Handbook of Steel Construction

Eleventh Edition

$11^{\text {th }}$

cisc icca

All material in the Handbook of Steel Construction (with the exception of CSA Standard S16-14) and all copyrights, ownerships and other rights therein and thereto, in all formats, remain the sole and exclusive property of CISC.

All rights reserved, No part of this publication may be reproduced in any form whatsoever without the prior permission of the publisher:

Copyright © 2016 Canadian Institute of Steel Construction

cisc Iicca

CANADIAN INSTITUTE OF STEEL CONSTRUCTION INSTITUT CANADIEN DE LA CONSTRUCTION EN ACIEA

Eleventh Edition
First Printing, February 2016
Second Revised Printing, September 2016
Third Revised Printing, March 2017

ISBN 978-0-88811-207-1

All material in CSA Standard S16-14 and all copyrights, ownerships and other rights therein and thereto, in all formats, remain the sole and exclusive property of CSA.

All rights reserved. No part of this publication may be reproduced in any form whatsoever without the prior permission of the publisher.
© 2014 CSA Group

CSA
Group

CONTENTS

Foreword iv
Preface v
Designations vii
General Nomenclature viii

PART ONE
CSA S16-14 - Design of Steel Structures

PART TWO
CISC Commentary on CSA S16-14

PART THREE
Connections and Tension Members

PART FOUR
Compression Members

PART FIVE

Flexural Members

PART SIX
Properties and Dimensions

FOREWORD

The Canadian Institute of Steel Construction is a national industry organization representing the structural steel, open-web steel joist, and steel plate fabricating industries in Canada. Formed in 1930 and granted a Federal charter in 1942, the CISC functions as a non-profit organization promoting the efficient, economic and sustainable use of fabricated steel in construction.

As a member of the Canadian SteeI Construction Council, the Institute has a general interest in all uses of steel in construction. The CISC supports and actively participates in the work of the Standards Council of Canada, the Canadian Standards Association, the Canadian Commission on Building and Fire Codes and numerous other organizations, in Canada and other countries, involved in research work and the preparation of codes and standards.

Preparation of engineering plans is not a function of the CISC. The Institute provides technical information through its professional engineering staff, through the preparation and dissemination of publications, and through the medium of seminars, courses, meetings, videos, and computer programs. Architects, engineers and others interested in steel construction are encouraged to make use of CISC information services.

The information contained in this publication incorporates recognized engineering principles and practices and is believed to be accurate. Neither the Canadian Institute of Steel Construction nor its authors assume responsibility for errors or oversights in its contents or for the use of the information contained herein in whole, in part or in conjunction with other publications or aids. The information should not be used or relied upon for any specific application without competent professional examination and verification of its accuracy, suitability and applicability by a licensed professional engineer, designer or architect. Anyone making use of the contents assumes all liability arising from such use. Suggestions for improvement of this publication will receive full consideration for future printings.

Future revisions and errata to this Handbook can be obtained from the CISC publications webpage (www.cisc-icca.ca/solutions-centre/publications).

Canadian Institute of Steel Construction
Website: www.cisc-icca.ca
Email: info@cisc-icca.ca

PREFACE

This Handbook has been prepared and published by the Canadian Institute of Steel Construction. It is an important part of a continuing effort to provide current and practical information to assist educators, designers, fabricators, and others interested in the use of steel in construction. This Handbook is intended to be used in conjunction with the National Building Code of Canada (NBC) 2015.

The First Edition of the CISC Handbook of Steel Construction was published in 1967, with the Second through Sixth editions following each new edition of the CSA structural steel design standard, now called CSA S16-14. The Seventh Edition introduced CSA G40.21-350W as the basic steel grade for wide-flange (W) and H-pile (HP) shapes in its first printing and incorporated ASTM A992 and A572 grade 50 in its second revised printing. The Eighth Edition based on S16-01 was expanded to include Hollow Structural Sections (HSS) produced to ASTM Specification A500 grade C. The Ninth Edition incorporated S16S1-05 Supplement No. 1, while the Tenth was based on S16-09.

In this Eleventh Edition, member design tables for angles and standard channels are based on G40.21-350W grade steel, which is now commonly available. This increase brings the yield stress level for most tables of compressive and flexural resistances to $345 / 350 \mathrm{MPa}$. However, the yield stress of plates and angles used as connecting elements (in Part 3) remains at 300 MPa .

Part 1 is a reprint of CSA S16-14, Design of Steel Structures. To assist in understanding the requirements of this standard, Part 2 provides a Commentary prepared by CISC.

Part 3 contains information on bolts and welds with tables for design and evaluation of various structural framing connections. Information on imperial-series bolts has been markedly expanded in Part 3. Featured in this edition are a new design table for all-bolted single-angle connections and new design aids for shear lag in HSS tension members and for strength reduction in multi-orientation fillet welds. Bolt design data for slip-critical joints has been updated to include twist-off bolts and direct tension indicators, and data for bearing-type joints has been expanded to include twist-off bolts.

Part 4 contains information on compression members and introduces new tables of compressive resistances for wide-flange sections produced to ASTM A913 grade 65 and single-angle struts produced to grade CSA G40.21-350W steel. Part 4 also features updated design data on anchor rods, washers, and hole sizes for base plates.

In Part 5 on flexural members, the Composite Beam Selection Tables have been expanded to include deep W -shapes.

In Part 6, section properties and dimensions are provided for currently produced steel sections. A new table for the mechanical properties of selected ASTM steel grades has been added, as well as a table describing the common steel grades (CSA and ASTM) for building construction. Metric bolt data included in the Tenth Edition has been moved to a separate section due to lack of availability. The new Eight Edition of the CISC Code of Standard Practice leads the information found in Part 7.

The range of HSS sizes has been extended to incorporate large (Jumbo) sections. Throughout the design tables in Parts 4,5 and 6, W-shape sections that are commonly used and readily available have been highlighted in yellow colour. It should be noted that data for welded wide-flange sections is no longer provided in this Handbook.

Permission to reprint portions of their publications, granted by the CSA Group and the American Institute of Steel Construction, is gratefully acknowledged. The contributions of Alfred F. Wong, Charles Albert, and Stephanie D'Addese, who helped in the preparation of this publication, are sincerely appreciated.

DESIGNATIONS

Standard designations should always be used to identify structural steel products on drawings and other documents. In Canada, the official designation is the metric (SI) designation, and examples of correct designations for most of the commonly used steel products are provided below. These designations should be used on all design drawings, for detailing purposes and for ordering material.

Shape	Example
W Shapes	W610x113
Miscellaneous M Shapes	M200x9.7
Standard Beams (S Shapes)	S380x64
Standard Channels (C Shapes)	C230x20
Miscellaneous Channels (MC Shapes)	MC250x12.5
Structural Tees - Cut from W Shapes	WT155x43
- Cut from M Shapes	MT100x4.9
Bearing Piles (HP Shapes)	HP250x62
Equal-Leg Angles	L102x 102×9.5
Unequal-Leg Angles	L127x89x9.5
Plates (thickness \times width)	PL8x500
Square Bars (side, mm)	Bar 25 中
Round Bars (diameter, mm)	Bar 25 ${ }^{\text {¢ }}$
Flat Bars (thickness \times width)	Bar 5x60
Round Pipe (outside diameter \times thickness)	DN300x9.52 \dagger
Hollow Structural Sections - Square	HSS $152 \times 152 \times 9.5$ CSA G40.21 Class C*
- Rectangular	HSS $152 \times 102 \times 9.5$ CSA G40.21 Class C**
- Round	HSS141x9.5 CSA G40.21 Class C*
Cold-Formed C-Sections	CFC305S89-326M
\dagger ASTM A53	
* HSS steel grades: CSA G40.21-350W Class Cor	or ASTM A500 Grade C

GENERAL NOMENCLATURE

Explanations of the nomenclature used in many sections of this book appear in those specific sections. In addition, the following symbols are included here for convenience. See also CSA S16-14 Clause 3.2.

A Area

$A_{b} \quad$ Cross-sectional area of one bolt based on nominal diameter
Ae Effective area of section in compression to account for elastic local buckling
Af Flange area
$A_{n} \quad$ Net area
$A_{p} \quad$ Concrete pull-out area of a shear stud
Asc Cross-sectional area of a steel shear connector
$A_{w} \quad$ Web area; shear area; effective throat area of weld
a Centre-to-centre distance between transverse web stiffeners; depth of concrete compression zone
a/h Aspect ratio; ratio of distance between stiffeners to web depth
$B \quad$ Bearing force in a member or component under specified loads
$B_{f} \quad$ Bearing force in a member or component under factored loads
$B_{r} \quad$ Factored bearing resistance of a member or component
$b \quad$ Width of stiffened or unstiffened compression elements; design effective width of concrete slab; overall flange width
$b_{1} \quad$ Effective width of slab
$b_{e l} \quad$ width of stiffened of unstiffened compression elements
C Ratio of connection resistance to the resistance of a single bolt or fillet weld of unit size and length (for computing the resistance of eccentrically loaded bolt or weld groups)
$C_{e} \quad$ Euler buckling load
$C_{f} \quad$ Compressive force in a member or component under factored loads; factored axial load
$C_{r} \quad$ Factored compressive resistance of a member or component
$C_{r}^{\prime} \quad$ Compressive resistance of concrete acting at the centroid of the concrete area in compression
$C_{w} \quad$ Warping torsional constant
$C_{y} \quad$ Axial compressive load at yield stress
$c \quad$ Distance from neutral axis to outer fiber of structural shape
$c_{s} \quad$ Slip resistance factor for bolted joints (see CSA S16-14 Clause 13.12.2.2)
$D \quad$ Outside diameter of circular sections; diameter of rocker or roller; stiffener factor; fillet weld size
d Depth; overall depth of a section; diameter of bolt or stud
$E \quad$ Elastic modulus of steel (200000 MPa assumed); effective weld throat
$E_{c} \quad$ Elastic modulus of concrete
e End distance; lever arm between the compressive resistance, C_{r}, and tensile resistance, Tr
$e^{\prime} \quad$ Lever arm between the compressive resistance, C_{r}^{\prime}, of concrete and tensile resistance, T_{r}, of steel
$F_{a} \quad$ Acceleration-based site coefficient, as defined in the NBCC
$F_{c r} \quad$ Critical plate buckling stress

Fs Ultimate shear strength
$F_{u} \quad$ Specified minimum tensile strength (MPa)
$F_{v} \quad$ Velocity-based site coefficient, as defined in the NBCC
$F_{y} \quad$ Specified minimum yield stress, yield point or yield strength (MPa)
$f_{c} \quad$ Specified compressive strength of concrete at 28 days (MPa)
$g \quad$ Transverse spacing between fastener gauge lines (gauge distance)
$h \quad$ Clear depth of web between flanges; height of stud
$I \quad$ Moment of inertia
$I_{E} \quad$ Earthquake importance factor of the structure (see Clause 27 of S16-14 and the NBCC)
$I_{E} F_{a} S_{o}(0.2)$ Specified short-period spectral acceleration ratio (see Clause 27 of S16-14)
$I_{E F} S_{a}(1.0)$ Specified one-second spectral acceleration ratio (see Clause 27 of S16-14)
$I_{t} \quad$ Transformed moment of inertia of a composite beam
Its Transformed moment of inertia of a composite beam based on the modular ratio, n_{s}
$I_{x}, I_{y} \quad$ Moment of inertia about axis $x-x, y-y$
$I_{x d} \quad$ Effective deflection moment of inertia about X-X axis for cold-formed sections
$J \quad$ St. Venant torsional constant
$j \quad$ Flexural-torsional buckling parameter for cold-formed sections
$K \quad$ Effective length factor
K_{r}, K_{y} Effective length factor with respect to axis $x-x, y-y$
$K L \quad$ Effective length
$k \quad$ Distance from outer face of flange to web toe of fillet of rolled shapes
$k_{1} \quad$ Distance from centreline of web to flange toe of fillet of rolled shapes
L Length
$L_{\text {er }} \quad$ Maximum unbraced length adjacent to a plastic hinge; critical unbraced length of distortional buckling for cold-formed sections
$L_{u} \quad$ Maximum unsupported length of compression flange for which no reduction in factored moment resistance, M_{r}, is required (for simply-supported beams under uniform moment). See CSA S16-14 Clause 13,6(e).
$L_{w} \quad$ Length of weld segment
L_{x}, L_{y} Unsupported length with respect to axis $x-x, y-y$
M Mass
Mf Bending moment in a member or component under factored loads
$M_{\rho} \quad$ Smaller factored end moment of a beam-column; factored bending moment at a point of concentrated load
$M_{f 2} \quad$ Larger factored end moment of a beam-column
$M_{p} \quad$ Plastic moment $=Z F_{y}$
$M_{r} \quad$ Factored moment resistance of a member or component
$M_{r}^{\prime} \quad$ Factored moment resistance of a member of a given unbraced length greater that L_{u}
$M_{r c} \quad$ Factored moment resistance of a composite beam
$M_{r l b} \quad$ Factored moment resistance based on local buckling for cold-formed sections
$M_{w} \quad$ Strength reduction factor for multi-orientation fillet welds to account for ductility incompatibility of the individual weld segments
$M_{y} \quad$ Yield moment $=S F_{y}$
$N \quad$ Length of bearing of an applied load
$n_{s} \quad$ Modular ratio of modulus of elasticity of steel to age-adjusted effective modulus of elasticity of concrete, for computing shrinkage deflections of composite beams
P Concentrated load
$P_{f} \quad$ Factored axial load
Qr Sum of the factored resistances of all shear connectors between points of maximum and zero moment
Factored resistance of a shear connector
$R \quad$ End reaction or concentrated transverse load applied to a flexural member
r Radius of gyration
$\vec{r}_{o} \quad$ Polar radius of gyration of a singly-symmetric section about the shear centre (see Clause 13.3 .2 of S $16-14$)
r_{u}, r_{v} Radius of gyration with respect to axis $u-u, v-v$
r_{x}, r_{y} Radius of gyration with respect to axis $x-x, y-y$
$r_{y}^{\prime} \quad$ Radius of gyration of a member about its minor principal axis
r_{z} Radius of gyration with respect to axis $z-z$
$S \quad$ Elastic section modulus
$S_{a}(T) 5 \%$ damped spectral response acceleration, expressed as a ratio to gravitational acceleration, for a period of T in seconds, as defined in the NBCC
$S_{x} \quad$ Elastic section modulus with respect to axis $x-x$
Sy Elastic section modulus with respect to axis $y-y$
$s \quad$ Centre-to-centre spacing (pitch) between successive fastener holes in line of applied force
$T \quad$ Theoretical weld throat
Tf Tensile force in a member or component under factored loads
$T_{r} \quad$ Factored tensile resistance of a member or component; factored tensile resistance of the steel acting at the centroid of that part of the steel area in tension
t Thickness
$U \quad$ Amplification factor for stability analysis of beam-columns
$U_{t} \quad$ Factor to account for efficiency of the tensile area
$V_{f} \quad$ Shear force in a member or component under factored loads
$V_{r} \quad$ Factored shear resistance of a member or component
$V_{s} \quad$ Slip resistance of a bolted joint
W Total uniformly distributed load (kN); concentrated load; weld face width
$w \quad$ Web thickness; load per unit of length
$x_{o} \quad$ Horizontal coordinate of the shear centre of a section
$Y_{o} \quad$ Vertical coordinate of the shear centre of a section
$Z \quad$ Plastic section modulus of a steel section
$\alpha \quad$ Angle between the geometric and principal axes of a cross-section
$\alpha_{1} \quad$ Ratio of average stress in a rectangular compression block to the specified concrete strength
$\beta \quad$ Coefficient for weak-axis bending in beam-columns
$\beta_{x} \quad$ Asymmetry parameter for singly-symmetric beams (see Clause 13.6(e) of S16-14)
$\gamma_{c} \quad$ Density of concrete
$\Delta \quad$ Deflection of a point of a structure
$\theta \quad$ Angle between a weld segment and the line of applied force
$\kappa \quad$ Ratio of the smaller to the larger factored end moment, positive for double curvature and negative for single curvature
$\lambda \quad$ Non-dimensional slenderness ratio for compression members
$\phi \quad$ Resistance factor
$\Omega \quad$ Section property used in computing the flexural-torsional buckling resistance of a singly-symmetric section (see Clause 13.3.2 of S16-14)

ASTM American Society for Testing and Materials
CISC Canadian Institute of Steel Construction
CPMA Canadian Paint Manufacturers' Association (now known as the Canadian Paint and Coatings Association)
CSCC Canadian Steel Construction Council
CSA Canadian Standards Association
NBCC National Building Code of Canada
RCSC Research Council on Structural Connections
SSPC Steel Structures Painting Council (now known as the Society for Protective Coatings)
SSRC Structural Stability Research Council

PART ONE

CSA S16-14

DESIGN OF STEEL STRUCTURES

General

This Standard is reprinted with the permission of CSA Group and contains all errata and revisions approved at time of printing. The reprint includes CSA S16-14 "Design of Steel Structures" (June 2014), Errata - October 2015 and Update No. 1-December 2016.

