W

NOR

R2

R1, R2, OUT (8 bit register)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and Symbol of the Macro R1norR2

Temp_1 W

Y

N

OUT R1 NOR R2
W Temp_1

L1

Temp_1,0 = 1?

begin

end

(b)(a)

FIGURE 9.8
(a) The macro R1norR2 and (b) its flowchart.

184 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

Boolean output variable sent out from the macro through W. Output ENO
follows the input EN. This means that when EN = 0, ENO is forced to be
0, and when EN = 1, ENO is forced to be 1. R and K are source values. R
refers to an 8-bit source variable, while K represents an 8-bit constant value.
OUT refers to an 8-bit destination variable to which the result of the macro is
stored. When EN = 1, the macro RnorK applies the logical NOR function to
the 8-bit input variable R and the 8-bit constant value K and stores the result
in the 8-bit output variable (OUT = R NOR K).

TABLE 9.8

Algorithm and Symbol of the Macro RnorK

Algorithm Symbol

if EN = 1 then
OUT = R NOR K;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
R OUT

W W

NOR

K

R, OUT (8 bit register)
K (8 bit constant)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and Symbol of the Macro RnorK

Temp_1 W

Y

N

OUT R NOR K
W Temp_1

L1

Temp_1,0 = 1?

begin

end

(b)(a)

FIGURE 9.9
(a) The macro RnorK and (b) its flowchart.

185Logical Macros

© 2008 Taylor & Francis Group, LLC

9.9 Macro R1xorR2

The algorithm and the symbol of the macro R1xorR2 are depicted in
Table 9.9. Figure 9.10 shows the macro R1xorR2 and its flowchart. In this
macro, EN is a Boolean input variable taken into the macro through W,
and ENO is a Boolean output variable sent out from the macro through W.
Output ENO follows the input EN. This means that when EN = 0, ENO is
forced to be 0, and when EN = 1, ENO is forced to be 1. R1 and R2 refer to
8-bit source variables from where the source values are taken into the macro,
while OUT refers to an 8-bit destination variable to which the result of the

TABLE 9.9

Algorithm and Symbol of the Macro R1xorR2

Algorithm Symbol

if EN = 1 then
OUT = R1 EXOR R2;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
R1 OUT

W W

XOR

R2

R1, R2, OUT (8 bit register)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and Symbol of the Macro R1xorR2

Temp_1 W

Y

N

OUT R1 XOR R2
W Temp_1

L1

Temp_1,0 = 1?

begin

end

(b)(a)

FIGURE 9.10
(a) The macro R1xorR2 and (b) its flowchart.

186 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

macro is stored. When EN = 1, the macro R1xorR2 applies the logical EXOR
function to the two 8-bit input variables R1 and R2 and stores the result in
the 8-bit output variable OUT (OUT = R1 EXOR R2).

9.10 Macro RxorK

The algorithm and the symbol of the macro RxorK are depicted in Table 9.10.
Figure 9.11 shows the macro RxorK and its flowchart. In this macro, EN
is a Boolean input variable taken into the macro through W, and ENO is a

TABLE 9.10

Algorithm and Symbol of the Macro RxorK

Algorithm Symbol

if EN = 1 then
OUT = R EXOR K;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
R OUT

W W

XOR

K

R, OUT (8 bit register)
K (8 bit constant)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and Symbol of the Macro RxorK

Temp_1 W

Y

N

OUT R XOR K
W Temp_1

L1

Temp_1,0 = 1?

begin

end

(b)(a)

FIGURE 9.11
(a) The macro RxorK and (b) its flowchart.

187Logical Macros

© 2008 Taylor & Francis Group, LLC

Boolean output variable sent out from the macro through W. Output ENO
follows the input EN. This means that when EN = 0, ENO is forced to be
0, and when EN = 1, ENO is forced to be 1. R and K are source values. R
refers to an 8-bit source variable, while K represents an 8-bit constant value.
OUT refers to an 8-bit destination variable to which the result of the macro is
stored. When EN = 1, the macro RxorK applies the logical EXOR function to
the 8-bit input variable R and the 8-bit constant value K and stores the result
in the 8-bit output variable OUT (OUT = R EXOR K).

9.11 Macro R1xnorR2

The algorithm and the symbol of the macro R1xnorR2 are depicted in
Table 9.11. Figure 9.12 shows the macro R1xnorR2 and its flowchart. In
this macro, EN is a Boolean input variable taken into the macro through
W, and ENO is a Boolean output variable sent out from the macro through
W. Output ENO follows the input EN. This means that when EN = 0, ENO
is forced to be 0, and when EN = 1, ENO is forced to be 1. R1 and R2 refer
to 8-bit source variables from where the source values are taken into the
macro, while OUT refers to an 8-bit destination variable to which the result
of the macro is stored. When EN = 1, the macro R1xnorR2 applies the logical
EXNOR function to the two 8-bit input variables R1 and R2 and stores the
result in the 8-bit output variable OUT (OUT = R1 EXNOR R2).

9.12 Macro RxnorK

The algorithm and the symbol of the macro RxnorK are depicted in
Table 9.12. Figure 9.13 shows the macro RxnorK and its flowchart. In this
macro, EN is a Boolean input variable taken into the macro through W,

TABLE 9.11

Algorithm and Symbol of the Macro R1xnorR2

Algorithm Symbol

if EN = 1 then
OUT = R1 EXNOR R2;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
R1 OUT

W W

XNOR

R2

R1, R2, OUT (8 bit register)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

188 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

and ENO is a Boolean output variable sent out from the macro through W.
Output ENO follows the input EN. This means that when EN = 0, ENO is
forced to be 0, and when EN = 1, ENO is forced to be 1. R and K are source
values. R refers to an 8-bit source variable, while K represents an 8-bit
constant value. OUT refers to an 8-bit destination variable to which the
result of the macro is stored. When EN = 1, the macro RxnorK applies the
logical EXNOR function to the 8-bit input variable R and the 8-bit constant
value K and stores the result in the 8-bit output variable OUT (OUT = R
EXNOR K).

Temp_1 W

Y

N

OUT R1 XNOR R2
W Temp_1

L1

Temp_1,0 = 1?

begin

end

(b)(a)

FIGURE 9.12
(a) The macro R1xnorR2 and (b) its flowchart.

TABLE 9.12

Algorithm and Symbol of the Macro RxnorK

Algorithm Symbol

if EN = 1 then
OUT = R EXNOR K;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
R OUT

W W

XNOR

K

R, OUT (8 bit register)
K (8 bit constant)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and Symbol of the Macro RxnorK

189Logical Macros

© 2008 Taylor & Francis Group, LLC

9.13 Macro inv_R

The algorithm and the symbol of the macro inv_R are depicted in Table 9.13.
Figure 9.14 shows the macro inv_R and its flowchart. In this macro, EN is a
Boolean input variable taken into the macro through W, and ENO is a Boolean
output variable sent out from the macro through W. Output ENO follows the
input EN. This means that when EN = 0, ENO is forced to be 0, and when
EN = 1, ENO is forced to be 1. IN refers to an 8-bit source variable from where
the source value is taken into the macro, while OUT refers to an 8-bit desti-
nation variable to which the result of the macro is stored. When EN = 1, the

Temp_1 W

Y

N

OUT R XNOR K
W Temp_1

L1

Temp_1,0 = 1?

begin

end
(b)(a)

FIGURE 9.13
(a) The macro RxnorK and (b) its flowchart.

TABLE 9.13

Algorithm and Symbol of the Macro inv_R

Algorithm Symbol

if EN = 1 then
OUT = invert IN;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
IN OUT

W W

inv_R

IN, OUT (8 bit register)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and Symbol of the Macro inv _ R

190 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

macro inv_R inverts all of the bits in the 8-bit source register IN and stores
the result in the 8-bit destination register OUT (OUT = invert IN).

9.14 Example for Logical Macros

In this section, we will consider an example, UZAM_plc_16i16o_ex16.asm, to
show the usage of logical macros. In order to test the example, please take
the file UZAM_plc_16i16o_ex16.asm from the CD-ROM attached to this
book, and then open the program by MPLAB IDE and compile it. After
that, by using the PIC programmer software, take the compiled file UZAM_
plc_16i16o_ex16.hex, and by your PIC programmer hardware send it to the
program memory of the PIC16F648A microcontroller within the PIC16F648A-
based PLC. To do this, switch the 4PDT in PROG position and the power
switch in OFF position. After loading the file UZAM_plc_16i16o_ex16.hex,
switch the 4PDT in RUN and the power switch in ON position. Please check
the program’s accuracy by cross-referencing it with the related macros.

Let us now consider this example program: The example program, UZAM_
plc_16i16o_ex16.asm, is shown in Figure 9.15. It shows the usage of all logical
macros. The ladder diagram of the user program of UZAM_plc_16i16o_ex16
.asm, shown in Figure 9.15, is depicted in Figure 9.16.

In the first rung, both Q1 and Q0 are cleared, i.e., 8-bit value 00h is loaded
into both Q0 and Q1, by using the macro load_R. This process is carried out
once at the first program scan by using the FRSTSCN NO contact.

Temp_1 W

Y

N

OUT INV(IN)
W Temp_1

L1

Temp_1,0 = 1?

begin

end

(b)(a)

FIGURE 9.14
(a) The macro inv_R and (b) its flowchart.

191Logical Macros

© 2008 Taylor & Francis Group, LLC

FIGURE 9.15
The user program of UZAM_plc_16i16o_ex16.asm. (Continued)

192 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

FIGURE 9.15 (Continued)
The user program of UZAM_plc_16i16o_ex16.asm. (Continued)

193Logical Macros

© 2008 Taylor & Francis Group, LLC

In each rung between 2 and 5, an 8-bit value, namely, 03h, 05h, 0Fh, and
F0h, is loaded into Q0 based on the inputs I0.3, I0.2, I0.1, and I0.0, by using
the macro load_R, as shown in Table 9.14. If I0.3,I0.2,I0.1,I0.0 = 0001 (0010,
0100, and 1000, respectively), then Q0 = 03h (05h, 0Fh, and F0h, respectively).

In the 14 rungs between 6 and 19, a 4-to-16 decoder is implemented,
whose inputs are I0.7, I0.6, I0.5, and I0.4, and whose outputs are M0.1, M0.2,
…, M0.7, M1.0, M1.1, …, M1.6. Note that only 14 combinations are utilized,

FIGURE 9.15 (Continued)
The user program of UZAM_plc_16i16o_ex16.asm.

194 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

while the following combinations for inputs (I0.7, I0.6, I0.5, I0.4), 0000 and
1111, are not implemented. Therefore, for these combinations of the inputs
I0.7, I0.6, I0.5, and I0.4, the program will not produce any output. This
arrangement is made to choose 14 different markers based on the input
data given through the inputs I0.7, I0.6, I0.5, and I0.4. Table 9.15 shows the

1
FRSTSCN

EN ENO
IN OUT

EN ENO
IN OUT

EN ENO
IN OUT

EN ENO
IN OUT

EN ENO
IN OUT

EN ENO
IN OUT

00h

load_R

Q1

2

00h

load_R

Q0

I0.0 I0.1 I0.2 I0.3

I0.1 I0.0 I0.2 I0.3

I0.2 I0.0 I0.1 I0.3

I0.3 I0.0 I0.1 I0.2

3

4

5

03h

load_R

Q0

05h

load_R

Q0

0Fh

load_R

Q0

F0h

load_R

Q0

FIGURE 9.16
The ladder diagram of the user program of UZAM_plc_16i16o_ex16.asm. (Continued)

TABLE 9.14

Selection of 8-Bit Values to Be Deposited in Q0 Based on the Inputs I0.0, I0.1, I0.2,
and I0.3

I0.0 I0.1 I0.2 I0.3
8-Bit Value Selected to Be

Deposited in Q0
1 0 0 0 Q0 = 03h (0 0 0 0 0 0 1 1)
0 1 0 0 Q0 = 05h (0 0 0 0 0 1 0 1)
0 0 1 0 Q0 = 0Fh (0 0 0 0 1 1 1 1)
0 0 0 1 Q0 = F0h (1 1 1 1 0 0 0 0)

195Logical Macros

© 2008 Taylor & Francis Group, LLC

truth table based on the input data entered through I0.7, I0.6, I0.5, and I0.4,
and the 14 markers chosen.

In the 14 PLC rungs between 20 and 33, we define different logical opera-
tions according to the decoder outputs represented by the marker bits M0.1,
M0.2, …, M0.7, M1.0, M1.1, …, M1.6. In each of these 14 rungs, a logical process

M0.1

M0.2

M0.3

M0.4

M0.5

M0.6

M0.7

M1.0

6
I0.7 I0.6 I0.5 I0.4

I0.7 I0.6 I0.5 I0.4

I0.7 I0.6 I0.5 I0.4

I0.7 I0.6 I0.5 I0.4

I0.7 I0.6 I0.5 I0.4

I0.7 I0.6 I0.5 I0.4

I0.7 I0.6 I0.5 I0.4

I0.7 I0.6 I0.5 I0.4

I0.7 I0.6 I0.5 I0.4

I0.7 I0.6 I0.5 I0.4

I0.7 I0.6 I0.5 I0.4

I0.7 I0.6 I0.5 I0.4

I0.7 I0.6 I0.5 I0.4

I0.7 I0.6 I0.5 I0.4

M1.1

7

M1.2

8

M1.3

9

M1.4

10

M1.5

11

12

13

14

15

16

17

18

M1.6
19

FIGURE 9.16 (Continued)
The ladder diagram of the user program of UZAM_plc_16i16o_ex16.asm. (Continued)

196 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

21
 M0.2 AND

EN ENO
R1 OUT
R2

EN ENO
R1 OUT
R2

EN ENO
R1 OUT
R2

EN ENO
R1 OUT
R2

EN ENO
R1 OUT
R2

EN ENO
R1 OUT
R2

EN ENO
R1 OUT
R2

EN ENO
R OUT
K

EN ENO
R OUT
K

EN ENO
R OUT
K

EN ENO
R OUT
K

EN ENO
R OUT
K

EN ENO
R OUT
K

I 1 Q 1

20
 M0.1

Q 1
EN ENO
IN OUT

EN ENO
IN OUT

inv_R

I 1

22
 M0.3 AND

I 1 M 7

23
 M0.4 AND

I 1 Q 1

24
 M0.5 NAND

Q 1

25
 M0.6 NAND

Q 1

26
 M0.7 OR

Q 1

27
 M1.0 OR

Q 1

28
 M1.1

Q 1

29
 M1.2 NOR

NOR

Q 1

30
 M1.3

Q 1

31
 M1.4 XOR

XOR

Q 1

32
 M1.5

Q 1

Q 0

Q 0

I 1
Q 0

I 1
Q 0

I 1
Q 0

I 1
Q 0

I 1
Q 0

50h

33
 M1.6 XNOR

XNOR

Q 1

Q 1

inv_R

M 7

I 1
50h

I 1
50h

I 1
50h

I 1
50h

I 1
50h

FIGURE 9.16 (Continued)
The ladder diagram of the user program of UZAM_plc_16i16o_ex16.asm.

197Logical Macros

© 2008 Taylor & Francis Group, LLC

is carried out, as shown in Table 9.16. For example, if M0.7 = 1, then the fol-
lowing operation is done: Q1 = I1 OR Q0. This means that the macro R1orR2
applies the logical OR function to the two 8-bit input variables I1 and Q0
and stores the result to the 8-bit output variable Q1. It should be obvious that
since only one of the markers (M0.1, M0.2, …, M0.7, M1.0, M1.1, …, M1.6) is
active at any time, only one of the processes shown in Table 9.16 can be car-
ried out at a time.

TABLE 9.15

Selection of Markers Based on the Inputs I0.7, I0.6, I0.5, and I0.4

I0.7 I0.6 I0.5 I0.4 Marker

0 0 0 1 M0.1
0 0 1 0 M0.2
0 0 1 1 M0.3
0 1 0 0 M0.4
0 1 0 1 M0.5
0 1 1 0 M0.6
0 1 1 1 M0.7
1 0 0 0 M1.0
1 0 0 1 M1.1
1 0 1 0 M1.2
1 0 1 1 M1.3
1 1 0 0 M1.4
1 1 0 1 M1.5
1 1 1 0 M1.6

TABLE 9.16

Selection of Logical Processes Based on Markers

Marker Logical Process Selected

M0.1 Q1 = INV I1
M0.2 Q1 = I1 AND Q0
M0.3 Q1 = I1 NAND Q0 = INV M7 (M7 = I1 AND Q0)
M0.4 Q1 = I1 AND 50h
M0.5 Q1 = I1 NAND Q0
M0.6 Q1 = I1 NAND 50h
M0.7 Q1 = I1 OR Q0
M1.0 Q1 = I1 OR 50h
M1.1 Q1 = I1 NOR Q0
M1.2 Q1 = I1 NOR 50h
M1.3 Q1 = I1 XOR Q0
M1.4 Q1 = I1 XOR 50h
M1.5 Q1 = I1 XNOR Q0
M1.6 Q1 = I1 XNOR 50h

199© 2008 Taylor & Francis Group, LLC

10
Shift and Rotate Macros

A shift (SHIFT) function moves the bits in a register to the right or to the left. As
an example, Figure 10.1 shows a shift right function that retrieves the input data
from the source register A and shifts the bits of the source register A toward the
right as many numbers as specified by the number of shift, while the serial data
are taken from the left through the Boolean input variable shift in bit.
The result of the shift operation is stored in a destination register B. In this case,
the least significant bit (LSB) is shifted out as many numbers as specified by
the number of shift. A shift left function is identical, except that the shift in
bit, taken from the right, is moved in the opposite direction toward left, shift-
ing out the most significant bit (MSB) as many numbers as specified by the
number of shift. A rotate (ROTATE) function, like a shift function, shifts data
to the right or left, but instead of losing the shift out bit, this bit becomes
the shift in bit at the other end of the register (rotated bit). The number
of rotation defines how many bits will be rotated to the right or left. Similar to
the shift function, the result of the rotate operation is stored in the destination
register B.

In this chapter, the following shift and rotate macros are described for the
PIC16F648A-based PLC:

shift_R

shift_L

rotate_R

rotate_L

Swap

The file definitions.inc, included within the CD-ROM attached to this
book, contains all shift and rotate macros defined for the PIC16F648A-based
PLC. Let us now consider these macros in detail.

10.1 Macro shift_R

The algorithm and the symbol of the macro shift_R are depicted in
Table 10.1. Figure 10.2 shows the macro shift_R and its flowchart. In this
macro, EN is a Boolean input variable taken into the macro through W, and

200 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

ENO is a Boolean output variable sent out from the macro through W. Output
ENO follows the input EN. This means that when EN = 0, ENO is forced to
be 0, and when EN = 1, ENO is forced to be 1. This is especially useful if we
want to carry out more than one operation based on a single input condition.
RIN refers to an 8-bit source variable from where the source value is taken
into the macro, while ROUT refers to an 8-bit destination variable to which
the result of the macro is stored. N represents the number of shift, which
can be any number in 1, 2, …, 8. SIN is the Boolean input variable shift in
bit. When EN = 1, the macro shift_R retrieves the 8-bit input data from
RIN and shifts the bits of RIN toward right as many numbers as specified
by N, while the serial data are taken from left through SIN. The result of the
shift right operation is stored in the 8-bit output register ROUT.

10.2 Macro shift_L

The algorithm and the symbol of the macro shift_L are depicted in
Table 10.2. Figure 10.3 shows the macro shift_L and its flowchart. In this
macro, EN is a Boolean input variable taken into the macro through W,

Source register A
SHIFT
RIGHTShift in bit

�e number of shift

Destination register B

FIGURE 10.1
The shift right function.

TABLE 10.1

Algorithm and Symbol of the Macro shift_R

Algorithm Symbol

if EN = 1 then
ROUT = N times shift right(RIN)

and take the serial data_in from SIN;
ENO = 1;

else ENO = 0;
end if ;

EN ENO

RIN ROUT

W W

SHIFT_R

SIN

N
RIN, ROUT (8 bit register)
SIN (reg,bit) = 0 or 1
N (number of shift) = 1,2, ..., 8
EN (through W) = 0 or 1
EN0 (through W) = 0 or 1

201Shift and Rotate Macros

© 2008 Taylor & Francis Group, LLC

and ENO is a Boolean output variable sent out from the macro through W.
Output ENO follows the input EN. This means that when EN = 0, ENO is
forced to be 0, and when EN = 1, ENO is forced to be 1. RIN refers to an 8-bit
source variable from where the source value is taken into the macro, while
ROUT refers to an 8-bit destination variable to which the result of the macro
is stored. N represents the number of shift, which can be any number in 1, 2,
…, 8. SIN is the Boolean input variable shift in bit. When EN = 1, the
macro shift_L retrieves the 8-bit input data from RIN and shifts the bits of
RIN toward left as many numbers as specified by N, while the serial data are
taken from right through SIN. The result of the shift left operation is stored
in the 8-bit output register ROUT.

10.3 Macro rotate_R

The algorithm and the symbol of the macro rotate_R are depicted in
Table 10.3. Figure 10.4 shows the macro rotate_R and its flowchart. In
this macro, EN is a Boolean input variable taken into the macro through W,

(a)

FIGURE 10.2
(a) The macro shift_R and (b) its flowchart. (Continued)

202 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

Y

N

Temp_1 W

N

 Y

N

Y

ROUT RIN
Temp_1 n

NY

RESET STATUS,C SET STATUS,C

ROUT ROTATE right ROUT with Carry
Temp_1 = Temp_1 – 1

Temp_1,0 = 1
?

L1

(n≠0) & (n<9)
?

L2

reg,bit = 0
?

Temp_1 = 0
?

SET Temp_1,0
W Temp_1

begin

end

(b)

FIGURE 10.2 (Continued)
(a) The macro shift_R and (b) its flowchart.

203Shift and Rotate Macros

© 2008 Taylor & Francis Group, LLC

and ENO is a Boolean output variable sent out from the macro through W.
Output ENO follows the input EN. This means that when EN = 0, ENO is
forced to be 0, and when EN = 1, ENO is forced to be 1. RIN refers to an 8-bit
source variable from where the source value is taken into the macro, while
ROUT refers to an 8-bit destination variable to which the result of the macro

(a)

FIGURE 10.3
(a) The macro shift_L and (b) its flowchart. (Continued)

TABLE 10.2

Algorithm and Symbol of the Macro shift_L

Algorithm Symbol

if EN = 1 then
ROUT = N times shift left(RIN)

and take the serial data_in from SIN;
ENO = 1;

else ENO = 0;
end if ;

EN ENO

RIN ROUT

W W

SHIFT_L

SIN

N
RIN, ROUT (8 bit register)
SIN (reg,bit) = 0 or 1
N (number of shift) = 1,2, ..., 8
EN (through W) = 0 or 1
EN0 (through W) = 0 or 1

Algorithm and Symbol of the Macro shift _ L

204 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

Y

N

ROUT ROTATE left ROUT with Carry

Temp_1 W

N

 Y

N

Y

ROUT RIN
Temp_1 n

NY

RESET STATUS,C SET STATUS,C

Temp_1 = Temp_1 – 1

Temp_1,0 = 1
?

L1

(n≠0) & (n<9)
?

L2

reg,bit = 0
?

Temp_1 = 0
?

SET Temp_1,0
W Temp_1

begin

end

(b)

FIGURE 10.3 (Continued)
(a) The macro shift_L and (b) its flowchart.

205Shift and Rotate Macros

© 2008 Taylor & Francis Group, LLC

is stored. N represents the number of rotation, which can be any number in
1, 2, …, 7. When EN = 1, the macro rotate_R retrieves the 8-bit input data
from RIN and rotates the bits of RIN toward right as many numbers as speci-
fied by N. The result of the rotate right operation is stored in the 8-bit output
register ROUT.

TABLE 10.3

Algorithm and Symbol of the Macro rotate_R

Algorithm Symbol

if EN = 1 then
ROUT = N times rotate right(RIN);
ENO = 1;

else ENO = 0;
end if ;

EN ENO
RIN ROUT

W W

ROTATE_R

N
RIN, ROUT (8 bit register)
N (number of rotation) = 1,2, ..., 7
EN (through W) = 0 or 1
EN0 (through W) = 0 or 1

Algorithm and Symbol of the Macro rotate _ R

(a)

FIGURE 10.4
(a) The macro rotate_R and (b) its flowchart. (Continued)

206 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

Y

N

ROUT ROTATE right ROUT with Carry

Temp_1 W

N

 Y

N

Y

ROUT RIN
Temp_1 n

NY

RESET STATUS,C SET STATUS,C

Temp_1 = Temp_1 – 1

Temp_1,0 = 1
?

L1

(n≠0) & (n<8)
?

L2

ROUT,0 = 0
?

Temp_1 = 0
?

SET Temp_1,0
W Temp_1

begin

end

(b)

FIGURE 10.4 (Continued)
(a) The macro rotate_R and (b) its flowchart.

