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“This text allows those who do not have all of the resources 
found in a mechatronics lab the possibility to use a PLC in their 
machine or robot design with a simplified and easily mastered 
programming language. ... It is a well thought-out and detailed 
application of the PIC microcontroller to the programmable  
logic controller.” 
––Thomas sTouT, Tidewater Community College, Virginia Beach, USA

Programmable logic controllers (PLCs) are extensively used in industry 
to perform automation tasks, with manufacturers offering a variety of 
PLCs that differ in functions, program memories, and the number of 
inputs/outputs (I/O). Not surprisingly, the design and implementation 
of these PLCs have long been a secret of manufacturers. Unveiling 
the mysteries of PLC technology, Building a Programmable Logic 
Controller with a PIC16F648A Microcontroller explains how to design 
and use a PIC16F648A-based PLC. The book builds and substantially 
improves on a series of articles the author previously published in 
Electronics World magazine describing a microcontroller-based 
implementation of a PLC.

In this book, the author provides detailed explanations of hardware 
and software structures. He also describes PIC Assembly macros for 
all basic PLC functions and illustrates them with numerous examples 
and flowcharts. The accompanying CD contains source and object 
files for the examples in the book, as well as printed circuit board 
(PCB) files of the CPU and I/O extension boards. Making PLCs more 
easily accessible, this unique book is written for advanced students, 
practicing engineers, and hobbyists who want to learn how to build 
their own microcontroller-based PLC.
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Preface

Programmable logic controllers (PLCs) have been used extensively in indus-
try for the past five decades. PLC manufacturers offer different PLCs in terms 
of functions, program memories, and the number of inputs/outputs (I/Os), 
ranging from a few to thousands of I/Os. The design and implementation of 
PLCs have long been a secret of the PLC manufacturers. Recently, a serious 
work was reported by the author of this book to describe a microcontroller-
based implementation of a PLC. With a series of 22 articles published in 
Electronics World magazine (http//www.electronicsworld.co.uk/) between 
the years 2008 and 2010, the design and implementation of a PIC16F648A-
based PLC were described. This book is based on an improved version of the 
project reported in Electronics World magazine.

This book is written for advanced students, practicing engineers, and hob-
byists who want to learn how to design and use a microcontroller-based 
PLC. The book assumes the reader has taken courses in digital logic design, 
microcontrollers, and PLCs. In addition, the reader is expected to be familiar 
with the PIC16F series of microcontrollers and to have been exposed to writ-
ing programs using PIC assembly language within an MPLAB integrated 
development environment.

The CD-ROM that accompanies this book contains all the program source 
files and hex files for the examples described in the book. In addition, PCB 
files of the CPU and I/O extension boards of the PIC16F648A-based PLC are 
also included on the CD-ROM.

Dr. Murat Uzam
Melikşah Üniversitesi

Mühendislik-Mimarlık Fakültesi
Elektrik-Elektronik Mühendisliği Bölümü

Talas, Kayseri
Turkey
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Background and Use of the Book

This project was completed during the search for an answer to the follow-
ing question: How could one design and implement a programmable logic 
controller (PLC)? The answer to this question was partially discovered about 
15 years ago by the author in a freely available PLC project called PICBIT. 
The file, called picbit.inc of PICBIT, contains the basic PLC macro definitions. 
The PIC16F648A-based PLC project has been completed by the inspiration of 
these macros. Of course many new features have been included within the 
PIC16F648A-based PLC project to make it an almost perfect PLC. The reader 
should be aware that this project does not include graphical interface PC 
software as in PICBIT or in other PLCs for developing PLC programs. Rather, 
PLC programs are developed by using macros as done in the Instruction 
List (IL) PLC programming language. An interested and skilled reader could 
well (and is encouraged to) develop graphical interface PC software for easy 
use of the PIC16F648A-based PLC.

The PIC16F648A-based PLC project was first reported in a series of 22 arti-
cles published in Electronics World magazine (http://www.electronicsworld.
co.uk/) between the years 2008 and 2010 [1–22]. All details of this project 
can be viewed at http//www.meliksah.edu.tr/muzam/UZAM_PLC_with_
PIC16F648A.htm [23]. This book is based on an improved version of the 
project reported in Electronics World magazine. The improvements are sum-
marized as follows:

 1. The current hardware has two boards: the CPU board and the I/O 
extension board. In the previous version of the hardware, the main 
board consisted of the CPU board and eight inputs/eight outputs, 
while in the current version, the CPU board excludes eight inputs/
eight outputs. Thus, the CPU board is smaller than the previous 
main board. In addition, the current I/O extension board is also 
smaller than in the previous version.

 2. The hardware explained in this book consists of one CPU board and 
two I/O extension boards. Therefore, the current version of the soft-
ware supports 16 inputs and 16 outputs, while the previous one sup-
ported 8 inputs and 8 outputs.

 3. Clock frequency was 4 MHz in the previous version, but is 20 MHz 
in the current version.

 4. Some of the macros are improved compared with the previous versions.
 5. Flowcharts are provided to help the understanding of all macros 

(functions).
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In order to properly follow the topics explained in this book, it is expected 
that the reader will construct his or her PIC16F648A-based PLC consist-
ing of the CPU board and two I/O extension boards using the PCB files 
provided within the CD-ROM attached to this book. In this book, as the 
PIC assembly is used as the programming language within the MPLAB 
integrated development environment (IDE), the reader is referred to the 
homepage of Microchip (http://www.microchip.com/) to obtain the latest 
version of MPLAB IDE. References [24] and [25] may be useful to under-
stand some aspects of the PIC16F648A microcontroller and MPASM™ 
assembler, respectively.

The contents of the book’s 15 chapters are explained briefly, as follows:

 1. Hardware: In this chapter, the hardware structure of the PIC16F648A-
based PLC, consisting of 16 discrete inputs and 16 discrete outputs, 
is explained in detail.

 2. Basic software: This chapter explains the basic software structure 
of the PIC16F648A-based PLC. A PLC scan cycle includes the fol-
lowing: obtain the inputs, run the user program, and update the 
outputs. In addition, it is also necessary to define and initialize all 
variables used within a PLC. Necessary functions are all described 
as PIC assembly macros to be used in the PIC16F648A-based PLC. 
The macros described in this chapter can be summarized as follows: 
HC165 (for handling the inputs), HC595 (for sending the outputs), 
dbncr0 and dbncr1 (for debouncing 16 inputs), initialize, 
get_inputs, and send_outputs.

 3. Contact and relay-based macros: The following contact and relay-
based macros are described in this chapter: ld (load), ld_not (load_
not), not, or, or_not, nor, and, and_not, nand, xor, xor_not, 
xnor, out, out_not, in_out, inv_out, _set, _reset. These 
macros are defined to operate on 1-bit (Boolean) variables.

 4. Flip-flop macros: The following flip-flop–based macros are 
described in this chapter: r_edge (rising edge), f_edge (falling 
edge), latch0, latch1, dff_r (rising edge triggered D flip-flop), 
dff_f (falling edge triggered D flip-flop), tff_r (rising edge trig-
gered T flip-flop), tff_f (falling edge triggered T flip-flop), jkff_r 
(rising edge triggered JK flip-flop), and jkff_f (falling edge trig-
gered JK flip-flop).

 5. Timer macros: The following timer macros are described in this 
chapter: TON_8 (8-bit on-delay timer), TOF_8 (8-bit off-delay timer), 
TP_8 (8-bit pulse timer), and TOS_8 (8-bit oscillator timer).

 6. Counter macros: The following counter macros are described in this 
chapter: CTU_8 (8-bit up counter), CTD_8 (8-bit down counter), and 
CTUD_8 (8-bit up/down counter).
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 7. Comparison macros: The comparison macros are described in this 
chapter. The contents of two registers (R1 and R2) are compared 
according to the following: GT (greater than, >), GE (greater than or 
equal to, ≥), EQ (equal to, =), LT (less than, <), LE (less than or equal 
to, ≤), and NE (not equal to, ≠). Similar comparison macros are also 
described for comparing the contents of an 8-bit register (R) with an 
8-bit constant (K).

 8. Arithmetical macros: The arithmetical macros are described in this 
chapter. The following operators are applied to the contents of two 
registers (R1 and R2): ADD, SUB (subtract), INC (increment), and 
DEC (decrement). Similar arithmetical macros are also described, to 
be used with the contents of an 8-bit register (R) and an 8-bit con-
stant (K).

 9. Logical macros: The following logical macros are described in this 
chapter: inv_R, AND, NAND, OR, NOR, XOR, and XNOR. These macros 
are applied to an 8-bit register (R1) with another register (R2) or an 
8-bit constant (K).

 10. Shift and rotate macros: The following shift and rotate macros are 
described in this chapter: SHIFT_R (shift right the content of reg-
ister R), SHIFT_L (shift left the content of register R), ROTATE_R 
(rotate right the content of register R), ROTATE_L (rotate left the 
content of register R), and SWAP (swap the nibbles of a register).

 11. Multiplexer macros: The following multiplexer macros are described in 
this chapter: mux_2_1 (2×1 MUX), mux_2_1_E (2×1 MUX with enable 
input), mux_4_1 (4×1 MUX), mux_4_1_E (4×1 MUX with enable input), 
mux_8_1 (8×1 MUX), and mux_8_1_E (8×1 MUX with enable input).

 12. Demultiplexer macros: The following demultiplexer macros are 
described in this chapter: Dmux_1_2 (1×2 DMUX), Dmux_1_2_E (1×2 
DMUX with enable input), Dmux_1_4 (1×4 DMUX), Dmux_1_4_E 
(1×4 DMUX with enable input), Dmux_1_8 (1×8 DMUX), and 
Dmux_1_8_E (1×8 DMUX with enable input).

 13. Decoder macros: The following decoder macros are described 
in this chapter: decod_1_2 (1×2 decoder), decod_1_2_AL (1×2 
decoder with active low outputs), decod_1_2_E (1×2 decoder with 
enable input), decod_1_2_E_AL (1×2 decoder with enable input 
and active low outputs), decod_2_4 (2×4 decoder), decod_2_4_
AL (2×4 decoder with active low outputs), decod_2_4_E (2×4 
decoder with enable input), decod_2_4_E_AL (2×4 decoder 
with enable input and active low outputs), decod_3_8 (3×8 
decoder), decod_3_8_AL (3×8 decoder with active low out-
puts), decod_3_8_E (3×8 decoder with enable input), and 
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decod_3_8_E_AL (3×8 decoder with enable input and active low 
outputs).

 14. Priority encoder macros: The following priority encoder mac-
ros are described in this chapter: encod_4_2_p (4×2 priority 
encoder), encod_4_2_p_E (4×2 priority encoder with enable 
input), encod_8_3_p (8×3 priority encoder), encod_8_3_p_E 
(8×3 priority encoder with enable input), encod_dec_bcd_p 
(decimal to binary coded decimal [BCD] priority encoder), and 
encod_dec_bcd_p_E (decimal to BCD priority encoder with 
enable input).

 15. Application example: This chapter describes an example remotely 
controlled model gate system and makes use of the PIC16F648A-
based PLC to control it for different control scenarios.

Table 1 shows the general characteristics of the PIC16F648A-based PLC.

TABLE 1

General Characteristics of the PIC16F648A-Based PLC

Inputs/Outputs/Functions
Byte Addresses/
Related Bytes

Bit Addresses or Function 
Numbers

16 discrete inputs
(external inputs: 5 or 24 V DC) 

I0
I1

I0.0, I0.1, …, I0.7
I1.0, I1.1, …, I1.7

16 discrete outputs
(relay type outputs)

Q0
Q1

Q0.0, Q0.1, …, Q0.7
Q1.0, Q1.1, …, Q1.7

32 internal relays
(memory bits)

M0
M1
M2
M3

M0.0, M0.1, …, M0.7
M1.0, M1.1, …, M1.7
M2.0, M2.1, …, M2.7
M3.0, M3.1, …, M3.7

8 rising edge detectors RED r_edge (0, 1, …, 7)
8 falling edge detectors FED f_edge (0, 1, …, 7)

8 rising edge triggered
D flip-flop

DFF_RED
dff_r (0, 1, …, 7), regi,biti, 
rego,bito

8 falling edge triggered
D flip-flop

DFF_FED
dff_f (0, 1, …, 7), regi,biti, 
rego,bito

8 rising edge triggered
T flip-flop

TFF_RED
tff_r (0, 1, …, 7), regi,biti, 
rego,bito

8 falling edge triggered
T flip-flop

TFF_FED
tff_f (0, 1, …, 7), regi,biti, rego,bito

8 rising edge triggered
JK flip-flop

JKFF_RED
jkff_r (0, 1, …, 7), regi,biti, 
rego,bito

8 falling edge triggered
JK flip-flop

JKFF_FED
jkff_f (0, 1, …, 7), regi,biti, 
rego,bito
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TABLE 1 (CONTINUED)

General Characteristics of the PIC16F648A-Based PLC

Inputs/Outputs/Functions
Byte Addresses/
Related Bytes

Bit Addresses or Function 
Numbers

8 on-delay timers

TON8, TON8+1, …, 
TON8+7
TON8_Q
TON8_RED

TON8_Q0
TON8_Q1, …
TON8_Q7

8 off-delay timers
TOF8, TOF8+1, …, 
TOF8+7, TOF8_Q
TOF8_RED

TOF8_Q0
TOF8_Q1, …
TOF8_Q7

8 pulse timers

TP8, TP8+1, …, TP8+7,
TP8_Q
TP8_RED1
TP8_RED2

TP8_Q0
TP8_Q1, …
TP8_Q7

8 oscillator timers

TOS8, TOS8+1, …, 
TOS8+7
TOS8_Q
TOS8_RED

TOS8_Q0
TOS8_Q1, …
TOS8_Q7

8 counters

CV8,
CV8+1, …, CV8+7

CTU8_Q0
CTU8_Q1, …
CTU8_Q7

CTU: up counter

CTU8_Q
CTU8_RED

CTD8_Q
CTD8_RED

or
CTD8_Q0
CTD8_Q1, …
CTD8_Q7

CTD: down counter
CTUD8_Q
CTUD8_RED

or
CTUD8_Q0
CTUD8_Q1, …
CTUD8_Q7

CTUD: up/down counter

Note: regi,biti, input bit; rego,bito, output bit.
 At any time, a total of eight different counters can be used.
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1
Hardware of the PIC16F648A-Based PLC

The hardware of the PIC16F648A-based programmable logic controller (PLC) 
consists of two parts: the CPU board and the I/O extension board. The schematic 
diagram and the photograph of the PIC16F648A-based PLC CPU board are 
shown in Figures 1.1 and 1.2, respectively. The CPU board contains mainly 
three sections: power, programming, and CPU (central processor unit).

The power section accepts 12 V AC input and produces two DC outputs: 12 
V DC, to be used as the operating voltage of relays, and 5 V DC, to be used for 
ICs, inputs, etc. The programming section deals with the programming of the 
PIC16F648A microcontroller. For programming the PIC16F648A in circuit, it 
is necessary to use PIC programmer hardware and software with In Circuit 
Serial Programming (ICSP) capability. For related hardware and software to 
be used for programming the PIC16F648A-based PLC, please visit the follow-
ing web page: http://www.meliksah.edu.tr/muzam/. For other types of USB, 
serial, or parallel port PIC programmers the reader is expected to make nec-
essary arrangements. The ICSP connector takes the lines VPP(MCLR), VDD, 
VSS(GND), DATA (RB7), and CLOCK (RB6) from the PIC programmer hard-
ware through a properly prepared cable, and it connects them to a four-pole 
double-throw (4PDT) switch. There are two positions of the 4PDT switch. 
As seen from Figure 1.1, in one position of the 4PDT switch, PIC16F648A is 
ready to be programmed, and in the other position the loaded program is 
run. For properly programming the PIC16F648A by means of a PIC program-
mer and the 4PDT switch, it is also a necessity to switch off the power switch. 
The CPU section consists of the PIC16F648A microcontroller. In the project 
reported in this book, the PLC is fixed to run at 20 MHz with an external 
oscillator. This frequency is fixed because time delays are calculated based 
on this speed. By means of two switches, SW1 and SW2, it is also possible 
to use another internal or external oscillator with different crystal frequen-
cies. When doing so, time delay functions must be calculated accordingly. 
SW3 connects the RA5 pin either to one pole of the 4PDT switch or to the 
future extension connector. When programming PIC16F648A, RA5 should 
be connected to the 4PDT switch. RB0, RB6, and RB7 pins are all reserved to 
be used for 8-bit parallel-to-serial converter register 74HC/LS165. Through 
these three pins and with added 74HC/LS165 registers, we can describe as 
many inputs as necessary. RB0, RB6, and RB7 are the data in, clock in, 
and shift/load pins, respectively. Similarly, RB3, RB4, and RB5 pins are 
all reserved to be used for 8-bit serial-to-parallel converter register/driver 
TPIC6B595. Through these three pins and with added TPIC6B595 registers, 
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FIGURE 1.2
Photograph of the CPU board.
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we can describe as many outputs as necessary. RB3, RB4, and RB5 are the 
clock out, data out, and latch out pins, respectively. The remaining 
unused pins of the PIC16F648A are connected to the future extension con-
nector. PIC16F648A provides the following: flash program memory (words), 
4096; RAM data memory (bytes), 256; and EEPROM data memory (bytes), 
256. The PIC16F648A-based PLC macros make use of registers defined in 
RAM data memory. Note that it may be possible to use PIC16F628A as the 
CPU, but one has to bear in mind that PIC16F628A provides the following: 
flash program memory (words), 2048; RAM data memory (bytes), 224; and 
EEPROM data memory (bytes), 128. In that case, it is necessary to take care of 
the usage of RAM data memory.

Figures 1.3 and 1.4 show the schematic diagram and photograph of the I/O 
extension board, respectively. The I/O extension board contains mainly two 
sections: eight discrete inputs and eight discrete outputs. The I/O extension 
connector DB9M seen on the left connects the I/O extension board to the 
CPU board or to a previous I/O extension board. Similarly, the I/O extension 

Q.0 Q.1 Q.2 Q.3 Q.4 Q.5 Q.6 Q.7

I.0 I.1 I.2 I.3 I.4 I.5 I.6 I.7

�e PIC16F648A Based PLC
I/O Extension Board

From the
CPU Board or 
From
a previous
I/O Extension Board

TPIC6B595 To the next I/O Extension Board

FIGURE 1.3
Schematic diagram of the I/O extension board.
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connector DB9F seen on the right connects the I/O extension board to a next 
I/O extension board. In this way we can connect as many I/O extension 
boards as necessary. Five-volt DC and 12 V DC are taken from the CPU board 
or from a previous I/O extension board, and they are passed to the next I/O 
extension boards. All I/O data are sent to and taken from all the connected 
extension I/O boards by means of I/O extension connectors DB9M and DB9F.

The inputs section introduces eight discrete inputs for the PIC16F648A-based 
PLC (called I0.0, I0.1, …, I0.7 for the first I/O extension board). Five-volt DC 
or 24 V DC input signals can be accepted by each input. These external input 
signals are isolated from the other parts of the hardware by using NPN type 
opto-couplers (e.g., 4N25). For simulating input signals, one can use onboard 
push buttons as temporary inputs and slide switches as permanent inputs. 
In the beginning of each PLC scan cycle (get_inputs) the 74HC/LS165 is 
loaded (RB7 (shift/load) = 0) with the level of eight inputs and then these 

FIGURE 1.4
Photograph of the I/O extension board.
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FIGURE 1.6
Photograph of the CPU board plus two I/O extension boards.
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FIGURE 1.7
Photograph of the CPU board plus two I/O extension boards and a USB PIC programmer.
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data are serially clocked in (when RB7 = 1; through RB0 data in and RB6 
clock in pins). If there is only one I/O extension board used, then eight 
clock_in signals are enough to get the eight input signals. For each addi-
tional I/O extension board, eight more clock_in signals are necessary. The 
serial data coming from the I/O extension board(s) are taken from the SI input 
of the 74HC/LS165.

The outputs section introduces eight discrete relay outputs for the PIC16F648A-
based PLC (called Q0.0, Q0.1, …, Q0.7 for the first I/O extension board). Each 
relay operates with 12 V DC and is driven by an 8-bit serial-to-parallel converter 
register/driver TPIC6B595. Relays have single-pole double-throw (SPDT) con-
tacts with C (common), NC (normally closed), and NO (normally open) termi-
nals. At the end of each PLC scan cycle (send_outputs) the output data are 
serially clocked out (through RB3 clock out and RB4 data out pins) and 
finally latched within the TPIC6B595. If there is only one I/O extension board 
used, then eight clock_out signals are enough to send the eight output sig-
nals. For each additional I/O extension board, eight more clock_out signals 
are necessary. The serial data going to the I/O extension board(s) are sent out 
from the SER OUT (pin 18) of the TPIC6B595.

The PCB design files of both the CPU board and the I/O extension board 
can be obtained from the CD-ROM attached to this book. Note that in the 
PCB design of the CPU board and the I/O extension board, some lines of I/O 
extension connectors DB9M and DB9F are different from the ones shown in 
Figures 1.1 and 1.3.

The project reported in this book makes use of a CPU board and two 
I/O extension boards, as can be seen from the schematic diagram and pho-
tograph depicted in Figures  1.5 and 1.6, respectively. Thus, in total there 
are 16 inputs and 16 outputs. Figure 1.7 shows the PIC16F648A-based PLC 
consisting of a CPU board, I/O extension boards, 12 V DC adapter, and USB 
PIC programmer.
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2
Basic Software

In this chapter, the basic software of the PIC16F648A-based PLC is explained. 
A PLC scan cycle includes the following: obtain the inputs, run the user pro-
gram, and update the outputs. It is also necessary to define and initialize 
all variables used within a PLC. Necessary functions are all described as 
PIC assembly macros to be used in the PIC16F648A-based PLC. The macros 
described in this chapter could be summarized as follows: HC165 (for han-
dling the inputs), HC595 (for sending the outputs), dbncr0 and dbncr1 (for 
debouncing the inputs), initialize, get_inputs, and send_outputs. 
In addition, the concept of contact bouncing and how it is solved in the 
PIC16F648A-based PLC is explained in detail.

2.1 Basic Software Structure

The basic software of the PIC16F648A-based PLC makes use of general pur-
pose 8-bit registers of static random-access memory (SRAM) data memory of 
the PIC16F648A microcontroller. For the sake of simplicity, we restrict our-
selves to use only BANK 0; i.e., all macros, including the basic definitions 
explained here, are defined by means of 8-bit SRAM registers of BANK 0. 
The file definitions.inc, included within the CD-ROM attached to this book, 
contains all basic macros and definitions necessary for the PIC16F648A-based 
PLC. In this chapter, we will explain the contents of this file. First, let us look 
at the file called UZAM_plc_16i16o_ex1.asm, the view of which is shown 
in Figure  2.1. As is well known, a PLC scan cycle includes the following: 
obtain the inputs, run the user program, and update the outputs. This cycle 
is repeated as long as the PLC runs. Before getting into these endless PLC 
scan cycles, the initial conditions of the PLC are set up in the initialization 
stage. These main steps can be seen from Figure 2.1, where initialize is 
a macro for setting up the initial conditions, get_inputs is a macro for get-
ting and handling the inputs, and send_outputs is a macro for updating 
the outputs. The user PLC program must be placed between get_inputs 
and send_outputs. The endless PLC scan cycles are obtained by means of 
the label “scan” and the instruction “goto scan.”

The PIC16F648A-based PLC is fixed to run at 20 MHz with an external 
oscillator. The watchdog timer is used to prevent user program lockups. As 
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will be explained later, the hardware timer TMR0 is utilized to obtain free-
running reference timing signals.

2.1.1 Variable Definitions

Next, let us now consider the inside of the file definitions.inc. The definitions 
of 8-bit variables to be used for the basic software and their allocation in 
BANK 0 of SRAM data memory are shown in Figure 2.2(a) and (b), respec-
tively. Although we can define as many inputs and outputs as we want, in 
this book we restrict ourselves to BANK 0 and define two 8-bit input regis-
ters and two 8-bit output registers (Q0 and Q1).

It is well known that inputs taken from contacts always suffer from contact 
bouncing. To circumvent this problem we define a debouncing mechanism 
for the inputs; this will be explained later. In the get_inputs stage of the 
PLC scan cycle, the input signals are serially taken from the related 74HC/
LS165 registers and stored in the SRAM registers. As a result, bI0 and bI1 will 

FIGURE 2.1
View of the file UZAM_plc_16i16o_ex1.asm.
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hold these bouncing input signals. After applying the debouncing mecha-
nism to the bouncing input signals of bI0 and bI1 we obtain debounced input 
signals, and they are stored in SRAM registers I0 and I1, respectively.

In the send_outputs stage of the PLC scan cycle, the output information 
stored in the 8-bit SRAM registers Q0 and Q1 is serially sent out to and stored 
in the related TPIC6B595 registers. This means that Q0 and Q1 registers will 
hold output information, and they will be copied into the TPIC6B595 registers 
at the end of each PLC scan cycle. Four 8-bit registers, namely, M0, M1, M2, 
and M3, are defined for obtaining 32 memory bits (internal relays, in PLC jar-
gon). To be used for the debouncer macros dbncr0 and dbncr1, we define 
sixteen 8-bit registers (DBNCR0, DBNCR0+1, …, DBNCR0+7) and (DBNCR1, 
DBNCR1+1, …, DBNCR1+7). In addition, the registers DBNCRRED0 and 
DBNCRRED1 are also defined to be used for the debouncer macros dbncr0 
and dbncr1, respectively. Temp_1 is a general temporary register declared 
to be used in the macros. Temp_2 is declared to be used especially for obtain-
ing special memory bits, as will be explained later. Timer_2 is defined for 
storing the high byte of the free-running timing signals. The low byte of the 
free-running timing signals is stored in TMR0 (recalled as Timer_1).

For accessing the SRAM data memory easily, BANK macros are defined as 
shown in Figure 2.3.

(a)

FIGURE 2.2
(a) The definition of 8-bit variables to be used in the basic software. (Continued)
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The definitions of 1-bit (Boolean) variables are depicted in Figure 2.4. The 
following definitions are self-explanatory: 74HC165, TPIC6B595, 16 INPUTS, 
16 OUTPUTS, and 32 memory bits.

The individual bits (1-bit variables) of 8-bit SRAM registers bI0, bI1, I0, I1, 
Q0, Q1, M0, M1, M2, and M3 are shown below:

bI0 is an 8-bit register:

bI0

The individual bits of bI0 are as follows:

bI0.7 bI0.6 bI0.5 bI0.4 bI0.3 bI0.2 bI0.1 bI0.0

20h bI0
21h bI1
22h I0
23h I1
24h Q0
25h Q1
26h M0
27h M1
28h M2
29h M3
2Ah DBNCR0
2Bh DBNCR0+1
2Ch DBNCR0+2
2Dh DBNCR0+3
2Eh DBNCR0+4
2Fh DBNCR0+5
30h DBNCR0+6
31h DBNCR0+7
32h DBNCR1
33h DBNCR1+1
34h DBNCR1+2
35h DBNCR1+3
36h DBNCR1+4
37h DBNCR1+5
38h DBNCR1+6
39h DBNCR1+7
3Ah Temp_1
3Bh Temp_2
3Ch Timer_2
3Dh DBNCRRED0
3Eh DBNCRRED1

BANK 0

(b)

FIGURE 2.2 (Continued)
(b) Their allocation in BANK 0 of SRAM data memory. 
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bI1 is an 8-bit register:

bI1

The individual bits of bI1 are as follows:

bI1.7 bI1.6 bI1.5 bI1.4 bI1.3 bI1.2 bI1.1 bI1.0

I0 is an 8-bit register:

I0

The individual bits of I0 are as follows:

I0.7 I0.6 I0.5 I0.4 I0.3 I0.2 I0.1 I0.0

I1 is an 8-bit register:

I1

The individual bits of I1 are as follows:

I1.7 I1.6 I1.5 I1.4 I1.3 I1.2 I1.1 I1.0

Q0 is an 8-bit register:

Q0

FIGURE 2.3
BANK macros.
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(a)

(b)

FIGURE 2.4
Definitions of 1-bit (Boolean) variables: (a) 16 inputs, (b) 16 outputs. (Continued)
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The individual bits of Q0 are as follows:

Q0.7 Q0.6 Q0.5 Q0.4 Q0.3 Q0.2 Q0.1 Q0.0

Q1 is an 8-bit register:

Q1

The individual bits of Q1 are as follows:

Q1.7 Q1.6 Q1.5 Q1.4 Q1.3 Q1.2 Q1.1 Q1.0

M0 is an 8-bit SRAM register:

M0

The individual bits of M0 are as follows:

M0.7 M0.6 M0.5 M0.4 M0.3 M0.2 M0.1 M0.0

M1 is an 8-bit SRAM register:

M1

(c)

(d)

FIGURE 2.4 (Continued)
Definitions of 1-bit (Boolean) variables: (c) logic values and special bits, (d) definitions for 
74HC165 and TPIC6B595. (Continued)
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The individual bits of M1 are as follows:

M1.7 M1.6 M1.5 M1.4 M1.3 M1.2 M1.1 M1.0

M2 is an 8-bit SRAM register:

M2

The individual bits of M2 are as follows:

M2.7 M2.6 M2.5 M2.4 M2.3 M2.2 M2.1 M2.0

(e)

FIGURE 2.4 (Continued)
Definitions of 1-bit (Boolean) variables: (e) 32 memory bits (internal relays). (Continued)
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M3 is an 8-bit SRAM register:

M3

The individual bits of M3 are as follows:

M3.7 M3.6 M3.5 M3.4 M3.3 M3.2 M3.1 M3.0

Register Temp_2 has the following individual bits:

7 6 5 4 3 2 1 0

SCNOSC FRSTSCN LOGIC1 LOGIC0

LOGIC0: Set to 0 after the first scan.
LOGIC1: Set to 1 after the first scan.
FRSTSCN: Set to 1 during the first scan and set to 0 after the first scan.
SCNOSC: Toggled between 0 and 1 at each scan.

The variable LOGIC0 is defined to hold a logic 0 value throughout the PLC 
operation. At the initialization stage it is deposited with this value. Similarly, 
the variable LOGIC1 is defined to hold a logic 1 value throughout the PLC 
operation. At the initialization stage it is deposited with this value. The spe-
cial memory bit FRSTSCN is arranged to hold the value of 1 at the first PLC 
scan cycle only. In the other PLC scan cycles following the first one it is reset. 
The special memory bit SCNOSC is arranged to work as a scan oscillator. This 
means that in one PLC scan cycle this special bit will hold the value of 0, in 

(f )

FIGURE 2.4 (Continued)
Definitions of 1-bit (Boolean) variables: (f) 16 reference timing signals. 
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the next one the value of 1, in the next one the value of 0, and so on. This will 
keep on going for every PLC scan cycle.

Timer_1 (TMR0) is an 8-bit register:

Timer_1 (TMR0)

The individual bits of Timer_1 are as follows:

T0.7 T0.6 T0.5 T0.4 T0.3 T0.2 T0.1 T0.0

Timer_2 is an 8-bit register:

Timer_2

The individual bits of Timer_2 are as follows:

T1.7 T1.6 T1.5 T1.4 T1.3 T1.2 T1.1 T1.0

Let us now consider the 16 reference timing signals. As will be explained 
later, TMR0 of PIC16F648A is set up to count the ¼ of 20 MHz oscillator sig-
nal, i.e., 5 MHz with a prescaler arranged to divide the signal to 256. As a 
result, by means of TMR0 bits (also called Timer_1), we obtain eight free-
running reference timing signals with the T timing periods starting from 
0.1024 ms to 13.1072 ms. As will be explained later, the register Timer_2 is 
incremented on Timer_1 overflow. This also gives us (by means of Timer_2 
bits) eight more free-running reference timing signals with the T timing 
periods starting from 26.2144 ms to 3355.4432 ms. The timing diagram of the 
free-running reference timing signals is depicted in Figure 2.5. Note that the 
evaluation of TMR0 (Timer_1) is independent from the PLC scan cycles, but 
Timer_2 is incremented within the get_inputs stage of the PLC scan cycle 
on Timer_1 overflow. This is justified as long as the PLC scan cycle takes less 
than 13.1072 ms.

T

O� (0) O� (0) O� (0) 

On (1) On (1) 

FIGURE 2.5
Timing diagram of the free-running reference timing signals (T = 0.1024, 0.2048, …, 3355.4432 
ms).
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2.1.2 Macro HC165

The macro HC165 is shown in Figure 2.6. The input signals are serially taken 
from the related 74HC/LS165 registers and stored in the SRAM registers 
bI0 and bI1 by means of this macro. The num defines the number of 74HC/
LS165 registers to be considered. This means that with this macro we can 
obtain inputs from as many 74HC/LS165 registers as we wish. However, as 
explained before, in this book we restrict this number to be 2, because we 
have 16 discrete inputs. var0 is the beginning of the registers to which the 
state of inputs taken from 74HC/LS165 registers will be stored. This implies 
that there should be enough SRAM locations reserved after var0, and also 
there should be enough 74HC/LS165 registers to get the inputs from. There 
are some explanations within the macro to describe how it works. As can be 
seen, this macro makes use of previously defined data_in, clock_in, and 
sfht_ld bits to obtain the input signals from 74HC/LS165 registers.

2.1.3 Macro HC595

The macro HC595 is shown in Figure 2.7. The output signals are stored in 
the 8-bit SRAM registers Q0 and Q1 and serially sent out to and stored in 
the related TPIC6B595 registers by means of this macro. The num defines 
the number of TPIC6B595 registers to be used. This means that with this 
macro we can send output data serially to as many TPIC6B595 registers as 
we wish. However as explained before, in this book we restrict this number 
to 2, because we have 16 discrete outputs. var0 is the beginning of the 8-bit 
registers, such as Q0 in SRAM from which the state of outputs are taken 
and serially sent out to TPIC6B595 registers. This implies that there should 

FIGURE 2.6
The macro HC165.
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be enough SRAM locations reserved after var0, and also there should be 
enough TPIC6B595 registers to hold the outputs. There are some explana-
tions within the macro to describe how it works. As can be seen, this macro 
makes use of previously defined data_out, clock_out, and latch_out 
bits to send the output signals serially to TPIC6B595 registers.

2.2  Elimination of Contact Bouncing Problem 
in the PIC16F648A-Based PLC

2.2.1 Contact Bouncing Problem

When a mechanical contact, such as a push-button switch, examples of which 
are shown in Figure 2.8, user interface button, limit switch, relay, or contactor 
contact, is opened or closed, the contact seldom demonstrates a clean tran-
sition from one state to another. There are two types of contacts: normally 
open (NO) and normally closed (NC). When a contact is closed or opened, 
it will close and open (technically speaking, make and break) many times 
before finally settling in a stable state due to mechanical vibration. As can be 
seen from Figure 2.9, this behavior of a contact is interpreted as multiple false 
input signals, and a digital circuit will respond to each of these on-off or off-
on transitions. This problem is well known as contact bounce and has always 
been a very important problem when interfacing switches, relays, etc., to a 
digital control system.

FIGURE 2.7
The macro HC595.
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In some industrial applications debouncing is required to eliminate both 
mechanical and electrical effects. Most switches seem to exhibit bounce dura-
tion under 10 ms, and therefore it is reasonable to pick a debounce period in 
the 20 to 50 ms range. On the other hand, when dealing with relay contacts, 
the debounce period should be large enough, i.e., within the 20 to 200 ms 
range. Nevertheless, a reasonable switch will not bounce longer than 500 ms. 
Both closing and opening contacts suffer from the bouncing problem, and 
therefore in general, both rising and falling edges of an input signal should 
be debounced, as seen from the timing diagram of Figure 2.10.

1 2 3

5 6 7 8

9 10 11 12

13 14 15 16

4

FIGURE 2.8
Different types and makes of switches and buttons.

1

0

Contact
bouncing

An input signal
su�ering from
contact bouncing

Contact
bouncing

FIGURE 2.9
Contact bouncing problem, causing an input signal to bounce between 0 and 1.
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2.2.2 Understanding a Generic Single I/O Contact Debouncer

In order to understand how a debouncer works, let us now consider a generic 
single I/O debouncer. We can think of the generic single I/O debouncer as 
being a single INput/single OUTput system, whose state transition diagram 
is shown in Figure 2.11. In the state transition diagram there are four states, 

1

0

1

0

Contact
bouncing

Contact
bouncing

Debouncing
time 1 (dt1)

Debouncing
time 2 (dt2)

Debouncing  time 1 (dt1)  = CLK × tcnst_01
Debouncing  time 2 (dt2)  = CLK × tcnst_10   

IN
An input signal
suffering from
contact bouncing

OUT
Output signal =
debounced input signal

FIGURE 2.10
The timing diagram of a single I/O debouncer (also the timing diagram of each channel of the 
independent 8-bit I/O contact debouncers, dbncr0 and dbncr1).

IN = 1
OUT = 1

IN = 0
OUT = 0

IN = 0
OUT = 1

IN = 1
OUT = 0

IN =

IN =   

S0

S1

S2  

S3

START
debouncing
time 2 (dt2)

t1  

t2  t3

t4

t5  

START
debouncing
time 1 (dt1)

dt1 has elapsed

dt2 has elapsed

t6  

IN =

IN =   

FIGURE 2.11
State transition diagram of a generic single I/O debouncer.
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S0, S1, S2, and S3, drawn as circles, and six transitions, t1, t2, …, t6, drawn 
as bars. States and transitions are connected by directed arcs. The following 
explains the behavior of the generic single I/O debouncer (also each channel 
of the independent 8-bit I/O contact debouncers, dbncr0 and dbncr1) 
based on the state transition diagram shown in Figure 2.11:

 1. Initially, it is assumed that the input signal IN and the output signal 
OUT are both LOW (state S0).

 2. When the system is in S0 (the IN is LOW and the OUT is LOW), if 
the rising edge (↑) of IN is detected (transition t1), then the system 
moves from S0 to S1 and the debouncer starts a time delay, called 
debouncing time 1 (dt1).

 3. While the system is in S1 (the IN is HIGH and the OUT is LOW), 
before the dt1 ms time delay ends, if the falling edge (↓) of IN is 
detected (transition t5), then the system goes back to S0 from S1, and 
the time delay dt1 is canceled and the OUT remains LOW (no state 
change is issued).

 4. When the system is in S1 (the IN is HIGH and the OUT is LOW), if 
the input signal is still HIGH and the time delay dt1 has elapsed 
(transition t2), then the system moves from S1 to S2. In this case, the 
state change is issued, i.e., the OUT is set to HIGH.

 5. When the system is in S2 (the IN is HIGH and the OUT is HIGH), if 
the falling edge (↓) of IN is detected (transition t3), then the system 
moves from S2 to S3 and the debouncer starts a time delay, called 
debouncing time 2 (dt2).

 6. While the system is in S3 (the IN is LOW and the OUT is HIGH), 
before the dt2 ms time delay ends, if the rising edge (↑) of IN is 
detected (transition t6), then the system goes back to S2 from S3, and 
the time delay dt2 is canceled and the OUT remains HIGH (no state 
change is issued).

 7. When the system is in S3 (the IN is LOW and the OUT is HIGH), 
if the input signal is still LOW and the time delay dt2 has elapsed 
(transition t4), then the system moves from S3 to S0. In this case, the 
state change is issued, i.e., the OUT is set to LOW.

2.2.3 Debouncer Macros dbncr0 and dbncr1

The macro dbncr0 and its flowchart are shown in Figures  2.12 and 2.13, 
respectively. Table  2.1 shows the schematic symbol of the macro dbncr0. 
The detailed timing diagram of one channel of this debouncer is provided 
in Figure  2.14. It can be used for debouncing eight independent buttons, 
switches, relay or contactor contacts, etc. It is seen that the output changes its 
state only after the input becomes stable and waits in the stable state for the 
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predefined debouncing time dt1 or dt2. The debouncing is applied to both 
rising and falling edges of the input signal. In this macro, each channel is 
intended for a normally open contact connected to the PIC by means of a pull-
down resistor, as this is the case with the PIC16F648A-based PLC. It can also 
be used without any problem for a normally closed contact connected to the 
PIC by means of a pull-up resistor. The debouncing times, such as 20, 50, or 
100 ms, can be selected as required depending on the application. It is possi-
ble to pick up different debouncing times for each channel. It is also possible 
to choose different debouncing times for rising and falling edges of the same 
input signal if necessary. This gives a good deal of flexibility. This is simply 

FIGURE 2.12
The macro dbncr0.
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done by changing the related time constant tcnst_01 or tcnst_10 defin-
ing the debouncing time delay for each channel and for both edges within 
the assembly program. Note that if the state change of the contact is shorter 
than the predefined debouncing time, this will also be regarded as bounc-
ing, and it will not be taken into account. Therefore, no state change will be 
issued in this case. Each of the eight input channels of the debouncer may be 
used independently from other channels. The activity of one channel does 
not affect that of the other channels.

Let us now briefly consider how the macro dbncr0 works. First, one of 
the previously defined reference timing signals is chosen as t_reg,t_bit, 
to be used within this macro. Then, we can set up both debouncing times 
dt1 and dt2 by means of time constants tcnst_01  and tcnst_10, as 

Y

end

SET rego,bito

SET DBNCRRED0,num

RESET               DBNCRRED0,num
(DBNCR0+num) = (DBNCR0+num) + 1

RESET               DBNCRRED0,num
(DBNCR0+num) = (DBNCR0+num) + 1

rego,bito = 0

regi,biti = 0

N

NN

DBNCR0+num         00h

Y

DBNCRRED0,

DBNCR0+

Y

RESET rego,bito

t_reg,t_bit = 1

t_reg,t_bit = 1

SET  DBNCRRED0,num
Y

Y

Y

Y

Y

N N

N N

N N

N N

 Y  

Y

Y

L1

L2 L3

L4

begin

?

?
regi,biti = 1

?

?t_reg,t_bit = 1?

?
t_reg,t_bit = 1

?

?

?

num = 1
DBNCRRED0,

?num = 1

num=tcnst_10

DBNCR0+
?

num=tcnst_01

FIGURE 2.13
The flowchart of the macro dbncr0.
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dt1 = the period of (t_reg,t_bit) × tcnst_01 and dt2 = the period of 
(t_reg,t_bit) × tcnst_10, respectively. If the input signal (regi,biti) 
= 0 and the output signal (rego,bito) = 0 or the input signal (regi,biti) 
= 1 and the output signal (rego,bito) = 1, then the related counter 
DBNCR0+num is loaded with 00h and no state change is issued. If the output 
signal (rego,bito) = 0 and the input signal (regi,biti) = 1, then with 
each rising edge of the reference timing signal t_reg,t_bit the related 
counter DBNCR0+num is incremented by one. In this case, when the count 
value of DBNCR0+num is equal to the number tcnst_01, this means that 
the input signal is debounced properly and then state change from 0 to 1 
is issued for the output signal (rego,bito). Similarly, if the output signal 
(rego,bito) = 1 and the input signal (regi,biti) = 0, then with each ris-
ing edge of the reference timing signal t_reg,t_bit the related counter 
DBNCR0+num is incremented by one. In this case, when the count value of 
DBNCR0+num is equal to the number tcnst_10, this means that the input 
signal is debounced properly and then state change from 1 to 0 is issued for 
the output signal (rego,bito). For this macro it is necessary to define the 
following 8-bit variables in SRAM: Temp_1 and DBNCRRED0. In addition, it 
is also necessary to define eight 8-bit variables in successive SRAM locations, 
the first of which is to be defined as DBNCR0. It is not necessary to name the 
other seven variables. Each bit of the variable DBNCRRED0 is used to detect 
the rising edge of the reference timing signal t_reg,t_bit for the related 
channel.

TABLE 2.1

Schematic Symbol of the Macro dbncr0

OUTIN rego,bito
num

dbncr0

t_reg,t_bit
tcnst_01
tcnst_10

regi,biti

IN (regi,biti): A Boolean variable passed into the macro through regi,biti.
It represents the input signal to be debounced.
num: Any number from 0 to 7. Eight independent debouncers are chosen by this number.
It is used to define the 8-bit variable “DBNCR0+num” and the edge detector bit 
“DBNCRRED0,num”.
t_reg,t_bit: One of the reference timing signals T0.0, T0.1, …, T0.7, T1.0, T1.1, …, T1.7. It 
defines the timing period.
tcnst_01: An integer constant value from 1 to 255. Debouncing time 1 (dt1) is obtained by this 
formula: dt1 = the period of (t_reg,t_bit) × tcnst_01.
tcnst _10: An integer constant value from 1 to 255. Debouncing time 2 (dt2) is obtained by this 
formula: dt2 = the period of (t_reg,t_bit) × tcnst_10.
OUT(rego,bito): A Boolean variable passed out of the macro through rego,bito. It represents 
the output signal, which is the debounced version of the input signal.
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With the use of the macro dbncr0 it is possible to debounce 8 input sig-
nals; as we commit to have 16 discrete inputs in the PIC16F648A-based PLC 
project, there are 8 more input signals to be debounced. To solve this prob-
lem the macro dbncr1 is introduced. It works in the same manner as the 
macro dbncr0. The macro dbncr1 is shown in Figure 2.15. Table 2.2 shows 
the schematic symbol of the macro dbncr1. For this macro it is necessary 
to define the following 8-bit variables in SRAM: Temp_1 and DBNCRRED1. 
Each bit of the variable DBNCRRED1 is used to detect the rising edge of the 
reference timing signal t_reg,t_bit for the related channel. In addition, it 

FIGURE 2.15
The macro dbncr1.
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is also necessary to define eight 8-bit variables in successive SRAM locations, 
the first of which is to be defined as DBNCR1.