CSA Standards are subject to periodic review. For information on updates to S16-14, see page 1 -iv.

For information on requesting interpretations, see Note (4) in the Preface to S16-14.

Revision History

S16-14, Design of steel structures

Update No. 1 - December 2016	Revision symbol (in margin)
Working Group on Design and Construction of Steel Storage Racks Preface Clauses 2, 6.7, 8.3.2, 8.4.2, 13.2, 13.6, 13.12.2.3, 13.13.2.2, 15.2.1, 18.3.2, 18.3.5.1, 18.4.2, 20.2, 20.3, 20.7, 22.3.5.2, 23.4.2, 25.3.3.1, 26.1, 26.3.3, 27.1.6, 27.2.1.1, 27.2.2, 27.2.3.2, 27.2.4, 27.2.4.1, 27.4.4.2, 27.5.2.5, 27.5.3.2, 27.6.2.1, 27.6.2.2, 27.6.5, 27.7.2.4, 27.7.4.1, 27.7.6.2.2, 27.10.4, and 30.5 Annex N Table 2	(1)

Errata - October 2015	Revision symbol (in margin)
Clauses 3.1, 5.1.3, 5.1.6, 5.1.7. 7.2.1, 13.2,13.3.3.1,13.12.1.2,	Δ
14.5.3,16.5.5.1, 16.5.5.2, 17.2, 17.7.2.3,17.9.3,18.2.2, 22.2.5.1, 23.2, and 25.3.4 Table 3	

Standards Update Service

S16-14
 June 2014

Title: Design of steel structures
To register for e-mail notification about any updates to this publication

- go to shop.csa.ca
- click on CSA Update Service

The list ID that you will need to register for updates to this publication is $\mathbf{2 4 2 2 7 5 6}$.
If you require assistance, please e-mail techsupport@csagroup.org or call 416-747-2233.
Visit CSA Group's policy on privacy at www.csagroup.org/legal to find out how we protect your personal information.

S16-14
 Design of steel structures

* A trademark of the Canadian Standards Association, operating as "CSA Group"

Published in June 2014 by CSA Group
A not-for-profit private sector organization 178 Rexdale Boulevard, Toronto, Ontario, Canada M9W 1R3

To purchase standards and related publications, visit our Online Store ot shop.csa.ca or call toll-free 1-800-463-6727 or 416-747-4044.
© 2014 CSA Group
All rights reserved. No part of this publication may be reproduced in any form whatsoever without the prior permission of the publisher.

Legal Notice for Standards

Canadian Standards Association (operating as "CSA Group") develops standards through a consensus standards development process approved by the Standards Council of Canada. This process brings together volunteers representing varied viewpoints and interests to achieve consensus and develop a standard. Although CSA Group administers the process and establishes rules to promote fairness in achieving consensus, it does not independently test, evaluate, or verify the content of standards.

Disclaimer and exclusion of liability

This document is provided without any representations, warranties, or conditions of any kind, express or implied, including, without limitation, implied warranties or conditions concerning this document's fitness for a particular purpose or use, its merchantability, or its non-infringement of any third party's intellectual property rights. CSA Group does not warrant the accuracy, completeness, or currency of any of the information published in this document. CSA Group makes no representations or warranties regarding this document's compliance with any applicable statute, rule, or regulation.
IN NO EVENT SHALL CSA GROUP, ITS VOLUNTEERS, MEMBERS, SUBSIDIARIES, OR AFFILIATED COMPANIES, OR THEIR EMPLOYEES, DIRECTORS, OR OFFICERS, BE LIABLE FOR ANY DIRECT, INDIRECT, OR INCIDENTAL DAMAGES, INJURY, LOSS, COSTS, OR EXPENSES, HOWSOEVER CAUSED, INCLUDING BUT NOT LIMITED TO SPECIAL OR CONSEQUENTIAL DAMAGES, LOST REVENUE, BUSINESS INTERRUPTION, LOST OR DAMAGED DATA, OR ANY OTHER COMMERCIAL OR ECONOMIC LOSS, WHETHER BASED IN CONTRACT, TORT (INCLLUDING NEGLIGENCE), OR ANY OTHER THEORY OF LIABILITY, ARISING OUT OF OR RESULTING FROM ACCESS TO OR POSSESSION OR USE OF THIS DOCUMENT, EVEN IF CSA GROUP HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, INJURY, LOSS, COSTS, OR EXPENSES.
In publishing and making this document available, CSA Group is not undertaking to render professional or other services for or on behalf of any person or entity or to perform any duty owed by any person or entity to another person or entity. The information in this document is directed to those who have the appropriate degree of experience to use and apply its contents, and CSA Group accepts no responsibility whatsoever arising in any way from any and all use of or rellance on the information contained in this document.
CSA Group is a private not-for-profit company that publishes voluntary standards and related documents. CSA Group has no power, nor does it undertake, to enforce compliance with the contents of the standards or other documents it publishes.

Intellectual property rights and ownership

As between CSA Group and the users of this document (whether it be in printed or electronic form), CSA Group is the owner, or the authorized licensee, of all works contained herein that are protected by copyright, all trade-marks (except as otherwise noted to the contrary), and all inventions and trade secrets that may be contained in this document, whether or not such inventions and trade secrets are protected by patents and applications for patents. Without limitation, the unauthorized use, modification, copying, or disclosure of this document may violate laws that protect CSA Group's and/or others' intellectual property and may give rise to a righr in CSA Group and/or others to seek legal redress for such use, modification, copying, or disclosure. To the extent permitted by licence or by law, CSA Group reserves all intellectual property rights in this document.

Patent rights

Attention is drawn to the possibility that some of the elements of this standard may be the subject of patent rights. CSA Group shall not be held responsible for identifying any or all such patent rights. Users of this standard are expressly advised that determination of the validity of any such patent rights is entirely their own responsibility.

Authorized use of this document

This document is being provided by CSA Group for informational and non-commercial use only. The user of this document is authorized to do only the following:
If this document is in electronic form:

* load this document onto a computer for the sole purpose of reviewing it:
- search and browse this document; and
- print this document if it is in PDF format.

Limited coples of this document in print or paper form may be distributed only to persons who are authorized by CSA Group to have such copies, and only if this Legal Notice appears on each such copy.
In addition, users may not and may not permit others to

- alter this document in any way or remove this Legal Notice from the attached standard;
- sell this document without authorization from CSA Group; or
* make an electronic copy of this document.