207Shift and Rotate Macros

© 2008 Taylor & Francis Group, LLC

10.4 Macro rotate_L

The algorithm and the symbol of the macro rotate_L are depicted in
Table 10.4. Figure 10.5 shows the macro rotate_L and its flowchart. In this
macro, EN is a Boolean input variable taken into the macro through W, and
ENO is a Boolean output variable sent out from the macro through W. Output
ENO follows the input EN. This means that when EN = 0, ENO is forced to

TABLE 10.4

Algorithm and Symbol of the Macro rotate_L

Algorithm Symbol

if EN = 1 then
ROUT = N times rotate left(RIN);
ENO = 1;

else ENO = 0;
end if ;

EN ENO
RIN ROUT

W W

ROTATE_L

N
RIN, ROUT (8 bit register)
N (number of rotation) = 1,2, ..., 7
EN (through W) = 0 or 1
EN0 (through W) = 0 or 1

Algorithm and Symbol of the Macro rotate _ L

(a)

FIGURE 10.5
(a) The macro rotate_L and (b) its flowchart. (Continued)

208 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

Y

N

ROUT ROTATE left ROUT with Carry

Temp_1 W

N

Y

N

Y

ROUT RIN
Temp_1 n

NY

RESET STATUS,C SET STATUS,C

Temp_1 = Temp_1 – 1

Temp_1,0 = 1?

L1

(n≠0) & (n<8)
?

L2

ROUT,7 = 0?

Temp_1 = 0?

SET Temp_1,0
W Temp_1

begin

end

(b)

FIGURE 10.5 (Continued)
(a) The macro rotate_L and (b) its flowchart.

209Shift and Rotate Macros

© 2008 Taylor & Francis Group, LLC

be 0, and when EN = 1, ENO is forced to be 1. RIN refers to an 8-bit source
variable from where the source value is taken into the macro, while ROUT
refers to an 8-bit destination variable to which the result of the macro is stored.
N represents the number of rotation, which can be any number in 1, 2, …, 7.
When EN = 1, the macro rotate_L retrieves the 8-bit input data from RIN
and rotates the bits of RIN toward left as many numbers as specified by N. The
result of the rotate left operation is stored in the 8-bit output register ROUT.

10.5 Macro Swap

The algorithm and the symbol of the macro Swap are depicted in
Table 10.5. Figure 10.6 shows the macro Swap and its flowchart. In this
macro, EN is a Boolean input variable taken into the macro through W,

TABLE 10.5

Algorithm and Symbol of the Macro Swap

Algorithm Symbol

if EN = 1 then
OUT = SWAP(IN);
ENO = 1;

else ENO = 0;
end if ;

EN ENO
IN OUT

W W

SWAP

IN, OUT (8 bit register)
EN (through W) = 0 or 1
EN0 (through W) = 0 or 1

Algorithm and Symbol of the Macro Swap

Temp_1 W

Y

N

OUT SWAP(IN)
W Temp_1

L1

Temp_1,0 = 1?

begin

end

(b)(a)

FIGURE 10.6
(a) The macro Swap and (b) its flowchart.

210 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

and ENO is a Boolean output variable sent out from the macro through
W. Output ENO follows the input EN. This means that when EN = 0, ENO
is forced to be 0, and when EN = 1, ENO is forced to be 1. IN refers to an
8-bit source variable from where the source value is taken into the macro,
while OUT refers to an 8-bit destination variable to which the result of the
macro is stored. When EN = 1, the macro Swap retrieves the 8-bit input
data from IN and swaps (exchanges the upper and lower nibbles—4 bits)
the nibbles of IN. The result of the swap operation is stored in the 8-bit
output register OUT.

10.6 Examples for Shift and Rotate Macros

In this section, we will consider two examples, UZAM_plc_16i16o_ex17.asm
and UZAM_plc_16i16o_ex18.asm, to show the usage of shift and rotate mac-
ros. In order to test one of these examples, please take the related file UZAM_
plc_16i16o_ex17.asm or UZAM_plc_16i16o_ex18.asm from the CD-ROM
attached to this book, and then open the program by MPLAB IDE and com-
pile it. After that, by using the PIC programmer software, take the compiled
file UZAM_plc_16i16o_ex17.hex or UZAM_plc_16i16o_ex18.hex, and by your
PIC programmer hardware, send it to the program memory of PIC16F648A
microcontroller within the PIC16F648A-based PLC. To do this, switch the
4PDT in PROG position and the power switch in OFF position. After loading
the file UZAM_plc_16i16o_ex17.hex or UZAM_plc_16i16o_ex18.hex, switch
the 4PDT in RUN and the power switch in ON position. Please check the
program’s accuracy by cross-referencing it with the related macros. When
studying these two examples, note that the register Q0 (respectively, Q1, I0,
and I1) is made up of 8 bits: Q0.7, Q0.6, …, Q0.0 (respectively, Q1.7, Q1.6, …,
I1.0; I0.7, I0.6, …, I0.0; and I1.7, I1.6, …, I1.0), and that Q0.7 (respectively, Q1.7,
I0.7, and I1.7) is the most significant bit (MSB), while Q0.0 (respectively, Q1.0,
I0.0, and I1.0) is the least significant bit (LSB).

Let us now consider these example programs: The first example program,
UZAM_plc_16i16o_ex17.asm, is shown in Figure 10.7. It shows the usage of
two shift macros shift_R and shift_L. The ladder diagram of the user
program of UZAM_plc_16i16o_ex17.asm, shown in Figure 10.7, is depicted
in Figure 10.8.

In the first rung, 8-bit numerical data 3Ch are loaded to Q1, by using the
macro load_R. This process is carried out once at the first program scan by
using the FRSTSCN NO contact.

In the eight rungs between 2 and 9, a 3-to-8 decoder is implemented, whose
inputs are I0.2, I0.1, and I0.0, and whose outputs are M0.0, M0.1, …, M0.7. This
arrangement is made to choose the number of shift for the selected shift right
or shift left operation based on the input data given through the input bits

211Shift and Rotate Macros

© 2008 Taylor & Francis Group, LLC

I0.2, I0.1, and I0.0. When these bits are 001, 010, 100, 100, 101, 110, 111, and 000,
we define the number of shift for the selected shift right or shift left opera-
tion as 1, 2, 3, 4, 5, 6, 7, and 8 respectively.

In the eight rungs between 10 and 17, we define eight different shift right
operations according to the 3-to-8 decoder outputs represented by the
marker bits M0.0, M0.1, …, M0.7. Shift right operations defined in these rungs
are applied to the 8-bit input variable Q1. The result of the shift right opera-
tions defined in these rungs will be stored in Q0. The shift in bit for
these shift right operations defined in these rungs is I1.7. The only difference

FIGURE 10.7
The user program of UZAM_plc_16i16o_ex17.asm. (Continued)

212 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

FIGURE 10.7 (Continued)
The user program of UZAM_plc_16i16o_ex17.asm. (Continued)

213Shift and Rotate Macros

© 2008 Taylor & Francis Group, LLC

FIGURE 10.7 (Continued)
The user program of UZAM_plc_16i16o_ex17.asm.

214 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

for these eight shift right operations is the number of shift. It can be seen that
for each rung one rising edge detector is used. This is to make sure that when
the related shift right operation is chosen, it will be carried out only once. In
order to choose one of these eight shift right operations the input bits I0.4 and
I0.3 must be as follows: I0.4 = 0, I0.3 = 1.

In the eight rungs between 18 and 25, we define eight different shift left
operations according to the 3-to-8 decoder outputs represented by the
marker bits M0.0, M0.1, …, M0.7. Shift left operations defined in these rungs
are applied to the 8-bit input variable Q1. The result of the shift left opera-
tions defined in these rungs will be stored in Q0. The shift in bit for
these shift left operations defined in these rungs is I1.0. The only difference
for these eight shift left operations is the number of shift. It can be seen that
for each rung one rising edge detector is used. This is to make sure that when
the related shift left operation is chosen, it will be carried out only once. In
order to choose one of these eight shift left operations, the input bits I0.4 and
I0.3 must be set as follows: I0.4 = 1, I0.3 = 0.

1
 FRSTSCN

2

EN ENO
IN OUT3Ch

load_R

Q1

I0.2 I0.1 I0.0

I0.2 I0.1 I0.0

I0.2 I0.1 I0.0

I0.2 I0.1 I0.0

I0.2 I0.1 I0.0

I0.2 I0.1 I0.0

I0.2 I0.1 I0.0

I0.2 I0.1 I0.0

M0.0

3
M0.1

4
M0.2

5
M0.3

6
M0.4

7
M0.5

8
M0.6

9
M0.7

FIGURE 10.8
The ladder diagram of the user program of UZAM_plc_16i16o_ex17.asm. (Continued)

215Shift and Rotate Macros

© 2008 Taylor & Francis Group, LLC

10
num
IN OUT

r_edge

num
IN OUT

r_edge

num
IN OUT

r_edge

num
IN OUT

r_edge

num
IN OUT

r_edge

num
IN OUT

r_edge

num
IN OUT

r_edge

num
IN OUT

r_edge

0

I 0.3 I 0.4 M 0.1

I 0.3 I 0.4 M 0.2

I 0.3 I 0.4 M 0.3

I 0.3 I 0.4 M 0.4

I 0.3 I 0.4 M 0.5

I 0.3 I 0.4 M 0.6

I 0.3 I 0.4 M 0.7

I 0.3 I 0.4 M 0.0

SHIFT_R

EN ENO

RIN ROUT
SIN

N

EN ENO

RIN ROUT
SIN

N

EN ENO

RIN ROUT
SIN

N

EN ENO

RIN ROUT
SIN

N

EN ENO

RIN ROUT
SIN

N

EN ENO

RIN ROUT
SIN

N

EN ENO

RIN ROUT
SIN

N

EN ENO

RIN ROUT
SIN

N

Q0
I1.7

1

11

SHIFT_R

Q0

12

SHIFT_R

Q0

13

SHIFT_R

Q0

14

SHIFT_R

Q0

15

SHIFT_R

Q0

16
0

0

0

0

0

0

SHIFT_R

Q0

17
0

SHIFT_R

Q0
I1.7

8

Q1

Q1

I1.7

7
Q1

I1.7

6
Q1

I1.7

5
Q1

I1.7

4
Q1

I1.7

3
Q1

I1.7

2
Q1

FIGURE 10.8 (Continued)
The ladder diagram of the user program of UZAM_plc_16i16o_ex17.asm. (Continued)

216 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

18
num
IN OUT

r_edge

num
IN OUT

r_edge

num
IN OUT

r_edge

num
IN OUT

r_edge

num
IN OUT

r_edge

num
IN OUT

r_edge

num
IN OUT

r_edge

num
IN OUT

r_edge

0

I 0.4 I 0.3 M 0.1

I 0.4 I 0.3 M 0.2

I 0.4 I 0.3 M 0.3

I 0.4 I 0.3 M 0.4

I 0.4 I 0.3 M 0.5

I 0.4 I 0.3 M 0.6

I 0.4 I 0.3 M 0.7

I 0.4 I 0.3 M 0.0

EN ENO

RIN ROUT

SHIFT_L

SIN

N

EN ENO

RIN ROUT
SIN

N

EN ENO

RIN ROUT
SIN

N

EN ENO

RIN ROUT
SIN

N

EN ENO

RIN ROUT
SIN

N

EN ENO

RIN ROUT
SIN

N

EN ENO

RIN ROUT
SIN

N

EN ENO

RIN ROUT
SIN

N

Q0
I1.0

1

19

SHIFT_L

Q0

20

SHIFT_L

Q0

21

SHIFT_L

Q0

22

SHIFT_L

Q0

23

SHIFT_L

Q0

24
0

0

0

0

0

0

SHIFT_L

Q0

25
0

SHIFT_L

Q0
I1.0

8

Q1

Q1

I1.0

7
Q1

I1.0

6
Q1

I1.0

5
Q1

I1.0

4
Q1

I1.0

3
Q1

I1.0

2
Q1

FIGURE 10.8 (Continued)
The ladder diagram of the user program of UZAM_plc_16i16o_ex17.asm.

217Shift and Rotate Macros

© 2008 Taylor & Francis Group, LLC

Table 10.6 shows the truth table of the user program of UZAM_plc_16i16o_
ex17.asm.

The second example program, UZAM_plc_16i16o_ex18.asm, is shown in
Figure 10.9. It shows usage of the following macros: rotate_R, rotate_L,
and Swap. The ladder diagram of the user program of UZAM_plc_16i16o_
ex18.asm, shown in Figure 10.9, is depicted in Figure 10.10.

In the first rung, 8-bit numerical data F0h are loaded to the 8-bit variable
Q1, by using the macro load_R. This process is carried out once at the first
program scan by using the FRSTSCN NO contact.

In the second rung, if the 8-bit input register I0 is set to 80h, then I1 is
loaded to Q1, by using the macro load_R.

In the seven rungs between 3 and 9, a 3-to-8 decoder is implemented,
whose inputs are I0.2, I0.1, and I0.0, and whose outputs are M0.1, M0.2, …,
M0.7. Note that the first combination of 3-to-8 decoder, namely, (I0.2, I0.1, I0.0)
= 000, is not implemented. This arrangement is made to choose the number
of rotation for the selected rotate right or rotate left operation based on the
input data given through the input bits I0.2, I0.1, and I0.0. When these bits are
001, 010, 100, 100, 101, 110, and 111, we define the number of rotation for the
selected rotate right or rotate left operation as 1, 2, 3, 4, 5, 6, and 7, respectively.

In the seven rungs between 10 and 16, we define seven different rotate
right operations according to the 3-to-8 decoder outputs represented by the

TABLE 10.6

Truth Table of the User Program of UZAM_plc_16i16o_ex17.asm

I0.4 I0.3 I0.2 I0.1 I0.0 Selected Process

0 0 × × × No process is selected
1 1 × × × No process is selected
0 1 0 0 0 Shift right Q1 once; shift in bit = I1.7
0 1 0 0 1 Shift right Q1 twice; shift in bit = I1.7
0 1 0 1 0 Shift right Q1 3 times; shift in bit = I1.7
0 1 0 1 1 Shift right Q1 4 times; shift in bit = I1.7
0 1 1 0 0 Shift right Q1 5 times; shift in bit = I1.7
0 1 1 0 1 Shift right Q1 6 times; shift in bit = I1.7
0 1 1 1 0 Shift right Q1 7 times; shift in bit = I1.7
0 1 1 1 1 Shift right Q1 8 times; shift in bit = I1.7
1 0 0 0 0 Shift left Q1 once; shift in bit = I1.0
1 0 0 0 1 Shift left Q1 twice; shift in bit = I1.0
1 0 0 1 0 Shift left Q1 3 times; shift in bit = I1.0
1 0 0 1 1 Shift left Q1 4 times; shift in bit = I1.0
1 0 1 0 0 Shift left Q1 5 times; shift in bit = I1.0
1 0 1 0 1 Shift left Q1 6 times; shift in bit = I1.0
1 0 1 1 0 Shift left Q1 7 times; shift in bit = I1.0
1 0 1 1 1 Shift left Q1 8 times; shift in bit = I1.0

×: Don’t care. Note that the result of the shift operations will be stored in Q0.

218 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

FIGURE 10.9
The user program of UZAM_plc_16i16o_ex18.asm. (Continued)

219Shift and Rotate Macros

© 2008 Taylor & Francis Group, LLC

FIGURE 10.9 (Continued)
The user program of UZAM_plc_16i16o_ex18.asm. (Continued)

220 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

FIGURE 10.9 (Continued)
The user program of UZAM_plc_16i16o_ex18.asm.

221Shift and Rotate Macros

© 2008 Taylor & Francis Group, LLC

marker bits M0.1, M0.2, …, M0.7. Rotate right operations defined in these
rungs are applied to the 8-bit input variable Q1. The result of the rotate right
operations defined in these rungs will be stored in Q0. The only difference
for these seven rotate right operations is the number of rotation. It can be
seen that for each rung one rising edge detector is used. This is to make sure
that when the related rotate right operation is chosen, it will be carried out
only once. In order to choose one of these seven rotate right operations, the
input bits I0.4 and I0.3 must be as follows: I0.4 = 0, I0.3 = 1.

In the seven rungs between 17 and 23, we define seven different rotate
left operations according to the 3-to-8 decoder outputs represented by the
marker bits M0.1, M0.2, …, M0.7. Rotate left operations defined in these rungs
are applied to the 8-bit input variable Q1. The result of the rotate left opera-
tions defined in these rungs will be stored in Q0. The only difference for
these seven rotate left operations is the number of rotation. It can be seen that
for each rung one rising edge detector is used. This is to make sure that when
the related rotate left operation is chosen, it will be carried out only once. In

1
FRSTSCN

EN ENO
IN OUT

EN ENO
IN OUT

F0h

load_R

3
I 0.2 I 0.1 I 0.0

I 0.2 I 0.1 I 0.0

I 0.2 I 0.1 I 0.0

I 0.2 I 0.1 I 0.0

I 0.2 I 0.1 I 0.0

I 0.2 I 0.1 I 0.0

I 0.2 I 0.1 I 0.0

M 0.1

4
M 0.2

5
M 0.3

6
M 0.4

7
M 0.5

8
M 0.6

9
M 0.7

2
I 0.7 I 0.6 I 0.5 I 0.4 I 0.3 I 0.2 I 0.1 I 0.0

Q1

num
IN OUT

r_edge

0 I 1

move_R

Q1

FIGURE 10.10
The ladder diagram of the user program of UZAM_plc_16i16o_ex18.asm. (Continued)

222 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

10
num
IN OUT

r_edge

num
IN OUT

r_edge

num
IN OUT

r_edge

num
IN OUT

r_edge

num
IN OUT

r_edge

num
IN OUT

r_edge

num
IN OUT

r_edge

1

I 0.3 I 0.4 M 0.1

I 0.3 I 0.4 M 0.2

I 0.3 I 0.4 M 0.3

I 0.3 I 0.4 M 0.4

I 0.3 I 0.4 M 0.5

I 0.3 I 0.4 M 0.6

I 0.3 I 0.4 M 0.7

EN ENO
RIN ROUT

ROTATE_R

N

EN ENO
RIN ROUT

ROTATE_R

N

EN ENO
RIN ROUT

ROTATE_R

N

EN ENO
RIN ROUT

ROTATE_R

N

EN ENO
RIN ROUT

ROTATE_R

N

EN ENO
RIN ROUT

ROTATE_R

N

EN ENO
RIN ROUT

ROTATE_R

N

Q0
1

11
2

12
3

13
4

14
5

15
6

16
7

Q0
2

Q0
3

Q0
4

Q0
5

Q0
6

Q0
7

Q1

Q1

Q1

Q1

Q1

Q1

Q1

FIGURE 10.10 (Continued)
The ladder diagram of the user program of UZAM_plc_16i16o_ex18.asm. (Continued)

223Shift and Rotate Macros

© 2008 Taylor & Francis Group, LLC

17
num
IN OUT

r_edge

num
IN OUT

r_edge

num
IN OUT

r_edge

num
IN OUT

r_edge

num
IN OUT

r_edge

num
IN OUT

r_edge

num
IN OUT

r_edge

1

I 0.4 I 0.3 M 0.1

I 0.4 I 0.3 M 0.2

I 0.4 I 0.3 M 0.3

I 0.4 I 0.3 M 0.4

I 0.4 I 0.3 M 0.5

I 0.4 I 0.3 M 0.6

I 0.4 I 0.3 M 0.7

18
2

19
3

20
4

21
5

22
6

23
7

24 EN ENO
IN OUT

SWAP

Q0

EN ENO
RIN ROUT

ROTATE_L

N

EN ENO
RIN ROUT
N

EN ENO
RIN ROUT
N

EN ENO
RIN ROUT
N

EN ENO
RIN ROUT
N

EN ENO
RIN ROUT
N

EN ENO
RIN ROUT
N

Q0
1

ROTATE_L

Q0
2

ROTATE_L

Q0
3

ROTATE_L

Q0
4

ROTATE_L

Q0
5

ROTATE_L

Q0
6

ROTATE_L

Q0
7

Q1

Q1

Q1

Q1

Q1

Q1

Q1

Q1

I 0.6 I 0.7 I 0.5 I 0.4 I 0.3 I 0.2 I 0.1 I 0.0

FIGURE 10.10 (Continued)
The ladder diagram of the user program of UZAM_plc_16i16o_ex18.asm.

224 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

order to choose one of these seven rotate left operations, the input bits I0.4
and I0.3 must be set as follows: I0.4 = 1, I0.3 = 0.

In the last rung, the use of the swap function is shown. If the 8-bit input
register I0 is set to be 40h, then the “Swap Q1 and store the result in Q0”
process is selected.

Table 10.7 shows the truth table of the user program of UZAM_plc_16i16o_
ex18.asm.

TABLE 10.7

Truth Table of the User Program of UZAM_plc_16i16o_ex18.asm

I0.4 I0.3 I0.2 I0.1 I0.0 Selected Process

0 0 × × × No process is selected
1 1 × × × No process is selected
0 1 0 0 0 No process is selected
0 1 0 0 1 Rotate right Q1 once
0 1 0 1 0 Rotate right Q1 twice
0 1 0 1 1 Rotate right Q1 3 times
0 1 1 0 0 Rotate right Q1 4 times
0 1 1 0 1 Rotate right Q1 5 times
0 1 1 1 0 Rotate right Q1 6 times
0 1 1 1 1 Rotate right Q1 7 times
1 0 0 0 0 No process is selected
1 0 0 0 1 Rotate left Q1 once
1 0 0 1 0 Rotate left Q1 twice
1 0 0 1 1 Rotate left Q1 3 times
1 0 1 0 0 Rotate left Q1 4 times
1 0 1 0 1 Rotate left Q1 5 times
1 0 1 1 0 Rotate left Q1 6 times
1 0 1 1 1 Rotate left Q1 7 times

×: Don’t care. Note that the result of the rotate operations will be stored in Q0. In addi-
tion, when I0 = 40h, the process Q0 = SWAP Q1 is selected.

225© 2008 Taylor & Francis Group, LLC

11
Multiplexer Macros

As a standard combinational component, the multiplexer (MUX), allows the
selection of one input signal among n signals, where n > 1, and is a power of
two. Select lines connected to the multiplexer determine which input signal
is selected and passed to the output of the multiplexer. As can be seen from
Figure 11.1, in general, an n-to-1 multiplexer has n data input lines, m select
lines where m = log2 n, i.e., 2m = n, and one output line. Although not shown
in Figure 11.1, in addition to the other inputs, the multiplexer may have an
enable line, E, for enabling it. When the multiplexer is disabled with E set to
0 (for active high enable input E), no input signal is selected and passed to
the output.

In this chapter, the following multiplexer macros are described for the
PIC16F648A-based PLC:

mux_2_1 (2 × 1 MUX)
mux_2_1_E (2 × 1 MUX with enable input)
mux_4_1 (4 × 1 MUX)
mux_4_1_E (4 × 1 MUX with enable input)
mux_8_1 (8 × 1 MUX)
mux_8_1_E (8 × 1 MUX with enable input)

The file definitions.inc, included within the CD-ROM attached to this book,
contains all multiplexer macros defined for the PIC16F648A-based PLC. Let
us now consider these macros in detail.

11.1 Macro mux_2_1

The symbol and the truth table of the macro mux_2_1 are depicted in
Table 11.1. Figure 11.2 shows the macro mux_2_1 and its flowchart. In this
macro, the select input s0, input signals d0 and d1, and the output y are all
Boolean variables. When s0 = 0, the input signal d0 is selected and passed to
the output y. When s0 = 1, the input signal d1 is selected and passed to the
output y.

226 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

11.2 Macro mux_2_1_E

The symbol and the truth table of the macro mux_2_1_E are depicted in
Table 11.2. Figure 11.3 shows the macro mux_2_1_E and its flowchart. In
this macro, the active high enable input E, the select input s0, input signals d0
and d1, and the output y are all Boolean variables. When this multiplexer is
disabled with E set to 0, no input signal is selected and passed to the output.
When this multiplexer is enabled with E set to 1, it functions as described
for mux_2_1. This means that when E = 1: if s0 = 0, then the input signal d0
is selected and passed to the output y. When E = 1: if s0 = 1, then the input
signal d1 is selected and passed to the output y.

y

d0
d1
d2

dn–1

sm–1
s1

s0

.

.

.

.

.

.

.

.....

n input
signals

Output line

m select inputs

FIGURE 11.1
The general form of an n-to-1 multiplexer, where n = 2m.

TABLE 11.1

Symbol and Truth Table of the Macro mux_2_1

Symbol Truth Table

d0

d1
y

s0

s0 = regs0,bits0
d0 = regi0,biti0
d1 = regi1,biti1
y = rego,bito

input output
s0 y
0 d0
1 d1

227Multiplexer Macros

© 2008 Taylor & Francis Group, LLC

11.3 Macro mux_4_1

The symbol and the truth table of the macro mux_4_1 are depicted in
Table 11.3. Figure 11.4 shows the macro mux_4_1 and its flowchart. In
this macro, select inputs s1 and s0, input signals d0, d1, d2, and d3, and the

(a)

Y N
regs0,bits0 = 1

Y

Nregi1,biti1 = 1

L1

Y

N regi0,biti0 = 1

RESET rego,bito

 L4

L2

SET rego,bito

L3

begin

end

?

?

?

(b)

FIGURE 11.2
(a) The macro mux_2_1 and (b) its flowchart.

228 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

output y are all Boolean variables. When s1s0 = 00 (respectively, 01, 10, 11),
the input signal d0 (respectively, d1, d2, d3) is selected and passed to the
output y.