2.3 Basic Macros of the PIC16F648A-Based PLC

In this section the following basic three macros are considered: initial-
ize, get_inputs, and send_outputs.

2.3.1 Macro initialize

The macro initialize is shown in Figure 2.16. There are mainly two tasks 
carried out within this macro. In the former, first, TMR0 is set up as a free-
running hardware timer with the ¼ of 20 MHz oscillator signal, i.e., 5 MHz, 
and with a prescaler arranged to divide the signal to 256. In addition, PORTB 
is initialized to make RB0 (data_in) as input, and the following as outputs: 
RB3 (clock_out), RB4 (data_out), RB5 (latch_out), RB6 (clock_
in), and RB7 (shift/load). In the latter, all utilized SRAM registers are 
loaded with initial “safe values.” In other words, all utilized SRAM registers 
are cleared (loaded with 00h) except for Temp_2, which is loaded with 06h. 

TABLE 2.2

Schematic Symbol of the Macro dbncr1

OUTIN rego,bito
num

dbncr1

t_reg,t_bit
tcnst_01
tcnst_10

regi,biti

IN (regi,biti): A Boolean variable passed into the macro through regi,biti. It represents the 
input signal to be debounced.
num: Any number from 0 to 7. Eight independent debouncers are chosen by this number.
It is used to define the 8-bit variable “DBNCR1+num” and the edge detector bit 
“DBNCRRED1,num”.
t_reg,t_bit: One of the reference timing signals T0.0, T0.1, …, T0.7, T1.0, T1.1, …, T1.7.
It defines the timing period.
tcnst_01: An integer constant value from 1 to 255. Debouncing time 1 (dt1) is obtained by this 
formula: dt1 = the period of (t_reg,t_bit) × tcnst_01.
tcnst _10: An integer constant value from 1 to 255. Debouncing time 2 (dt2) is obtained by this 
formula: dt2 = the period of (t_reg,t_bit) × tcnst_10.
OUT(rego,bito): A Boolean variable passed out of the macro through rego,bito. It represents 
the output signal, which is the debounced version of the input signal.
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As explained before, Temp_2 holds some special memory bits; therefore, the 
initial values of these special memory bits are put into Temp_2 within this 
macro. As a result, these special memory bits are loaded with the following 
initial values: LOGIC0 (Temp_2,0) = 0, LOGIC1 (Temp_2,1) = 1, FRSTSCN 
(Temp_2,2) = 1, SCNOSC (Temp_2,3) = 0.

2.3.2 Macro get_inputs

The macro get_inputs is shown in Figure  2.17. There are mainly three 
tasks carried out within this macro. In the first one, the macro HC165 is 
called with the parameters .2 and bI0. This means that we will use the CPU 
board and two I/O extension boards; therefore, the macro HC165 is called 
with the parameter .2. As explained before, the input information taken 
from the macro is rated as bouncing information, and therefore these 16-bit 
data are stored in bI0 and bI1 registers. For example, if we decide to use 
the CPU board connected to four I/O extension boards, then we must call 
the macro HC165 as follows: HC165.4,bI0. Then, this will take four 8-bit 
bouncing input data from the 74HC/LS165 ICs and put them to the four suc-
cessive registers starting with the register bI0. In the second task within this 
macro, each bit of bI0,i (i = 0, 1, …, 7) is debounced by the macro dbncr0, 
and each debounced input signal is stored in the related bit I0,i (i = 0, 1, …, 7). 
Likewise, each bit of bI1,i (i = 0, 1, …, 7) is debounced by the macro dbncr1, 
and each debounced input signal is stored in the related bit I1,i (i = 0, 1, …, 7). 
In general, a 10 ms time delay is enough for debouncing both rising and 
falling edges of an input signal. Therefore, to achieve these time delays, the 

FIGURE 2.16
The macro initialize.
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reference timing signal, obtained from Timer_1, is chosen as T0.2 (0.4096 ms 
period), and both tcnst_01 and tcnst_10 are chosen to be 25. Then we 
obtain the following: dt1 = T0.2 × tcnst_01 = (0.4096 ms) × 25 = 10.24 ms, 
dt2 = T0.2 × tcnst_01 = (0.4096 ms) × 25 = 10.24 ms. The last task is about 
incrementing the Timer_2 on overflow of Timer_1. In this task, Timer_2 is 
incremented by one when the falling edge of the bit Timer_1,7 is detected. In 
order to detect the falling edge of the bit Timer_1,7, Temp_2,4 bit is utilized.

2.3.3 Macro send_outputs

The macro send_outputs is shown in Figure 2.18. There are mainly four 
tasks carried out within this macro. In the first one, the macro HC595 is 
called with the parameters .2 and Q0. This means that we will use the CPU 
board and two I/O extension boards; therefore, the macro HC595 is called 
with the parameter .2. As explained before, 16-bit output data are taken from 
the registers Q0 and Q1, and this macro sends the bits of Q0 and Q1 seri-
ally to TPIC6B595 registers. For example, if we decide to use the CPU board 
connected to four I/O extension boards, then we must call the macro HC595 

FIGURE 2.17
The macro get_inputs.
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as follows: HC595.4,Q0. Then, the macro HC595 will take four 8-bit out-
put data stored in Q3, Q2, Q1, and Q0 and send them serially to the four 
TPIC6B595 register ICs, respectively. In the second task within this macro, 
the watchdog timer is cleared. In the third task, the FRSTSCN special mem-
ory bit is reset. As the final task, within this macro the SCNOSC special 
memory bit is toggled after a program scan; i.e., when it is 1 it is reset, and 
when it is 0 it is set.

2.4 Example Program

Up to now we have seen the hardware and basic software necessary for the 
PIC16F648A-based PLC. It is now time to consider a simple example. Before 
you can run the simple example considered here, you are expected to con-
struct your own PIC16F648A-based PLC hardware by using the necessary 
PCB files, and producing your PCBs, with their components. The user pro-
gram of the example UZAM_plc_16i16o_ex2.asm is shown in Figure 2.19. The 
file UZAM_plc_16i16o_ex2.asm is included within the CD-ROM attached to 
this book. Please open it by MPLAB integrated development environment 

FIGURE 2.18
The macro send_outputs.

FIGURE 2.19
The user program of UZAM_plc_16i16o_ex2.asm.
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(IDE) and compile it. After that, by using the PIC programmer software, 
take the compiled file UZAM_plc_16i16o_ex2.hex, and by your PIC pro-
grammer hardware send it to the program memory of PIC16F648A micro-
controller within the PIC16F648A-based PLC. To do this, switch the 4PDT 
in PROG position and the power switch in OFF position. After loading the 
UZAM_plc_16i16o_ex2.hex file, switch the 4PDT in RUN position and the 
power switch in ON position. Now, you are ready to test the first example 
program. There are mainly two different operations done. In the first part, 
eight inputs, namely, bits I0.0, I0.1, …, I0.7, are transferred to the respective 
eight outputs, namely, bits Q0.0, Q0.1, …, Q0.7. That is, if I0.0 = 0, then Q0.0 
= 0, and similarly, if I0.0 = 1, then Q0.0 = 1. This applies to all eight inputs 
I0 – eight outputs Q0. In the second part, the contents of the Timer_2 register, 
namely, T1.0, T1.1, …, T1.7, are transferred to eight outputs Q1, namely, Q1.0, 
Q1.1, …, Q1.7, respectively.
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3
Contact and Relay-Based Macros

In this chapter, the following contact and relay-based macros are described:

ld (load)
ld_not (load not)
not

or

or_not

nor

and

and_not

nand

xor

xor_not

xnor

out

out_not

in_out

inv_out

_set

_reset

The file definitions.inc, included within the CD-ROM attached to this book, 
contains all macros defined for the PIC16F648A-based PLC. The contact and 
relay-based macros are defined to operate on Boolean (1-bit) variables. The 
working register W is utilized to transfer the information to or from the con-
tact and relay-based macros, except for macros in_out and inv_out. Let us 
now briefly consider these macros.
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3.1 Macro ld (load)

The truth table and symbols of the macro ld are depicted in Table  3.1. 
Figure 3.1 shows the macro ld and its flowchart. This macro has a Boolean 
input variable passed into it as reg,bit and a Boolean output variable 
passed out through W. In ladder logic, this macro is represented by a nor-
mally open (NO) contact. When the input variable is 0 (respectively 1), the 
output (W) is forced to 0 (respectively to 1). Operands for the instruction ld 
are shown in Table 3.2.

begin

W         0

end

W         1
Y

N
reg,bit = 0?

(a) (b)

FIGURE 3.1
(a) The macro ld and (b) its flowchart.

TABLE 3.1

Truth Table and Symbols of the Macro ld

Truth Table Ladder Diagram Symbol Schematic Symbol

IN OUT
reg,bit W

0 0

1 1

reg,bit
W reg,bit W

TABLE 3.2

Operands for the Instruction ld

Input
(reg,bit) Data Type Operands

Bit BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q, 
CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC
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3.2 Macro ld_not (load not)

The truth table and symbols of the macro ld_not are depicted in Table 3.3. 
Figure  3.2 shows the macro ld_not and its flowchart. This macro has a 
Boolean input variable passed into it as reg,bit, and a Boolean output vari-
able passed out through W. In ladder logic, this macro is represented by a 
normally closed (NC) contact. When the input variable is 0 (respectively 1), 
the output (W) is forced to 1 (respectively to 0). Operands for the instruction 
ld_not are shown in Table 3.4.

begin

W         1

end

W         0
Y

N
reg,bit = 0?

(a) (b)

FIGURE 3.2
(a) The macro ld_not and (b) its flowchart.

TABLE 3.3

Truth Table and Symbols of the Macro ld_not

Truth Table Ladder Diagram Symbol Schematic Symbol

IN OUT
reg,bit W

0 1
1 0

reg,bit
W reg,bit W
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3.3 Macro not

The truth table and symbols of the macro not are depicted in Table  3.5. 
Figure 3.3 shows the macro not and its flowchart. This macro is used as a 
logical NOT gate. The input is taken from W, and the output is send out by 
W. When the input variable is 0 (respectively 1), the output (W) is forced to 1 
(respectively to 0).

TABLE 3.4

Operands for the Instruction ld_not

Input
(reg,bit)

Data Type Operands

Bit BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q, 
CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

TABLE 3.5

Truth Table and Symbols of the Macro not

Truth Table Ladder Diagram symbol Schematic Symbol

IN OUT
W W
0 1
1 0

NOTW W WW

W          W xor 1

begin

end

(a) (b)

FIGURE 3.3
(a) The macro not and (b) its flowchart.
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3.4 Macro or

The truth table and symbols of the macro or are depicted in Table  3.6. 
Figure 3.4 shows the macro or and its flowchart. This macro is used as a two-
input logical OR gate. One input is taken from W, and the other one is taken 
from reg,bit. The result is passed out of the macro through W. Operands 
for the instruction or are shown in Table 3.7.

Temp_1          W

W         1
Y   

N

W          0

W         Temp_1 or W

begin

end

?
reg,bit = 0?

(a) (b)

FIGURE 3.4
(a) The macro or and (b) its flowchart.

TABLE 3.6

Truth Table and Symbols of the Macro or

Truth Table Ladder diagram symbol Schematic symbol

IN1 IN2 OUT
W reg,bit W
0 0 0
0 1 1
1 0 1
1 1 1

W

reg,bit

W

W
W

reg,bit

Truth table and Symbols of the Macro or
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3.5 Macro or_not

The truth table and symbols of the macro or_not are depicted in Table 3.8. 
Figure 3.5 shows the macro or_not and its flowchart. This macro is also used 
as a two-input logical OR gate, but this time one of the inputs is inverted. 
One input is taken from W, and the inverted input is taken from reg,bit. 
The result is passed out of the macro through W. Operands for the instruc-
tion or_not are shown in Table 3.9.

3.6 Macro nor

The truth table and symbols of the macro nor are depicted in Table  3.10. 
Figure 3.6 shows the macro nor and its flowchart. This macro is used as a 
two-input logical NOR gate. One input is taken from W, and the other input 
is taken from reg,bit. The result is passed out of the macro through W. 
Operands for the instruction nor are shown in Table 3.11.

TABLE 3.7

Operands for the Instruction or

Input
(reg,bit) Data Type Operands

Bit BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q, 
CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

TABLE 3.8

Truth Table and Symbols of the Macro or_not

Truth Table Ladder Diagram Symbol Schematic Symbol

IN1 IN2 OUT
W reg,bit W
0 0 1
0 1 0
1 0 1
1 1 1

W

reg,bit

W

W
Wreg,bit
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Temp_1          W

W         0
Y   

N

W          1

W         Temp_1 or W

begin

end

reg,bit = 0?

(a) (b)

FIGURE 3.5
(a) The macro or_not and (b) its flowchart.

TABLE 3.9

Operands for the Instruction or_not

Input
(reg,bit) Data Type Operands

Bit BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q, 
CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

TABLE 3.10

Truth Table and Symbols of the Macro nor

Truth Table Ladder Diagram Symbol Schematic Symbol

IN1 IN2 OUT
W reg,bit W
0 0 1
0 1 0
1 0 0
1 1 0

reg,bit

W
NOT W

W
W

reg,bit
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3.7 Macro and

The truth table and symbols of the macro and are depicted in Table  3.12. 
Figure 3.7 shows the macro and and its flowchart. This macro is used as a 
two-input logical AND gate. One input is taken from W, and the other one 
is taken from reg,bit. The result is passed out of the macro through W. 
Operands for the instruction and are shown in Table 3.13.

Temp_1          W

W        1
Y

N

W         0

W         Temp_1 or W

W         W xor 1

begin

end

reg,bit = 0?

(a) (b)

FIGURE 3.6
(a) The macro nor and (b) its flowchart.

TABLE 3.11

Operands for the Instruction nor

Input
(reg,bit) Data Type Operands

Bit BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q, 
CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC
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TABLE 3.12

Truth Table and Symbols of the Macro and

Truth Table Ladder Diagram Symbol Schematic Symbol

IN1 IN2 OUT
W reg,bit W
0 0 0
0 1 0
1 0 0
1 1 1

reg,bitW
W 

W W
reg,bit

Temp_1          W

W         1
Y   

N

W          0

W         Temp_1 and W

begin

end

reg,bit = 0?

(a) (b)

FIGURE 3.7
(a) The macro and and (b) its flowchart.

TABLE 3.13

Operands for the Instruction and

Input
(reg,bit) Data Type Operands

Bit BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q, 
CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC
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3.8 Macro and_not

The truth table and symbols of the macro and_not are depicted in Table 3.14. 
Figure 3.8 shows the macro and_not and its flowchart. This macro is also 
used as a two-input logical AND gate, but this time one of the inputs is 
inverted. One input is taken from W, and the inverted input is taken from 
reg,bit. The result is passed out of the macro through W. Operands for the 
instruction and_not are shown in Table 3.15.

TABLE 3.14

Truth Table and Symbols of the Macro and_not

Truth Table Ladder Diagram Symbol Schematic Symbol

IN1 IN2 OUT
W reg,bit W
0 0 0
0 1 0
1 0 1
1 1 0

reg,bitW
W

W
W

reg,bit

Temp_1          W

W         0
Y   

N

W          1

W         Temp_1 and W

begin

end

reg,bit = 0?

(a) (b)

FIGURE 3.8
(a) The macro and_not and (b) its flowchart.
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3.9 Macro nand

The truth table and symbols of the macro nand are depicted in Table 3.16. 
Figure 3.9 shows the macro nand and its flowchart. This macro is used as a 
two-input logical NAND gate. One input is taken from W, and the other one 
is taken from reg,bit. The result is passed out of the macro through W. 
Operands for the instruction nand are shown in Table 3.17.

3.10 Macro xor

The truth table and symbols of the macro xor are depicted in Table  3.18. 
Figure 3.10 shows the macro xor and its flowchart. This macro is used as a 
two-input logical EXOR gate. One input is taken from W, and the other one 
is taken from reg,bit. The result is passed out of the macro through W. 
Operands for the instruction xor are shown in Table 3.19.

TABLE 3.15

Operands for the Instruction and_not

Input
(reg,bit) Data Type Operands

Bit BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q, 
CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

TABLE 3.16

Truth Table and Symbols of the Macro nand

Truth Table Ladder Diagram Symbol Schematic Symbol

IN1 IN2 OUT
W reg,bit W
0 0 1
0 1 1
1 0 1
1 1 0

reg,bitW
NOT W

W
W

reg,bit
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TABLE 3.17

Operands for the Instruction nand

Input
(reg,bit) Data Type Operands

Bit BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q, 
CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

TABLE 3.18

Truth Table and Symbols of the Macro xor

Truth Table Ladder Diagram Symbol Schematic Symbol

IN1 IN2 OUT
W reg,bit W
0 0 0
0 1 1
1 0 1
1 1 0

reg,bitW
W

reg,bitW
W

Wreg,bit

Temp_1          W

W        1
Y   

N

W         0

W         Temp_1 and W

W         W xor 1

begin

end

reg,bit = 0?

(a) (b)

FIGURE 3.9
(a) The macro nand and (b) its flowchart.
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3.11 Macro xor_not

The truth table and symbols of the macro xor_not are depicted in Table 3.20. 
Figure 3.11 shows the macro xor_not and its flowchart. This macro is also 
used as a two-input logical EXOR gate, but this time one of the inputs is 
inverted. One input is taken from W, and the inverted input is taken from 
reg,bit. The result is passed out of the macro through W. Operands for the 
instruction xor_not are shown in Table 3.21.

3.12 Macro xnor

The truth table and symbols of the macro xnor are depicted in Table 3.22. 
Figure 3.12 shows the macro xnor and its flowchart. This macro is used as 
a two-input logical EXNOR gate. One input is taken from W, and the other 

TABLE 3.19

Operands for the Instruction xor

Input
(reg,bit) Data Type Operands

Bit BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q, 
CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

Temp_1          W

W        1
Y   

N

W         0

W         Temp_1 xor W

begin

end

reg,bit = 0?

(a) (b)

FIGURE 3.10
(a) The macro xor and (b) its flowchart.
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Temp_1          W

W         0
Y   

N

W          1

W         Temp_1 xor W

begin

end

reg,bit = 0?

(a) (b)

FIGURE 3.11
(a) The macro xor_not and (b) its flowchart.

TABLE 3.21

Operands for the Instruction xor_not

Input
(reg,bit) Data Type Operands

Bit BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q, 
CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

TABLE 3.20

Truth Table and Symbols of the Macro xor_not

Truth Table Ladder Diagram Symbol Schematic Symbol

IN1 IN2 OUT
W reg,bit W
0 0 1
0 1 0
1 0 0
1 1 1

reg,bitW
W

reg,bitW
W

W
reg,bit
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one is taken from reg,bit. The result is passed out of the macro through W. 
Operands for the instruction xnor are shown in Table 3.23.

3.13 Macro out

The truth table and symbols of the macro out are depicted in Table  3.24. 
Figure 3.13 shows the macro out and its flowchart. This macro has a Boolean 
input variable passed into it by W and a Boolean output variable passed out 

TABLE 3.22

Truth Table and Symbols of the Macro xnor

Truth Table Ladder Diagram Symbol Schematic Symbol

IN1 IN2 OUT
W reg,bit W
0 0 1
0 1 0
1 0 0
1 1 1

reg,bitW

reg,bitW

NOT W
W

W
reg,bit

Temp_1          W

W         0
Y   

N

W          1

W         Temp_1 xor W

begin

end

reg,bit = 0?

(a) (b)

FIGURE 3.12
(a) The macro xnor and (b) its flowchart.
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TABLE 3.24

Truth Table and Symbols of the Macro out

Truth Table Ladder diagram symbol Schematic symbol

IN OUT
W reg,bit
0 0
1 1

(      )
reg,bit

W W reg,bit

Truth table and Symbols of the Macro out

SET reg,bit
Y

N

RESET reg,bit

Temp_1         W

Y

N Temp_1,0 = 1

Temp_1,0 = 0

begin

end

?

?

(a) (b)

FIGURE 3.13
(a) The macro out and (b) its flowchart.

TABLE 3.23

Operands for the Instruction xnor

Input
(reg,bit) Data Type Operands

Bit BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q, 
CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC
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through reg,bit. In ladder logic, this macro is represented by an output 
relay (internal or external relay). When the input variable is 0 (respectively 1), 
the output (W) is forced to 0 (respectively to 1). Operands for the instruction 
out are shown in Table 3.25.

3.14 Macro out_not

The truth table and symbols of the macro out_not are depicted in Table 3.26. 
Figure 3.14 shows the macro out_not and its flowchart. This macro has a 
Boolean input variable passed into it by W and a Boolean output variable 
passed out through reg,bit. In ladder logic, this macro is represented by 
an inverted output relay (internal or external relay). When the input variable 
is 0 (respectively 1), the output (W) is forced to 1 (respectively to 0). Operands 
for the instruction out_not are shown in Table 3.27.

TABLE 3.25

Operands for the Instruction out

Output
(reg,bit) Data Type Operands

Bit BOOL Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q, 
CTUD8_Q

TABLE 3.26

The Truth Table and Symbols of the Macro out_not

Truth Table Ladder Diagram Symbol Schematic Symbol

IN OUT
W reg,bit
0 1
1 0

(      )
reg,bit

W W reg,bit
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3.15 Macro in_out

The truth table and symbols of the macro in_out are depicted in Table 3.28. 
Figure 3.15 shows the macro in_out and its flowchart. This macro has a 
Boolean input variable passed into it by regi,biti and a Boolean out-
put variable passed out through rego,bito. When the input variable 
regi,biti is 0 (respectively 1), the output variable rego,bito is forced 
to 0 (respectively to 1). Operands for the instruction in_out are shown in 
Table 3.29.

TABLE 3.27

Operands for the Instruction out_not

Output
(reg,bit) Data Type Operands

Bit BOOL Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q, 
CTUD8_Q

RESET reg,bit
Y

N

SET reg,bit

Temp_1         W

Y

N Temp_1,0 = 1

Temp_1,0 = 0

begin

end

?

?

(a) (b)

FIGURE 3.14
(a) The macro out_not and (b) its flowchart.
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TABLE 3.28

Truth Table and Symbols of the Macro in_out

Truth Table Ladder Diagram Symbol Schematic Symbol

IN OUT
regi,biti rego,bito

0 0
1 1

regi,biti
(      )

rego,bito
regi,biti rego,bito

SET rigo,bito
Y

N

RESET rego,bito
Y

N regi,biti = 1

begin

end

?

regi,biti = 0?

(a) (b)

FIGURE 3.15
(a) The macro in_out and (b) its flowchart.

TABLE 3.29

Operands for the Instruction in_out

Input/Output Data Type Operands
Input

(regi,biti) Bit BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, 
CTD8_Q, CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

Output
(rego,bito) Bit BOOL Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, 

CTD8_Q, CTUD8_Q
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3.16 Macro inv_out

The truth table and symbols of the macro inv_out are depicted in Table 3.30. 
Figure  3.16 shows the macro inv_out and its flowchart. This macro has a 
Boolean input variable passed into it by regi,biti and a Boolean output 
variable passed out through rego,bito. When the input variable regi,biti 

RESET rego,bito
Y

N

SET rego,bito
Y

N regi,biti = 1

regi,biti = 0

begin

end

?

?

(a) (b)

FIGURE 3.16
(a) The macro inv_out and (b) its flowchart.

TABLE 3.30

Truth Table and Symbols of the Macro inv_out

Truth Table Ladder Diagram Symbol Schematic Symbol

IN OUT
regi,biti rego,bito

0 1
1 0

regi,biti
(      )

rego,bito

or

regi,biti
(      )

rego,bito
regi,biti rego,bito
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is 0 (respectively 1), the output variable rego,bito is forced to 1 (respectively 
to 0). Operands for the instruction inv_out are shown in Table 3.31.

3.17 Macro _set

The truth table and symbols of the macro _set are depicted in Table 3.32. 
Figure 3.17 shows the macro _set and its flowchart. This macro has a Boolean 
input variable passed into it by W and a Boolean output variable passed out 
through reg,bit. When the input variable is 0, no action is taken, but when 

TABLE 3.31

Operands for the Instruction inv_out

Input/Output Data Type Operands
Input

(regi,biti) Bit BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, 
CTD8_Q, CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

Output
(rego,bito) Bit BOOL Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, 

CTD8_Q, CTUD8_Q

TABLE 3.32

Truth Table and Symbols of the Macro _set

Truth Table Ladder Diagram Symbol Schematic Symbol

IN OUT
W reg,bit
0 no change
1 Set

( S )
reg,bit

W W

SET

IN reg,bit

SET reg,bitY

N

begin

end

W,0 = 0?

(a) (b)

FIGURE 3.17
(a) The macro _set and (b) its flowchart.
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the input variable is 1, the output variable reg,bit is set to 1. Operands for 
the instruction _set are shown in Table 3.33.

3.18 Macro _reset

The truth table and symbols of the macro _reset are depicted in Table 3.34. 
Figure  3.18 shows the macro _reset and its flowchart. This macro has a 
Boolean input variable passed into it by W and a Boolean output variable 

RESET reg,bitY

N
W,0 = 0

begin

end

?

(a) (b)

FIGURE 3.18
(a) The macro _reset and (b) its flowchart.

TABLE 3.33

Operands for the Instruction _set

Output
(reg,bit) Data Type Operands

Bit BOOL Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q, 
CTUD8_Q

TABLE 3.34

Truth Table and Symbols of the Macro _reset

Truth Table Ladder Diagram Symbol Schematic Symbol

IN OUT
W reg,bit
0 no change
1 Reset

( R )
reg,bit

W
W

RESET

reg,bitIN
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passed out through reg,bit. When the input variable is 0, no action is 
taken, but when the input variable is 1, the output variable reg,bit is reset. 
Operands for the instruction _reset are shown in Table 3.35.

3.19 Examples for Contact and Relay-Based Macros

In this section, we will consider two examples, UZAM_plc_16i16o_ex3.asm 
and UZAM_plc_16i16o_ex4.asm, to show the usage of contact and relay-based 
macros. In order to test the respective example, please take the files from 
the CD-ROM attached to this book and then open the respective program 
by MPLAB IDE and compile it. After that, by using the PIC programmer 
software, take the compiled file UZAM_plc_16i16o_ex3.hex or UZAM_
plc_16i16o_ex4.hex, and by your PIC programmer hardware send it to the 
program memory of the PIC16F648A microcontroller within the PIC16F648A-
based PLC. To do this, switch the 4PDT in the PROG position and the power 
switch in the OFF position. After loading the UZAM_plc_16i16o_ex3.hex 
or UZAM_plc_16i16o_ex4.hex, switch the 4PDT in RUN and the power 
switch in the ON position. Please check each program’s accuracy by cross-
referencing it with the related macros.

Let us now consider these two example programs: The first example 
program, UZAM_plc_16i16o_ex3.asm, is shown in Figure 3.19. It shows 
the usage of the following contact and relay-based macros: ld, ld_not, 
not, out, out_not, in_out, inv_out, or, or_not, and nor. The sche-
matic and ladder diagrams of the user program of UZAM_plc_16i16o_
ex3.asm, shown in Figure  3.19, are depicted in Figure  3.20(a) and (b), 
respectively.

TABLE 3.35

Operands for the Instruction _reset

Output
(reg,bit) Data Type Operands

Bit BOOL Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, CTD8_Q, 
CTUD8_Q
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FIGURE 3.19
The user program of UZAM_plc_16i16o_ex3.asm.
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I 0.0 Q 0.0 

Q 0.1 I 0.1 

I 0.2 M 2.7 

Q 0.2 M 2.7 

Q 0.3 I 0.3 

I 0.4 Q 0.4  

Q 0.5 I 0.5 

T 1.5 Q 0.7 

I 1.0 

I 1.1 
Q 1.0 

I 1.0 

I 1.2 

Q 1.1 I 1.1 

I 1.0 

I 1.4 
Q 1.2 

I 1.2 

I 1.4 

Q 1.3 I 1.3 

I 1.4 

I 1.5 
Q 1.4 

I 1.4 

I 1.5 

Q 1.5 
I 1.6 

I 1.4 

I 1.5 

Q 1.6 

I 1.6 

I 1.7 

Q 0.6 LOGIC1  

T = 838,8608 ms 

IN OUT

(a)

FIGURE 3.20
The user program of UZAM_plc_16i16o_ex3.asm: (a) schematic diagram. (Continued)
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1 (      )
I0.0 Q0.0

2 (      )
I0.1 Q0.1

3 (      )
I0.2  M2.7

4 (      )
Q0.2M2.7

5 (      )
I0.3 Q0.3

NOT

6 (      )
I0.4 Q0.4  

7 (      )
I0.5 Q0.5

8 (      )
LOGIC1 Q0.6

9 (      )
Q0.7T1.5

10 (      )
I1.0 Q1.0

I1.1

11 (      )
I1.0 Q1.1

I1.1

I1.2

12 (      )
I1.0 Q1.2

I1.4

13 (      )
I1.2 Q1.3

I1.3

I1.4

NOT14 (      )
I1.4 Q1.4

I1.5

NOT15
I1.4

I1.5
NOT

I1.6

16
I1.4

I1.5

I1.6

I1.7

NOT

(      )
Q1.5

(      )
Q1.6

T = 838,8608 ms

(b)

FIGURE 3.20 (Continued)
The user program of UZAM_plc_16i16o_ex3.asm: (b) ladder diagram. 
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FIGURE 3.21
The user program of UZAM_plc_16i16o_ex4.asm.
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I 0.0

I 0.1
Q 0.0

I 0.0

I 0.2
Q 0.1I 0.1

I 0.0

I 0.4
Q 0.2

I 0.2

I 0.4
Q 0.3I 0.3

I 0.4

I 0.5
Q 0.4

I 0.4

I 0.5
Q 0.5

I 0.6

I 0.4

I 0.5

Q 0.6
I 0.6

I 0.7

I 1.0

I 1.1
Q 1.0

I 1.2

I 1.3
Q 1.2

I 1.4

I 1.5
Q 1.4

I 1.6

SET

IN Q 1.7

RESET

IN Q 1.7I 1.7

IN
OUT

(a)

FIGURE 3.22
The user program of UZAM_plc_16i16o_ex4.asm: (a) schematic diagram. (Continued)
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The second example program, UZAM_plc_16i16o_ex4.asm, is shown in 
Figure 3.21. It shows the usage of the following contact and relay-based mac-
ros: ld, and, and_not, nand, xor, xor_not, xnor, _set, and _reset. The 
schematic and ladder diagrams of the user program of UZAM_plc_16i16o_
ex4.asm, shown in Figure  3.21, are depicted in Figure  3.22(a) and (b), 
respectively.

1 (      )
I 0.0 Q 0.0I 0.1

2
I 0.0 I 0.1 I 0.2

3
I 0.0 I 0.4

4
I 0.2 I 0.3 I 0.4

5
I 0.4 I 0.5

NOT

6
I 0.4 I 0.5

NOT
I 0.6

NOT

7
I 0.4 I 0.5 I 0.6

NOT
I 0.7

8
I 1.0

I 1.0

I 1.1

I 1.1

9
I 1.2

I 1.2

I 1.3

I 1.3

10
I 1.4

I 1.4

I 1.5

I 1.5
 NOT 

11 ( S )
I 1.6 Q 1.7

( R )
Q 1.7

12
I 1.7

(      )
Q 0.1

(      )
Q 0.2

(      )
Q 0.3

(      )
Q 0.4

(      )
Q 0.5

(      )
Q 0.6

(      )
Q 1.0

(      )
Q 1.2

(      )
Q 1.4

(b)

FIGURE 3.22 (Continued)
The user program of UZAM_plc_16i16o_ex4.asm: (b) ladder diagram. 
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4
Flip-Flop Macros

In this chapter, the following flip-flop macros are described:

r_edge (rising edge detector)
f_edge (falling edge detector)
latch1 (D latch with active high enable)
latch0 (D latch with active low enable)
dff_r (rising edge triggered D flip-flop)
dff_f (falling edge triggered D flip-flop)
tff_r (rising edge triggered T flip-flop)
tff_f (falling edge triggered T flip-flop)
jkff_r (rising edge triggered JK flip-flop)
jkff_f (falling edge triggered JK flip-flop)

Each macro defined here requires an edge detection mechanism except for 
latch0 and latch1. The following 8-bit variables are used for this purpose:

RED: Rising edge detector
FED: Falling edge detector
DFF_RED: Rising edge detector for D flip-flop
DFF_FED: Falling edge detector for D flip-flop
TFF_RED: Rising edge detector for T flip-flop
TFF_FED: Falling edge detector for T flip-flop
JKFF_RED: Rising edge detector for JK flip-flop
JKFF_FED: Falling edge detector for JK flip-flop

They are declared within the SRAM data memory as shown in Figure 4.1. 
Each 8-bit variable enables us to declare and use eight different functions 
defined by the related macro. The macros latch0 and latch1 are an excep-
tion to this, which means that we can use as many latches of latch0 or 
latch1 as we wish. The file definitions.inc, included within the CD-ROM 
attached to this book, contains all flip-flop macros defined for the PIC16F648A-
based PLC.

Let us now briefly consider these macros.
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4.1 Macro r_edge (Rising Edge Detector)

The symbols and the timing diagram of the macro r_edge are depicted in 
Table 4.1. Figure 4.2 shows the macro r_edge and its flowchart. The macro 
r_edge defines eight rising edge detector functions (or contacts) selected 
with the num = 0, 1, …, 7. It has a Boolean input variable, namely, IN, passed 

(a)

3Fh RED
40h FED
41h DFF_RED
42h DFF_FED
43h TFF_RED
44h TFF_FED
45h JKFF_RED
46h JKFF_FED

BANK 0

(b)

FIGURE 4.1
(a) The definition of 8-bit variables to be used for the flip-flop-based macros. (b) Their alloca-
tion in BANK 0 of SRAM data memory.

TABLE 4.1

Symbols and Timing Diagram of the Macro r_edge

Symbols

num
IN  OUT

r_edge

P WW
num

IN : W,
OUT : W,
num = 0, 1, …, 7

Timing diagram

0

0

1

1
IN

OUT
ON for one scan
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(a)

Temp_1          W

SET RED,num
Y

 N   

Y

N

Y

N

RESET RED,num
W         1W         0

Temp_1,0 = 1 

Temp_1,0 = 1 

RED,num = 1

L2

L1

begin

end

?

?

?

(b)

FIGURE 4.2
(a) The macro r_edge and (b) its flowchart.
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into the macro through W, and a Boolean output variable, namely, OUT, 
passed out of the macro through W. This means that the input signal IN 
should be loaded into W before this macro is run, and the output signal OUT 
will be provided within the W at the end of the macro. In ladder logic, this 
macro is represented by a normally open (NO) contact with the identifier P, 
meaning positive transition-sensing contact. As can be seen from the timing 
diagram, the OUT is ON (1) for only one scan time when the IN changes its 
state from OFF (0) to ON (1). In the other instances, the OUT remains OFF (0).

4.2 Macro f_edge (Falling Edge Detector)

The symbols and the timing diagram of the macro f_edge are depicted in 
Table 4.2. Figure 4.3 shows the macro f_edge and its flowchart. The macro 
f_edge defines eight falling edge detector functions (or contacts) selected 
with the num = 0, 1, …, 7. It has a Boolean input variable, namely, IN, passed 
into the macro through W, and a Boolean output variable, namely, OUT, 
passed out of the macro through W. This means that the input signal IN 
should be loaded into W before this macro is run, and the output signal OUT 
will be provided within the W at the end of the macro. In ladder logic, this 
macro is represented by a normally open (NO) contact with the identifier N, 
meaning negative transition-sensing contact. As can be seen from the timing 
diagram, the OUT is ON (1) for only one scan time when the IN changes its 
state from ON (1) to OFF (0). In the other instances, the OUT remains OFF (0).

TABLE 4.2

Symbols and Timing Diagram of the Macro f_edge

Symbols

num
IN  OUTW W

f_edge

N WW
num

IN : W
OUT : W
num = 0, 1, …, 7

Timing diagram

0

0
1

1
 IN

OUT ON for one scan



71Flip-Flop Macros

© 2008 Taylor & Francis Group, LLC

(a)

Temp_1          W

SET FED,numY

N

Y

N

 Y   

N

RESET FED,num
W         1W         0

Temp_1,0 = 0

FED,num = 1

L2

L1

Temp_1,0 = 0

begin

end

?

?

?

(b)

FIGURE 4.3
(a) The macro f_edge and (b) its flowchart.
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4.3 Macro latch1 (D Latch with Active High Enable)

The symbol of the macro latch1 and its truth table are depicted in Table 4.3. 
Figure 4.4 shows the macro latch1 and its flowchart. The macro latch1 
defines a D latch function with active high enable. Unlike the edge trig-
gered flip-flops and the edge detector macros, in which eight functions are 
described, this function defines only one D latch function. However, we 
are free to use this macro as much as we need with different input/output 
variables. The macro latch1 has two Boolean input variables, namely, EN, 
passed into the macro through W, and D (regi,biti), and a single Boolean 
output variable, Q (rego,bito). The input signal EN (active high enable input) 
should be loaded into W before this macro is run. When the active high 
enable input EN is OFF (0), no state change is issued for the output Q and it 
holds its current state. When the active high enable input EN is ON (1), the 
output Q is loaded with the state of the input D. Operands for the instruction 
latch1 are shown in Table 4.4.

4.4 The Macro latch0 (D Latch with Active Low Enable)

The symbol of the macro latch0 and its truth table are depicted in Table 4.5. 
Figure 4.5 shows the macro latch0 and its flowchart. The macro latch0 
defines a D latch function with active low enable. Unlike the edge triggered 
flip-flops and the edge detector macros, in which eight functions are described, 

TABLE 4.3

Symbol of the Macro latch1 and Its Truth Table

Symbol

D 

EN

Q 

latch1

regi,biti rego,bito

W

EN : W,
D : regi,biti
Q : rego,bito

Truth Table

EN D Qt Qt+1 Comment

0 × Qt Qt No change

1 0 × 0 Reset

1 1 × 1 Set

× : don’t care.
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(a)

Y

N

NY

RESET rego,bitoSET rego,bito

W,0 = 1

regi,biti = 1

L1    

L2

 begin

end

?

?

(b)

FIGURE 4.4
(a) The macro latch1 and (b) its flowchart.

TABLE 4.4

Operands for the Instruction latch1

Input/Output Data Type Operands
D

regi,biti (Bit) BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, 
CTD8_Q, CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

Q
rego,bito (Bit) BOOL Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, 

CTD8_Q, CTUD8_Q
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this function defines only one D latch function. However, we are free to use 
this macro as much as we need with different input/output variables. The 
macro latch0 has two Boolean input variables, namely, EN, passed into the 
macro through W and D (regi,biti), and a single Boolean output variable, Q 
(rego,bito). The input signal EN (active low enable input) should be loaded into 
W before this macro is run. When the active low enable input EN is ON (1), 
no state change is issued for the output Q and it holds its current state. When 
the active low enable input EN is OFF (0), the output Q is loaded with the state 
of the input D. Operands for the instruction latch0 are shown in Table 4.6.

4.5 Macro dff_r (Rising Edge Triggered D Flip-Flop)

The symbol of the macro dff_r and its truth table are depicted in Table 4.7. 
Figure  4.6 shows the macro dff_r and its flowchart. The macro dff_r 
defines eight rising edge triggered D flip-flop functions selected with the 

TABLE 4.5

Symbol of Macro latch0 and Its Truth Table

Symbol

D 

EN

Q 

latch0

regi,biti rego,bito

W

EN : W
D : regi,biti
Q : rego,bito

Truth Table

EN D Qt Qt+1 Comment

1 × Qt Qt No change

0 0 × 0 Reset

0 1 × 1 Set

× : don’t care.

TABLE 4.6

Operands for the Instruction latch0

Input/Output Data Type Operands
D

regi,biti (Bit) BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, 
CTD8_Q, CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

Q
rego,bito (Bit) BOOL Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, 

CTD8_Q, CTUD8_Q
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num = 0, 1, …, 7. It has two Boolean input variables, namely, clock input C, 
passed into the macro through W, and data input D (regi,biti), and a single 
Boolean output variable, flip-flop output Q (rego,bito). The clock input signal 
C should be loaded into W before this macro is run. When the clock input 
signal C is ON (1) or OFF (0), or changes its state from ON to OFF (↓), no state 
change is issued for the output Q and it holds its current state. When the 
state of clock input signal C is changed from OFF to ON (↑), the output Q is 
loaded with the state of the input D. Operands for the instruction dff_r are 
shown in Table 4.8.

(a)

Y

N

NY

RESET rego,bitoSET rego,bito

W,0 = 0

regi,biti = 1

L1    

L2

 begin

end

?

?

(b)

FIGURE 4.5
(a) The macro latch0 and (b) its flowchart.
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TABLE 4.7

Symbol of the Macro dff_r and Its Truth Table

Symbol

D 
C 

Q regi,biti rego,bito

dff_r

W
num 

C : W,
D : regi,biti,
Q : rego,bito,
num = 0, 1, …, 7

Truth Table

D C Qt Qt+1 Comment
× 0 Qt Qt No change
× 1 Qt Qt No change
× Qt Qt No change

0 × 0 Reset

1 × 1 Set

× : don’t care.

Symbol of the Macro dff _ r and Its Truth Table

(a)

FIGURE 4.6
(a) The macro dff_r and (b) its flowchart. (Continued)

TABLE 4.8

Operands for the Instruction dff_r

Input/Output Data Type Operands
D

regi,biti (Bit) BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, 
CTD8_Q, CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

Q
rego,bito (Bit) BOOL Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, 

CTD8_Q, CTUD8_Q
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4.6 Macro dff_f (Falling Edge Triggered D Flip-Flop)

The symbol of the macro dff_f and its truth table are depicted in Table 4.9. 
Figure 4.7 shows the macro dff_f and its flowchart. The macro dff_f defines 
eight falling edge triggered D flip-flop functions selected with the num = 0, 1, 
…, 7. It has two Boolean input variables, namely, clock input C, passed into the 

  Y   

Temp_1         W

Y

N

N

SET DFF_RED,num

RESET DFF_RED,num

Y

N

Temp_1,0 = 1

Temp_1,0 = 1

DFF_RED,num =  1

NY

RESET rego,bitoSET rego,bito

 regi,biti = 1

L1

L2

begin

end

?

?

?

?

(b)

FIGURE 4.6 (Continued)
(a) The macro dff_r and (b) its flowchart. 
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macro through W, and data input D (regi,biti), and a single Boolean output vari-
able, flip-flop output Q (rego,bito). The clock input signal C should be loaded 
into W before this macro is run. When the clock input signal C is ON (1) or OFF 
(0), or changes its state from OFF to ON (↑), no state change is issued for the 
output Q and it holds its current state. When the state of clock input signal C is 
changed from ON to OFF (↓), the output Q is loaded with the state of the input 
D. Operands for the instruction dff_f are shown in Table 4.10.

(a)

FIGURE 4.7
(a) The macro dff_f and (b) its flowchart. (Continued)

TABLE 4.9

Symbol of the Macro dff_f and Its Truth Table

Symbol

D 
C 

Q regi,biti rego,bito
W

num 

C : W
D : regi,biti
Q : rego,bito
num = 0, 1, …, 7

Truth Table

D C Qt Qt+1 Comment
× 0 Qt Qt No change
× 1 Qt Qt No change
× Qt Qt No change

0 × 0 Reset

1 × 1 Set

× : don’t care.

dff_f

Symbol of the Macro dff _ f and Its Truth Table
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Y

Temp_1          W

Y

N

N

SET DFF_FED,num

RESET DFF_FED,num

Y

N

Temp_1,0 = 0

Temp_1,0 = 0

DFF_FED,num =  1

NY

RESET rego,bitoSET rego,bito

 regi,biti = 1

L1

L2

begin

end

?

?

?

?

(b)

FIGURE 4.7 (Continued)
(a) The macro dff_f and (b) its flowchart. 

TABLE 4.10

Operands for the Instruction dff_f

Input/Output Data Type Operands
D

regi,biti (Bit) BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, 
CTD8_Q, CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

Q
rego,bito (Bit) BOOL Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, 

CTD8_Q, CTUD8_Q
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4.7 Macro tff_r (Rising Edge Triggered T Flip-Flop)

The symbol of the macro tff_r and its truth table are depicted in Table 4.11. 
Figure  4.8 shows the macro tff_r and its flowchart. The macro tff_r 
defines eight rising edge triggered T flip-flop functions selected with the 

TABLE 4.11

Symbol of the Macro tff_r and Its Truth Table

Symbol

T
C 

Q regi,biti rego,bito

tff_r

W
num 

C : W
T : regi,biti
Q : rego,bito
num = 0, 1, …, 7

Truth Table

T C Qt Qt+1 Comment
× 0 Qt Qt No change
× 1 Qt Qt No change
× Qt Qt No change

0 Qt Qt No change

1 Qt Qt Toggle

× : don’t care.