If you do not agree with any of the terms and conditions contained in this Legal Notice, you may not load or use this document or make any copies of the contents hereof, and if you do make such copies, you are required to destroy them immediately. Use of this document constitutes your acceptance of the terms and conditions of this Legal Notice.
Contents
Technical Committee on Steel Structures for Buildings 13
Working Group on Design and Construction of Steel Storage Racks 17
Preface 19
1 Scope and application 21
1.1 General 21
1.2 Requirements 21
1.3 Application 21
1.4 Other standards 21
1.5 Terminology 22
2 Reference publications 22
3 Definitions and symbols 27
3.1 Definitions 27
3.2 Symbols 30
3.3 Units 37
4 Structural documents 37
4.1 General 37
4.2 Structural design documents 38
4.3 Fabrication and erection documents 38
4.3.1 Connection design details 38
4.3.2 Shop details 39
4.3.3 Erection diagrams 39
4.3.4 Erection procedures 39
4.3.5 Fieldwork details 39
5 Material - Standards and identification 39
5.1 Standards 39
5.1.1 General 39
5.1.2 Strength levels 40
5.1.3 Structural steel 40
5.1.4 Sheet steel 40
5.1.5 Cast steel 40
5.1.6 Forged steel 40
5.1.7 Bolts and bolt assemblies 40
5.1.8 Welding electrodes 40
5.1.9 Studs 40
5.1.10 Anchor rods 40
5.2 Identification 40
5.2.1 Methods 40
5.2.2 Unidentified structural steel 41
5.2.3 Tests to establish identification 41
5.2.4 Affidavit 41
6 Design requirements 41
6.1 General 41
6.1.1 Limit states 41
6.1.2 Structural integrity 41
6.2 Loads 42
6.2.1 Specified loads 42
6.2.2 Importance factors based on use and occupancy 42
6.3 Requirements under specified loads 42
6.3.1 Deflection 42
6.3.2 Camber 42
6.3.3 Dynamic effects 42
6.3.4 Resistance to fatigue 43
6.4 Requirements under factored loads 43
6.4.1 Strength 43
6.4.2 Overturning 43
6.5 Expansion and contraction 43
6.6 Corrosion protection 43
6.7 Requirements under fire conditions 44
6.8 Brittle fracture 44
6.9 Requirements under impulse loading 44
7 Factored loads and safety criterion 44
7.1 Safety during erection and construction 44
7.2 Safety criterion and effect of factored loads for the ultimate limit states 45
8 Analysis of structure 45
8,1 General 45
8,2 Types of construction 45
8.2.1 General 45
8.2.2 Rigidly connected and continuous construction 45
8.2.3 Simple construction 45
8.2.4 Semi-rigid (partially restrained) construction 46
8.3 Analysis methods 46
8.3.1 Elastic analysis 46
8.3.2 Plastic analysis 46
8.4 Stability effects 46
9 Stability of structures and members 47
9.1 Stability of structures 47
9.2 Stability of members 47
9.2.1 Initial misalignment at brace point 47
9.2.2 Displacement of bracing systems 47
9.2.3 Function of bracing 47
9.2.4 Twisting and lateral displacements 48
9.2.5 Simplified analysis 48
9.2.6 Detailed analysis 48
9.2.7 Slabs or decks 49
9.2.8 Accumulation of forces 49
9.2.9 Torsion 49
10 Design lengths and slenderness ratios 49
10.1 Simple span flexural members 49
10.2 Continuous span flexural members 49
10.3 Members in compression 50
10.3.1 General 50
10.3.2 Failure mode involving bending in-plane 50
10.3.3 Failure mode involving buckling 50
10.4 Slenderness ratios 50
10.4.1 General 50
10.4.2 Maximum slenderness ratio 50
11 Width (or diameter)-to-thickness - Elements in compression 51
11.1 Classification of sections 51
11.2 Maximum width (or diameter)-to-thickness ratios of elements subject to compression 51
11.3 Width and thickness 51
12 Gross and net areas 52
12.1 Application 52
12.2 Gross area 52
12.3 Net area 52
12.3.1 General 52
12.3.2 Allowance for bolt holes 52
12.3.3 Effective net area - Shear lag 53
12.3.4 Angles 54
12.3.5 Plug or slot welds 54
12.4 Pin-connected members in tension 54
12.4.1 Effective net areas 54
12.4.2 Detail requirements 54
13 Member and connection resistance 55
13.1 Resistance factors 55
13.2 Axial tension 55
13,3 Axial compression 55
13.3.1 Flexural buckling of doubly symmetric shapes 55
13.3.2 Flexural, torsional, or flexural-torsional buckling 56
13.3.3 Single-angle members in compression 57
13.3.4 Segmented members in compression 58
13,3.5 Members in compression subjected to elastic local buckling 58
13.4 Shear 59
13.4.1 Webs of flexural members with two flanges 59
13.4.2 Plastic analysis 61
13.4.3 Webs of flexural members not having two flanges 61
13.4.4 Pins 61
13.4.5 Gusset plates and coped beams 61
13.5 Bending - Laterally supported members 61
13.6 Bending - Laterally unsupported members 62
13.7 Lateral bracing for members in structures analyzed plastically 64
13.8 Axial compression and bending 65
13.8.1 General 65
13.8.2 Member strength and stability - Class 1 and Class 2 sections of i-shaped members 65
13.8.3 Member strength and stability - All classes of sections except Class 1 and Class 2 sections of 1 - shaped members 66
13.8.4 Value of U_{1} 66
13.8.5 Values of ω_{1} 66
13.9 Axial tension and bending 67
13.10 Load bearing 67
13.11 Block shear - Tension member, beam, and plate connections 68
13.12 Bolts and local connection resistance 68
13.12.1 Bolts in bearing-type connections 68
13.12.2 Bolts in slip-critical connections 69
13.13 Welds 70
13.13.1 General 70
13.13.2 Shear 70
13.13.3 Tension normal to axis of weld 71
13.13.4 Compression normal to axis of weld 72
13.14 Welds and high-strength bolts in combination 72
14 Beams and girders 73
14.1 Proportioning 73
14.2 Flanges 73
14.3 Webs 74
14.3.1 Maximum slenderness 74
14.3.2 Web crippling and vielding 74
14.3.3 Openings 74
14.3.4 Effect of thin webs on moment resistance 75
14.4 Bearing stiffeners 75
14.5 Intermediate transverse stiffeners 76
14.6 Combined shear and moment 77
14.7 Rotational restraint at points of support 77
14.8 Copes 78
14.9 Lateral forces 78
14.10 Torsion 78
15 Trusses 78
15.1 Analysis 78
15.1.1 Simplified method 78
15.1.2 Detailed method 79
15.2 General requirements 79
15.2.1 Effective lengths of compression members 79
15.2.2 Joint eccentricities 79
15.2.3 Stability 79
15.2.4 Chord members 79
15.2.5 Web members 79
15.2.6 Compression chord supports 79
15.2.7 Maximum slenderness ratio of tension chords 80
15.2.8 Deflection and camber 80
15.3 Composite trusses 80
16 Open-web steel joists 80
16.1 Scope 80
16.2 General 80
16.3 Materials 80
16.4 Design documents 80
16.4.1 Building structural design documents 80
16.4.2 Joist design documents 81
16.5 Design 81
16.5.1 Loading for open-web steel joists 81
16.5.2 Design assumptions 82
16,5.3 Member and connection resistance 82
16.5.4 Width-to-thickness ratios 82
16.5.5 Bottom chord 82
16.5.6 Top chord 83
16.5.7 Webs 84
16.5.8 Spacers and battens 84
16.5.9 Connections and splices 85
16.5.10 Bearings 85
16.5.11 Anchorage 86
16.5.12 Deflection 86
16.5.13 Camber 86
16,5,14 Vibration 87
16,5.15 Welding 87
16.6 Stability during construction 87
16.7 Bridging 87
16.7.1 General 87
16.7.2 Installation 87
16.7.3 Types 87
16.7.4 Diagonal bridging 87
16.7.5 Horizontal bridging 87
16.7.6 Attachment of bridging 87
16.7.7 Anchorage of bridging 88
16.7.8 Bridging systems 88
16.7.9 Spacing of bridging 88
16.8 Decking 88
16.8.1 Decking to provide lateral support 88
16.8.2 Deck attachments 88
16.8.3 Diaphragm action 88
16.8.4 Cast-in-place slabs 89
16.8.5 Installation of steel deck 89
16.9 Shop coating 89
16.10 Manufacturing tolerances 89
16.11 Inspection and quality control 90
16.11.1 Inspection 90
16,11.2 Identification and control of steel 90
16.11.3 Quality control 90
16.12 Handling and erection 90
16.12.1 General 90
16.12.2 Erection tolerances 91
17 Composite beams, trusses, and joists 91
17.1 Application 91
17.2 Definitions 91
17.3 General 92
17.3.1 Deflections 92
17.3.2 Vertical shear 93
17.3.3 End connections 93
17.3.4 Steel deck 94
17.4 Design effective width of concrete 94
17.5 Slab reinforcement 94
17.5.1 General 94
17.5.2 Parallel reinforcement 94
17.5.3 Transverse reinforcement - Concrete slab on metal deck 94
17.5.4 Transverse reinforcement - Ribbed slabs 94
17.6 Interconnection 95
17.7 Shear connectors 95
17.7.1 General 95
17.7.2 End-welded studs 96
17,7.3 Channel connectors 97
17.8 Ties 97
17.9 Design of composite beams with shear connectors 97
17.10 Design of composite beams without shear connectors 99
17.11 Unshored beams 100
17.12 Beams during construction 100
18 Composite columns 100
18.1 Resistance prior to composite action 100
18.2 Concrete-filled hollow structural sections 100
18.2.1 General 100
18,2.2 Compressive resistance 101
18.2.3 Bending resistance 102
18,2.4 Axial compression and bending 103
18.3 Partially encased composite columns 103
18.3.1 General 103
18.3.2 Compressive resistance 104
18.3.3 Bending resistance 104
18.3.4 Axial compression and bending 105
18.3.5 Special reinforcement for seismic zones 105
18.4 Encased composite columns 105
18.4.1 General 105
18.4.2 Compressive resistance 105
18.4.3 Reinforcement 106
18.4.4 Columns with multiple steel shapes 106
18.4.5 Load transfer 106
18.4.6 Bending resistance 106
19 Built-up members 107
19.1 General 107
19.2 Members in compression 107
19.3 Members in tension 110
19.4 Open box-type beams and grillages 110
20 Plate walls 110
20.1 General 110
20.1.1 Definition 110
20.1.2 Lateral resistance 111
20.2 Seismic applications 111
20.3 Analysis and design 111
20.4 Angle of inclination 111
20.5 Limits on column and beam flexibilities 111
20.6 Infill plates 112
20.7 Beams 112
20.8 Columns 112
20.9 Anchorage of infill plates 112
20.10 Infill plate connections 113
21 Connections 113
21.1 Alignment of members 113
21.2 Unrestrained members 113
21.3 Restrained members 113
21.4 Connections of tension or compression members 114
21.5 Bearing joints in compression members 114
21.6 Lamellar tearing 114
21.7 Placement of fasteners and welds 115
21.8 Fillers 115
21.8.1 Fillers in bolted connections 115
21.8.2 Fillers in welded connections 115
21.9 Welds in combination 116
21.10 Fasteners and welds in combination 116
21.10.1 New connections 116
21.10.2 Existing connections 116
21.11 High-strength bolts (in slip-critical joints) and rivets in combination 116
21.12 Connected elements under combined tension and shear stresses 116
22 Design and detailing of bolted connections 116
22.1 General 116
22.2 Design of bolted connections 116
22,2.1 Use of snug-tightened high-strength bolts 116
22.2.2 Use of pretensioned high-strength bolts 117
22.2.3 Joints subject to fatigue loading 117
22.2.4 Effective bearing area 117
22.2.5 Fastener components 117
22.3 Detailing of bolted connections 117
22.3.1 Minimum pitch 117
22.3.2 Minimum edge distance 118
22.3.3 Maximum edge distance 118
22.3.4 Minimum end distance 118
22.3.5 Bolt holes 118
23 Installation and inspection of bolted joints 119
23.1 Connection fit-up 119
23.2 Surface conditions for slip-critical connections 119
23.3 Minimum bolt length 119
23.4 Use of washers 119
23.5 Storage of fastener components for pretensioned bolt assemblies 120
23.6 Snug-tightened bolt assemblies 120
23.7 Pretensioned high-strength bolt assemblies 120
23.7.1 Installation procedure 120
23.7.2 Turn-of-nut methad 121
23.7.3 Use of ASTM F959 washers 121
23.7.4 Use of ASTM F1852 and ASTM F2280 bolts 121
23.8 Inspection procedures 121
24 Welding 122
24.1 Arc welding 122
24.2 Resistance welding 122
24.3 Fabricator and erector qualification 122
25 Column bases and anchor rods 122
25.1 Loads 122
25.2 Minimum number of anchor rods 122
25.3 Resistance 122
25.3.1 Concrete in compression 122
25.3.2 Tension 123
25.3.3 Shear 123
25.3.4 Anchor rods in shear and tension 124
25.3.5 Anchor rods in tension and bending 124
25.3.6 Moment on column base 124
25.4 Fabrication and erection 124
25.4.1 Fabrication 124
25.4.2 Erection 124
26 Fatigue 125
26.1 General 125
$26.2 \quad$ Proportioning 125
26.3 Live-load-induced fatigue 125
26.3.1 Calculation of stress range 125
26.3.2 Design criteria 125
26.3.3 Cumulative fatigue damage 126
26.3.4 Fatigue constants and detail categories 126
26,3.5 Limited number of cycles 126
26.4 Distortion-induced fatigue 126
26.5 High-strength bolts 127
27 Seismic design 127
27.1 General 127
27.1.1 Scope 127
27.1.2 Capacity design 127
27.1.3 Seismic load path 128
27.1.4 Members and connections supporting gravity loads 128
27.1.5 Material requirements 128
27.1.6 Bolted connections 129
27.1.7 Probable vield stress 130
27.1.8 Stability effects 130
27.1.9 Protected zones 130
27.2 Type D (ductile) moment-resisting frames, $R_{d}=5.0, R_{o}=1.5$ 131
27.2.1 General 131
27.2.2 Beams 131
27.2.3 Columns 131
27.2.4 Joint panel zone 132
27.2.5 Beam-to-column joints and connections 133
27.2.6 Bracing 134
27.2.7 Fasteners 134
27.2.8 Protected zones 134
27.3 Type MD (moderately ductile) moment-resisting frames, $R_{d}=3.5, R_{o}=1.5$ 135
27.4 Type LD (limited-ductility) moment-resisting frames, $R_{d}=2.0, R_{o}=1.3$ 135
27.4.1 General 135
27.4.2 Beams and columns 135
27.4.3 Column joint panel zone 135
27.4.4 Beam-to-column connections 136
27.5 Type MD (moderately ductile) concentrically braced frames, $R_{d}=3.0, R_{0}=1.3$ 136
27.5.1 General 136
27.5.2 Bracing systems 136
27.5.3 Diagonal bracing members 138
27.5.4 Brace connections 139
27.5.5 Columns, beams, and connections other than brace connections 140
27.5.6 Columns with braces intersecting between horizontal diaphragms 140
27.5.7 Protected zones 141
27.6 Type LD (limited-ductility) concentrically braced frames, $R_{d}=2.0, R_{o}=1.3$ 141
27.6.1 General 141
27.6.2 Bracing systems 141
27.6.3 Diagonal bracing members 142
27.6.4 Bracing connections 142
27.6.5 Columns, beams, and other connections 142
27.6.6 Columns with braces intersecting between horizontal diaphragms 142
27.7 Type D (ductile) eccentrically braced frames, $R_{d}=4.0, R_{0}=1.5$ 142
27.7.1 General 142
27.7.2 Link beam 142
27.7.3 Link resistance 144
27.7.4 Link length 144
27.7.5 Inelastic link rotation 145
27.7.6 Link stiffeners 145
27.7.7 Lateral support for link 147
27.7.8 Link beam-to-column connection 147
27.7.9 Beam outside the link 147
27.7.10 Modular link-to-beam connections 148
27.7.11 Diagonal braces 148
27.7.12 Brace-to-beam connection 148
27.7.13 Columns 148
27.7.14 Protected zone 149
27.8 Type D (ductile) buckling restrained braced frames, $R_{d}=4.0, R_{o}=1.2$ 149
27.8.1 Genera 149
27.8.2 Bracing systems 149
27.8.3 Bracing members 149
27.8.4 Brace connections 150
27.8.5 Beams, columns, and connections other than brace connections 150
27.8.6 Testing 151
27.8.7 Protected zone 151
27.9 Type D (ductile) plate walls, $R_{d}=5.0, R_{o}=1.6$ 151
27.9.1 General 151
27.9.2 Infill plates 151
27.9.3 Beams 152
27.9.4 Columns 152
27.9.5 Minimum stiffness for beams and columns 153
27.9.6 Column joint panel zones 153
27.9.7 Beam-to-column joints and connections 153
27.9.8 Protected zones 153
27.10 Type LD (limited-ductility) plate walls, $R_{d}=2.0, R_{0}=1.5$ 154
27.10.1 General 154
27.10.2 Infill plates 154
27.10.3 Beams 154
27.10.4 Columns 154
27.10.5 Column joint panel zones 154
27.10.6 Beam-to-column joints and connections 154
27.11 Conventional construction, $R_{d}=1.5, R_{o}=1.3$ 155
27.12 Special seismic construction 156
28 Shop and field fabrication and coating 156
28.1 Cambering, curving, and straightening 156
28.2 Thermal cutting 156
28.3 Sheared or thermally cut edge finish 156
28.4 Fastener holes 157
28.4.1 Drilled and punched holes 157
28.4.2 Holes at plastic hinges 157
28,4.3 Thermally cut holes 157
28.4.4 Alignment 157
28.5 Joints in contact bearing 157
28.6 Member tolerances 158
28.7 Cleaning, surface preparation, and shop coating 158
28.7.1 General 158
28.7.2 Uncoated steel 158
28.7.3 Coated steel 159
28.7.4 Special surfaces 159
28.7.5 Metallic zinc coatings 160
29 Erection 160
29.1 Temporary conditions 160
29.1.1 General 160
29.1.2 Temporary loads 160
29.1.3 Temporary bracing 160
29.1.4 Adequacy of temporary connections 160
29.2 Alignment 160
29.3 Erection tolerances 161
29.3.1 General 161
29.3.2 Elevation of base plates 161
29.3.3 Plumbness of columns 161
29.3.4 Horizontal alignment of members 161
29.3.5 Elevations of members 161
29,3.6 Crane runway beams 162
29.3.7 Alignment of braced members 162
29.3.8 Members with adjustable connections 162
29.3.9 Column splices. 162
29.3.10 Welded joint fit-up 162
29,3.11 Bolted joint fit-up 162
30 inspection 162
30.1 General 162
30.2 Co-operation 163
30.3 Rejection 163
30.4 Inspection of high-strength bolted joints 163
30.5 Welding inspection 163
30.5.1 Extent of examination 163
30.5.2 Competency of inspection personnel 163
30,6 Identification of steel by marking 164
Annex A (informative) - Standard practice for structural steel 181
Annex B (informative) - Margins of safety 183
Annex C (normative) - Crane-supporting structures 185
Annex D (informative) - Recommended maximum values for deflections for specified design live, snow,and wind loads187
Annex E (informative) - Floor vibrations 189
Annex F (informative) - Effective lengths of columns 191
Annex G (informative) - Criteria for estimating effective column lengths in continuous frames 193
Annex H (informative) - Deflections of composite beams, joists, and trusses due to shrinkage ofconcrete 197
Annex I (informative) - Arbitration pracedure for pretensioning connections 203
Annex J (normative) - Qualfication testing provisions for seismic moment connections and buckling restrained braces 205
Annex K (normative) - Structural design for fire conditions 207
Annex L (informative) — Design to prevent brittle fracture 219
Annex M (informative) - Seismic design of industrial steel structures 225
Annex N (normative) - Design and construction of steel storage racks 229

Technical Committee on Steel Structures for Buildings

R.B. Vincent	Vinmar Surface Coatings Inc, Westmount, Québec Representing General Interest	Chair
M.I. Gilmor	Cast Connex Corporation, Toronto, Ontario Representing Producer Interest	Vice-Chair
P.C. Birkemoe	University of Toronto, Toronto, Ontario Representing General Interest	
R. Bjorhovde	The Bjorhovde Group, Tucson, Arizona, USA	Associate
S. Boulanger	Supermétal, Saint-Laurent, Québec Representing Producer Interest	
M. Bruneau	University at Buffalo, Buffalo, New York, USA Representing General Interest	
L. Callele	Waiward Engineering, Edmonton, Alberta Representing Producer Interest	
B.D. Charnish	Entuitive Corporation, Toronto, Ontario Representing User Interest	
C. Christopoulos	University of Toronto, Toronto, Ontario	Associate
D. Clapp	Frazier Industrial Co., Long Valley, New Jersey, USA	Associate
M.P. Comeau	Campbell Comeau Engineering Limited, Halifax, Nova Scotia Representing User Interest	

R.G. Driver	University of Alberta, Edmonton, Alberta Representing General Interest	
J. Ferrari	Konstant Inc, Oakville, Ontario	Associate
R.B. Fletcher	Atlas Tube, Chicago, Illinois, USA Representing Producer Interest	
G, Frater	Canadian Steel Construction Council, Markham, Ontario	Associate
G. Grondin	AECOM, Edmonton, Alberta Representing User Interest	
C. Hanson-Carbonneau	ADF Group Inc, Terrebonne, Québec Representing Producer Interest	
P.S. Higgins	Peter S. Higgins \& Associates, Malibu, California, USA	Associate
M. Hrabok	University of Saskatchewan, Saskatoon, Saskatchewan Representing General Interest	
M. Lasby	Fluor Canada Ltd, Calgary, Alberta Representing User Interest	
F. Legeron	Université de Sherbrooke, Sherbrooke, Québec	Associate
E.S. Lévesque	Structal Ponts, Québec, Québec	Associate
D.H. MacKinnon	Canadian Institute of Steel Construction, Markham, Ontario	Associate
l. MacPhedran	University of Saskatchewan, Saskatoon, Saskatchewan	Associate

J.R. Mark

J.C. Martin
A.W. Metten

C.J. Montgomery

T. Mulholland
P.K. Ostrowski
J.A. Packer
C. Rogers
R.M. Schuster

C.R. Taraschuk

A. Tiruneh
R. Tremblay

Mississauga, Ontario
Representing General Interest

CWB Group, Milton, Ontario Representing General Interest

Bush, Bohiman \& Partners, Vancouver, British Columbia Representing User Interest

DIALOG, Edmonton, Alberta Representing User Interest

Rack-Net-Works, Mississauga, Ontario Representing User Interest

Ontario Power Generation Inc, Bowmanville, Ontario Representing User Interest

University of Toronto,

Associate
Toronto, Ontario

McGill University, Montréal, Québec Representing General Interest

University of Waterloo,
Associate Waterloo, Ontario

National Research Council Canada, Ottawa, Ontario Representing Government and/or Regulatory Authority

Alberta Municipal Affairs, Edmonton, Alberta Representing Government and/or Regulatory Authority

Ecole Polytechnique de Montréal, Montréal, Québec Representing General Interest

T. Verhey	Walters Incorporated, Hamilton, Ontario Representing Producer Interest E.J. Whalen	Canadian Institute of Steel Construction, Markham, Ontario
A.F. Wong	Canadian Institute of Steel Construction, Markham, Ontario Representing Producer Interest	Associate
P.R. Zinn	Arpac Storage Systems Corporation, Delta, British Columbia	Associate
M. Braiter	CSA Group, Mississauga, Ontario	AMississauga, Ontario

Working Group on Design and Construction of Steel Storage Racks

1. Ferrari
D. Clapp
P.S. Higgins

Konstant inc, Oakville, Ontario

Frazier Industrial Co., Long Valley, New Jersey, USA

Peter S. Higgins \& Associates, Malibu, California, USA

1. Hirst
E. Jacobsen
A.W. Metten
T. Mulholland
R. Tremblay
L. Xu
P.R. Zinn
M. Braiter

North American Storage, Nisku, Alberta

Polytechnique Montréal, Montréal, Québec

Bush, Bohlman \& Partners, Vancouver, British Columbia

Rack-Net-Works, Mississauga, Ontario

Polytechnique Montréal, Montréal, Québec

University of Waterloo, Waterloo, Ontario

Arpac Storage Systems Corporation, Delta, British Columbia Toronto, Ontario

Project Manager

Preface

This is the eighth edition of CSA S16, Design of steel structures. It supersedes the previous limit states editions published in 2009, 2001, 1994, 1989, 1984, 1978, and 1974. These limit states design editions were preceded by seven working stress design editions published in 1969, 1965, 1961, 1954, 1940, 1930, and 1924. The 1969 working stress design edition was withdrawn in 1984, from which point the design of steel structures in Canada has been carried out using limit states design principles.

This Standard is appropriate for the design of a broad range of structures. It sets out minimum requirements and is expected to be used only by engineers competent in the design of steel structures. The following is a list of some of the more important changes made in this edition;
a) Clause 1.4 specifically prohibits the use of other standards for fabrication, erection and inspection.
b) The definition of "snug-tightness" has been clarified.
c) Information required on design documents has been augmented.
d) ASTM grades A500/A500M, A1085 and A913/A913M have been added as permissible steel grades for design.
e) The fire endurance design requirements have been restated to be in compliance with the NBCC.
f) Requirements under impulse loading have been added.
g) The initial misalignment of members at brace points has been clarified.
h) A calculation for the net area of a slotted HSS member has been given.
i) The minimum b / t for bearing stiffeners has been added.
j) The clause permitting a joist manufacturer to determine the joist resistance by testing has been removed.
k) Provisions for column stiffeners opposite a rigidly connected beam by bolting have been provided.
l) Requirements for zinc-aluminum coated assemblies have been incorporated,
m) The use of plate washers in lieu of hardened washers is permitted in oversize or slotted holes.
n) The use of non-matching electrodes is permitted with reference to W59 for locations where this is permitted.
o) Clause 24 that referred to joint surface conditions for field welding in the previous edition has been removed and is now covered in CSA W47.1.
p) The factored resistance of anchor rods in bearing has been referred to CSA A23.3 to be consistent with other Canadian design standards.
q) A clarification on fatigue calculations has been made to include bending moments due to joint eccentricities.
r) An upper limit on the design force of single-storey buildings' roof diaphragms has been provided.
5) A minimum Charpy V-notch value has been specified for weld of primary members and connections.
t) A maximum sulfur content for ASTM A913 used in seismic-resisting systems is specified.
u) Additional criteria for joint connections have been added to ductile moment-resisting frames, limited ductility moment-resisting frames, and moderately ductile concentrically braced frames.
v) The design of link beams for ductile eccentrically braced frames has been expanded.
w) Detailing information for limited ductility plate walls has been given.
x) Annex K Structural design for fire conditions has been updated.
v) The clauses related to pin-connected members have been revised to clarify the net section and resistance requirements.