11.4 Macro mux_4_1_E

The symbol and the truth table of the macro mux_4_1_E are depicted in
Table 11.4. Figures 11.5 and 11.6 show the macro mux_4_1_E and its flow-
chart, respectively. In this macro, the active high enable input E, select inputs
s1 and s0, input signals d0, d1, d2, and d3, and the output y are all Boolean
variables. When this multiplexer is disabled with E set to 0, no input signal is

TABLE 11.2

Symbol and Truth Table of the Macro mux_2_1_E

Symbol Truth Table

d0

d1
y

s0

E

W E
s0 = regs0,bits0
d0 = regi0,biti0
d1 = regi1,biti1
y = rego,bito

inputs output
E s0 y
0 × 0
1 0 d0
1 1 d1

×: don’t care.

Symbol and Truth Table of the Macro mux _ 2 _ 1 _ E

(a)

FIGURE 11.3
(a) The macro mux_2_1_E and (b) its flowchart. (Continued)

229Multiplexer Macros

© 2008 Taylor & Francis Group, LLC

TABLE 11.3

Symbol and Truth Table of the Macro mux_4_1

Symbol Truth Table

d0
d1

s1
s0

d2
d3

y

s1 = regs1,bits1
s0 = regs0,bits0
d3 = regi3,biti3
d2 = regi2,biti2
d1 = regi1,biti1
d0 = regi0,biti0
y = rego,bito

inputs output
s1 s0 y
0 0 d0
0 1 d1
1 0 d2
1 1 d3

Symbol and Truth Table of the Macro mux _ 4 _ 1

Y Nregs0,bits0 = 1

Y

N
regi1,biti1 = 1

L1

Y

N
regi0,biti0 = 1

RESET rego,bito

L4

L2

SET rego,bito

Temp_1 W

Y

N
Temp_1,0 = 1

L3

begin

end

?

?

??

(b)

FIGURE 11.3 (Continued)
(a) The macro mux_2_1_E and (b) its flowchart.

230 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

(a)

Y N
regs0,bits0 = 1

Y

 N
regi3,biti3 = 1

L1

Y

N
regi2,biti2 = 1

RESET rego,bito

L6

L2

Y Nregs0,bits0 = 1

N
regi1,biti1 = 1

Y

N
regi0,biti0 = 1

L4

L3
SET rego,bito

Y N
regs1,bits1 = 1

L5

Y

begin

end

?

??

? ? ? ?

(b)

FIGURE 11.4
(a) The macro mux_4_1 and (b) its flowchart.

231Multiplexer Macros

© 2008 Taylor & Francis Group, LLC

FIGURE 11.5
The macro mux_4_1_E.

TABLE 11.4

Symbol and Truth Table of the Macro mux_4_1_E

Symbol Truth Table

d0
d1

s1

E

s0

d2
d3

y

W E
s1 = regs1,bits1
s0 = regs0,bits0
d3 = regi3,biti3
d2 = regi2,biti2
d1 = regi1,biti1
d0 = regi0,biti0
y = rego,bito

inputs output
E s1 s0 y
0 × × 0
1 0 0 d0
1 0 1 d1
1 1 0 d2
1 1 1 d3

×: don’t care.

232 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

selected and passed to the output. When this multiplexer is enabled with E
set to 1, it functions as described for mux_4_1. This means that when E = 1:
if s1s0 = 00 (respectively, 01, 10, 11), then the input signal d0 (respectively, d1,
d2, d3) is selected and passed to the output y.

11.5 Macro mux_8_1

The symbol and the truth table of the macro mux_8_1 are depicted in
Table 11.5. Figures 11.7 and 11.8 show the macro mux_8_1 and its flowchart,
respectively. In this macro, select inputs s2, s1, and s0, input signals d0, d1, d2,
d3, d4, d5, d6, and d7, and the output y are all Boolean variables. When s2s1s0 =
000 (respectively, 001, 010, 011, 100, 101, 110, 111), the input signal d0 (respec-
tively, d1, d2, d3, d4, d5, d6, d7) is selected and passed to the output y.

Y N
regs0,bits0 = 1

Y

N
regi3,biti3 = 1 reg2,biti2 = 1

L1

Y

N

RESET rego,bito

L6

L2

Y Nregs0,bits0 = 1

Y

N

Y

N

L4

SET rego,bito

Y N
regs1,bits1 = 1

L5

 L3

Temp_1 W

Y

N Temp_1,0 = 1

 begin

end

regi1,biti1 = 1 regi0,biti0 = 1

?

?

? ?

????

FIGURE 11.6
The flowchart of the macro mux_4_1_E.

233Multiplexer Macros

© 2008 Taylor & Francis Group, LLC

11.6 Macro mux_8_1_E

The symbol and the truth table of the macro mux_8_1_E are depicted in
Table 11.6. Figures 11.9 and 11.10 show the macro mux_8_1_E and its flow-
chart, respectively. In this macro, the active high enable input E, select inputs
s2, s1, and s0, input signals d0, d1, d2, d3, d4, d5, d6, and d7, and the output y are
all Boolean variables. When this multiplexer is disabled with E set to 0, no
input signal is selected and passed to the output. When this multiplexer is
enabled with E set to 1, it functions as described for mux_8_1. This means
that when E = 1: if s2s1s0 = 000 (respectively, 001, 010, 011, 100, 101, 110, 111),
then the input signal d0 (respectively, d1, d2, d3, d4, d5, d6, d7) is selected and
passed to the output y.

11.7 Examples for Multiplexer Macros

In this section, we will consider three examples, namely, UZAM_plc_16i16o_
exX.asm (X = 19, 20, 21), to show the usage of multiplexer macros. In order
to test one of these examples, please take the related file UZAM_plc_16i16o_
exX.asm (X = 19, 20, 21) from the CD-ROM attached to this book, and then

TABLE 11.5

Symbol and Truth Table of the Macro mux_8_1

Symbol Truth Table

y

s0

d7

d6

d5

d4

d3

d2

d1

d0

s1s2

s2 = regs2,bits2
s1 = regs1,bits1
s0 = regs0,bits0
d7 = regi7,biti7
d6 = regi6,biti6
d5 = regi5,biti5
d4 = regi4,biti4
d3 = regi3,biti3
d2 = regi2,biti2
d1 = regi1,biti1
d0 = regi0,biti0
y = rego,bito

inputs output
s2 s1 s0 y
0 0 0 d0
0 0 1 d1
0 1 0 d2
0 1 1 d3
1 0 0 d4
1 0 1 d5
1 1 0 d6
1 1 1 d7

234 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

FIGURE 11.7
The macro mux_8_1.

235Multiplexer Macros

© 2008 Taylor & Francis Group, LLC

open the program by MPLAB IDE and compile it. After that, by using the
PIC programmer software, take the compiled file UZAM_plc_16i16o_exX.hex
(X = 19, 20, 21), and by your PIC programmer hardware, send it to the program
memory of the PIC16F648A microcontroller within the PIC16F648A-based
PLC. To do this, switch the 4PDT in PROG position and the power switch in
OFF position. After loading the file UZAM_plc_16i16o_exX.hex (X = 19, 20, 21),
switch the 4PDT in RUN and the power switch in ON position. Please check
the program’s accuracy by cross-referencing it with the related macros.

Let us now consider these example programs: The first example program,
UZAM_plc_16i16o_ex19.asm, is shown in Figure 11.11. It shows the usage of
two multiplexer macros mux_2_1 and mux_2_1_E. The schematic diagram
of the user program of UZAM_plc_16i16o_ex19.asm, shown in Figure 11.11,
is depicted in Figure 11.12.

In the first rung, the multiplexer macro mux_2_1 (2 × 1 multiplexer) is
used. In this multiplexer, input signals are d0 = I0.1 and d1 = I0.2, while the
output is y = Q0.0 and the select input is s0 = I0.0.

In the second rung, another multiplexer macro mux_2_1 is used. In this
multiplexer, input signals are d0 = T1.5 (838.8608 ms) and d1 = T1.4 (419.4304
ms), while the output is y = Q0.3 and the select input is s0 = I0.7.

In the third rung, the macro mux_2_1_E (2 × 1 multiplexer with active
high enable input) is used. In this multiplexer, input signals are d0 = I1.2 and
d1 = I1.3, while the output is y = Q1.0 and the select input is s0 = I1.1. In addi-
tion, the active high enable input E is defined to be E = I1.0.

TABLE 11.6

Symbol and Truth Table of the Macro mux_8_1_E

Symbol Truth Table

y

s0

d7

d6

d5

d4

d3

d2

d1

d0 E

s1s2

W E
s2 = regs2,bits2
s1 = regs1,bits1
s0 = regs0,bits0
d7 = regi7,biti7
d6 = regi6,biti6
d5 = regi5,biti5
d4 = regi4,biti4
d3 = regi3,biti3
d2 = regi2,biti2
d1 = regi1,biti1
d0 = regi0,biti0
y = rego,bito

inputs output
E s2 s1 s0 y
0 × × × 0
1 0 0 0 d0
1 0 0 1 d1
1 0 1 0 d2
1 0 1 1 d3
1 1 0 0 d4
1 1 0 1 d5
1 1 1 0 d6
1 1 1 1 d7

×: don’t care.

236 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

Y
N

re
gs

0,
bi

ts
0

=
1

Y

N
re

gi
7,

bi
ti7

 =
 1

Y

N
re

gi
6,

bi
ti6

 =
 1

RE
SE

T
re

go
,b

ito

L1
0

L2

Y
N

re
gs

0,
bi

ts
0

=
1

Y

N
re

gi
5,

bi
ti5

 =
 1

Y

N
re

gi
4,

bi
ti4

 =
 1

L8

Y
N

re
gs

1,
bi

ts
1

=
1

L9

Y
 N

re
gs

0,
bi

ts
0

=
1

Y

N
re

gi
3,

bi
ti3

 =
 1

SE
T

re
go

,b
ito

 L
1

Y

N
re

gi
2,

bi
ti2

 =
 1

L6

Y
 N

re
gs

0,
bi

ts
0

=
1

Y

N
re

gi
1,

bi
ti1

 =
 1

Y

N
re

gi
0,

bi
ti0

 =
 1

L4

Y
N

L5

Y
N

re
gs

2,
bi

ts
2

=
1

L7

L3

 b
eg

in

en
d

re
gs

1,
bi

ts
1

=
1

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?

FI
G

U
R

E
11

.8
T

he
 fl

ow
ch

ar
t o

f t
he

 m
ac

ro
 m
u
x
_
8
_
1

.

237Multiplexer Macros

© 2008 Taylor & Francis Group, LLC

FIGURE 11.9
The macro mux_8_1_E.

238 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

Te
m

p_
1

 W

Y
N

re
gs

0,
bi

ts
0

=
1

Y

N
re

gi
7,

bi
ti7

 =
 1

Y

N
re

gi
6,

bi
ti6

 =
 1

RE
SE

T
re

go
,b

ito

L1
0

L2

Y
N

re
gs

0,
bi

ts
0

=
1

Y

N
re

gi
5,

bi
ti5

 =
 1

 Y

re
gi

4,
bi

ti4
 =

 1

L8

Y
N

re
gs

1,
bi

ts
1

=
1

L9

Y
 N

re
gs

0,
bi

ts
0

=
1

Y

N
re

gi
3,

bi
ti3

 =
 1

SE
T

re
go

,b
ito

L1

Y

N
re

gi
2,

bi
ti2

 =
 1

L6

Y
 N

re
gs

0,
bi

ts
0

=
1

Y

N
re

gi
1,

bi
ti1

 =
 1

Y

N
re

gi
0,

bi
ti0

 =
 1

L4

Y

Y

N
L5

YN

N
re

gs
2,

bi
ts

2
=

1
L7

L3

 b
eg

in

en
d

re
gs

1,
bi

ts
1

=
1

Te
m

p_
1,

0
=

1
? ?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

FI
G

U
R

E
11

.1
0

T
he

 fl
ow

ch
ar

t o
f t

he
 m

ac
ro

 m
u
x
_
8
_
1
_
E

.

239Multiplexer Macros

© 2008 Taylor & Francis Group, LLC

FIGURE 11.11
The user program of UZAM_plc_16i16o_ex19.asm.

d0
d1

s0

y

d0
d1

s0

y

d0
d1

s0

y
E

d0
d1

s0

y
E

I0.0

I0.1
I0.2

I1.0

Q0.0

Q1.0

INPUTS OUTPUTS

I1.2
I1.3

Q0.3

I1.4

I1.5

Q1.7

I0.7

T=419,4304 ms
T1.5
T1.4

T=838,8608 ms

I1.1

T=419,4304 ms
T1.5
T1.4

T=838,8608 ms

FIGURE 11.12
The schematic diagram of the user program of UZAM_plc_16i16o_ex19.asm.

240 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

In the fourth and last rung, another multiplexer macro mux_2_1_E is
used. In this multiplexer, input signals are d0 = T1.5 (838.8608 ms) and d1 =
T1.4 (419.4304 ms), while the output is y = Q1.7 and the select input is s0 = I1.5.
In addition, the active high enable input E is defined to be E = inverted I1.4.
Note that this arrangement forces the enable input E to be active low.

The second example program, UZAM_plc_16i16o_ex20.asm, is shown
in Figure 11.13. It shows the usage of two multiplexer macros mux_4_1
and mux_4_1_E. The schematic diagram of the user program of UZAM_
plc_16i16o_ex20.asm, shown in Figure 11.13, is depicted in Figure 11.14. In the
first rung, the multiplexer macro mux_4_1 (4 × 1 multiplexer) is used. In this
multiplexer, input signals are d0 = I0.2, d1 = I0.3, d2 = I0.4, and d3 = I0.5, select

FIGURE 11.13
The user program of UZAM_plc_16i16o_ex20.asm.

I0.1

I0.2

Q0.0

d0
d1
d2
d3

y

s1
s0

d0
d1
d2
d3

y

E

s1
s0

I0.3
I0.4
I0.5

I0.0

I1.2

Q1.0

I1.1

I1.0

T=209,7152 ms
T1.2
T1.3

T=104,8576 ms
T=52,4288 ms

T1.0
T1.1

T=26,2144 ms

INPUTS OUTPUTS

FIGURE 11.14
The schematic diagram of the user program of UZAM_plc_16i16o_ex20.asm.

241Multiplexer Macros

© 2008 Taylor & Francis Group, LLC

inputs are s1 = I0.1 and s0 = I0.0, and the output is y = Q0.0. In the second
rung, the multiplexer macro mux_4_1_E (4 × 1 multiplexer with active high
enable input) is used. In this multiplexer, input signals are d0 = T1.0 (26.2144
ms), d1 = T1.1 (52.4288 ms), d2 = T1.2 (104.8576 ms), and d3 = T1.3 (209.7152 ms),
select inputs are s1 = I1.2 and s0 = I1.1, and the output is y = Q1.0. In addition,
the active high enable input E is defined to be E = I1.0.

The third example program, UZAM_plc_16i16o_ex21.asm, is shown in
Figure 11.15. It shows the usage of the multiplexer macro mux_8_1_E. The
schematic diagram of the user program of UZAM_plc_16i16o_ex21.asm,
shown in Figure 11.15, is depicted in Figure 11.16.

In this example, the multiplexer macro mux_8_1_E (8 × 1 multiplexer with
active high enable input) is used. In this multiplexer, input signals are d0 =
I1.0, d1 = I1.1, d2 = I1.2, d3 = I1.3, d4 = I1.4, d5 = I1.5, d6 = I1.6, and d7 = I1.7, select
inputs are s2 = I0.3, s1 = I0.2, and s0 = I0.1, and the output is y = Q0.0. In addi-
tion, the active high enable input E is defined to be E = I0.0.

FIGURE 11.15
The user program of UZAM_plc_16i16o_ex21.asm.

INPUTS OUTPUT

Q0.0 y

d0

s0s1s2

d1
d2
d3
d4
d5
d6
d7

I0.2
I0.1

I0.3

E

I0.0

I1.0
I1.1
I1.2
I1.3
I1.4
I1.5
I1.6
I1.7

FIGURE 11.16
The schematic diagram of the user program of UZAM_plc_16i16o_ex21.asm.

243© 2008 Taylor & Francis Group, LLC

12
Demultiplexer Macros

A demultiplexer (DMUX) is used when a circuit is to send a signal to one
of many devices. This description sounds similar to the description given
for a decoder, but a decoder is used to select among many devices, while a
demultiplexer is used to send a signal among many devices. However, any
decoder having an enable line can function as a demultiplexer. If the enable
line of a decoder is used as a data input, then the data can be routed to any
one of the outputs, and thus in that case the decoder can be used as a demul-
tiplexer. As the name infers, a demultiplexer performs the opposite function
as that of a multiplexer. A single input signal can be connected to any one of
the output lines provided by the choice of an appropriate select signal. The
general form of a 1-to-n demultiplexer can be seen from Figure 12.1. If there
are m select inputs, then the number of output lines to which the data can be
routed is n = 2m. Although not shown in Figure 12.1, in addition to the other
inputs, the demultiplexer may have an enable line, E, for enabling it. When
the demultiplexer is disabled with E set to 0 (for active high enable input E),
no output line is selected, and therefore the input signal is not passed to any
output line.

In this chapter, the following demultiplexer macros are described for the
PIC16F648A-based PLC: Dmux_1_2 (1 × 2 DMUX), Dmux_1_2_E (1 ×
2 DMUX with enable input), Dmux_1_4 (1 × 4 DMUX), Dmux_1_4_E
(1 × 4 DMUX with enable input), Dmux_1_8 (1 × 8 DMUX), and
Dmux_1_8_E (1 × 8 DMUX with enable input).

The file definitions.inc, included within the CD-ROM attached to this
book, contains all demultiplexer macros defined for the PIC16F648A-based
PLC. Let us now consider these macros in detail.

12.1 Macro Dmux_1_2

The symbol and the truth table of the macro Dmux_1_2 are depicted in
Table 12.1. Figure 12.2 shows the macro Dmux_1_2 and its flowchart. In this
macro, the select input s0, output signals y0 and y1, and the input signal i are
all Boolean variables. When the select input s0 = 0, the input signal i is passed
to the output line y0. When the select input s0 = 1, the input signal i is passed
to the output line y1.

244 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

12.2 Macro Dmux_1_2_E

The symbol and the truth table of the macro Dmux_1_2_E are depicted in
Table 12.2. Figure 12.3 shows the macro Dmux_1_2_E and its flowchart. In
this macro, the active high enable input E, the select input s0, output signals
y0 and y1, and the input signal i are all Boolean variables. When this demul-
tiplexer is disabled with E set to 0, no output line is selected and the input
signal is not passed to any output. When this demultiplexer is enabled with
E set to 1, it functions as described for Dmux_1_2. This means that when E =
1: if the select input s0 = 0, then the input signal i is passed to the output line
y0. When E = 1: if the select input s0 = 1, then the input signal i is passed to
the output line y1.

y0

y1

s1
s0

yn–1

sm–1

i

.

.

.

.

.....

n output
lines

input
signal

m select inputs

.

.

.

.

FIGURE 12.1
The general form of a 1-to-n demultiplexer, where n = 2m.

TABLE 12.1

Symbol and Truth Table of the Macro Dmux_1_2

Symbol Truth Table

i
y0
y1

s1

i = regi,biti
s0 = regs0,bits0
y0 = rego0,bito0
y1 = rego1,bito1

input outputs
s0 y0 y1
0 i 0
1 0 i

245Demultiplexer Macros

© 2008 Taylor & Francis Group, LLC

12.3 Macro Dmux_1_4

The symbol and the truth table of the macro Dmux_1_4 are depicted in
Table 12.3. Figure 12.4 shows the macro Dmux_1_4 and its flowchart. In
this macro, select inputs s1 and s0, output signals y0, y1, y2, and y3, and the
input signal i are all Boolean variables. When the select inputs are s1s0 = 00
(respectively, 01, 10, 11), the input signal i is passed to the output line y0
(respectively, y1, y2, y3).

(a)

Y N
regi,biti = 1 L2

RESET rego1,bito1
RESET rego0,bito0

Y N
regs0,bits0 = 1

L1

L3

SET rego1,bito1
RESET rego0,bito0

RESET rego1,bito1
SET rego0,bito0

 begin

end

?

?

(b)

FIGURE 12.2
(a) The macro Dmux_1_2 and (b) its flowchart.

246 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

12.4 Macro Dmux_1_4_E

The symbol and the truth table of the macro Dmux_1_4_E are depicted
in Table 12.4. Figures 12.5 and 12.6 show the macro Dmux_1_4_E and its
flowchart, respectively. In this macro, the active high enable input E, select
inputs s1 and s0, output signals y0, y1, y2, and y3, and the input signal i are
all Boolean variables. When this demultiplexer is disabled with E set to 0,
no output line is selected and the input signal is not passed to any output.
When this demultiplexer is enabled with E set to 1, it functions as described

TABLE 12.2

Symbol and Truth Table of the Macro Dmux_1_2_E

Symbol Truth Table

i
y0
y1

s0

E
W E
i = regi,biti

s0 = regs0,bits0
y0 = rego0,bito0
y1 = rego1,bito1

inputs outputs
E s0 y0 y1
0 × 0 0
1 0 i 0
1 1 0 i

×: don’t care.

Symbol and Truth Table of the Macro Dmux _ 1 _ 2 _ E

(a)

FIGURE 12.3
(a) The macro Dmux_1_2_E and (b) its flowchart. (Continued)

247Demultiplexer Macros

© 2008 Taylor & Francis Group, LLC

Y N
regi,biti = 1

L2

RESET rego1,bito1
RESET rego0,bito0

Y N
regs0,bits0 = 1

L1

L3

SET rego1,bito1
RESET rego0,bito0

RESET rego1,bito1
SET rego0,bito0

Temp_1 W

Y

N
Temp_1,0 = 1

begin

end

?

?

?

(b)

FIGURE 12.3 (Continued)
(a) The macro Dmux_1_2_E and (b) its flowchart.

TABLE 12.3

Symbol and Truth Table of the Macro Dmux_1_4

Symbol Truth Table

s1

y0

y1

y2

y3

s0

i

i = regi,biti
s1 = regs1,bits1
s0 = regs0,bits0
y3 = rego3,bito3
y2 = rego2,bito2
y1 = rego1,bito1
y0 = rego0,bito0

inputs outputs
s1 s0 y0 y1 y2 y3
0 0 i 0 0 0
0 1 0 i 0 0
1 0 0 0 i 0
1 1 0 0 0 i

Symbol and Truth Table of the Macro Dmux _ 1 _ 4

248 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

(a)

FIGURE 12.4
(a) The macro Dmux_1_4 and (b) its flowchart. (Continued)

249Demultiplexer Macros

© 2008 Taylor & Francis Group, LLC

TABLE 12.4

Symbol and Truth Table of the Macro Dmux_1_4_E

Symbol Truth Table

s1

E y0

y1

y2

y3

s0

i

W E
i = regi,biti

s1 = regs1,bits1
s0 = regs0,bits0
y3 = rego3,bito3
y2 = rego2,bito2
y1 = rego1,bito1
y0 = rego0,bito0

inputs outputs
E s1 s0 y0 y1 y2 y3
0 × × 0 0 0 0
1 0 0 i 0 0 0
1 0 1 0 i 0 0
1 1 0 0 0 i 0
1 1 1 0 0 0 i

×: don’t care.

Symbol and Truth Table of the Macro Dmux _ 1 _ 4 _ E

Y Nregi,biti = 1 L2

RESET rego3,bito3
RESET rego2,bito2
RESET rego1,bito1
RESET rego0,bito0

Y N
regs1,bits1 = 1

L5

RESET rego1,bito1
RESET rego0,bito0

RESET rego3,bito3
RESET rego2,bito2

Y N
regs0,bits0 = 1 L4

SET rego3,bito3
RESET rego2,bito2

RESET rego3,bito3
SET rego2,bito2

L1

Y N
regs0,bits0 = 1 L3

SET rego1,bito1
RESET rego0,bito0

RESET rego1,bito1
SET rego0,bito0

begin

end

?

?

? ?

(b)

FIGURE 12.4 (Continued)
(a) The macro Dmux_1_4 and (b) its flowchart.

250 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

FIGURE 12.5
The macro Dmux_1_4_E.

251Demultiplexer Macros

© 2008 Taylor & Francis Group, LLC

for Dmux_1_4. This means that when E = 1: if the select inputs are s1s0 = 00
(respectively, 01, 10, 11), the input signal i is passed to the output line y0
(respectively, y1, y2, y3).

12.5 Macro Dmux_1_8

The symbol and the truth table of the macro Dmux_1_8 are depicted in
Table 12.5. Figures 12.7 and 12.8 show the macro Dmux_1_8 and its flow-
chart, respectively. In this macro, the select inputs s2, s1, and s0, output signals
y0, y1, y2, y3, y4, y5, y6, and y7, and the input signal i are all Boolean variables.
When the select inputs are s2s1s0 = 000 (respectively, 001, 010, 011, 100, 101, 110,
111), the input signal i is passed to the output line y0 (respectively, y1, y2, y3,
y4, y5, y6, y7).