Symbol of the Macro tff _ r and Its Truth Table

(a)

FIGURE 4.8
(a) The macro tff_r and (b) its flowchart. (Continued)



81Flip-Flop Macros

© 2008 Taylor & Francis Group, LLC

Y

Temp_1          W

Y

N

N

SET TFF_RED,num

RESET TFF_RED,num

Y

Y

N

Temp_1,0 = 1

Temp_1,0 = 1

TFF_RED,num = 1

NY

RESET rego,bitoSET rego,bito

 rego,bito = 0

L1

L2

N
regi,biti = 1

begin

end

?

?

?

?

?

(b)

FIGURE 4.8 (Continued)
(a) The macro tff_r and (b) its flowchart.
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num = 0, 1, …, 7. It has two Boolean input variables, namely, clock input C, 
passed into the macro through W, and toggle input T (regi,biti), and a single 
Boolean output variable, flip-flop output Q (rego,bito). The clock input signal C 
should be loaded into W before this macro is run. When the clock input signal 
C is ON (1) or OFF (0), or changes its state from ON to OFF (↓), no state change 
is issued for the output Q and it holds its current state. When the state of clock 
input signal C is changed from OFF to ON (↑), if T = 0, then no state change is 
issued for the output Q and it holds its current state. When the state of clock 
input signal C is changed from OFF to ON (↑), if T = 1, then the output Q is 
toggled. Operands for the instruction tff_r are shown in Table 4.12.

4.8 Macro tff_f (Falling Edge Triggered T Flip-Flop)

The symbol of the macro tff_f and its truth table are depicted in Table 4.13. 
Figure  4.9 shows the macro tff_f and its flowchart. The macro tff_f 
defines eight falling edge triggered T flip-flop functions selected with the 
num = 0, 1, …, 7. It has two Boolean input variables, namely, clock input C, 
passed into the macro through W, and toggle input T (regi,biti), and a single 
Boolean output variable, flip-flop output Q (rego,bito). The clock input signal 
C should be loaded into W before this macro is run. When the clock input 
signal C is ON (1) or OFF (0), or changes state from OFF to ON (↑), no state 
change is issued for the output Q and it holds its current state. When the 
state of clock input signal C is changed from ON to OFF (↓): if T = 0, then no 
state change is issued for the output Q; if T = 1, then the output Q is toggled. 
Operands for the instruction tff_f are shown in Table 4.14.

4.9 Macro jkff_r (Rising Edge Triggered JK Flip-Flop)

The symbol of the macro jkff_r and its truth table are depicted in Table 4.15. 
Figure 4.10 shows the macro jkff_r and its flowchart. The macro jkff_r 
defines eight rising edge triggered JK flip-flop functions selected with the 
num = 0, 1, …, 7. It has three Boolean input variables, namely, clock input C, 
passed into the macro through W, and data inputs J (regj,bitj) and K (regk,bitk), 

TABLE 4.12

Operands for the Instruction tff_r

Input/Output Data Type Operands
T

regi,biti (Bit) BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, 
CTD8_Q, CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

Q
rego,bito (Bit) BOOL Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, 

CTD8_Q, CTUD8_Q
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TABLE 4.13

Symbol of the Macro tff_f and Its Truth Table

Symbol

T 
C 

Q regi,biti rego,bito

tff_f

W
num 

C : W
T : regi,biti
Q : rego,bito
num = 0, 1, …, 7

Truth Table

T C Qt Qt+1 Comment
× 0 Qt Qt No change
× 1 Qt Qt No change
× Qt Qt No change

0 Qt Qt No change

1 Qt Qt Toggle

× : don’t care.

Symbol of the Macro tff _ f and Its Truth Table

(a)

FIGURE 4.9
(a) The macro tff_f and (b) its flowchart. (Continued)
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Y

Temp_1          W

Y

N

N

SET TFF_FED,num

RESET TFF_FED,num
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Temp_1,0 = 0

Temp_1,0 = 0

TFF_FED,num = 1

NY

RESET rego,bitoSET rego,bito
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end
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FIGURE 4.9 (Continued)
(a) The macro tff_f and (b) its flowchart. 
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and a single Boolean output variable, flip-flop output Q (rego,bito). The clock 
input signal C should be loaded into W before this macro is run. When the 
clock input signal C is ON (1) or OFF (0), or changes state from ON to OFF 
(↓), no state change is issued for the output Q and it holds its current state. 
When the state of clock input signal C is changed from OFF to ON (↑): if JK 
= 00, then no state change is issued; if JK = 01, then Q is reset; if JK = 10, then 
Q is set; and finally if JK = 11, then Q is toggled. Operands for the instruction 
jkff_r are shown in Table 4.16.

TABLE 4.14

Operands for the Instruction tff_f

Input/Output Data Type Operands
T

regi,biti (Bit) BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, 
CTD8_Q, CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

Q
rego,bito (Bit) BOOL Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, 

CTD8_Q, CTUD8_Q

TABLE 4.15

Symbol of the Macro jkff_r and Its Truth Table

Symbol

J Q
C

K

regj,bitj rego,bito
jkff_r

W
regk,bitk

num

C : W
J : regj,bitj
K : regk,bitk
Q : rego,bito
num= 0, 1, …, 7

Truth Table

J K C Qt Qt+1 Comment
× × 0 Qt Qt No change
× × 1 Qt Qt No change
× × Qt Qt No change

0 0 Qt Qt No change

0 1 × 0 Reset

1 0 × 1 Set

1 1 Qt Qt Toggle

× : don’t care.
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4.10 Macro jkff_f (Falling Edge Triggered JK Flip-Flop)

The symbol of the macro jkff_f and its truth table are depicted in Table 4.17. 
Figure 4.11 shows the macro jkff_f and its flowchart. The macro jkff_f 
defines eight falling edge triggered JK flip-flop functions selected with the 
num = 0, 1, …, 7. It has three Boolean input variables, namely, clock input C, 
passed into the macro through W, and data inputs J (regj,bitj) and K (regk,bitk), 
and a single Boolean output variable, flip-flop output Q (rego,bito). The clock 
input signal C should be loaded into W before this macro is run. When the 
clock input signal C is ON (1) or OFF (0), or changes state from OFF to ON 
(↑), no state change is issued for the output Q and it holds its current state. 
When the state of clock input signal C is changed from ON to OFF (↓): if JK 
= 00, then no state change is issued; if JK = 01, then Q is reset; if JK = 10, then 
Q is set; and finally if JK = 11, then Q is toggled. Operands for the instruction 
jkff_f are shown in Table 4.18.

(a)

FIGURE 4.10
(a) The macro jkff_r and (b) its flowchart. (Continued)
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FIGURE 4.10 (Continued)
(a) The macro jkff_r and (b) its flowchart. 
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4.11 Examples for Flip-Flop Macros

In this section, we will consider two examples, UZAM_plc_16i16o_ex5.asm 
and UZAM_plc_16i16o_ex6.asm, to show the usage of flip-flop macros. In 
order to test the respective example please take the files from the CD-ROM 
attached to this book and then open the respective program by MPLAB IDE 
and compile it. After that, by using the PIC programmer software, take the 
compiled file UZAM_plc_16i16o_ex5.hex or UZAM_plc_16i16o_ex6.hex, 
and by your PIC programmer hardware send it to the program memory of 

TABLE 4.16

Operands for the Instruction jkff_r

Input/Output Data Type Operands

J,K
regj,bitj

regk,bitk (Bit)
BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, 

CTD8_Q, CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

Q
rego,bito (Bit) BOOL Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, 

CTD8_Q, CTUD8_Q

TABLE 4.17
Symbol of the Macro jkff_f and Its Truth Table

Symbol

J Q
C

K

regj,bitj rego,bito
jkff_f

W
regk,bitk

num

C : W
J : regj,bitj
K : regk,bitk
Q : rego,bito
num= 0, 1, …, 7

Truth Table

J K C Qt Qt+1 Comment
× × 0 Qt Qt No change
× × 1 Qt Qt No change
× × 0 Qt Qt No change

0 0 Qt Qt No change

0 1 × 0 Reset

1 0 × 1 Set

1 1 Qt Qt Toggle

× : don’t care.
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PIC16F648A microcontroller within the PIC16F648A-based PLC. To do this, 
switch the 4PDT in PROG position and the power switch in OFF position. 
After loading the UZAM_plc_16i16o_ex5.hex or UZAM_plc_16i16o_ex6.hex, 
switch the 4PDT in RUN and the power switch in ON position. Please check 
each program’s accuracy by cross-referencing it with the related macros.

Let us now consider these two example programs: The first example 
program, UZAM_plc_16i16o_ex5.asm, is shown in Figure  4.12. It shows 
the usage of the following flip-flop macros: r_edge, f_edge, latch1, 
latch0, dff_r, dff_f. The ladder and schematic diagrams of the user pro-
gram of UZAM_plc_16i16o_ex5.asm, shown in Figure 4.12, are depicted in 
Figure 4.13(a) and (b), respectively. It may not possible to observe the effects 
of r_edge and f_edge shown in rungs 1 and 2 due to the time delays 
caused by the macro HC595, explained in the Chapter 2. On the other hand, 
you can observe their effects from rungs 5 and 6, respectively, where r_edge 
and f_edge are both used together with the macro latch1. Observe that 
in rung 5 we obtain a rising edge triggered D flip-flop by using an r_edge 
and a latch1. Similarly, in rung 6 we obtain a falling edge triggered D flip-
flop by using an f_edge and a latch1. Note that in this example, _set and 
_reset functions are both used as asynchronous SET and RESET inputs for 
the D type flip-flops.

(a)

FIGURE 4.11
(a) The macro jkff_f and (b) its flowchart. (Continued)
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Y

Temp_1           W

Y

N

N

SET JKFF_FED,num

RESET JKFF_FED,num

Y

N

Temp_1,0 = 0

Temp_1,0 = 0

JKFF_FED,num = 1

Y

RESET rego,bitoSET rego,bito

rego,bito = 0

L1    

L2

regk,bitk = 1
N

regj,bitj = 1
Y N

regk,bitk = 1

N

L4  

 Y   

L3

Y

begin

end

?

?

?

?

?

? ?

(b)

FIGURE 4.11 (Continued)
(a) The macro jkff_f and (b) its flowchart.
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TABLE 4.18

Operands for the Instruction jkff_f

Input/Output Data Type Operands
J,K

regj,bitj
regk,bitk (Bit)

BOOL I, Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, 
CTD8_Q, CTUD8_Q, LOGIC1, LOGIC0, FRSTSCN, SCNOSC

Q
rego,bito (Bit) BOOL Q, M, TON8_Q, TOF8_Q, TP8_Q, TOS8_Q, CTU8_Q, 

CTD8_Q, CTUD8_Q

FIGURE 4.12
The user program of UZAM_plc_16i16o_ex5.asm.
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1 (      )
I0.0 Q0.0

num
IN   OUT

r_edge

 0 

 2
I0.1

num
IN  OUT

f_edge

 0 

D         Q

EN

latch1
 3

I0.3

I0.2

I0.5

I0.4

I0.1

I0.0

I0.7

I0.6

I1.1

I1.0

I1.2

I1.3

I1.5

I1.4

I1.6

I1.7

D         Q

EN

latch0
 4

D         Q

EN

latch1
5

num
IN  OUT

r_edge

 1 

D         Q

EN

latch1
6

num
IN  OUT

f_edge

 1 

D          Q
C

dff_r

num

 7

0

0

 8

 9

D          Q
C

dff_f

num

10

11

12

(      )
Q0.1

(      )
Q0.2

(      )
Q0.3

(      )
Q0.4

(      )
Q0.7

(      )
Q1.0

(      )
Q1.7

(  S  )
Q1.0

(  R  )
Q1.0

(  S  )
Q1.7

(  R  )
Q1.7

(a)

FIGURE 4.13
The user program of UZAM_plc_16i16o_ex5.asm: (a) ladder diagram. (Continued)
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I0.0 Q0.0
IN OUT

I0.3

I0.2

Q0.2D 
EN

Q 
latch1

num  
IN  OUT 

r_edge

0

I0.1 Q0.1
num
IN  OUT

f_edge

0

I0.5

I0.4

Q0.3D 
EN

Q 
latch0

I0.1

I0.0

Q0.4D 
EN 

Q 
latch1

num
IN  OUT
r_edge

1

I0.7

I0.6

Q0.7D 
EN 

Q 
latch1

num
IN  OUT 

f_edge

1

D        Q
C

dff_r

num0

Q1.0I1.1

I1.0

I1.2  IN  

RESET

 IN  I1.3 Q1.0  

Q1.0

SET

D         Q  
C

dff_f

num0

Q1.7I1.5

I1.4

I1.6  IN  

RESET

 IN  I1.7 Q1.7

Q1.7

SET

(b)

FIGURE 4.13 (Continued)
The user program of UZAM_plc_16i16o_ex5.asm: (b) schematic diagram. 
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FIGURE 4.14
The user program of UZAM_plc_16i16o_ex6.asm.
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 T        Q
C

tff_r

num

(      )
Q0.0

(      )
Q0.7

(      )
Q1.0

(      )
Q1.7

1
I0.1

I0.0
0

0

0

0

2 (  S  )
I0.2

3
I0.3

Q0.0

(  S  )
Q0.7

(  R  )
Q0.7

(  S  )
Q1.0

(  R  )
Q1.0

(  R  )
Q0.0

T         Q
C

tff_f

num

4
I0.5

I0.4

5
I0.6

6
I0.7

7
I1.1

I1.0

8
I1.3

9
I1.4

J          Q
C

K

jkff_r

numI1.2

10
I1.6

I1.5
J          Q

C

K

jkff_f

numI1.7

(a)

FIGURE 4.15
The user program of UZAM_plc_16i16o_ex6.asm: (a) ladder diagram. (Continued)
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The second example program, UZAM_plc_16i16o_ex6.asm, is shown in 
Figure  4.14. It shows the usage of the following flip-flop macros: tff_r, 
tff_f, jkff_r, and jkff_f. The ladder and schematic diagrams of the 
user program of UZAM_plc_16i16o_ex6.asm, shown in Figure  4.14, are 
depicted in Figure  4.15(a) and (b), respectively. Note that in this example, 
_set and _reset functions are both used as asynchronous SET and RESET 
inputs for the T and JK type flip-flops.

IN OUT
T      Q

C

tff_r

num

T      Q
C

num

0

Q0.0 I0.1 

I0.0 

I0.2  IN  

RESET

 IN  I0.3 Q0.0  

Q0.0  

SET

tff_f

0

Q0.7 I0.5 

I0.4 

I0.6  IN  

RESET

 IN  I0.7 Q0.7  

Q0.7  

SET

0

Q1.0 I1.1 
I1.0 

I1.3  IN  

RESET

 IN  I1.4 Q1.0

Q1.0

SET

Q1.7

J        Q
C

K

jkff_r

numI1.2 

0

I1.6 
I1.5 

J        Q
C

K

jkff_f

numI1.7 

(b)

FIGURE 4.15 (Continued)
The user program of UZAM_plc_16i16o_ex6.asm: (b) schematic diagram.
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5
Timer Macros

In this chapter, the following timer macros are described:

TON_8 (on-delay timer)
TOF_8 (off-delay timer)
TP_8 (pulse timer)
TOS_8 (oscillator timer)

Timers can be used in a wide range of applications where a time delay func-
tion is required based on an input signal. The definition of 8-bit variables 
to be used for the timer macros, and their allocation in BANK 0 of SRAM 
data memory are shown in Figure 5.1(a) and (b), respectively. The status bits, 
which will be explained in the next sections, of all timers are defined as 
shown in Figure 5.2(a). All 8-bit variables defined for timers must be cleared 
at the beginning of the PLC operation for a proper operation. Therefore, all 
variables of timer macros are initialized within the macro initialize, as 
shown in Figure 5.2(b). The file definitions.inc, included within the CD-ROM 
attached to this book, contains all timer macros defined for the PIC16F648A-
based PLC.

Let us now consider the timer macros. In the following, first, a general 
description is given for the considered timer function, and then its 8-bit 
implementation in the PIC16F648A-based PLC is provided.

5.1 On-Delay Timer (TON)

The on-delay timer can be used to delay setting an output true (ON—1) 
for a fixed period of time after an input signal becomes true (ON—1). The 
symbol and timing diagram of the on-delay timer (TON) are both shown 
in Figure  5.3. As the input signal IN goes true (ON—1), the timing func-
tion is started, and therefore the elapsed time ET starts to increase. When 
the elapsed time ET reaches the time specified by the preset time input PT, 
the output Q goes true (ON—1) and the elapsed time is held. The output Q 
remains true (ON—1) until the input signal IN goes false (OFF—0). If the 
input signal IN is not true (ON—1) longer than the delay time specified in 
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PT, the output Q remains false (OFF—0). The following section explains the 
implementation of eight 8-bit on-delay timers for the PIC16F648A-based PLC.

5.2 Macro TON_8 (8-Bit On-Delay Timer)

The macro TON_8 defines eight on-delay timers selected with the num = 
0, 1, …, 7. The macro TON_8 and its flowchart are shown in Figure 5.4. The 
symbol of the macro TON_8 is depicted in Table 5.1. IN (input signal), Q (out-
put signal = timer status bit), and CLK (free-running timing signals—ticks: 
T0.0, T0.1, …, T0.7, T1.0, T1.1, …, T1.7) are all defined as Boolean variables. 
The time constant tcnst is an integer constant (here, for 8-bit resolution, 
it is chosen as any number in the range 1–255) and is used to define preset 
time PT, which is obtained by the formula PT = tcnst × CLK, where CLK 
should be used as the period of the free-running timing signals—ticks. The 
on-delay timer outputs are represented by the status bits: TON8_Q,num 
(num = 0, 1, …, 7), namely, TON8_Q0, TON8_Q1, …, TON8_Q7, as shown 
in Figure 5.2(a). A Boolean variable, TON8_RED,num (num = 0, 1, …, 7), is 
used as a rising edge detector for identifying the rising edges of the chosen 
CLK. An 8-bit integer variable TON8+num (num = 0, 1, …, 7) is used to 
count the rising edges of the CLK. The count value of TON8+num (num = 0, 
1, …, 7) defines the elapsed time ET as follows: ET = CLK × count value of 

(a)

FIGURE 5.1
(a) The definition of 8-bit variables to be used for the timer macros. (Continued)
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47h TON8_Q
48h TOF8_Q
49h TP8_Q
4Ah TOS8_Q
4Bh TON8
4Ch TON8+1
4Dh TON8+2
4Eh TON8+3
4Fh TON8+4
50h TON8+5
51h TON8+6
52h TON8+7
53h TOF8
54h TOF8+1
55h TOF8+2
56h TOF8+3
57h TOF8+4
58h TOF8+5
59h TOF8+6
5Ah TOF8+7
5Bh TP8
5Ch TP8+1
5Dh TP8+2
5Eh TP8+3
5Fh TP8+4
60h TP8+5
61h TP8+6
62h TP8+7
63h TOS8
64h TOS8+1
65h TOS8+2
66h TOS8+3
67h TOS8+4
68h TOS8+5
69h TOS8+6
6Ah TOS8+7
6Bh TON8_RED
6Ch TOF8_RED
6Dh TP8_RED1
6Eh TP8_RED2
6Fh TOS8_RED

BANK 0

(b)

FIGURE 5.1 (Continued)
(b) Their allocation in BANK 0 of SRAM data memory. 
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TON8+num (num = 0, 1, …, 7). Let us now briefly consider how the macro 
TON_8 works. First, preset time PT is defined by means of a reference tim-
ing signal CLK = t_reg,t_bit and a time constant tcnst. If the input 
signal IN, taken into the macro by means of W, is false (OFF—0), then the 
output signal TON8_Q,num (num = 0, 1, …, 7) is forced to be false (OFF—0), 
and the counter TON8+num (num = 0, 1, …, 7) is loaded with 00h. If the 
input signal IN is true (ON—1) and the output signal Q, i.e., the status bit 
TON8_Q,num (num = 0, 1, …, 7), is false (OFF—0), then with each rising 

(a)

FIGURE 5.2
(a) The definition of status bits of timer macros. (Continued)
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(b)

FIGURE 5.2 (Continued)
(b) The initialization of all variables of timer macros within the macro initialize. 

0

0

0

PT

1

1

t0 t1

t1

t2 t3 t4 t5

t5

t0 t1 t2 t3 t4 t5

t4 + PTt0 + PT

IN

Q

ET

IN: INput
Q: Output
PT: Preset Time
ET: Elapsed Time

IN
PT

Q
ET

TON
BOOL
TIME

BOOL
TIME

FIGURE 5.3
The symbol and timing diagram of the on-delay timer (TON).
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edge of the reference timing signal CLK = t_reg,t_bit the related coun-
ter TON8+num is incremented by one. In this case, when the count value 
of TON8+num is equal to the number tcnst, then state change from 0 to 
1 is issued for the output signal (timer status bit) TON8_Q,num (num = 0, 
1, …, 7). If the input signal IN and the output signal Q, i.e., the status bit 
TON8_Q,num (num = 0, 1, …, 7) are both true (ON—1), then no action is 
taken and the elapsed time ET is held. In this macro a previously defined 
8-bit variable Temp_1 is also utilized.

5.3 Off-Delay Timer (TOF)

The off-delay timer can be used to delay setting an output false (OFF—0) 
for a fixed period of time after an input signal goes false (OFF—0); i.e., the 
output is held ON for a given period longer than the input. The symbol and 

(a)

FIGURE 5.4
(a) The macro TON_8 and (b) its flowchart. (Continued)
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Temp_1         W

(TON8+num)          00h
RESET TON8_Q,num
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N

Y
RESET TON8_RED,num

(TON8+num)=(TON8+num)+1

N

Y

Temp_1,0 = 1
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L1
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t_reg,t_bit = 1

t_reg,t_bit = 1
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?

?

?

?

?

?

(b)

FIGURE 5.4 (Continued)
(a) The macro TON_8 and (b) its flowchart. 
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timing diagram of the off-delay timer (TOF) are both shown in Figure 5.5. 
As the input signal IN goes true (ON—1), the output Q follows and remains 
true (ON—1), until the input signal IN is false (OFF—0) for the period speci-
fied in preset time input PT. As the input signal IN goes false (OFF—0), the 
elapsed time ET starts to increase. It continues to increase until it reaches 
the preset time input PT, at which point the output Q is set false (OFF—0) 
and the elapsed time is held. If the input signal IN is only false (OFF—0) for 
a period shorter than the input PT, the output Q remains true (ON—1). The 
following section explains the implementation of eight 8-bit off-delay timers 
for the PIC16F648A-based PLC.

0

0

0

PT

1

1

t0 t1 t2

t0 t2

t3 t4 t5

t1 t2 t3 t4 t5

t5+PTt1+PT

IN       Q 

PT     ET

TOF
BOOL

TIME

BOOL

TIME

IN

Q

ET

IN: INput
Q: Output
PT: Preset Time
ET: Elapsed Time

FIGURE 5.5
The symbol and timing diagram of the off-delay timer (TOF). 

TABLE 5.1

Symbol of the Macro TON_8

IN           Q

CLK 

tcnst 
num 

TON_8

PT = tcnst × CLK

IN (through W) = 0 or 1
CLK (t_reg,t_bit) = T0.0(1.024 ms), …, T1.7(3355.4432 ms)
tcnst (8bit) = 1, 2, ..., 255
num = 0, 1, …, 7
Q = TON8_Q,num (num= 0, 1, …, 7)
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5.4 Macro TOF_8 (8-Bit Off-Delay Timer)

The macro TOF_8 defines eight off-delay timers selected with the num = 0, 1, 
…, 7. The macro TOF_8 and its flowchart are shown in Figure 5.6. The sym-
bol of the macro TOF_8 is depicted in Table 5.2. IN (input signal), Q (output 
signal = timer status bit), and CLK (free-running timing signals—ticks: T0.0, 
T0.1, …, T0.7, T1.0, T1.1, …, T1.7) are all defined as Boolean variables. The time 
constant tcnst is an integer constant (here, for 8-bit resolution, it is chosen as 
any number in the range 1–255) and is used to define preset time PT, which 
is obtained by the formula PT = tcnst × CLK, where CLK should be used 
as the period of the free-running timing signals—ticks. The off-delay timer 
outputs are represented by the status bits: TOF8_Q,num (num = 0, 1, …, 7), 
namely, TOF8_Q0, TOF8_Q1, …, TOF8_Q7, as shown in Figure 5.2(a). We use 
a Boolean variable, TOF8_RED,num (num = 0, 1, …, 7), as a rising edge detec-
tor for identifying the rising edges of the chosen CLK. An 8-bit integer vari-
able TOF8+num (num = 0, 1, …, 7) is used to count the rising edges of the 

(a)

FIGURE 5.6
(a) The macro TOF_8 and (b) its flowchart. (Continued)
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FIGURE 5.6 (Continued)
(a) The macro TOF_8 and (b) its flowchart. 
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CLK. The count value of TOF8+num (num = 0, 1, …, 7) defines the elapsed 
time ET as follows: ET = CLK × count value of TOF8+num (num = 0, 1, …, 7). 
Let us now briefly consider how the macro TOF_8 works. First, preset time 
PT is defined by means of a reference timing signal CLK = t_reg,t_bit 
and a time constant tcnst. If the input signal IN, taken into the macro by 
means of W, is true (ON—1), then the output signal TOF8_Q,num (num = 0, 
1, …, 7) is forced to be true (ON—1), and the counter TOF8+num (num = 0, 
1, …, 7) is loaded with 00h. When IN = 1 and TOF8_Q,num = 1, if IN goes 
false (OFF—0), then with each rising edge of the reference timing signal CLK 
= t_reg,t_bit the related counter TOF8+num is incremented by one. In 
this case, when the count value of TOF8+num is equal to the number tcnst, 
then state change from 1 to 0 is issued for the output signal (timer status bit) 
TOF8_Q,num (num = 0, 1, …, 7). In this macro a previously defined 8-bit vari-
able Temp_1 is also utilized.

5.5 Pulse Timer (TP)

The pulse timer can be used to generate output pulses of a given time dura-
tion. The symbol and timing diagram of the pulse timer (TP) are both shown 
in Figure 5.7. As the input signal IN goes true (ON—1) (t0, t2, t4), the output Q 
follows and remains true (ON—1) for the pulse duration as specified by the 
preset time input PT. While the pulse output Q is true (ON—1), the elapsed 
time ET is increased (between t0 and t0 + PT, between t2 and t2 + PT, and 
between t4 and t4 + PT). On the termination of the pulse, the elapsed time 
ET is reset. The output Q will remain true (ON—1) until the pulse time has 
elapsed, irrespective of the state of the input signal IN. The following section 
explains the implementation of eight 8-bit pulse timers for the PIC16F648A-
based PLC.

TABLE 5.2

Symbol of the Macro TOF_8

IN           Q

CLK 

tcnst 
num 

TOF_8

PT = tcnst × CLK

IN (through W) = 0 or 1
CLK (t_reg,t_bit) = T0.0(1.024 ms), …, T1.7(3355.4432 ms)
tcnst (8bit) = 1, 2, ..., 255
num = 0, 1, …, 7
Q = TOF8_Q,num (num = 0, 1, …, 7)
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5.6 Macro TP_8 (8-Bit Pulse Timer)

The macro TP_8 defines eight pulse timers selected with the num = 0, 
1, …, 7. The macro TP_8 and its flowchart are shown in Figure 5.8. The sym-
bol of the macro TP_8 is depicted in Table 5.3. The macro TP_8 defines eight 
pulse timers selected with the num = 0, 1, …, 7. IN (input signal), Q (out-
put signal = timer status bit), and CLK (free-running timing signals—ticks: 
T0.0, T0.1, …, T0.7, T1.0, T1.1, …, T1.7) are all defined as Boolean variables. 
The time constant tcnst is an integer constant (here, for 8-bit resolution, 
it is chosen as any number in the range 1–255) and is used to define preset 
time PT, which is obtained by the formula PT = tcnst × CLK, where CLK 
should be used as the period of the free-running timing signals—ticks. The 
pulse timer outputs are represented by the status bits: TP8_Q,num (num = 
0, 1, …, 7), namely, TP8_Q0, TP8_Q1, …, TP8_Q7, as shown in Figure 5.2(a). 
A Boolean variable, TP8_RED1,num (num = 0, 1, …, 7), is used as a rising 
edge detector for identifying the rising edges of the chosen CLK. Similarly, 
another Boolean variable, TP8_RED2,num (num = 0, 1, …, 7), is used as a 
rising edge detector for identifying the rising edges of the input signal IN, 
taken into the macro by means of W. An 8-bit integer variable TP8+num 
(num = 0, 1, …, 7) is used to count the rising edges of the CLK. The count 
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t4+PT

t0+PT t2+PT t4+PT

FIGURE 5.7
The symbol and timing diagram of the pulse timer (TP).
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value of TP8+num (num = 0, 1, …, 7) defines the elapsed time ET as follows: 
ET = CLK × count value of TP8+num (num = 0, 1, …, 7). Let us now briefly 
consider how the macro TP_8 works. First, preset time PT is defined by 
means of a reference timing signal CLK = t_reg,t_bit and a time con-
stant tcnst. If the rising edge of the input signal IN is detected, by means 
of TP8_RED2,num, then the output signal TP8_Q,num (num = 0, 1, …, 7) is 
forced to be true (ON—1). After the output becomes true, i.e., TP8_Q,num = 
1, the related counter TP8+num is incremented by one with each rising edge 
of the reference timing signal CLK = t_reg,t_bit detected by means of 
TP8_RED1,num. When the count value of TP8+num is equal to the number 
tcnst, then state change from 1 to 0 is issued for the output signal (timer 

(a)

FIGURE 5.8
(a) The macro TP_8 and (b) its flowchart. (Continued)
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Y

N

Y

N
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RESET  TP8_RED2,num
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L3 

L2

Temp_1,0 = 1
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FIGURE 5.8 (Continued)
(a) The macro TP_8 and (b) its flowchart. 



111Timer Macros

© 2008 Taylor & Francis Group, LLC

status bit) TP8_Q,num (num = 0, 1, …, 7), and at the same time the counter 
TP8+num (num = 0, 1, …, 7) is cleared. In this macro a previously defined 
8-bit variable Temp_1 is also utilized.

5.7 Oscillator Timer (TOS)

The oscillator timer can be used to generate pulse trains with given dura-
tions for true (ON) and false (OFF) times. Therefore, the oscillator timer can 
be used in pulse width modulation (PWM) applications. The symbol and 
timing diagram of the oscillator timer (TOS) are both shown in Figure 5.9. 
PT0 (respectively PT1) defines the false (OFF) time (respectively true (ON) 
time) of the pulse. As the input signal IN goes and remains true (ON—1), 
the OFF timing function is started, and therefore the elapsed time ET0 is 
increased. When the elapsed time ET0 reaches the time specified by the pre-
set time input PT0, the output Q goes true (ON—1) and ET0 is cleared. At 
the same time, as long as the input signal IN remains true (ON—1), the ON 
timing function is started, and therefore the elapsed time ET1 is increased. 
When the elapsed time ET1 reaches the time specified by the preset time 
input PT1, the output Q goes false (OFF—1) and ET1 is cleared. Then it is 
time for the next operation for OFF and ON times. This operation will carry 
on as long as the input signal IN remains true (ON—1), generating the pulse 
trains based on PT0 and PT1. If the input signal IN goes and remains false 
(OFF—0), then the output Q is forced to be false (OFF—0). The following sec-
tion explains the implementation of eight 8-bit oscillator timers (TOS) for the 
PIC16F648A-based PLC.

TABLE 5.3

Symbol of the Macro TP_8

IN           Q

CLK 

tcnst 
num 

TP_8

PT = tcnst × CLK

IN (through W) = 0 or 1
CLK (t_reg,t_bit) = T0.0(1.024 ms), …, T1.7(3355.4432 ms)
tcnst (8bit) = 1, 2, ..., 255
num = 0, 1, …, 7
Q = TP8_Q,num (num = 0, 1, …, 7)
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5.8 Macro TOS_8 (8-Bit Oscillator Timer)

The macro TOS_8 defines eight oscillator timers selected with the num = 0, 1, 
…, 7. The macro TOS_8 and its flowchart are shown in Figure 5.10. The sym-
bol of the macro TOS_8 is depicted in Table 5.4. IN (input signal), Q (output 
signal = timer status bit), and CLK (free-running timing signals—ticks: T0.0, 
T0.1, …, T0.7, T1.0, T1.1, …, T1.7) are all defined as Boolean variables. The 
time constant tcnst0 is an integer constant (here, for 8-bit resolution, it is 
chosen as any number in the range 1–255) and is used to define preset time 
PT0, which is obtained by the formula PT0 = tcnst0 × CLK, where CLK 
should be used as the period of the free-running timing signals—ticks. The 
time constant tcnst1 is an integer constant (here, for 8-bit resolution, it is cho-
sen as any number in the range 1–255) and is used to define preset time PT1, 
which is obtained by the formula PT1 = tcnst1 × CLK, where CLK should 
be used as the period of the free-running timing signals—ticks. The oscillator 
timer outputs are represented by the status bits: TOS8_Q,num (num = 0, 1, 
…, 7), namely, TOS8_Q0, TOS8_Q1, …, TOS8_Q7, as shown in Figure 5.2(a). 
We use a Boolean variable, TOS8_RED,num (num = 0, 1, …, 7), as a rising 
edge detector for identifying the rising edges of the chosen CLK. An 8-bit 

0
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0

PT0

1

1

t0

t0+PT0

IN         Q 

PT0   ET0

TOS
BOOL

TIME
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t0

IN: INput
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PT0: Preset Time0
ET0: Elapsed Time0
PT1: Preset Time1
ET1: Elapsed Time1  

t1

TIME
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TIMEPT1   ET1

t0+PT0+PT1 t0+2PT0+2PT1

t0+2PT0+PT1 t0+3PT0+2PT1
t1

ET1

PT1

t1

FIGURE 5.9
Symbol and timing diagram of the oscillator timer (TOS).



113Timer Macros

© 2008 Taylor & Francis Group, LLC

integer variable TOS8+num (num = 0, 1, …, 7) is used to count the rising 
edges of the CLK. Note that we use the same counter TOS8+num (num = 0, 
1, …, 7) to obtain the time delays for both OFF and ON times, as these dura-
tions are mutually exclusive. The count value of TOS8+num (num = 0, 1, …, 
7) defines the elapsed time ET0 or ET1 as follows: ET(0 or 1) = CLK × count 
value of TOS8+num (num = 0, 1, …, 7). Let us now briefly consider how the 
macro TOS_8 works. First, preset time PT0 (respectively PT1) is defined 
by means of a reference timing signal CLK = t_reg,t_bit and a time 

(a)

FIGURE 5.10
(a) The macro TOS_8 and (b) its flowchart. (Continued)
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FIGURE 5.10 (Continued)
(a) The macro TOS_8 and (b) its flowchart. 
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constant tcnst0 (respectively tcnst1). If the input signal IN, taken into the 
macro by means of W, is false (OFF—0), then the output signal TOS8_Q,num 
(num = 0, 1, …, 7) is forced to be false (OFF—0), and the counter TOS8+num 
(num = 0, 1, …, 7) is loaded with 00h. If the input signal IN is true (ON—1) 
and the output signal Q, i.e., the status bit TON8_Q,num (num = 0, 1, …, 
7), is false (OFF—0), then with each rising edge of the reference timing sig-
nal CLK = t_reg,t_bit the related counter TON8+num is incremented 
by one. In this case, when the count value of TON8+num is equal to the 
number tcnst0, then TON8+num is cleared and a state change from 0 to 
1 is issued for the output signal (timer status bit) TON8_Q,num (num = 0, 
1, …, 7). If both the input signal IN and the output signal Q, i.e., the status 
bit TON8_Q,num (num = 0, 1, …, 7), are true (ON—1), then with each rising 
edge of the reference timing signal CLK = t_reg,t_bit the related coun-
ter TON8+num is incremented by one. In this case, when the count value 
of TON8+num is equal to the number tcnst1, then TON8+num is cleared 
and a state change from 1 to 0 is issued for the output signal (timer status 
bit) TON8_Q,num (num = 0, 1, …, 7). This process will continue as long as 
the input signal IN remains true (ON—1). In this macro a previously defined 
8-bit variable Temp_1 is also utilized.

5.9 Example for Timer Macros

In this section, we will consider an example, namely, UZAM_plc_16i16o_ex7 
.asm, to show the usage of timer macros. In order to test this example, please 
take the file from the CD-ROM attached to this book and then open the pro-
gram by MPLAB IDE and compile it. After that, by using the PIC program-
mer software, take the compiled file UZAM_plc_16i16o_ex7.hex, and by your 
PIC programmer hardware, send it to the program memory of PIC16F648A 

TABLE 5.4

Symbol of the Macro TOS_8

IN           Q 

CLK 

num

TOS_8

tcnst0
tcnst1

PT0 = tcnst0 × CLK
PT1 = tcnst1 × CLK

IN (through W) = 0 or 1
CLK (t_reg,t_bit) = T0.0(1.024 ms), …, T1.7(3355.4432 ms)
tcnst0 (8bit) = 1, 2, ..., 255
tcnst1 (8bit) = 1, 2, ..., 255
num = 0, 1, …, 7
Q = TOS8_Q,num (num = 0, 1, …, 7)
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microcontroller within the PIC16F648A-based PLC. To do this, switch the 
4PDT in PROG position and the power switch in OFF position. After load-
ing the UZAM_plc_16i16o_ex7.hex, switch the 4PDT in RUN and the power 
switch in the ON position. Please check the program’s accuracy by cross-
referencing it with the related macros.

Let us now consider this example program: The example program UZAM_
plc_16i16o_ex7.asm is shown in Figure 5.11. It shows the usage of all timer 
macros described above. The ladder diagram of the user program of UZAM_
plc_16i16o_ex7.asm, shown in Figure 5.11, is depicted in Figure 5.12.

In the first two rungs, an on-delay timer TON_8 is implemented as fol-
lows: the input signal IN is taken from I0.0 num = 0, and therefore we choose 
the first on-delay timer, whose timer status bit (or output Q) is TON8_Q0. 
The preset time PT = tcnst × CLK = 50 × 104.8576 ms (T1.2) = 5242.88 ms = 
5.24288 s. As can be seen from the second rung, the timer status bit TON8_Q0 
is sent to output Q0.0.

In rungs 3 and 4, an off-delay timer TOF_8 is implemented as follows: the 
input signal IN is taken from I0.2 num = 1, and therefore we choose the sec-
ond off-delay timer, whose timer status bit (or output Q) is TOF8_Q1. The 
preset time PT = tcnst × CLK = 50 × 104.8576 ms (T1.2) = 5242.88 ms = 
5.24288 s. As can be seen from rung 4, the timer status bit TOF8_Q1 is sent to 
output Q0.2.

In rungs 5 and 6, a pulse timer TP_8 is implemented as follows: the input 
signal IN is taken from I0.4 num = 2, and therefore we choose the third pulse 
timer, whose timer status bit (or output Q) is TP8_Q2. The preset time PT = 
tcnst × CLK = 50 × 104.8576 ms (T1.2) = 5242.88 ms = 5.24288 s. As can be 
seen from rung 6, the timer status bit TP8_Q2 is sent to output Q0.4.

In rungs 7 and 8, an oscillator timer TOS_8 is implemented as follows: 
the input signal IN is taken from I0.6 num = 3, and therefore we choose the 
fourth oscillator timer, whose timer status bit (or output Q) is TOS8_Q3. The 
preset time PT0 = tcnst0 × CLK = 50 × 104.8576 ms (T1.2) = 5242.88 ms = 
5.24288 s. The preset time PT1 = tcnst1 × CLK = 50 × 104.8576 ms (T1.2) = 
5242.88 ms = 5.24288 s. In this setup, the pulse trains we will obtain have a 
50% duty cycle with the time period of T = 100 × 104.8576 ms = 10,485.76 ms 
= 10.48576 s. As can be seen from rung 8, the timer status bit TOS8_Q3 is sent 
to output Q0.6.

In rungs 9 and 10, another on-delay timer TON_8 is implemented as fol-
lows: the input signal IN is taken from I1.1 num = 4, and therefore we choose 
the fifth on-delay timer, whose timer status bit (or output Q) is TON8_Q4. 
The preset time PT = tcnst × CLK = 10 × 419.4304 ms (T1.4) = 4194.304 ms = 
4.194304 s. As can be seen from rung 10, the timer status bit TON8_Q4 is sent 
to output Q1.1.

In rungs 11 and 12, another off-delay timer TOF_8 is implemented as 
follows: the input signal IN is taken from I1.3 num = 5, and therefore 
we choose the sixth off-delay timer, whose timer status bit (or output 
Q) is TOF8_Q5. The preset time PT = tcnst × CLK = 10 × 419.4304 ms 
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FIGURE 5.11
The user program of UZAM_plc_16i16o_ex7.asm.
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FIGURE 5.12
The ladder diagram of the user program of UZAM_plc_16i16o_ex7.asm.
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(T1.4) = 4194.304 ms = 4.194304 s. As can be seen from rung 12, the timer 
status bit TOF8_Q5 is sent to output Q1.3.

In rungs 13 and 14, another pulse timer TP_8 is implemented as follows: the 
input signal IN is taken from I1.5 num = 6, and therefore we choose the sev-
enth pulse timer, whose timer status bit (or output Q) is TP8_Q6. The preset 
time PT = tcnst × CLK = 10 × 419.4304 ms (T1.4) = 4194.304 ms = 4.194304 s. 
As can be seen from rung 14, the timer status bit TP8_Q6 is sent to output Q1.5.

In rungs 15 and 16, another oscillator timer TOS_8 is implemented as fol-
lows: the input signal IN is taken from I1.7 num = 7, and therefore we choose 
the eighth oscillator timer, whose timer status bit (or output Q) is TOS8_Q7. 
The preset time PT0 = tcnst0 × CLK = 10 × 419.4304 ms (T1.4) = 4194.304 ms 
= 4.194304 s. The preset time PT1 = tcnst1 × CLK = 10 × 419.4304 ms (T1.4) = 
4194.304 ms = 4.194304 s. In this setup, the pulse trains we will obtain have a 
50% duty cycle with the time period of T = 20 × 419,4304 ms = 8,388608 s. As 
can be seen from rung 16, the timer status bit TOS8_Q7 is sent to output Q1.7.
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6
Counter Macros

In this chapter, the following counter macros are described:

CTU_8 (up counter)
CTD_8 (down counter)
CTUD_8 (up/down counter)

In addition two macros, move_R and load_R, are also described for data 
transfer.

6.1 Move and Load Macros

In a PLC, numbers are often required to be moved from one location to 
another; a timer preset value may be required to be changed according to 
plant conditions, or the result of some calculations may be used in another 
part of a program. To satisfy this need for 8-bit variables, in the PIC16F648A-
based PLC we define the macro move_R. Similarly, the macro load_R is also 
described to load an 8-bit number into an 8-bit variable.

The algorithm and the symbol of the macro move_R are depicted in 
Table 6.1. Figure 6.1 shows the macro move_R and its flowchart. In this macro, 
EN is a Boolean input variable taken into the macro through W, and ENO is 
a Boolean output variable sent out from the macro through W. Output ENO 
follows the input EN. This means that when EN = 0, ENO is forced to be 
0, and when EN = 1, ENO is forced to be 1. This is especially useful if we 
want to carry out more than one operation based on a single input condition. 
When EN = 1, the macro move_R transfers the data from the 8-bit input vari-
able IN to the 8-bit output variable OUT.

The algorithm and the symbol of the macro load_R are depicted in 
Table 6.2. Figure 6.2 shows the macro load_R and its flowchart. In this macro, 
EN is a Boolean input variable taken into the macro through W, and ENO is 
a Boolean output variable sent out from the macro through W. Output ENO 
follows the input EN. This means that when EN = 0, ENO is forced to be 0, 
and when EN = 1, ENO is forced to be 1. When EN = 1, the macro load_R 
transfers the 8-bit constant data IN, within the 8-bit output variable OUT.
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TABLE 6.1

Algorithm and Symbol of the Macro move_R

Algorithm Symbol

if EN = 1 then
OUT = IN;
ENO = 1;

else ENO = 0;
end if ;

EN ENO

IN OUT

W W

move_R
IN, OUT (8 bit register)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and the Symbol of the Macro move _ R

Temp_1        W

  Y     

N

OUT         IN
W         Temp_1

L1

Temp_1,0 = 1?    

begin

end

(a) (b)

FIGURE 6.1
(a) The macro move_R and (b) its flowchart.

TABLE 6.2

Algorithm and Symbol of the Macro load_R

Algorithm Symbol

if EN = 1 then
OUT = IN;
ENO = 1;

else ENO = 0;
end if ;

EN ENO

IN OUT

W W

load_R
IN (8 bit constant)
OUT (8 bit register)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and the Symbol of the Macro load _ R
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The file definitions.inc, included within the CD-ROM attached to this 
book, contains these two macros.