A commentary on this Standard, prepared by the Canadian Institute of Steel Construction with contributions from many members of the Technical Committee, comprises Part 2 of the Institute's Handbook of Steel Construction.

This Standard is intended to be used with the provisions of the 2015 edition of the National Building Code of Canada (NBCC), specifically Clause 7, which references the NBCC for load factors, load combinations, and other loading provisions..

This Standard was prepared by the Technical Committee on Steel Structures for Buildings, under the jurisdiction of the Strategic Steering Committee for Construction and Civil Infrastructure, and has been formally approved by the Technical Committee. Annex N was prepared by the Working Group on Design and Construction of Steel Storage Racks.

This edition of the CSA S16 is dedicated to the memories of Laurie Kennedy, André Picard, and Richard Redwood, three distinguished designers, researchers, and devoted educators committed to the advancement of steel standards.

Notes:

1) Use of the singular does not exclude the plural (and vice versa) when the sense allows.
2) Although the intended primary application of this Standard is stated in its Scope, it is important to note that it remains the responsibility of the users of the Standard to judge its suitability for their particular purpose.
3) This Standard was developed by consensus, which is defined by CSA Policy governing standardization - Code of good practice for standardization as "substantial agreement. Consensus implies much more than a simple majority, but not necessarily unanimity". It is consistent with this definition that a member may be included in the Technical Committee list and yet not be in full agreement with all clauses of this Standard.
4) To submit a request for interpretation of this Standard, please send the following information to inquiries@csagroup.org and include "Request for interpretation" in the subject line:
a) define the problem, making reference to the specific clause, and, where apprapriate, include an illustrative sketch;
b) provide an explanation of circumstances surrounding the actual field condition; and
c) where possible, phrase the request in such a way that a specific "yes" or "no" answer will address the issue.
Committee interpretations are processed in accordance with the CSA Directives and guidelines governing standardization and are available on the Current Standards Activities page at standardsactivities.csa.ca.
5) This Standard is subject to review five years from the date of publication. Suggestions for its improvement will be referred to the appropriate committee. To submit a proposal for change, please send the following information to inquiries@csagroup.org and include "Proposal for change" in the subject line:
a) Standard designation (number);
b) relevant clause, table, and/or figure number;
c) wording of the proposed change; and
d) rationale for the change.

S16-14

Design of steel structures

1 Scope and application

1.1 General

This Standard provides rules and requirements for the design, fabrication, and erection of steel structures. The design is based on limit states. The term "steel structures" refers to structural members and frames that consist primarily of structural steel components, including the detail parts, welds, bolts, or other fasteners required in fabrication and erection. This Standard also applies to structural steel components in structures framed in other materials. The clauses related to fabrication and erection serve to show that design is inextricably a part of the design-fabrication-erection sequence and cannot be considered in isolation. For matters concerning standard practice pertinent to the fabrication and erection of structural steel not covered in this Standard, see Annex A.

1.2 Requirements

Requirements for steel structures such as bridges, antenna towers, offshore structures, and cold-formed steel structural members are given in other CSA Group Standards.

1.3 Application

This Standard applies unconditionally to steel structures, except that supplementary rules or requirements might be necessary for
a) unusual types of construction;
b) mixed systems of construction;
c) steel structures that
i) have great height or spans;
ii) are required to be movable or be readily dismantled;
iii) are exposed to severe environmental conditions;
iv) are exposed to severe loads such as those resulting from vehicie impact or explosion;
v) are required to satisfy aesthetic, architectural, or other requirements of a non-structural nature;
vi) employ materials or products not listed in Clause 5; or
vii) have other special features that could affect the design, fabrication, or erection;
d) tanks, stacks, other platework structures, poles, and piling; and
e) crane-supporting structures,

1.4 Other standards

The use of other standards for the design, fabrication, erection, and/or inspection of members or parts of steel structures is neither warranted nor acceptable except where specifically directed in this Standard. The design formulas provided in this Standard may be supplemented by a rational design based on theory, analysis, and engineering practice acceptable to the regulatory authority, provided that nominal margins (or factors) of safety are at least equal to those intended in the provisions of this Standard. The substitution of other standards or criteria for fabrication, erection, and/or inspection is expressly prohibited unless specifically directed in this Standard.

1.5 Terminology

In this Standard, "shall" is used to express a requirement, i.e., a provision that the user is obliged to satisfy in order to comply with the standard; "should" is used to express a recommendation or that which is advised but not required; and "may" is used to express an option or that which is permissible within the limits of the Standard.

Notes accompanying clauses do not include requirements or alternative requirements; the purpose of a note accompanying a clause is to separate from the text explanatory or informative material.

Notes to tables and figures are considered part of the table or figure and may be written as requirements.

Annexes are designated normative (mandatory) or informative (non-mandatory) to define their application.

2 Reference publications

This Standard refers to the following publications, and where such reference is made, it shall be to the edition listed below, including all amendments published thereto.

CSA Group

A23.1/A23.2-14
Concrete materials and methods of concrete construction/Test methods and standard practices for concrete

A23.3-14
Design of concrete structures
(1) A344-17

User guide for steel storage racks
A660-10
Certification of manufacturers of steel building systems
B95-1962 (withdrawn)
Surface Texture (Roughness, Waviness, and Lay)
G40.20-13/G40.21-13
General requirements for rolled or welded structural quality steel/Structural quality steel
CAN/CSA-G164-M92 (withdrawn)
Hot Dip Galvanizing of Irregularly Shaped Articles
G189-1966 (withdrawn)
Sprayed Metal Coatings for Atmospheric Corrosion Protection
S136-12
North American specification for the design of cold-formed steel structural members

[^0]A352/A352M-06(2012)
Standard Specification for Steel Castings, Ferritic and Martensitic, for Pressure-Containing Parts, Suitable for Low-Temperature Service
(1) A370-15

Standard Test Methods and Definitions for Mechanical Testing of Steel Products

A490-12
Standard Specification for Structural Bolts, Alloy Steel, Heat Treated, 150 ksi Minimum Tensile Strength
A490M-12
Standard Specification for High-Strength Steel Bolts, Classes 10.9 and 10.9.3, for Structural Steel Joints (Metric)

A500/A500M-10a
Standard Specification for Cold Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes

A514/A514M-05(2009)
Standard Specification for High-Yield-Strength, Quenched and Tempered Alloy Steel Plate, Suitable for Welding

A521/A521M-06(2011)
Standard Specification for Steel, Closed-Impression Die Forgings for General Industrial Use
A563-07a
Standard Specification for Carbon and Alloy Steel Nuts
A572/A572M-12a
Standard Specification for High-Strength Low-Alloy Columbium-Vanadium Structural Steel
A668/A668M-13
Standard Specification for Steel Forgings, Carbon and Alloy, for General Industrial Use
A913/A913M-11
Standard Specification for High Strength Low Alloy Steel Shapes of Structural Quality, Produced by Quenching and Self Tempering Process

A958/A958M-10
Standard Specification for Steel Castings, Carbon and Alloy, with Tensile Requirements, Chemical Requirements Similar to Standard Wrought Grades

A992/A992M-11
Standard Specification for Structural Steel Shapes
A1011/A1011M-12b
Standard Specification for Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy, High-Strength Low-Alloy with Improved Formability, and Ultra-High Strength

A1085-13
Standard Specification for Cold-Formed Welded Carbon Steel Hollow Structural Sections (HSS)

F436-11
Standard Specification for Hardened Steel Washers

F959-13
Standard Specification for Compressible-Washer-Type Direct Tension Indicators for Use with Structural Fasteners

F1554-07ae1
Standard Specification for Anchor Bolts, Steel, 36, 55, and 105-ksi Yield Strength

F1852-11
Standard Specification for "Twist Off" Type Tension Control Structural Bolt/Nut/Washer Assemblies, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength

F2280-12
Standard Specification for "Twist Off" Type Tension Control Structural Bolt/Nut/Washer Assemblies, Steel, Heat Treated, 150 ksi Minimum Tensile Strength

) CGSB (Canadian General Standards Board)

CAN/CGSB-48.9712-2014/ISO 9712:2012
Non-destructive testing - Qualification and certification of NDT personnel
CISC (Canadian Institute of Steel Construction)
Code of Standard Practice for Structural Steel (2009)

Crane-Supporting Steel Structures: Design Guide, 2nd ed. (April 2013)

Handbook of Steel Construction, 11th ed. (2015)
Hollow Structural Section: Connections and Trusses - A Design Guide, 2nd ed. (June 1997)
Moment Connections for Seismic Applications, 2nd ed. (2014)
CISC/CPMA (Canadian Institute of Steel Construction/Canadian Paint Manufacturing Association)
1-73a (1975)
A Quick-Drying One-Coat Paint for Use on Structural Steel
2-75 (1975)
A Quick-Drying Primer for Use on Structural Steel
1 ERF (European Racking Federation)
EN 15512:2009
Steel static storage systems. Adjustable pallet racking systems. Principles for structural design
1 FEMA (Federal Emergency Management Agency)
460-2005
Seismic Considerations for Steel Storage Racks Located in Areas Accessible to the Public
(1) ISO/IEC (International Organization for Standardization/International Electrotechnical Commission) 17024:2012
Conformity assessment - General requirements for bodies operating certification of persons

National Research Council Canada

National Building Code of Canada, 2015
User's Guide - NBC 2015: Structural Commentaries (Part 4)
RCSC (Research Council on Structural Connections)
Guide to Design Criteria for Bolted and Riveted Joints, 2nd ed., 2001
Specification for Structural Joints Using ASTM A325 or A490 Bolts, 2000
(1) RMI (Rack Manufacturers Institute)

RMI/ANSI MH 16.1-2012
Specification for the Design, Testing, and Utilization of Industrial Steel Storage Racks
(1) SAE (Society of Automotive Engineers)

J429-2014
Mechanical and Material Requirements for Externally Threaded Fasteners
SSPC (Society for Protective Coatings)
SP 1 (2004)
Solvent Cleaning
SP 2 (2004)
Hand Tool Cleaning
SP 3 (2004)
Power Tool Cleaning

SP 5/NACE No. 1 (2007)
White Metal Blast Cleaning
SP 6/NACE No. 3 (2007)
Commercial Blast Cleaning
5P 7/NACE No. 4 (2007)
Brush-Off Blast Cleaning
SP 10/NACE No. 2 (2007)
Near-White Blast Cleaning
SP 11 (2004)
Power Tool Cleaning to Bare Metal
SP 12/NACE No. 5
Surface Preparation and Cleaning of Metals by Waterjetting Prior to Recoating

SP 14/NACE No. 8
Industrial Blast Cleaning

Structural Stability Research Council

Guide to Stability Design Criteria for Metal Structures, 6th ed., 2010
ULC (Underwriters Laboratories of Canada)
CAN/ULC-S101-07
Standard Methods of Fire Endurance Tests of Building Construction and Materials

Other publications

Frank, K. H. and Fisher, J. W. "Fatigue Strength of Welded Cruciform Joints", Journal of the Structural Division, ASCE. Vol.105, ST9, pp. 1727-1740, September 1979.
) Higgins, P. "Displacement based Design for Storage Racks", ASCE/SEI Conference Proceedings, Long Beach, CA. 2007.

3 Definitions and symbols

- 3.1 Definitions

The following definitions apply in this Standard:
Approved - approved by the regulatory authority.
Brace point - the point on a member or element at which it is restrained (see Clause 9).
Camber - the deviation from straightness of a member or any portion of a member with respect to its major axis.
Note: Frequently, camber is specified and produced in a member to compensate for deflections that occur in the member when loaded (see Clause 6.3.2). Unspecified camber is sometimes referred to as bow,

Concrete - portland cement concrete in accordance with CSA A23.1.
Deck or decking - the structural floor or roof element spanning between adjacent joists and directly supported thereby.
Note: The terms "deck" and "decking" include cast-in-place or precast concrete slabs, profiled metal deck, wood plank or plywood, and other relatively rigid elements suitable for floor or roof construction (see Clause 16).

Designer - the engineer responsible for the design.
Erection tolerances - tolerances related to the plumbness, alignment, and level of the piece as a whole.
Note: The deviations are determined by considering the location of the ends of the piece (see Clause 29).
Fabrication tolerances - tolerances allowed from the nominal dimensions and geometry, such as cutting to length, finishing of ends, cutting of bevel angles, and out-of-straightness such as sweep and camber for fabricated members (see Clause 28).

Factors -

Importance factor, I - a factor applied severally to loads due to snow and rain, wind, or earthquake for both the ultimate and serviceability limit states.
Note: It is based on the importance of the structure as defined by its use and occupancy (see Clause 6.2.2).
Load factor, α - a factor, given in Clause 7.2, applied to a specified load for the limit states under consideration that takes into account the variability of the loads and load patterns and the analysis of their effects.

Resistance factor, φ - a factor, given in Clause 13.1, applied to a specified material property or the resistance of a member, connection, or structure that, for the limit state under consideration, takes into account the variability of material properties, dimensions, quality of work, type of failure, and uncertainty in prediction of member resistance.
Note: To maintain the simplicity of the design formulas in this Standard, the type of failure and the uncertainty in prediction of member resistance have been incorporated in the expressions of member resistance (see Annex B for a more detailed discussion).

Fatigue limit state - the limiting case of the slow propagation of a crack within a structural element that can result either from live load effects (load-induced fatigue effect) or as the consequence of local distortion within the structure (distortion-induced fatigue effects).

Firm contact - the condition that exists on a faying surface when plies are solidly seated against each other but not necessarily in continuous contact (see Clause 23.2).

Inspector - a qualified person who acts for and on behalf of the owner or designer on all inspection and quality matters within the scope of the contract documents.

Joist shoe - the connection assembly located at the junction of the top chord and the end diagonal that allows the joist to bear on its support (see Clause 16).

Limit states - those conditions of a structure under which the structure ceases to fulfill the function for which it was designed.

Fatigue limit states - conditions that concern safety and are related to crack propagation under cyclic loading.

Serviceability limit states - conditions that restrict the intended use and occupancy of the structure and include deflection, vibration, and permanent deformation.

Ultimate limit states - conditions that concern safety and include overturning, sliding, fracturing, and exceeding load-carrying capacity.

Loads -

Companion load - a specified variable load that accompanies the principal load in a given load combination.

Factored load - the product of a specified load and its load factor.
Gravity load (newtons) - a load equal to the mass of the object (kilograms) being supported multiplied by the acceleration due to gravity, $g\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$.

Notional lateral load - a fictitious lateral load, as given in Clause 8.4, that allows the stability of the frame, with failure modes involving in-plane bending, to be computed based on the actual length ($K=1$) for beam-columns.

Principal load - the specified variable load or rare load that dominates in a given load combination.

Specified loads ($D, E, H, L, L_{-c}, C, C_{d,} C_{T}, P, S, T$, and W) - those loads prescribed by the regulatory authority (see Clause 6.2.1).

Mill tolerances - variations allowed from the nominal dimensions and geometry with respect to crosssectional area, non-parallelism of flanges, and out-of-straightness such as sweep or camber in the product as manufactured and given in CSA G40.20.

Modulus of elasticity of concrete - the ratio of stress to strain in the elastic range of a stress-strain curve for concrete and, with density, γ_{c}, between 1500 and $2500 \mathrm{~kg} / \mathrm{m}^{3}$, is taken as follows:
$E_{c}=\left(3300 \sqrt{f_{c}^{\prime}}+6900\right)\left(\frac{y_{c}}{2300}\right)^{1.5}$

For normal density concrete with compressive strength, f_{c}^{\prime}, between 20 and 40 MPa , the modulus of elasticity may be taken as follows:
$E_{c}=4500 \sqrt{f_{c}^{\prime}}$
Pass through force - a load or force defined by the Structural Designer that must be accommodated in the design of the structural member(s) and the connections between those designated members in addition to those loads and forces normally associated in the member and connection design of each individual interconnecting member.