Y Nregi,biti = 1

L2

RESET rego3,bito3
RESET rego2,bito2
RESET rego1,bito1
RESET rego0,bito0

Y N
regs1,bits1 = 1 L5

RESET rego1,bito1
RESET rego0,bito0

RESET rego3,bito3
RESET rego2,bito2

Y N
regs0,bits0 = 1

L4

SET rego3,bito3
RESET rego2,bito2

RESET rego3,bito3
SET rego2,bito2

L1

Y N
 L3

SET rego1,bito1
RESET rego0,bito0

RESET rego1,bito1
SET rego0,bito0

Y

Temp_1,0 = 1

begin

end

regs0,bits0 = 1

?

?

?

? ?

FIGURE 12.6
The flowchart of the macro Dmux_1_4_E.

252 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

12.6 Macro Dmux_1_8_E

The symbol and the truth table of the macro Dmux_1_8_E are depicted in
Table 12.6. Figures 12.9 and 12.10 show the macro Dmux_1_8_E and its flow-
chart, respectively. In this macro, the active high enable input E, select inputs
s2, s1, and s0, output signals y0, y1, y2, y3, y4, y5, y6, and y7, and the input signal
i are all Boolean variables. When this demultiplexer is disabled with E set to
0, no output line is selected, and the input signal is not passed to any output.
When this demultiplexer is enabled with E set to 1, it functions as described
for Dmux_1_8. This means that when E = 1: if the select inputs are s2s1s0 = 000
(respectively, 001, 010, 011, 100, 101, 110, 111), the input signal i is passed to the
output line y0 (respectively, y1, y2, y3, y4, y5, y6, and y7).

12.7 Examples for Demultiplexer Macros

In this section, we will consider three examples, namely, UZAM_plc_16i16o_
exX.asm (X = 22, 23, 24), to show the usage of demultiplexer macros. In order
to test one of these examples, please take the related file UZAM_plc_16i16o_
exX.asm (X = 22, 23, 24) from the CD-ROM attached to this book, and then
open the program by MPLAB IDE and compile it. After that, by using the PIC
programmer software, take the compiled file UZAM_plc_16i16o_exX.hex (X
= 22, 23, 24), and by your PIC programmer hardware, send it to the program

TABLE 12.5

Symbol and Truth Table of the Macro Dmux_1_8

Symbol Truth Table

i

s2 s1

y0
y1
y2
y3
y4
y5
y6
y7s0

i = regi,biti
s2 = regs2,bits2
s1 = regs1,bits1
s0 = regs0,bits0
y7 = rego7,bito7
y6 = rego6,bito6
y5 = rego5,bito5
y4 = rego4,bito4
y3 = rego3,bito3
y2 = rego2,bito2
y1 = rego1,bito1
y0 = rego0,bito0

inputs outputs
s2 s1 s0 y0 y1 y2 y3 y4 y5 y6 y7
0 0 0 i 0 0 0 0 0 0 0
0 0 1 0 i 0 0 0 0 0 0
0 1 0 0 0 i 0 0 0 0 0
0 1 1 0 0 0 i 0 0 0 0
1 0 0 0 0 0 0 i 0 0 0
1 0 1 0 0 0 0 0 i 0 0
1 1 0 0 0 0 0 0 0 i 0
1 1 1 0 0 0 0 0 0 0 i

×: don’t care.

253Demultiplexer Macros

© 2008 Taylor & Francis Group, LLC

FIGURE 12.7
The macro Dmux_1_8.

254 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

Y
N

re
gi

,b
iti

 =
 1

 L
2

RE
SE

T
re

go
7,

bi
to

7
RE

SE
T

re
go

6,
bi

to
6

RE
SE

T
re

go
5,

bi
to

5
RE

SE
T

re
go

4,
bi

to
4

RE
SE

T
re

go
3,

bi
to

3
RE

SE
T

re
go

2,
bi

to
2

RE
SE

T
re

go
1,

bi
to

1
RE

SE
T

re
go

0,
bi

to
0

Y
N

re
gs

2,
bi

ts
2

=
1

L9

RE
SE

T
re

go
7,

bi
to

7
RE

SE
T

re
go

6,
bi

to
6

RE
SE

T
re

go
5,

bi
to

5
RE

SE
T

re
go

4,
bi

to
4

 L
1

Y
N

re
gs

1,
bi

ts
1

=
1

L8

RE
SE

T
 re

go
5,

bi
to

5
RE

SE
T

 re
go

4,
bi

to
4

RE
SE

T
 re

go
7,

bi
to

7
RE

SE
T

 re
go

6,
bi

to
6

Y
N

re
gs

0,
bi

ts
0

=
1

re
gs

0,
bi

ts
0

=
1

re
gs

0,
bi

ts
0

=
1

L7

SE
T

re
go

7,
bi

to
7

RE
SE

T
re

go
6,

bi
to

6
RE

SE
T

re
go

7,
bi

to
7

SE
T

re
go

6,
bi

to
6

Y
N

L6

SE
T

re
go

5,
bi

to
5

RE
SE

T
re

go
4,

bi
to

4
RE

SE
T

re
go

5,
bi

to
5

SE
T

re
go

4,
bi

to
4

RE
SE

T
re

go
3,

bi
to

3
RE

SE
T

re
go

2,
bi

to
2

RE
SE

T
re

go
1,

bi
to

1
RE

SE
T

re
go

0,
bi

to
0

Y
N

re
gs

1,
bi

ts
1

=
1

L5

RE
SE

T
re

go
1,

bi
to

1
RE

SE
T

re
go

0,
bi

to
0

RE
SE

T
re

go
3,

bi
to

3
RE

SE
T

re
go

2,
bi

to
2

Y
N

L4
L3

SE
T

re
go

3,
bi

to
3

RE
SE

T
re

go
2,

bi
to

2
RE

SE
T

re
go

3,
bi

to
3

SE
T

re
go

2,
bi

to
2

Y
N

re
gs

0,
bi

ts
0

=
1

SE
T

re
go

1,
bi

to
1

RE
SE

T
re

go
0,

bi
to

0
RE

SE
T

re
go

1,
bi

to
1

SE
T

re
go

0,
bi

to
0

be
gi

n

en
d

?

?

?

?
?

?
?

?

FI
G

U
R

E
12

.8
T

he
 fl

ow
ch

ar
t o

f t
he

 m
ac

ro
 D
m
u
x
_
1
_
8

.

255Demultiplexer Macros

© 2008 Taylor & Francis Group, LLC

memory of PIC16F648A microcontroller within the PIC16F648A-based PLC.
To do this, switch the 4PDT in PROG position and the power switch in OFF
position. After loading the file UZAM_plc_16i16o_exX.hex (X = 22, 23, 24),
switch the 4PDT in RUN and the power switch in ON position. Please check
the program’s accuracy by cross-referencing it with the related macros.

Let us now consider these example programs: The first example program,
UZAM_plc_16i16o_ex22.asm, is shown in Figure 12.11. It shows the usage
of two demultiplexer macros Dmux_1_2 and Dmux _1_2_E. The schematic
diagram of the user program of UZAM_plc_16i16o_ex22.asm, shown in
Figure 12.11, is depicted in Figure 12.12.

In the first rung, the demultiplexer macro Dmux_1_2 (1 × 2 demultiplexer)
is used. In this demultiplexer, the input signal is i = I0.1, and the select input
is s0 = I0.0, while the output lines are y0 = Q0.0 and y1 = Q0.1.

In the second rung, another demultiplexer macro Dmux_1_2 (1 × 2 demul-
tiplexer) is used. In this demultiplexer, the input signal is i = T1.4 (419.4304
ms), and the select input is s0 = I0.7, while the output lines are y0 = Q0.6 and
y1 = Q0.7.

In the third rung, the macro Dmux_1_2_E (1 × 2 demultiplexer with active
high enable input) is used. In this demultiplexer, the input signal is i = I1.2,
and the select input is s0 = I1.1, while the output lines are y0 = Q1.0 and y1 =
Q1.1. In addition, the active high enable input E is defined to be E = I1.0.

In the fourth and last rung, another macro Dmux_1_2_E (1 × 2 demulti-
plexer with active high enable input) is used. In this demultiplexer, the input
signal is i = T1.3 (209.7152 ms), and the select input is s0 = I1.6, while the

TABLE 12.6

Symbol and Truth Table of the Macro Dmux_1_8_E

Symbol Truth Table

i

s2

E

s1

y0
y1
y2
y3
y4
y5
y6
y7s0

W E
i = regi,biti

s2 = regs2,bits2
s1 = regs1,bits1
s0 = regs0,bits0
y7 = rego7,bito7
y6 = rego6,bito6
y5 = rego5,bito5
y4 = rego4,bito4
y3 = rego3,bito3
y2 = rego2,bito2
y1 = rego1,bito1
y0 = rego0,bito0

inputs outputs
E s2 s1 s0 y0 y1 y2 y3 y4 y5 y6 y7
0 × × × 0 0 0 0 0 0 0 0
1 0 0 0 i 0 0 0 0 0 0 0
1 0 0 1 0 i 0 0 0 0 0 0
1 0 1 0 0 0 i 0 0 0 0 0
1 0 1 1 0 0 0 i 0 0 0 0
1 1 0 0 0 0 0 0 i 0 0 0
1 1 0 1 0 0 0 0 0 i 0 0
1 1 1 0 0 0 0 0 0 0 i 0
1 1 1 1 0 0 0 0 0 0 0 i

×: don’t care.

256 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

FIGURE 12.9
The macro Dmux_1_8_E.

257Demultiplexer Macros

© 2008 Taylor & Francis Group, LLC

Y

Y

NN

re
gi

,b
iti

 =
 1

Te
m

p_
1,

0
=

1

 L
2

RE
SE

T
re

go
7,

bi
to

7
RE

SE
T

re
go

6,
bi

to
6

RE
SE

T
re

go
5,

bi
to

5
RE

SE
T

re
go

4,
bi

to
4

RE
SE

T
re

go
3,

bi
to

3
RE

SE
T

re
go

2,
bi

to
2

RE
SE

T
re

go
1,

bi
to

1
RE

SE
T

re
go

0,
bi

to
0

Y
N

re
gs

2,
bi

ts
2

=
1

L9

RE
SE

T
re

go
7,

bi
to

7
RE

SE
T

re
go

6,
bi

to
6

RE
SE

T
re

go
5,

bi
to

5
RE

SE
T

re
go

4,
bi

to
4

 L
1

Y
N

re
gs

1,
bi

ts
1

=
1

L8

RE
SE

T
 re

go
5,

bi
to

5
RE

SE
T

 re
go

4,
bi

to
4

RE
SE

T
 re

go
7,

bi
to

7
RE

SE
T

 re
go

6,
bi

to
6

Y
N

re
gs

0,
bi

ts
0

=
1

re
gs

0,
bi

ts
0

=
1

re
gs

0,
bi

ts
0

=
1

L7

SE
T

re
go

7,
bi

to
7

RE
SE

T
re

go
6,

bi
to

6
RE

SE
T

re
go

7,
bi

to
7

SE
T

re
go

6,
bi

to
6

Y
N

L6

SE
T

re
go

5,
bi

to
5

RE
SE

T
re

go
4,

bi
to

4
RE

SE
T

re
go

5,
bi

to
5

SE
T

re
go

4,
bi

to
4

RE
SE

T
re

go
3,

bi
to

3
RE

SE
T

re
go

2,
bi

to
2

RE
SE

T
re

go
1,

bi
to

1
RE

SE
T

re
go

0,
bi

to
0

Y
N

re
gs

1,
bi

ts
1

=
1

L5

RE
SE

T
re

go
1,

bi
to

1
RE

SE
T

re
go

0,
bi

to
0

RE
SE

T
re

go
3,

bi
to

3
RE

SE
T

re
go

2,
bi

to
2

Y
N

L4
L 3

SE
T

re
go

3,
bi

to
3

RE
SE

T
re

go
2,

bi
to

2
RE

SE
T

re
go

3,
bi

to
3

SE
T

re
go

2,
bi

to
2

Y
N

re
gs

0,
bi

ts
0

=
1

SE
T

re
go

1,
bi

to
1

RE
SE

T
re

go
0,

bi
to

0
RE

SE
T

re
go

1,
bi

to
1

SE
T

re
go

0,
bi

to
0

be
gi

n

en
d

?
?

?
?

?
?

?

??

FI
G

U
R

E
12

.1
0

T
he

 fl
ow

ch
ar

t o
f t

he
 m

ac
ro

 D
m
u
x
_
1
_
8
_
E

.

258 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

E

I0.0

I0.1

I1.0

Q0.0
i

y0

y1
s0

i
y0

y1
s0

i
y0

y1
s0

i
y0

y1
s0

I1.1

Q0.1

Q1.0

Q1.1
I1.2

I0.7

T1.4
Q0.6

Q0.7

E

I1.7

I1.6

Q1.6

Q1.7
T1.3

T=419,4304 ms

T=209,7152 ms

INPUTS OUTPUTS

FIGURE 12.12
The schematic diagram of the user program of UZAM_plc_16i16o_ex22.asm.

FIGURE 12.11
The user program of UZAM_plc_16i16o_ex22.asm.

259Demultiplexer Macros

© 2008 Taylor & Francis Group, LLC

output lines are y0 = Q1.6 and y1 = Q1.7. In addition, the active high enable
input E is defined to be E = inverted I1.7. Note that this arrangement forces
the enable input E to be active low.

The second example program, UZAM_plc_16i16o_ex23.asm, is shown in
Figure 12.13. It shows the usage of two demultiplexer macros Dmux_1_4
and Dmux _1_4_E. The schematic diagram of the user program of UZAM_
plc_16i16o_ex23.asm, shown in Figure 12.13, is depicted in Figure 12.14.

In the first rung, the demultiplexer macro Dmux_1_4 (1 × 4 demultiplexer)
is used. In this demultiplexer, the input signal is i = I0.2, and the select inputs
are s1 = I0.1 and s0 = I0.0, while the output lines are y0 = Q0.0, y1 = Q0.1, y2 =
Q0.2, and y3 = Q0.3.

In the second rung, another demultiplexer macro Dmux_1_4 (1 × 4 demul-
tiplexer) is used. In this demultiplexer, the input signal is i = T1.2 (104.8576
ms), and the select inputs are s1 = I0.7 and s0 = I0.6, while the output lines are
y0 = Q0.4, y1 = Q0.5, y2 = Q0.6, and y3 = Q0.7.

In the third rung, the macro Dmux_1_4_E (1 × 4 demultiplexer with active
high enable input) is used. In this demultiplexer, the input signal is i = I1.3,
and the select inputs are s1 = I1.2 and s0 = I1.1, while the output lines are y0
= Q1.0, y1 = Q1.1, y2 = Q1.2, and y3 = Q1.3. In addition, the active high enable
input E is defined to be E = I1.0.

In the fourth and last rung, another macro Dmux_1_4_E (1 × 4 demulti-
plexer with active high enable input) is used. In this demultiplexer, the input
signal is i = T1.3 (209.7152 ms), and the select inputs are s1 = I1.6 and s0 = I1.5,
while the output lines are y0 = Q1.4, y1 = Q1.5, y2 = Q1.6, and y3 = Q1.7. In addi-
tion, the active high enable input E is defined to be E = inverted I1.7. Note that
this arrangement forces the enable input E to be active low.

FIGURE 12.13
The user program of UZAM_plc_16i16o_ex23.asm.

260 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

E

I0.1

I0.2

I1.0

Q0.0
Q0.1

y0
y1

s1 s0

y2
y3

y0
y1

s1 s0

y2
y3

y0
y1

s1 s0

y2
y3

y0
y1

s1 s0

y2
y3

i Q0.2
Q0.3

I0.0

I1.2

Q1.0
Q1.1

i Q1.2
Q1.3

I1.1

I0.7

T1.2

Q0.4
Q0.5

i Q0.6
Q0.7

I0.6

 E

I1.7

I1.6

Q1.4
Q1.5

i
Q1.6
Q1.7

I1.5

T=104,8576 ms

I1.3

T1.3
T=209,7152 ms

INPUTS OUTPUTS

FIGURE 12.14
The schematic diagram of the user program of UZAM_plc_16i16o_ex23.asm.

261Demultiplexer Macros

© 2008 Taylor & Francis Group, LLC

The third example program, UZAM_plc_16i16o_ex24.asm, is shown in
Figure 12.15. It shows the usage of two demultiplexer macros Dmux_1_8
and Dmux _1_8_E. The schematic diagram of the user program of UZAM_
plc_16i16o_ex24.asm, shown in Figure 12.15, is depicted in Figure 12.16.

In the first rung, the demultiplexer macro Dmux_1_8 (1 × 8 demulti-
plexer) is used. In this demultiplexer, the input signal is i = I0.3, and the

FIGURE 12.15
The user program of UZAM_plc_16i16o_ex24.asm.

I0.2

Q0.0
Q0.1
Q0.2
Q0.3

I0.1

Q0.4
Q0.5
Q0.6
Q0.7

y0

s2s1s0

y1
y2
y3
y4
y5
y6
y7

y0

s2s1s0

y1
y2
y3
y4
y5
y6
y7

i

I0.0

E

I1.3

I1.0
Q1.0
Q1.1
Q1.2
Q1.3

I1.2

Q1.4
Q1.5
Q1.6
Q1.7

i

I1.1

T1.3
T=209,7152 ms

I0.3

INPUTS OUTPUTS

FIGURE 12.16
The schematic diagram of the user program of UZAM_plc_16i16o_ex24.asm.

262 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

select inputs are s2 = I0.2, s1 = I0.1, and s0 = I0.0, while the output lines are
y0 = Q0.0, y1 = Q0.1, y2 = Q0.2, y3 = Q0.3, y4 = Q0.4, y5 = Q0.5, y6 = Q0.6, and
y7 = Q0.7.

In the second and last rung, the macro Dmux_1_8_E (1 × 8 demultiplexer
with active high enable input) is used. In this demultiplexer, the input sig-
nal is i = T1.3 (209.7152 ms), and the select inputs are s2 = I1.3, s1 = I1.2, and
s0 = I1.1, while the output lines are y0 = Q1.0, y1 = Q1.1, y2 = Q1.2, y3 = Q1.3,
y4 = Q1.4, y5 = Q1.5, y6 = Q1.6, and y7 = Q1.7. In addition, the active high enable
input E is defined to be E = I1.0.

263© 2008 Taylor & Francis Group, LLC

13
Decoder Macros

A decoder is a circuit that changes a code into a set of signals. It is called
a decoder because it does the reverse of encoding. A common type of
decoder is the line decoder, which takes an m-bit binary input datum and
decodes it into 2m data lines. As a standard combinational component, a
decoder asserts one out of n output lines, depending on the value of an
m-bit binary input datum. The general form of an m-to-n decoder can be
seen in Figure 13.1. In general, an m-to-n decoder has m input lines, im–1, …,
i1, i0, and n output lines, dn–1, …, d1, d0, where n = 2m. Although not shown
in Figure 13.1, in addition, it may have an enable line, E, for enabling the
decoder. When the decoder is disabled with E set to 0 (for active high enable
input E), all the output lines are de-asserted. When the decoder is enabled,
then the output line whose index is equal to the value of the input binary
data is asserted (set to 1 for active high), while the rest of the output lines
are de-asserted (set to 0 for active high). A decoder is used in a system hav-
ing multiple components, and we want only one component to be selected
or enabled at any time.

In this chapter, the following decoder macros are described for the
PIC16F648A-based PLC:

decod_1_2 (1 × 2 decoder)
decod_1_2_AL (1 × 2 decoder with active low outputs)
decod_1_2_E (1 × 2 decoder with enable input)
decod_1_2_E_AL (1 × 2 decoder with enable input and active low

outputs)
decod_2_4 (2 × 4 decoder)
decod_2_4_AL (2 × 4 decoder with active low outputs)
decod_2_4_E (2 × 4 decoder with enable input)
decod_2_4_E_AL (2 × 4 decoder with enable input and active low

outputs)
decod_3_8 (3 × 8 decoder)
decod_3_8_AL (3 × 8 decoder with active low outputs)
decod_3_8_E (3 × 8 decoder with enable input)
decod_3_8_E_AL (3 × 8 decoder with enable input and active low

outputs)

264 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

The file definitions.inc, included within the CD-ROM attached to this
book, contains all decoder macros defined for the PIC16F648A-based PLC.
Let us now consider these macros in detail.

13.1 Macro decod_1_2

The symbol and the truth table of the macro decod_1_2 are depicted in
Table 13.1. Figure 13.2 shows the macro decod_1_2 and its flowchart. This
macro defines a 1 × 2 decoder with active high outputs. In this macro, the
select input A and output signals d0 and d1 are all Boolean variables. In this
decoder, when the select input is A = 0, the output line d0 is asserted (set to
1) and the output line d1 is de-asserted (set to 0). Similarly, when the select
input is A = 1, the output line d1 is asserted (set to 1) and the output line d0 is
de-asserted (set to 0).

d0

d1

dn–1

n output lines

 .
 .
 .
 .

 .
 .
 .
 .

i0
i1

im–1

m select inputs
 .
 . .

FIGURE 13.1
The general form of an m-to-n decoder, where n = 2m.

TABLE 13.1

Symbol and Truth Table of the Macro decod_1_2

Symbol Truth Table

A
d0

d1

1×2
DECODER A = regs0,bits0

d0 = regd0,bitd0
d1 = regd1,bitd1

input outputs
A d0 d1
0 1 0
1 0 1

265Decoder Macros

© 2008 Taylor & Francis Group, LLC

13.2 Macro decod_1_2_AL

The symbol and the truth table of the macro decod_1_2_AL are depicted in
Table 13.2. Figure 13.3 shows the macro decod_1_2_AL and its flowchart.
This macro defines a 1 × 2 decoder with active low outputs. In this macro,
the select input A and active low output signals d0 and d1 are all Boolean
variables. In this decoder, when the select input is A = 0, the output line d0
is asserted (set to 0) and the output line d1 is de-asserted (set to 1). Similarly,
when the select input is A = 1, the output line d1 is asserted (set to 0) and the
output line d0 is de-asserted (set to 1).

Y N
regs0,bits0 = 1?

L1

L2

SET regd1,bitd1
RESET regd0,bitd0

RESET regd1,bitd1
SET regd0,bitd0

 begin

end

(b)(a)

FIGURE 13.2
(a) The macro decod_1_2 and (b) its flowchart.

TABLE 13.2

Symbol and Truth Table of the Macro decod_1_2_AL

Symbol Truth Table

A
d0

d1

1×2
DECODER A = regs0,bits0

d0 = regd0,bitd0
d1 = regd1,bitd1

input outputs
A d0 d1
0 0 1
1 1 0

Symbol and Truth Table of the Macro decod _ 1 _ 2 _ AL

266 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

13.3 Macro decod_1_2_E

The symbol and the truth table of the macro decod_1_2_E are depicted
in Table 13.3. Figure 13.4 shows the macro decod_1_2_E and its flow-
chart. This macro defines a 1 × 2 decoder with enable input and active high
outputs. In this macro, the active high enable input E, the select input A,
and active high output signals d0 and d1 are all Boolean variables. In addi-
tion to the decod_1_2, this decoder macro has an active high enable line,
E, for enabling it. When this decoder is disabled with E set to 0, all output
lines are de-asserted (set to 0). When this decoder is enabled with E set to
1, it functions as described for decod_1_2. This means that when E = 1: if
the select input is A = 0, then the output line d0 is asserted (set to 1) and the
output line d1 is de-asserted (set to 0). Similarly, when E = 1: if the select input

Y N
regs0,bits0 = 1

?

L1

L2

RESET regd1,bitd1
SET regd0,bitd0

SET regd1,bitd1
RESET regd0,bitd0

 begin

end

(b)(a)

FIGURE 13.3
(a) The macro decod_1_2_AL and (b) its flowchart.

TABLE 13.3

Symbol and Truth Table of the Macro decod_1_2_E

Symbol Truth Table

A
E

d0

d1

1×2
DECODER W E

A = regs0,bits0
d0 = regd0,bitd0
d1 = regd1,bitd1

inputs outputs
E A d0 d1
0 × 0 0
1 0 1 0
1 1 0 1

×: don’t care.

Symbol and Truth Table of the Macro decod _ 1_ 2 _ E

267Decoder Macros

© 2008 Taylor & Francis Group, LLC

(a)

Y N

L2

RESET regd1,bitd1
RESET regd0,bitd0

Y N
regs0,bits0 = 1

?

L1

L3

SET regd1,bit,d1
RESET regd0,bitd0

RESET regd1,bitd1
SET regd0,bitd0

Temp_1 W

Temp_1,0 = 1
?

begin

end

(b)

FIGURE 13.4
(a) The macro decod_1_2_E and (b) its flowchart.

268 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

is A = 1, then the output line d1 is asserted (set to 1) and the output line d0 is
de-asserted (set to 0).

13.4 Macro decod_1_2_E_AL

The symbol and the truth table of the macro decod_1_2_E_AL are
depicted in Table 13.4. Figure 13.5 shows the macro decod_1_2_E_AL and
its flowchart. This macro defines a 1 × 2 decoder with enable input and
active low outputs. In this macro, the active high enable input E, the select
input A, and active low output signals d0 and d1 are all Boolean variables.
In addition to the decod_1_2_AL, this decoder macro has an active high
enable line, E, for enabling it. When this decoder is disabled with E set to 0,

TABLE 13.4

Symbol and Truth Table of the Macro decod_1_2_E_AL

Symbol Truth Table

A
E

d0

d1

1×2
DECODER W E

A = regs0,bits0
d0 = regd0,bitd0
d1 = regd1,bitd1

inputs outputs
E A d0 d1
0 × 1 1
1 0 0 1
1 1 1 0

×: don’t care.