6.2 Counter Macros

Counters can be used in a wide range of applications. In this chapter, three 
counter functions, up counter, down counter, and up/down counter, are 
described. The definition of 8-bit variables to be used for the counter mac-
ros, and their allocation in BANK 0 of SRAM data memory are both shown 
in Figure 6.3(a) and (b), respectively. Here, it is important to note that as we 
restrict ourselves to use the BANK 0, where there are not enough registers 
left, we cannot define different sets of 8-bit variables to be used in the count-
ing process for each counter type. Rather, we define eight 8-bit variables and 
share them for each counter type. As a result, in total we can define eight dif-
ferent counters at most, irrespective of the counter type. The status bits, which 
will be explained in the next sections, of all counters are defined as shown 
in Figure 6.4(a). All the 8-bit variables defined for counters must be cleared 
at the beginning of the PLC operation for a proper operation. Therefore, 
all variables of counter macros are initialized within the macro initial-
ize, as shown in Figure 6.4(b). The file definitions.inc, included within the 
CD-ROM attached to this book, contains all counter macros defined for the 
PIC16F648A-based PLC.

Temp_1        W

Temp_1,0 = 1

Y

N

OUT          IN
W        Temp_1

L1

?   

begin

end

(a) (b)

FIGURE 6.2
(a) The macro load_R and (b) its flowchart.
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Let us now consider the counter macros. In the following, first, a general 
description will be given for the considered counter function, and then its 
implementation in the PIC16F648A-based PLC will be provided.

6.3 Up Counter (CTU)

The up counter (CTU) can be used to signal when a count has reached 
a maximum value. The symbol of the up counter (CTU) is shown in 
Figure 6.5, while its truth table is given in Table 6.3. The up counter counts 

(a)

CTU8_Q
CTD8_Q

CTUD8_Q
CV_8

CV_8+1
CV_8+2
CV_8+3
CV_8+4
CV_8+5
CV_8+6
CV_8+7

CTU8_RED
CTD8_RED

CTUD8_RED

BANK 0

70h
71h
72h
73h
74h
75h
76h
77h
78h
79h
7Ah
7Bh
7Ch
7Dh
7Eh
7Fh

(b)

FIGURE 6.3
(a) Definition of 8-bit variables to be used for the counter macros. (b) Their allocation in BANK 
0 of SRAM data memory.
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(a)

(b)

FIGURE 6.4
(a) Definition of status bits of counter macros. (b) The initialization of all variables of counter 
macros within the macro initialize.
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the number of rising edges (↑) detected at the input CU. PV defines the 
maximum value for the counter. Each time the counter is called with a new 
rising edge (↑) on CU, the count value CV is incremented by one. When 
the counter reaches the PV value, the counter output Q is set true (ON—1) 
and the counting stops. The reset input R can be used to set the output Q 
false (OFF—0) and clear the count value CV to zero. The following section 
explains the implementation of eight 8-bit up counters for the PIC16F648A-
based PLC.

6.4 Macro CTU_8 (8-Bit Up Counter)

The macro CTU_8 defines eight up counters selected with the num = 
0, 1, …, 7. Table  6.4 shows the symbol of the macro CTU_8. The macro 
CTU_8 and its flowchart are depicted in Figure 6.6. CU (count up input), 
Q (output signal = counter status bit), and R (reset input) are all defined as 
Boolean variables. The PV (preset value) is an integer constant (here, for 
8-bit resolution, it is chosen as any number in the range 1–255) and is used 
to define a maximum count value for the counter. The counter outputs are 
represented by the counter status bits: CTU8_Q,num (num = 0, 1, …, 7), 
namely, CTU8_Q0, CTU8_Q1, …, CTU8_Q7, as shown in Figure 6.4(a). We 

CTU
CU Q

R

PV CV

BOOL BOOL

INT INT

BOOL

CU: Count Up Input
R: Reset Input
PV: Preset Value
Q: Counter Output
CV: Count Value

FIGURE 6.5
The up counter (CTU).

TABLE 6.3

Truth Table of the Up Counter (CTU)

CU R Operation

× 1 1. Set the output Q false (OFF – LOW)
2. Clear the count value CV to zero

0 0 NOP (No Operation is done)
1 0 NOP

0 NOP

0 If CV < PV, then increment CV (i.e. CV = CV + 1).
If CV = PV, then hold CV and set the output Q true (ON – HIGH).
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use a Boolean variable, CTU8_RED,num (num = 0, 1, …, 7), as a rising 
edge detector for identifying the rising edges of the CU. An 8-bit integer 
variable CV_8+num (num = 0, 1, …, 7) is used to count the rising edges of 
the CU. Let us now briefly consider how the macro CTU_8 works. If the 
input signal R is true (ON—1), then the output signal CTU8_Q,num (num 
= 0, 1, …, 7) is forced to be false (OFF—0), and the counter CV_8+num 
(num = 0, 1, …, 7) is loaded with 00h. If the input signal R is false (OFF—
0), then with each rising edge of the CU, the related counter CV_8+num 
is incremented by one. In this case, when the count value of CV_8+num 
is equal to the PV, then state change from 0 to 1 is issued for the output 

(a)

FIGURE 6.6
(a) The macro CTU_8 and (b) its flowchart. (Continued)

TABLE 6.4

Symbol of the Macro CTU_8

CU

CTU_8

Q

R
PV
num

num = 0, 1, ..., 7
CU (cu_reg,cu_bit) = 0, 1
R (rs_reg,rs_bit) = 0, 1
PV (8 bit constant) = 1, 2, ..., 255
Q = CTU8_Q,num (num = 0, 1, ..., 7)

Symbol of the Macro CTU _ 8
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N

SET  CTU8_Q,num

Y

N

Y

RESET  CTU8_RED,num
(CV_8+num)=(CV_8+num)+1

N

Y

N

Y

(CV_8+num)          00h
RESET  CTU8_Q,num

Y

N

SET  CTU8_RED,num

Y

N

rs_reg,rs_bit = 0?    

L1

CTU8_Q,num = 0?   

cu_reg,cu_bit  = 1?   

cu_reg,cu_bit  = 1?    

CTU8_RED,num = 1
?

(CV_8+num) = PV
?   

L2

begin

end   

(b)

FIGURE 6.6 (Continued)
(a) The macro CTU_8 and (b) its flowchart. 
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signal (counter status bit) CTU8_Q,num (num = 0, 1, …, 7) and the count-
ing stops.

6.5 Down Counter (CTD)

The down counter (CTD) can be used to signal when a count has reached 
zero, on counting down from a preset value. The symbol of the down coun-
ter (CTD) is shown in Figure 6.7, while its truth table is given in Table 6.5. 
The down counter counts down the number of rising edges (↑) detected at 
the input CD. PV defines the starting value for the counter. Each time the 
counter is called with a new rising edge (↑) on CD, the count value CV is 
decremented by one. When the counter reaches zero, the counter output Q 
is set true (ON—1) and the counting stops. The load input LD can be used 
to clear the output Q to false (OFF—0) and load the count value CV with the 
preset value PV. The following section explains the implementation of eight 
8-bit down counters for the PIC16F648A-based PLC.

CTD
CD Q

LD

PV CV

BOOL

INT

BOOL

INT

BOOL

CD: Count Down Input
LD:  Load Input
PV: Preset Value
Q: Counter Output
CV: Count Value

FIGURE 6.7
The down counter (CTD).

TABLE 6.5

Truth Table of the Down Counter (CTD)

CD LD Operation

× 1 1. Clear the output Q to false (OFF – LOW)
2. Load the count value CV with the preset value PV

0 0 NOP (No Operation is done)
1 0 NOP

0 NOP

0 If CV > 0, then decrement CV (i.e., CV = CV – 1).
If CV = 0, then hold CV and set the output Q true (ON – HIGH).
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6.6 Macro CTD_8 (8-Bit Down Counter)

The macro CTD_8 defines eight down counters selected with the num = 0, 1, 
…, 7. Table 6.6 shows the symbol of the macro CTD_8. The macro CTD_8 and 
its flowchart are depicted in Figure 6.8. CD (count down input), Q (output 
signal = counter status bit), and LD (load input) are all defined as Boolean 

(a)

FIGURE 6.8
(a) The macro CTD_8 and (b) its flowchart. (Continued)

TABLE 6.6

Symbol of the Macro CTD_8

CD

CTD_8

Q

LD
PV
num

num = 0, 1, ..., 7
CD (cd_reg,cd_bit) = 0, 1
LD (ld_reg,ld_bit) = 0, 1
PV (8 bit constant) = 1, 2, ..., 255
Q = CTD8_Q,num (num = 0, 1, ..., 7)

Symbol of the Macro CTD _ 8
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Y

N

N

Y

N

Y

N

 SET  CTD8_Q,num

(CV_8+num)           PV
RESET  CTD8_Q,num

Y

SET  CTD8_RED,num

N

Y
RESET  CTD8_RED,num

(CV8+num)=(CV8+num) – 1

N

Y

ld_reg,ld_bit = 0?

L2

CTD8_Q,num = 0?

cd_reg,cd_bit = 1?

cd_reg,cd_bit = 1?

CTD8_RED,num = 1?

(CV8+num) = 0?

L1   

N

Y

(CV8+num) ≠ 0
?

begin

end

(b)

FIGURE 6.8 (Continued)
(a) The macro CTD_8 and (b) its flowchart.
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variables. The PV (preset value) is an integer constant (here, for 8-bit resolu-
tion, it is chosen as any number in the range 1–255) and is used to define a start-
ing value for the counter. The counter outputs are represented by the counter 
status bits: CTD8_Q,num (num = 0, 1, …, 7), namely, CTD8_Q0, CTD8_Q1, 
…, CTD8_Q7, as shown in Figure 6.4(a). We use a Boolean variable, CTD8_
RED,num (num = 0, 1, …, 7), as a rising edge detector for identifying the ris-
ing edges of the CD. An 8-bit integer variable CV_8+num (num = 0, 1, …, 7) is 
used to count the rising edges of the CD. Let us now briefly consider how the 
macro CTD_8 works. If the input signal LD is true (ON—1), then the output 
signal CTU8_Q,num (num = 0, 1, …, 7) is forced to be false (OFF—0), and the 
counter CV_8+num (num = 0, 1, …, 7) is loaded with PV. If the input signal 
LD is false (OFF—0), then with each rising edge of the CD, the related coun-
ter CV_8+num is decremented by one. In this case, when the count value of 
CV_8+num is equal to zero, then state change from 0 to 1 is issued for the 
output signal (counter status bit) CTU8_Q,num (num = 0, 1, …, 7) and the 
counting stops.

6.7 Up/Down Counter (CTUD)

The up/down counter (CTUD) has two inputs CU and CD. It can be used to 
both count up on one input and count down on the other. The symbol of the 
up/down counter (CTUD) is shown in Figure 6.9, while its truth table is given 
in Table 6.7. The up/down counter counts up the number of rising edges (↑) 
detected at the input CU. The up/down counter counts down the number of 
rising edges (↑) detected at the input CD. PV defines the maximum value for 
the counter. When the counter reaches the PV value, the counter output Q is 
set true (ON—1) and the counting up stops. The reset input R can be used 
to set the output Q false (OFF—0) and clear the count value CV to zero. The 
load input LD can be used to load the count value CV with the preset value 
PV. When the counter reaches zero, the counting down stops. The following 

CTUD
CU

CD

Q

LD
PV CV

BOOL

INT
BOOL

RBOOL

BOOL

BOOL

INT

CU: Count Up Input
CD: Count Down Input
R:  Reset Input
LD:  Load Input
PV: Preset Value
Q: Counter Output
CV: Count Value

FIGURE 6.9
The up/down counter (CTUD).
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section explains the implementation of eight 8-bit up/down counters for the 
PIC16F648A-based PLC.

6.8 Macro CTUD_8 (8-Bit Up/Down Counter)

The macro CTUD_8 defines eight up/down counters selected with the num = 
0, 1, …, 7. Table 6.8 shows the symbol of the macro CTUD_8. The macro CTUD8 
and its flowchart are depicted in Figure 6.10. CU (count up input), CD (count 
down input), Q (output signal = counter status bit), R (reset input), and LD 

TABLE 6.7

Truth Table of the Up/Down Counter (CTUD)

CU CD R LD Operation

× × 1 × 1. Set the output Q false (OFF – LOW)
2. Clear the count value CV to zero

× × 0 1 Load the count value CV with the preset value PV
0 0 0 0 NOP (No Operation is done)
0 1 0 0 NOP
1 0 0 0 NOP
1 1 0 0 NOP
1 0 0 NOP

1 0 0 NOP
× 0 0 NOP

× 0 0 NOP

0 0 0 If CV < PV, then increment CV.
If CV = PV, then hold CV and set the output Q true (ON – HIGH).

0 0 0 If CV > 0, then decrement CV.

TABLE 6.8

Symbol of the Macro CTUD8

CD

CTUD_8

Q
CD

R
LD

PV
num

num = 0, 1, ..., 7
CU (cu_reg,cu_bit) = 0, 1
CD (cd_reg,cd_bit) = 0, 1
R (rs_reg,rs_bit) = 0, 1
LD (ld_reg,ld_bit) = 0, 1
PV (8 bit constant) = 1, 2, ..., 255
Q = CTUD8_Q,num (num = 0, 1, ..., 7)
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(load input) are all defined as Boolean variables. The PV (preset value) is an 
integer constant (here, for 8-bit resolution, it is chosen as any number in the 
range 1–255) and is used to define a maximum count value for the counter. The 
counter outputs are represented by the counter status bits: CTUD8_Q,num 
(num = 0, 1, …, 7), namely, CTUD8_Q0, CTUD8_Q1, …, CTUD8_Q7, as shown 

(a)

FIGURE 6.10
(a) The macro CTUD8 and (b) its flowchart. (Continued)
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(CV_8+num)         00h
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?

begin

end

(b)

FIGURE 6.10 (Continued)
(a) The macro CTUD8 and (b) its flowchart. 
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in Figure 6.4(a). We use a Boolean variable, CTUD8_RED,num (num = 0, 1, …, 
7), as a rising edge detector for identifying the rising edges of the inputs CU 
or CD. An 8-bit integer variable CV_8+num (num = 0, 1, …, 7) is used to count 
up the rising edges of the CU and count down the rising edges of the CD. 
Let us now briefly consider how the macro CTUD_8 works. If the input signal 
R is true (ON—1), then the output signal CTU8_Q,num (num = 0, 1, …, 7) is 
forced to be false (OFF—0), and the counter CV_8+num (num = 0, 1, …, 7) is 
loaded with 00h. If the input signal R is false (OFF—0) and the input signal 
LD is true (ON—1), then the counter CV_8+num (num = 0, 1, …, 7) is loaded 
with PV. If the input signal R is false (OFF—0), the input signal LD is false 
(OFF—0), and the CD is false (OFF—0), then with each rising edge of the CU, 
the related counter CV_8+num is incremented by one. In this case, when the 
count value of CV_8+num is equal to the PV, then state change from 0 to 1 
is issued for the output signal (counter status bit) CTU8_Q,num (num = 0, 
1, …, 7) and the counting up stops. If the input signal R is false (OFF—0), the 
input signal LD is false (OFF—0), and the CU is false (OFF—0), then with 
each rising edge of the CD, the related counter CV_8+num is decremented by 
one. The counting down stops when the CV reaches zero.

6.9 Examples for Counter Macros

In this section, we will consider four examples, namely, UZAM_plc_16i16o_
exX.asm (X = 8, 9, 10, 11), to show the usage of counter macros. In order to test 
one of these examples, please take the related file UZAM_plc_16i16o_exX 
.asm (X = 8, 9, 10, 11) from the CD-ROM attached to this book, and then open 
the program by MPLAB IDE and compile it. After that, by using the PIC 
programmer software, take the compiled file UZAM_plc_16i16o_exX.hex 
(X = 8, 9, 10, 11), and by your PIC programmer hardware, send it to the pro-
gram memory of PIC16F648A microcontroller within the PIC16F648A-based 
PLC. To do this, switch the 4PDT in PROG position and the power switch in 
OFF position. After loading the file UZAM_plc_16i16o_exX.hex (X = 8, 9, 10, 
11), switch the 4PDT in RUN and the power switch in ON position. Please 
check the program’s accuracy by cross-referencing it with the related macros.

Let us now consider these example programs: The first example program, 
UZAM_plc_16i16o_ex8.asm, is shown in Figure  6.11. It shows the usage 
of the macro CTU_8. The ladder diagram of the user program of UZAM_
plc_16i16o_ex8.asm, shown in Figure 6.11, is depicted in Figure 6.12. In the 
first two rungs, an up counter CTU_8 is implemented as follows: the count 
up input CU is taken from I0.0, while the reset input R is taken from I0.1 num 
= 0, and therefore we choose the first up counter, whose counter status bit (or 
output Q) is CTU8_Q0. The preset value PV = 15. As can be seen from the sec-
ond rung, the state of the counter status bit CTU8_Q0 is sent to output Q0.0. 
In the third rung, by using the move_R function, the contents of the register 
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CV_8, which keeps the current count value (CV) of the first up counter, are 
sent to the output register Q1.

The second example program, UZAM_plc_16i16o_ex9.asm, is shown in 
Figure  6.13. It shows the usage of the macro CTD_8. The ladder diagram 
of the user program of UZAM_plc_16i16o_ex9.asm, shown in Figure  6.13, 

FIGURE 6.11
The user program of UZAM_plc_16i16o_ex8.asm.

(      )
Q0.0

1
I0.0

CTU8_Q0
2

0
15

CTU_8

CU Q
R

PV
num

I0.1

3
LOGIC1

EN ENO

IN OUT

move_R

Q1CV_8

FIGURE 6.12
The ladder diagram of the user program of UZAM_plc_16i16o_ex8.asm.

FIGURE 6.13
The user program of UZAM_plc_16i16o_ex9.asm.
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is depicted in Figure 6.14. In the first two rungs, a down counter CTD_8 is 
implemented as follows: the count down input CD is taken from I0.2, while 
the load input LD is taken from I0.3 num = 4, and therefore we choose the 
fifth down counter, whose counter status bit (or output Q) is CTD8_Q4. The 
preset value PV = 10. As can be seen from the second rung, the state of the 
counter status bit CTD8_Q4 is sent to output Q0.4. In the third rung, by using 
the move_R function the contents of the register CV_8+4, which keeps the 
current count value (CV) of the fifth down counter, are sent to the output 
register Q1.

The third example program, UZAM_plc_16i16o_ex10.asm, is shown in 
Figure 6.15. It shows the usage of the macro CTUD_8. The ladder diagram of 
the user program of UZAM_plc_16i16o_ex10.asm, shown in Figure 6.15, is 
depicted in Figure 6.16. In the first two rungs, an up/down counter CTUD_8 
is implemented as follows: the count up input CU is taken from I0.4, the 
count down input CD is taken from I0.5, while the reset input R is taken 

Q0.4

1
I0.2

CTD8_Q4
2

4
10

CTD_8

CD Q
LD

PV
num

I0.3

3
LOGIC1

EN ENO

IN OUT

move_R

Q1CV_8+4

FIGURE 6.14
The ladder diagram of the user program of UZAM_plc_16i16o_ex9.asm.

FIGURE 6.15
The user program of UZAM_plc_16i16o_ex10.asm.
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from I0.6 and the load input LD is taken from I0.7 num = 7, and therefore 
we choose the eighth up/down counter, whose counter status bit (or output 
Q) is CTUD8_Q7. The preset value PV = 20. As can be seen from the second 
rung, the state of the counter status bit CTUD8_Q7 is sent to output Q0.7. In 
the third rung, by using the move_R function the contents of the register 
CV_8+7, which keeps the current count value (CV) of the eighth up/down 
counter, are sent to the output register Q1.

The fourth and last example program, UZAM_plc_16i16o_ex11.asm, is 
shown in Figure 6.17. It shows the usage of all counter macros. The ladder 
diagram of the user program of UZAM_plc_16i16o_ex11.asm, shown in 
Figure 6.17, is depicted in Figure 6.18. This example contains the previous 
three examples in one program.

In the first two rungs, an up counter CTU_8 is implemented as follows: the 
count up input CU is taken from I0.0, while the reset input R is taken from 
I0.1. As num = 0, the first up counter is chosen, whose counter status bit (or 
output Q) is CTU8_Q0. The preset value PV = 15. As can be seen from the sec-
ond rung, the state of the counter status bit CTU8_Q0 is sent to output Q0.0.

In rungs 3 and 4, a down counter CTD_8 is implemented as follows: the 
count down input CD is taken from I0.2, while the load input LD is taken from 
I0.3. As num = 4, the fifth down counter is chosen, whose counter status bit 
(or output Q) is CTD8_Q4. The preset value PV = 10. As can be seen from the 
fourth rung, the state of the counter status bit CTD8_Q4 is sent to output Q0.4.

In rungs 5 and 6, an up/down counter CTUD_8 is implemented as follows: 
the count up input CU is taken from I0.4, the count down input CD is taken 
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Q0.7CTUD8_Q7
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I0.6

3
LOGIC1
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move_R

Q1CV_8+7

FIGURE 6.16
The ladder diagram of the user program of UZAM_plc_16i16o_ex10.asm.
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from I0.5, while the reset input R is taken from I0.6 and the load input LD is 
taken from I0.7. As num = 7, the eighth up/down counter is chosen, whose 
counter status bit (or output Q) is CTUD8_Q7. The preset value PV = 20. As 
can be seen from the sixth rung, the state of the counter status bit CTUD8_Q7 
is sent to output Q0.7.

In rungs 7 to 9, based on the input bits I1.1 and I1.0, one of three situations 
is chosen: If I1.1,I1.0 = 01, then M0.1 is activated. If I1.1,I1.0 = 10, then M0.2 is 
activated. Finally, if I1.1,I1.0 = 11, then M0.3 is activated.

In rung 10, if M0.1 = 1, then by using the move_R function, the contents of 
the register CV_8, which keeps the current count value (CV) of the first up 
counter, are sent to the output register Q1.

FIGURE 6.17
The user program of UZAM_plc_16i16o_ex11.asm.
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FIGURE 6.18
The ladder diagram of the user program of UZAM_plc_16i16o_ex11.asm.
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In rung 11, if M0.2 = 1, then by using the move_R function, the contents of 
the register CV_8+4, which keeps the current count value (CV) of the fifth 
down counter, are sent to the output register Q1.

In rung 12, if M0.3 = 1, then by using the move_R function, the contents of 
the register CV_8+7, which keeps the current count value (CV) of the eighth 
up/down counter, are sent to the output register Q1.
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7
Comparison Macros

Numerical values often need to be compared in PLC programs; typical 
examples are a batch counter saying the required number of items has been 
delivered, or alarm circuits indicating, for example, a temperature has gone 
above some safety level. These comparisons are performed by elements that 
have the generalized form of Figure 7.1, with two numerical inputs A and B 
corresponding to the values to be compared, and a Boolean (on/off) output 
that is true if the specified condition is met. The comparisons provided in 
this chapter are as follows:

A greater than B  (A > B)
A greater than or equal to B (A > = B)
A equal to B   (A = B)
A less than B   (A < B)
A less than or equal to B (A < = B)
A not equal to B  (A <> B)

where A and B are 8-bit numerical data.
In this chapter, two groups of comparison macros are described for the 

PIC16F648A-based PLC. In the former, the contents of two registers (R1 and 
R2) are compared according to the following:

GT (greater than, >)
GE (greater than or equal to, > =)
EQ (equal to, =)
LT (less than, <)
LE (less than or equal to, < =)
NE (not equal to, < >)

In the latter, similar comparison macros are also described for comparing 
the content of an 8-bit register (R) with an 8-bit constant (K). The file defini-
tions.inc, included within the CD-ROM attached to this book, contains all 
comparison macros defined for the PIC16F648A-based PLC. Let us now con-
sider these comparison macros in detail.
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7.1 Macro R1_GT_R2

The definition, symbols, and algorithm of the macro R1_GT_R2 are depicted 
in Table 7.1. Figure 7.2 shows the macro R1_GT_R2 and its flowchart. The 
macro R1_GT_R2 has a Boolean input variable (active high enabling input), 
EN, passed into the macro through W, and a Boolean output variable, Q, 
passed out of the macro through W. This means that the input signal EN 
should be loaded into W before this macro is run, and the output signal Q 
will be provided within the W at the end of the macro. R1 and R2 are both 
8-bit input variables. When EN = 0, no action is taken and the output Q (W) 
is forced to be 0. When EN = 1, if the content of R1 is greater than the content 
of R2 (R1 > R2), then the output Q (W) is forced to be 1. Otherwise, the output 
Q (W) is forced to be 0.

7.2 Macro R1_GE_R2

The definition, symbols, and algorithm of the macro R1_GE_R2 are depicted 
in Table 7.2. Figure 7.3 shows the macro R1_GE_R2 and its flowchart. The 
macro R1_GE_R2 has a Boolean input variable (active high enabling input), 
EN, passed into the macro through W, and a Boolean output variable, Q, 
passed out of the macro through W. This means that the input signal EN 

A
Compare

Binary result:
true or false
1 or 0B

FIGURE 7.1
The generalized form of data comparison.

TABLE 7.1

Definition, Symbols, and Algorithm of the Macro R1_GT_R2

Definition Ladder Diagram 
Symbol Schematic Symbol Algorithm

is the content of 
register R1 Greater 
Than the content 

of register R2?

R1

R2
>W W

EN Q
R1 >R2

W W

R1, R2 (8 bit register)
EN (through W) = 0 or 1
Q (through W) = 0 or 1

if EN = 1 then
if R1 > R2 then

Q = 1;
else Q = 0;

end if ;
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should be loaded into W before this macro is run, and the output signal Q 
will be provided within the W at the end of the macro. R1 and R2 are both 
8-bit input variables. When EN = 0, no action is taken and the output Q (W) is 
forced to be 0. When EN = 1, if the content of R1 is greater than or equal to the 
content of R2 (R1 ≥ R2), then the output Q (W) is forced to be 1. Otherwise, 
the output Q (W) is forced to be 0.

Temp_1         W

Y

N

R1 > R2

Y

N

W        0 W        1

L1

L2

Temp_1,0 = 1?

?

begin

end

(a) (b)

FIGURE 7.2
(a) The macro R1_GT_R2 and (b) its flowchart.

TABLE 7.2

Definition, Symbols, and Algorithm of the Macro R1_GE_R2

Definition Ladder diagram 
symbol Schematic symbol Algorithm

is the content of 
register R1 Greater 

than or Equal to 
the

content of register 
R2?

R1

R2
W W

EN Q
R1 >=R2

W W

R1, R2 (8 bit register)
EN (through W) = 0 or 1
Q (through W) = 0 or 1

if EN = 1 then
if R1 ≥ R2 then

Q = 1;
else Q = 0;

end if ;

Definition, Symbols, and Algorithm of the Macro R1 _ GE _ R2

>=
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7.3 Macro R1_EQ_R2

The definition, symbols, and algorithm of the macro R1_EQ_R2 are depicted 
in Table 7.3. Figure 7.4 shows the macro R1_EQ_R2 and its flowchart. The 
macro R1_EQ_R2 has a Boolean input variable (active high enabling input), 
EN, passed into the macro through W, and a Boolean output variable, Q, 
passed out of the macro through W. This means that the input signal EN 

Temp_1         W

Y

N

R1 >= R2

Y

N

W        0 W        1

L1

L2

Temp_1,0 = 1?

?

begin

end

(a) (b)

FIGURE 7.3
(a) The macro R1_GE_R2 and (b) its flowchart.

TABLE 7.3

Definition, Symbols, and Algorithm of the Macro R1_EQ_R2

Definition Ladder diagram 
symbol Schematic symbol Algorithm

is the content of 
register R1 EQual 
to the content of 

register R2?

R1

R2
=W W

EN Q
R1 =R2

W W

R1, R2 (8 bit register)
EN (through W) = 0 or 1
Q (through W) = 0 or 1

if EN = 1 then
if R1 = R2 then

Q = 1;
else Q = 0;

end if ;

Definition, Symbols, and Algorithm of the Macro R1 _ EQ _ R2
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should be loaded into W before this macro is run, and the output signal Q 
will be provided within the W at the end of the macro. R1 and R2 are both 
8-bit input variables. When EN = 0, no action is taken and the output Q (W) 
is forced to be 0. When EN = 1, if the content of R1 is equal to the content of 
R2 (R1 = R2), then the output Q (W) is forced to be 1. Otherwise, the output 
Q (W) is forced to be 0.

7.4 Macro R1_LT_R2

The definition, symbols, and algorithm of the macro R1_LT_R2 are depicted 
in Table 7.4. Figure 7.5 shows the macro R1_LT_R2 and its flowchart. The 
macro R1_LT_R2 has a Boolean input variable (active high enabling input), 
EN, passed into the macro through W, and a Boolean output variable, Q, 
passed out of the macro through W. This means that the input signal EN 
should be loaded into W before this macro is run, and the output signal Q 
will be provided within the W at the end of the macro. R1 and R2 are both 
8-bit input variables. When EN = 0, no action is taken and the output Q (W) 
is forced to be 0. When EN = 1, if the content of R1 is less than the content of 
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?

begin

end

(a) (b)

FIGURE 7.4
(a) The macro R1_EQ_R2 and (b) its flowchart.
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R2 (R1 < R2), then the output Q (W) is forced to be 1. Otherwise, the output 
Q (W) is forced to be 0.

7.5 Macro R1_LE_R2

The definition, symbols, and algorithm of the macro R1_LE_R2 are depicted 
in Table 7.5. Figure 7.6 shows the macro R1_LE_R2 and its flowchart. The 
macro R1_LE_R2 has a Boolean input variable (active high enabling input), 

Temp_1         W

Y

N

R1 < R2

Y

N

W        0 W        1

L1

L2

Temp_1,0 = 1
?

?

begin

end

(b)(a)

FIGURE 7.5
(a) The macro R1_LT_R2 and (b) its flowchart.

TABLE 7.4

Definition, Symbols, and Algorithm of the Macro R1_LT_R2

Definition Ladder diagram 
symbol Schematic symbol Algorithm

is the content of 
register R1 Less 

Than the content 
of register R2?

R1

R2
<W W

EN Q
R1 <R2

W W

R1, R2 (8 bit register)
EN (through W) = 0 or 1
Q (through W) = 0 or 1

if EN = 1 then
if R1 < R2 then

Q = 1;
else Q = 0;

end if ;

Definition, Symbols, and Algorithm of the Macro R1 _ LT _ R2
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EN, passed into the macro through W, and a Boolean output variable, Q, 
passed out of the macro through W. This means that the input signal EN 
should be loaded into W before this macro is run, and the output signal Q 
will be provided within the W at the end of the macro. R1 and R2 are both 
8-bit input variables. When EN = 0, no action is taken and the output Q (W) 
is forced to be 0. When EN = 1, if the content of R1 is less than or equal to the 
content of R2 (R1 ≤ R2), then the output Q (W) is forced to be 1. Otherwise, 
the output Q (W) is forced to be 0.
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N

R1 <= R2
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N

W        0 W        1
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L2

Temp_1,0 = 1
?

?

begin

end

(b)(a)

FIGURE 7.6
(a) The macro R1_LE_R2 and (b) its flowchart.

TABLE 7.5

Definition, Symbols, and Algorithm of the Macro R1_LE_R2

Definition Ladder diagram 
symbol Schematic symbol Algorithm

is the content of 
register R1 Less 
than or Equal to 

the content of 
register R2?

R1

R2
<=W W

EN Q
R1 <=R2

W W

R1, R2 (8 bit register)
EN (through W) = 0 or 1
Q (through W) = 0 or 1

if EN = 1 then
if R1 ≤ R2 then

Q = 1;
else Q = 0;

end if ;

Definition, Symbols, and Algorithm of the Macro R1 _ LE _ R2
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7.6 Macro R1_NE_R2

The definition, symbols, and algorithm of the macro R1_NE_R2 are depicted 
in Table 7.6. Figure 7.7 shows the macro R1_NE_R2 and its flowchart. The 
macro R1_NE_R2 has a Boolean input variable (active high enabling input), 
EN, passed into the macro through W, and a Boolean output variable, Q, 
passed out of the macro through W. This means that the input signal EN 

TABLE 7.6

Definition, Symbols, and Algorithm of the Macro R1_NE_R2

Definition Ladder diagram 
symbol Schematic symbol Algorithm

is the content 
of register R1

Not Equal to the 
content of register 

R2?

R1

R2
<>W W

EN Q
R1 <>R2

W W

R1, R2 (8 bit register)
EN (through W) = 0 or 1
Q (through W) = 0 or 1

if EN = 1 then
if R1 ≠ R2 then

Q = 1;
else Q = 0;

end if ;

Definition, Symbols, and Algorithm of the Macro R1 _ NE _ R2
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FIGURE 7.7
(a) The macro R1_NE_R2 and (b) its flowchart.
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should be loaded into W before this macro is run, and the output signal Q 
will be provided within the W at the end of the macro. R1 and R2 are both 
8-bit input variables. When EN = 0, no action is taken and the output Q (W) 
is forced to be 0. When EN = 1, if the content of R1 is not equal to the content 
of R2 (R1 ≠ R2), then the output Q (W) is forced to be 1. Otherwise, the output 
Q (W) is forced to be 0.

7.7 Macro R_GT_K

The definition, symbols, and algorithm of the macro R_GT_K are depicted in 
Table 7.7. Figure 7.8 shows the macro R_GT_K and its flowchart. The macro 
R_GT_K has a Boolean input variable (active high enabling input), EN, passed 
into the macro through W, and a Boolean output variable, Q, passed out of 
the macro through W. This means that the input signal EN should be loaded 
into W before this macro is run, and the output signal Q will be provided 
within the W at the end of the macro. R is an 8-bit input variable, while K 
is an 8-bit constant value. When EN = 0, no action is taken and the output 
Q (W) is forced to be 0. When EN = 1, if the content of R is greater than the 
constant value K (R > K), then the output Q (W) is forced to be 1. Otherwise, 
the output Q (W) is forced to be 0.

7.8 Macro R_GE_K

The definition, symbols, and algorithm of the macro R_GE_K are depicted in 
Table 7.8. Figure 7.9 shows the macro R_GE_K and its flowchart. The macro 
R_GE_K has a Boolean input variable (active high enabling input), EN, passed 

TABLE 7.7

Definition, Symbols, and Algorithm of the Macro R_GT_K

Definition Ladder Diagram 
Symbol Schematic Symbol Algorithm

is the content of 
register R Greater 
Than the constant 

K?

R

K
>W W

EN Q
R >K

W W

R (8 bit register)
K (8 bit constant)
EN (through W) = 0 or 1
Q (through W) = 0 or 1

if EN = 1 then
if R > K then

Q = 1;
else Q = 0;

end if ;
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into the macro through W, and a Boolean output variable, Q, passed out of 
the macro through W. This means that the input signal EN should be loaded 
into W before this macro is run, and the output signal Q will be provided 
within the W at the end of the macro. R is an 8-bit input variable, while K 
is an 8-bit constant value. When EN = 0, no action is taken and the output 
Q (W) is forced to be 0. When EN = 1, if the content of R is greater than or 
equal to the constant value K (R ≥ K), then the output Q (W) is forced to be 1. 
Otherwise, the output Q (W) is forced to be 0.

TABLE 7.8

Definition, Symbols, and Algorithm of the Macro R_GE_K

Definition Ladder diagram 
symbol Schematic symbol Algorithm

is the content of 
register R Greater 
than or Equal to  
the constant K?

R

K
>=W W

EN Q
R >=K

W W

R (8 bit register)
K (8 bit constant)
EN (through W) = 0 or 1
Q (through W) = 0 or 1

if EN = 1 then
if R ≥ K then

Q = 1;
else Q = 0;

end if ;

Definition, Symbols, and Algorithm of the Macro R _ GE _ K
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end
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FIGURE 7.8
(a) The macro R_GT_K and (b) its flowchart.
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7.9 Macro R_EQ_K

The definition, symbols, and algorithm of the macro R_EQ_K are depicted 
in Table  7.9. Figure  7.10 shows the macro R_EQ_K and its flowchart. The 
macro R_EQ_K has a Boolean input variable (active high enabling input), EN, 
passed into the macro through W, and a Boolean output variable, Q, passed 
out of the macro through W. This means that the input signal EN should 

TABLE 7.9

Definition, Symbols, and Algorithm of the Macro R_EQ_K

Definition Ladder diagram 
symbol Schematic symbol Algorithm

is the content of 
register R EQual 

to the constant K?

R

K
=W W

EN Q
R =K

W W

R (8 bit register)
K (8 bit constant)
EN (through W) = 0 or 1
Q (through W) = 0 or 1

if EN = 1 then
if R = K then

Q = 1;
else Q = 0;

end if ;

Definition, Symbols, and Algorithm of the Macro R _ EQ _ K
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FIGURE 7.9
(a) The macro R_GE_K and (b) its flowchart.
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be loaded into W before this macro is run, and the output signal Q will be 
provided within the W at the end of the macro. R is an 8-bit input variable, 
while K is an 8-bit constant value. When EN = 0, no action is taken and the 
output Q (W) is forced to be 0. When EN = 1, if the content of R is equal to the 
constant value K (R = K), then the output Q (W) is forced to be 1. Otherwise, 
the output Q (W) is forced to be 0.

7.10 Macro R_LT_K

The definition, symbols, and algorithm of the macro R_LT_K are depicted 
in Table  7.10. Figure  7.11 shows the macro R_LT_K and its flowchart. The 
macro R_LT_K has a Boolean input variable (active high enabling input), EN, 
passed into the macro through W, and a Boolean output variable, Q, passed 
out of the macro through W. This means that the input signal EN should be 
loaded into W before this macro is run, and the output signal Q will be pro-
vided within the W at the end of the macro. R is an 8-bit input variable, while 
K is an 8-bit constant value. When EN = 0, no action is taken and the output 
Q (W) is forced to be 0. When EN = 1, if the content of R is less than the 
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FIGURE 7.10
(a) The macro R_EQ_K and (b) its flowchart.
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constant value K (R < K), then the output Q (W) is forced to be 1. Otherwise, 
the output Q (W) is forced to be 0.

7.11 Macro R_LE_K

The definition, symbols, and algorithm of the macro R_LE_K are depicted 
in Table  7.11. Figure  7.12 shows the macro R_LE_K and its flowchart. The 
macro R_LE_K has a Boolean input variable (active high enabling input), EN, 

TABLE 7.10

Definition, Symbols, and Algorithm of the Macro R_LT_K

Definition Ladder diagram 
symbol Schematic symbol Algorithm

is the content of 
register R Less 

Than the constant 
K?

R

K
<W W

EN Q
R <K

W W

R (8 bit register)
K (8 bit constant)
EN (through W) = 0 or 1
Q (through W) = 0 or 1

if EN = 1 then
if R < K then

Q = 1;
else Q = 0;

end if ;

Definition, Symbols, and Algorithm of the Macro R _ LX _ K
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(b)(a)

FIGURE 7.11
(a) The macro R_LT_K and (b) its flowchart.
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passed into the macro through W, and a Boolean output variable, Q, passed 
out of the macro through W. This means that the input signal EN should 
be loaded into W before this macro is run, and the output signal Q will be 
provided within the W at the end of the macro. R is an 8-bit input variable, 
while K is an 8-bit constant value. When EN = 0, no action is taken and the 
output Q (W) is forced to be 0. When EN = 1, if the content of R is less than or 
equal to the constant value K (R ≤ K), then the output Q (W) is forced to be 1. 
Otherwise, the output Q (W) is forced to be 0.
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Temp_1,0 = 1
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?

begin

end
(b)(a)

FIGURE 7.12
(a) The macro R_LE_K and (b) its flowchart.

TABLE 7.11

Definition, Symbols, and Algorithm of the Macro R_LE_K

Definition Ladder diagram 
symbol Schematic symbol Algorithm

is the content of 
register R Less 

than or Equal to 
the constant K?

R

K
<=W W

EN Q
R <=K

W W

R (8 bit register)
K (8 bit constant)
EN (through W) = 0 or 1
Q (through W) = 0 or 1

if EN = 1 then
if R ≤ K then

Q = 1;
else Q = 0;

end if ;

Definition, Symbols, and Algorithm of the Macro R _ LE _ K
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7.12 Macro R_NE_K

The definition, symbols, and algorithm of the macro R_NE_K are depicted 
in Table  7.12. Figure  7.13 shows the macro R_NE_K and its flowchart. The 
macro R_NE_K has a Boolean input variable (active high enabling input), EN, 
passed into the macro through W, and a Boolean output variable, Q, passed 
out of the macro through W. This means that the input signal EN should be 
loaded into W before this macro is run, and the output signal Q will be pro-
vided within the W at the end of the macro. R is an 8-bit input variable, while 
K is an 8-bit constant value. When EN = 0, no action is taken and the output 

Temp_1         W

Y

N

R ≠ K

Y

N

W        0 W        1

L1

L2

Temp_1,0 = 1
?

?

begin

end
(b)(a)

FIGURE 7.13
(a) The macro R_NE_K and (b) its flowchart.

TABLE 7.12

Definition, Symbols, and Algorithm of the Macro R_NE_K

Definition Ladder diagram 
symbol Schematic symbol Algorithm

is the content of 
register R Not 

Equal to the con-
stant K?

R

K
<>W W

EN Q
R <>K

W W

R (8 bit register)
K (8 bit constant)
EN (through W) = 0 or 1
Q (through W) = 0 or 1

if EN = 1 then
if R ≠ K then

Q = 1;
else Q = 0;

end if ;

Definition, Symbols, and Algorithm of the Macro R _ NE _ K
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Q (W) is forced to be 0. When EN = 1, if the content of R is not equal to the 
constant value K (R ≠ K), then the output Q (W) is forced to be 1. Otherwise, 
the output Q (W) is forced to be 0.

7.13 Examples for Comparison Macros

In this section, we will consider two examples, UZAM_plc_16i16o_ex12.asm 
and UZAM_plc_16i16o_ex13.asm, to show the usage of comparison macros. 
In order to test one of these examples, please take the related file UZAM_
plc_16i16o_ex12.asm or UZAM_plc_16i16o_ex13.asm from the CD-ROM 
attached to this book, and then open the program by MPLAB IDE and com-
pile it. After that, by using the PIC programmer software, take the compiled 
file UZAM_plc_16i16o_ex12.hex or UZAM_plc_16i16o_ex13.hex, and by your 
PIC programmer hardware, send it to the program memory of PIC16F648A 
microcontroller within the PIC16F648A-based PLC. To do this, switch the 
4PDT in PROG position and the power switch in OFF position. After loading 
the file UZAM_plc_16i16o_ex12.hex or UZAM_plc_16i16o_ex13.hex, switch 
the 4PDT in RUN and the power switch in ON position. Please check the 
program’s accuracy by cross-referencing it with the related macros.

Let us now consider these example programs: The first example program, 
UZAM_plc_16i16o_ex12.asm, is shown in Figure  7.14. It shows the usage of 

FIGURE 7.14
The user program of UZAM_plc_16i16o_ex12.asm.
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FIGURE 7.15
The user program of UZAM_plc_16i16o_ex12.asm: (a) ladder diagram and (b) schematic 
diagram.
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the macros in which the contents of two registers (R1 and R2) are compared. 
The ladder diagram and schematic diagram of the user program of UZAM_
plc_16i16o_ex12.asm, shown in Figure 7.14, are depicted in Figure 7.15(a) and 
(b), respectively. In rungs 1 to 6, the content of I1 is compared with the content 
of I0 based on the following criteria, respectively: >, ≥, =, <, ≤, ≠. The result of 
each comparison is observed from the outputs Q1.7, Q1.4, Q1.1, Q0.6, Q0.3, and 
Q0.0, respectively. These outputs will be true or false based on the comparison 
being made and the input data entered from the inputs I1 and I0.

The second example program, UZAM_plc_16i16o_ex13.asm, is shown in 
Figure 7.16. It shows the usage of the macros in which the content of a reg-
ister R is compared with a constant value K. The ladder diagram and sche-
matic diagram of the user program of UZAM_plc_16i16o_ex13.asm, shown 
in Figure 7.16, are depicted in Figure 7.17(a) and (b), respectively. In rungs 1 

FIGURE 7.16
The user program of UZAM_plc_16i16o_ex13.asm.
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FIGURE 7.17
The user program of UZAM_plc_16i16o_ex13.asm: (a) ladder diagram and (b) schematic 
diagram.
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to 6, the content of I1 is compared with the constant value 0Fh based on the 
following criteria, respectively: >, ≥, =, <, ≤, ≠. The result of each comparison is 
observed from the outputs Q1.7, Q1.4, Q1.1, Q0.6, Q0.3, and Q0.0, respectively. 
These outputs will be true or false based on the comparison being made and 
the input data entered from the input register I1.
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8
Arithmetical Macros

Numerical data imply the ability to do arithmetical operations, and almost 
all PLCs provide some arithmetical operations, such as add, subtract, multi-
ply, and divide. Arithmetical functions will retrieve one or more values, per-
form an operation, and store the result in memory. As an example, Figure 8.1 
shows an ADD function that will retrieve and add two values from sources 
labeled source A and source B and will store the result in destination C. The list 
of arithmetical functions (macros) described for the PIC16F648A-based PLC 
is as follows. The increment and decrement functions are unary, so there is 
only one source.

ADD (source value 1, source value 2, destination): Add two source val-
ues and put the result in the destination.

SUB (source value 1, source value 2, destination): Subtract the second 
source value from the first one and put the result in the destination.

INC (source value, destination): Increment the source and put the result 
in the destination.

DEC (source value, destination): Decrement the source and put the 
result in the destination.