Protected zone - areas of members in a seismic force resisting system that undergo large inelastic strains and in which limitations apply to fabrication and attachments. See Clause 27.1.9.

Regulatory authority - a federal, provincial/territorial, or municipal ministry, department, board, agency, or commission that is responsible for regulating by statute the use of products, materials, or services.

Resistance -

Factored resistance, ϕR - the product of the nominal resistance and the appropriate resistance factor.

Nominal resistance, R - the nominal resistance of a member, connection, or structure as calculated in accordance with this Standard and based on the specified material properties and nominal dimensions.

Segmented member - a member with a constant cross-section when axial loads are applied between in-plane lateral supports or frame connections, and a member with cross-section changes between inplane lateral supports or frame connections.

Seismic design storey drift - the storey drift obtained from the lateral deflections obtained from a linear elastic analysis multiplied by $R_{d} R_{a} / l_{e}$ (see Clause 27).
Δ Snug tightness - the tightness that is attained with a few impacts of an impact wrench or the full effort of an ironworker using an ordinary spud wrench to bring the connected plies into firm contact.

Span of an open-web steel joist - the centre-to-centre distance of joist bearings or shoes (see Clause 16).

Sweep - the deviation from straightness of a member or any portion of a member with respect to its minor axis.

Tie joists - joists that are designed to resist gravity loads only and, in accordance with Clause 16.5.12.2, have at least one end connected to a column to facilitate erection.

Truss - a triangulated framework loaded primarily in flexure (see Clause 15).

3.2 Symbols

The following symbols are used throughout this Standard. Deviations or additional nomenclature are noted where they appear.
$A=$ area
$A_{a r} \quad=$ cross-sectional area of an anchor rod based on its nominal diameter
$A_{b} \quad=$ cross-sectional area of a bolt based on its nominal diameter; cross-sectional area of a plate wall beam
$A_{c} \quad=$ transverse area of concrete between longitudinal shear planes; cross-sectional area of concrete in composite columns; cross-sectional area of a plate wall column; effective area of concrete slab
$A_{c v}=$ critical area of two longitudinal shear planes, one on each side of the area A_{c}, extending from the point of zero moment to the point of maximum moment
$A_{e} \quad=$ effective area of section in compression to account for elastic local buckling (see Clause 13.3.5)
$A_{f}=$ flange area
$A_{g} \quad=$ gross area
$A_{g v} \quad=$ gross area in shear for block failure (see Clause 13.11)
$A_{m}=$ area of fusion face

```
\(A_{n}=\) net area; the tensile area of a rod
\(A_{n e}=\) effective net area reduced for shear lag
\(A_{\rho} \quad=\) concrete pull-out area
\(A_{r} \quad=\) area of reinforcing steel
\(A_{s}=\) area of steel section, including cover plates; area of bottom (tension) chord of a steel joist;
        area of a stiffener or pair of stiffeners
\(A_{s c} \quad=\) cross-sectional area of a steel shear connector; cross-sectional of the yielding segment of the.
    steel core of a buckling restrained brace
\(A_{\text {se }} \quad=\) effective steel area (see Clause 18.3.2)
\(A_{\text {st }}=\) area of steel section in tension
\(A_{w} \quad=\) web area; shear area; effective throat area of a weld
\(a \quad=\) centre-to-centre distance between transverse web stiffeners; depth of the concrete
    compression zone
\(a^{1} \quad=\) length of cover plate termination
\(a / h \quad=\) aspect ratio; ratio of distance between stiffeners to web depth
B = bearing force in a member or component under specified load
\(B_{f} \quad=\) bearing force in a member or component under factored load
\(B_{r} \quad=\) factored bearing resistance of a member or component
\(b_{1} \quad=\) longer leg of angle in Clause 13.3.3
\(b_{s} \quad=\) shorter leg of angle in Clause 13.3.3
b = overall width of flange; design effective width of concrete or cover slab
\(b_{e l} \quad=\) width of stiffened or unstiffened compression elements
\(b_{c} \quad=\) width of concrete at the neutral axis specified in Clause 18.2.3; width of column flange
\(b_{e} \quad=\) effective flange width in Clause 18.3.2
\(b_{f} \quad=\) width of flange
\(C_{e}=\) Euler buckling strength
    \(=\pi^{2} E I / L^{2}\)
\(C_{R C}=\) Euler buckling strength of a concrete-filled hollow structural section
\(C_{f}=\) compressive force in a member or component under factored load; factored axial load
\(C_{f s} \quad=\) factored sustained axial load on a composite column
\(C_{p} \quad=\) nominal compressive resistance of a composite column when \(\lambda=0\) (see Clause 18.3.2)
\(C_{r} \quad=\) factored compressive resistance of a member or component; factored compressive
        resistance of steel acting at the centroid of that part of the steel area in compression
\(C_{r t} \quad=\) factored compressive resistance of a composite column
\(C_{r c m}=\) factored compressive resistance that can coexist with \(M_{r c}\) when all of the cross-section is in
    compression
\(C_{\text {reo }}=\) factored compressive resistance with \(\lambda=0\)
\(C_{1}^{\prime}=\) compressive resistance of concrete acting at the centroid of the concrete area assumed to be
        in uniform compression; compressive resistance of a concrete component of a composite
        column
```

```
\(C_{w}=\) warping torsional constant, \(\mathrm{mm}^{6}\)
Cy = axial compressive load at yield stress
\(c=\) cohesion stress for concrete ( 1.0 MPa ) in accordance with Clause 11.5.2 c ) of CSA A23.3
\(c_{1} \quad=\) coefficient used to determine slip resistance
D = outside diameter of circular sections; diameter of rocker or roller; stiffener factor; dead load
d \(=\) depth; overall depth of a section; diameter of a bolt or stud
\(d_{b} \quad=\) depth of beam
\(d_{c}=\) depth of column
\(E \quad=\) elastic modulus of steel ( 200000 MPa assumed); earthquake load and effects (see Clause
        6.2.1)
\(E_{\varepsilon} \quad=\) elastic modulus of concrete
\(E_{\varepsilon}^{\prime} \quad=\) age adjusted effective modulus of electricity of concrete
\(E_{c t} \quad=\) effective modulus of concrete in tension
\(e \quad=\) end distance; lever arm between the compressive resistance, \(C_{r}\), and the tensile resistance, \(T_{r}\)
        length of link in eccentrically braced frames
\(e^{\prime} \quad=\) lever arm between the compressive resistance, \(C_{n}^{\prime}\) of concrete and tensile resistance, \(T_{n}\) of
        steel
\(F \quad=\) strength or stress
\(F_{a} \quad=\) acceleration-based site coefficient (see Clause 27 and the NBCC)
\(F_{\text {cr }} \quad=\) critical plate-buckling stress in compression, flexure, or shear
Fcre \(=\) elastic critical plate-buckling stress in shear
\(F_{\text {cri }}=\) inelastic critical plate-buckling stress in shear
\(F_{e} \quad=\) Euler buckling stress; elastic buckling stress
\(F_{s}=\) ultimate shear stress
\(F_{s r}=\) allowable stress range in fatigue
\(F_{\text {sit }}=\) constant amplitude threshold stress range
\(F_{\text {st }} \quad=\) factored axial force in the stiffener
\(F_{u} \quad=\) specified minimum tensile strength
\(F_{v} \quad=\) velocity-based site coefficient (see Clause 27 and the NBCC)
\(F_{y} \quad=\) specified minimum yield stress, yield point, or yield strength
\(F_{y}^{\prime} \quad=\) yield level, including effect of cold-working
\(F_{y e}=\) effective yield stress of section in compression to account for elastic local buckling (see
        Clause 13.3.5)
\(F_{y r} \quad=\) specified yield strength of reinforcing steel
\(f_{c}^{\prime} \quad=\) specified compressive strength of concrete at 28 days
\(f_{s r} \quad=\) calculated stress range at detail due to passage of the fatigue load
G = shear modulus of steel ( 77000 MPa assumed)
\(g=\) transverse spacing between fastener gauge lines (gauge distance)
\(H \quad=\) weld leg size; permanent load due to lateral earth pressure (see Clause 6.2.1)
```

$h \quad=$ clear depth of web between flanges; height of stud; storey height
$h_{c} \quad=$ clear depth of column web
$h_{d}=$ depth of steel deck
$h_{s} \quad=$ storey height
$1=$ moment of inertia
$I_{b}=$ moment of inertia of a beam
$I_{c}=$ moment of inertia of a column
$I_{\varepsilon}=$ earthquake importance factor of the structure (see Clause 27 and the NBCC)
$I_{e} \quad=$ effective moment of inertia of a composite beam
$I_{g}=$ moment of inertia of a cover-plated section
Is $\quad=$ importance factor for snow load as defined in Table 4.1.6.2 of the NBCC
$I_{s} \quad=$ moment of inertia of OWSJ or truss
$I_{t} \quad=$ transformed moment of inertia of a composite beam
$I_{w}=$ importance factor for wind load as defined in Table 4.1.7.1 of the NBCC
$l_{y c}=$ moment of inertia of compression flange about the y-axis [see Clause 13.6 e)]
Iyt $=$ moment of inertia of tension flange about the y-axis [see Clause 13.6 e)]
$\mathrm{J}=$ St. Venant torsional constant
$K=$ effective length factor
$K_{z} \quad=$ effective length factor for torsional buckling
$K L=$ effective length
$k \quad=$ distance from outer face of flange to web-toe of fillet of 1 -shaped sections; factor as specified in Clause 18.3.2
$k_{a} \quad=$ coefficient used in determining inelastic shear resistance
$k_{b} \quad=$ buckling coefficient; required stiffness of the bracing assembly
$k_{s} \quad=$ mean slip coefficient
$k_{v} \quad=$ shear buckling coefficient
$L \quad=$ length or span; length of longitudinal or flare bevel groove weld; live load; length of connection in direction of loading; centre-to-centre distance between columns in a plate wall; length of member between work points at truss chord centrelines in Clause 13,3.3
$L_{c} \quad=$ length of channel shear connector
$L_{c r} \quad=$ maximum unbraced length adjacent to a plastic hinge
$L_{u} \quad=$ longest unbraced length with which a beam will reach either $M_{r}=\phi M_{p}$ or $M_{r}=\phi M_{\psi}$, depending on the class of the cross-section [see Clause 13.6 e)]
$L_{y r} \quad=$ shortest unbraced length with which a singly symmetric beam will undergo elastic lateraltorsional buckling [see Clause 13.6 e)]
$M \quad=$ bending moment in a member or component under specified load
$M_{0}=$ factored bending moment at one-quarter point of unbraced segment
$M_{b} \quad=$ factored bending moment at mid-point of unbraced segment
$M_{c} \quad=$ factored bending moment at three-quarter point of unbraced segment
$M_{j} \quad=$ bending moment in a member or component under factored load

$M_{f 1}$	$=$ smaller factored end moment of a beam-column; factored bending moment at a point of concentrated load
$M_{f 2}$	$=$ larger factored end moment of a beam-column
$M_{f c}$	$=$ bending moment in a girder, under factored load, at theoretical cut-off point
$M_{\text {max }}$	$=$ maximum factored bending moment magnitude in unbraced segment
M_{p}	$\begin{aligned} & =\text { plastic moment resistance }=Z F_{y} \\ & =Z F_{y} \end{aligned}$
$M_{p b}$	$=$ plastic moment of a beam
$M_{p c}$	$=$ plastic moment of a column
M_{t}	$=$ factored moment resistance of a member or component
Mrc	$=$ factored moment resistance of a composite beam; factored moment resistance of a column reduced for the presence of an axial load
M_{u}	$=$ critical elastic moment of a laterally unbraced beam
M_{w}	$=$ strength reduction factor for multi-orientation fillet welds to account for ductility incompatibility of the individual weld segments
M_{y}	$=$ yield moment resistance $=S F_{y}$
Myr	$=$ yield moment resistance of a singly symmetric beam including the effects of residual stresses [see Clause 13.6 e)]
m	= number of faying surfaces or shear planes in a bolted joint
	$=1.0$ for bolts in single shear
	$=2.0$ for bolts in double shear
N	$=$ length of bearing of an applied load; number of passages of moving load
N^{+}	$=$ number of passages of moving load at which $F_{s t}=F_{s t r}$
$N_{\text {f }}$	$=$ number of cycles that would cause failure at stress range level i
n	$=$ number of bolts; number of shear connectors required between the point of maximum positive bending moment and the adjacent point of zero moment; parameter for compressive resistance; number of threads per inch; number of stress range cycles at a given detail for each passage of the moving load; modular ratio, E / E_{c}
n^{\prime}	$=$ number of shear connectors required between any concentrated load and nearest point of zero moment in a region of positive bending moment
n_{s}	= modular ratio, E / E_{c}^{\prime}
n_{t}	$=$ modular ratio, $E / E_{c t}$
P	= force to be developed in a cover plate; pitch of threads; permanent effects caused by prestress (see Clause 6.2.1)
P_{b}	$=$ force used to design the bracing system (when two or more points are braced, the forces P_{b} alternate in direction)
P_{f}	= factored axial force
p	= fraction of full shear connection
Qr	$=$ sum of the factored resistances of all shear connectors between points of maximum and zero moment
q_{r}	$=$ factored resistance of a shear connector
$q_{r r}$	$=$ factored resistance of a shear connector in a ribbed slab

V_{p}	$=$ plastic shear resistance $=0.55 \mathrm{wdF} \mathrm{F}_{y}$
V_{r}	$=$ factored shear resistance of a member or component
$V_{r e}$	$=$ probable shear resistance of a steel plate wall
V_{s}	$=$ slip resistance of a bolted joint
$V_{\text {st }}$	$=$ factored shear force in column web to be resisted by stiffener
w	$=$ wind load
w	= web thickness; width of plate; infill plate thickness (see Clause 20)
w^{\prime}	$=$ sum of thickness of column web plus doubler plates
$w_{\text {c }}$	$=$ column web thickness
w_{d}	$=$ average width of flute of steel deck
w_{f}	$=$ width of flare bevel groove weld face
w_{n}	$=$ net width (f.e., gross width less design allowance for holes within the width)
x_{u}	$=$ ultimate strength as rated by the electrode classification number
x	$=$ subscript relating to strong axis of a member; distance from flange face to centre of plastic hinge
\bar{x}	= eccentricity of the weld with respect to centroid of the element
x_{0}, y_{0}	= principal coordinates of the shear centre with respect to the centroid of the cross-section
y	$=$ subscript relating to weak axis of a member; distance from centroid of cover plate to neutral axis of cover-plated section; distance from centroid of the effective area of concrete slab to elastic neutral axis
z	= plastic section modulus of a steel section
z	$=$ subscript related to Z -axis of a member
α	= load factor; angle of inclination from vertical (see Clause 20)
α_{f}	$=$ angle between shear friction reinforcement and shear plane in concrete
α_{1}	$=$ ratio of average stress in rectangular compression block to the specified concrete strength
β	$=$ value used to determine bracing stiffness; angle in radians as specified in Clause 18.2.3; coefficient for bending in beam-columns, as specified in Clause 13.8.2 or Clause 18.2.4
β_{x}	= asymmetry parameter for singly symmetric beams as specified in Clause 13.6 e)
γ	= fatigue life constant
γ^{\prime}	$=$ fatigue life constant at which $F_{s t}=F_{\text {stt }}$
γ_{c}	$=$ density of concrete
Δ_{b}	$=$ displacement of the bracing system at the point of support under force C_{f} (may be taken as Δ_{0})
Δ_{f}	$=$ relative first-order lateral (translational) displacement of the storey due to factored loads
Δ_{0}	= initial misalignment of the member at a brace point (see Clause 9.2)
Δ_{s}	$=$ deflection due to shrinkage of concrete
εf	$=$ free shrinkage strain of concrete
K	$=$ ratio of the smaller to the larger factored end moment, positive for double curvature and negative for single curvature (see Clauses 13.6 and 13.8)

$\lambda \quad=$ non-dimensional slenderness parameter in column formula; modification factor for concrete density
$\lambda_{p} \quad=$ non-dimensional slenderness parameter as specified in Clause 18.3.2
$\mu=$ coefficient of friction for concrete (1.4) in accordance with Clause 11.5.2 c) of CSA A23.3
$\rho \quad=$ density of concrete; slenderness ratio
$\rho_{e} \quad=$ equivalent slenderness ratio of a built-up member
$\rho_{i}=$ maximum slenderness ratio of the component part of a built-up member between interconnectors
$\rho_{o} \quad=$ slenderness ratio of a built-up member acting as an integral unit
$p_{y} \quad=$ ratio of shear friction reinforcing steel in concrete extending from the point of zero moment to the point of maximum moment
$\Sigma C_{f}=$ sum of factored axial compressive loads of all columns in the storey
$\Sigma V_{f}=$ sum of factored lateral loads above the storey; total first-order storey shear
$\sigma=$ effective normal stress for concrete in accordance with Clause 11.5.3 of CSA A23.3
$\sigma_{\mathrm{cr}}=$ tensile stress in concrete
$\phi \quad=$ resistance factor as defined in Clause 2 and specified in Clause 13.1
$\omega_{h} \quad=$ non-dimensional column flexibility parameter for plate walls
$\omega_{L} \quad=$ non-dimensional boundary member flexibility parameter for extreme panels of plate walls
$\omega_{1} \quad=$ coefficient to determine equivalent uniform bending effect in beam-columns (see Clause 13.8)
$\omega_{2} \quad=$ coefficient to account for increased moment resistance of a laterally unsupported doubly symmetric beam segment when subject to a moment gradient [see Clause 13.6 a)]
$\omega_{3} \quad=$ coefficient to account for modified moment resistance of a laterally unsupported singly symmetric beam segment when subject to a moment gradient [see Clause 13.6 e)]

3.3 Units

Equations and expressions appearing in this Standard are compatible with the following SI (metric) units:
a) force: N (newtons);
b) length: mm (millimetres);
c) moment: $N \bullet m m$; and
d) strength or stress: MPa (megapascals),

4 Structural documents

4.1 General

The term "structural documents" may include drawings, specifications, computer output, and electronic and other data.