Symbol and Truth Table of the Macro decod _ 1 _ 2 _ E _ AL

(a)

FIGURE 13.5
(a) The macro decod_1_2_E_AL and (b) its flowchart. (Continued)

269Decoder Macros

© 2008 Taylor & Francis Group, LLC

all output lines are de-asserted (set to 1). When this decoder is enabled with
E set to 1, it functions as described for decod_1_2_AL. This means that
when E = 1: if the select input is A = 0, then the output line d0 is asserted
(set to 0) and the output line d1 is de-asserted (set to 1). Similarly, when E =
1: if the select input is A = 1, then the output line d1 is asserted (set to 0) and
the output line d0 is de-asserted (set to 1).

13.5 Macro decod_2_4

The symbol and the truth table of the macro decod_2_4 are depicted in
Table 13.5. Figure 13.6 shows the macro decod_2_4 and its flowchart.
This macro defines a 2 × 4 decoder with active high outputs. In this macro,
select inputs A and B, and active high output signals d0, d1, d2, and d3 are
all Boolean variables. In this decoder, when the select inputs are AB = 00
(respectively, 01, 10, 11), the output line, d0 (respectively, d1, d2, d3), is asserted
(set to 1) and all other output lines are de-asserted (set to 0).

Y N

L2

SET regd1,bitd1
SET regd0,bitd0

Y N
regs0,bits0 = 1

?

L1

L3

RESET regd1,bitd1
SET regd0,bitd0

SET regd1,bitd1
RESET regd0,bitd0

Temp_1 W

Temp_1,0 = 1
?

begin

end

(b)

FIGURE 13.5 (Continued)
(a) The macro decod_1_2_E_AL and (b) its flowchart.

270 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

13.6 Macro decod_2_4_AL

The symbol and the truth table of the macro decod_2_4_AL are
depicted in Table 13.6. Figure 13.7 shows the macro decod_2_4_AL and
its flowchart. This macro defines a 2 × 4 decoder with active low outputs. In
this macro, select inputs A and B, and active low output signals d0, d1, d2,
and d3 are all Boolean variables. In this decoder, when the select inputs are

TABLE 13.5

Symbol and Truth Table of the Macro decod_2_4

Symbol Truth Table

A
B

d0

d1

d2

d3

2×4
DECODER

A = regs1,bits1
B = regs0,bits0
d3 = regd3,bitd3
d2 = regd2,bitd2
d1 = regd1,bitd1
d0 = regd0,bitd0

inputs outputs
A B d0 d1 d2 d3
0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

Symbol and Truth Table of the Macro decod _ 2 _ 4

(a)

FIGURE 13.6
(a) The macro decod_2_4 and (b) its flowchart. (Continued)

271Decoder Macros

© 2008 Taylor & Francis Group, LLC

TABLE 13.6

Symbol and Truth Table of the Macro decod_2_4_AL

Symbol Truth Table

A
B

d0

d1

d2

d3

2×4
DECODER

A = regs1,bits1
B = regs0,bits0
d3 = regd3,bitd3
d2 = regd2,bitd2
d1 = regd1,bitd1
d0 = regd0,bitd0

inputs outputs
A B d0 d1 d2 d3
0 0 0 1 1 1
0 1 1 0 1 1
1 0 1 1 0 1
1 1 1 1 1 0

Symbol and Truth Table of the Macro decod _ 2 _ 4 _ AL

Y Nregs1,bits1 = 1?

L4

RESET regd1,bitd1
RESET regd0,bitd0

RESET regd3,bitd3
RESET regd2,bitd2

Y N
regs0,bits0 = 1?

L3

SET regd3,bitd3
RESET regd2,bitd2

RESET regd3,bitd3
SET regd2,bitd2

L1

Y N
regs0,bits0 = 1?

L2

SET regd1,bitd1
RESET regd0,bitd0

RESET regd1,bitd1
SET regd0,bitd0

begin

end

(b)

FIGURE 13.6 (Continued)
(a) The macro decod_2_4 and (b) its flowchart.

272 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

(a)

Y Nregs1,bits1 = 1?

L4

SET regd1,bitd1
SET regd0,bitd0

SET regd3,bitd3
SET regd2,bitd2

Y N
regs0,bits0 = 1?

L3

RESET regd3,bitd3
SET regd2,bitd2

SET regd3,bitd3
RESET regd2,bitd2

L1

Y N
regs0,bits0 = 1?

L2

RESET regd1,bitd1
SET regd0,bitd0

SET regd1,bitd1
RESET regd0,bitd0

begin

end

(b)

FIGURE 13.7
(a) The macro decod_2_4_AL and (b) its flowchart.

273Decoder Macros

© 2008 Taylor & Francis Group, LLC

AB = 00 (respectively, 01, 10, 11), the output line, d0 (respectively, d1, d2, d3),
is asserted (set to 0) and all other output lines are de-asserted (set to 1).

13.7 Macro decod_2_4_E

The symbol and the truth table of the macro decod_2_4_E are depicted
in Table 13.7. Figures 13.8 and 13.9 show the macro decod_2_4_E and its
flowchart, respectively. This macro defines a 2 × 4 decoder with enable
input and active high outputs. In this macro, the active high enable input
E, select inputs A and B, and active high output signals d0, d1, d2, and
d3 are all Boolean variables. In addition to the decod_2_4, this decoder
macro has an active high enable line, E, for enabling it. When this decoder
is disabled with E set to 0, all active high output lines are de-asserted
(set to 0). When this decoder is enabled with E set to 1, it functions as
described for decod_2_4. This means that when E = 1: if the select inputs
are AB = 00 (respectively, 01, 10, 11), then the output line, d0 (respectively,
d1, d2, d3), is asserted (set to 1) and all other output lines are de-asserted
(set to 0).

13.8 Macro decod_2_4_E_AL

The symbol and the truth table of the macro decod_2_4_E_AL are depicted
in Table 13.8. Figures 13.10 and 13.11 show the macro decod_2_4_E_AL
and its flowchart, respectively. This macro defines a 2 × 4 decoder with
enable input and active low outputs. In this macro, the active high enable

TABLE 13.7

Symbol and Truth Table of the Macro decod_2_4_E

Symbol Truth Table

A
B E

d0

d1

d2

d3

2×4
DECODER

W E
A = regs1,bits1
B = regs0,bits0
d3 = regd3,bitd3
d2 = regd2,bitd2
d1 = regd1,bitd1
d0 = regd0,bitd0

inputs outputs
E A B d0 d1 d2 d3
0 × × 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0
1 1 1 0 0 0 1

×: don’t care.

274 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

input E, select inputs A and B, and active low output signals d0, d1, d2,
and d3 are all Boolean variables. In addition to the decod_2_4_AL, this
decoder macro has an active high enable line, E, for enabling it. When
this decoder is disabled with E set to 0, all active low output lines are
de-asserted (set to 1). When this decoder is enabled with E set to 1, it func-
tions as described for decod_2_4_AL. This means that when E = 1: if the
select inputs are AB = 00 (respectively, 01, 10, 11), then the output line, d0
(respectively, d1, d2, d3), is asserted (set to 0) and all other output lines are
de-asserted (set to 1).

FIGURE 13.8
The macro decod_2_4_E.

275Decoder Macros

© 2008 Taylor & Francis Group, LLC

Y N

L2

RESET regd3,bitd3
RESET regd2,bitd2
RESET regd1,bitd1
RESET regd0,bitd0

Y Nregs1,bits1 = 1?

L5

RESET regd1,bitd1
RESET regd0,bitd0

RESET regd3,bitd3
RESET regd2,bitd2

Y N
regs0,bits0 = 1?

L4

SET regd3,bitd3
RESET regd2,bitd2

RESET regd3,bitd3
SET regd2,bitd2

L1

Y N
regs0,bits0 = 1?

L3

SET regd1,bit,d1
RESET regd0,bitd0

RESET regd1,bitd1
SET regd0,bitd0

Temp_1,0 = 1?

Temp_1 W

begin

end

FIGURE 13.9
The flowchart of the macro decod_2_4_E.

TABLE 13.8

Symbol and Truth Table of the Macro decod_2_4_E_AL

Symbol Truth Table

A
B E

d0

d1

d2

d3

2×4
DECODER

W E
A = regs1,bits1
B = regs0,bits0
d3 = regd3,bitd3
d2 = regd2,bitd2
d1 = regd1,bitd1
d0 = regd0,bitd0

inputs outputs
E A B d0 d1 d2 d3
0 × × 1 1 1 1
1 0 0 0 1 1 1
1 0 1 1 0 1 1
1 1 0 1 1 0 1
1 1 1 1 1 1 0

×: don’t care.

276 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

13.9 Macro decod_3_8

The symbol and the truth table of the macro decod_3_8 are depicted in
Table 13.9. Figures 13.12 and 13.13 show the macro decod_3_8 and its flow-
chart, respectively. This macro defines a 3 × 8 decoder with active high out-
puts. In this macro, select inputs A, B, and C, and active high output signals
d0, d1, d2, d3, d4, d5, d6, and d7 are all Boolean variables. In this decoder, when
the select inputs are ABC = 000 (respectively, 001, 010, 011, 100, 101, 110, 111),
the output line, d0 (respectively, d1, d2, d3, d4, d5, d6, d7), is asserted (set to 1)
and all other output lines are de-asserted (set to 0).

FIGURE 13.10
The macro decod_2_4_E_AL.

277Decoder Macros

© 2008 Taylor & Francis Group, LLC

Y N

L2

SET regd3,bitd3
SET regd2,bitd2
SET regd1,bitd1
SET regd0,bitd0

Y Nregs1,bits1 = 1?

L5

SET regd1,bitd1
SET regd0,bitd0

SET regd3,bitd3
SET regd2,bitd2

Y N
regs0,bits0 = 1?

L4

RESET regd3,bitd3
SET regd2,bitd2

SET regd3,bitd3
RESET regd2,bitd2

L1

Y N
regs0,bits0 = 1?

L3

RESET regd1,bitd1
SET regd0,bitd0

SET regd1,bitd1
RESET regd0,bitd0

Temp_1,0 = 1?

Temp_1 W

begin

end

FIGURE 13.11
The flowchart of the macro decod_2_4_E_AL.

TABLE 13.9

Symbol and Truth Table of the Macro decod_3_8

Symbol Truth Table

A
B
C

d0

d1

d2

d3

d4

d5

d6

d7

3×8
DECODER

A = regs2,bits2
B = regs1,bits1
C = regs0,bits0
d7 = rego7,bito7
d6 = rego6,bito6
d5 = rego5,bito5
d4 = rego4,bito4
d3 = rego3,bito3
d2 = rego2,bito2
d1 = rego1,bito1
d0 = rego0,bito0

inputs outputs
A B C d0 d1 d2 d3 d4 d5 d6 d7
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 1

278 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

FIGURE 13.12
The macro decod_3_8.

279Decoder Macros

© 2008 Taylor & Francis Group, LLC

Y
N

re
gs

2,
bi

ts
2

=
1

?
L8

RE
SE

T
re

gd
7,

bi
td

7
RE

SE
T

re
gd

6,
bi

td
6

RE
SE

T
re

gd
5,

bi
td

5
RE

SE
T

re
gd

4,
bi

td
4

L1

Y
N

re
gs

1,
bi

ts
1

=
1

?

L7

RE
SE

T
re

gd
5,

bi
td

5
RE

SE
T

re
gd

4,
bi

td
4

RE
SE

T
 re

gd
7,

bi
td

7
RE

SE
T

 re
gd

6,
bi

td
6

Y
N

re
gs

0,
bi

ts
0

=
1

?

L6

SE
T

re
gd

7,
bi

td
7

RE
SE

T
re

gd
6,

bi
td

6
RE

SE
T

re
gd

7,
bi

td
7

SE
T

re
gd

6,
bi

td
6

Y
N

re
gs

0,
bi

ts
0

=
1

?

L5

SE
T

re
gd

5,
bi

td
5

RE
SE

T
re

gd
4,

bi
td

4
RE

SE
T

re
gd

5,
bi

td
5

SE
T

re
gd

4,
bi

td
4

RE
SE

T
re

gd
3,

bi
td

3
RE

SE
T

re
gd

2,
bi

td
2

RE
SE

T
re

gd
1,

bi
td

1
RE

SE
T

re
gd

0,
bi

td
0

Y
N

re
gs

1,
bi

ts
1

=
1

?

L4

RE
SE

T
re

gd
1,

bi
td

1
RE

SE
T

re
gd

0,
bi

td
0

RE
SE

T
re

gd
3,

bi
td

3
RE

SE
T

re
gd

2,
bi

td
2

Y
N

re
gs

0,
bi

ts
0

=
1

?

L3

SE
T

re
gd

3,
bi

td
3

RE
SE

T
re

gd
2,

bi
td

2
RE

SE
T

re
gd

3,
bi

td
3

SE
T

re
gd

2,
bi

td
2

Y
N

re
gs

0,
bi

ts
0

=
1

?

L2

SE
T

re
gd

1,
bi

td
1

RE
SE

T
re

gd
0,

bi
td

0
RE

SE
T

re
gd

1,
bi

td
1

SE
T

re
gd

0,
bi

td
0

be
gi

n

en
d

FI
G

U
R

E
13

.1
3

T
he

 fl
ow

ch
ar

t o
f t

he
 m

ac
ro

 d
e
c
o
d
_
3
_
8

.

280 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

13.10 Macro decod_3_8_AL

The symbol and the truth table of the macro decod_3_8_AL are depicted
in Table 13.10. Figures 13.14 and 13.15 show the macro decod_3_8_AL
and its flowchart, respectively. This macro defines a 3 × 8 decoder with
active low outputs. In this macro, select inputs A, B, and C, and active
low output signals d0, d1, d2, d3, d4, d5, d6, and d7 are all Boolean variables.
In this decoder, when the select inputs are ABC = 000 (respectively, 001,
010, 011, 100, 101, 110, 111), the output line, d0 (respectively, d1, d2, d3, d4,
d5, d6, d7), is asserted (set to 0) and all other output lines are de-asserted
(set to 1).

13.11 Macro decod_3_8_E

The symbol and the truth table of the macro decod_3_8_E are depicted
in Table 13.11. Figures 13.16 and 13.17 show the macro decod_3_8_E and
its flowchart, respectively. This macro defines a 3 × 8 decoder with enable
input and active high outputs. In this macro, the active high enable input
E, select inputs A, B, and C, and active high output signals d0, d1, d2, d3,
d4, d5, d6, and d7 are all Boolean variables. In addition to the decod_3_8,
this decoder macro has an active high enable line, E, for enabling it. When
this decoder is disabled with E set to 0, all active high output lines are

TABLE 13.10

Symbol and Truth Table of the Macro decod_3_8_AL

Symbol Truth Table

A
B
C

d0

d1

d2

d3

d4

d5

d6

d7

3×8
DECODER

A = regs2,bits2
B = regs1,bits1
C = regs0,bits0
d7 = rego7,bito7
d6 = rego6,bito6
d5 = rego5,bito5
d4 = rego4,bito4
d3 = rego3,bito3
d2 = rego2,bito2
d1 = rego1,bito1
d0 = rego0,bito0

inputs outputs
A B C d0 d1 d2 d3 d4 d5 d6 d7
0 0 0 0 1 1 1 1 1 1 1
0 0 1 1 0 1 1 1 1 1 1
0 1 0 1 1 0 1 1 1 1 1
0 1 1 1 1 1 0 1 1 1 1
1 0 0 1 1 1 1 0 1 1 1
1 0 1 1 1 1 1 1 0 1 1
1 1 0 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 0

281Decoder Macros

© 2008 Taylor & Francis Group, LLC

FIGURE 13.14
The macro decod_3_8_AL.

282 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

Y
N

re
gs

2,
bi

ts
2

=
1

?
L8

SE
T

re
gd

7,
bi

td
7

SE
T

re
gd

6,
bi

td
6

SE
T

re
gd

5,
bi

td
5

SE
T

re
gd

4,
bi

td
4

L1

Y
N

re
gs

1,
bi

ts
1

=
1

?

L7

SE
T

re
gd

5,
bi

td
5

SE
T

re
gd

4,
bi

td
4

SE
T

re
gd

7,
bi

td
7

SE
T

re
gd

6,
bi

td
6

Y
N

re
gs

0,
bi

ts
0

=
1

?

L6

RE
SE

T
re

gd
7,

bi
td

7
SE

T
re

gd
6,

bi
td

6
SE

T
re

gd
7,

bi
td

7
RE

SE
T

re
gd

6,
bi

td
6

Y
N

re
gs

0,
bi

ts
0

=
1

?

L5

RE
SE

T
re

gd
5,

bi
td

5
SE

T
re

gd
4,

bi
td

4
SE

T
re

gd
5,

bi
td

5
RE

SE
T

re
gd

4,
bi

td
4

SE
T

re
gd

3,
bi

td
3

SE
T

re
gd

2,
bi

td
2

SE
T

re
gd

1,
bi

td
1

SE
T

re
gd

0,
bi

td
0

Y
N

re
gs

1,
bi

ts
1

=
1

?

L4

SE
T

re
gd

1,
bi

td
1

SE
T

re
gd

0,
bi

td
0

SE
T

re
gd

3,
bi

td
3

SE
T

re
gd

2,
bi

td
2

Y
N

re
gs

0,
bi

ts
0

=
1

?

L3

RE
SE

T
re

gd
3,

bi
td

3
SE

T
re

gd
2,

bi
td

2
SE

T
re

gd
3,

bi
td

3
RE

SE
T

re
gd

2,
bi

td
2

Y
N

re
gs

0,
bi

ts
0

=
1

?

L2

RE
SE

T
re

gd
1,

bi
td

1
SE

T
re

gd
0,

bi
td

0
SE

T
re

gd
1,

bi
td

1
RE

SE
T

re
gd

0,
bi

td
0

be
gi

n

en
d

FI
G

U
R

E
13

.1
5

T
he

 fl
ow

ch
ar

t o
f t

he
 m

ac
ro

 d
e
c
o
d
_
3
_
8
_
A
L

.

283Decoder Macros

© 2008 Taylor & Francis Group, LLC

de-asserted (set to 0). When this decoder is enabled with E set to 1, it func-
tions as described for decod_3_8. This means that when E = 1: if the select
inputs are ABC = 000 (respectively, 001, 010, 011, 100, 101, 110, 111), then the
output line, d0 (respectively, d1, d2, d3, d4, d5, d6, d7), is asserted (set to 1) and
all other output lines are de-asserted (set to 0).

13.12 Macro decod_3_8_E_AL

The symbol and the truth table of the macro decod_3_8_E_AL
are depicted in Table 13.12. Figures 13.18 and 13.19 show the macro
decod_3_8_E_AL and its flowchart, respectively. This macro defines a 3
× 8 decoder with enable input and active low outputs. In this macro, the
active high enable input E, select inputs A, B, and C, and active low output
signals d0, d1, d2, d3, d4, d5, d6, and d7 are all Boolean variables. In addition
to the decod_3_8_AL, this decoder macro has an active high enable line,
E, for enabling it. When this decoder is disabled with E set to 0, all active
high output lines are de-asserted (set to 1). When this decoder is enabled
with E set to 1, it functions as described for decod_3_8_AL. This means
that when E = 1: if the select inputs are ABC = 000 (respectively, 001, 010,
011, 100, 101, 110, 111), then the output line, d0 (respectively, d1, d2, d3, d4,
d5, d6, d7), is asserted (set to 0) and all other output lines are de-asserted
(set to 1).

TABLE 13.11

Symbol and Truth Table of the Macro decod_3_8_E

Symbol Truth Table

A
B
C E

d0

d1

d2

d3

d4

d5

d6

d7

3×8
DECODER

W E
A = regs2,bits2
B = regs1,bits1
C = regs0,bits0
d7 = regd7,bitd7
d6 = regd6,bitd6
d5 = regd5,bitd5
d4 = regd4,bitd4
d3 = regd3,bitd3
d2 = regd2,bitd2
d1 = regd1,bitd1
d0 = regd0,bitd0

inputs outputs
E A B C d0 d1 d2 d3 d4 d5 d6 d7
0 × × × 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0 0
1 0 1 0 0 0 1 0 0 0 0 0
1 0 1 1 0 0 0 1 0 0 0 0
1 1 0 0 0 0 0 0 1 0 0 0
1 1 0 1 0 0 0 0 0 1 0 0
1 1 1 0 0 0 0 0 0 0 1 0
1 1 1 1 0 0 0 0 0 0 0 1

×: don’t care.

284 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

FIGURE 13.16
The macro decod_3_8_E.

285Decoder Macros

© 2008 Taylor & Francis Group, LLC

Y
N

re
gs

2,
bi

ts
2

=
1

?
L9

RE
SE

T
re

gd
7,

bi
td

7
RE

SE
T

re
gd

6,
bi

td
6

RE
SE

T
re

gd
5,

bi
td

5
RE

SE
T

re
gd

4,
bi

td
4

L1

 Y

 N

re
gs

1,
bi

ts
1

=
1

?

L8

RE
SE

T
re

gd
5,

bi
td

5
RE

SE
T

re
gd

4,
bi

td
4

RE
SE

T
re

gd
7,

bi
td

7
RE

SE
T

re
gd

6,
bi

td
6

Y
N

re
gs

0,
bi

ts
0

=
1

?

L7

SE
T

re
gd

7,
bi

td
7

RE
SE

T
re

gd
6,

bi
td

6
RE

SE
T

re
gd

7,
bi

td
7

SE
T

re
gd

6,
bi

td
6

Y
N

re
gs

0,
bi

ts
0

=
1

?

L6

SE
T

re
gd

5,
bi

td
5

RE
SE

T
re

gd
4,

bi
td

4
RE

SE
T

re
gd

5,
bi

td
5

SE
T

re
gd

4,
bi

td
4

RE
SE

T
re

gd
3,

bi
td

3
RE

SE
T

re
gd

2,
bi

td
2

RE
SE

T
re

gd
1,

bi
td

1
RE

SE
T

re
gd

0,
bi

td
0

Y
N

re
gs

1,
bi

ts
1

=
1

?

L5

RE
SE

T
re

gd
1,

bi
t1

RE
SE

T
re

gd
0,

bi
td

0
RE

SE
T

re
gd

3,
bi

td
3

RE
SE

T
re

gd
2,

bi
td

2

Y
N

re
gs

0,
bi

ts
0

=
1

?

L4

SE
T

re
gd

3,
bi

td
3

RE
SE

T
re

gd
2,

bi
td

2
RE

SE
T

re
gd

3,
bi

td
3

SE
T

re
gd

2,
bi

td
2

Y
N

re
gs

0,
bi

ts
0

=
1

?

L3

SE
T

re
gd

1,
bi

td
1

RE
SE

T
re

gd
0,

bi
td

0
RE

SE
T

re
gd

1,
bi

td
1

SE
T

re
gd

0,
bi

td
0

RE
SE

T
re

gd
7,

bi
td

7
RE

SE
T

re
gd

6,
bi

td
6

RE
SE

T
re

gd
5,

bi
td

5
RE

SE
T

re
gd

4,
bi

td
4

RE
SE

T
re

gd
3,

bi
td

3
RE

SE
T

re
gd

2,
bi

td
2

RE
SE

T
re

gd
1,

bi
td

1
RE

SE
T

re
gd

0,
bi

td
0

Y
N

L2
Te

m
p_

1,
0

=
1

?

Te
m

p_
1

 W

be
gi

n

en
d

FI
G

U
R

E
13

.1
7

T
he

 fl
ow

ch
ar

t o
f t

he
 m

ac
ro

 d
e
c
o
d
_
3
_
8
_
E

.

286 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

13.13 Examples for Decoder Macros

In this section, we will consider four examples, namely, UZAM_plc_16i16o_
exX.asm (X = 25, 26, 27, 28), to show the usage of decoder macros. In order
to test one of these examples, please take the related file UZAM_plc_16i16o_
exX.asm (X = 25, 26, 27, 28) from the CD-ROM attached to this book, and then
open the program by MPLAB IDE and compile it. After that, by using the PIC
programmer software, take the compiled file UZAM_plc_16i16o_exX.hex (X
= 25, 26, 27, 28), and by your PIC programmer hardware, send it to the pro-
gram memory of PIC16F648A microcontroller within the PIC16F648A-based
PLC. To do this, switch the 4PDT in PROG position and the power switch in
OFF position. After loading the file UZAM_plc_16i16o_exX.hex (X = 25, 26,
27, 28), switch the 4PDT in RUN and the power switch in ON position. Please
check the program’s accuracy by cross-referencing it with the related macros.

Let us now consider these example programs: The first example program,
UZAM_plc_16i16o_ex25.asm, is shown in Figure 13.20. It shows the usage
of four decoder macros, decod_1_2, decod_1_2_AL, decod_1_2_E, and
decod_1_2_E_AL. The schematic diagram of the user program of UZAM_
plc_16i16o_ex25.asm, shown in Figure 13.20, is depicted in Figure 13.21.

In the first rung, the decoder macro decod_1_2 (1 × 2 decoder) is used. In
this decoder, the select input is A = I0.0, while the output lines are d0 = Q0.0
and d1 = Q0.1.