In this chapter, the following six arithmetical macros are described for the 
PIC16F648A-based PLC:

R1addR2

RaddK

R1subR2

RsubK

incR

decR

The file definitions.inc, included within the CD-ROM attached to this book, 
contains all arithmetical macros defined for the PIC16F648A-based PLC. Let 
us now consider these macros in detail.
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8.1 Macro R1addR2

The algorithm and the symbol of the macro R1addR2 are depicted in Table 8.1. 
Figure 8.2 shows the macro R1addR2 and its flowchart. In this macro, EN 
is a Boolean input variable taken into the macro through W, and ENO is a 
Boolean output variable sent out from the macro through W. Output ENO 

Temp_1        W

Y

N

OUT         R1 + R2
W         Temp_1

L1

Temp_1,0 = 1?    

begin

end
(b)(a)

FIGURE 8.2
(a) The macro R1addR2 and (b) its flowchart.

Source A
ADD

Source B
Destination C

FIGURE 8.1
The ADD function.

TABLE 8.1

Algorithm and Symbol of the Macro 
R1addR2

Algorithm Symbol

if EN = 1 then
OUT = R1 + R2;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
R1 OUT

W W

ADD

R2

R1, R2, OUT (8 bit register)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and the Symbol of the Macro R1addR2



165Arithmetical Macros

© 2008 Taylor & Francis Group, LLC

follows the input EN. This means that when EN = 0, ENO is forced to be 0, 
and when EN = 1, ENO is forced to be 1. This is especially useful if we want 
to carry out more than one operation based on a single input condition. R1 
and R2 refer to 8-bit source variables from where the source values are taken 
into the macro, while OUT refers to an 8-bit destination variable to which 
the result of the macro is stored. When EN = 1, the macro R1addR2 adds the 
contents of two 8-bit variables R1 and R2 and stores the result into the 8-bit 
output variable OUT (OUT = R1 + R2).

8.2 Macro RaddK

The algorithm and the symbol of the macro RaddK are depicted in Table 8.2. 
Figure 8.3 shows the macro RaddK and its flowchart. In this macro, EN is a 
Boolean input variable taken into the macro through W, and ENO is a Boolean 
output variable sent out from the macro through W. Output ENO follows the 
input EN. This means that when EN = 0, ENO is forced to be 0, and when EN 
= 1, ENO is forced to be 1. R and K are source values. R refers to an 8-bit source 
variable, while K represents an 8-bit constant value. OUT refers to an 8-bit 
destination variable to which the result of the macro is stored. When EN = 1, 
the macro RaddK adds the content of the 8-bit variable R and the 8-bit constant 
value K and stores the result into the 8-bit output variable OUT (OUT = R + K).

8.3 Macro R1subR2

The algorithm and the symbol of the macro R1subR2 are depicted in 
Table  8.3. Figure  8.4 shows the macro R1subR2 and its flowchart. In this 
macro, EN is a Boolean input variable taken into the macro through W, 

TABLE 8.2

Algorithm and Symbol of the Macro 
RaddK

Algorithm Symbol

if EN = 1 then
OUT = R + K;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
R OUT

W W

ADD

K

R, OUT (8 bit register)
K (8 bit constant)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1
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and ENO is a Boolean output variable sent out from the macro through W. 
Output ENO follows the input EN. This means that when EN = 0, ENO is 
forced to be 0, and when EN = 1, ENO is forced to be 1. R1 and R2 refer to 
8-bit source variables from where the source values are taken into the macro, 
while OUT refers to an 8-bit destination variable to which the result of the 
macro is stored. When EN = 1, the macro R1subR2 subtracts the content of 
the 8-bit variable R2 from the content of the 8-bit variable R1 and stores the 
result into the 8-bit output variable OUT (OUT = R1 – R2).

TABLE 8.3

Algorithm and Symbol of the Macro 
R1subR2

Algorithm Symbol

if EN = 1 then
OUT = R1 – R2;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
R1 OUT

W W

SUB

R2

R1, R2, OUT (8 bit register)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and the Symbol of the Macro R1subR2

Temp_1        W

  Y     

H

OUT         R + K
W         Temp_1

L1

Temp_1,0 = 1?    

begin

end
(b)(a)

FIGURE 8.3
(a) The macro RaddK and (b) its flowchart.
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8.4 Macro RsubK

The algorithm and the symbol of the macro RsubK are depicted in Table 8.4. 
Figure 8.5 shows the macro RsubK and its flowchart. In this macro, EN is 
a Boolean input variable taken into the macro through W, and ENO is a 
Boolean output variable sent out from the macro through W. Output ENO 
follows the input EN. This means that when EN = 0, ENO is forced to be 
0, and when EN = 1, ENO is forced to be 1. R and K are source values. R 
refers to an 8-bit source variable, while K represents an 8-bit constant value. 

Temp_1        W

  Y     

N

OUT         R1 – R2
W         Temp_1

L1

Temp_1,0 = 1?    

begin

end

(b)(a)

FIGURE 8.4
(a) The macro R1subR2 and (b) its flowchart.

TABLE 8.4

Algorithm and Symbol of the Macro 
RsubK

Algorithm Symbol

if EN = 1 then
OUT = R – K;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
R OUT

W W

SUB

K

R, OUT (8 bit register)
K (8 bit constant)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and the Symbol of the Macro RsubK



168 Building a Programmable Logic Controller 

© 2008 Taylor & Francis Group, LLC

OUT refers to an 8-bit destination variable to which the result of the macro 
is stored. When EN = 1, the macro RsubK subtracts the 8-bit constant value 
K from the content of the 8-bit variable R and stores the result into the 8-bit 
output variable OUT (OUT = R – K).

8.5 Macro incR

The algorithm and the symbol of the macro incR are depicted in Table 8.5. 
Figure  8.6 shows the macro incR and its flowchart. In this macro, EN is 
a Boolean input variable taken into the macro through W, and ENO is a 
Boolean output variable sent out from the macro through W. Output ENO 

TABLE 8.5

Algorithm and Symbol of the Macro incR

Algorithm Symbol

if EN = 1 then
OUT = IN + 1;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
IN OUT

W W

INC

IN, OUT (8 bit register)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and the Symbol of the Macro incR

Temp_1        W

  Y     

N

OUT         R – K
W         Temp_1

L1

Temp_1,0 = 1?    

begin

end

(b)(a)

FIGURE 8.5
(a) The macro RsubK and (b) its flowchart.
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follows the input EN. This means that when EN = 0, ENO is forced to be 0, 
and when EN = 1, ENO is forced to be 1. IN refers to an 8-bit source variable 
from where the source value is taken into the macro, while OUT refers to an 
8-bit destination variable to which the result of the macro is stored. When 
EN = 1, the macro incR increments the content of the 8-bit variable IN and 
stores the result into the 8-bit output variable OUT (OUT = IN + 1).

8.6 Macro decR

The algorithm and the symbol of the macro decR are depicted in Table 8.6. 
Figure  8.7 shows the macro decR and its flowchart. In this macro, EN is 
a Boolean input variable taken into the macro through W, and ENO is a 

TABLE 8.6

Algorithm and Symbol of the Macro decR

Algorithm Symbol

if EN = 1 then
OUT = IN – 1;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
IN OUT

W W

DEC

IN, OUT (8 bit register)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and the Symbol of the Macro decR

Temp_1        W

  Y     

N

OUT         R + 1
W         Temp_1

L1

Temp_1,0 = 1?    

begin

end

(b)(a)

FIGURE 8.6
(a) The macro incR and (b) its flowchart.
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Boolean output variable sent out from the macro through W. Output ENO 
follows the input EN. This means that when EN = 0, ENO is forced to be 0, 
and when EN = 1, ENO is forced to be 1. IN refers to an 8-bit source variable 
from where the source value is taken into the macro, while OUT refers to an 
8-bit destination variable to which the result of the macro is stored. When 
EN = 1, the macro decR decrements the content of the 8-bit variable IN and 
stores the result into the 8-bit output variable OUT (OUT = IN – 1).

8.7 Examples for Arithmetical Macros

In this section, we will consider two examples, UZAM_plc_16i16o_ex14 
.asm and UZAM_plc_16i16o_ex15.asm, to show the usage of arithmeti-
cal macros. In order to test one of these examples, please take the related 
file UZAM_plc_16i16o_ex14.asm or UZAM_plc_16i16o_ex15.asm from the 
CD-ROM attached to this book, and then open the program by MPLAB 
IDE and compile it. After that, by using the PIC programmer software, 
take the compiled file UZAM_plc_16i16o_ex14.hex or UZAM_plc_16i16o_
ex15.hex, and by your PIC programmer hardware, send it to the program 
memory of PIC16F648A microcontroller within the PIC16F648A-based PLC. 
To do this, switch the 4PDT in PROG position and the power switch in 
OFF position. After loading the file UZAM_plc_16i16o_ex14.hex or UZAM_
plc_16i16o_ex15.hex, switch the 4PDT in RUN and the power switch in ON 

Temp_1        W

  Y     

N

OUT         R – 1
W         Temp_1

L1

Temp_1,0 = 1?    

begin

end

(b)(a)

FIGURE 8.7
(a) The macro decR and (b) its flowchart.
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position. Please check the program’s accuracy by cross-referencing it with 
the related macros.

Let us now consider these example programs: The first example program 
UZAM_plc_16i16o_ex14.asm is shown in Figure 8.8. It shows the usage of the 
following arithmetical macros: R1addR2, RaddK, R1subR2, and RsubK. The 
ladder diagram of the user program of UZAM_plc_16i16o_ex14.asm, shown 
in Figure 8.8, is depicted in Figure 8.9.

In the first rung, Q1 is cleared, i.e., 8-bit constant value 00h is loaded into 
Q1, by using the macro load_R. This process is carried out once at the first 
program scan by using the FRSTSCN NO contact. Another condition to 
carry out the same process is the NO contact of the input I0.0. This means 
that when this program is run, during the normal PLC operation, if we force 
the input I0.0 to be true, then the above-mentioned process will take place.

In rungs 2 and 3, we see how the arithmetical macro R1addR2 could be 
used. In rung 2, the addition process Q1 = I1 + Q1 is carried out, when I0.1 
goes true. With this rung, if I0.1 goes and stays true, the content of I1 will be 

FIGURE 8.8
The user program of UZAM_plc_16i16o_ex14.asm.
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1

I0.0

FRSTSCN
EN   ENO
IN    OUT00h

load_R

Q1

2
I0.1

EN   ENO
R1    OUT

ADD

R2
I 1 Q1
Q1

3

4

I0.2
EN   ENO
R1    OUT

ADD

R2

r_edge

 0 

5

I0.3
EN   ENO
R1    OUT

SUB

R2

6

7

I0.4
EN   ENO
R1    OUT

SUB

R2

r_edge

 1 

I 1 Q1
Q1

Q1 Q1
I 1

Q1 Q1
I 1

8

I0.5
EN   ENO
R      OUT

ADD

K
Q1 Q1

2

I0.6
EN   ENO
R      OUT

ADD

K
Q1 Q1

IN  OUT
r_edge

2
2

I0.7
EN   ENO
R      OUT

SUB

K
Q1 Q1num

num

IN  OUT
num

IN  OUT
num

IN OUT
r_edge

3
3

FIGURE 8.9
The ladder diagram of the user program of UZAM_plc_16i16o_ex14.asm.
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added to the content of Q1 on every PLC scan. Rung 3 provides a little bit dif-
ferent usage of the arithmetical macro R1addR2. Here, we use a rising edge 
detector macro in order to detect the state change of input I0.2 from OFF to 
ON. So this time, the addition process Q1 = I1 + Q1 is carried out only at the 
rising edges of I0.2.

In rungs 4 and 5, we see how the arithmetical macro R1subR2 could be 
used. In rung 4, the subtraction process Q1 = Q1 – I1 is carried out when I0.3 
goes true. With this rung, if I0.3 goes and stays true, the content of I1 will be 
subtracted from the content of Q1, on every PLC scan. In rung 5, a rising edge 
detector macro is used in order to detect the state change of input I0.4 from 
OFF to ON. So this time, the subtraction process Q1 = Q1 – I1 is carried out 
only at the rising edges of I0.4.

In rungs 6 and 7, we see how the arithmetical macro RaddK could be used. 
In rung 6, the addition process Q1 = Q1 + 2 is carried out, when I0.5 goes 
true. With this rung, if I0.5 goes and stays true, the constant value 2 will be 
added to the content of Q1 on every PLC scan. In rung 7, a rising edge detec-
tor macro is used in order to detect the state change of input I0.6 from OFF to 
ON. So this time, the addition process Q1 = Q1 + 2 is carried out only at the 
rising edges of I0.6.

In the last rung, the subtraction process Q1 = Q1 – 3 is carried out at the 
rising edges of I0.7.

The second example program, UZAM_plc_16i16o_ex15.asm, is shown in 
Figure 8.10. It shows the usage of the following arithmetical macros: incR and 

FIGURE 8.10
The user program of UZAM_plc_16i16o_ex15.asm.
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decR. The ladder diagram of the user program of UZAM_plc_16i16o_ex15 
.asm, shown in Figure 8.10, is depicted in Figure 8.11.

In the first rung, Q1 is cleared, i.e., 8-bit constant value 00h is loaded into 
Q1, by using the macro load_R. This process is carried out once at the first 
program scan by using the FRSTSCN NO contact. Another condition to 
carry out the same process is the NO contact of the input I0.0. This means 
that when this program is run, during the normal PLC operation, if we force 
the input I0.0 to be true, then the above-mentioned process will take place.

In rung 2, when I0.1 goes and stays true, Q1 is incremented on every PLC scan.
In rung 3, Q1 is incremented at each rising edge of I0.2.
In rung 4, when I0.3 goes and stays true, Q1 is decremented on every 

PLC scan.
In rung 5, Q1 is decremented at each rising edge of I0.4.

1

I0.0

FRSTSCN
EN   ENO
IN    OUT00h

load_R

Q1

2
I0.1

EN   ENO
IN    OUT

INC

Q1 Q1

3

4

I0.2
EN   ENO
IN    OUT

INCr_edge

 0 

5

I0.3
EN   ENO
IN    OUT

DEC

I0.4
EN   ENO
IN    OUT

DECr_edge

 1 

Q1 Q1

Q1 Q1

Q1 Q1

IN  OUT
num

IN  OUT
num

FIGURE 8.11
The ladder diagram of the user program of UZAM_plc_16i16o_ex15.asm.
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9
Logical Macros

A logical function performs AND, NAND, OR, NOR, exclusive OR (XOR), 
exclusive NOR (XNOR), logical operations on two registers (or one register 
plus one constant value), and NOT (invert) logical operations on one register. 
As an example, Figure 9.1 shows an AND logical function that will retrieve 
AND and two values from sources labeled source A and source B and will 
store the result in destination C. AND, NAND, OR, NOR, XOR, and XNOR 
logical functions have the form of Figure  9.1, with two source values and 
one destination register. In these, the logical function is applied to the two 
source values and the result is put in the destination register. However, the 
unary invert (INV) logical function has one source register and one destina-
tion register. It inverts all of the bits in the source register and puts the result 
in the destination register.

In this chapter, the following logical macros are described for the 
PIC16F648A-based PLC:

R1andR2

RandK

R1nandR2

RnandK

R1orR2

RorK

R1norR2

RnorK

R1xorR2

RxorK

R1xnorR2

RxnorK

inv_R

The file definitions.inc, included within the CD-ROM attached to this 
book, contains all logical macros defined for the PIC16F648A-based PLC. Let 
us now consider these macros in detail.
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9.1 Macro R1andR2

The algorithm and the symbol of the macro R1andR2 are depicted in Table 9.1. 
Figure 9.2 shows the macro R1andR2 and its flowchart. In this macro, EN 
is a Boolean input variable taken into the macro through W, and ENO is a 
Boolean output variable sent out from the macro through W. Output ENO 

Temp_1        W

Y

N

OUT         R1 AND R2
W         Temp_1

L1

Temp_1,0 = 1?    

begin

end

(b)(a)

FIGURE 9.2
(a) The macro R1andR2 and (b) its flowchart.

Source A
AND

Source B
Destination C

FIGURE 9.1
The AND function.

TABLE 9.1

Algorithm and Symbol of the Macro R1andR2

Algorithm Symbol

if EN = 1 then
OUT = R1 AND R2;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
R1 OUT

W W

AND

R2

R1, R2, OUT (8 bit register)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and Symbol of the Macro R1andR2
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follows the input EN. This means that when EN = 0, ENO is forced to be 0, 
and when EN = 1, ENO is forced to be 1. This is especially useful if we want 
to carry out more than one operation based on a single input condition. R1 
and R2 refer to 8-bit source variables from where the source values are taken 
into the macro, while OUT refers to an 8-bit destination variable to which the 
result of the macro is stored. When EN = 1, the macro R1andR2 applies the 
logical AND function to the two 8-bit input variables R1 and R2 and stores 
the result in the 8-bit output variable OUT (OUT = R1 AND R2).

9.2 Macro RandK

The algorithm and the symbol of the macro RandK are depicted in Table 9.2. 
Figure 9.3 shows the macro RandK and its flowchart. In this macro, EN is 
a Boolean input variable taken into the macro through W, and ENO is a 
Boolean output variable sent out from the macro through W. Output ENO 
follows the input EN. This means that when EN = 0, ENO is forced to be 
0, and when EN = 1, ENO is forced to be 1. R and K are source values. R 
refers to an 8-bit source variable, while K represents an 8-bit constant value. 
OUT refers to an 8-bit destination variable to which the result of the macro is 
stored. When EN = 1 the macro RandK applies the logical AND function to 
the 8-bit input variable R and the 8-bit constant value K and stores the result 
in the 8-bit output variable OUT (OUT = R AND K).

9.3 Macro R1nandR2

The algorithm and the symbol of the macro R1nandR2 are depicted in 
Table 9.3. Figure 9.4 shows the macro R1nandR2 and its flowchart. In this 
macro, EN is a Boolean input variable taken into the macro through W, 

TABLE 9.2

Algorithm and Symbol of the Macro RandK

Algorithm Symbol

if EN = 1 then
OUT = R AND K;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
R OUT

W W

AND

K

R, OUT (8 bit register)
K (8 bit constant)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1
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and ENO is a Boolean output variable sent out from the macro through W. 
Output ENO follows the input EN. This means that when EN = 0, ENO is 
forced to be 0, and when EN = 1, ENO is forced to be 1. R1 and R2 refer 
to 8-bit source variables from where the source values are taken into the 
macro, while OUT refers to an 8-bit destination variable to which the result 
of the macro is stored. When EN = 1, the macro R1nandR2 applies the logi-
cal NAND function to the two 8-bit input variables R1 and R2 and stores the 
result in the 8-bit output variable OUT (OUT = R1 NAND R2).

Temp_1        W

Y

N

OUT         R AND K
W         Temp_1

L1

Temp_1,0 = 1?    

begin

end

(b)(a)

FIGURE 9.3
(a) The macro RandK and (b) its flowchart.

TABLE 9.3

Algorithm and Symbol of the Macro R1nandR2

Algorithm Symbol

if EN = 1 then
OUT = R1 NAND R2;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
R1 OUT

W W

NAND

R2

R1, R2, OUT (8 bit register)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and Symbol of the Macro R1nandR2
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9.4 Macro RnandK

The algorithm and the symbol of the macro RnandK are depicted in Table 9.4. 
Figure  9.5 shows the macro RnandK and its flowchart. In this macro, EN 
is a Boolean input variable taken into the macro through W, and ENO is a 
Boolean output variable sent out from the macro through W. Output ENO 
follows the input EN. This means that when EN = 0, ENO is forced to be 
0, and when EN = 1, ENO is forced to be 1. R and K are source values. R 
refers to an 8-bit source variable, while K represents an 8-bit constant value. 

Temp_1        W

Y

N

OUT         R1 NAND R2
W         Temp_1

L1

Temp_1,0 = 1?    

begin

end

(b)(a)

FIGURE 9.4
(a) The macro R1nandR2 and (b) its flowchart.

TABLE 9.4

Algorithm and Symbol of the Macro RnandK

Algorithm Symbol

if EN = 1 then
OUT = R NAND K;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
R OUT

W W

NAND

K

R, OUT (8 bit register)
K (8 bit constant)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and Symbol of the Macro RnandK
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OUT refers to an 8-bit destination variable to which the result of the macro 
is stored. When EN = 1 the macro RnandK applies the logical NAND func-
tion to the 8-bit input variable R and the 8-bit constant value K and stores the 
result in the 8-bit output variable OUT (OUT = R NAND K).

9.5 Macro R1orR2

The algorithm and the symbol of the macro R1orR2 are depicted in Table 9.5. 
Figure  9.6 shows the macro R1orR2 and its flowchart. In this macro, EN 
is a Boolean input variable taken into the macro through W, and ENO is a 

Temp_1        W

Y

N

OUT         R NAND K
W         Temp_1

L1

Temp_1,0 = 1?    

begin

end
(b)(a)

FIGURE 9.5
(a) The macro RnandK and (b) its flowchart.

TABLE 9.5

Algorithm and Symbol of the Macro R1orR2

Algorithm Symbol

if EN = 1 then
OUT = R1 OR R2;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
R1 OUT

W W

OR

R2

R1, R2, OUT (8 bit register)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and Symbol of the Macro R1orR2
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Boolean output variable sent out from the macro through W. Output ENO fol-
lows the input EN. This means that when EN = 0, ENO is forced to be 0, and 
when EN = 1, ENO is forced to be 1. R1 and R2 refer to 8-bit source variables 
from where the source values are taken into the macro, while OUT refers to 
an 8-bit destination variable to which the result of the macro is stored. When 
EN = 1, the macro R1orR2 applies the logical OR function to the two 8-bit 
input variables R1 and R2 and stores the result in the 8-bit output variable 
OUT (OUT = R1 OR R2).

9.6 Macro RorK

The algorithm and the symbol of the macro RorK are depicted in Table 9.6. 
Figure  9.7 shows the macro RorK and its flowchart. In this macro, EN is 
a Boolean input variable taken into the macro through W, and ENO is a 
Boolean output variable sent out from the macro through W. Output ENO 
follows the input EN. This means that when EN = 0, ENO is forced to be 
0, and when EN = 1, ENO is forced to be 1. R and K are source values. R 
refers to an 8-bit source variable, while K represents an 8-bit constant value. 
OUT refers to an 8-bit destination variable to which the result of the macro is 
stored. When EN = 1 the macro RorK applies the logical OR function to the 
8-bit input variable R and the 8-bit constant value K and stores the result in 
the 8-bit output variable OUT (OUT = R OR K).

Temp_1        W

Y

N

OUT         R1 OR R2
W         Temp_1

L1

Temp_1,0 = 1?    

begin

end

(b)(a)

FIGURE 9.6
(a) The macro R1orR2 and (b) its flowchart.
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9.7 Macro R1norR2

The algorithm and the symbol of the macro R1norR2 are depicted in Table 9.7. 
Figure 9.8 shows the macro R1norR2 and its flowchart. In this macro, EN 
is a Boolean input variable taken into the macro through W, and ENO is a 
Boolean output variable sent out from the macro through W. Output ENO 
follows the input EN. This means that when EN = 0, ENO is forced to be 
0, and when EN = 1, ENO is forced to be 1. R1 and R2 refer to 8-bit source 
variables from where the source values are taken into the macro, while OUT 

TABLE 9.6

Algorithm and Symbol of the Macro RorK

Algorithm Symbol

if EN = 1 then
OUT = R OR K;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
R OUT

W W

OR

K

R, OUT (8 bit register)
K (8 bit constant)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and Symbol of the Macro RorK
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W         Temp_1

L1
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begin

end

(b)(a)

FIGURE 9.7
(a) The macro RorK and (b) its flowchart.
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refers to an 8-bit destination variable to which the result of the macro is 
stored. When EN = 1, the macro R1norR2 applies the logical NOR function 
to the two 8-bit input variables R1 and R2 and stores the result in the 8-bit 
output variable OUT (OUT = R1 NOR R2).

9.8 Macro RnorK

The algorithm and the symbol of the macro RnorK are depicted in Table 9.8. 
Figure 9.9 shows the macro RnorK and its flowchart. In this macro, EN is 
a Boolean input variable taken into the macro through W, and ENO is a 

TABLE 9.7

Algorithm and Symbol of the Macro R1norR2

Algorithm Symbol

if EN = 1 then
OUT = R1 NOR R2;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
R1 OUT

W W

NOR

R2

R1, R2, OUT (8 bit register)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and Symbol of the Macro R1norR2

Temp_1        W

Y

N

OUT         R1 NOR R2
W         Temp_1

L1

Temp_1,0 = 1?    

begin

end

(b)(a)

FIGURE 9.8
(a) The macro R1norR2 and (b) its flowchart.
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Boolean output variable sent out from the macro through W. Output ENO 
follows the input EN. This means that when EN = 0, ENO is forced to be 
0, and when EN = 1, ENO is forced to be 1. R and K are source values. R 
refers to an 8-bit source variable, while K represents an 8-bit constant value. 
OUT refers to an 8-bit destination variable to which the result of the macro is 
stored. When EN = 1, the macro RnorK applies the logical NOR function to 
the 8-bit input variable R and the 8-bit constant value K and stores the result 
in the 8-bit output variable (OUT = R NOR K).

TABLE 9.8

Algorithm and Symbol of the Macro RnorK

Algorithm Symbol

if EN = 1 then
OUT = R NOR K;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
R OUT

W W

NOR

K

R, OUT (8 bit register)
K (8 bit constant)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and Symbol of the Macro RnorK

Temp_1        W

Y

N

OUT         R NOR K
W         Temp_1

L1

Temp_1,0 = 1?    

begin

end

(b)(a)

FIGURE 9.9
(a) The macro RnorK and (b) its flowchart.
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9.9 Macro R1xorR2

The algorithm and the symbol of the macro R1xorR2 are depicted in 
Table  9.9. Figure  9.10 shows the macro R1xorR2 and its flowchart. In this 
macro, EN is a Boolean input variable taken into the macro through W, 
and ENO is a Boolean output variable sent out from the macro through W. 
Output ENO follows the input EN. This means that when EN = 0, ENO is 
forced to be 0, and when EN = 1, ENO is forced to be 1. R1 and R2 refer to 
8-bit source variables from where the source values are taken into the macro, 
while OUT refers to an 8-bit destination variable to which the result of the 

TABLE 9.9

Algorithm and Symbol of the Macro R1xorR2

Algorithm Symbol

if EN = 1 then
OUT = R1 EXOR R2;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
R1 OUT

W W

XOR

R2

R1, R2, OUT (8 bit register)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and Symbol of the Macro R1xorR2

Temp_1        W

Y

N

OUT         R1 XOR R2
W         Temp_1

L1

Temp_1,0 = 1?    

begin

end

(b)(a)

FIGURE 9.10
(a) The macro R1xorR2 and (b) its flowchart.
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macro is stored. When EN = 1, the macro R1xorR2 applies the logical EXOR 
function to the two 8-bit input variables R1 and R2 and stores the result in 
the 8-bit output variable OUT (OUT = R1 EXOR R2).

9.10 Macro RxorK

The algorithm and the symbol of the macro RxorK are depicted in Table 9.10. 
Figure  9.11 shows the macro RxorK and its flowchart. In this macro, EN 
is a Boolean input variable taken into the macro through W, and ENO is a 

TABLE 9.10

Algorithm and Symbol of the Macro RxorK

Algorithm Symbol

if EN = 1 then
OUT = R EXOR K;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
R OUT

W W

XOR

K

R, OUT (8 bit register)
K (8 bit constant)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and Symbol of the Macro RxorK

Temp_1        W

Y

N

OUT         R XOR K
W         Temp_1

L1

Temp_1,0 = 1?    

begin

end

(b)(a)

FIGURE 9.11
(a) The macro RxorK and (b) its flowchart.



187Logical Macros

© 2008 Taylor & Francis Group, LLC

Boolean output variable sent out from the macro through W. Output ENO 
follows the input EN. This means that when EN = 0, ENO is forced to be 
0, and when EN = 1, ENO is forced to be 1. R and K are source values. R 
refers to an 8-bit source variable, while K represents an 8-bit constant value. 
OUT refers to an 8-bit destination variable to which the result of the macro is 
stored. When EN = 1, the macro RxorK applies the logical EXOR function to 
the 8-bit input variable R and the 8-bit constant value K and stores the result 
in the 8-bit output variable OUT (OUT = R EXOR K).

9.11 Macro R1xnorR2

The algorithm and the symbol of the macro R1xnorR2 are depicted in 
Table  9.11. Figure  9.12 shows the macro R1xnorR2 and its flowchart. In 
this macro, EN is a Boolean input variable taken into the macro through 
W, and ENO is a Boolean output variable sent out from the macro through 
W. Output ENO follows the input EN. This means that when EN = 0, ENO 
is forced to be 0, and when EN = 1, ENO is forced to be 1. R1 and R2 refer 
to 8-bit source variables from where the source values are taken into the 
macro, while OUT refers to an 8-bit destination variable to which the result 
of the macro is stored. When EN = 1, the macro R1xnorR2 applies the logical 
EXNOR function to the two 8-bit input variables R1 and R2 and stores the 
result in the 8-bit output variable OUT (OUT = R1 EXNOR R2).

9.12 Macro RxnorK

The algorithm and the symbol of the macro RxnorK are depicted in 
Table 9.12. Figure 9.13 shows the macro RxnorK and its flowchart. In this 
macro, EN is a Boolean input variable taken into the macro through W, 

TABLE 9.11

Algorithm and Symbol of the Macro R1xnorR2

Algorithm Symbol

if EN = 1 then
OUT = R1 EXNOR R2;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
R1 OUT

W W

XNOR

R2

R1, R2, OUT (8 bit register)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1
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and ENO is a Boolean output variable sent out from the macro through W. 
Output ENO follows the input EN. This means that when EN = 0, ENO is 
forced to be 0, and when EN = 1, ENO is forced to be 1. R and K are source 
values. R refers to an 8-bit source variable, while K represents an 8-bit 
constant value. OUT refers to an 8-bit destination variable to which the 
result of the macro is stored. When EN = 1, the macro RxnorK applies the 
logical EXNOR function to the 8-bit input variable R and the 8-bit constant 
value K and stores the result in the 8-bit output variable OUT (OUT = R 
EXNOR K).

Temp_1        W

Y

N

OUT         R1 XNOR R2
W         Temp_1

L1

Temp_1,0 = 1?    

begin

end

(b)(a)

FIGURE 9.12
(a) The macro R1xnorR2 and (b) its flowchart.

TABLE 9.12

Algorithm and Symbol of the Macro RxnorK

Algorithm Symbol

if EN = 1 then
OUT = R EXNOR K;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
R OUT

W W

XNOR

K

R, OUT (8 bit register)
K (8 bit constant)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and Symbol of the Macro RxnorK
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9.13 Macro inv_R

The algorithm and the symbol of the macro inv_R are depicted in Table 9.13. 
Figure 9.14 shows the macro inv_R and its flowchart. In this macro, EN is a 
Boolean input variable taken into the macro through W, and ENO is a Boolean 
output variable sent out from the macro through W. Output ENO follows the 
input EN. This means that when EN = 0, ENO is forced to be 0, and when 
EN = 1, ENO is forced to be 1. IN refers to an 8-bit source variable from where 
the source value is taken into the macro, while OUT refers to an 8-bit desti-
nation variable to which the result of the macro is stored. When EN = 1, the 

Temp_1        W

Y

N

OUT         R XNOR K
W         Temp_1

L1

Temp_1,0 = 1?    

begin

end
(b)(a)

FIGURE 9.13
(a) The macro RxnorK and (b) its flowchart.

TABLE 9.13

Algorithm and Symbol of the Macro inv_R

Algorithm Symbol

if EN = 1 then
OUT = invert IN;
ENO = 1;

else ENO = 0;
end if ;

EN ENO
IN OUT

W W

inv_R

IN, OUT (8 bit register)
EN (through W) = 0 or 1
ENO (through W) = 0 or 1

Algorithm and Symbol of the Macro inv _ R
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macro inv_R inverts all of the bits in the 8-bit source register IN and stores 
the result in the 8-bit destination register OUT (OUT = invert IN).

9.14 Example for Logical Macros

In this section, we will consider an example, UZAM_plc_16i16o_ex16.asm, to 
show the usage of logical macros. In order to test the example, please take 
the file UZAM_plc_16i16o_ex16.asm from the CD-ROM attached to this 
book, and then open the program by MPLAB IDE and compile it. After 
that, by using the PIC programmer software, take the compiled file UZAM_
plc_16i16o_ex16.hex, and by your PIC programmer hardware send it to the 
program memory of the PIC16F648A microcontroller within the PIC16F648A-
based PLC. To do this, switch the 4PDT in PROG position and the power 
switch in OFF position. After loading the file UZAM_plc_16i16o_ex16.hex, 
switch the 4PDT in RUN and the power switch in ON position. Please check 
the program’s accuracy by cross-referencing it with the related macros.

Let us now consider this example program: The example program, UZAM_
plc_16i16o_ex16.asm, is shown in Figure 9.15. It shows the usage of all logical 
macros. The ladder diagram of the user program of UZAM_plc_16i16o_ex16 
.asm, shown in Figure 9.15, is depicted in Figure 9.16.

In the first rung, both Q1 and Q0 are cleared, i.e., 8-bit value 00h is loaded 
into both Q0 and Q1, by using the macro load_R. This process is carried out 
once at the first program scan by using the FRSTSCN NO contact.

Temp_1        W

Y

N

OUT         INV(IN)
W         Temp_1

L1

Temp_1,0 = 1?    

begin

end

(b)(a)

FIGURE 9.14
(a) The macro inv_R and (b) its flowchart.
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FIGURE 9.15
The user program of UZAM_plc_16i16o_ex16.asm. (Continued)
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FIGURE 9.15 (Continued)
The user program of UZAM_plc_16i16o_ex16.asm. (Continued)
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In each rung between 2 and 5, an 8-bit value, namely, 03h, 05h, 0Fh, and 
F0h, is loaded into Q0 based on the inputs I0.3, I0.2, I0.1, and I0.0, by using 
the macro load_R, as shown in Table 9.14. If I0.3,I0.2,I0.1,I0.0 = 0001 (0010, 
0100, and 1000, respectively), then Q0 = 03h (05h, 0Fh, and F0h, respectively).

In the 14 rungs between 6 and 19, a 4-to-16 decoder is implemented, 
whose inputs are I0.7, I0.6, I0.5, and I0.4, and whose outputs are M0.1, M0.2, 
…, M0.7, M1.0, M1.1, …, M1.6. Note that only 14 combinations are utilized, 

FIGURE 9.15 (Continued)
The user program of UZAM_plc_16i16o_ex16.asm.
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while the following combinations for inputs (I0.7, I0.6, I0.5, I0.4), 0000 and 
1111, are not implemented. Therefore, for these combinations of the inputs 
I0.7, I0.6, I0.5, and I0.4, the program will not produce any output. This 
arrangement is made to choose 14 different markers based on the input 
data given through the inputs I0.7, I0.6, I0.5, and I0.4. Table 9.15 shows the 

1
FRSTSCN

EN ENO
IN OUT

EN ENO
IN OUT

EN ENO
IN OUT

EN ENO
IN OUT

EN ENO
IN OUT

EN ENO
IN OUT

00h

load_R

Q1

2

00h

load_R

Q0

I0.0 I0.1 I0.2 I0.3

I0.1 I0.0 I0.2 I0.3

I0.2 I0.0 I0.1 I0.3

I0.3 I0.0 I0.1 I0.2

3

4

5

03h

load_R

Q0

05h

load_R

Q0

0Fh

load_R

Q0

F0h

load_R

Q0

FIGURE 9.16
The ladder diagram of the user program of UZAM_plc_16i16o_ex16.asm. (Continued)

TABLE 9.14

Selection of 8-Bit Values to Be Deposited in Q0 Based on the Inputs I0.0, I0.1, I0.2, 
and I0.3

I0.0 I0.1 I0.2 I0.3
8-Bit Value Selected to Be 

Deposited in Q0
1 0 0 0 Q0 = 03h (0 0 0 0 0 0 1 1)
0 1 0 0 Q0 = 05h (0 0 0 0 0 1 0 1)
0 0 1 0 Q0 = 0Fh (0 0 0 0 1 1 1 1)
0 0 0 1 Q0 = F0h (1 1 1 1 0 0 0 0)
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truth table based on the input data entered through I0.7, I0.6, I0.5, and I0.4, 
and the 14 markers chosen.

In the 14 PLC rungs between 20 and 33, we define different logical opera-
tions according to the decoder outputs represented by the marker bits M0.1, 
M0.2, …, M0.7, M1.0, M1.1, …, M1.6. In each of these 14 rungs, a logical process 

M0.1

M0.2

M0.3

M0.4

M0.5

M0.6

M0.7

M1.0

6
I0.7 I0.6 I0.5 I0.4

I0.7 I0.6 I0.5 I0.4

I0.7 I0.6 I0.5 I0.4

I0.7 I0.6 I0.5 I0.4

I0.7 I0.6 I0.5 I0.4

I0.7 I0.6 I0.5 I0.4

I0.7 I0.6 I0.5 I0.4

I0.7 I0.6 I0.5 I0.4

I0.7 I0.6 I0.5 I0.4

I0.7 I0.6 I0.5 I0.4

I0.7 I0.6 I0.5 I0.4

I0.7 I0.6 I0.5 I0.4

I0.7 I0.6 I0.5 I0.4

I0.7 I0.6 I0.5 I0.4

M1.1

7

M1.2

8

M1.3

9

M1.4

10

M1.5

11

12

13

14

15

16

17

18

M1.6
19

FIGURE 9.16 (Continued)
The ladder diagram of the user program of UZAM_plc_16i16o_ex16.asm. (Continued)
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21
 M0.2 AND

EN ENO
R1 OUT
R2

EN ENO
R1 OUT
R2

EN ENO
R1 OUT
R2

EN ENO
R1 OUT
R2

EN ENO
R1 OUT
R2

EN ENO
R1 OUT
R2

EN ENO
R1 OUT
R2

EN ENO
R OUT
K

EN ENO
R OUT
K

EN ENO
R OUT
K

EN ENO
R OUT
K

EN ENO
R OUT
K

EN ENO
R OUT
K

I 1 Q 1

20
 M0.1

Q 1
EN ENO
IN OUT

EN ENO
IN OUT

inv_R

I 1

22
 M0.3 AND

I 1 M 7

23
 M0.4 AND

I 1 Q 1

24
 M0.5 NAND

Q 1

25 
 M0.6 NAND

Q 1

26
 M0.7 OR

Q 1

27
 M1.0 OR

Q 1

28
 M1.1

Q 1

29
 M1.2 NOR

NOR

Q 1

30
 M1.3

Q 1

31
 M1.4 XOR

XOR

Q 1

32
 M1.5

Q 1

Q 0

Q 0

I 1
Q 0

I 1
Q 0

I 1
Q 0

I 1
Q 0

I 1
Q 0

50h

33
 M1.6 XNOR

XNOR

Q 1

Q 1

inv_R

M 7

I 1
50h

I 1
50h

I 1
50h

I 1
50h

I 1
50h

FIGURE 9.16 (Continued)
The ladder diagram of the user program of UZAM_plc_16i16o_ex16.asm. 
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is carried out, as shown in Table 9.16. For example, if M0.7 = 1, then the fol-
lowing operation is done: Q1 = I1 OR Q0. This means that the macro R1orR2 
applies the logical OR function to the two 8-bit input variables I1 and Q0 
and stores the result to the 8-bit output variable Q1. It should be obvious that 
since only one of the markers (M0.1, M0.2, …, M0.7, M1.0, M1.1, …, M1.6) is 
active at any time, only one of the processes shown in Table 9.16 can be car-
ried out at a time.

TABLE 9.15

Selection of Markers Based on the Inputs I0.7, I0.6, I0.5, and I0.4

I0.7 I0.6 I0.5 I0.4 Marker

0 0 0 1 M0.1
0 0 1 0 M0.2
0 0 1 1 M0.3
0 1 0 0 M0.4
0 1 0 1 M0.5
0 1 1 0 M0.6
0 1 1 1 M0.7
1 0 0 0 M1.0
1 0 0 1 M1.1
1 0 1 0 M1.2
1 0 1 1 M1.3
1 1 0 0 M1.4
1 1 0 1 M1.5
1 1 1 0 M1.6

TABLE 9.16

Selection of Logical Processes Based on Markers

Marker Logical Process Selected

M0.1 Q1 = INV I1
M0.2 Q1 = I1 AND Q0
M0.3 Q1 = I1 NAND Q0 = INV M7 (M7 = I1 AND Q0)
M0.4 Q1 = I1 AND 50h
M0.5 Q1 = I1 NAND Q0
M0.6 Q1 = I1 NAND 50h
M0.7 Q1 = I1 OR Q0
M1.0 Q1 = I1 OR 50h
M1.1 Q1 = I1 NOR Q0
M1.2 Q1 = I1 NOR 50h
M1.3 Q1 = I1 XOR Q0
M1.4 Q1 = I1 XOR 50h
M1.5 Q1 = I1 XNOR Q0
M1.6 Q1 = I1 XNOR 50h
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10
Shift and Rotate Macros

A shift (SHIFT) function moves the bits in a register to the right or to the left. As 
an example, Figure 10.1 shows a shift right function that retrieves the input data 
from the source register A and shifts the bits of the source register A toward the 
right as many numbers as specified by the number of shift, while the serial data 
are taken from the left through the Boolean input variable shift in bit. 
The result of the shift operation is stored in a destination register B. In this case, 
the least significant bit (LSB) is shifted out as many numbers as specified by 
the number of shift. A shift left function is identical, except that the shift in 
bit, taken from the right, is moved in the opposite direction toward left, shift-
ing out the most significant bit (MSB) as many numbers as specified by the 
number of shift. A rotate (ROTATE) function, like a shift function, shifts data 
to the right or left, but instead of losing the shift out bit, this bit becomes 
the shift in bit at the other end of the register (rotated bit). The number 
of rotation defines how many bits will be rotated to the right or left. Similar to 
the shift function, the result of the rotate operation is stored in the destination 
register B.

In this chapter, the following shift and rotate macros are described for the 
PIC16F648A-based PLC:

shift_R

shift_L

rotate_R

rotate_L

Swap

The file definitions.inc, included within the CD-ROM attached to this 
book, contains all shift and rotate macros defined for the PIC16F648A-based 
PLC. Let us now consider these macros in detail.

10.1 Macro shift_R

The algorithm and the symbol of the macro shift_R are depicted in 
Table 10.1. Figure 10.2 shows the macro shift_R and its flowchart. In this 
macro, EN is a Boolean input variable taken into the macro through W, and 
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ENO is a Boolean output variable sent out from the macro through W. Output 
ENO follows the input EN. This means that when EN = 0, ENO is forced to 
be 0, and when EN = 1, ENO is forced to be 1. This is especially useful if we 
want to carry out more than one operation based on a single input condition. 
RIN refers to an 8-bit source variable from where the source value is taken 
into the macro, while ROUT refers to an 8-bit destination variable to which 
the result of the macro is stored. N represents the number of shift, which 
can be any number in 1, 2, …, 8. SIN is the Boolean input variable shift in 
bit. When EN = 1, the macro shift_R retrieves the 8-bit input data from 
RIN and shifts the bits of RIN toward right as many numbers as specified 
by N, while the serial data are taken from left through SIN. The result of the 
shift right operation is stored in the 8-bit output register ROUT.

10.2 Macro shift_L

The algorithm and the symbol of the macro shift_L are depicted in 
Table 10.2. Figure 10.3 shows the macro shift_L and its flowchart. In this 
macro, EN is a Boolean input variable taken into the macro through W, 

Source register A
SHIFT
RIGHTShift in bit

�e number of shift

Destination register B

FIGURE 10.1
The shift right function.

TABLE 10.1

Algorithm and Symbol of the Macro shift_R

Algorithm Symbol

if EN = 1 then
ROUT = N times shift right(RIN) 

and take the serial data_in from SIN;
ENO = 1;

else ENO = 0;
end if ;

EN ENO

RIN ROUT

W W

SHIFT_R

SIN

N
RIN, ROUT (8 bit register)
SIN (reg,bit) = 0 or 1
N (number of shift) = 1,2, ..., 8
EN (through W) = 0 or 1
EN0 (through W) = 0 or 1
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and ENO is a Boolean output variable sent out from the macro through W. 
Output ENO follows the input EN. This means that when EN = 0, ENO is 
forced to be 0, and when EN = 1, ENO is forced to be 1. RIN refers to an 8-bit 
source variable from where the source value is taken into the macro, while 
ROUT refers to an 8-bit destination variable to which the result of the macro 
is stored. N represents the number of shift, which can be any number in 1, 2, 
…, 8. SIN is the Boolean input variable shift in bit. When EN = 1, the 
macro shift_L retrieves the 8-bit input data from RIN and shifts the bits of 
RIN toward left as many numbers as specified by N, while the serial data are 
taken from right through SIN. The result of the shift left operation is stored 
in the 8-bit output register ROUT.