4.2 Structural design documents

4.2.1

The structural design documents shall show a complete design of the structure with members suitably designated and located, including such dimensions and details as necessary to permit the preparation of fabrication and erection documents. Floor levels, column centres, and offsets shall be dimensioned. Structural design drawings shall be to a scale adequate to convey the required information.

4.2.2

In addition to the information required by the applicable building code, the structural design documents shall include, but not be limited to, the following information, as applicable:
a) the design standards used;
b) the material or product standards (see Clause 5);
c) the design criteria for snow, wind, seismic, and special loads;
d) the specified live, dead loads, and superimposed dead loads;
e) the type or types of construction (see Clause 8);
f) the structural system used for seismic design and the seismic design criteria (see Clause 27);
g) the requirements for roof and floor diaphragms;
h) the design criteria for open-web steel joists (see Clause 16);
i) the design criteria for crane-supporting structures (see Annex C);
j) all load-resisting elements essential to the integrity of the completed structure and the details necessary to ensure the effectiveness of the load-resisting system in the completed structure;
k) the camber of beams, girders, and trusses;

1) the governing combinations of shears, moments, axial forces, torsions including pass through forces to be resisted by the connections;
$\mathrm{m})$ the bracing required to stabilize compression elements including the size and location of stiffeners and/or reinforcement;
n) the types of bolts, the pretensioning requirements, and the designation of joints as bearing or slipcritical (see Clause 22.2);
o) the type and configuration details of structural connections that are critical for ductile seismic response; and
p) the locations and dimensions of protected zones (see Clause 27.1.9).

4.2.3

Revisions to design documents shall be clearly indicated and dated.

4.2.4

Provided that all requirements for the structural steel are shown on the structural documents, architectural, electrical, and mechanical documents may be used as supplements to the structural documents to define the detail configurations and construction information.

4.3 Fabrication and erection documents

4.3.1 Connection design details

Connection design details shall be prepared before the preparation of shop details and submitted to the structural designer for confirmation that the intent of the design is met. Connection design details shall provide details of standard and non-standard connections and other data necessary for the preparation
of shop details. Connection design details shall be referenced to the design documents, erection drawings, or both.

4.3.2 Shop details

Shop details shall
a) be prepared before fabrication and submitted to the structural designer for review;
b) provide complete information for the fabrication of various members and components of the structure, including the

1) required material and product standards;
ii) location, type, and size of all mechanical fasteners;
iii) bolt installation requirements; and
iv) welds; and
c) provide the locations and dimensions of the protected zones and a complete description of the fabrication operations that are prohibited in protected zones.

4.3.3 Erection diagrams

Erection diagrams shall be submitted to the designer for review. Erection diagrams are general arrangement drawings that should show the principal dimensions of the structure, piece marks, sizes of the members, all steel load-resisting elements essential to the integrity of the completed structure, size and type of bolts, field welds, bolt installation requirements, elevations of column bases, all necessary dimensions and details for setting anchor rods, and any other information necessary for the assembly of the structure. Erection diagrams shall provide the locations and dimensions of the protected zones and a complete description of the erection operations that are prohibited in protected zones.

4.3.4 Erection procedures

Erection procedures shall outline the construction methods, erection sequence, temporary bracing requirements, and other engineering details necessary for shipping, erecting, and maintaining the stability of the steel frame. Erection procedures shall be supplemented by drawings and sketches that identify the location of permanent and temporary load-resisting elements essential to the integrity of the partially completed structure. Erection procedures shall be submitted for review when so specified.

4.3.5 Fieldwork details

Fieldwork details shall be submitted to the designer for review. Fieldwork details shall provide complete information for modifying fabricated members in the shop or on the job site. All operations required to modify the member shall be shown on the fieldwork details. If extra materials are necessary to make modifications, shop details shall be required.

5 Material - Standards and identification

5.1 Standards

5.1.1 General

Acceptable material and product standards and specifications for use under this Standard are specified in Clauses 5.1.3 to 5.1.10. Materials and products other than those specified may be used if approved. Approval shall be based on published spetifications that establish the properties, characteristics, and suitability of the material or product to the extent and in the manner of those covered in specified standards and specifications.

5.1.2 Strength levels

The yield strength, F_{y}, and the tensile strength, F_{u}, used as the basis for design shall be the specified minimum values as given in the material and product standards and specifications. The levels reported on mill test certificates shall not be used as the basis for design.

Δ 5.1.3 Structural steel

Structural steel shall meet the requirements of CSA G40.20/G40.21, ASTM A500/A500M, ASTM A1085, ASTM A572/A572M, ASTM A913/A913M, or ASTM A992/A992M. The design properties for ASTM A500/ A500M products shall be determined from wall thickness equal to 90% of the nominal wall thickness.

5.1.4 Sheet steel

Sheet steel shall meet the requirements of ASTM A1011/A1011M.
Other standards for structural sheet are listed in Section A2 of CSA S136. Only structural-quality sheet standards that specify chemical composition and mechanical properties shall be acceptable for conformance with this Standard. Mill test certificates that list the chemical composition and the mechanical properties shall be available, upon request, in accordance with Clause 5.2.1 a).

5.1.5 Cast steel

Cast steel shall meet the design requirements for weldability, strength, ductility, toughness, and surface finish.
Note: Reference standards include ASTM A27/A27M, ASTM A148/A148M, ASTM A216/A216M, ASTM A352/ A352M, and ASTM A958/A959M.

Δ 5.1.6 Forged steel

Forged steel shall meet the requirements of ASTM A521/A521M or ASTM A668/A668M.

Δ 5.1.7 Bolts and bolt assemblies

Bolts and bolt assemblies shall meet the requirements of ASTM A307, ASTM A325, ASTM A325M, ASTM A490, ASTM A490M, ASTM F1852, or ASTM F2280.
Note: Before specifying metric bolts, the designer should check on their availability in the quantities required.

5.1.8 Welding electrodes

Welding electrodes shall meet the requirements of CSA W48, as applicable.

5.1.9 Studs

Stuids shall meet the requirements of ASTM A108.

5.1.10 Anchor rods

Anchor rods shall meet the requirements of CSA G40.20/G40.21 or ASTM F1554.

5.2 Identification

5.2.1 Methods

The specifications (including type or grade, if applicable) of the materials and products used shall be identified by the following means, except as specified in Clauses 5.2.2 and 5.2.3:
a) mill test certificates or producer's certificates satisfactorily correlated to the materials or products to which they pertain; and
b) legible markings on the material or product made by its producer in accordance with the applicable material or product standard.

5.2.2 Unidentified structural steel

Unidentified structural steel shall not be used unless approved by the building designer. If the use of unidentified steel is authorized, F_{y} shall be taken as 210 MPa and F_{u} shall be taken as 380 MPa .

5.2.3 Tests to establish identification

Unidentified structural steel may be tested to establish identification when permitted by the building designer. Testing shall be done by an approved testing agency in accordance with CSA G40.20. The test results, taking into account both mechanical properties and chemical composition, shall form the basis for classifying the steel as to specification. Once classified, the specified minimum values for steel of that specification grade shall be used as the basis for design (see Clause 5.1.2).

5.2.4 Affidavit

The fabricator, if requested, shall provide an affidavit stating that the materials and products that have been used in fabrication conform to the applicable material or product standards called for by the design drawings or specifications.

6 Design requirements

6.1 General

6.1.1 Limit states

Steel structures designed in accordance with this Standard shall be safe from collapse during construction and designed to be safe and serviceable during the useful life of the structure. Limit states define the various types of collapse and unserviceability that are to be avoided. Those concerning safety are called the ultimate limit states (strength, overturning, sliding, and fracture) or the fatigue limit state (crack propagation) and those concerning serviceability are called the serviceability limit states (deflections, vibration, and permanent deformation). The object of limit states design calculations is to keep the probability of reaching a limit state below a certain value previously established for the given type of structure. This is achieved in this Standard by the use of load factors applied to the specified loads (see Article 4.1.2.1 of the National Building Code of Canada [NBCC]) and resistance factors applied to the specified resistances (see Clause 13 and Annex B of this Standard).

The various limit states are specified in Clause 6. Some of these relate to the specified loads and others to the factored loads. Camber, provisions for expansion and contraction, and corrosion protection are further design requirements related to serviceability and durability. All limit states shall be considered in the design.

6.1.2 Structural integrity

The general arrangement of the structural system and the connection of its members shall be designed to provide resistance to disproportionate collapse as a consequence of local failure. The requirements of this Standard generally provide a satisfactory level of structural integrity for steel structures.
Note: Further guidance can be found in the User's Guide - NBC 2015; Structural Commentaries (Part 4).

6.2 Loads

6.2.1 Specified loads

Except as provided for in Clause 7.1, the loads and influences specified in Article 4.1.2.1 of the NBCC shall be considered in the design of structural steelwork, taking into consideration that the regulatory authority might specify other loads in some circumstances.

6.2.2 Importance factors based on use and occupancy

The specified snow, wind, and earthquake loads shall be multiplied by the importance factors for the different importance categories for buildings in accordance with Article 4.1.2.1 of the NBCC. For buildings having a Low Importance Category, the factor of 0.8 for the ultimate limit states may be applied to the live load, L.

6.3 Requirements under specified loads

6.3.1 Deflection

6.3.1.1

Steel members and frames shall be proportioned so that deflections are within acceptable limits for the nature of the materials to be supported and for the intended use and occupancy. Consideration shall be given to the differential deflections of adjacent parallel framing members in the same plane.
Note: In the absence of a more detailed evaluation, see Annex D for recommended values for deflections.

6.3.1.2

Roofs shall be designed to withstand any additional loads likely to occur as a result of ponding (see also Clause 6.2.1).
Note: Further guidance can be found in the User's Guide - NBC 2015: Structural Commentaries (Part 4).

6.3.2 Camber

6.3.2.1

Camber of beams, trusses, or girders, if necessary, shall be stipulated on the design drawings. Generally, trusses and crane girders with a span of 25 m or greater should be cambered for approximately the dead-plus-half-live-load deflection.
Note: See Clause 16 for requirements for open-web joists, Clause 15 for requirements for trusses, and Clause 28.6 for fabrication tolerances.

6.3.2.2

Any special camber requirements necessary to bring a loaded member into proper relation with the work of other trades shall be stipulated on the design drawings.
Note: See also Clause 6.3.1.1. See Clause 16.12.2.5 for maximum deviation in elevation between adjacent joists.

6.3.3 Dynamic effects

6.3.3.1

Suitable provision shall be made in the design for the effect of live loads that induce impact, vibration, or both, In severe cases, e.g., structural supports for heavy machinery that causes substantial impact or
vibration when in operation, the possibility of harmonic resonance, fatigue, or unacceptable vibration shall be investigated.

6.3.3.2

Special consideration shall be given to floor systems susceptible to vibration, e.g., large open floor areas free of partitions, to ensure that such vibration is acceptable for the intended use and occupancy. Note: For further information, see Annex E.

6.3.3.3

Unusually flexible structures (generally those whose ratio of height to effective resisting width exceeds 4:1) shall be investigated for lateral vibrations under dynamic wind load. Lateral accelerations of the structure shall be checked to ensure that such accelerations are acceptable for the intended use and occupancy.
Note: Information on lateral accelerations under dynamic wind loads can be found in the User's Guide - NBC 2015: Structural Commentaries (Part 4).

6.3.4 Resistance to fatigue

Structural steelwork shall be designed to resist the effects of fatigue under specified loads in accordance with Clause 26.

6.4 Requirements under factored loads

6.4.1 Strength

Structural steelwork shall be proportioned to resist moments and forces resulting from the application of the factored loads acting in the most critical combination, taking into account the resistance factors specified in Clause 13.1.

6.4.2 Overturning

The building or structure shall be designed to resist overturning resulting from the application of the factored loads acting in the most critical combination, taking into account the importance category of the building as specified in Clause 6.2.2 and the resistance factors specified in Clause 13.1.

6.5 Expansion and contraction

Suitable provision shall be made for expansion and contraction commensurate with the service and erection conditions of the structure.

6.6 Corrosion protection

6.6.1

Steelwork shall have sufficient corrosion protection to minimize any corrosion likely to occur in the service environment.

6.6.2

Interiors of buildings conditioned for human comfort may be generally assumed to be non-corrosive environments; however, the need for corrosion protection shall be assessed and protection shall be furnished in those buildings where it is deemed to be necessary.

6.6 .3

Corrosion protection of the inside surfaces of enclosed spaces permanently sealed from any external source of oxygen shall not be necessary.

6.6.4

The minimum required thickness of steelwork situated in a non-corrosive environment and therefore not requiring corrosion protection shall be in accordance with Clause 11.

6.6 .5

Corrosion protection shall be provided by means of suitable alloying elements in the steel, by protective coatings, or by other effective means, either singly or in combination.

6.6.6

Localized corrosion likely to occur from trapped water, excessive condensation, or other factors shall be minimized by suitable design and detail. Where necessary, positive means of drainage shall be provided.

6.6.7

If the corrosion protection specified for steelwork exposed to the weather, or to other environments in which progressive corrosion can occur, is likely to require maintenance or renewal during the service life of the structure, the steelwork so protected, exclusive of fill plates and shims, shall have a minimum thickness of 4.5 mm .

(1) 6.7 Requirements under fire conditions

The fire endurance of structural steelwork for buildings shall be determined using CAN/ULC-S101. When permitted by the regulatory authority, a performance-based fire protection analysis and design of structural steelwork shall be conducted using the methods specified in Annex K.
Note: Annex K is an "alternative solution" that can be evaluated to determine compliance with the NBCC (Division A, Compliance, Objectives and Functional Statements).

6.8 Brittle fracture

The risk of brittle fracture in steel structures subjected to tensile stresses shall be assessed.
Note: See Annex L for guidance on material selection and details to minimize the risk of brittle fracture.

6.9 Requirements under impulse loading

Structural steelwork that has been determined by the authority having jurisdiction to be potentially subjected to impulse loads shall follow design concepts and details that will mitigate collapse.
Notes:

1) Annex L pravides recommendations to prevent brittle fracture.
2) CSA S850 provides quidelines to account for blast loads.

7 Factored loads and safety criterion

7.1 Safety during erection and construction

Suitable provision shall be made for loads imposed on the steel structure during its erection. During subsequent construction, suitable provision shall be made to support the construction loads on the steel structure with an adequate margin of safety.

7.2 Safety criterion and effect of factored loads for the ultimate limit states

7.2.1

The structural steelwork shall be designed to have sufficient strength or stability, or both, such that factored resistance is greater than or equal to the effect of factored loads, as follows:
$\phi R \geq \Sigma \alpha_{j} S_{i}$
where the factored resistance is determined in accordance with the applicable clauses of this Standard and the effect of factored loads for the ultimate limit states is determined in accordance with Division B, Article 4.1.3.2 of the NBCC.

7.2.2

The effect of factored loads in force units shall be determined from the structural effect due to the specified loads, including importance factors due to use and occupancy (see Clause 6.2), multiplied by the load factors, α, for load combination cases in accordance with Division B, Article 4.1.3.2 of the NBCC.