TABLE 13.12

Symbol and Truth Table of the Macro decod_3_8_E_AL

Symbol Truth Table

A
B
C E

d0

d1

d2

d3

d4

d5

d6

d7

3×8
DECODER

W E
A = regs2,bits2
B = regs1,bits1
C = regs0,bits0
d7 = regd7,bitd7
d6 = regd6,bitd6
d5 = regd5,bitd5
d4 = regd4,bitd4
d3 = regd3,bitd3
d2 = regd2,bitd2
d1 = regd1,bitd1
d0 = regd0,bitd0

inputs outputs
E A B C d0 d1 d2 d3 d4 d5 d6 d7
0 × × × 1 1 1 1 1 1 1 1
1 0 0 0 0 1 1 1 1 1 1 1
1 0 0 1 1 0 1 1 1 1 1 1
1 0 1 0 1 1 0 1 1 1 1 1
1 0 1 1 1 1 1 0 1 1 1 1
1 1 0 0 1 1 1 1 0 1 1 1
1 1 0 1 1 1 1 1 1 0 1 1
1 1 1 0 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 0

×: don’t care.

287Decoder Macros

© 2008 Taylor & Francis Group, LLC

FIGURE 13.18
The macro decod_3_8_E_AL.

288 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

Y
N

re
gs

2,
bi

ts
2

=
1

?
L9

SE
T

re
gd

7,
bi

td
7

SE
T

re
gd

6,
bi

td
6

SE
T

re
gd

5,
bi

td
5

SE
T

re
gd

4,
bi

td
4

L1

 Y

 N

re
gs

1,
bi

ts
1

=
1

?

L8

SE
T

re
gd

5,
bi

td
5

SE
T

re
gd

4,
bi

td
4

SE
T

re
gd

7,
bi

td
7

SE
T

re
gd

6,
bi

td
6

Y
N

re
gs

0,
bi

ts
0

=
1

?

L7

RE
SE

T
re

gd
7,

bi
td

7
SE

T
re

gd
6,

bi
td

6
SE

T
re

gd
7,

bi
td

7
RE

SE
T

re
gd

6,
bi

td
6

Y
N

re
gs

0,
bi

ts
0

=
1

?

L6

RE
SE

T
re

gd
5,

bi
td

5
SE

T
re

gd
4,

bi
td

4
SE

T
re

gd
5,

bi
td

5
RE

SE
T

re
gd

4,
bi

td
4

SE
T

re
gd

3,
bi

td
3

SE
T

re
gd

2,
bi

td
2

SE
T

re
gd

1,
bi

td
1

SE
T

re
gd

0,
bi

td
0

Y
N

re
gs

1,
bi

ts
1

=
1

?

L5

SE
T

re
gd

1,
bi

t,d
1

SE
T

re
gd

0,
bi

t,d
0

SE
T

re
gd

3,
bi

td
3

SE
T

re
gd

2,
bi

td
2

Y
N

re
gs

0,
bi

ts
0

=
1

?

L4

RE
SE

T
re

gd
3,

bi
td

3
SE

T
re

gd
2,

bi
td

2
SE

T
re

gd
3,

bi
td

3
RE

SE
T

re
gd

2,
bi

td
2

Y
N

re
gs

0,
bi

ts
0

=
1

?

L3

RE
SE

T
re

gd
1,

bi
td

1
SE

T
re

gd
0,

bi
td

0
SE

T
re

gd
1,

bi
td

1
RE

SE
T

re
gd

0,
bi

td
0

SE
T

re
gd

7,
bi

td
7

SE
T

re
gd

6,
bi

td
6

SE
T

re
gd

5,
bi

td
5

SE
T

re
gd

4,
bi

td
4

SE
T

re
gd

3,
bi

td
3

SE
T

re
gd

2,
bi

td
2

SE
T

re
gd

1,
bi

td
1

SE
T

re
gd

0,
bi

td
0

Y
N

L2
Te

m
p_

1,
0

=
1

?

Te
m

p_
1

 W

be
gi

n

en
d

FI
G

U
R

E
13

.1
9

T
he

 fl
ow

ch
ar

t o
f t

he
 m

ac
ro

 d
e
c
o
d
_
3
_
8
_
E
_
A
L

.

289Decoder Macros

© 2008 Taylor & Francis Group, LLC

FIGURE 13.20
The user program of UZAM_plc_16i16o_ex25.asm.

I0.0

Q0.0

I1.0

Q0.1

Q1.0

Q1.1I1.1

A

1×2
DECODER

1×2
DECODER

1×2
DECODER

1×2
DECODER

A
E

I0.7

Q0.6

Q0.7A

I1.7

Q1.6

Q1.7I1.6 A

d0

d1

d0

d1

d0

d1

d0

d1

E

INPUTS OUTPUTS

FIGURE 13.21
The schematic diagram of the user program of UZAM_plc_16i16o_ex25.asm.

290 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

In the second rung, the decoder macro decod_1_2_AL (1 × 2 decoder with
active low outputs) is used. In this decoder, the select input is A = I0.7, while
the output lines are d0 = Q0.6 and d1 = Q0.7.

In the third rung, the macro decod_1_2_E (1 × 2 decoder with active high
enable input) is used. In this decoder, the select input is A = I1.1, while the
output lines are d0 = Q1.0 and d1 = Q1.1. In addition, the active high enable
input E is defined to be E = I1.0.

In the fourth and last rung, the macro decod_1_2_E_AL (1 × 2 decoder
with active high enable input and active low outputs) is used. In this decoder,
the select input is A = I1.6, while the output lines are d0 = Q1.6 and d1 = Q1.7. In
addition, the active high enable input E is defined to be E = inverted I1.7. Note
that this arrangement forces the enable input E to be active low.

The second example program, UZAM_plc_16i16o_ex26.asm, is shown
in Figure 13.22. It shows the usage of four decoder macros, decod_2_4,
decod_2_4_AL, decod_2_4_E, and decod_2_4_E_AL. The schematic
diagram of the user program of UZAM_plc_16i16o_ex26.asm, shown in
Figure 13.22, is depicted in Figure 13.23.

In the first rung, the decoder macro decod_2_4 (2 × 4 decoder) is used. In
this decoder, select inputs are A = I0.1 and B = I0.0, while the output lines are
d0 = Q0.0, d1 = Q0.1, d2 = Q0.2, and d3 = Q0.3.

In the second rung, the decoder macro decod_2_4_AL (2 × 4 decoder with
active low outputs) is used. In this decoder, select inputs are A = I0.7 and B =
I0.6, while the output lines are d0 = Q0.4, d1 = Q0.5, d2 = Q0.6, and d3 = Q0.7.

In the third rung, the macro decod_2_4_E (2 × 4 decoder with active high
enable input) is used. In this decoder, select inputs are A = I1.2 and B = I1.1,
while the output lines are d0 = Q1.0, d1 = Q1.1, d2 = Q1.2, and d3 = Q1.3. In
addition, the active high enable input E is defined to be E = I1.0.

In the fourth and last rung, the macro decod_2_4_E_AL (2 × 4 decoder
with active high enable input and active low outputs) is used. In this decoder,
select inputs are A = I1.6 and B = I1.5, while the output lines are d0 = Q1.4, d1
= Q1.5, d2 = Q1.6, and d3 = Q1.7. In addition, the active high enable input E is
defined to be E = inverted I1.7. Note that this arrangement forces the enable
input E to be active low.

FIGURE 13.22
The user program of UZAM_plc_16i16o_ex26.asm.

291Decoder Macros

© 2008 Taylor & Francis Group, LLC

The third example program, UZAM_plc_16i16o_ex27.asm, is shown in
Figure 13.24. It shows the usage of two decoder macros decod_3_8 and
decod_3_8_AL. The schematic diagram of the user program of UZAM_
plc_16i16o_ex27.asm, shown in Figure 13.24, is depicted in Figure 13.25.

In the first rung, the decoder macro decod_3_8 (3 × 8 decoder) is used. In
this decoder, select inputs are A = I0.2, B = I0.1, and C = I0.0, while the output
lines are d0 = Q0.0, d1 = Q0.1, d2 = Q0.2, d3 = Q0.3, d4 = Q0.4, d5 = Q0.5, d6 =
Q0.6, and d7 = Q0.7.

I0.1

Q0.0

Q0.1

Q0.2

Q0.3

Q1.0

Q1.1

Q1.2

Q1.3

B

2×4
DECODER

2×4
DECODER

2×4
DECODER

2×4
DECODER

A

I0.0

I1.2
B

A

I1.1

I1.0

E

I0.7

Q0.4

Q0.5

Q0.6

Q0.7B

A

I0.6

Q1.4

Q1.5

Q1.6

Q1.7

I1.6
B d3

d2

d1

d0

d3

d2

d1

d0

d3

d2

d1

d0

d3

d2

d1

d0

A

I1.5

I1.7

E

INPUTS OUTPUTS

FIGURE 13.23
The schematic diagram of the user program of UZAM_plc_16i16o_ex26.asm.

292 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

In the second and last rung, the decoder macro decod_3_8_AL (3 × 8
decoder with active low outputs) is used. In this decoder, select inputs are A
= I1.2, B = I1.1, and C = I1.0, while the output lines are d0 = Q1.0, d1 = Q1.1, d2
= Q1.2, d3 = Q1.3, d4 = Q1.4, d5 = Q1.5, d6 = Q1.6, and d7 = Q1.7.

The fourth example program, UZAM_plc_16i16o_ex28.asm, is shown in
Figure 13.26. It shows the usage of two decoder macros, decod_3_8_E and
decod_3_8_E_AL. The schematic diagram of the user program of UZAM_
plc_16i16o_ex28.asm, shown in Figure 13.26, is depicted in Figure 13.27.

FIGURE 13.24
The user program of UZAM_plc_16i16o_ex27.asm.

Q0.0

Q0.1

Q0.2

Q0.3

Q0.4

Q0.5

Q0.6

Q0.7C

3×8
DECODER

3×8
DECODER

B

d0

d1

d2

d3

d4

d5

d6

d7

d0

d1

d2

d3

d4

d5

d6

d7

AI0.2

I0.1

I0.0

Q1.0

Q1.1

Q1.2

Q1.3

Q1.4

Q1.5

Q1.6

Q1.7C

B

AI1.2

I1.1

I1.0

INPUTS OUTPUTS

FIGURE 13.25
The schematic diagram of the user program of UZAM_plc_16i16o_ex27.asm.

293Decoder Macros

© 2008 Taylor & Francis Group, LLC

FIGURE 13.26
The user program of UZAM_plc_16i16o_ex28.asm.

Q0.0

Q0.1

Q0.2

Q0.3

Q0.4

Q0.5

Q0.6

Q0.7C
E

E

3×8
DECODER

3×8
DECODER

B

d0

d1

d2

d3

d4

d5

d6

d7

d0

d1

d2

d3

d4

d5

d6

d7

AI0.3

I0.2

I0.1

I0.0

I0.0

Q1.0

Q1.1

Q1.2

Q1.3

Q1.4

Q1.5

Q1.6

Q1.7C

B

AI1.3

I1.2

I1.1

INPUTS OUTPUTS

FIGURE 13.27
The schematic diagram of the user program of UZAM_plc_16i16o_ex28.asm.

294 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

In the first rung, the decoder macro decod_3_8_E (3 × 8 decoder with
active high enable input) is used. In this decoder, select inputs are A = I0.3, B
= I0.2, and C = I0.1, while the output lines are d0 = Q0.0, d1 = Q0.1, d2 = Q0.2,
d3 = Q0.3, d4 = Q0.4, d5 = Q0.5, d6 = Q0.6, and d7 = Q0.7. In addition, the active
high enable input E is defined to be E = I0.0.

In the second and last rung, the decoder macro decod_3_8_E _AL (3 × 8
decoder with active high enable input and active low outputs) is used. In this
decoder, select inputs are A = I1.3, B = I1.2, C = I1.1, while the output lines are
d0 = Q1.0, d1 = Q1.1, d2 = Q1.2, d3 = Q1.3, d4 = Q1.4, d5 = Q1.5, d6 = Q1.6, and d7 =
Q1.7. In addition, the active high enable input E is defined to be E = inverted
I1.0. Note that this arrangement forces the enable input E to be active low.

295© 2008 Taylor & Francis Group, LLC

14
Priority Encoder Macros

An encoder is a circuit that changes a set of signals into a code. As a stan-
dard combinational component, an encoder is almost like the inverse of a
decoder, where it encodes a 2n-bit input datum into an n-bit code. As shown
by the general form of an m-to-n encoder in Figure 14.1, the encoder has m
= 2n input lines and n output lines. For active high inputs, the operation
of the encoder is such that exactly one of the input lines should have a 1,
while the remaining input lines should have 0s. The output is the binary
value of the index of the input line that has the 1. It is assumed that only
one input line can be a 1. Encoders are used to reduce the number of bits
needed to represent some given data either in data storage or in data trans-
mission. Encoders are also used in a system with 2n input devices, each
of which may need to request for service. One input line is connected to
one input device. The input device requesting for service will assert the
input line that is connected to it. The corresponding n-bit output value will
indicate to the system which of the 2n devices is requesting for service.
However, this only works correctly if it is guaranteed that only one of the
2n devices will request for service at any one time. If two or more devices
request for service at the same time, then the output will be incorrect. To
resolve this problem, a priority is assigned to each of the input lines so that
when multiple requests are made, the encoder outputs the index value of
the input line with the highest priority. This modified encoder is known
as a priority encoder. In this chapter, we are concerned with the priority
encoders. Although not shown in Figure 14.1, the priority encoder may
have an enable line, E, for enabling it. When the priority encoder is disabled
with E set to 0 (for active high enable input E), all the output lines will have
0s (for active high outputs). When the priority encoder is enabled, then
the output lines issue the binary data representation of the highest-priority
input signal asserted (set to 1 for active high).

In this chapter, the following priority encoder macros are described for the
PIC16F648A-based PLC:

encod_4_2_p (4 × 2 priority encoder)
encod_4_2_p_E (4 × 2 priority encoder with enable input)
encod_8_3_p (8 × 3 priority encoder)
encod_8_3_p_E (8 × 3 priority encoder with enable input)

296 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

encod_dec_bcd_p (decimal to binary coded decimal (BCD) priority
encoder)

encod_dec_bcd_p_E (decimal to BCD priority encoder with enable
input)

The file definitions.inc, included within the CD-ROM attached to this
book, contains all priority encoder macros defined for the PIC16F648A-based
PLC. Let us now consider these macros in detail.

14.1 Macro encod_4_2_p

The symbol and the truth table of the macro encod_4_2_p are depicted
in Table 14.1. Figure 14.2 shows the macro encod_4_2_p and its flowchart.
This macro defines a 4 × 2 priority encoder. In this macro, active high input
signals 3, 2, 1, and 0, and active high output signals A1 (most significant

dm–1

d0

d1 .
 .
 .
 .

n output lines
 .
 .
 .
 .

y0

m input lines

y1

yn–1

 .
 . .

FIGURE 14.1
The general form of an m-to-n encoder, where m = 2n.

TABLE 14.1

Symbol and Truth Table of the Macro encod_4_2_p

Symbol Truth Table

4×2
 PRIORITY
ENCODER

A1

3

2

1

0

A0

3 = reg3,bit3
2 = reg2,bit2
1 = reg1,bit1
0 = reg0,bit0

A1 = regA1,bitA1
A0 = regA1,bitA0

inputs outputs
0 1 2 3 A1 A0
× × × 1 1 1
× × 1 0 1 0
× 1 0 0 0 1
1 0 0 0 0 0

×: don’t care

297Priority Encoder Macros

© 2008 Taylor & Francis Group, LLC

(a)

Y N
reg3,bit3 = 1?

L4

SET regA1,bitA1
SET regA0,bitA0

L1

Y
L3

SET regA1,bitA1
RESET regA0,bitA0

N

Y

RESET regA1,bitA1
SET regA0,bitA0

RESET regA1,bitA1
RESET regA0,bitA0

L2
N

reg2,bit2 = 1?

reg1,bit1 = 1?

begin

end

(b)

FIGURE 14.2
(a) The macro encod_4_2_p and (b) its flowchart.

298 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

bit (MSB)) and A0 (least significant bit (LSB)) are all Boolean variables. The
input line 3 has the highest priority, while the input line 0 has the lowest
priority. How the macro encod_4_2_p works is shown in the truth table. It
can be seen that the output binary code is generated based on the highest-
priority input signal present in the four input lines. If the input signals pres-
ent in the input lines 0, 1, 2, 3 are as follows, ×××1 (respectively, ××10, ×100,
1000), then the output lines generate the following binary code: A1A0 = 11
(respectively, 10, 01, 00).

14.2 Macro encod_4_2_p_E

The symbol and the truth table of the macro encod_4_2_p_E are
depicted in Table 14.2. Figure 14.3 shows the macro encod_4_2_p_E and
its flowchart. This macro defines a 4 × 2 priority encoder with enable
input. In this macro, the active high enable input E, active high input sig-
nals 3, 2, 1, and 0, and active high output signals A1 (MSB) and A0 (LSB)
are all Boolean variables. The input line 3 has the highest priority, while
the input line 0 has the lowest priority. In addition to the encod_4_2_p,
this encoder macro has an active high enable line, E, for enabling it.
When this encoder is disabled with E set to 0, all output lines are set to 0.
When this encoder is enabled with E set to 1, it functions as described for
encod_4_2_p. This means that when E = 1: if the input signals present
in the input lines 0, 1, 2, 3 are as follows, ×××1 (respectively, ××10, ×100,
1000), then the output lines generate the following binary code: A1A0 = 11
(respectively, 10, 01, 00).

TABLE 14.2

Symbol and Truth Table of the Macro encod_4_2_p_E

Symbol Truth Table

4×2
 PRIORITY
ENCODER

A1

3

2

1

0
E

A0

W E
3 = reg3,bit3
2 = reg2,bit2
1 = reg1,bit1
0 = reg0,bit0

A1 = regA1,bitA1
A0 = regA1,bitA0

inputs outputs
E 0 1 2 3 A1 A0
0 × × × × 0 0
1 × × × 1 1 1
1 × × 1 0 1 0
1 × 1 0 0 0 1
1 1 0 0 0 0 0

×: don’t care

299Priority Encoder Macros

© 2008 Taylor & Francis Group, LLC

(a)

Y N
reg3,bit3 = 1

?
L4

SET regA1,bitA1
SET regA0,bitA0

L1

 Y
L3

SET regA1,bitA1
RESET regA0,bitA0

 N

Y

RESET regA1,bitA1
SET regA0,bitA0

RESET regA1,bitA1
RESET regA0,bitA0

L2
N

reg2,bit2 = 1
?

reg1,bit1 = 1?

Y N
Temp_1,0 = 1?

Temp_1 W

begin

end

(b)

FIGURE 14.3
(a) The macro encod_4_2_p_E and (b) its flowchart.

300 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

14.3 Macro encod_8_3_p

The symbol and the truth table of the macro encod_8_3_p are depicted
in Table 14.3. Figures 14.4 and 14.5 show the macro encod_8_3_p and its
flowchart, respectively. This macro defines an 8 × 3 priority encoder. In this
macro, active high input signals 7, 6, 5, 4, 3, 2, 1, and 0, and active high out-
put signals A2 (MSB), A1, and A0 (LSB) are all Boolean variables. The input
line 7 has the highest priority, while the input line 0 has the lowest priority.
How the macro encod_8_3_p works is shown in the truth table. It can be
seen that the output binary code is generated based on the highest-priority

TABLE 14.3

Symbol and Truth Table of the Macro encod_8_3_p

Symbol

8×3
PRIORITY
ENCODER

7

6

5

4

3

2

1

0

A1

A0

A2

7 = reg7,bit7
6 = reg6,bit6
5 = reg5,bit5
4 = reg4,bit4
3 = reg3,bit3
2 = reg2,bit2
1 = reg1,bit1
0 = reg0,bit0

A2 = regA2,bitA2
A1 = regA1,bitA1
A0 = regA1,bitA0

Truth Table

inputs outputs
0 1 2 3 4 5 6 7 A2 A1 A0
× × × × × × × 1 1 1 1
× × × × × × 1 0 1 1 0
× × × × × 1 0 0 1 0 1
× × × × 1 0 0 0 1 0 0
× × × 1 0 0 0 0 0 1 1
× × 1 0 0 0 0 0 0 1 0
× 1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0

×: don’t care.

301Priority Encoder Macros

© 2008 Taylor & Francis Group, LLC

FIGURE 14.4
The macro encod_8_3_p.

302 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

 Y

N

re
g3

,b
it3

 =
 1?

L4 L1

Y
L3

N

Y

RE
SE

T
re

gA
2,

bi
tA

2
RE

SE
T

re
gA

1,
bi

tA
1

RE
SE

T
re

gA
0,

bi
tA

0

L2
N

re
g2

,b
it2

 =
 1?

re
g1

,b
it1

 =
 1?

RE
SE

T
re

gA
2,

bi
tA

2
RE

SE
T

re
gA

1,
bi

tA
1

SE
T

re
gA

0,
bi

tA
0

RE
SE

T
re

gA
2,

bi
tA

2
SE

T
re

gA
1,

bi
tA

1
RE

SE
T

re
gA

0,
bi

tA
0

RE
SE

T
re

gA
2,

bi
tA

2
SE

T
re

gA
1,

bi
tA

1
SE

T
re

gA
0,

bi
tA

0

Y
N

re
g4

,b
it4

 =
 1?

L5

SE
T

re
gA

2,
bi

tA
2

RE
SE

T
re

gA
1,

bi
tA

1
RE

SE
T

re
gA

0,
bi

tA
0

Y
N

re
g5

,b
it5

 =
 1?

L6

SE
T

re
gA

2,
bi

tA
2

RE
SE

T
re

gA
1,

bi
tA

1
SE

T
re

gA
0,

bi
tA

0

 Y

 N

re
g6

,b
it6

 =
 1?

L7

SE
T

re
gA

2,
bi

tA
2

SE
T

re
gA

1,
bi

tA
1

RE
SE

T
re

gA
0,

bi
tA

0

Y
N

re
g7

,b
it7

 =
 1?

L8

SE
T

re
gA

2,
bi

tA
2

SE

T
re

gA
1,

bi
tA

1

SE
T

re
gA

0,
bi

tA
0

be
gi

n

en
d

FI
G

U
R

E
14

.5
T

he
 fl

ow
ch

ar
t o

f t
he

 m
ac

ro
 e
n
c
o
d
_
8
_
3
_
p

.

303Priority Encoder Macros

© 2008 Taylor & Francis Group, LLC

input signal present in the eight input lines. If the input signals present in the
input lines 0, 1, 2, 3, 4, 5, 6, 7 are as follows, ×××××××1 (respectively, ××××××10,
×××××100, ××××1000, ×××10000, ××100000, ×1000000, 10000000), then the out-
put lines generate the following binary code: A2A1A0 = 111 (respectively, 110,
101, 100, 011, 010, 001, 000).

14.4 Macro encod_8_3_p_E

The symbol and the truth table of the macro encod_8_3_p_E are depicted
in Table 14.4. Figures 14.6 and 14.7 show the macro encod_8_3_p_E and
its flowchart, respectively. This macro defines an 8 × 3 priority encoder
with enable input. In this macro, the active high enable input E, active high
input signals 7, 6, 5, 4, 3, 2, 1, and 0, and active high output signals A2 (MSB),
A1, and A0 (LSB) are all Boolean variables. The input line 7 has the high-
est priority, while the input line 0 has the lowest priority. In addition to the
encod_8_3_p, this encoder macro has an active high enable line, E, for
enabling it. When this encoder is disabled with E set to 0, all output lines are
set to 0. When this encoder is enabled with E set to 1, it functions as described
for encod_8_3_p. This means that when E = 1: if the input signals present in
the input lines 0,1,2,3,4,5,6,7 are as follows, ×××××××1 (respectively, ××××××10,
×××××00, ××××1000, ×××10000, ××100000, ×1000000, 10000000), then the out-
put lines generate the following binary code: A2A1A0 = 111 (respectively, 110,
101, 100, 011, 010, 001, 000).

14.5 Macro encod_dec_bcd_p

The symbol and the truth table of the macro encod_dec_bcd_p are
depicted in Table 14.5. Figures 14.8 and 14.9 show the macro encod_dec_
bcd_p and its flowchart, respectively. This macro defines a decimal to BCD
priority encoder. In this macro, active high input signals 9, 8, 7, 6, 5, 4, 3, 2, 1,
and 0, and active high output signals A3 (MSB), A2, A1, and A0 (LSB) are all
Boolean variables. The input line 9 has the highest priority, while the input
line 0 has the lowest priority. How the macro encod_dec_bcd_p works is
shown in the truth table. It can be seen that the output binary code is gener-
ated based on the highest-priority input signal present in the 10 input lines.
If the input signals present in the input lines 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are as
follows, ×××××××××1 (respectively, ××××××××10, ×××××××100, ××××××1000,
×××××10000, ××××100000, ×××1000000, ××10000000, ×100000000, 1000000000),
then the output lines generate the following binary code: A3A2A1A0 = 1001
(respectively, 1000, 0111, 0110, 0101, 0100, 0011, 0010, 0001, 0000).