10.3 Macro rotate_R

The algorithm and the symbol of the macro rotate_R are depicted in 
Table  10.3. Figure  10.4 shows the macro rotate_R and its flowchart. In 
this macro, EN is a Boolean input variable taken into the macro through W, 

(a)

FIGURE 10.2
(a) The macro shift_R and (b) its flowchart. (Continued)
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Y

N

Temp_1         W

N

 Y   

N

Y

ROUT           RIN
Temp_1           n

NY

RESET  STATUS,C SET STATUS,C

ROUT               ROTATE right ROUT with Carry
Temp_1 = Temp_1 – 1

Temp_1,0 = 1
?     

L1

(n≠0) & (n<9)
?

L2

reg,bit = 0
?

Temp_1 = 0
?

SET  Temp_1,0
W         Temp_1

begin

end

(b)

FIGURE 10.2 (Continued)
(a) The macro shift_R and (b) its flowchart. 
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and ENO is a Boolean output variable sent out from the macro through W. 
Output ENO follows the input EN. This means that when EN = 0, ENO is 
forced to be 0, and when EN = 1, ENO is forced to be 1. RIN refers to an 8-bit 
source variable from where the source value is taken into the macro, while 
ROUT refers to an 8-bit destination variable to which the result of the macro 

(a)

FIGURE 10.3
(a) The macro shift_L and (b) its flowchart. (Continued)

TABLE 10.2

Algorithm and Symbol of the Macro shift_L

Algorithm Symbol

if EN = 1 then
ROUT = N times shift left(RIN) 

and take the serial data_in from SIN;
ENO = 1;

else ENO = 0;
end if ;

EN ENO

RIN ROUT

W W

SHIFT_L

SIN

N
RIN, ROUT (8 bit register)
SIN (reg,bit) = 0 or 1
N (number of shift) = 1,2, ..., 8
EN (through W) = 0 or 1
EN0 (through W) = 0 or 1

Algorithm and Symbol of the Macro shift _ L
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Y

N

ROUT               ROTATE left ROUT with Carry

Temp_1         W

N

 Y   

N

Y

ROUT           RIN
Temp_1           n

NY

RESET  STATUS,C SET STATUS,C

Temp_1 = Temp_1 – 1

Temp_1,0 = 1
?     

L1

(n≠0) & (n<9)
?

L2

reg,bit = 0
?

Temp_1 = 0
?

SET  Temp_1,0
W         Temp_1

begin

end

(b)

FIGURE 10.3 (Continued)
(a) The macro shift_L and (b) its flowchart. 



205Shift and Rotate Macros

© 2008 Taylor & Francis Group, LLC

is stored. N represents the number of rotation, which can be any number in 
1, 2, …, 7. When EN = 1, the macro rotate_R retrieves the 8-bit input data 
from RIN and rotates the bits of RIN toward right as many numbers as speci-
fied by N. The result of the rotate right operation is stored in the 8-bit output 
register ROUT.

TABLE 10.3

Algorithm and Symbol of the Macro rotate_R

Algorithm Symbol

if EN = 1 then
ROUT = N times rotate right(RIN); 
ENO = 1;

else ENO = 0;
end if ;

EN ENO
RIN ROUT

W W

ROTATE_R

N
RIN, ROUT (8 bit register)
N (number of rotation) = 1,2, ..., 7
EN (through W) = 0 or 1
EN0 (through W) = 0 or 1

Algorithm and Symbol of the Macro rotate _ R

(a)

FIGURE 10.4
(a) The macro rotate_R and (b) its flowchart. (Continued)
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Y

N

ROUT               ROTATE right ROUT with Carry

Temp_1         W

N

 Y   

N

Y

ROUT           RIN
Temp_1           n

NY

RESET  STATUS,C SET STATUS,C

Temp_1 = Temp_1 – 1

Temp_1,0 = 1
?     

L1

(n≠0) & (n<8)
?

L2

ROUT,0 = 0
?

Temp_1 = 0
?

SET  Temp_1,0
W         Temp_1

begin

end

(b)

FIGURE 10.4 (Continued)
(a) The macro rotate_R and (b) its flowchart.
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10.4 Macro rotate_L

The algorithm and the symbol of the macro rotate_L are depicted in 
Table 10.4. Figure 10.5 shows the macro rotate_L and its flowchart. In this 
macro, EN is a Boolean input variable taken into the macro through W, and 
ENO is a Boolean output variable sent out from the macro through W. Output 
ENO follows the input EN. This means that when EN = 0, ENO is forced to 

TABLE 10.4

Algorithm and Symbol of the Macro rotate_L

Algorithm Symbol

if EN = 1 then
ROUT = N times rotate left(RIN); 
ENO = 1;

else ENO = 0;
end if ;

EN ENO
RIN ROUT

W W

ROTATE_L

N
RIN, ROUT (8 bit register)
N (number of rotation) = 1,2, ..., 7
EN (through W) = 0 or 1
EN0 (through W) = 0 or 1

Algorithm and Symbol of the Macro rotate _ L

(a)

FIGURE 10.5
(a) The macro rotate_L and (b) its flowchart. (Continued)
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Y

N

ROUT               ROTATE left ROUT with Carry

Temp_1         W

N

Y

N

Y

ROUT           RIN
Temp_1           n

NY

RESET  STATUS,C SET STATUS,C

Temp_1 = Temp_1 – 1

Temp_1,0 = 1?     

L1

(n≠0) & (n<8)
?

L2

ROUT,7 = 0?

Temp_1 = 0?

SET  Temp_1,0
W         Temp_1

begin

end

(b)

FIGURE 10.5 (Continued)
(a) The macro rotate_L and (b) its flowchart. 
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be 0, and when EN = 1, ENO is forced to be 1. RIN refers to an 8-bit source 
variable from where the source value is taken into the macro, while ROUT 
refers to an 8-bit destination variable to which the result of the macro is stored. 
N represents the number of rotation, which can be any number in 1, 2, …, 7. 
When EN = 1, the macro rotate_L retrieves the 8-bit input data from RIN 
and rotates the bits of RIN toward left as many numbers as specified by N. The 
result of the rotate left operation is stored in the 8-bit output register ROUT.

10.5 Macro Swap

The algorithm and the symbol of the macro Swap are depicted in 
Table  10.5. Figure  10.6 shows the macro Swap and its flowchart. In this 
macro, EN is a Boolean input variable taken into the macro through W, 

TABLE 10.5

Algorithm and Symbol of the Macro Swap

Algorithm Symbol

if EN = 1 then
OUT = SWAP(IN);
ENO = 1;

else ENO = 0;
end if ;

EN ENO
IN OUT

W W

SWAP

IN, OUT (8 bit register)
EN (through W) = 0 or 1
EN0 (through W) = 0 or 1

Algorithm and Symbol of the Macro Swap

Temp_1        W

Y

N

OUT         SWAP(IN)
W         Temp_1

L1

Temp_1,0 = 1?    

begin

end

(b)(a)

FIGURE 10.6
(a) The macro Swap and (b) its flowchart. 
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and ENO is a Boolean output variable sent out from the macro through 
W. Output ENO follows the input EN. This means that when EN = 0, ENO 
is forced to be 0, and when EN = 1, ENO is forced to be 1. IN refers to an 
8-bit source variable from where the source value is taken into the macro, 
while OUT refers to an 8-bit destination variable to which the result of the 
macro is stored. When EN = 1, the macro Swap retrieves the 8-bit input 
data from IN and swaps (exchanges the upper and lower nibbles—4 bits) 
the nibbles of IN. The result of the swap operation is stored in the 8-bit 
output register OUT.

10.6 Examples for Shift and Rotate Macros

In this section, we will consider two examples, UZAM_plc_16i16o_ex17.asm 
and UZAM_plc_16i16o_ex18.asm, to show the usage of shift and rotate mac-
ros. In order to test one of these examples, please take the related file UZAM_
plc_16i16o_ex17.asm or UZAM_plc_16i16o_ex18.asm from the CD-ROM 
attached to this book, and then open the program by MPLAB IDE and com-
pile it. After that, by using the PIC programmer software, take the compiled 
file UZAM_plc_16i16o_ex17.hex or UZAM_plc_16i16o_ex18.hex, and by your 
PIC programmer hardware, send it to the program memory of PIC16F648A 
microcontroller within the PIC16F648A-based PLC. To do this, switch the 
4PDT in PROG position and the power switch in OFF position. After loading 
the file UZAM_plc_16i16o_ex17.hex or UZAM_plc_16i16o_ex18.hex, switch 
the 4PDT in RUN and the power switch in ON position. Please check the 
program’s accuracy by cross-referencing it with the related macros. When 
studying these two examples, note that the register Q0 (respectively, Q1, I0, 
and I1) is made up of 8 bits: Q0.7, Q0.6, …, Q0.0 (respectively, Q1.7, Q1.6, …, 
I1.0; I0.7, I0.6, …, I0.0; and I1.7, I1.6, …, I1.0), and that Q0.7 (respectively, Q1.7, 
I0.7, and I1.7) is the most significant bit (MSB), while Q0.0 (respectively, Q1.0, 
I0.0, and I1.0) is the least significant bit (LSB).

Let us now consider these example programs: The first example program, 
UZAM_plc_16i16o_ex17.asm, is shown in Figure 10.7. It shows the usage of 
two shift macros shift_R and shift_L. The ladder diagram of the user 
program of UZAM_plc_16i16o_ex17.asm, shown in Figure 10.7, is depicted 
in Figure 10.8.

In the first rung, 8-bit numerical data 3Ch are loaded to Q1, by using the 
macro load_R. This process is carried out once at the first program scan by 
using the FRSTSCN NO contact.

In the eight rungs between 2 and 9, a 3-to-8 decoder is implemented, whose 
inputs are I0.2, I0.1, and I0.0, and whose outputs are M0.0, M0.1, …, M0.7. This 
arrangement is made to choose the number of shift for the selected shift right 
or shift left operation based on the input data given through the input bits 
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I0.2, I0.1, and I0.0. When these bits are 001, 010, 100, 100, 101, 110, 111, and 000, 
we define the number of shift for the selected shift right or shift left opera-
tion as 1, 2, 3, 4, 5, 6, 7, and 8 respectively.

In the eight rungs between 10 and 17, we define eight different shift right 
operations according to the 3-to-8 decoder outputs represented by the 
marker bits M0.0, M0.1, …, M0.7. Shift right operations defined in these rungs 
are applied to the 8-bit input variable Q1. The result of the shift right opera-
tions defined in these rungs will be stored in Q0. The shift in bit for 
these shift right operations defined in these rungs is I1.7. The only difference 

FIGURE 10.7
The user program of UZAM_plc_16i16o_ex17.asm. (Continued)
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FIGURE 10.7 (Continued)
The user program of UZAM_plc_16i16o_ex17.asm. (Continued)
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FIGURE 10.7 (Continued)
The user program of UZAM_plc_16i16o_ex17.asm. 
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for these eight shift right operations is the number of shift. It can be seen that 
for each rung one rising edge detector is used. This is to make sure that when 
the related shift right operation is chosen, it will be carried out only once. In 
order to choose one of these eight shift right operations the input bits I0.4 and 
I0.3 must be as follows: I0.4 = 0, I0.3 = 1.

In the eight rungs between 18 and 25, we define eight different shift left 
operations according to the 3-to-8 decoder outputs represented by the 
marker bits M0.0, M0.1, …, M0.7. Shift left operations defined in these rungs 
are applied to the 8-bit input variable Q1. The result of the shift left opera-
tions defined in these rungs will be stored in Q0. The shift in bit for 
these shift left operations defined in these rungs is I1.0. The only difference 
for these eight shift left operations is the number of shift. It can be seen that 
for each rung one rising edge detector is used. This is to make sure that when 
the related shift left operation is chosen, it will be carried out only once. In 
order to choose one of these eight shift left operations, the input bits I0.4 and 
I0.3 must be set as follows: I0.4 = 1, I0.3 = 0.

1
 FRSTSCN 

2

EN ENO
IN OUT3Ch

load_R

Q1

I0.2 I0.1 I0.0

I0.2 I0.1 I0.0

I0.2 I0.1 I0.0

I0.2 I0.1 I0.0

I0.2 I0.1 I0.0

I0.2 I0.1 I0.0

I0.2 I0.1 I0.0

I0.2 I0.1 I0.0

M0.0

3
M0.1

4
M0.2

5
M0.3

6
M0.4

7
M0.5

8
M0.6

9
M0.7

FIGURE 10.8
The ladder diagram of the user program of UZAM_plc_16i16o_ex17.asm. (Continued)
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10
num
IN OUT

r_edge

num
IN OUT

r_edge

num
IN OUT

r_edge

num
IN OUT

r_edge

num
IN OUT

r_edge

num
IN OUT

r_edge

num
IN OUT

r_edge

num
IN OUT

r_edge

0

I 0.3 I 0.4 M 0.1

I 0.3 I 0.4 M 0.2

I 0.3 I 0.4 M 0.3

I 0.3 I 0.4 M 0.4

I 0.3 I 0.4 M 0.5

I 0.3 I 0.4 M 0.6

I 0.3 I 0.4 M 0.7

I 0.3 I 0.4 M 0.0

SHIFT_R

EN ENO

RIN ROUT
SIN

N

EN ENO

RIN ROUT
SIN

N

EN ENO

RIN ROUT
SIN

N

EN ENO

RIN ROUT
SIN

N

EN ENO

RIN ROUT
SIN

N

EN ENO

RIN ROUT
SIN

N

EN ENO

RIN ROUT
SIN

N

EN ENO

RIN ROUT
SIN

N

Q0
I1.7

1

11

SHIFT_R

Q0

12

SHIFT_R

Q0

13

SHIFT_R

Q0

14

SHIFT_R

Q0

15

SHIFT_R

Q0

16
0

0

0

0

0

0

SHIFT_R

Q0

17
0

SHIFT_R

Q0
I1.7

8

Q1

Q1

I1.7

7
Q1

I1.7

6
Q1

I1.7

5
Q1

I1.7

4
Q1

I1.7

3
Q1

I1.7

2
Q1

FIGURE 10.8 (Continued)
The ladder diagram of the user program of UZAM_plc_16i16o_ex17.asm. (Continued)



216 Building a Programmable Logic Controller 

© 2008 Taylor & Francis Group, LLC

18
num
IN OUT

r_edge

num
IN OUT

r_edge

num
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r_edge

num
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r_edge

num
IN OUT

r_edge

num
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r_edge

num
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r_edge

num
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r_edge

0

I 0.4 I 0.3 M 0.1

I 0.4 I 0.3 M 0.2

I 0.4 I 0.3 M 0.3

I 0.4 I 0.3 M 0.4

I 0.4 I 0.3 M 0.5

I 0.4 I 0.3 M 0.6

I 0.4 I 0.3 M 0.7

I 0.4 I 0.3 M 0.0

EN ENO

RIN ROUT

SHIFT_L

SIN

N

EN ENO

RIN ROUT
SIN

N

EN ENO

RIN ROUT
SIN

N

EN ENO

RIN ROUT
SIN

N

EN ENO

RIN ROUT
SIN

N
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RIN ROUT
SIN

N
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RIN ROUT
SIN

N

EN ENO

RIN ROUT
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N

Q0
I1.0

1
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SHIFT_L

Q0
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SHIFT_L

Q0
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SHIFT_L

Q0
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SHIFT_L

Q0
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SHIFT_L

Q0

24
0

0

0

0

0

0

SHIFT_L

Q0

25
0

SHIFT_L

Q0
I1.0

8

Q1

Q1

I1.0

7
Q1

I1.0

6
Q1

I1.0

5
Q1

I1.0

4
Q1
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3
Q1
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2
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FIGURE 10.8 (Continued)
The ladder diagram of the user program of UZAM_plc_16i16o_ex17.asm. 
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Table 10.6 shows the truth table of the user program of UZAM_plc_16i16o_
ex17.asm.

The second example program, UZAM_plc_16i16o_ex18.asm, is shown in 
Figure 10.9. It shows usage of the following macros: rotate_R, rotate_L, 
and Swap. The ladder diagram of the user program of UZAM_plc_16i16o_
ex18.asm, shown in Figure 10.9, is depicted in Figure 10.10.

In the first rung, 8-bit numerical data F0h are loaded to the 8-bit variable 
Q1, by using the macro load_R. This process is carried out once at the first 
program scan by using the FRSTSCN NO contact.

In the second rung, if the 8-bit input register I0 is set to 80h, then I1 is 
loaded to Q1, by using the macro load_R.

In the seven rungs between 3 and 9, a 3-to-8 decoder is implemented, 
whose inputs are I0.2, I0.1, and I0.0, and whose outputs are M0.1, M0.2, …, 
M0.7. Note that the first combination of 3-to-8 decoder, namely, (I0.2, I0.1, I0.0) 
= 000, is not implemented. This arrangement is made to choose the number 
of rotation for the selected rotate right or rotate left operation based on the 
input data given through the input bits I0.2, I0.1, and I0.0. When these bits are 
001, 010, 100, 100, 101, 110, and 111, we define the number of rotation for the 
selected rotate right or rotate left operation as 1, 2, 3, 4, 5, 6, and 7, respectively.

In the seven rungs between 10 and 16, we define seven different rotate 
right operations according to the 3-to-8 decoder outputs represented by the 

TABLE 10.6

Truth Table of the User Program of UZAM_plc_16i16o_ex17.asm

I0.4 I0.3 I0.2 I0.1 I0.0 Selected Process

0 0 × × × No process is selected
1 1 × × × No process is selected
0 1 0 0 0 Shift right Q1 once; shift in bit = I1.7
0 1 0 0 1 Shift right Q1 twice; shift in bit = I1.7
0 1 0 1 0 Shift right Q1 3 times; shift in bit = I1.7
0 1 0 1 1 Shift right Q1 4 times; shift in bit = I1.7
0 1 1 0 0 Shift right Q1 5 times; shift in bit = I1.7
0 1 1 0 1 Shift right Q1 6 times; shift in bit = I1.7
0 1 1 1 0 Shift right Q1 7 times; shift in bit = I1.7
0 1 1 1 1 Shift right Q1 8 times; shift in bit = I1.7
1 0 0 0 0 Shift left Q1 once; shift in bit = I1.0
1 0 0 0 1 Shift left Q1 twice; shift in bit = I1.0
1 0 0 1 0 Shift left Q1 3 times; shift in bit = I1.0
1 0 0 1 1 Shift left Q1 4 times; shift in bit = I1.0
1 0 1 0 0 Shift left Q1 5 times; shift in bit = I1.0
1 0 1 0 1 Shift left Q1 6 times; shift in bit = I1.0
1 0 1 1 0 Shift left Q1 7 times; shift in bit = I1.0
1 0 1 1 1 Shift left Q1 8 times; shift in bit = I1.0

×: Don’t care. Note that the result of the shift operations will be stored in Q0.
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FIGURE 10.9
The user program of UZAM_plc_16i16o_ex18.asm. (Continued)
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FIGURE 10.9 (Continued)
The user program of UZAM_plc_16i16o_ex18.asm. (Continued)
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FIGURE 10.9 (Continued)
The user program of UZAM_plc_16i16o_ex18.asm. 
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marker bits M0.1, M0.2, …, M0.7. Rotate right operations defined in these 
rungs are applied to the 8-bit input variable Q1. The result of the rotate right 
operations defined in these rungs will be stored in Q0. The only difference 
for these seven rotate right operations is the number of rotation. It can be 
seen that for each rung one rising edge detector is used. This is to make sure 
that when the related rotate right operation is chosen, it will be carried out 
only once. In order to choose one of these seven rotate right operations, the 
input bits I0.4 and I0.3 must be as follows: I0.4 = 0, I0.3 = 1.

In the seven rungs between 17 and 23, we define seven different rotate 
left operations according to the 3-to-8 decoder outputs represented by the 
marker bits M0.1, M0.2, …, M0.7. Rotate left operations defined in these rungs 
are applied to the 8-bit input variable Q1. The result of the rotate left opera-
tions defined in these rungs will be stored in Q0. The only difference for 
these seven rotate left operations is the number of rotation. It can be seen that 
for each rung one rising edge detector is used. This is to make sure that when 
the related rotate left operation is chosen, it will be carried out only once. In 

1
FRSTSCN

EN ENO
IN OUT

EN ENO
IN OUT

F0h

load_R

3
I 0.2 I 0.1 I 0.0

I 0.2 I 0.1 I 0.0

I 0.2 I 0.1 I 0.0

I 0.2 I 0.1 I 0.0

I 0.2 I 0.1 I 0.0

I 0.2 I 0.1 I 0.0

I 0.2 I 0.1 I 0.0

M 0.1

4
M 0.2

5
M 0.3

6
M 0.4

7
M 0.5

8
M 0.6

9
M 0.7

2
I 0.7 I 0.6 I 0.5 I 0.4 I 0.3 I 0.2 I 0.1 I 0.0

Q1

num
IN OUT

r_edge

0 I 1

move_R

Q1

FIGURE 10.10
The ladder diagram of the user program of UZAM_plc_16i16o_ex18.asm. (Continued)



222 Building a Programmable Logic Controller 

© 2008 Taylor & Francis Group, LLC

10
num
IN OUT

r_edge

num
IN OUT

r_edge

num
IN OUT

r_edge

num
IN OUT

r_edge

num
IN OUT

r_edge

num
IN OUT

r_edge

num
IN OUT

r_edge

1

I 0.3 I 0.4 M 0.1

I 0.3 I 0.4 M 0.2

I 0.3 I 0.4 M 0.3

I 0.3 I 0.4 M 0.4

I 0.3 I 0.4 M 0.5

I 0.3 I 0.4 M 0.6

I 0.3 I 0.4 M 0.7

EN ENO
RIN ROUT

ROTATE_R

N

EN ENO
RIN ROUT

ROTATE_R

N

EN ENO
RIN ROUT

ROTATE_R

N

EN ENO
RIN ROUT

ROTATE_R

N

EN ENO
RIN ROUT

ROTATE_R

N

EN ENO
RIN ROUT

ROTATE_R

N

EN ENO
RIN ROUT

ROTATE_R

N

Q0
1

11
2

12
3

13
4

14
5

15
6

16
7

Q0
2

Q0
3

Q0
4

Q0
5

Q0
6

Q0
7

Q1

Q1

Q1

Q1

Q1

Q1

Q1

FIGURE 10.10 (Continued)
The ladder diagram of the user program of UZAM_plc_16i16o_ex18.asm. (Continued)
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FIGURE 10.10 (Continued)
The ladder diagram of the user program of UZAM_plc_16i16o_ex18.asm. 
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order to choose one of these seven rotate left operations, the input bits I0.4 
and I0.3 must be set as follows: I0.4 = 1, I0.3 = 0.

In the last rung, the use of the swap function is shown. If the 8-bit input 
register I0 is set to be 40h, then the “Swap Q1 and store the result in Q0” 
process is selected.

Table 10.7 shows the truth table of the user program of UZAM_plc_16i16o_
ex18.asm.

TABLE 10.7

Truth Table of the User Program of UZAM_plc_16i16o_ex18.asm

I0.4 I0.3 I0.2 I0.1 I0.0 Selected Process

0 0 × × × No process is selected
1 1 × × × No process is selected
0 1 0 0 0 No process is selected
0 1 0 0 1 Rotate right Q1 once
0 1 0 1 0 Rotate right Q1 twice
0 1 0 1 1 Rotate right Q1 3 times
0 1 1 0 0 Rotate right Q1 4 times
0 1 1 0 1 Rotate right Q1 5 times
0 1 1 1 0 Rotate right Q1 6 times
0 1 1 1 1 Rotate right Q1 7 times
1 0 0 0 0 No process is selected
1 0 0 0 1 Rotate left Q1 once
1 0 0 1 0 Rotate left Q1 twice
1 0 0 1 1 Rotate left Q1 3 times
1 0 1 0 0 Rotate left Q1 4 times
1 0 1 0 1 Rotate left Q1 5 times
1 0 1 1 0 Rotate left Q1 6 times
1 0 1 1 1 Rotate left Q1 7 times

×: Don’t care. Note that the result of the rotate operations will be stored in Q0. In addi-
tion, when I0 = 40h, the process Q0 = SWAP Q1 is selected.
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11
Multiplexer Macros

As a standard combinational component, the multiplexer (MUX), allows the 
selection of one input signal among n signals, where n > 1, and is a power of 
two. Select lines connected to the multiplexer determine which input signal 
is selected and passed to the output of the multiplexer. As can be seen from 
Figure 11.1, in general, an n-to-1 multiplexer has n data input lines, m select 
lines where m = log2 n, i.e., 2m = n, and one output line. Although not shown 
in Figure 11.1, in addition to the other inputs, the multiplexer may have an 
enable line, E, for enabling it. When the multiplexer is disabled with E set to 
0 (for active high enable input E), no input signal is selected and passed to 
the output.

In this chapter, the following multiplexer macros are described for the 
PIC16F648A-based PLC:

mux_2_1 (2 × 1 MUX)
mux_2_1_E (2 × 1 MUX with enable input)
mux_4_1 (4 × 1 MUX)
mux_4_1_E (4 × 1 MUX with enable input)
mux_8_1 (8 × 1 MUX)
mux_8_1_E (8 × 1 MUX with enable input)

The file definitions.inc, included within the CD-ROM attached to this book, 
contains all multiplexer macros defined for the PIC16F648A-based PLC. Let 
us now consider these macros in detail.

11.1 Macro mux_2_1

The symbol and the truth table of the macro mux_2_1 are depicted in 
Table 11.1. Figure 11.2 shows the macro mux_2_1 and its flowchart. In this 
macro, the select input s0, input signals d0 and d1, and the output y are all 
Boolean variables. When s0 = 0, the input signal d0 is selected and passed to 
the output y. When s0 = 1, the input signal d1 is selected and passed to the 
output y.
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11.2 Macro mux_2_1_E

The symbol and the truth table of the macro mux_2_1_E are depicted in 
Table  11.2. Figure  11.3 shows the macro mux_2_1_E and its flowchart. In 
this macro, the active high enable input E, the select input s0, input signals d0 
and d1, and the output y are all Boolean variables. When this multiplexer is 
disabled with E set to 0, no input signal is selected and passed to the output. 
When this multiplexer is enabled with E set to 1, it functions as described 
for mux_2_1. This means that when E = 1: if s0 = 0, then the input signal d0 
is selected and passed to the output y. When E = 1: if s0 = 1, then the input 
signal d1 is selected and passed to the output y.

y

d0
d1
d2

dn–1

sm–1
s1

s0

.

.

.

.

.

.

.

.....

n input
signals

Output line

m select  inputs

FIGURE 11.1
The general form of an n-to-1 multiplexer, where n = 2m.

TABLE 11.1

Symbol and Truth Table of the Macro mux_2_1

Symbol Truth Table

d0

d1
y

s0

s0 = regs0,bits0
d0 = regi0,biti0
d1 = regi1,biti1
y = rego,bito

input output
s0 y
0 d0
1 d1
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11.3 Macro mux_4_1

The symbol and the truth table of the macro mux_4_1 are depicted in 
Table  11.3. Figure  11.4 shows the macro mux_4_1 and its flowchart. In 
this macro, select inputs s1 and s0, input signals d0, d1, d2, and d3, and the 

(a)

Y N
regs0,bits0 = 1

Y

Nregi1,biti1 = 1

L1

Y

N regi0,biti0 = 1

RESET rego,bito

 L4   

L2   

SET  rego,bito

L3

begin

end

?

?

?

(b)

FIGURE 11.2
(a) The macro mux_2_1 and (b) its flowchart.



228 Building a Programmable Logic Controller 

© 2008 Taylor & Francis Group, LLC

output y are all Boolean variables. When s1s0 = 00 (respectively, 01, 10, 11), 
the input signal d0 (respectively, d1, d2, d3) is selected and passed to the 
output y.

11.4 Macro mux_4_1_E

The symbol and the truth table of the macro mux_4_1_E are depicted in 
Table 11.4. Figures 11.5 and 11.6 show the macro mux_4_1_E and its flow-
chart, respectively. In this macro, the active high enable input E, select inputs 
s1 and s0, input signals d0, d1, d2, and d3, and the output y are all Boolean 
variables. When this multiplexer is disabled with E set to 0, no input signal is 

TABLE 11.2

Symbol and Truth Table of the Macro mux_2_1_E

Symbol Truth Table

d0

d1
y

s0

E

W E
s0 = regs0,bits0
d0 = regi0,biti0
d1 = regi1,biti1
y = rego,bito

inputs output
E s0 y
0 × 0
1 0 d0
1 1 d1

×: don’t care.

Symbol and Truth Table of the Macro mux _ 2 _ 1 _ E

(a)

FIGURE 11.3
(a) The macro mux_2_1_E and (b) its flowchart. (Continued)
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TABLE 11.3

Symbol and Truth Table of the Macro mux_4_1

Symbol Truth Table

d0
d1

s1
s0

d2
d3

y

s1 = regs1,bits1
s0 = regs0,bits0
d3 = regi3,biti3
d2 = regi2,biti2
d1 = regi1,biti1
d0 = regi0,biti0
y = rego,bito

inputs output
s1 s0 y
0 0 d0
0 1 d1
1 0 d2
1 1 d3

Symbol and Truth Table of the Macro mux _ 4 _ 1

Y Nregs0,bits0 = 1

Y

N
regi1,biti1 = 1

L1

Y

N
regi0,biti0 = 1

RESET rego,bito

L4

L2

SET rego,bito

Temp_1         W

Y

N
Temp_1,0 = 1

L3

begin

end

?

?

??

(b)

FIGURE 11.3 (Continued)
(a) The macro mux_2_1_E and (b) its flowchart. 
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(a)

Y N
regs0,bits0 = 1

Y

 N   
regi3,biti3 = 1

L1

Y

N
regi2,biti2 = 1

RESET  rego,bito

L6

L2

Y Nregs0,bits0 = 1

N
regi1,biti1 = 1

Y

N
regi0,biti0 = 1

L4

L3
SET rego,bito

Y N
regs1,bits1 = 1

L5

Y

begin

end

?

??

? ? ? ?

(b)

FIGURE 11.4
(a) The macro mux_4_1 and (b) its flowchart.
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FIGURE 11.5
The macro mux_4_1_E.

TABLE 11.4

Symbol and Truth Table of the Macro mux_4_1_E

Symbol Truth Table

d0
d1

s1

E

s0

d2
d3

y

W E
s1 = regs1,bits1
s0 = regs0,bits0
d3 = regi3,biti3
d2 = regi2,biti2
d1 = regi1,biti1
d0 = regi0,biti0
y = rego,bito

inputs output
E s1 s0 y
0 × × 0
1 0 0 d0
1 0 1 d1
1 1 0 d2
1 1 1 d3

×: don’t care.
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selected and passed to the output. When this multiplexer is enabled with E 
set to 1, it functions as described for mux_4_1. This means that when E = 1: 
if s1s0 = 00 (respectively, 01, 10, 11), then the input signal d0 (respectively, d1, 
d2, d3) is selected and passed to the output y.

11.5 Macro mux_8_1

The symbol and the truth table of the macro mux_8_1 are depicted in 
Table 11.5. Figures 11.7 and 11.8 show the macro mux_8_1 and its flowchart, 
respectively. In this macro, select inputs s2, s1, and s0, input signals d0, d1, d2, 
d3, d4, d5, d6, and d7, and the output y are all Boolean variables. When s2s1s0 = 
000 (respectively, 001, 010, 011, 100, 101, 110, 111), the input signal d0 (respec-
tively, d1, d2, d3, d4, d5, d6, d7) is selected and passed to the output y.

Y N
regs0,bits0 = 1

Y

N
regi3,biti3 = 1 reg2,biti2 = 1

L1

Y

N

RESET rego,bito

L6

L2   

Y Nregs0,bits0 = 1

Y

N

Y

N

L4

SET rego,bito

Y N
regs1,bits1 = 1

L5

 L3   

Temp_1         W

Y

N Temp_1,0 = 1

 begin

end

regi1,biti1 = 1 regi0,biti0 = 1

?

?

? ?

????

FIGURE 11.6
The flowchart of the macro mux_4_1_E.
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11.6 Macro mux_8_1_E

The symbol and the truth table of the macro mux_8_1_E are depicted in 
Table 11.6. Figures 11.9 and 11.10 show the macro mux_8_1_E and its flow-
chart, respectively. In this macro, the active high enable input E, select inputs 
s2, s1, and s0, input signals d0, d1, d2, d3, d4, d5, d6, and d7, and the output y are 
all Boolean variables. When this multiplexer is disabled with E set to 0, no 
input signal is selected and passed to the output. When this multiplexer is 
enabled with E set to 1, it functions as described for mux_8_1. This means 
that when E = 1: if s2s1s0 = 000 (respectively, 001, 010, 011, 100, 101, 110, 111), 
then the input signal d0 (respectively, d1, d2, d3, d4, d5, d6, d7) is selected and 
passed to the output y.

11.7 Examples for Multiplexer Macros

In this section, we will consider three examples, namely, UZAM_plc_16i16o_
exX.asm (X = 19, 20, 21), to show the usage of multiplexer macros. In order 
to test one of these examples, please take the related file UZAM_plc_16i16o_
exX.asm (X = 19, 20, 21) from the CD-ROM attached to this book, and then 

TABLE 11.5

Symbol and Truth Table of the Macro mux_8_1

Symbol Truth Table

y

s0

d7

d6

d5

d4

d3

d2

d1

d0

s1s2

s2 = regs2,bits2
s1 = regs1,bits1
s0 = regs0,bits0
d7 = regi7,biti7
d6 = regi6,biti6
d5 = regi5,biti5
d4 = regi4,biti4
d3 = regi3,biti3
d2 = regi2,biti2
d1 = regi1,biti1
d0 = regi0,biti0
y = rego,bito

inputs output
s2 s1 s0 y
0 0 0 d0
0 0 1 d1
0 1 0 d2
0 1 1 d3
1 0 0 d4
1 0 1 d5
1 1 0 d6
1 1 1 d7
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FIGURE 11.7
The macro mux_8_1.
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open the program by MPLAB IDE and compile it. After that, by using the 
PIC programmer software, take the compiled file UZAM_plc_16i16o_exX.hex 
(X = 19, 20, 21), and by your PIC programmer hardware, send it to the program 
memory of the PIC16F648A microcontroller within the PIC16F648A-based 
PLC. To do this, switch the 4PDT in PROG position and the power switch in 
OFF position. After loading the file UZAM_plc_16i16o_exX.hex (X = 19, 20, 21), 
switch the 4PDT in RUN and the power switch in ON position. Please check 
the program’s accuracy by cross-referencing it with the related macros.

Let us now consider these example programs: The first example program, 
UZAM_plc_16i16o_ex19.asm, is shown in Figure 11.11. It shows the usage of 
two multiplexer macros mux_2_1 and mux_2_1_E. The schematic diagram 
of the user program of UZAM_plc_16i16o_ex19.asm, shown in Figure 11.11, 
is depicted in Figure 11.12.

In the first rung, the multiplexer macro mux_2_1 (2 × 1 multiplexer) is 
used. In this multiplexer, input signals are d0 = I0.1 and d1 = I0.2, while the 
output is y = Q0.0 and the select input is s0 = I0.0.

In the second rung, another multiplexer macro mux_2_1 is used. In this 
multiplexer, input signals are d0 = T1.5 (838.8608 ms) and d1 = T1.4 (419.4304 
ms), while the output is y = Q0.3 and the select input is s0 = I0.7.

In the third rung, the macro mux_2_1_E (2 × 1 multiplexer with active 
high enable input) is used. In this multiplexer, input signals are d0 = I1.2 and 
d1 = I1.3, while the output is y = Q1.0 and the select input is s0 = I1.1. In addi-
tion, the active high enable input E is defined to be E = I1.0.

TABLE 11.6

Symbol and Truth Table of the Macro mux_8_1_E

Symbol Truth Table

y

s0

d7

d6

d5

d4

d3

d2

d1

d0 E

s1s2

W E
s2 = regs2,bits2
s1 = regs1,bits1
s0 = regs0,bits0
d7 = regi7,biti7
d6 = regi6,biti6
d5 = regi5,biti5
d4 = regi4,biti4
d3 = regi3,biti3
d2 = regi2,biti2
d1 = regi1,biti1
d0 = regi0,biti0
y = rego,bito

inputs output
E s2 s1 s0 y
0 × × × 0
1 0 0 0 d0
1 0 0 1 d1
1 0 1 0 d2
1 0 1 1 d3
1 1 0 0 d4
1 1 0 1 d5
1 1 1 0 d6
1 1 1 1 d7

×: don’t care.
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FIGURE 11.9
The macro mux_8_1_E.
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FIGURE 11.11
The user program of UZAM_plc_16i16o_ex19.asm.

d0
d1

s0

y

d0
d1

s0

y

d0
d1

s0

y
E

d0
d1

s0

y
E

I0.0 

I0.1 
I0.2 

I1.0 

Q0.0 

Q1.0 

INPUTS OUTPUTS

I1.2 
I1.3

Q0.3

I1.4 

I1.5 

Q1.7 

I0.7 

T=419,4304 ms
T1.5 
T1.4 

T=838,8608 ms

I1.1 

T=419,4304 ms
T1.5 
T1.4 

T=838,8608 ms

FIGURE 11.12
The schematic diagram of the user program of UZAM_plc_16i16o_ex19.asm.
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In the fourth and last rung, another multiplexer macro mux_2_1_E is 
used. In this multiplexer, input signals are d0 = T1.5 (838.8608 ms) and d1 = 
T1.4 (419.4304 ms), while the output is y = Q1.7 and the select input is s0 = I1.5. 
In addition, the active high enable input E is defined to be E = inverted I1.4. 
Note that this arrangement forces the enable input E to be active low.

The second example program, UZAM_plc_16i16o_ex20.asm, is shown 
in Figure  11.13. It shows the usage of two multiplexer macros mux_4_1 
and mux_4_1_E. The schematic diagram of the user program of UZAM_
plc_16i16o_ex20.asm, shown in Figure 11.13, is depicted in Figure 11.14. In the 
first rung, the multiplexer macro mux_4_1 (4 × 1 multiplexer) is used. In this 
multiplexer, input signals are d0 = I0.2, d1 = I0.3, d2 = I0.4, and d3 = I0.5, select 

FIGURE 11.13
The user program of UZAM_plc_16i16o_ex20.asm.

I0.1 

I0.2 

Q0.0 

d0
d1
d2
d3

y

s1
s0

d0
d1
d2
d3

y

E

s1
s0

I0.3 
I0.4 
I0.5

I0.0 

I1.2 

Q1.0 

I1.1 

I1.0 

T=209,7152 ms
T1.2 
T1.3 

T=104,8576 ms
T=52,4288 ms

T1.0 
T1.1 

T=26,2144 ms

INPUTS OUTPUTS

FIGURE 11.14
The schematic diagram of the user program of UZAM_plc_16i16o_ex20.asm.
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inputs are s1 = I0.1 and s0 = I0.0, and the output is y = Q0.0. In the second 
rung, the multiplexer macro mux_4_1_E (4 × 1 multiplexer with active high 
enable input) is used. In this multiplexer, input signals are d0 = T1.0 (26.2144 
ms), d1 = T1.1 (52.4288 ms), d2 = T1.2 (104.8576 ms), and d3 = T1.3 (209.7152 ms), 
select inputs are s1 = I1.2 and s0 = I1.1, and the output is y = Q1.0. In addition, 
the active high enable input E is defined to be E = I1.0.

The third example program, UZAM_plc_16i16o_ex21.asm, is shown in 
Figure 11.15. It shows the usage of the multiplexer macro mux_8_1_E. The 
schematic diagram of the user program of UZAM_plc_16i16o_ex21.asm, 
shown in Figure 11.15, is depicted in Figure 11.16.

In this example, the multiplexer macro mux_8_1_E (8 × 1 multiplexer with 
active high enable input) is used. In this multiplexer, input signals are d0 = 
I1.0, d1 = I1.1, d2 = I1.2, d3 = I1.3, d4 = I1.4, d5 = I1.5, d6 = I1.6, and d7 = I1.7, select 
inputs are s2 = I0.3, s1 = I0.2, and s0 = I0.1, and the output is y = Q0.0. In addi-
tion, the active high enable input E is defined to be E = I0.0.

FIGURE 11.15
The user program of UZAM_plc_16i16o_ex21.asm.
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FIGURE 11.16
The schematic diagram of the user program of UZAM_plc_16i16o_ex21.asm.
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12
Demultiplexer Macros

A demultiplexer (DMUX) is used when a circuit is to send a signal to one 
of many devices. This description sounds similar to the description given 
for a decoder, but a decoder is used to select among many devices, while a 
demultiplexer is used to send a signal among many devices. However, any 
decoder having an enable line can function as a demultiplexer. If the enable 
line of a decoder is used as a data input, then the data can be routed to any 
one of the outputs, and thus in that case the decoder can be used as a demul-
tiplexer. As the name infers, a demultiplexer performs the opposite function 
as that of a multiplexer. A single input signal can be connected to any one of 
the output lines provided by the choice of an appropriate select signal. The 
general form of a 1-to-n demultiplexer can be seen from Figure 12.1. If there 
are m select inputs, then the number of output lines to which the data can be 
routed is n = 2m. Although not shown in Figure 12.1, in addition to the other 
inputs, the demultiplexer may have an enable line, E, for enabling it. When 
the demultiplexer is disabled with E set to 0 (for active high enable input E), 
no output line is selected, and therefore the input signal is not passed to any 
output line.

In this chapter, the following demultiplexer macros are described for the 
PIC16F648A-based PLC: Dmux_1_2 (1 × 2 DMUX), Dmux_1_2_E (1 × 
2 DMUX with enable input), Dmux_1_4 (1 × 4 DMUX), Dmux_1_4_E 
(1 × 4 DMUX with enable input), Dmux_1_8 (1 × 8 DMUX), and 
Dmux_1_8_E (1 × 8 DMUX with enable input).

The file definitions.inc, included within the CD-ROM attached to this 
book, contains all demultiplexer macros defined for the PIC16F648A-based 
PLC. Let us now consider these macros in detail.

12.1 Macro Dmux_1_2

The symbol and the truth table of the macro Dmux_1_2 are depicted in 
Table 12.1. Figure 12.2 shows the macro Dmux_1_2 and its flowchart. In this 
macro, the select input s0, output signals y0 and y1, and the input signal i are 
all Boolean variables. When the select input s0 = 0, the input signal i is passed 
to the output line y0. When the select input s0 = 1, the input signal i is passed 
to the output line y1.
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12.2 Macro Dmux_1_2_E

The symbol and the truth table of the macro Dmux_1_2_E are depicted in 
Table 12.2. Figure 12.3 shows the macro Dmux_1_2_E and its flowchart. In 
this macro, the active high enable input E, the select input s0, output signals 
y0 and y1, and the input signal i are all Boolean variables. When this demul-
tiplexer is disabled with E set to 0, no output line is selected and the input 
signal is not passed to any output. When this demultiplexer is enabled with 
E set to 1, it functions as described for Dmux_1_2. This means that when E = 
1: if the select input s0 = 0, then the input signal i is passed to the output line 
y0. When E = 1: if the select input s0 = 1, then the input signal i is passed to 
the output line y1.

y0

y1

s1
s0

yn–1

sm–1

i

.

.

.

.

..... 

n output
lines

input
signal

m select inputs

.

.

.

.

FIGURE 12.1
The general form of a 1-to-n demultiplexer, where n = 2m.

TABLE 12.1

Symbol and Truth Table of the Macro Dmux_1_2

Symbol Truth Table

i
y0
y1

s1

i = regi,biti
s0 = regs0,bits0
y0 = rego0,bito0
y1 = rego1,bito1

input outputs
s0 y0 y1
0 i 0
1 0 i
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12.3 Macro Dmux_1_4

The symbol and the truth table of the macro Dmux_1_4 are depicted in 
Table  12.3. Figure  12.4 shows the macro Dmux_1_4 and its flowchart. In 
this macro, select inputs s1 and s0, output signals y0, y1, y2, and y3, and the 
input signal i are all Boolean variables. When the select inputs are s1s0 = 00 
(respectively, 01, 10, 11), the input signal i is passed to the output line y0 
(respectively, y1, y2, y3).

(a)

Y N
regi,biti = 1 L2

RESET rego1,bito1
RESET rego0,bito0

Y N
regs0,bits0 = 1

L1    

L3

SET rego1,bito1
RESET rego0,bito0

RESET rego1,bito1
SET rego0,bito0

 begin

end

?

?

(b)

FIGURE 12.2
(a) The macro Dmux_1_2 and (b) its flowchart.
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12.4 Macro Dmux_1_4_E

The symbol and the truth table of the macro Dmux_1_4_E are depicted 
in Table 12.4. Figures 12.5 and 12.6 show the macro Dmux_1_4_E and its 
flowchart, respectively. In this macro, the active high enable input E, select 
inputs s1 and s0, output signals y0, y1, y2, and y3, and the input signal i are 
all Boolean variables. When this demultiplexer is disabled with E set to 0, 
no output line is selected and the input signal is not passed to any output. 
When this demultiplexer is enabled with E set to 1, it functions as described 

TABLE 12.2

Symbol and Truth Table of the Macro Dmux_1_2_E

Symbol Truth Table

i
y0
y1

s0

E
W E
i = regi,biti

s0 = regs0,bits0
y0 = rego0,bito0
y1 = rego1,bito1

inputs outputs
E s0 y0 y1
0 × 0 0
1 0 i 0
1 1 0 i

×: don’t care.