8 Analysis of structure

8.1 General

In proportioning the structure to meet the design requirements of Clause 6, the methods of analysis specified in Clause 8 shall be used. The distribution of internal forces and bending moments shall be determined both under the specified loads to satisfy the requirements of serviceability and fatigue specified in Clause 6 and under the factored loads to satisfy strength and overturning requirements specified in Clause 7.

8.2 Types of construction

8.2.1 General

Three basic types of construction and associated design assumptions, i.e., "rigidly connected", "simple", and "semi-rigid" (see Clauses 8.2 .2 to 8.2.4) may be used for all or part of a structure under this Standard. The distribution of internal forces and bending moments throughout the structure shall depend on the type or types of construction chosen and the forces to be resisted.

8.2.2 Rigidly connected and continuous construction

In this construction, the beams, girders, and trusses are rigidly connected to other frame members or are continuous over supports. Connections shall be generally designed to resist the bending moments and internal forces calculated by assuming that the angles between intersecting members remain unchanged as the structure is loaded.

8.2.3 Simple construction

Simple construction assumes that the ends of beams, girders, and trusses are free to rotate under load in the plane of loading. Resistance to lateral loads, including stability effects, shall be ensured by a suitable system of bracing or plate walls or by the design of part of the structure as rigidly connected or semi-rigid construction.

8.2.4 Semi-rigid (partially restrained) construction

8.2.4.1

In this construction, the angles between connected members change under applied bending moments and redistribute the moments between members while maintaining sufficient capacity to resist lateral loads and to provide adequate stability of the framework in accordance with Clause 8.4.

8.2.4.2

The design and construction of semi-rigid frameworks shall meet the following requirements:
a) The positive and negative moment/rotation response of the connections up to their maximum capacity shall have been established by test and either published in the technical literature or be available from a reputable testing facility.
b) The design of the structure shall be based on either linear analysis employing the secant stiffness of connections at ultimate load or incremental analyses following the non-linear test response of the connections.
c) Consideration shall be given to the effects of repeated vertical and horizontal loading and load reversals, with particular regard to incremental strain in connections and low-cycle fatigue,

8.3 Analysis methods

8.3.1 Elastic analysis

Under a particular loading combination, the forces and moments throughout all or part of the structure may be determined by an analysis that assumes that individual members behave elastically.

8.3.2 Plastic analysis

Under a particular loading combination, the forces and moments throughout all or part of the structure may be determined by a plastic analysis, provided that
a) the steel used has $F_{y} \leq 0.85 F_{u}$ and exhibits the stress-strain characteristics necessary to achieve moment redistribution;
b) the width-to-thickness ratios of member cross-section elements meet the requirements of Class 1 sections as specified in Clause 11.2;
c) the members are braced laterally in accordance with the requirements of Clause 13.7;
d) web stiffeners are supplied on a member at a point of load application where a plastic hinge would form;
e) splices in beams or columns are designed to transmit 1.1 times the maximum calculated moment under factored loads at the splice location or $0.25 M_{p}$, whichever is greater;
f) members are not subject to repeated heavy impact or fatigue; and
g) the influence of inelastic deformation on the strength of the structure is taken into account (see Clause 8.4).

8.4 Stability effects

8.4.1

The translational load effects produced by notional lateral loads, applied at each storey, equal to 0.005 times the factored gravity loads contributed by that storey, shall be added to the lateral loads for each load combination. The notional lateral loads shall be applied in both orthogonal directions independently when the three-dimensional effects of loading are included in the analysis of the structure.

8.4.2

The analyses referred to in Clause 8.3 shall include the sway effects in each storey produced by the vertical loads acting on the structure in its displaced configuration. The second-order effects that are due to the relative translational displacement (sway) of the ends of a member shall be determined from a second-order analysis. Elastic second-order effects may be accounted for by amplifying translational load effects obtained from a first-order elastic analysis by the factor
$U_{2}=\frac{1}{1-\left[\frac{\Sigma C_{j} \Delta_{1}}{\Sigma v_{f} h}\right]}$
Note: For combinations including seismic loads, see Clause 27.1.8.2 for the expression of U_{2}.

9 Stability of structures and members

9.1 Stability of structures

The structural system shall be adequate to
a) resist the forces caused by factored loads;
b) transfer the factored loads to the foundations;
c) transfer forces from walls, floors, or roofs acting as shear-resisting elements or diaphragms to adjacent lateral-load-resisting elements; and
d) resist torsional effects.

See also Clause 8.4.

9.2 Stability of members

9.2.1 Initial misalignment at brace point

The initial misalignment of the member at a brace point, Δ_{0}, shall be taken such that the offset of that brace point relative to the adjacent brace points from the alignment shown on the drawings corresponds to the out-of-alignment tolerance specified in Clause 29.3.

9.2.2 Displacement of bracing systems

The displacement of the bracing system at the brace point, Δ_{b}, is the sum of the brace deformation, the brace connection deformation, and the brace support displacement. This displacement is due to the brace force and any other forces acting on the brace and shall be calculated in the direction perpendicular to the braced member at the brace point.

9.2.3 Function of bracing

Bracing systems provide lateral support to columns, the compression flange of beams and girders, or the compression chords of joists or trusses.

Bracing systems, including bracing members and their connections and supports, shall be proportioned to resist the forces that develop at the brace points and limit the lateral displacement of the brace points.

Bracing for beams shall provide lateral restraint to the compression flange, except that at cantilevered ends of beams and beams subject to double curvature, the restraint shall be provided at both top and bottom flanges unless otherwise accounted for in the design.

9.2.4 Twisting and lateral displacements

Twisting and lateral displacements shall be prevented at the supports of a member or element unless accounted for in the design.

9.2.5 Simplified analysis

Bracing systems shall be proportioned to have a strength perpendicular to the longitudinal axis of the braced member in the plane of buckling equal to at least 0.02 times the factored compressive force at each brace point in the member or element being braced, unless a detailed analysis is carried out in accordance with Clause 9,2.6 to determine the appropriate strength and stiffness of the bracing system. Any other forces acting on the bracing member shall also be taken into account. The displacement Δ_{b} shall not exceed Δ_{0}.

9.2.6 Detailed analysis

9.2.6.1 Second-order method

Forces acting in the member bracing system and its deformations shall be determined by means of a second-order elastic analysis of the member and its bracing system. This analysis shall include the most critical initial deformed configuration of the member and shall consider forces due to external loads. In the analysis, hinges may be assumed at brace points in the member or element being braced.

The displacement Δ_{b} shall not exceed Δ_{o} unless a greater value can be justified by analysis.

9.2.6.2 Direct method

Unless a second-order analysis is carried out in accordance with Clause 9.2.6.1 or a simplified analysis is carried out in accordance with Clause 9.2 .5 , bracing systems shall be proportioned at each brace point to have a factored resistance in the direction perpendicular to the longitudinal axis of the braced member in the plane of buckling equal to at least
$P_{b}=\frac{\beta\left(\Delta_{a}+\Delta_{b}\right) C_{f}}{L_{b}}$
where
$P_{b}=$ force used to design the bracing system (when two or more points are braced, the forces P_{b} alternate in direction)
$\beta=2,3,3.41,3.63$, or 4 for $1,2,3,4$, or more equally spaced braces, respectively, unless a lesser value can be justified by the analysis
$\Delta_{0}=$ initial misalignment
$\Delta_{b}=$ displacement of the bracing system, assumed to be equal to Δ_{0} for the initial calculation of P_{b}
$C_{f}=$ maximum factored compression in the segments bound by the brace points on either side of the brace point under consideration
$L_{b}=$ length between braces
For flexural members, P_{b} shall be increased, as appropriate, when loads are applied above the shear centre or for beams in double curvature.

After P_{b} and any other forces acting on the bracing member are applied, the calculated displacement of the bracing system, Δ_{b}, shall not exceed Δ_{o} unless justified by analysis.

9.2.7 Slabs or decks

When bracing of the compression flange is effected by a slab or deck, the slab or deck and the means by which the calculated bracing forces are transmitted between the flange or chord and the slab or deck shall be adequate to resist a force in the plane of the slab or deck. This force, which shall be taken as at least 0.05 times the maximum force in the flange or chord unless a lesser amount can be justified by analysis, shall be considered to be uniformly distributed along the length of the compression flange or chord.

9.2.8 Accumulation of forces

Consideration shall be given to the probable accumulation of forces, C_{f}, when the bracing system restrains more than one member. When members are erected with random out-of-straightness, the initial misalignment may be taken as
$(0.2+0.8 / \sqrt{n}) \Delta_{0}$
where
$n=$ number of members or elements being braced
This reduction shall not be applied when member initial misalignments are dependent on each other and are likely to be in the same direction and of the same magnitude.

9.2.9 Torsion

Bracing systems for beams, girders, and columns designed to resist loads causing torsion shall be proportioned in accordance with Clause 14.10. Special consideration shall be given to the connection of asymmetric sections such as channels, angles, and Z -sections.

10 Design lengths and slenderness ratios

10.1 Simple span flexural members

Beams, girders, and trusses may be designed on the basis of simple spans, whose length may be taken as the distance between the centres of gravity of supporting members. Alternatively, the span length of beams and girders may be taken as the actual length of such members measured between centres of end connections. The length of trusses designed as simple spans may be taken as the distance between the extreme working points of the system of triangulation employed. The design of columns or other supporting members shall provide for the effect of any significant moment or eccentricity arising from the manner in which a beam, girder, or truss is connected or supported.

10.2 Continuous span flexural members

Beams, girders, or trusses having full or partial end restraint due to continuity or cantilever action shall be proportioned to carry all moments, shears, and other forces at any section, assuming the span, in general, to be the distance between the centres of gravity of the supporting members. Supporting members shall be proportioned to carry all moments, shears, and other forces induced by the continuity of the supported beam, girder, or truss.

10.3 Members in compression

10.3.1 General

A member in compression shall be designed on the basis of its effective length, KL (the product of the effective length factor, K, and the unbraced length, L).

Unless otherwise specified in this Standard, the unbraced length, L, shall be taken as the length of the compression member between the centres of restraining members. The unbraced length may differ for different cross-sectional axes of a compression member. At the bottom storey of a multi-storey structure or for a single-storey structure, L shall be taken as the length from the top of the base plate to the centre of restraining members at the next higher level.

The effective length factor, K, depends on the potential failure modes, whether by bending in-plane or buckling, as specified in Clauses 10.3.2 and 10.3.3.
Note: See also Clause 9 on the effectiveness of the brace or support point.

10.3.2 Failure mode involving bending in-plane

The effective length shall be taken as the actual length ($K=1.0$) for beam-columns that would fail by inplane bending, provided that, when applicable, the sway effects, including notional load effects, are included in the analysis of the structure to determine the end moments and forces acting on the beamcolumns.

10.3.3 Failure mode involving buckling

The effective length for axially loaded columns that would fail by buckling and for beam-columns that would fail by out-of-plane (lateral-torsional) buckling shall be based on the rotational and translational restraint afforded at the ends of the unbraced length (see Annexes F and G).

10.4 Slenderness ratios

10.4.1 General

The slenderness ratio of a member in compression shall be taken as the ratio of the effective length, $K L$, to the corresponding radius of gyration, r. The slenderness ratio of a member in tension shall be taken as the ratio of the unbraced length, L, to the corresponding radius of gyration,

10.4.2 Maximum slenderness ratio

10.4.2.1

The slenderness ratio of a member in compression shall not exceed 200 .

10.4.2.2

Except as specified in Clauses 15.2.7 and 16.5.6.1, the slenderness ratio of a member in tension shall not exceed 300 . This limit may be waived if other means are provided to control flexibility, sag, vibration, and slack in a manner commensurate with the service conditions of the structure or if it can be shown that such factors are not detrimental to the performance of the structure or of the assembly of which the member is a part.

11 Width (or diameter)-to-thickness - Elements in compression

11.1 Classification of sections

11.1.1

For the purposes of this Standard, structural sections shall be designated as Class 1, 2, 3, or 4 , depending on the maximum width (or diameter)-to-thickness ratios of the elements subject to compression, and as otherwise specified in Clauses 11.1.2 and 11.1.3, as follows:
a) Class 1 sections permit attainment of the plastic moment and subsequent redistribution of the bending moment;
b) Class 2 sections permit attainment of the plastic moment but need not allow for subsequent moment redistribution;
c) Class 3 sections permit attainment of the yield moment; and
d) Class 4 sections generally have elastic local buckling of elements in compression as the limit state of structural resistance.

11.1.2

Class 1 sections, when subject to flexure, shall have an axis of symmetry in the plane of loading and, when subject to axial compression, shall be doubly symmetric.

11.1.3

Class 2 sections, when subject to flexure, shall have an axis of symmetry in the plane of loading unless the effects of asymmetry of the section are included in the analysis.

11.2 Maximum width (or diameter)-to-thickness ratios of elements subject to compression

The maximum width (or diameter)-to-thickness ratios of elements subject to axial compression shall be as specified in Table 1 and those of elements subject to flexural compression shall be as specified in Table 2, for the specified section classification.

Sections that exceed the limits presented in Table 1 or Table 2 shall be classified as Class 4 sections. The factored axial compressive resistance of Class 4 sections shall be calculated in accordance with Clause 13.3.5. The factored bending resistance of Class 4 sections shall be calculated in accordance with Clause 13.5.

11.3 Width and thickness

11.3.1

For elements supported along only one edge parallel to the direction of compressive force, the width, $b_{e l \text { l }}$, shall be taken as follows:
a) plates: shall be the distance from the free edge to the first row of fasteners or line of welds;
b) legs of angles, flanges of channels and $Z^{\prime} s$, and stems of T^{\prime} s: the full nominal dimension; and
c) flanges of beams and T^{\prime} : one-half of the full nominal dimension.

11.3.2

For elements supported along two edges parallel to the direction of compressive force, the width shall be taken as follows:
a) flange or diaphragm plates in built-up sections: the width, $b_{e l}$, shall be the distance between adjacent lines of fasteners or lines of welds;
b) flanges, $b_{e l}$, and webs, h, of rectangular hollow sections (HSS) shall be the nominal outside dimension less four times the wall thickness;
c) webs of built-up sections: the width, h, shall be the distance between adjacent lines of fasteners or the clear distance between flanges when welds are used; and
d) webs of hot-rolled sections; the width, h, shall be the clear distance between flanges.

11.3.3

The thickness of elements, t or w, shall be taken as the nominal thickness, For tapered flanges of rolled sections, the thickness shall be taken as the nominal thickness halfway between a free edge and the corresponding face of the web.

12 Gross and net areas

12.1 Application

Members in tension shall be proportioned on the basis of the areas associated with the potential failure modes. Members in compression shall be proportioned on the basis of the gross area associated with the potential failure mode.
Note: For beams and girders, see Clause 14.

12.2 Gross area

Gross area shall be calculated by summing the products of the thickness and the gross width of each element (flange, web, leg, plate), as measured normal to the axis of the member.

12.3 Net area

12.3.1 General

The net area, A_{n}, shall be determined by summing the critical net areas, A_{n}, of each segment along a potential path of minimum resistance calculated as follows:
a) for a segment normal to the force (i.e., in direct tension):

$$
A_{n}=w_{n} t
$$

b) for a segment inclined to the force between openings (e.g., bolt holes) but not parallel to the force:

$$
A_{n}=w_{n} t+\frac{s^{2} t}{4 g}
$$

12.3.2 Allowance for bolt holes

In calculating w_{n}, the width of bolt holes shall be taken as 2 mm larger than the specified hole dimension. If drilled holes are used, this allowance may be waived.

12.3.3 Effective net area - Shear lag

12.3.3.1

When fasteners transmit load to each of the cross-sectional elements of a member in tension in proportion to their respective areas, the effective net area shall be taken as the net area, i.e., $A_{n e}=A_{n}$.