304 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

14.6 Macro encod_dec_bcd_p_E

The symbol and the truth table of the macro encod_dec_bcd_p_E
are depicted in Table 14.6. Figures 14.10 and 14.11 show the macro encod_dec_
bcd_p_E and its flowchart, respectively. This macro defines a decimal to
BCD priority encoder with enable input. In this macro, the active high enable
input E, active high input signals 9, 8, 7, 6, 5, 4, 3, 2, 1, and 0, and active high
output signals A3 (MSB), A2, A1, and A0 (LSB) are all Boolean variables. The

TABLE 14.4

Symbol and Truth Table of the Macro encod_8_3_p_E

Symbol

8×3
PRIORITY
ENCODER

7

6

5

4

3

2

1

0
E

A1

A0

A2

W E
7 = reg7,bit7
6 = reg6,bit6
5 = reg5,bit5
4 = reg4,bit4
3 = reg3,bit3
2 = reg2,bit2
1 = reg1,bit1
0 = reg0,bit0

A2 = regA2,bitA2
A1 = regA1,bitA1
A0 = regA1,bitA0

Truth Table

inputs outputs
E 0 1 2 3 4 5 6 7 A2 A1 A0
0 × × × × × × × × 0 0 0
1 × × × × × × × 1 1 1 1
1 × × × × × × 1 0 1 1 0
1 × × × × × 1 0 0 1 0 1
1 × × × × 1 0 0 0 1 0 0
1 × × × 1 0 0 0 0 0 1 1
1 × × 1 0 0 0 0 0 0 1 0
1 × 1 0 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 0 0 0

×: don’t care.

305Priority Encoder Macros

© 2008 Taylor & Francis Group, LLC

FIGURE 14.6
The macro encod_8_3_p_E.

306 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

Y
N

re
g3

,b
it3

 =
 1?

L4 L1

Y
L3

N

Y

RE
SE

T
re

gA
2,

bi
tA

2
RE

SE
T

re
gA

1,
bi

tA
1

RE
SE

T
re

gA
0,

bi
tA

0

L2
N

re
g2

,b
it2

 =
 1?

re
g1

,b
it1

 =
 1?

RE
SE

T
re

gA
2,

bi
tA

2
RE

SE
T

re
gA

1,
bi

tA
1

SE
T

re
gA

0,
bi

tA
0

RE
SE

T
re

gA
2,

bi
tA

2
SE

T
re

gA
1,

bi
tA

1
RE

SE
T

re
gA

0,
bi

tA
0

RE
SE

T
re

gA
2,

bi
tA

2
SE

T
re

gA
1,

bi
tA

1
SE

T
re

gA
0,

bi
tA

0

Y
N

re
g4

,b
it4

 =
 1?

L5

SE
T

re
gA

2,
bi

tA
2

RE
SE

T
re

gA
1,

bi
tA

1
RE

SE
T

re
gA

0,
bi

tA
0

Y
N

re
g5

,b
it5

 =
 1?

L6

SE
T

re
gA

2,
bi

tA
2

RE
SE

T
re

gA
1,

bi
tA

1
SE

T
re

gA
0,

bi
tA

0

Y
N

re
g6

,b
it6

 =
 1?

L7

SE
T

re
gA

2,
bi

tA
2

SE
T

re
gA

1,
bi

tA
1

RE
SE

T
re

gA
0,

bi
tA

0

Y
N

re
g7

,b
it7

 =
 1?

L8

SE
T

re
gA

2,
bi

tA
2

SE

T
re

gA
1,

bi
tA

1

SE
T

re
gA

0,
bi

tA
0

 Y

 N

Te
m

p_
1,

0
=

1
?

Te
m

p_
1

 W

be
gi

n

en
d

FI
G

U
R

E
14

.7
T

he
 fl

ow
ch

ar
t o

f t
he

 m
ac

ro
 e
n
c
o
d
_
8
_
3
_
p
_
E

.

307Priority Encoder Macros

© 2008 Taylor & Francis Group, LLC

input line 9 has the highest priority, while the input line 0 has the lowest
priority. In addition to the encod_dec_bcd_p, this encoder macro has an
active high enable line, E, for enabling it. When this encoder is disabled with
E set to 0, all output lines are set to 0. When this encoder is enabled with E set
to 1, it functions as described for encod_dec_bcd_p. This means that when
E = 1: if the input signals present in the input lines 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are as

TABLE 14.5

Symbol and Truth Table of the Macro encod_dec_bcd_p

Symbol

DECIMAL TO BCD
PRIORITY ENCODER

9

8

7

6

5

4

3

2

1

0

A1

A0

A2

A3

9 = reg9,bit9
8 = reg8,bit8
7 = reg7,bit7
6 = reg6,bit6
5 = reg5,bit5
4 = reg4,bit4
3 = reg3,bit3
2 = reg2,bit2
1 = reg1,bit1
0 = reg0,bit0

A3 = regA3,bitA3
A2 = regA2,bitA2
A1 = regA1,bitA1
A0 = regA1,bitA0

Truth Table

inputs outputs
0 1 2 3 4 5 6 7 8 9 A3 A2 A1 A0
× × × × × × × × × 1 1 0 0 1
× × × × × × × × 1 0 1 0 0 0
× × × × × × × 1 0 0 0 1 1 1
× × × × × × 1 0 0 0 0 1 1 0
× × × × × 1 0 0 0 0 0 1 0 1
× × × × 1 0 0 0 0 0 0 1 0 0
× × × 1 0 0 0 0 0 0 0 0 1 1
× × 1 0 0 0 0 0 0 0 0 0 1 0
× 1 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0

×: don’t care.

308 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

FIGURE 14.8
The macro encod_dec_bcd_p.

309Priority Encoder Macros

© 2008 Taylor & Francis Group, LLC

Y
N

 r
eg

3,
bi

t3
 =

 1

?

L4 L1

Y
L3

N

Y

RE
SE

T
re

gA
3,

bi
tA

3

RE
SE

T
re

gA
2,

bi
tA

2

RE
SE

T
re

gA
1,

bi
tA

1

RE
SE

T
re

gA
0,

bi
tA

0

L2
N

re
g2

,b
it2

 =
 1?

re
g1

,b
it1

 =
 1?

RE
SE

T
re

gA
3,

bi
tA

3
RE

SE
T

re
gA

2,
bi

tA
2

RE
SE

T
re

gA
1,

bi
tA

1
SE

T
re

gA
0,

bi
tA

0

RE
SE

T
re

gA
3,

bi
tA

3
RE

SE
T

re
gA

2,
bi

tA
2

SE
T

re
gA

1,
bi

tA
1

RE
SE

T
re

gA
0,

bi
tA

0

RE
SE

T
re

gA
3,

bi
tA

3
RE

SE
T

re
gA

2,
bi

tA
2

SE
T

re
gA

1,
bi

tA
1

SE
T

re
gA

0,
bi

tA
0

Y
N

re
g4

,b
it4

 =
 1?

L5

RE
SE

T
re

gA
3,

bi
tA

3
SE

T
re

gA
2,

bi
tA

2
RE

SE
T

re
gA

1,
bi

tA
1

RE
SE

T
re

gA
0,

bi
tA

0

Y
N

re
g5

,b
it5

 =
 1?

L6

RE
SE

T
re

gA
3,

bi
tA

3
SE

T
re

gA
2,

bi
tA

2
RE

SE
T

re
gA

1,
bi

tA
1

SE
T

re
gA

0,
bi

tA
0

Y
N

re
g6

,b
it6

 =
 1?

L7

RE
SE

T
re

gA
3,

bi
tA

3
SE

T
re

gA
2,

bi
tA

2
SE

T
re

gA
1,

bi
tA

1
RE

SE
T

re
gA

0,
bi

tA
0

Y
N

re
g7

,b
it7

 =
 1?

L8

RE
SE

T
re

gA
3,

bi
tA

3
SE

T
re

gA
2,

bi
tA

2
SE

T
re

gA
1,

bi
tA

1
SE

T
re

gA
0,

bi
tA

0

Y
N

re
g8

,b
it8

 =
 1?

L9

SE
T

re
gA

3,
bi

tA
3

RE
SE

T
re

gA
2,

bi
tA

2
RE

SE
T

re
gA

1,
bi

tA
1

RE
SE

T
re

gA
0,

bi
tA

0

Y
N

re
g9

,b
it9

 =
 1?

L1
0

SE
T

re
gA

3,
bi

tA
3

RE
SE

T
re

gA
2,

bi
tA

2
RE

SE
T

re
gA

1,
bi

tA
1

SE
T

re
gA

0,
bi

tA
0

be
gi

n

en
d

FI
G

U
R

E
14

.9
T

he
 fl

ow
ch

ar
t o

f t
he

 m
ac

ro
 e
n
c
o
d
_
d
e
c
_
b
c
d
_
p

.

310 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

TABLE 14.6

Symbol and Truth Table of the Macro encod_dec_bcd_p_E

Symbol

DECIMAL TO BCD
PRIORITY ENCODER

9

8

7

6

5

4

3

2

1

0 E

A1

A0

A2

A3

W E
9 = reg9,bit9
8 = reg8,bit8
7 = reg7,bit7
6 = reg6,bit6
5 = reg5,bit5
4 = reg4,bit4
3 = reg3,bit3
2 = reg2,bit2
1 = reg1,bit1
0 = reg0,bit0

A3 = regA3,bitA3
A2 = regA2,bitA2
A1 = regA1,bitA1
A0 = regA1,bitA0

Truth Table

inputs outputs
E 0 1 2 3 4 5 6 7 8 9 A3 A2 A1 A0
0 × × × × × × × × × × 0 0 0 0
1 × × × × × × × × × 1 1 0 0 1
1 × × × × × × × × 1 0 1 0 0 0
1 × × × × × × × 1 0 0 0 1 1 1
1 × × × × × × 1 0 0 0 0 1 1 0
1 × × × × × 1 0 0 0 0 0 1 0 1
1 × × × × 1 0 0 0 0 0 0 1 0 0
1 × × × 1 0 0 0 0 0 0 0 0 1 1
1 × × 1 0 0 0 0 0 0 0 0 0 1 0
1 × 1 0 0 0 0 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

×: don’t care.

311Priority Encoder Macros

© 2008 Taylor & Francis Group, LLC

FIGURE 14.10
The macro encod_dec_bcd_p_E.

312 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

follows, ×××××××××1 (respectively, ××××××××10, ×××××××100, ××××××1000,
×××××10000, ××××100000, ×××1000000, ××10000000, ×100000000, 1000000000),
then the output lines generate the following binary code: A3A2A1A0 = 1001
(respectively, 1000, 0111, 0110, 0101, 0100, 0011, 0010, 0001, 0000).

14.7 Examples for Priority Encoder Macros

In this section, we will consider five examples, namely, UZAM_plc_16i16o_
exX.asm (X = 29, 30, 31, 32, 33), to show the usage of priority encoder macros.
In order to test one of these examples, please take the related file UZAM_
plc_16i16o_exX.asm (X = 29, 30, 31, 32, 33) from the CD-ROM attached to
this book, and then open the program by MPLAB IDE and compile it. After
that, by using the PIC programmer software, take the compiled file UZAM_
plc_16i16o_exX.hex (X = 29, 30, 31, 32, 33), and by your PIC programmer

Y Nreg3,bit3 = 1?
L4

L1

Y
L3

N

Y

RESET regA3,bitA3
RESET regA2,bitA2
RESET regA1,bitA1
RESET regA0,bitA0

 L2
N

reg2,bit2 = 1?

reg1,bit1 = 1?

RESET regA3,bitA3
RESET regA2,bitA2
RESET regA1,bitA1

SET regA0,bitA0

RESET regA3,bitA3
RESET regA2,bitA2

SET regA1,bitA1
RESET regA0,bitA0

RESET regA3,bitA3
RESET regA2,bitA2

SET regA1,bitA1
SET regA0,bitA0

Y Nreg4,bit4 = 1?
L5

RESET regA3,bitA3
SET regA2,bitA2

RESET regA1,bitA1
RESET regA0,bitA0

Y Nreg5,bit5 = 1?
L6

RESET regA3,bitA3
SET regA2,bitA2

RESET regA1,bitA1
SET regA0,bitA0

Y Nreg6,bit6 = 1?
L7

RESET regA3,bitA3
SET regA2,bitA2
SET regA1,bitA1

RESET regA0,bitA0

Y N reg7,bit7 = 1?
L8

RESET regA3,bitA3
SET regA2,bitA2
SET regA1,bitA1
SET regA0,bitA0

Y Nreg8,bit8 = 1?
L9

SET regA3,bitA3
RESET regA2,bitA2
RESET regA1,bitA1
RESET regA0,bitA0

Y Nreg9,bit9 = 1?
L10

SET regA3,bitA3
RESET regA2,bitA2
RESET regA1,bitA1

SET regA0,bitA0

Y N
Temp_1,0 = 1?

Temp_1 W

begin

end

FIGURE 14.11
The flowchart of the macro encod_dec_bcd_p_E.

313Priority Encoder Macros

© 2008 Taylor & Francis Group, LLC

hardware, send it to the program memory of PIC16F648A microcontroller
within the PIC16F648A-based PLC. To do this, switch the 4PDT in PROG
position and the power switch in OFF position. After loading the file UZAM_
plc_16i16o_exX.hex (X = 29, 30, 31, 32, 33), switch the 4PDT in RUN and the
power switch in ON position. Please check the program’s accuracy by cross-
referencing it with the related macros.

Let us now consider these example programs: The first example program,
UZAM_plc_16i16o_ex29.asm, is shown in Figure 14.12. It shows the usage
of two priority encoder macros, encod_4_2_p and encod_4_2_p_E. The
schematic diagram of the user program of UZAM_plc_16i16o_ex29.asm,
shown in Figure 14.12, is depicted in Figure 14.13.

FIGURE 14.12
The user program of UZAM_plc_16i16o_ex29.asm.

I0.1

Q0.1

Q0.0

I0.0

3

2

1

0

I0.3

I0.2

I1.1

Q1.1

Q1.0

I1.0

I1.7

E

A1

3

2

1

0

A0

A1

A0

I1.3

I1.2

4×2
PRIORITY
ENCODER

4×2
PRIORITY
ENCODER

INPUTS OUTPUTS

FIGURE 14.13
The schematic diagram of the user program of UZAM_plc_16i16o_ex29.asm.

314 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

In the first rung, the priority encoder macro encod_4_2_p (4 × 2 priority
encoder) is used. In this priority encoder, four input lines, 3, 2, 1, and 0, are
defined as I0.3, I0.2, I0.1, and I0.0 respectively, while the output lines A1 and
A0 are defined as Q0.1 and Q0.0, respectively.

In the second rung, the priority encoder macro encod_4_2_p_E (4 × 2 pri-
ority encoder with enable input) is used. In this priority encoder, four input
lines, 3, 2, 1, and 0, are defined as I1.3, I1.2, I1.1, and I1.0, respectively, while
the output lines A1 and A0 are defined as Q1.1 and Q1.0, respectively. In addi-
tion, the active high enable input E is defined to be E = I1.7.

The second example program, UZAM_plc_16i16o_ex30.asm, is shown in
Figure 14.14. It shows the usage of the priority encoder macro encod_8_3_p
(8 × 3 priority encoder). The schematic diagram of the user program of UZAM_
plc_16i16o_ex30.asm, shown in Figure 14.14, is depicted in Figure 14.15. In this
priority encoder, eight input lines, 7, 6, 5, 4, 3, 2, 1, and 0, are defined as I0.7, I0.6,
I0.5, I0.4, I0.3, I0.2, I0.1, and I0.0, respectively, while the output lines A2, A1, and
A0 are defined as Q0.2, Q0.1, and Q0.0, respectively.

The third example program, UZAM_plc_16i16o_ex31.asm, is shown
in Figure 14.16. It shows the usage of the priority encoder macro
encod_8_3_p_E (8 × 3 priority encoder with enable input). The schematic
diagram of the user program of UZAM_plc_16i16o_ex31.asm, shown in

FIGURE 14.14
The user program of UZAM_plc_16i16o_ex30.asm.

I0.5
Q0.2

Q0.1

I0.4

I0.7

I0.6

I0.1

I0.0

I0.3

I0.2 Q0.0

7

6

5

4

3

2

1

0

A1

A0

A2

INPUTS OUTPUTS
8×3

PRIORITY
ENCODER

FIGURE 14.15
The schematic diagram of the user program of UZAM_plc_16i16o_ex30.asm.

315Priority Encoder Macros

© 2008 Taylor & Francis Group, LLC

Figure 14.16, is depicted in Figure 14.17. In this priority encoder, eight input
lines, 7, 6, 5, 4, 3, 2, 1, and 0, are defined as I0.7, I0.6, I0.5, I0.4, I0.3, I0.2, I0.1,
and I0.0, respectively, while the output lines A2, A1, and A0 are defined as
Q0.2, Q0.1, and Q0.0, respectively. In addition, the active high enable input
E is defined to be E = I1.7.

The fourth example program, UZAM_plc_16i16o_ex32.asm, is shown in
Figure 14.18. It shows the usage of the priority encoder macro encod_dec_
bcd_p (decimal to BCD priority encoder). The schematic diagram of the user
program of UZAM_plc_16i16o_ex32.asm, shown in Figure 14.18, is depicted
in Figure 14.19. In this priority encoder, 10 input lines, 9, 8, 7, 6, 5, 4, 3, 2, 1, and
0, are defined as I1.1, I1.0, I0.7, I0.6, I0.5, I0.4, I0.3, I0.2, I0.1, and I0.0, respec-
tively, while the output lines A3, A2, A1, and A0 are defined as Q0.3, Q0.2,
Q0.1, and Q0.0, respectively.

The fifth and last example program, UZAM_plc_16i16o_ex33.asm, is
shown in Figure 14.20. It shows the usage of the priority encoder macro
encod_dec_bcd_p_E (decimal to BCD priority encoder with enable input).

FIGURE 14.16
The user program of UZAM_plc_16i16o_ex31.asm.

I0.5

Q0.2

Q0.1

I0.4

E

I0.7

I0.6

I0.1

I0.0

I0.3

I0.2 Q0.0

7

6

5

4

3

2

1

0

A1

A0

A2

INPUTS OUTPUTS

I1.7

8×3
PRIORITY
ENCODER

FIGURE 14.17
The schematic diagram of the user program of UZAM_plc_16i16o_ex31.asm.

316 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

FIGURE 14.18
The user program of UZAM_plc_16i16o_ex32.asm.

I0.5 Q0.2

Q0.1I0.4

I0.7

I0.6

I0.1

I0.0

I0.3

I0.2

Q0.0

7

6

5

4

3

2

1

0

A1

A0

A2

INPUTS OUTPUTS

I1.1

I1.0

9

8

Q0.3A3

DECIMAL TO
BCD

PRIORITY
ENCODER

FIGURE 14.19
The schematic diagram of the user program of UZAM_plc_16i16o_ex32.asm.

FIGURE 14.20
The user program of UZAM_plc_16i16o_ex33.asm.

317Priority Encoder Macros

© 2008 Taylor & Francis Group, LLC

The schematic diagram of the user program of UZAM_plc_16i16o_ex33.asm,
shown in Figure 14.20, is depicted in Figure 14.21. In this priority encoder, 10
input lines, 9, 8, 7, 6, 5, 4, 3, 2, 1, and 0, are defined as I1.1, I1.0, I0.7, I0.6, I0.5, I0.4,
I0.3, I0.2, I0.1, and I0.0, respectively, while the output lines A3, A2, A1, and A0
are defined as Q0.3, Q0.2, Q0.1, and Q0.0, respectively. In addition, the active
high enable input E is defined to be E = I1.7.

I0.5 Q0.2

Q0.1 I0.4

I0.7

I0.6

I0.1

I0.0

I0.3

I0.2

Q0.0

7

6

5

4

3

2

1

0

A1

A0

A2

I1.1

I1.0

9

8

Q0.3 A3

I1.7

E

INPUTS OUTPUTS

DECIMAL TO
BCD

PRIORITY
ENCODER

FIGURE 14.21
The schematic diagram of the user program of UZAM_plc_16i16o_ex33.asm.

319© 2008 Taylor & Francis Group, LLC

15
Application Example

This chapter describes an example remotely controlled model gate system
and makes use of the PIC16F648A-based PLC to control it for different con-
trol scenarios.

15.1 Remotely Controlled Model Gate System

Figure 15.1 shows the remotely controlled model gate system, used in this
chapter as an example to show how the PIC16F648A-based PLC can be uti-
lized in the control of real systems. In this system, when the DC motor turns
backward (respectively forward) the gate is opened (respectively closed).
To control the DC motor in backward and forward directions, PLC outputs
Q0.0 and Q0.1 are used, respectively. In the system, there are two buttons,
B0 and B1, and they both have only one normally open (NO) contact. When
pressed, the button B0 (respectively, B1) is used to give the control system the
following order: “open the gate” (respectively, “close the gate”). PLC inputs
I0.0 and I0.1 are used for identifying the ON or OFF states of the buttons
B0 and B1, respectively. When the gate is completely open, it applies the F1
force, shown in Figure 15.1, to the limit switch 1 (LS1). In this case, the NO
contact of LS1 is closed. To detect whether or not the gate is completely open,
the input I0.2 is utilized. When the gate is completely closed, it applies the
F2 force, shown in Figure 15.1, to the limit switch 2 (LS2). In this case, the
NO contact of LS2 is closed. To detect whether or not the gate is completely
closed, the PLC input I0.3 is utilized. An infrared (IR) transmitter/receiver
sensor is used to detect if there is any obstacle in the gate’s path. This is very
important because when the gate is closing, there should not be any obstacle
in its path in order not to cause any damage to anybody or anything. When
the light emitted from the IR transmitter is received from the IR receiver, the
NO contact of the sensor is closed. In this case, we conclude that there is no
obstacle in the path. When the light emitted from the IR transmitter is not
received from the IR receiver, the NO contact of the sensor is open, i.e., in its
normal condition. This means that there is an obstacle in the path. To detect
whether or not there is an obstacle in the path, the PLC input I0.4 is utilized.
In addition, there is also a radio frequency (RF) transmitter/receiver used as
a remote control mechanism within the system. In the RF transmitter, there

320 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

is a button. When this button is pressed, the RF waves are emitted from
the transmitter, and they are received from the RF receiver. In this case, NO
contact at the RF receiver is closed, signaling the button press from the RF
transmitter counterpart. To detect whether or not the RF transmitter button
is pressed, the PLC input I0.5 is utilized.

The DC motor control circuit embedded within the model gate system
is depicted in Figure 15.2, where there are two relays, Relay 1 and Relay 2,

NO

DC Motor

NC
C

NO

24 V
DC

Relay 1 Relay 2

Motor voltage
+Vc

+

–

NC
C

FIGURE 15.2
The DC motor control circuit embedded within the model gate system.

B0

B1

I0.0

Motor

RF transmitter RF receiver

NO

NONO

I0.5

F2F1

I0.3

I0.4

Q0.1Q0.0
Gate is opened Gate is closed

NO

I0.2

LS2

IR
transmitter/receiver

LS1

I0.1

FIGURE 15.1
The remotely controlled model gate system.

321Application Example

© 2008 Taylor & Francis Group, LLC

operating on 24 V DC. These relays both have a single-pole double-throw
(SPDT) contact, with the terminals named normally open (NO), com-
mon (C), and normally closed (NC). As can be seen, terminal C is shared
between the other two contacts. The normal states of the contacts are shown
in Figure 15.2. In this case, the C and NC terminals of both relays are closed,
while C and NO terminals are open. If any of these relays’ coils are ener-
gized, then the contacts are actuated, and thus the C and NC terminals of
the relay are open, while C and NO terminals are closed. With this setup, by
means of the two relays we can have the DC motor turning forward or back-
ward, as shown in Table 15.1. It is important to note that if both relays are
ON, then the DC motor will not be working. One terminal of each relay coil
is connected to 24 V DC, while the other one is left unconnected. To operate
any relay it is necessary to connect its open terminal to the ground of the
24 V DC. The control of the DC motor is achieved by means of the Q0.0 and
Q0.1 outputs of the PLC. As can be seen from Figure 15.2, when Q0.0 is ON
(and Q0.1 is OFF), the NO contact of Q0.0 will switch on Relay 2, in which
case the motor turns backward and the gate is opened. Similarly, when Q0.1
is ON (and Q0.0 is OFF), the NO contact of Q0.1 will switch on Relay 1,
in which case the motor turns forward and the gate is closed. Figure 15.3
shows the wiring of the PIC16F648A-based PLC with the remotely con-
trolled model gate system. In this setup, when any of the NO contact of
the model gate system is closed or a button is pressed, 5 V DC is applied to
related PLC input.

15.2 Control Scenarios for the Model Gate System

In this section we will declare eight different control scenarios for the
remotely controlled model gate system as follows:

 1. When B0 is being pressed, the gate shall open.
 2. Once B0 is pressed, the gate shall open.
 3. Once B0 is pressed, the gate shall open. The motor shall stop when

the gate is completely open.