Symbol and Truth Table of the Macro Dmux _ 1 _ 2 _ E

(a)

FIGURE 12.3
(a) The macro Dmux_1_2_E and (b) its flowchart. (Continued)



247Demultiplexer Macros

© 2008 Taylor & Francis Group, LLC

Y N
regi,biti = 1

L2

RESET rego1,bito1
RESET rego0,bito0

Y N
regs0,bits0 = 1

L1

L3

SET rego1,bito1
RESET rego0,bito0

RESET rego1,bito1
SET rego0,bito0

Temp_1         W

Y

N
Temp_1,0 = 1

begin

end

?

?

?

(b)

FIGURE 12.3 (Continued)
(a) The macro Dmux_1_2_E and (b) its flowchart.

TABLE 12.3

Symbol and Truth Table of the Macro Dmux_1_4

Symbol Truth Table

s1

y0

y1

y2

y3

s0

i

i = regi,biti
s1 = regs1,bits1
s0 = regs0,bits0
y3 = rego3,bito3
y2 = rego2,bito2
y1 = rego1,bito1
y0 = rego0,bito0

inputs outputs
s1 s0 y0 y1 y2 y3
0 0 i 0 0 0
0 1 0 i 0 0
1 0 0 0 i 0
1 1 0 0 0 i

Symbol and Truth Table of the Macro Dmux _ 1 _ 4
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(a)

FIGURE 12.4
(a) The macro Dmux_1_4 and (b) its flowchart. (Continued)



249Demultiplexer Macros

© 2008 Taylor & Francis Group, LLC

TABLE 12.4

Symbol and Truth Table of the Macro Dmux_1_4_E

Symbol Truth Table

s1

E y0

y1

y2

y3

s0

i

W E
i = regi,biti

s1 = regs1,bits1
s0 = regs0,bits0
y3 = rego3,bito3
y2 = rego2,bito2
y1 = rego1,bito1
y0 = rego0,bito0

inputs outputs
E s1 s0 y0 y1 y2 y3
0 × × 0 0 0 0
1 0 0 i 0 0 0
1 0 1 0 i 0 0
1 1 0 0 0 i 0
1 1 1 0 0 0 i

×: don’t care.

Symbol and Truth Table of the Macro Dmux _ 1 _ 4 _ E

Y Nregi,biti = 1 L2

RESET rego3,bito3
RESET rego2,bito2
RESET rego1,bito1
RESET rego0,bito0

Y N
regs1,bits1 = 1

L5

RESET rego1,bito1
RESET rego0,bito0

RESET rego3,bito3
RESET rego2,bito2

Y N
regs0,bits0 = 1 L4

SET rego3,bito3
RESET rego2,bito2

RESET rego3,bito3
SET rego2,bito2

L1

Y N
regs0,bits0 = 1 L3

SET rego1,bito1
RESET rego0,bito0

RESET rego1,bito1
SET rego0,bito0

begin

end

?

?

? ?

(b)

FIGURE 12.4 (Continued)
(a) The macro Dmux_1_4 and (b) its flowchart. 
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FIGURE 12.5
The macro Dmux_1_4_E.
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for Dmux_1_4. This means that when E = 1: if the select inputs are s1s0 = 00 
(respectively, 01, 10, 11), the input signal i is passed to the output line y0 
(respectively, y1, y2, y3).

12.5 Macro Dmux_1_8

The symbol and the truth table of the macro Dmux_1_8 are depicted in 
Table  12.5. Figures  12.7 and 12.8 show the macro Dmux_1_8 and its flow-
chart, respectively. In this macro, the select inputs s2, s1, and s0, output signals 
y0, y1, y2, y3, y4, y5, y6, and y7, and the input signal i are all Boolean variables. 
When the select inputs are s2s1s0 = 000 (respectively, 001, 010, 011, 100, 101, 110, 
111), the input signal i is passed to the output line y0 (respectively, y1, y2, y3, 
y4, y5, y6, y7).

Y Nregi,biti = 1

L2

RESET rego3,bito3
RESET rego2,bito2
RESET rego1,bito1
RESET rego0,bito0

Y N
regs1,bits1 = 1 L5

RESET rego1,bito1
RESET rego0,bito0

RESET rego3,bito3
RESET rego2,bito2

Y N
regs0,bits0 = 1

L4

SET rego3,bito3
RESET rego2,bito2

RESET rego3,bito3
SET rego2,bito2

L1

Y N
 L3    

SET rego1,bito1
RESET rego0,bito0

RESET rego1,bito1
SET rego0,bito0

Y

Temp_1,0 = 1

begin

end

regs0,bits0 = 1

?

?

?

? ?

FIGURE 12.6
The flowchart of the macro Dmux_1_4_E.
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12.6 Macro Dmux_1_8_E

The symbol and the truth table of the macro Dmux_1_8_E are depicted in 
Table 12.6. Figures 12.9 and 12.10 show the macro Dmux_1_8_E and its flow-
chart, respectively. In this macro, the active high enable input E, select inputs 
s2, s1, and s0, output signals y0, y1, y2, y3, y4, y5, y6, and y7, and the input signal 
i are all Boolean variables. When this demultiplexer is disabled with E set to 
0, no output line is selected, and the input signal is not passed to any output. 
When this demultiplexer is enabled with E set to 1, it functions as described 
for Dmux_1_8. This means that when E = 1: if the select inputs are s2s1s0 = 000 
(respectively, 001, 010, 011, 100, 101, 110, 111), the input signal i is passed to the 
output line y0 (respectively, y1, y2, y3, y4, y5, y6, and y7).

12.7 Examples for Demultiplexer Macros

In this section, we will consider three examples, namely, UZAM_plc_16i16o_
exX.asm (X = 22, 23, 24), to show the usage of demultiplexer macros. In order 
to test one of these examples, please take the related file UZAM_plc_16i16o_
exX.asm (X = 22, 23, 24) from the CD-ROM attached to this book, and then 
open the program by MPLAB IDE and compile it. After that, by using the PIC 
programmer software, take the compiled file UZAM_plc_16i16o_exX.hex (X 
= 22, 23, 24), and by your PIC programmer hardware, send it to the program 

TABLE 12.5

Symbol and Truth Table of the Macro Dmux_1_8

Symbol Truth Table

i

s2 s1

y0
y1
y2
y3
y4
y5
y6
y7s0

i = regi,biti
s2 = regs2,bits2
s1 = regs1,bits1
s0 = regs0,bits0
y7 = rego7,bito7
y6 = rego6,bito6
y5 = rego5,bito5
y4 = rego4,bito4
y3 = rego3,bito3
y2 = rego2,bito2
y1 = rego1,bito1
y0 = rego0,bito0

inputs outputs
s2 s1 s0 y0 y1 y2 y3 y4 y5 y6 y7
0 0 0 i 0 0 0 0 0 0 0
0 0 1 0 i 0 0 0 0 0 0
0 1 0 0 0 i 0 0 0 0 0
0 1 1 0 0 0 i 0 0 0 0
1 0 0 0 0 0 0 i 0 0 0
1 0 1 0 0 0 0 0 i 0 0
1 1 0 0 0 0 0 0 0 i 0
1 1 1 0 0 0 0 0 0 0 i

×: don’t care.
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FIGURE 12.7
The macro Dmux_1_8.
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memory of PIC16F648A microcontroller within the PIC16F648A-based PLC. 
To do this, switch the 4PDT in PROG position and the power switch in OFF 
position. After loading the file UZAM_plc_16i16o_exX.hex (X = 22, 23, 24), 
switch the 4PDT in RUN and the power switch in ON position. Please check 
the program’s accuracy by cross-referencing it with the related macros.

Let us now consider these example programs: The first example program, 
UZAM_plc_16i16o_ex22.asm, is shown in Figure  12.11. It shows the usage 
of two demultiplexer macros Dmux_1_2 and Dmux _1_2_E. The schematic 
diagram of the user program of UZAM_plc_16i16o_ex22.asm, shown in 
Figure 12.11, is depicted in Figure 12.12.

In the first rung, the demultiplexer macro Dmux_1_2 (1 × 2 demultiplexer) 
is used. In this demultiplexer, the input signal is i = I0.1, and the select input 
is s0 = I0.0, while the output lines are y0 = Q0.0 and y1 = Q0.1.

In the second rung, another demultiplexer macro Dmux_1_2 (1 × 2 demul-
tiplexer) is used. In this demultiplexer, the input signal is i = T1.4 (419.4304 
ms), and the select input is s0 = I0.7, while the output lines are y0 = Q0.6 and 
y1 = Q0.7.

In the third rung, the macro Dmux_1_2_E (1 × 2 demultiplexer with active 
high enable input) is used. In this demultiplexer, the input signal is i = I1.2, 
and the select input is s0 = I1.1, while the output lines are y0 = Q1.0 and y1 = 
Q1.1. In addition, the active high enable input E is defined to be E = I1.0.

In the fourth and last rung, another macro Dmux_1_2_E (1 × 2 demulti-
plexer with active high enable input) is used. In this demultiplexer, the input 
signal is i = T1.3 (209.7152 ms), and the select input is s0 = I1.6, while the 

TABLE 12.6

Symbol and Truth Table of the Macro Dmux_1_8_E

Symbol Truth Table

i

s2

E

s1

y0
y1
y2
y3
y4
y5
y6
y7s0

W E
i = regi,biti

s2 = regs2,bits2
s1 = regs1,bits1
s0 = regs0,bits0
y7 = rego7,bito7
y6 = rego6,bito6
y5 = rego5,bito5
y4 = rego4,bito4
y3 = rego3,bito3
y2 = rego2,bito2
y1 = rego1,bito1
y0 = rego0,bito0

inputs outputs
E s2 s1 s0 y0 y1 y2 y3 y4 y5 y6 y7
0 × × × 0 0 0 0 0 0 0 0
1 0 0 0 i 0 0 0 0 0 0 0
1 0 0 1 0 i 0 0 0 0 0 0
1 0 1 0 0 0 i 0 0 0 0 0
1 0 1 1 0 0 0 i 0 0 0 0
1 1 0 0 0 0 0 0 i 0 0 0
1 1 0 1 0 0 0 0 0 i 0 0
1 1 1 0 0 0 0 0 0 0 i 0
1 1 1 1 0 0 0 0 0 0 0 i

×: don’t care.
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FIGURE 12.9
The macro Dmux_1_8_E.
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y0

y1
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T=209,7152 ms
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FIGURE 12.12
The schematic diagram of the user program of UZAM_plc_16i16o_ex22.asm.

FIGURE 12.11
The user program of UZAM_plc_16i16o_ex22.asm.
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output lines are y0 = Q1.6 and y1 = Q1.7. In addition, the active high enable 
input E is defined to be E = inverted I1.7. Note that this arrangement forces 
the enable input E to be active low.

The second example program, UZAM_plc_16i16o_ex23.asm, is shown in 
Figure  12.13. It shows the usage of two demultiplexer macros Dmux_1_4 
and Dmux _1_4_E. The schematic diagram of the user program of UZAM_
plc_16i16o_ex23.asm, shown in Figure 12.13, is depicted in Figure 12.14.

In the first rung, the demultiplexer macro Dmux_1_4 (1 × 4 demultiplexer) 
is used. In this demultiplexer, the input signal is i = I0.2, and the select inputs 
are s1 = I0.1 and s0 = I0.0, while the output lines are y0 = Q0.0, y1 = Q0.1, y2 = 
Q0.2, and y3 = Q0.3.

In the second rung, another demultiplexer macro Dmux_1_4 (1 × 4 demul-
tiplexer) is used. In this demultiplexer, the input signal is i = T1.2 (104.8576 
ms), and the select inputs are s1 = I0.7 and s0 = I0.6, while the output lines are 
y0 = Q0.4, y1 = Q0.5, y2 = Q0.6, and y3 = Q0.7.

In the third rung, the macro Dmux_1_4_E (1 × 4 demultiplexer with active 
high enable input) is used. In this demultiplexer, the input signal is i = I1.3, 
and the select inputs are s1 = I1.2 and s0 = I1.1, while the output lines are y0 
= Q1.0, y1 = Q1.1, y2 = Q1.2, and y3 = Q1.3. In addition, the active high enable 
input E is defined to be E = I1.0.

In the fourth and last rung, another macro Dmux_1_4_E (1 × 4 demulti-
plexer with active high enable input) is used. In this demultiplexer, the input 
signal is i = T1.3 (209.7152 ms), and the select inputs are s1 = I1.6 and s0 = I1.5, 
while the output lines are y0 = Q1.4, y1 = Q1.5, y2 = Q1.6, and y3 = Q1.7. In addi-
tion, the active high enable input E is defined to be E = inverted I1.7. Note that 
this arrangement forces the enable input E to be active low.

FIGURE 12.13
The user program of UZAM_plc_16i16o_ex23.asm.
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FIGURE 12.14
The schematic diagram of the user program of UZAM_plc_16i16o_ex23.asm.
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The third example program, UZAM_plc_16i16o_ex24.asm, is shown in 
Figure  12.15. It shows the usage of two demultiplexer macros Dmux_1_8 
and Dmux _1_8_E. The schematic diagram of the user program of UZAM_
plc_16i16o_ex24.asm, shown in Figure 12.15, is depicted in Figure 12.16.

In the first rung, the demultiplexer macro Dmux_1_8 (1 × 8 demulti-
plexer) is used. In this demultiplexer, the input signal is i = I0.3, and the 

FIGURE 12.15
The user program of UZAM_plc_16i16o_ex24.asm.
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FIGURE 12.16
The schematic diagram of the user program of UZAM_plc_16i16o_ex24.asm.



262 Building a Programmable Logic Controller 

© 2008 Taylor & Francis Group, LLC

select inputs are s2 = I0.2, s1 = I0.1, and s0 = I0.0, while the output lines are 
y0 = Q0.0, y1 = Q0.1, y2 = Q0.2, y3 = Q0.3, y4 = Q0.4, y5 = Q0.5, y6 = Q0.6, and 
y7 = Q0.7.

In the second and last rung, the macro Dmux_1_8_E (1 × 8 demultiplexer 
with active high enable input) is used. In this demultiplexer, the input sig-
nal is i = T1.3 (209.7152 ms), and the select inputs are s2 = I1.3, s1 = I1.2, and 
s0 = I1.1, while the output lines are y0 = Q1.0, y1 = Q1.1, y2 = Q1.2, y3 = Q1.3, 
y4 = Q1.4, y5 = Q1.5, y6 = Q1.6, and y7 = Q1.7. In addition, the active high enable 
input E is defined to be E = I1.0.
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13
Decoder Macros

A decoder is a circuit that changes a code into a set of signals. It is called 
a decoder because it does the reverse of encoding. A common type of 
decoder is the line decoder, which takes an m-bit binary input datum and 
decodes it into 2m data lines. As a standard combinational component, a 
decoder asserts one out of n output lines, depending on the value of an 
m-bit binary input datum. The general form of an m-to-n decoder can be 
seen in Figure 13.1. In general, an m-to-n decoder has m input lines, im–1, …, 
i1, i0, and n output lines, dn–1, …, d1, d0, where n = 2m. Although not shown 
in Figure 13.1, in addition, it may have an enable line, E, for enabling the 
decoder. When the decoder is disabled with E set to 0 (for active high enable 
input E), all the output lines are de-asserted. When the decoder is enabled, 
then the output line whose index is equal to the value of the input binary 
data is asserted (set to 1 for active high), while the rest of the output lines 
are de-asserted (set to 0 for active high). A decoder is used in a system hav-
ing multiple components, and we want only one component to be selected 
or enabled at any time.

In this chapter, the following decoder macros are described for the 
PIC16F648A-based PLC:

decod_1_2 (1 × 2 decoder)
decod_1_2_AL (1 × 2 decoder with active low outputs)
decod_1_2_E (1 × 2 decoder with enable input)
decod_1_2_E_AL (1 × 2 decoder with enable input and active low 

outputs)
decod_2_4 (2 × 4 decoder)
decod_2_4_AL (2 × 4 decoder with active low outputs)
decod_2_4_E (2 × 4 decoder with enable input)
decod_2_4_E_AL (2 × 4 decoder with enable input and active low 

outputs)
decod_3_8 (3 × 8 decoder)
decod_3_8_AL (3 × 8 decoder with active low outputs)
decod_3_8_E (3 × 8 decoder with enable input)
decod_3_8_E_AL (3 × 8 decoder with enable input and active low 

outputs)
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The file definitions.inc, included within the CD-ROM attached to this 
book, contains all decoder macros defined for the PIC16F648A-based PLC. 
Let us now consider these macros in detail.

13.1 Macro decod_1_2

The symbol and the truth table of the macro decod_1_2 are depicted in 
Table 13.1. Figure 13.2 shows the macro decod_1_2 and its flowchart. This 
macro defines a 1 × 2 decoder with active high outputs. In this macro, the 
select input A and output signals d0 and d1 are all Boolean variables. In this 
decoder, when the select input is A = 0, the output line d0 is asserted (set to 
1) and the output line d1 is de-asserted (set to 0). Similarly, when the select 
input is A = 1, the output line d1 is asserted (set to 1) and the output line d0 is 
de-asserted (set to 0).

d0

d1

dn–1

n output lines 

 . 
 .
 . 
 .

 . 
 .
 . 
 .

i0
i1

im–1

m select inputs
 . 
 .  . 

FIGURE 13.1
The general form of an m-to-n decoder, where n = 2m.

TABLE 13.1

Symbol and Truth Table of the Macro decod_1_2

Symbol Truth Table

A
d0

d1

1×2
DECODER A = regs0,bits0

d0 = regd0,bitd0
d1 = regd1,bitd1

input outputs
A d0 d1
0 1 0
1 0 1
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13.2 Macro decod_1_2_AL

The symbol and the truth table of the macro decod_1_2_AL are depicted in 
Table 13.2. Figure 13.3 shows the macro decod_1_2_AL and its flowchart. 
This macro defines a 1 × 2 decoder with active low outputs. In this macro, 
the select input A and active low output signals d0 and d1 are all Boolean 
variables. In this decoder, when the select input is A = 0, the output line d0 
is asserted (set to 0) and the output line d1 is de-asserted (set to 1). Similarly, 
when the select input is A = 1, the output line d1 is asserted (set to 0) and the 
output line d0 is de-asserted (set to 1).

Y N
regs0,bits0 = 1?

L1

L2

SET regd1,bitd1
RESET regd0,bitd0

RESET regd1,bitd1
SET regd0,bitd0

 begin

end

(b)(a)

FIGURE 13.2
(a) The macro decod_1_2 and (b) its flowchart.

TABLE 13.2

Symbol and Truth Table of the Macro decod_1_2_AL

Symbol Truth Table

A
d0

d1

1×2
DECODER A = regs0,bits0

d0 = regd0,bitd0
d1 = regd1,bitd1

input outputs
A d0 d1
0 0 1
1 1 0

Symbol and Truth Table of the Macro decod _ 1 _ 2 _ AL
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13.3 Macro decod_1_2_E

The symbol and the truth table of the macro decod_1_2_E are depicted 
in Table 13.3. Figure 13.4 shows the macro decod_1_2_E and its flow-
chart. This macro defines a 1 × 2 decoder with enable input and active high 
outputs. In this macro, the active high enable input E, the select input A, 
and active high output signals d0 and d1 are all Boolean variables. In addi-
tion to the decod_1_2, this decoder macro has an active high enable line, 
E, for enabling it. When this decoder is disabled with E set to 0, all output 
lines are de-asserted (set to 0). When this decoder is enabled with E set to 
1, it functions as described for decod_1_2. This means that when E = 1: if 
the select input is A = 0, then the output line d0 is asserted (set to 1) and the 
output line d1 is de-asserted (set to 0). Similarly, when E = 1: if the select input 

Y N
regs0,bits0 = 1

?

L1

L2

RESET regd1,bitd1
SET regd0,bitd0

SET regd1,bitd1
RESET regd0,bitd0

 begin

end

(b)(a)

FIGURE 13.3
(a) The macro decod_1_2_AL and (b) its flowchart.

TABLE 13.3

Symbol and Truth Table of the Macro decod_1_2_E

Symbol Truth Table

A
E

d0

d1

1×2
DECODER W E

A = regs0,bits0
d0 = regd0,bitd0
d1 = regd1,bitd1

inputs outputs
E A d0 d1
0 × 0 0
1 0 1 0
1 1 0 1

×: don’t care.

Symbol and Truth Table of the Macro decod _ 1_ 2 _ E
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(a)

Y N

L2

RESET regd1,bitd1
RESET regd0,bitd0

Y N
regs0,bits0 = 1

?

L1

L3

SET regd1,bit,d1
RESET  regd0,bitd0

RESET regd1,bitd1
SET regd0,bitd0

Temp_1         W

Temp_1,0 = 1
?

begin

end

(b)

FIGURE 13.4
(a) The macro decod_1_2_E and (b) its flowchart.
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is A = 1, then the output line d1 is asserted (set to 1) and the output line d0 is 
de-asserted (set to 0).

13.4 Macro decod_1_2_E_AL

The symbol and the truth table of the macro decod_1_2_E_AL are 
depicted in Table 13.4. Figure 13.5 shows the macro decod_1_2_E_AL and 
its flowchart. This macro defines a 1 × 2 decoder with enable input and 
active low outputs. In this macro, the active high enable input E, the select 
input A, and active low output signals d0 and d1 are all Boolean variables. 
In addition to the decod_1_2_AL, this decoder macro has an active high 
enable line, E, for enabling it. When this decoder is disabled with E set to 0, 

TABLE 13.4

Symbol and Truth Table of the Macro decod_1_2_E_AL

Symbol Truth Table

A
E

d0

d1

1×2
DECODER W E

A = regs0,bits0
d0 = regd0,bitd0
d1 = regd1,bitd1

inputs outputs
E A d0 d1
0 × 1 1
1 0 0 1
1 1 1 0

×: don’t care.

Symbol and Truth Table of the Macro decod _ 1 _ 2 _ E _ AL

(a)

FIGURE 13.5
(a) The macro decod_1_2_E_AL and (b) its flowchart. (Continued)
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all output lines are de-asserted (set to 1). When this decoder is enabled with 
E set to 1, it functions as described for decod_1_2_AL. This means that 
when E = 1: if the select input is A = 0, then the output line d0 is asserted 
(set to 0) and the output line d1 is de-asserted (set to 1). Similarly, when E = 
1: if the select input is A = 1, then the output line d1 is asserted (set to 0) and 
the output line d0 is de-asserted (set to 1).

13.5 Macro decod_2_4

The symbol and the truth table of the macro decod_2_4 are depicted in 
Table  13.5. Figure  13.6 shows the macro decod_2_4 and its flowchart. 
This macro defines a 2 × 4 decoder with active high outputs. In this macro, 
select inputs A and B, and active high output signals d0, d1, d2, and d3 are 
all Boolean variables. In this decoder, when the select inputs are AB = 00 
(respectively, 01, 10, 11), the output line, d0 (respectively, d1, d2, d3), is asserted 
(set to 1) and all other output lines are de-asserted (set to 0).

Y N

L2

SET regd1,bitd1
SET regd0,bitd0

Y N
regs0,bits0 = 1

?

L1

L3

RESET regd1,bitd1
SET regd0,bitd0

SET regd1,bitd1
RESET regd0,bitd0

Temp_1         W

Temp_1,0 = 1
?

begin

end

(b)

FIGURE 13.5 (Continued)
(a) The macro decod_1_2_E_AL and (b) its flowchart.
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13.6 Macro decod_2_4_AL

The symbol and the truth table of the macro decod_2_4_AL are 
depicted in Table 13.6. Figure 13.7 shows the macro decod_2_4_AL and 
its flowchart. This macro defines a 2 × 4 decoder with active low outputs. In 
this macro, select inputs A and B, and active low output signals d0, d1, d2, 
and d3 are all Boolean variables. In this decoder, when the select inputs are 

TABLE 13.5

Symbol and Truth Table of the Macro decod_2_4

Symbol Truth Table

A
B

d0

d1

d2

d3

2×4
DECODER

A = regs1,bits1
B = regs0,bits0
d3 = regd3,bitd3
d2 = regd2,bitd2
d1 = regd1,bitd1
d0 = regd0,bitd0

inputs outputs
A B d0 d1 d2 d3
0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

Symbol and Truth Table of the Macro decod _ 2 _ 4

(a)

FIGURE 13.6
(a) The macro decod_2_4 and (b) its flowchart. (Continued)
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TABLE 13.6

Symbol and Truth Table of the Macro decod_2_4_AL

Symbol Truth Table

A
B

d0

d1

d2

d3

2×4
DECODER

A = regs1,bits1
B = regs0,bits0
d3 = regd3,bitd3
d2 = regd2,bitd2
d1 = regd1,bitd1
d0 = regd0,bitd0

inputs outputs
A B d0 d1 d2 d3
0 0 0 1 1 1
0 1 1 0 1 1
1 0 1 1 0 1
1 1 1 1 1 0

Symbol and Truth Table of the Macro decod _ 2 _ 4 _ AL

Y Nregs1,bits1 = 1?

L4

RESET regd1,bitd1
RESET regd0,bitd0

RESET regd3,bitd3
RESET regd2,bitd2

Y N
regs0,bits0 = 1?

L3

SET regd3,bitd3
RESET regd2,bitd2

RESET regd3,bitd3
SET regd2,bitd2

L1

Y N
regs0,bits0 = 1?

L2

SET regd1,bitd1
RESET regd0,bitd0

RESET regd1,bitd1
SET regd0,bitd0

begin

end

(b)

FIGURE 13.6 (Continued)
(a) The macro decod_2_4 and (b) its flowchart. 
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(a)
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Y N
regs0,bits0 = 1?

L3

RESET regd3,bitd3
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Y N
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RESET regd1,bitd1
SET regd0,bitd0

SET regd1,bitd1
RESET regd0,bitd0

begin

end

(b)

FIGURE 13.7
(a) The macro decod_2_4_AL and (b) its flowchart.
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AB = 00 (respectively, 01, 10, 11), the output line, d0 (respectively, d1, d2, d3), 
is asserted (set to 0) and all other output lines are de-asserted (set to 1).

13.7 Macro decod_2_4_E

The symbol and the truth table of the macro decod_2_4_E are depicted 
in Table 13.7. Figures 13.8 and 13.9 show the macro decod_2_4_E and its 
flowchart, respectively. This macro defines a 2 × 4 decoder with enable 
input and active high outputs. In this macro, the active high enable input 
E, select inputs A and B, and active high output signals d0, d1, d2, and 
d3 are all Boolean variables. In addition to the decod_2_4, this decoder 
macro has an active high enable line, E, for enabling it. When this decoder 
is disabled with E set to 0, all active high output lines are de-asserted 
(set to 0). When this decoder is enabled with E set to 1, it functions as 
described for decod_2_4. This means that when E = 1: if the select inputs 
are AB = 00 (respectively, 01, 10, 11), then the output line, d0 (respectively, 
d1, d2, d3), is asserted (set to 1) and all other output lines are de-asserted 
(set to 0).

13.8 Macro decod_2_4_E_AL

The symbol and the truth table of the macro decod_2_4_E_AL are depicted 
in Table 13.8. Figures 13.10 and 13.11 show the macro decod_2_4_E_AL 
and its flowchart, respectively. This macro defines a 2 × 4 decoder with 
enable input and active low outputs. In this macro, the active high enable 

TABLE 13.7

Symbol and Truth Table of the Macro decod_2_4_E

Symbol Truth Table

A
B E

d0

d1

d2

d3

2×4
DECODER

W E
A = regs1,bits1
B = regs0,bits0
d3 = regd3,bitd3
d2 = regd2,bitd2
d1 = regd1,bitd1
d0 = regd0,bitd0

inputs outputs
E A B d0 d1 d2 d3
0 × × 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0
1 1 1 0 0 0 1

×: don’t care.
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input E, select inputs A and B, and active low output signals d0, d1, d2, 
and d3 are all Boolean variables. In addition to the decod_2_4_AL, this 
decoder macro has an active high enable line, E, for enabling it. When 
this decoder is disabled with E set to 0, all active low output lines are 
de-asserted (set to 1). When this decoder is enabled with E set to 1, it func-
tions as described for decod_2_4_AL. This means that when E = 1: if the 
select inputs are AB = 00 (respectively, 01, 10, 11), then the output line, d0 
(respectively, d1, d2, d3), is asserted (set to 0) and all other output lines are 
de-asserted (set to 1).

FIGURE 13.8
The macro decod_2_4_E.
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Y N
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RESET regd3,bitd3
RESET regd2,bitd2
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begin

end

FIGURE 13.9
The flowchart of the macro decod_2_4_E.

TABLE 13.8

Symbol and Truth Table of the Macro decod_2_4_E_AL

Symbol Truth Table

A
B E

d0

d1

d2

d3

2×4
DECODER

W E
A = regs1,bits1
B = regs0,bits0
d3 = regd3,bitd3
d2 = regd2,bitd2
d1 = regd1,bitd1
d0 = regd0,bitd0

inputs outputs
E A B d0 d1 d2 d3
0 × × 1 1 1 1
1 0 0 0 1 1 1
1 0 1 1 0 1 1
1 1 0 1 1 0 1
1 1 1 1 1 1 0

×: don’t care.
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13.9 Macro decod_3_8

The symbol and the truth table of the macro decod_3_8 are depicted in 
Table 13.9. Figures 13.12 and 13.13 show the macro decod_3_8 and its flow-
chart, respectively. This macro defines a 3 × 8 decoder with active high out-
puts. In this macro, select inputs A, B, and C, and active high output signals 
d0, d1, d2, d3, d4, d5, d6, and d7 are all Boolean variables. In this decoder, when 
the select inputs are ABC = 000 (respectively, 001, 010, 011, 100, 101, 110, 111), 
the output line, d0 (respectively, d1, d2, d3, d4, d5, d6, d7), is asserted (set to 1) 
and all other output lines are de-asserted (set to 0).

FIGURE 13.10
The macro decod_2_4_E_AL.
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Y N
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begin

end

FIGURE 13.11
The flowchart of the macro decod_2_4_E_AL.

TABLE 13.9

Symbol and Truth Table of the Macro decod_3_8

Symbol Truth Table

A
B
C

d0

d1

d2

d3

d4

d5

d6

d7

3×8
DECODER

A = regs2,bits2
B = regs1,bits1
C = regs0,bits0
d7 = rego7,bito7
d6 = rego6,bito6
d5 = rego5,bito5
d4 = rego4,bito4
d3 = rego3,bito3
d2 = rego2,bito2
d1 = rego1,bito1
d0 = rego0,bito0

inputs outputs
A B C d0 d1 d2 d3 d4 d5 d6 d7
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 1
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FIGURE 13.12
The macro decod_3_8.
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13.10 Macro decod_3_8_AL

The symbol and the truth table of the macro decod_3_8_AL are depicted 
in Table  13.10. Figures  13.14 and 13.15 show the macro decod_3_8_AL 
and its flowchart, respectively. This macro defines a 3 × 8 decoder with 
active low outputs. In this macro, select inputs A, B, and C, and active 
low output signals d0, d1, d2, d3, d4, d5, d6, and d7 are all Boolean variables. 
In this decoder, when the select inputs are ABC = 000 (respectively, 001, 
010, 011, 100, 101, 110, 111), the output line, d0 (respectively, d1, d2, d3, d4, 
d5, d6, d7), is asserted (set to 0) and all other output lines are de-asserted 
(set to 1).

13.11 Macro decod_3_8_E

The symbol and the truth table of the macro decod_3_8_E are depicted 
in Table 13.11. Figures 13.16 and 13.17 show the macro decod_3_8_E and 
its flowchart, respectively. This macro defines a 3 × 8 decoder with enable 
input and active high outputs. In this macro, the active high enable input 
E, select inputs A, B, and C, and active high output signals d0, d1, d2, d3, 
d4, d5, d6, and d7 are all Boolean variables. In addition to the decod_3_8, 
this decoder macro has an active high enable line, E, for enabling it. When 
this decoder is disabled with E set to 0, all active high output lines are 

TABLE 13.10

Symbol and Truth Table of the Macro decod_3_8_AL

Symbol Truth Table

A
B
C

d0

d1

d2

d3

d4

d5

d6

d7

3×8
DECODER

A = regs2,bits2
B = regs1,bits1
C = regs0,bits0
d7 = rego7,bito7
d6 = rego6,bito6
d5 = rego5,bito5
d4 = rego4,bito4
d3 = rego3,bito3
d2 = rego2,bito2
d1 = rego1,bito1
d0 = rego0,bito0

inputs outputs
A B C d0 d1 d2 d3 d4 d5 d6 d7
0 0 0 0 1 1 1 1 1 1 1
0 0 1 1 0 1 1 1 1 1 1
0 1 0 1 1 0 1 1 1 1 1
0 1 1 1 1 1 0 1 1 1 1
1 0 0 1 1 1 1 0 1 1 1
1 0 1 1 1 1 1 1 0 1 1
1 1 0 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 0
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FIGURE 13.14
The macro decod_3_8_AL.
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de-asserted (set to 0). When this decoder is enabled with E set to 1, it func-
tions as described for decod_3_8. This means that when E = 1: if the select 
inputs are ABC = 000 (respectively, 001, 010, 011, 100, 101, 110, 111), then the 
output line, d0 (respectively, d1, d2, d3, d4, d5, d6, d7), is asserted (set to 1) and 
all other output lines are de-asserted (set to 0).

13.12 Macro decod_3_8_E_AL

The symbol and the truth table of the macro decod_3_8_E_AL 
are depicted in Table  13.12. Figures  13.18 and 13.19 show the macro 
decod_3_8_E_AL and its flowchart, respectively. This macro defines a 3 
× 8 decoder with enable input and active low outputs. In this macro, the 
active high enable input E, select inputs A, B, and C, and active low output 
signals d0, d1, d2, d3, d4, d5, d6, and d7 are all Boolean variables. In addition 
to the decod_3_8_AL, this decoder macro has an active high enable line, 
E, for enabling it. When this decoder is disabled with E set to 0, all active 
high output lines are de-asserted (set to 1). When this decoder is enabled 
with E set to 1, it functions as described for decod_3_8_AL. This means 
that when E = 1: if the select inputs are ABC = 000 (respectively, 001, 010, 
011, 100, 101, 110, 111), then the output line, d0 (respectively, d1, d2, d3, d4, 
d5, d6, d7), is asserted (set to 0) and all other output lines are de-asserted 
(set to 1).

TABLE 13.11

Symbol and Truth Table of the Macro decod_3_8_E

Symbol Truth Table

A
B
C E

d0

d1

d2

d3

d4

d5

d6

d7

3×8
DECODER

W E
A = regs2,bits2
B = regs1,bits1
C = regs0,bits0
d7 = regd7,bitd7
d6 = regd6,bitd6
d5 = regd5,bitd5
d4 = regd4,bitd4
d3 = regd3,bitd3
d2 = regd2,bitd2
d1 = regd1,bitd1
d0 = regd0,bitd0

inputs outputs
E A B C d0 d1 d2 d3 d4 d5 d6 d7
0 × × × 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0 0
1 0 1 0 0 0 1 0 0 0 0 0
1 0 1 1 0 0 0 1 0 0 0 0
1 1 0 0 0 0 0 0 1 0 0 0
1 1 0 1 0 0 0 0 0 1 0 0
1 1 1 0 0 0 0 0 0 0 1 0
1 1 1 1 0 0 0 0 0 0 0 1

×: don’t care.
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FIGURE 13.16
The macro decod_3_8_E.
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13.13 Examples for Decoder Macros

In this section, we will consider four examples, namely, UZAM_plc_16i16o_
exX.asm (X = 25, 26, 27, 28), to show the usage of decoder macros. In order 
to test one of these examples, please take the related file UZAM_plc_16i16o_
exX.asm (X = 25, 26, 27, 28) from the CD-ROM attached to this book, and then 
open the program by MPLAB IDE and compile it. After that, by using the PIC 
programmer software, take the compiled file UZAM_plc_16i16o_exX.hex (X 
= 25, 26, 27, 28), and by your PIC programmer hardware, send it to the pro-
gram memory of PIC16F648A microcontroller within the PIC16F648A-based 
PLC. To do this, switch the 4PDT in PROG position and the power switch in 
OFF position. After loading the file UZAM_plc_16i16o_exX.hex (X = 25, 26, 
27, 28), switch the 4PDT in RUN and the power switch in ON position. Please 
check the program’s accuracy by cross-referencing it with the related macros.

Let us now consider these example programs: The first example program, 
UZAM_plc_16i16o_ex25.asm, is shown in Figure  13.20. It shows the usage 
of four decoder macros, decod_1_2, decod_1_2_AL, decod_1_2_E, and 
decod_1_2_E_AL. The schematic diagram of the user program of UZAM_
plc_16i16o_ex25.asm, shown in Figure 13.20, is depicted in Figure 13.21.

In the first rung, the decoder macro decod_1_2 (1 × 2 decoder) is used. In 
this decoder, the select input is A = I0.0, while the output lines are d0 = Q0.0 
and d1 = Q0.1.

TABLE 13.12

Symbol and Truth Table of the Macro decod_3_8_E_AL

Symbol Truth Table

A
B
C E

d0

d1

d2

d3

d4

d5

d6

d7

3×8
DECODER

W E
A = regs2,bits2
B = regs1,bits1
C = regs0,bits0
d7 = regd7,bitd7
d6 = regd6,bitd6
d5 = regd5,bitd5
d4 = regd4,bitd4
d3 = regd3,bitd3
d2 = regd2,bitd2
d1 = regd1,bitd1
d0 = regd0,bitd0

inputs outputs
E A B C d0 d1 d2 d3 d4 d5 d6 d7
0 × × × 1 1 1 1 1 1 1 1
1 0 0 0 0 1 1 1 1 1 1 1
1 0 0 1 1 0 1 1 1 1 1 1
1 0 1 0 1 1 0 1 1 1 1 1
1 0 1 1 1 1 1 0 1 1 1 1
1 1 0 0 1 1 1 1 0 1 1 1
1 1 0 1 1 1 1 1 1 0 1 1
1 1 1 0 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 0

×: don’t care.
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FIGURE 13.18
The macro decod_3_8_E_AL.
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FIGURE 13.20
The user program of UZAM_plc_16i16o_ex25.asm.
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FIGURE 13.21
The schematic diagram of the user program of UZAM_plc_16i16o_ex25.asm.
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In the second rung, the decoder macro decod_1_2_AL (1 × 2 decoder with 
active low outputs) is used. In this decoder, the select input is A = I0.7, while 
the output lines are d0 = Q0.6 and d1 = Q0.7.

In the third rung, the macro decod_1_2_E (1 × 2 decoder with active high 
enable input) is used. In this decoder, the select input is A = I1.1, while the 
output lines are d0 = Q1.0 and d1 = Q1.1. In addition, the active high enable 
input E is defined to be E = I1.0.

In the fourth and last rung, the macro decod_1_2_E_AL (1 × 2 decoder 
with active high enable input and active low outputs) is used. In this decoder, 
the select input is A = I1.6, while the output lines are d0 = Q1.6 and d1 = Q1.7. In 
addition, the active high enable input E is defined to be E = inverted I1.7. Note 
that this arrangement forces the enable input E to be active low.

The second example program, UZAM_plc_16i16o_ex26.asm, is shown 
in Figure  13.22. It shows the usage of four decoder macros, decod_2_4, 
decod_2_4_AL, decod_2_4_E, and decod_2_4_E_AL. The schematic 
diagram of the user program of UZAM_plc_16i16o_ex26.asm, shown in 
Figure 13.22, is depicted in Figure 13.23.

In the first rung, the decoder macro decod_2_4 (2 × 4 decoder) is used. In 
this decoder, select inputs are A = I0.1 and B = I0.0, while the output lines are 
d0 = Q0.0, d1 = Q0.1, d2 = Q0.2, and d3 = Q0.3.

In the second rung, the decoder macro decod_2_4_AL (2 × 4 decoder with 
active low outputs) is used. In this decoder, select inputs are A = I0.7 and B = 
I0.6, while the output lines are d0 = Q0.4, d1 = Q0.5, d2 = Q0.6, and d3 = Q0.7.

In the third rung, the macro decod_2_4_E (2 × 4 decoder with active high 
enable input) is used. In this decoder, select inputs are A = I1.2 and B = I1.1, 
while the output lines are d0 = Q1.0, d1 = Q1.1, d2 = Q1.2, and d3 = Q1.3. In 
addition, the active high enable input E is defined to be E = I1.0.

In the fourth and last rung, the macro decod_2_4_E_AL (2 × 4 decoder 
with active high enable input and active low outputs) is used. In this decoder, 
select inputs are A = I1.6 and B = I1.5, while the output lines are d0 = Q1.4, d1 
= Q1.5, d2 = Q1.6, and d3 = Q1.7. In addition, the active high enable input E is 
defined to be E = inverted I1.7. Note that this arrangement forces the enable 
input E to be active low.

FIGURE 13.22
The user program of UZAM_plc_16i16o_ex26.asm.
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The third example program, UZAM_plc_16i16o_ex27.asm, is shown in 
Figure  13.24. It shows the usage of two decoder macros decod_3_8 and 
decod_3_8_AL. The schematic diagram of the user program of UZAM_
plc_16i16o_ex27.asm, shown in Figure 13.24, is depicted in Figure 13.25.

In the first rung, the decoder macro decod_3_8 (3 × 8 decoder) is used. In 
this decoder, select inputs are A = I0.2, B = I0.1, and C = I0.0, while the output 
lines are d0 = Q0.0, d1 = Q0.1, d2 = Q0.2, d3 = Q0.3, d4 = Q0.4, d5 = Q0.5, d6 = 
Q0.6, and d7 = Q0.7.
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FIGURE 13.23
The schematic diagram of the user program of UZAM_plc_16i16o_ex26.asm.
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In the second and last rung, the decoder macro decod_3_8_AL (3 × 8 
decoder with active low outputs) is used. In this decoder, select inputs are A 
= I1.2, B = I1.1, and C = I1.0, while the output lines are d0 = Q1.0, d1 = Q1.1, d2 
= Q1.2, d3 = Q1.3, d4 = Q1.4, d5 = Q1.5, d6 = Q1.6, and d7 = Q1.7.

The fourth example program, UZAM_plc_16i16o_ex28.asm, is shown in 
Figure 13.26. It shows the usage of two decoder macros, decod_3_8_E and 
decod_3_8_E_AL. The schematic diagram of the user program of UZAM_
plc_16i16o_ex28.asm, shown in Figure 13.26, is depicted in Figure 13.27.

FIGURE 13.24
The user program of UZAM_plc_16i16o_ex27.asm.
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FIGURE 13.25
The schematic diagram of the user program of UZAM_plc_16i16o_ex27.asm.
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FIGURE 13.26
The user program of UZAM_plc_16i16o_ex28.asm.
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FIGURE 13.27
The schematic diagram of the user program of UZAM_plc_16i16o_ex28.asm.
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In the first rung, the decoder macro decod_3_8_E (3 × 8 decoder with 
active high enable input) is used. In this decoder, select inputs are A = I0.3, B 
= I0.2, and C = I0.1, while the output lines are d0 = Q0.0, d1 = Q0.1, d2 = Q0.2, 
d3 = Q0.3, d4 = Q0.4, d5 = Q0.5, d6 = Q0.6, and d7 = Q0.7. In addition, the active 
high enable input E is defined to be E = I0.0.

In the second and last rung, the decoder macro decod_3_8_E _AL (3 × 8 
decoder with active high enable input and active low outputs) is used. In this 
decoder, select inputs are A = I1.3, B = I1.2, C = I1.1, while the output lines are 
d0 = Q1.0, d1 = Q1.1, d2 = Q1.2, d3 = Q1.3, d4 = Q1.4, d5 = Q1.5, d6 = Q1.6, and d7 = 
Q1.7. In addition, the active high enable input E is defined to be E = inverted 
I1.0. Note that this arrangement forces the enable input E to be active low.
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14
Priority Encoder Macros

An encoder is a circuit that changes a set of signals into a code. As a stan-
dard combinational component, an encoder is almost like the inverse of a 
decoder, where it encodes a 2n-bit input datum into an n-bit code. As shown 
by the general form of an m-to-n encoder in Figure 14.1, the encoder has m 
= 2n input lines and n output lines. For active high inputs, the operation 
of the encoder is such that exactly one of the input lines should have a 1, 
while the remaining input lines should have 0s. The output is the binary 
value of the index of the input line that has the 1. It is assumed that only 
one input line can be a 1. Encoders are used to reduce the number of bits 
needed to represent some given data either in data storage or in data trans-
mission. Encoders are also used in a system with 2n input devices, each 
of which may need to request for service. One input line is connected to 
one input device. The input device requesting for service will assert the 
input line that is connected to it. The corresponding n-bit output value will 
indicate to the system which of the 2n devices is requesting for service. 
However, this only works correctly if it is guaranteed that only one of the 
2n devices will request for service at any one time. If two or more devices 
request for service at the same time, then the output will be incorrect. To 
resolve this problem, a priority is assigned to each of the input lines so that 
when multiple requests are made, the encoder outputs the index value of 
the input line with the highest priority. This modified encoder is known 
as a priority encoder. In this chapter, we are concerned with the priority 
encoders. Although not shown in Figure  14.1, the priority encoder may 
have an enable line, E, for enabling it. When the priority encoder is disabled 
with E set to 0 (for active high enable input E), all the output lines will have 
0s (for active high outputs). When the priority encoder is enabled, then 
the output lines issue the binary data representation of the highest-priority 
input signal asserted (set to 1 for active high).