TABLE 15.1

State of the DC Motor Based on the Two Relays

Relay 1 Relay 2 DC Motor

OFF (Q0.1 = 0) OFF (Q0.0 = 0) OFF (not working)
OFF (Q0.1 = 0) ON (Q0.0 = 1) Turns backward (the gate is opened)
ON (Q0.1 = 1) OFF (Q0.0 = 0) Turns forward (the gate is closed)
ON (Q0.1 = 1) ON (Q0.0 = 1) OFF (not working)

322 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

G
at

e
is

 o
pe

ne
d

G
at

e
is

 cl
os

ed

B0 B1

I0
.0

RF
 tr

an
sm

itt
er

RF
 re

ce
iv

er

N
O

N
O

N
O

I0
.5

F2
F1

I0
.3

I0
.4

Q
0.

1
Q

0.
0

N
O

I0
.2

LS
2

IR
tr

an
sm

itt
er

/
re

ce
iv

er
LS

1

I0
.1

N
O

D
C

M
ot

or

N
C

C
N

O
24

 V
D

C

Re
la

y
1

Re
la

y
2

M
ot

or
 v

ol
ta

ge
+V

c

+ –

N
C

C

FI
G

U
R

E
15

.3
W

ir
in

g
of

 th
e

PI
C

16
F6

48
A

-b
as

ed
 P

L
C

 w
it

h
th

e
m

od
el

 g
at

e
sy

st
em

.

323Application Example

© 2008 Taylor & Francis Group, LLC

 4. Once B0 is pressed, the gate shall open. The motor shall stop when
the gate is completely open. Once B1 is pressed, the gate shall close.
The motor shall stop when the gate is completely closed.

 5. If the gate is not closing, then once B0 is pressed, the gate shall open.
The motor shall stop when the gate is completely open. If the gate is
not opening, then once B1 is pressed, the gate shall close. The motor
shall stop when the gate is completely closed.

 6. If the gate is not closing, then once B0 or the RF transmitter button
is pressed, the gate shall open. The motor shall stop when the gate is
completely open. When the gate is completely open, it shall wait 5 s
before automatically closing. The motor shall stop when the gate is
completely closed.

 7. If the gate is not closing, then once B0 or the RF transmitter button
is pressed, the gate shall open. The motor shall stop when the gate is
completely open. When the gate is completely open, it shall wait 5 s
before automatically closing. The motor shall stop when the gate is
completely closed. When the gate is closing, if there is an obstacle in
the gate’s path, the gate shall open. In this case it shall wait 5 s before
automatically closing as defined above.

 8. Combine the previous seven control scenarios in a single program.
By using three inputs, I1.2, I1.1, and I1.0, only one of the scenarios
will be selected and will work at any time.

15.3 Solutions for the Control Scenarios

In this section, we will consider the solutions to the above-declared eight con-
trol scenarios for the remotely controlled model gate system, namely, UZAM_
plc_16i16o_exX.asm (X = 34, 35, 36, 37, 38, 39, 40, 41). In order to test one of
these examples, please take the related file UZAM_plc_16i16o_exX.asm (X =
34, 35, 36, 37, 38, 39, 40, 41) from the CD-ROM attached to this book, and then
open the program by MPLAB IDE and compile it. After that, by using the
PIC programmer software, take the compiled file UZAM_plc_16i16o_exX
.hex (X = 34, 35, 36, 37, 38, 39, 40, 41), and by your PIC programmer hardware
send it to the program memory of PIC16F648A microcontroller within the
PIC16F648A-based PLC. To do this, switch the 4PDT in PROG position and
the power switch in OFF position. After loading the file UZAM_plc_16i16o_
exX.hex (X = 34, 35, 36, 37, 38, 39, 40, 41), switch the 4PDT in RUN and the
power switch in ON position. Finally, you are ready to test the respective
example program.

Let us now consider the example programs in the following sections.

324 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

15.3.1 Solution for the First Scenario

The user program of UZAM_plc_16i16o_ex34.asm, shown in Figure 15.4, is
provided as a solution for the first scenario. The ladder diagram of the user
program of UZAM_plc_16i16o_ex34.asm is depicted in Figure 15.5. In this
example, when B0 (I0.0) is being pressed, the gate will open (Q0.0 will be
ON). However, in this case, if B0 is released, then the gate will stop. This
means that the program does not remember whether or not B0 was pressed.

15.3.2 Solution for the Second Scenario

The user program of UZAM_plc_16i16o_ex35.asm, shown in Figure 15.6, is
provided as a solution for the second scenario. The ladder diagram of the
user program of UZAM_plc_16i16o_ex35.asm is depicted in Figure 15.7. In
this example, once B0 (I0.0) is pressed, with the help of NO contact Q0.0 con-
nected parallel to NO contact I0.0, the gate will open (Q0.0 will be ON). Here,

FIGURE 15.4
The user program of UZAM_plc_16i16o_ex34.asm.

1 ()
I 0.0 Q 0.0

FIGURE 15.5
The ladder diagram of the user program of UZAM_plc_16i16o_ex34.asm.

FIGURE 15.6
The user program of UZAM_plc_16i16o_ex35.asm.

325Application Example

© 2008 Taylor & Francis Group, LLC

the NO contact Q0.0 is a “sealing contact,” and helps the program to remem-
ber whether B0 was pressed. The problem is that when the gate is completely
opened, the motor will not stop.

15.3.3 Solution for the Third Scenario

The user program of UZAM_plc_16i16o_ex36.asm, shown in Figure 15.8, is
provided as a solution for the third scenario. The ladder diagram of the user
program of UZAM_plc_16i16o_ex36.asm is depicted in Figure 15.9. In this
example, once B0 (I0.0) is pressed, with the help of NO contact Q0.0 con-
nected parallel to NO contact I0.0, the gate will open (Q0.0 will be ON). Here,
when the gate is opened completely, the motor will stop with the help of the
NC contact of I0.2 inserted before the output Q0.0.

1 ()
I 0.0 Q 0.0

Q 0.0

FIGURE 15.7
The ladder diagram of the user program of UZAM_plc_16i16o_ex35.asm.

FIGURE 15.8
The user program of UZAM_plc_16i16o_ex36.asm.

1 ()
I 0.0 Q 0.0

Q 0.0

I 0.2

FIGURE 15.9
The ladder diagram of the user program of UZAM_plc_16i16o_ex36.asm.

326 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

15.3.4 Solution for the Fourth Scenario

The user program of UZAM_plc_16i16o_ex37.asm, shown in Figure 15.10, is
provided as a solution for the fourth scenario. The ladder diagram of the
user program of UZAM_plc_16i16o_ex37.asm is depicted in Figure 15.11. In
this example, once B0 (I0.0) is pressed, with the help of NO contact Q0.0 con-
nected parallel to NO contact I0.0, the gate will open (Q0.0 will be ON). Here,
when the gate is opened completely, the motor will stop with the help of the
NC contact of I0.2 inserted before the output Q0.0. Similarly, once B1 (I0.1)
is pressed, with the help of the NO contact of Q0.1 connected parallel to
NO contact I0.1, the gate will close (Q0.1 will be ON). Here, when the gate
is closed completely, the motor will stop with the help of the NC contact of
I0.3 inserted before the output Q0.1. The problem with this example is that if
both B0 and B1 are pressed at the same time, then both outputs will be ON.
This is not a desired situation. The solution to this problem is given in the
next example.

FIGURE 15.10
The user program of UZAM_plc_16i16o_ex37.asm.

1 ()
I 0.0 Q 0.0

Q0.0

I 0.2

2 ()
I 0.1 Q0.1

Q 0.1

I 0.3

FIGURE 15.11
The ladder diagram of the user program of UZAM_plc_16i16o_ex37.asm.

327Application Example

© 2008 Taylor & Francis Group, LLC

15.3.5 Solution for the Fifth Scenario

The user program of UZAM_plc_16i16o_ex38.asm, shown in Figure 15.12, is
provided as a solution for the fifth scenario. The ladder diagram of the user
program of UZAM_plc_16i16o_ex38.asm is depicted in Figure 15.13. In this
example, if the gate is not closing (Q0.1 = 0), once B0 (I0.0) is pressed, then
the gate will open (Q0.0 will be ON) with the help of the NO contact of Q0.0
connected parallel to NO contact I0.0. In this case, when the gate is opened
completely (I0.2 = 1, and therefore the NC contact of I0.2 will open), the motor
will stop with the help of the NC contact of I0.2 inserted before the output
Q0.0. Similarly, if the gate is not opening (Q0.0 = 0), once B1 (I0.1) is pressed,
then the gate will close (Q0.1 will be ON) with the help of NO contact Q0.1
connected parallel to the NO contact of I0.1. Here, when the gate is closed
completely (I0.3 = 1, and therefore the NC contact of I0.3 will open), the motor

FIGURE 15.12
The user program of UZAM_plc_16i16o_ex38.asm.

1 ()
I 0.0 Q 0.0

Q 0.0

I 0.2

2 ()
I 0.1 Q 0.1

Q 0.1

I 0.3

Q 0.1

Q 0.0

FIGURE 15.13
The ladder diagram of the user program of UZAM_plc_16i16o_ex38.asm.

328 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

will stop with the help of the NC contact of I0.3 inserted before the output
Q0.1. Therefore, once the gate is being opened, we cannot force it to close,
and vice versa.

15.3.6 Solution for the Sixth Scenario

The user program of UZAM_plc_16i16o_ex39.asm, shown in Figure 15.14, is
provided as a solution for the sixth scenario. The ladder diagram of the user
program of UZAM_plc_16i16o_ex39.asm is depicted in Figure 15.15. In this
example, if the gate is not closing (Q0.1 = 0), once B0 (I0.0) or the RF transmit-
ter button (I0.5) is pressed, then the gate will open (Q0.0 will be ON) with
the help of the NO contact of Q0.0 connected parallel to the NO contact of
I0.0. In this case, when the gate is opened completely (I0.2 = 1, and therefore
the NC contact of I0.2 will open), the motor will stop with the help of the NC
contact of I0.2 inserted before the output Q0.0. When the gate is completely
open (I0.2 = 1), an on-delay timer (TON_8) is used to obtain a (100 × 52.4288
ms) 5.24 s time delay. After waiting 5.24 s, the status bit TON8_Q0 of the
on-delay timer becomes true. If the gate is not opening (Q0.0 = 0), and if the
NO contact of TON_8Q0 is closed (i.e., 5.24 s time delay has elapsed), then
the gate will close (Q0.1 will be ON) with the help of the NO contact of Q0.1
connected parallel to the NO contact of TON8_Q0. Here, when the gate is

FIGURE 15.14
The user program of UZAM_plc_16i16o_ex39.asm.

329Application Example

© 2008 Taylor & Francis Group, LLC

closed completely (I0.3 = 1, and therefore the NC contact of I0.3 will open),
the motor will stop with the help of the NC contact of I0.3 inserted before the
output Q0.1.

15.3.7 Solution for the Seventh Scenario

The user program of UZAM_plc_16i16o_ex40.asm, shown in Figure 15.16, is
provided as a solution for the seventh scenario. The ladder diagram of the
user program of UZAM_plc_16i16o_ex40.asm is depicted in Figure 15.17.
In this example, if the gate is not closing (Q0.1 = 0), once B0 (I0.0) or the
RF transmitter button (I0.5) is pressed, then the gate will open (Q0.0 will
be ON) with the help of NO contact Q0.0 connected parallel to NO con-
tact I0.0. In this case, when the gate is opened completely (I0.2 = 1, and
therefore the NC contact of I0.2 will open), the motor will stop with the
help of the NC contact of I0.2 inserted before the output Q0.0. If the gate is
closing (Q0.1 = 1) and the presence of an obstacle is detected in the gate’s
path (I0.4 = 0), then the gate will open (Q0.0 will be ON). When the gate is
completely open (I0.2 = 1), an on-delay timer (TON_8) is used to obtain a

1 ()
I 0.0 Q 0.0

I 0.5

I 0.2 Q 0.1

Q 0.0

3 ()
Q 0.1

Q 0.1

I 0.3 Q 0.0

2
I 0.2

T1.1

0

IN Q

CLK

tcnst
num

TON_8

100T = 52,4288 ms

TON8_Q0

FIGURE 15.15
The ladder diagram of the user program of UZAM_plc_16i16o_ex39.asm.

330 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

(10 × 52.4288 ms) 5.24 s time delay. After waiting 5.24 s, the status bit TON8_
Q0 of the on-delay timer becomes true. If the gate is not opening (Q0.0 =
0), and if the NO contact of TON8_Q0 is closed (i.e., the 5.24 s time delay
has elapsed), then the gate will close (Q0.1 will be ON) with the help of
NO contact Q0.1 connected parallel to the NO contact of TON8_Q0. Here,
when the gate is closed completely (I0.3 = 1, and therefore the NC contact
of I0.3 will open), the motor will stop with the help of the NC contact of
I0.3 inserted before the output Q0.1. If the gate is closing (Q0.1 = 1) and the
presence of an obstacle is detected in the gate’s path (I0.4 = 0), then the out-
put Q0.1 will be switched OFF by means of the NO contact of I0.4 inserted
before the output Q0.1.

15.3.8 Solution for the Eighth Scenario

In this last solution, the previous seven solutions are all combined in a single
program. In order to choose one of the previous solutions, three inputs, I1.2,
I1.1, and I1.0, are used. Table 15.2 shows the selected scenarios based on the
logic signals applied to these three inputs.

FIGURE 15.16
The user program of UZAM_plc_16i16o_ex40.asm.

331Application Example

© 2008 Taylor & Francis Group, LLC

2 ()
I 0.0 Q 0.0

I 0.5

I 0.2 Q 0.1

Q 0.0

4 ()
Q 0.1

Q 0.1

I 0.3 I 0.4

3
I 0.2

T1.1

0

IN Q

CLK

tcnst
num

TON_8

100
T=52,4288 ms

TON8_Q0

I 0.4

Q 0.0

Q 0.1
()
M 0.0

M 0.0

1

FIGURE 15.17
The ladder diagram of the user program of UZAM_plc_16i16o_ex40.asm.

TABLE 15.2

Scenarios Chosen Based on the Input Signals

Input Signals
Selected Memory Bit Chosen Scenario

I1.2 I1.1 I1.0

0 0 0 M0.0 —
0 0 1 M0.1 1
0 1 0 M0.2 2
0 1 1 M0.3 3
1 0 0 M0.4 4
1 0 1 M0.5 5
1 1 0 M0.6 6
1 1 1 M0.7 7

332 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

The user program of UZAM_plc_16i16o_ex41.asm, shown in Figure 15.18,
is provided as a solution for the eighth scenario. The ladder diagram of the
user program of UZAM_plc_16i16o_ex41.asm is depicted in Figure 15.19.
In the first rung, a 3 × 8 decoder is implemented, whose inputs are I1.2,
I1.1, and I1.0, and whose outputs are markers M0.0, M0.1, M0.2, M0.3,
M0.4, M0.5, M0.6, and M0.7. The Boolean signals applied to the inputs

FIGURE 15.18
The user program of UZAM_plc_16i16o_ex41.asm. (Continued)

333Application Example

© 2008 Taylor & Francis Group, LLC

FIGURE 15.18 (Continued)
The user program of UZAM_plc_16i16o_ex41.asm.

334 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

C d7

d6

d5

d4

d3

d2

d1

d0

3×8
DECODER

B

A

M 0.1

()
M 0.2

()

()

M 0.0

()
M 0.3

()
M 0.5

()
M 0.6

()
M 0.4

()
M 0.7

I 1.2

I 1.1

I 1.0

1

M 0.1I 0.0
()

M 1.1
2

3 ()
I 0.0 M 1.2

Q 0.0

M 0.2

4 ()
I 0.0

Q 0.0

I 0.2 M 0.3 M 1.3

5 ()
I 0.0

Q 0.0

I 0.2 M 0.4 M 1.4

6 ()
I 0.1

Q 0.1

I 0.3 M 0.4 M 2.4

7 ()
I 0.0

Q 0.0

I 0.2 Q 0.1 M 1.5M 0.5

8 ()
I 0.1

Q 0.1

I 0.3 Q 0.0 M 2.5M 0.5

FIGURE 15.19
The ladder diagram of the user program of UZAM_plc_16i16o_ex41.asm. (Continued)

335Application Example

© 2008 Taylor & Francis Group, LLC

11 ()
I 0.3

10
I 0.2

T1.1

 0

IN Q

CLK
tcnst
num

TON_8

100
T=52,4288 ms

TON8_Q0

9 ()
I 0.0

I 0.5

I 0.2 Q 0.1 M 1.6M 0.6

M 1.6

M 0.6

M 2.6

M 1.6 M 0.6 M 2.6

12 ()
 Q 0.1 I 0.4 M 0.7 M 3.0

15 ()
 I 0.3

14
 I 0.2

T1.1

 1

IN Q

CLK
tcnst
num

 TON_8

100 T=52,4288 ms

TON8_Q1

13 ()
 I 0.0

 I 0.5

 I 0.2 M 2.7 M 1.7 M 0.7

 M 1.7

M 0.7

M 2.7

M 1.7 I 0.4 M 2.7

 M 3.0

M 0.7

FIGURE 15.19 (Continued)
The ladder diagram of the user program of UZAM_plc_16i16o_ex41.asm. (Continued)

336 Building a Programmable Logic Controller

© 2008 Taylor & Francis Group, LLC

I1.2, I1.1, and I1.0 select one of the outputs, and that particular output
represents one of the scenarios as shown in Table 15.2. If I1.2,I1.1,I1.0 = 000
(respectively, 001, 010, 011, 100, 101, 110, and 111), then M0.0 (respectively,
M0.1, M0.2, M0.3, M0.4, M0.5, M0.6, and M0.7) is set to 1. When M0.0 = 1,
none of the scenarios are selected. When M0.1 (respectively, M0.2, M0.3,
M0.4, M0.5, M0.6, and M0.7) is set, the code block for the first (respec-
tively, second, third, fourth, fifth, sixth, seventh) scenario is activated,
shown in rung 2 (respectively, 3; 4; 5 and 6; 7 and 8; 9, 10, and 11; 12, 13,
14, and 15). In this example, in order to operate the motor backward and
forward, PLC outputs Q0.0 and Q0.1 are used as shown in rungs 16 and
17, respectively.

16 ()
M 1.1 Q 0.0

M 1.2

M 1.3

M 1.4

M 1.5

M 1.6

M 1.7

17 ()
M 2.4 Q 0.1

M 2.5

M 2.6

M 2.7

FIGURE 15.19 (Continued)
The ladder diagram of the user program of UZAM_plc_16i16o_ex41.asm.

337© 2008 Taylor & Francis Group, LLC

About the CD-ROM

The CD-ROM accompanying this book contains source files (.ASM) and
object files (.HEX) of all the examples in the book. In addition, printed circuit
board (PCB) (gerber and .pdf) files are also provided in order for the reader
to obtain both the CPU board and I/O extension boards produced by a PCB
manufacturer. A skilled reader may produce his or her own boards by using
the provided .pdf files.

The files on the CD-ROM are organized in the following folders:

EXAMPLES
PLC definitions (definitions.inc)
Example source files (.ASM)
Example object files (.HEX)

PIC16F648A_Based_PLC_16I_16O
Web-based explanation of the PIC16F648A-based PLC project including
 The schematic diagram of the CPU board
 Photographs of the CPU board
 The schematic diagram of the I/O extension board
 Photographs of the I/O extension board
 PCB design files for the CPU board (gerber files and .pdf files)

 PCB design files for the I/O extension board (gerber files and .pdf files)

339© 2008 Taylor & Francis Group, LLC

References

M. Uzam. PLC with PIC16F648A Microcontroller—Part 1. Electronics World, 114(1871),
21–25, 2008.

M. Uzam. PLC with PIC16F648A Microcontroller—Part 2. Electronics World, 114(1872),
29–35, 2008.

M. Uzam. PLC with PIC16F648A Microcontroller—Part 3. Electronics World, 115(1873),
30–34, 2009.

M. Uzam. PLC with PIC16F648A Microcontroller—Part 4. Electronics World, 115(1874),
34–40, 2009.

M. Uzam. PLC with PIC16F648A Microcontroller—Part 5. Electronics World, 115(1875),
30–33, 2009.

M. Uzam. PLC with PIC16F648A Microcontroller—Part 6. Electronics World, 115(1876),
26–30, 2009.

M. Uzam. PLC with PIC16F648A Microcontroller—Part 7. Electronics World, 115(1877),
30–32, 2009.

M. Uzam. PLC with PIC16F648A Microcontroller—Part 8. Electronics World, 115(1878),
30–32, 2009.

M. Uzam. PLC with PIC16F648A Microcontroller—Part 9. Electronics World, 115(1879),
29–34, 2009.

 M. Uzam. PLC with PIC16F648A Microcontroller—Part 10. Electronics World, 115(1880),
29–34, 2009.

M. Uzam. PLC with PIC16F648A Microcontroller—Part 11. Electronics World, 115(1881),
38–42, 2009.

M. Uzam. PLC with PIC16F648A Microcontroller—Part 12. Electronics World, 115(1882),
36–41, 2009.

M. Uzam. PLC with PIC16F648A Microcontroller—Part 13. Electronics World, 115(1883),
42–44, 2009.

M. Uzam. PLC with PIC16F648A Microcontroller—Part 14. Electronics World, 115(1884),
40–42, 2009.

M. Uzam. PLC with PIC16F648A Microcontroller—Part 15. Electronics World, 116(1885),
35–39, 2010.

M. Uzam. PLC with PIC16F648A Microcontroller—Part 16. Electronics World, 116(1886),
41–42, 2010.

M. Uzam. PLC with PIC16F648A Microcontroller—Part 17. Electronics World, 116(1887),
41–43, 2010.

M. Uzam. PLC with PIC16F648A Microcontroller—Part 18. Electronics World, 116(1888),
41–43, 2010.

M. Uzam. PLC with PIC16F648A Microcontroller—Part 19. Electronics World, 116(1889),
39–43, 2010.

M. Uzam. PLC with PIC16F648A Microcontroller—Part 20. Electronics World, 116(1890),
38–40, 2010.

 M. Uzam. PLC with PIC16F648A Microcontroller—Part 21. Electronics World, 116(1891),
40–41, 2010.

340 References

© 2008 Taylor & Francis Group, LLC

M. Uzam. PLC with PIC16F648A Microcontroller—Part 22. Electronics World, 116
(1892), 40–42, 2010.

M. Uzam. The earlier version of the PIC16F648A based PLC project as published
in Electronics World magazine is available from http//www.meliksah.edu.tr/
muzam/UZAM_PLC_with_PIC16F648A.htm.

 PIC16F627A/628A/648A Data Sheet. DS40044F. Microchip Technology, Inc., 2007. http://
ww1.microchip.com/downloads/en/devicedoc/40044f.pdf.

MPASM™ Assembler, MPLINK™ Object Linker, MPLIB™ Object Librarian User’s Guide. DS33014J.
Microchip Technology, Inc., 2005. http://ww1.microchip. com/downloads/en/
devicedoc/33014j.pdf.

Building a Programmable
Logic Controller with a

PIC16F648A
Microcontroller

Murat Uzam

Building a Program
m

able Logic Controller w
ith a PIC16F648A M

icrocontroller
Uzam

ISBN: 978-1-4665-8985-8

9 781466 589858

9 0 0 0 0

K20428

Computer engineering

“This text allows those who do not have all of the resources
found in a mechatronics lab the possibility to use a PLC in their
machine or robot design with a simplified and easily mastered
programming language. ... It is a well thought-out and detailed
application of the PIC microcontroller to the programmable
logic controller.”
––Thomas sTouT, Tidewater Community College, Virginia Beach, USA

Programmable logic controllers (PLCs) are extensively used in industry
to perform automation tasks, with manufacturers offering a variety of
PLCs that differ in functions, program memories, and the number of
inputs/outputs (I/O). Not surprisingly, the design and implementation
of these PLCs have long been a secret of manufacturers. Unveiling
the mysteries of PLC technology, Building a Programmable Logic
Controller with a PIC16F648A Microcontroller explains how to design
and use a PIC16F648A-based PLC. The book builds and substantially
improves on a series of articles the author previously published in
Electronics World magazine describing a microcontroller-based
implementation of a PLC.

In this book, the author provides detailed explanations of hardware
and software structures. He also describes PIC Assembly macros for
all basic PLC functions and illustrates them with numerous examples
and flowcharts. The accompanying CD contains source and object
files for the examples in the book, as well as printed circuit board
(PCB) files of the CPU and I/O extension boards. Making PLCs more
easily accessible, this unique book is written for advanced students,
practicing engineers, and hobbyists who want to learn how to build
their own microcontroller-based PLC.

Building a Programmable
Logic Controller with a

PIC16F648A Microcontroller

K20428_Cover_mech.indd All Pages 7/16/13 9:57 AM

	Front Cover
	Contents
	Preface
	Acknowledgments
	Background and Use of the Book
	About the Author
	Chapter 1 - Hardware of the PIC16F648A-Based PLC
	Chapter 2 - Basic Software
	Chapter 3 - Contact and Relay-Based Macros
	Chapter 4 - Flip-Flop Macros
	Chapter 5 - Timer Macros
	Chapter 6 - Counter Macros
	Chapter 7 - Comparison Macros
	Chapter 8 - Arithmetical Macros
	Chapter 9 - Logical Macros
	Chapter 10 - Shift and Rotate Macros
	Chapter 11 - Multiplexer Macros
	Chapter 12 - Demultiplexer Macros
	Chapter 13 - Decoder Macros
	Chapter 14 - Priority Encoder Macros
	Chapter 15 - Application Example
	About the CD-ROM
	References
	Back Cover