In this chapter, the following priority encoder macros are described for the 
PIC16F648A-based PLC:

encod_4_2_p (4 × 2 priority encoder)
encod_4_2_p_E (4 × 2 priority encoder with enable input)
encod_8_3_p (8 × 3 priority encoder)
encod_8_3_p_E (8 × 3 priority encoder with enable input)
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encod_dec_bcd_p (decimal to binary coded decimal (BCD) priority 
encoder)

encod_dec_bcd_p_E (decimal to BCD priority encoder with enable 
input)

The file definitions.inc, included within the CD-ROM attached to this 
book, contains all priority encoder macros defined for the PIC16F648A-based 
PLC. Let us now consider these macros in detail.

14.1 Macro encod_4_2_p

The symbol and the truth table of the macro encod_4_2_p are depicted 
in Table 14.1. Figure 14.2 shows the macro encod_4_2_p and its flowchart. 
This macro defines a 4 × 2 priority encoder. In this macro, active high input 
signals 3, 2, 1, and 0, and active high output signals A1 (most significant 

dm–1

d0

d1 . 
 .
 . 
 .

n output lines
 . 
 .
 . 
 .

y0

m input lines

y1

yn–1  

 . 
 .  . 

FIGURE 14.1
The general form of an m-to-n encoder, where m = 2n.

TABLE 14.1

Symbol and Truth Table of the Macro encod_4_2_p

Symbol Truth Table

4×2
 PRIORITY
ENCODER

A1

3

2

1

0

A0

3 = reg3,bit3
2 = reg2,bit2
1 = reg1,bit1
0 = reg0,bit0

A1 = regA1,bitA1
A0 = regA1,bitA0

inputs outputs
0 1 2 3 A1 A0
× × × 1 1 1
× × 1 0 1 0
× 1 0 0 0 1
1 0 0 0 0 0

×: don’t care
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(a)

Y N
reg3,bit3 = 1?   

L4       

SET regA1,bitA1
SET regA0,bitA0

L1    

Y
L3    

SET regA1,bitA1
RESET regA0,bitA0

N

Y

RESET regA1,bitA1
SET regA0,bitA0

RESET regA1,bitA1
RESET regA0,bitA0

L2    
N

reg2,bit2 = 1?   

reg1,bit1 = 1?   

begin

end

(b)

FIGURE 14.2
(a) The macro encod_4_2_p and (b) its flowchart.
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bit (MSB)) and A0 (least significant bit (LSB)) are all Boolean variables. The 
input line 3 has the highest priority, while the input line 0 has the lowest 
priority. How the macro encod_4_2_p works is shown in the truth table. It 
can be seen that the output binary code is generated based on the highest-
priority input signal present in the four input lines. If the input signals pres-
ent in the input lines 0, 1, 2, 3 are as follows, ×××1 (respectively, ××10, ×100, 
1000), then the output lines generate the following binary code: A1A0 = 11 
(respectively, 10, 01, 00).

14.2 Macro encod_4_2_p_E

The symbol and the truth table of the macro encod_4_2_p_E are 
depicted in Table 14.2. Figure 14.3 shows the macro encod_4_2_p_E and 
its flowchart. This macro defines a 4 × 2 priority encoder with enable 
input. In this macro, the active high enable input E, active high input sig-
nals 3, 2, 1, and 0, and active high output signals A1 (MSB) and A0 (LSB) 
are all Boolean variables. The input line 3 has the highest priority, while 
the input line 0 has the lowest priority. In addition to the encod_4_2_p, 
this encoder macro has an active high enable line, E, for enabling it. 
When this encoder is disabled with E set to 0, all output lines are set to 0. 
When this encoder is enabled with E set to 1, it functions as described for 
encod_4_2_p. This means that when E = 1: if the input signals present 
in the input lines 0, 1, 2, 3 are as follows, ×××1 (respectively, ××10, ×100, 
1000), then the output lines generate the following binary code: A1A0 = 11 
(respectively, 10, 01, 00).

TABLE 14.2

Symbol and Truth Table of the Macro encod_4_2_p_E

Symbol Truth Table

4×2
 PRIORITY
ENCODER

A1

3

2

1

0
E

A0

W E
3 = reg3,bit3
2 = reg2,bit2
1 = reg1,bit1
0 = reg0,bit0

A1 = regA1,bitA1
A0 = regA1,bitA0

inputs outputs
E 0 1 2 3 A1 A0
0 × × × × 0 0
1 × × × 1 1 1
1 × × 1 0 1 0
1 × 1 0 0 0 1
1 1 0 0 0 0 0

×: don’t care
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begin

end

(b)

FIGURE 14.3
(a) The macro encod_4_2_p_E and (b) its flowchart.
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14.3 Macro encod_8_3_p

The symbol and the truth table of the macro encod_8_3_p are depicted 
in Table 14.3. Figures 14.4 and 14.5 show the macro encod_8_3_p and its 
flowchart, respectively. This macro defines an 8 × 3 priority encoder. In this 
macro, active high input signals 7, 6, 5, 4, 3, 2, 1, and 0, and active high out-
put signals A2 (MSB), A1, and A0 (LSB) are all Boolean variables. The input 
line 7 has the highest priority, while the input line 0 has the lowest priority. 
How the macro encod_8_3_p works is shown in the truth table. It can be 
seen that the output binary code is generated based on the highest-priority 

TABLE 14.3

Symbol and Truth Table of the Macro encod_8_3_p

Symbol

8×3
PRIORITY
ENCODER

7

6

5

4

3

2

1

0

A1

A0

A2

7 = reg7,bit7
6 = reg6,bit6
5 = reg5,bit5
4 = reg4,bit4
3 = reg3,bit3
2 = reg2,bit2
1 = reg1,bit1
0 = reg0,bit0

A2 = regA2,bitA2
A1 = regA1,bitA1
A0 = regA1,bitA0

Truth Table

inputs outputs
0 1 2 3 4 5 6 7 A2 A1 A0
× × × × × × × 1 1 1 1
× × × × × × 1 0 1 1 0
× × × × × 1 0 0 1 0 1
× × × × 1 0 0 0 1 0 0
× × × 1 0 0 0 0 0 1 1
× × 1 0 0 0 0 0 0 1 0
× 1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0

×: don’t care.
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FIGURE 14.4
The macro encod_8_3_p.
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input signal present in the eight input lines. If the input signals present in the 
input lines 0, 1, 2, 3, 4, 5, 6, 7 are as follows, ×××××××1 (respectively, ××××××10, 
×××××100, ××××1000, ×××10000, ××100000, ×1000000, 10000000), then the out-
put lines generate the following binary code: A2A1A0 = 111 (respectively, 110, 
101, 100, 011, 010, 001, 000).

14.4 Macro encod_8_3_p_E

The symbol and the truth table of the macro encod_8_3_p_E are depicted 
in Table 14.4. Figures 14.6 and 14.7 show the macro encod_8_3_p_E and 
its flowchart, respectively. This macro defines an 8 × 3 priority encoder 
with enable input. In this macro, the active high enable input E, active high 
input signals 7, 6, 5, 4, 3, 2, 1, and 0, and active high output signals A2 (MSB), 
A1, and A0 (LSB) are all Boolean variables. The input line 7 has the high-
est priority, while the input line 0 has the lowest priority. In addition to the 
encod_8_3_p, this encoder macro has an active high enable line, E, for 
enabling it. When this encoder is disabled with E set to 0, all output lines are 
set to 0. When this encoder is enabled with E set to 1, it functions as described 
for encod_8_3_p. This means that when E = 1: if the input signals present in 
the input lines 0,1,2,3,4,5,6,7 are as follows, ×××××××1 (respectively, ××××××10, 
×××××00, ××××1000, ×××10000, ××100000, ×1000000, 10000000), then the out-
put lines generate the following binary code: A2A1A0 = 111 (respectively, 110, 
101, 100, 011, 010, 001, 000).

14.5 Macro encod_dec_bcd_p

The symbol and the truth table of the macro encod_dec_bcd_p are 
depicted in Table 14.5. Figures 14.8 and 14.9 show the macro encod_dec_
bcd_p and its flowchart, respectively. This macro defines a decimal to BCD 
priority encoder. In this macro, active high input signals 9, 8, 7, 6, 5, 4, 3, 2, 1, 
and 0, and active high output signals A3 (MSB), A2, A1, and A0 (LSB) are all 
Boolean variables. The input line 9 has the highest priority, while the input 
line 0 has the lowest priority. How the macro encod_dec_bcd_p works is 
shown in the truth table. It can be seen that the output binary code is gener-
ated based on the highest-priority input signal present in the 10 input lines. 
If the input signals present in the input lines 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are as 
follows, ×××××××××1 (respectively, ××××××××10, ×××××××100, ××××××1000, 
×××××10000, ××××100000, ×××1000000, ××10000000, ×100000000, 1000000000), 
then the output lines generate the following binary code: A3A2A1A0 = 1001 
(respectively, 1000, 0111, 0110, 0101, 0100, 0011, 0010, 0001, 0000).
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14.6 Macro encod_dec_bcd_p_E

The symbol and the truth table of the macro encod_dec_bcd_p_E 
are depicted in Table 14.6. Figures 14.10 and 14.11 show the macro encod_dec_
bcd_p_E and its flowchart, respectively. This macro defines a decimal to 
BCD priority encoder with enable input. In this macro, the active high enable 
input E, active high input signals 9, 8, 7, 6, 5, 4, 3, 2, 1, and 0, and active high 
output signals A3 (MSB), A2, A1, and A0 (LSB) are all Boolean variables. The 

TABLE 14.4

Symbol and Truth Table of the Macro encod_8_3_p_E

Symbol

8×3
PRIORITY
ENCODER

7

6

5

4

3

2

1

0
E

A1

A0

A2

W E
7 = reg7,bit7
6 = reg6,bit6
5 = reg5,bit5
4 = reg4,bit4
3 = reg3,bit3
2 = reg2,bit2
1 = reg1,bit1
0 = reg0,bit0

A2 = regA2,bitA2
A1 = regA1,bitA1
A0 = regA1,bitA0

Truth Table

inputs outputs
E 0 1 2 3 4 5 6 7 A2 A1 A0
0 × × × × × × × × 0 0 0
1 × × × × × × × 1 1 1 1
1 × × × × × × 1 0 1 1 0
1 × × × × × 1 0 0 1 0 1
1 × × × × 1 0 0 0 1 0 0
1 × × × 1 0 0 0 0 0 1 1
1 × × 1 0 0 0 0 0 0 1 0
1 × 1 0 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 0 0 0

×: don’t care.
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FIGURE 14.6
The macro encod_8_3_p_E.
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input line 9 has the highest priority, while the input line 0 has the lowest 
priority. In addition to the encod_dec_bcd_p, this encoder macro has an 
active high enable line, E, for enabling it. When this encoder is disabled with 
E set to 0, all output lines are set to 0. When this encoder is enabled with E set 
to 1, it functions as described for encod_dec_bcd_p. This means that when 
E = 1: if the input signals present in the input lines 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are as 

TABLE 14.5

Symbol and Truth Table of the Macro encod_dec_bcd_p

Symbol

DECIMAL TO BCD
PRIORITY ENCODER

9

8

7

6

5

4

3

2

1

0

A1

A0

A2

A3

9 = reg9,bit9
8 = reg8,bit8
7 = reg7,bit7
6 = reg6,bit6
5 = reg5,bit5
4 = reg4,bit4
3 = reg3,bit3
2 = reg2,bit2
1 = reg1,bit1
0 = reg0,bit0

A3 = regA3,bitA3
A2 = regA2,bitA2
A1 = regA1,bitA1
A0 = regA1,bitA0

Truth Table

inputs outputs
0 1 2 3 4 5 6 7 8 9 A3 A2 A1 A0
× × × × × × × × × 1 1 0 0 1
× × × × × × × × 1 0 1 0 0 0
× × × × × × × 1 0 0 0 1 1 1
× × × × × × 1 0 0 0 0 1 1 0
× × × × × 1 0 0 0 0 0 1 0 1
× × × × 1 0 0 0 0 0 0 1 0 0
× × × 1 0 0 0 0 0 0 0 0 1 1
× × 1 0 0 0 0 0 0 0 0 0 1 0
× 1 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0

×: don’t care.
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FIGURE 14.8
The macro encod_dec_bcd_p.
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TABLE 14.6

Symbol and Truth Table of the Macro encod_dec_bcd_p_E

Symbol

DECIMAL TO BCD
PRIORITY ENCODER

9

8

7

6

5

4

3

2

1

0 E

A1

A0

A2

A3

W E
9 = reg9,bit9
8 = reg8,bit8
7 = reg7,bit7
6 = reg6,bit6
5 = reg5,bit5
4 = reg4,bit4
3 = reg3,bit3
2 = reg2,bit2
1 = reg1,bit1
0 = reg0,bit0

A3 = regA3,bitA3
A2 = regA2,bitA2
A1 = regA1,bitA1
A0 = regA1,bitA0

Truth Table

inputs outputs
E 0 1 2 3 4 5 6 7 8 9 A3 A2 A1 A0
0 × × × × × × × × × × 0 0 0 0
1 × × × × × × × × × 1 1 0 0 1
1 × × × × × × × × 1 0 1 0 0 0
1 × × × × × × × 1 0 0 0 1 1 1
1 × × × × × × 1 0 0 0 0 1 1 0
1 × × × × × 1 0 0 0 0 0 1 0 1
1 × × × × 1 0 0 0 0 0 0 1 0 0
1 × × × 1 0 0 0 0 0 0 0 0 1 1
1 × × 1 0 0 0 0 0 0 0 0 0 1 0
1 × 1 0 0 0 0 0 0 0 0 0 0 0 1
1 1  0 0 0 0 0 0 0 0 0 0 0 0 0

×: don’t care.
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FIGURE 14.10
The macro encod_dec_bcd_p_E.
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follows, ×××××××××1 (respectively, ××××××××10, ×××××××100, ××××××1000, 
×××××10000, ××××100000, ×××1000000, ××10000000, ×100000000, 1000000000), 
then the output lines generate the following binary code: A3A2A1A0 = 1001 
(respectively, 1000, 0111, 0110, 0101, 0100, 0011, 0010, 0001, 0000).

14.7 Examples for Priority Encoder Macros

In this section, we will consider five examples, namely, UZAM_plc_16i16o_
exX.asm (X = 29, 30, 31, 32, 33), to show the usage of priority encoder macros. 
In order to test one of these examples, please take the related file UZAM_
plc_16i16o_exX.asm (X = 29, 30, 31, 32, 33) from the CD-ROM attached to 
this book, and then open the program by MPLAB IDE and compile it. After 
that, by using the PIC programmer software, take the compiled file UZAM_
plc_16i16o_exX.hex (X = 29, 30, 31, 32, 33), and by your PIC programmer 
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FIGURE 14.11
The flowchart of the macro encod_dec_bcd_p_E.



313Priority Encoder Macros

© 2008 Taylor & Francis Group, LLC

hardware, send it to the program memory of PIC16F648A microcontroller 
within the PIC16F648A-based PLC. To do this, switch the 4PDT in PROG 
position and the power switch in OFF position. After loading the file UZAM_
plc_16i16o_exX.hex (X = 29, 30, 31, 32, 33), switch the 4PDT in RUN and the 
power switch in ON position. Please check the program’s accuracy by cross-
referencing it with the related macros.

Let us now consider these example programs: The first example program, 
UZAM_plc_16i16o_ex29.asm, is shown in Figure  14.12. It shows the usage 
of two priority encoder macros, encod_4_2_p and encod_4_2_p_E. The 
schematic diagram of the user program of UZAM_plc_16i16o_ex29.asm, 
shown in Figure 14.12, is depicted in Figure 14.13.

FIGURE 14.12
The user program of UZAM_plc_16i16o_ex29.asm.
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FIGURE 14.13
The schematic diagram of the user program of UZAM_plc_16i16o_ex29.asm.
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In the first rung, the priority encoder macro encod_4_2_p (4 × 2 priority 
encoder) is used. In this priority encoder, four input lines, 3, 2, 1, and 0, are 
defined as I0.3, I0.2, I0.1, and I0.0 respectively, while the output lines A1 and 
A0 are defined as Q0.1 and Q0.0, respectively.

In the second rung, the priority encoder macro encod_4_2_p_E (4 × 2 pri-
ority encoder with enable input) is used. In this priority encoder, four input 
lines, 3, 2, 1, and 0, are defined as I1.3, I1.2, I1.1, and I1.0, respectively, while 
the output lines A1 and A0 are defined as Q1.1 and Q1.0, respectively. In addi-
tion, the active high enable input E is defined to be E = I1.7.

The second example program, UZAM_plc_16i16o_ex30.asm, is shown in 
Figure 14.14. It shows the usage of the priority encoder macro encod_8_3_p 
(8 × 3 priority encoder). The schematic diagram of the user program of UZAM_
plc_16i16o_ex30.asm, shown in Figure 14.14, is depicted in Figure 14.15. In this 
priority encoder, eight input lines, 7, 6, 5, 4, 3, 2, 1, and 0, are defined as I0.7, I0.6, 
I0.5, I0.4, I0.3, I0.2, I0.1, and I0.0, respectively, while the output lines A2, A1, and 
A0 are defined as Q0.2, Q0.1, and Q0.0, respectively.

The third example program, UZAM_plc_16i16o_ex31.asm, is shown 
in Figure  14.16. It shows the usage of the priority encoder macro 
encod_8_3_p_E (8 × 3 priority encoder with enable input). The schematic 
diagram of the user program of UZAM_plc_16i16o_ex31.asm, shown in 

FIGURE 14.14
The user program of UZAM_plc_16i16o_ex30.asm.
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FIGURE 14.15
The schematic diagram of the user program of UZAM_plc_16i16o_ex30.asm.
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Figure 14.16, is depicted in Figure 14.17. In this priority encoder, eight input 
lines, 7, 6, 5, 4, 3, 2, 1, and 0, are defined as I0.7, I0.6, I0.5, I0.4, I0.3, I0.2, I0.1, 
and I0.0, respectively, while the output lines A2, A1, and A0 are defined as 
Q0.2, Q0.1, and Q0.0, respectively. In addition, the active high enable input 
E is defined to be E = I1.7.

The fourth example program, UZAM_plc_16i16o_ex32.asm, is shown in 
Figure 14.18. It shows the usage of the priority encoder macro encod_dec_
bcd_p (decimal to BCD priority encoder). The schematic diagram of the user 
program of UZAM_plc_16i16o_ex32.asm, shown in Figure 14.18, is depicted 
in Figure 14.19. In this priority encoder, 10 input lines, 9, 8, 7, 6, 5, 4, 3, 2, 1, and 
0, are defined as I1.1, I1.0, I0.7, I0.6, I0.5, I0.4, I0.3, I0.2, I0.1, and I0.0, respec-
tively, while the output lines A3, A2, A1, and A0 are defined as Q0.3, Q0.2, 
Q0.1, and Q0.0, respectively.

The fifth and last example program, UZAM_plc_16i16o_ex33.asm, is 
shown in Figure  14.20. It shows the usage of the priority encoder macro 
encod_dec_bcd_p_E (decimal to BCD priority encoder with enable input). 

FIGURE 14.16
The user program of UZAM_plc_16i16o_ex31.asm.
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FIGURE 14.17
The schematic diagram of the user program of UZAM_plc_16i16o_ex31.asm.
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FIGURE 14.18
The user program of UZAM_plc_16i16o_ex32.asm.
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FIGURE 14.19
The schematic diagram of the user program of UZAM_plc_16i16o_ex32.asm.

FIGURE 14.20
The user program of UZAM_plc_16i16o_ex33.asm.
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The schematic diagram of the user program of UZAM_plc_16i16o_ex33.asm, 
shown in Figure 14.20, is depicted in Figure 14.21. In this priority encoder, 10 
input lines, 9, 8, 7, 6, 5, 4, 3, 2, 1, and 0, are defined as I1.1, I1.0, I0.7, I0.6, I0.5, I0.4, 
I0.3, I0.2, I0.1, and I0.0, respectively, while the output lines A3, A2, A1, and A0 
are defined as Q0.3, Q0.2, Q0.1, and Q0.0, respectively. In addition, the active 
high enable input E is defined to be E = I1.7.
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FIGURE 14.21
The schematic diagram of the user program of UZAM_plc_16i16o_ex33.asm.
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15
Application Example

This chapter describes an example remotely controlled model gate system 
and makes use of the PIC16F648A-based PLC to control it for different con-
trol scenarios.

15.1 Remotely Controlled Model Gate System

Figure 15.1 shows the remotely controlled model gate system, used in this 
chapter as an example to show how the PIC16F648A-based PLC can be uti-
lized in the control of real systems. In this system, when the DC motor turns 
backward (respectively forward) the gate is opened (respectively closed). 
To control the DC motor in backward and forward directions, PLC outputs 
Q0.0 and Q0.1 are used, respectively. In the system, there are two buttons, 
B0 and B1, and they both have only one normally open (NO) contact. When 
pressed, the button B0 (respectively, B1) is used to give the control system the 
following order: “open the gate” (respectively, “close the gate”). PLC inputs 
I0.0 and I0.1 are used for identifying the ON or OFF states of the buttons 
B0 and B1, respectively. When the gate is completely open, it applies the F1 
force, shown in Figure 15.1, to the limit switch 1 (LS1). In this case, the NO 
contact of LS1 is closed. To detect whether or not the gate is completely open, 
the input I0.2 is utilized. When the gate is completely closed, it applies the 
F2 force, shown in Figure 15.1, to the limit switch 2 (LS2). In this case, the 
NO contact of LS2 is closed. To detect whether or not the gate is completely 
closed, the PLC input I0.3 is utilized. An infrared (IR) transmitter/receiver 
sensor is used to detect if there is any obstacle in the gate’s path. This is very 
important because when the gate is closing, there should not be any obstacle 
in its path in order not to cause any damage to anybody or anything. When 
the light emitted from the IR transmitter is received from the IR receiver, the 
NO contact of the sensor is closed. In this case, we conclude that there is no 
obstacle in the path. When the light emitted from the IR transmitter is not 
received from the IR receiver, the NO contact of the sensor is open, i.e., in its 
normal condition. This means that there is an obstacle in the path. To detect 
whether or not there is an obstacle in the path, the PLC input I0.4 is utilized. 
In addition, there is also a radio frequency (RF) transmitter/receiver used as 
a remote control mechanism within the system. In the RF transmitter, there 
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is a button. When this button is pressed, the RF waves are emitted from 
the transmitter, and they are received from the RF receiver. In this case, NO 
contact at the RF receiver is closed, signaling the button press from the RF 
transmitter counterpart. To detect whether or not the RF transmitter button 
is pressed, the PLC input I0.5 is utilized.

The DC motor control circuit embedded within the model gate system 
is depicted in Figure 15.2, where there are two relays, Relay 1 and Relay 2, 

NO

DC Motor

NC
C

NO

24 V
DC

Relay 1 Relay 2

Motor voltage
+Vc

+

–

NC
C

FIGURE 15.2
The DC motor control circuit embedded within the model gate system.
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FIGURE 15.1
The remotely controlled model gate system.
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operating on 24 V DC. These relays both have a single-pole double-throw 
(SPDT) contact, with the terminals named normally open (NO), com-
mon (C), and normally closed (NC). As can be seen, terminal C is shared 
between the other two contacts. The normal states of the contacts are shown 
in Figure 15.2. In this case, the C and NC terminals of both relays are closed, 
while C and NO terminals are open. If any of these relays’ coils are ener-
gized, then the contacts are actuated, and thus the C and NC terminals of 
the relay are open, while C and NO terminals are closed. With this setup, by 
means of the two relays we can have the DC motor turning forward or back-
ward, as shown in Table 15.1. It is important to note that if both relays are 
ON, then the DC motor will not be working. One terminal of each relay coil 
is connected to 24 V DC, while the other one is left unconnected. To operate 
any relay it is necessary to connect its open terminal to the ground of the 
24 V DC. The control of the DC motor is achieved by means of the Q0.0 and 
Q0.1 outputs of the PLC. As can be seen from Figure 15.2, when Q0.0 is ON 
(and Q0.1 is OFF), the NO contact of Q0.0 will switch on Relay 2, in which 
case the motor turns backward and the gate is opened. Similarly, when Q0.1 
is ON (and Q0.0 is OFF), the NO contact of Q0.1 will switch on Relay 1, 
in which case the motor turns forward and the gate is closed. Figure 15.3 
shows the wiring of the PIC16F648A-based PLC with the remotely con-
trolled model gate system. In this setup, when any of the NO contact of 
the model gate system is closed or a button is pressed, 5 V DC is applied to 
related PLC input.

15.2 Control Scenarios for the Model Gate System

In this section we will declare eight different control scenarios for the 
remotely controlled model gate system as follows:

 1. When B0 is being pressed, the gate shall open.
 2. Once B0 is pressed, the gate shall open.
 3. Once B0 is pressed, the gate shall open. The motor shall stop when 

the gate is completely open.

TABLE 15.1

State of the DC Motor Based on the Two Relays

Relay 1 Relay 2 DC Motor

OFF (Q0.1 = 0) OFF (Q0.0 = 0) OFF (not working)
OFF (Q0.1 = 0) ON (Q0.0 = 1) Turns backward (the gate is opened)
ON (Q0.1 = 1) OFF (Q0.0 = 0) Turns forward (the gate is closed)
ON (Q0.1 = 1) ON (Q0.0 = 1) OFF (not working)
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 4. Once B0 is pressed, the gate shall open. The motor shall stop when 
the gate is completely open. Once B1 is pressed, the gate shall close. 
The motor shall stop when the gate is completely closed.

 5. If the gate is not closing, then once B0 is pressed, the gate shall open. 
The motor shall stop when the gate is completely open. If the gate is 
not opening, then once B1 is pressed, the gate shall close. The motor 
shall stop when the gate is completely closed.

 6. If the gate is not closing, then once B0 or the RF transmitter button 
is pressed, the gate shall open. The motor shall stop when the gate is 
completely open. When the gate is completely open, it shall wait 5 s 
before automatically closing. The motor shall stop when the gate is 
completely closed.

 7. If the gate is not closing, then once B0 or the RF transmitter button 
is pressed, the gate shall open. The motor shall stop when the gate is 
completely open. When the gate is completely open, it shall wait 5 s 
before automatically closing. The motor shall stop when the gate is 
completely closed. When the gate is closing, if there is an obstacle in 
the gate’s path, the gate shall open. In this case it shall wait 5 s before 
automatically closing as defined above.

 8. Combine the previous seven control scenarios in a single program. 
By using three inputs, I1.2, I1.1, and I1.0, only one of the scenarios 
will be selected and will work at any time.

15.3 Solutions for the Control Scenarios

In this section, we will consider the solutions to the above-declared eight con-
trol scenarios for the remotely controlled model gate system, namely, UZAM_
plc_16i16o_exX.asm (X = 34, 35, 36, 37, 38, 39, 40, 41). In order to test one of 
these examples, please take the related file UZAM_plc_16i16o_exX.asm (X = 
34, 35, 36, 37, 38, 39, 40, 41) from the CD-ROM attached to this book, and then 
open the program by MPLAB IDE and compile it. After that, by using the 
PIC programmer software, take the compiled file UZAM_plc_16i16o_exX 
.hex (X = 34, 35, 36, 37, 38, 39, 40, 41), and by your PIC programmer hardware 
send it to the program memory of PIC16F648A microcontroller within the 
PIC16F648A-based PLC. To do this, switch the 4PDT in PROG position and 
the power switch in OFF position. After loading the file UZAM_plc_16i16o_
exX.hex (X = 34, 35, 36, 37, 38, 39, 40, 41), switch the 4PDT in RUN and the 
power switch in ON position. Finally, you are ready to test the respective 
example program.

Let us now consider the example programs in the following sections.
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15.3.1 Solution for the First Scenario

The user program of UZAM_plc_16i16o_ex34.asm, shown in Figure 15.4, is 
provided as a solution for the first scenario. The ladder diagram of the user 
program of UZAM_plc_16i16o_ex34.asm is depicted in Figure 15.5. In this 
example, when B0 (I0.0) is being pressed, the gate will open (Q0.0 will be 
ON). However, in this case, if B0 is released, then the gate will stop. This 
means that the program does not remember whether or not B0 was pressed.

15.3.2 Solution for the Second Scenario

The user program of UZAM_plc_16i16o_ex35.asm, shown in Figure 15.6, is 
provided as a solution for the second scenario. The ladder diagram of the 
user program of UZAM_plc_16i16o_ex35.asm is depicted in Figure 15.7. In 
this example, once B0 (I0.0) is pressed, with the help of NO contact Q0.0 con-
nected parallel to NO contact I0.0, the gate will open (Q0.0 will be ON). Here, 

FIGURE 15.4
The user program of UZAM_plc_16i16o_ex34.asm.

1 (         ) 
I 0.0 Q 0.0 

FIGURE 15.5
The ladder diagram of the user program of UZAM_plc_16i16o_ex34.asm.

FIGURE 15.6
The user program of UZAM_plc_16i16o_ex35.asm.
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the NO contact Q0.0 is a “sealing contact,” and helps the program to remem-
ber whether B0 was pressed. The problem is that when the gate is completely 
opened, the motor will not stop.

15.3.3 Solution for the Third Scenario

The user program of UZAM_plc_16i16o_ex36.asm, shown in Figure 15.8, is 
provided as a solution for the third scenario. The ladder diagram of the user 
program of UZAM_plc_16i16o_ex36.asm is depicted in Figure 15.9. In this 
example, once B0 (I0.0) is pressed, with the help of NO contact Q0.0 con-
nected parallel to NO contact I0.0, the gate will open (Q0.0 will be ON). Here, 
when the gate is opened completely, the motor will stop with the help of the 
NC contact of I0.2 inserted before the output Q0.0.

1 (         ) 
I 0.0 Q 0.0

Q 0.0 

FIGURE 15.7
The ladder diagram of the user program of UZAM_plc_16i16o_ex35.asm.

FIGURE 15.8
The user program of UZAM_plc_16i16o_ex36.asm.

1 (           )
I 0.0 Q 0.0

Q 0.0

I 0.2

FIGURE 15.9
The ladder diagram of the user program of UZAM_plc_16i16o_ex36.asm.
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15.3.4 Solution for the Fourth Scenario

The user program of UZAM_plc_16i16o_ex37.asm, shown in Figure 15.10, is 
provided as a solution for the fourth scenario. The ladder diagram of the 
user program of UZAM_plc_16i16o_ex37.asm is depicted in Figure 15.11. In 
this example, once B0 (I0.0) is pressed, with the help of NO contact Q0.0 con-
nected parallel to NO contact I0.0, the gate will open (Q0.0 will be ON). Here, 
when the gate is opened completely, the motor will stop with the help of the 
NC contact of I0.2 inserted before the output Q0.0. Similarly, once B1 (I0.1) 
is pressed, with the help of the NO contact of Q0.1 connected parallel to 
NO contact I0.1, the gate will close (Q0.1 will be ON). Here, when the gate 
is closed completely, the motor will stop with the help of the NC contact of 
I0.3 inserted before the output Q0.1. The problem with this example is that if 
both B0 and B1 are pressed at the same time, then both outputs will be ON. 
This is not a desired situation. The solution to this problem is given in the 
next example.

FIGURE 15.10
The user program of UZAM_plc_16i16o_ex37.asm.

1 (         ) 
I 0.0 Q 0.0

Q0.0

I 0.2

2 (         )  
I 0.1 Q0.1

Q 0.1

I 0.3

FIGURE 15.11
The ladder diagram of the user program of UZAM_plc_16i16o_ex37.asm.
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15.3.5 Solution for the Fifth Scenario

The user program of UZAM_plc_16i16o_ex38.asm, shown in Figure 15.12, is 
provided as a solution for the fifth scenario. The ladder diagram of the user 
program of UZAM_plc_16i16o_ex38.asm is depicted in Figure 15.13. In this 
example, if the gate is not closing (Q0.1 = 0), once B0 (I0.0) is pressed, then 
the gate will open (Q0.0 will be ON) with the help of the NO contact of Q0.0 
connected parallel to NO contact I0.0. In this case, when the gate is opened 
completely (I0.2 = 1, and therefore the NC contact of I0.2 will open), the motor 
will stop with the help of the NC contact of I0.2 inserted before the output 
Q0.0. Similarly, if the gate is not opening (Q0.0 = 0), once B1 (I0.1) is pressed, 
then the gate will close (Q0.1 will be ON) with the help of NO contact Q0.1 
connected parallel to the NO contact of I0.1. Here, when the gate is closed 
completely (I0.3 = 1, and therefore the NC contact of I0.3 will open), the motor 

FIGURE 15.12
The user program of UZAM_plc_16i16o_ex38.asm.

1 (         ) 
I 0.0 Q 0.0

Q 0.0

I 0.2

2 (         ) 
I 0.1 Q 0.1

Q 0.1

I 0.3

Q 0.1

Q 0.0

FIGURE 15.13
The ladder diagram of the user program of UZAM_plc_16i16o_ex38.asm.
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will stop with the help of the NC contact of I0.3 inserted before the output 
Q0.1. Therefore, once the gate is being opened, we cannot force it to close, 
and vice versa.

15.3.6 Solution for the Sixth Scenario

The user program of UZAM_plc_16i16o_ex39.asm, shown in Figure 15.14, is 
provided as a solution for the sixth scenario. The ladder diagram of the user 
program of UZAM_plc_16i16o_ex39.asm is depicted in Figure 15.15. In this 
example, if the gate is not closing (Q0.1 = 0), once B0 (I0.0) or the RF transmit-
ter button (I0.5) is pressed, then the gate will open (Q0.0 will be ON) with 
the help of the NO contact of Q0.0 connected parallel to the NO contact of 
I0.0. In this case, when the gate is opened completely (I0.2 = 1, and therefore 
the NC contact of I0.2 will open), the motor will stop with the help of the NC 
contact of I0.2 inserted before the output Q0.0. When the gate is completely 
open (I0.2 = 1), an on-delay timer (TON_8) is used to obtain a (100 × 52.4288 
ms) 5.24 s time delay. After waiting 5.24 s, the status bit TON8_Q0 of the 
on-delay timer becomes true. If the gate is not opening (Q0.0 = 0), and if the 
NO contact of TON_8Q0 is closed (i.e., 5.24 s time delay has elapsed), then 
the gate will close (Q0.1 will be ON) with the help of the NO contact of Q0.1 
connected parallel to the NO contact of TON8_Q0. Here, when the gate is 

FIGURE 15.14
The user program of UZAM_plc_16i16o_ex39.asm.
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closed completely (I0.3 = 1, and therefore the NC contact of I0.3 will open), 
the motor will stop with the help of the NC contact of I0.3 inserted before the 
output Q0.1.

15.3.7 Solution for the Seventh Scenario

The user program of UZAM_plc_16i16o_ex40.asm, shown in Figure 15.16, is 
provided as a solution for the seventh scenario. The ladder diagram of the 
user program of UZAM_plc_16i16o_ex40.asm is depicted in Figure  15.17. 
In this example, if the gate is not closing (Q0.1 = 0), once B0 (I0.0) or the 
RF transmitter button (I0.5) is pressed, then the gate will open (Q0.0 will 
be ON) with the help of NO contact Q0.0 connected parallel to NO con-
tact I0.0. In this case, when the gate is opened completely (I0.2 = 1, and 
therefore the NC contact of I0.2 will open), the motor will stop with the 
help of the NC contact of I0.2 inserted before the output Q0.0. If the gate is 
closing (Q0.1 = 1) and the presence of an obstacle is detected in the gate’s 
path (I0.4 = 0), then the gate will open (Q0.0 will be ON). When the gate is 
completely open (I0.2 = 1), an on-delay timer (TON_8) is used to obtain a 

1 (         )  
I 0.0 Q 0.0

I 0.5

I 0.2 Q 0.1

Q 0.0

3 (         )  
Q 0.1

Q 0.1

I 0.3 Q 0.0

2
I 0.2

T1.1

0

IN         Q 

CLK 

tcnst 
num 

TON_8

100T = 52,4288 ms

TON8_Q0

FIGURE 15.15
The ladder diagram of the user program of UZAM_plc_16i16o_ex39.asm.
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(10 × 52.4288 ms) 5.24 s time delay. After waiting 5.24 s, the status bit TON8_
Q0 of the on-delay timer becomes true. If the gate is not opening (Q0.0 = 
0), and if the NO contact of TON8_Q0 is closed (i.e., the 5.24 s time delay 
has elapsed), then the gate will close (Q0.1 will be ON) with the help of 
NO contact Q0.1 connected parallel to the NO contact of TON8_Q0. Here, 
when the gate is closed completely (I0.3 = 1, and therefore the NC contact 
of I0.3 will open), the motor will stop with the help of the NC contact of 
I0.3 inserted before the output Q0.1. If the gate is closing (Q0.1 = 1) and the 
presence of an obstacle is detected in the gate’s path (I0.4 = 0), then the out-
put Q0.1 will be switched OFF by means of the NO contact of I0.4 inserted 
before the output Q0.1.

15.3.8 Solution for the Eighth Scenario

In this last solution, the previous seven solutions are all combined in a single 
program. In order to choose one of the previous solutions, three inputs, I1.2, 
I1.1, and I1.0, are used. Table 15.2 shows the selected scenarios based on the 
logic signals applied to these three inputs.

FIGURE 15.16
The user program of UZAM_plc_16i16o_ex40.asm.
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2 (         ) 
I 0.0 Q 0.0

I 0.5

I 0.2 Q 0.1

Q 0.0

4 (         ) 
Q 0.1

Q 0.1

I 0.3 I 0.4

3
I 0.2

T1.1

0

IN         Q 

CLK

tcnst 
num 

TON_8

100
T=52,4288 ms

TON8_Q0

I 0.4

Q 0.0

Q 0.1
(         ) 
M 0.0

M 0.0

1

FIGURE 15.17
The ladder diagram of the user program of UZAM_plc_16i16o_ex40.asm.

TABLE 15.2

Scenarios Chosen Based on the Input Signals

Input Signals
Selected Memory Bit Chosen Scenario

I1.2 I1.1 I1.0

0 0 0 M0.0 —
0 0 1 M0.1 1
0 1 0 M0.2 2
0 1 1 M0.3 3
1 0 0 M0.4 4
1 0 1 M0.5 5
1 1 0 M0.6 6
1 1 1 M0.7 7



332 Building a Programmable Logic Controller 

© 2008 Taylor & Francis Group, LLC

The user program of UZAM_plc_16i16o_ex41.asm, shown in Figure 15.18, 
is provided as a solution for the eighth scenario. The ladder diagram of the 
user program of UZAM_plc_16i16o_ex41.asm is depicted in Figure 15.19. 
In the first rung, a 3 × 8 decoder is implemented, whose inputs are I1.2, 
I1.1, and I1.0, and whose outputs are markers M0.0, M0.1, M0.2, M0.3, 
M0.4, M0.5, M0.6, and M0.7. The Boolean signals applied to the inputs 

FIGURE 15.18
The user program of UZAM_plc_16i16o_ex41.asm. (Continued)
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FIGURE 15.18 (Continued)
The user program of UZAM_plc_16i16o_ex41.asm. 



334 Building a Programmable Logic Controller 

© 2008 Taylor & Francis Group, LLC

C d7  

d6 

d5

d4

d3

d2

d1

d0

3×8
DECODER 

B

A

M 0.1

(       ) 
M 0.2

(        )

(        )

M 0.0

(       ) 
M 0.3

(       ) 
M 0.5

(       ) 
M 0.6

(       ) 
M 0.4

(       ) 
M 0.7

I 1.2

I 1.1

I 1.0

1

M 0.1I 0.0
(       ) 

M 1.1
2

3 (        ) 
I 0.0 M 1.2

Q 0.0

M 0.2

4 (        ) 
I 0.0

Q 0.0

I 0.2 M 0.3 M 1.3

5 (        ) 
I 0.0

Q 0.0

I 0.2 M 0.4 M 1.4

6 (        ) 
I 0.1

Q 0.1

I 0.3 M 0.4 M 2.4

7 (        ) 
I 0.0

Q 0.0

I 0.2 Q 0.1 M 1.5M 0.5

8 (        ) 
I 0.1

Q 0.1

I 0.3 Q 0.0  M 2.5M 0.5  

FIGURE 15.19
The ladder diagram of the user program of UZAM_plc_16i16o_ex41.asm. (Continued)
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11 (      ) 
I 0.3

10
I 0.2

T1.1

 0 

IN       Q 

CLK 
tcnst 
num 

TON_8

100 
T=52,4288 ms  

TON8_Q0  

9 (      ) 
I 0.0

I 0.5

I 0.2 Q 0.1 M 1.6M 0.6

M 1.6

M 0.6

M 2.6  

M 1.6 M 0.6 M 2.6  

12 (      ) 
 Q 0.1  I 0.4 M 0.7  M 3.0  

15 (      ) 
 I 0.3 

14
 I 0.2 

T1.1  

 1 

IN       Q 

CLK 
tcnst 
num 

  TON_8 

100  T=52,4288 ms  

TON8_Q1  

13 (      ) 
 I 0.0 

  I 0.5 

 I 0.2 M 2.7   M 1.7  M 0.7  

 M 1.7  

M 0.7  

M 2.7  

M 1.7    I 0.4  M 2.7  

 M 3.0  

M 0.7  

FIGURE 15.19 (Continued)
The ladder diagram of the user program of UZAM_plc_16i16o_ex41.asm. (Continued)
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I1.2, I1.1, and I1.0 select one of the outputs, and that particular output 
represents one of the scenarios as shown in Table 15.2. If I1.2,I1.1,I1.0 = 000 
(respectively, 001, 010, 011, 100, 101, 110, and 111), then M0.0 (respectively, 
M0.1, M0.2, M0.3, M0.4, M0.5, M0.6, and M0.7) is set to 1. When M0.0 = 1, 
none of the scenarios are selected. When M0.1 (respectively, M0.2, M0.3, 
M0.4, M0.5, M0.6, and M0.7) is set, the code block for the first (respec-
tively, second, third, fourth, fifth, sixth, seventh) scenario is activated, 
shown in rung 2 (respectively, 3; 4; 5 and 6; 7 and 8; 9, 10, and 11; 12, 13, 
14, and 15). In this example, in order to operate the motor backward and 
forward, PLC outputs Q0.0 and Q0.1 are used as shown in rungs 16 and 
17, respectively.

16 (       ) 
M 1.1 Q 0.0  

M 1.2

M 1.3

M 1.4

M 1.5

M 1.6

M 1.7

17 (       ) 
M 2.4 Q 0.1

M 2.5

M 2.6

M 2.7

FIGURE 15.19 (Continued)
The ladder diagram of the user program of UZAM_plc_16i16o_ex41.asm. 
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About the CD-ROM

The CD-ROM accompanying this book contains source files (.ASM) and 
object files (.HEX) of all the examples in the book. In addition, printed circuit 
board (PCB) (gerber and .pdf) files are also provided in order for the reader 
to obtain both the CPU board and I/O extension boards produced by a PCB 
manufacturer. A skilled reader may produce his or her own boards by using 
the provided .pdf files.

The files on the CD-ROM are organized in the following folders:

EXAMPLES
PLC definitions (definitions.inc)
Example source files (.ASM)
Example object files (.HEX)

PIC16F648A_Based_PLC_16I_16O
Web-based explanation of the PIC16F648A-based PLC project including
 The schematic diagram of the CPU board
 Photographs of the CPU board
 The schematic diagram of the I/O extension board
 Photographs of the I/O extension board
 PCB design files for the CPU board (gerber files and .pdf files)

 PCB design files for the I/O extension board (gerber files and .pdf files)
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“This text allows those who do not have all of the resources 
found in a mechatronics lab the possibility to use a PLC in their 
machine or robot design with a simplified and easily mastered 
programming language. ... It is a well thought-out and detailed 
application of the PIC microcontroller to the programmable  
logic controller.” 
––Thomas sTouT, Tidewater Community College, Virginia Beach, USA

Programmable logic controllers (PLCs) are extensively used in industry 
to perform automation tasks, with manufacturers offering a variety of 
PLCs that differ in functions, program memories, and the number of 
inputs/outputs (I/O). Not surprisingly, the design and implementation 
of these PLCs have long been a secret of manufacturers. Unveiling 
the mysteries of PLC technology, Building a Programmable Logic 
Controller with a PIC16F648A Microcontroller explains how to design 
and use a PIC16F648A-based PLC. The book builds and substantially 
improves on a series of articles the author previously published in 
Electronics World magazine describing a microcontroller-based 
implementation of a PLC.

In this book, the author provides detailed explanations of hardware 
and software structures. He also describes PIC Assembly macros for 
all basic PLC functions and illustrates them with numerous examples 
and flowcharts. The accompanying CD contains source and object 
files for the examples in the book, as well as printed circuit board 
(PCB) files of the CPU and I/O extension boards. Making PLCs more 
easily accessible, this unique book is written for advanced students, 
practicing engineers, and hobbyists who want to learn how to build 
their own microcontroller-based PLC.
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