12.3.3.2

When bolts transmit load to some but not all of the cross-sectional elements and when the critical net area includes the net area of unconnected elements, the effective net area shall be taken as follows:
a) for WWF, W, M, or S shapes with flange widths not less than two-thirds the depth, and for structural tees cut from these shapes, when only the flanges are connected with three or more transverse lines of fasteners:
$A_{n e}=0.90 A_{n}$
b) for angles connected by only one leg with
i) four or more transverse lines of fasteners: $A_{n e}=0.80 A_{n}$
ii) fewer than four transverse lines of fasteners:

$$
A_{n e}=0.60 A_{n}
$$

c) for all other structural shapes connected with
i) three or more transverse lines of fasteners: $A_{n e}=0.85 A_{n}$
ii) two transverse lines of fasteners: $A_{n e}=0.75 A_{n}$

12.3.3.3

When a tension load is transmitted by welds, the effective net area, $A_{n e}$, shall be computed as the sum of the effective net areas of the elements, $A_{n 1}, A_{n 2}$, and $A_{n 3}$, as applicable, but shall not exceed A_{g}. The net areas of the connected plate elements shall be defined as follows:
a) for elements connected by transverse welds, $A_{n 1}$:
$A_{n 1}=w t$
b) for elements connected by longitudinal welds along two parallel edges, $A_{n 2}$:
i) when $L \geq 2 w$:
$A_{n 2}=1.00 w t$
ii) when $2 w>L \geq w$;
$A_{n 2}=0.50 w t+0.25 L t$
iii) when $w>L$:
$A_{n 2}=0.75 \mathrm{Lt}$
where
$L=$ average length of welds on the two edges
$w=$ plate width (distance between welds)
c) for elements connected by a single longitudinal weld, $A_{n 3}$:
i) when $L \geq w$:
$A_{n 3}=\left(1-\frac{\bar{x}}{L}\right) w t$
ii) when $w>L$:
$A_{n 3}=0.50 \mathrm{Lt}$
where
$\bar{x}=$ eccentricity of the weld with respect to centroid of the connected element
$L=$ length of weld in the direction of the loading
The outstanding leg of an angle shall be considered connected by the (single) line of weld along the heel.

12.3.3.4

When round or rectangular HSS members are slotted and welded to a plate, the effective net area, $A_{n e}$, of the HSS member under concentric tension shall be taken as follows:
$A_{n e}=A_{n}\left(1.1-\frac{\bar{x}^{\prime}}{L_{w}}\right) \geq 0.8 A_{n}$, when $\frac{\bar{x}^{\prime}}{L_{w}}>0.1$
$A_{n e}=A_{n}$, when $\frac{\vec{x}^{\prime}}{L_{w}} \leq 0,1$
where
$\bar{x}^{\prime}=$ the distance between the centre of gravity of half of the HSS cross section taken from the edge of the connection plate
$L_{w}=$ the length of a single weld segment on the HSS (the usual case has the total weld length being $4 L_{w}$)

12.3.3.5

Larger values of the effective net area may be used if justified by test or rational analysis, but shall not exceed A_{g}.

12.3.4 Angles

For angles, the gross width shall be the sum of the widths of the legs minus the thickness. The gauge for holes in opposite legs shall be the sum of the gauges from the heel of the angle minus the thickness.

12.3.5 Plug or slot welds

In calculating the net area of a member across plug or slot welds, the weld metal shall not be taken as adding to the net area.

12.4 Pin-connected members in tension

12.4.1 Effective net areas

Two effective net areas shall be computed as follows
a) The effective net area for tension, $A_{\text {net }}$ shall be taken as $2 t b_{e}$
b) The effective net area for shear rupture, Anes shall be taken as $2 t(a+d / 2)$
where
$a=$ shortest distance parallel to the tensile force from the edge of the pin hole to the end of the tension member pin plate
$b_{e}=2 t+16 \mathrm{~mm}$ but not to exceed the actual distance from the edge of the hole to the edge of the part normal to the tensile force
$d=$ diameter of pin

12.4.2 Detail requirements

The hole of the pin shall be located on the longitudinal member axis as defined by the centroid of the member cross section. The diameter of a pin hole shall be not more than 1 mm larger than the
diameter of the pin when relative movement between connected parts under full service loads is required. At the centre of the pin hole the width of the plate, measured normal to the direction of the force shall be not less than $2 b_{e}+d$. The distance from the edge of the hole to the edge of the pin plate on either side of the axis of the member axis, measured at an angle of 45° or less to the axis of the member, shall be not less than a.

13 Member and connection resistance

13.1 Resistance factors

Unless otherwise specified, resistance factors, ϕ, applied to resistances specified in this Standard shall be taken as follows:
a) structural steel: $\phi=0.90$ and $\phi_{u}=0.75$;
b) reinforcing steel bars: $\phi_{c}=0.85$;
c) bolts: $\phi_{b}=0.80$;
d) shear connectors: $\phi_{s c}=0.80$;
e) beam web bearing, interior: $\phi_{b}=0.80$ (see Clause 14.3.2);
f) beam web bearing, end: $\phi_{b e}=0.75$ (see Clause 14.3.2);
g) bearing of bolts on steel: $\phi_{o r}=0.80$;
h) weld metal: $\phi_{w}=0.67$;
i) anchor rods: $\phi_{a r}=0.67$; and
j) concrete: $\phi_{c}=0.65$.

The factored resistances so determined, in order to meet the strength requirements of this Standard, shall be greater than or equal to the effect of factored loads determined in accordance with Clause 7.2.

13.2 Axial tension

The factored tensile resistance, T_{r}, developed by a member subjected to an axial tensile force shall be taken as follows:
a) the least of
i) $T_{r}=\phi A_{g} F_{y_{i}}$
ii) $T_{t}=$ resistance determined using Clause 13.11; and
iii) $T_{t}=\phi_{u} A_{n e} F_{u}$; and
b) for pin connections (excluding eyebars), the least of
i) $T_{r}=\phi A_{g} F_{y}$;
ii) $T_{r}=\phi_{u} A_{\text {net }} F_{u}$; and
iii) $T_{r}=0.6 \phi_{u} A_{n e s} F_{u}$,
where $A_{\text {net }}$ and $A_{\text {nes }}$ are defined in Clause 12,4.1.

13.3 Axial compression

13.3.1 Flexural buckling of doubly symmetric shapes

The factored axial compressive resistance, C_{r}, of doubly symmetric shapes meeting the requirements of Table 1 shall be taken as
$c_{r}=\frac{\phi A F_{y}}{\left(1+\lambda^{2 \pi}\right)^{\frac{1}{n}}}$
where
$n=1.34$ for hot-rolled, fabricated structural sections and hollow structural sections manufactured in accordance with CSA G40.20, Class C (cold-formed non-stress-relieved), ASTM A500, or ASTM A1085
$=2.24$ for doubly symmetric welded three-plate members with flange edges oxy-flame-cut and hollow structural sections manufactured in accordance with CSA G40.20, Class H (hot-formed or cold-formed stress-relieved) and ASTM A1085 with Supplement S1
$\lambda=\sqrt{\frac{F_{y}}{F_{e}}}$
where

$$
F_{e}=\frac{\pi^{2} E}{\left(\frac{k L}{r}\right)^{2}}
$$

Doubly symmetric shapes that can be governed by torsional buckling shall also meet the requirements of Clause 13.3.2.

13.3.2 Flexural, torsional, or flexural-torsional buckling

The factored compressive resistance, C_{n}, of asymmetric, singly symmetric, and cruciform or other doubly symmetric sections not covered under Clause 13.3 .1 shall be computed using the expressions given in Clause 13.3.1 with a value of $n=1.34$ and the value of F_{e} taken as follows:
a) for doubly symmetric sections (e.g., cruciform) and point symmetric sections (e.g., z-sections), the least of $F_{e x}, F_{e y}$, and $F_{e z ;}$
b) for singly symmetric sections (e.g., double angles, channels, and T-sections), with the y-axis taken as the axis of symmetry, the lesser of $F_{e x}$ and $F_{\text {eyz }}$
where

$$
F_{e y z}=\frac{F_{e y}+F_{e z}}{2 \Omega}\left[1-\sqrt{1-\frac{4 F_{e y} F_{e z} \Omega}{\left(F_{e y}+F_{e z}\right)^{2}}}\right]
$$

c) for asymmetric sections (e.g., bulb angles), the smallest root of
$\left(F_{e}-F_{e x}\right)\left(F_{e}-F_{e y}\right)\left(F_{e}-F_{e z}\right)-F_{e}^{2}\left(F_{e}-F_{e y}\right)\left(\frac{x_{0}}{F_{0}}\right)^{2}-F_{e}^{2}\left(F_{e}-F_{e x}\right)\left(\frac{y_{0}}{r_{0}}\right)^{2}=0$
where
$F_{e x}, F_{e y}$ and $F_{e z}$ are calculated with respect to the principal axes:
$F_{e x}=\frac{\pi^{2} E}{\left(\frac{k_{1} L_{x}}{r_{x}}\right)^{2}}$
$F_{e y}=\frac{\pi^{2} E}{\left(\frac{k_{2}-z_{y}}{r_{r}}\right)^{2}}$
$F_{E z}=\left(\frac{\pi^{2} E C_{w}}{\left(K_{z} L_{z}\right)^{2}}+G J\right) \frac{1}{A \hat{r}_{0}^{2}}$
where
$K_{z}=$ effective length factor for torsional buckling, conservatively taken as 1.0
$\bar{r}_{o}^{2}=x_{o}^{2}+y_{o}^{2}+r_{x}^{2}+r_{y}^{2}$
$\Omega=1-\left[\frac{x_{0}^{2}+y_{0}^{2}}{f_{0}^{2}}\right]$
where
$x_{0}, y_{0}=$ principal coordinates of the shear centre with respect to the centroid of the cross-section Note: For equal-leg double angles connected back-to-back to a common gusset plate, flexural-torsional buckling is not a controlling limit state.

13.3.3 Single-angle members in compression

13.3.3.1 General

The factored compressive resistance, C_{n} of single-angle members may be calculated neglecting the effects of eccentricity if the appropriate slenderness as specified in Clause 13.3.3.2 or 13.3.3.3 is used, provided that
a) members are loaded at the ends in compression through the same one leg;
b) members are attached by welding or by minimum two-bolt connections; and
c) there are no intermediate transverse loads.

The factored compressive resistance, C_{n} of single-angle members meeting the requirements of Table 1 shall be taken as
$C_{r}=\frac{\phi A F_{y}}{\left(1+\lambda^{2 n}\right)^{\frac{2}{n}}}$
where
$n=1.34$
$\lambda=\sqrt{\frac{F_{v}}{F_{c}}}$
$F_{e}=\frac{n^{2} E}{\left(\frac{\pi}{r}\right)^{2}}$

13.3.3.2 Individual members and planar trusses

For equal-leg angles or unequal-leg angles with leg length ratios $\left(b / b_{s}\right)$ less than 1.7 and connected through the longer leg that are individual members or are members of planar trusses with adjacent web members attached to the same side of the gusset plate or chord:
a) $0 \leq \frac{t}{r_{x}} \leq 80: \frac{\mathrm{KL}}{r}=72+0.75 \frac{\mathrm{~L}}{r_{s}}$
b) $\frac{t}{r_{x}}>80: \frac{\mathrm{KL}}{r}=32+1.25 \frac{L}{r_{x}} \leq 200$

For unequal-leg angles with leg length ratios $\left(b / b_{s}\right)$ less than 1.7 and connected through the shorter leg, $K L / r$ shall be increased by adding $4\left[(b / b s)^{2}-1\right]$. $K L / r$ shall be not less than $0.95 L / r_{y}^{\prime}$
where
$L \quad=$ length of member between work points at truss chord centrelines
b_{1} = longer leg of angle
$b_{5}=$ shorter leg of angle
$r_{x}=$ radius of gyration of single-angle member about geometric axis parallel to connected leg
$r_{x}^{\prime}=$ radius of gyration of single-angle member about minor principal axis

13.3.3.3 Box and space trusses

For equal-leg angles or unequal-leg angles with leg length ratios $\left(b / b_{s}\right)$ less than 1.7 and connected through the longer leg that are members of box or space trusses with adjacent web members attached to the same side of the gusset plate or chord:
a)

$$
0 \leq \frac{L}{r_{x}} \leq 75: \frac{K L}{r}=60+0.8 \frac{L}{r_{x}}
$$

b)

$$
\frac{L}{r_{x}}>75: \frac{K L}{r}=45+\frac{L}{r_{x}} \leq 200
$$

For unequal-leg angles with leg length ratios $\left(b / b_{5}\right)$ less than 1.7 and connected through the shorter leg, $K L / r$ shall be increased by adding $6\left[(b / b s)^{2}-1\right]$. $K L / r$ shall be not less than $0.82 L / r_{r}^{\prime}$

13.3.3.4 Other members

Single-angle members with different end conditions from those described in Clause 13.3.3.1, leg length ratios $\left(b_{l} / b_{s}\right)$ greater than 1.7 , adjacent web members attached to opposite sides of the gusset plate or chord, or transverse loading shall be designed for compressive resistance, C_{1}, with Clause 13.3.2, accounting for the effects of eccentricity.

13.3.4 Segmented members in compression

The factored compressive resistance of segmented columns shall be determined using a rational method. Notional loads need not be applied between in-plane lateral supports.

13.3.5 Members in compression subjected to elastic local buckling

The factored compressive resistance, C_{11}, for sections that exceed the width (or diameter)-to-thickness ratios specified in Table 1 shall be determined as either
a)
$c_{r}=\frac{\phi A_{e} F_{y}}{\left(1+\lambda^{2 n}\right)^{\frac{1}{n}}}$
where
$\lambda=\sqrt{\frac{F_{y}}{F_{e}}}$
with an effective area, A_{e}, calculated using reduced element widths meeting the maximum width-to-thickness ratio specified in Table 1; or
b)
$C_{r}=\frac{\phi A F_{y e}}{\left(1+\lambda_{y e}{ }^{2 n}\right)^{\frac{1}{n}}}$
where
$\lambda_{y e}=\sqrt{\frac{F_{y e}}{F_{e}}}$
with an effective yield stress, $F_{\text {ye, }}$ determined from the maximum width (or diameter)-to-thickness ratio meeting the limit specified in Table 1.
The elastic buckling stress, F_{e}, shall be calculated using Clause 13.3.1,13.3.2, or 13.3.3, as applicable, and using gross section properties.

13.4 Shear

13.4.1 Webs of flexural members with two flanges

13.4.1.1 Elastic analysis

The factored shear resistance, V_{r}, developed by the web of a flexural member shall be taken as
$V_{r}=\phi A_{w} F_{s}$
where
$A_{w}=$ shear area ($d w$ for rolled shapes and $h w$ for girders, $2 h t$ for rectangular HSS)
$F_{s}=$ as follows:
a) for unstiffened webs:
i) when $\frac{h}{w} \leq \frac{1014}{\sqrt{\frac{F}{y}}}$:
$F_{s}=0.66 F_{y}$
ii) when $\frac{1014}{\sqrt{E_{v}}}<\frac{h}{w} \leq \frac{1435}{\sqrt{E_{v}}}$:
$F_{5}=\frac{670 \sqrt{F_{v}}}{(h / w)}$
iii) when $\frac{n}{w}>\frac{1435}{\sqrt{F_{v}}}$:
$F_{5}=\frac{961200}{(h / w)^{2}}$
b) for stiffened webs:
i) when $\frac{h}{w} \leq 439 \sqrt{\frac{k_{v}}{f_{v}}}$:
$F_{s}=0.66 F_{y}$
ii) when $439 \sqrt{\frac{k_{k}}{f_{v}}}<\frac{h}{w} \leq 502 \sqrt{\frac{k_{h}}{F_{j}}}$:
$F_{s}=F_{\text {tri }}$
iii) when $502 \sqrt{\frac{k_{c}}{F_{y}}}<\frac{h}{w} \leq 621 \sqrt{\frac{k_{2}}{E_{y}}}$
$F_{s}=F_{\text {cri }}+k_{0}\left(0,50 F_{y}-0.866 F_{c r i}\right)$
iv) when $621 \sqrt{\frac{k_{i}}{F_{r}}}<\frac{h}{w}$:
$F_{s}=F_{\text {cre }}+k_{a}\left(0.50 F_{y}-0.866 F_{\text {cre }}\right)$
where
$k_{v}=$ shear buckling coefficient, as follows:

1) when $a / h<1$

$$
k_{\psi}=4+\frac{5.34}{(a / h)^{2}}
$$

2) when $a / h \geq 1$

$$
k_{v}=5.34+\frac{4}{(0 / h)^{2}}
$$

where $a / h=$ aspect ratio $=$ ratio of the distance between stiffeners to web depth
where

$$
\begin{aligned}
F_{c r i} & =290 \frac{\sqrt{F_{j} k_{v}}}{(h / w)} \\
K_{a} & =\text { aspect coefficient } \\
& =\frac{1}{\sqrt{1+(a / h)^{2}}} \\
F_{c r e} & =\frac{180000 k_{u}}{(h / w)^{2}}
\end{aligned}
$$

13.4.1.2 Combined shear and moment in stiffened web beams

Transversely stiffened web members depending on tension field action to carry shear shall be proportioned to satisfy the requirements of Clause 14.6 for combined shear and moment.

13.4.1.3 Tubular members and concrete-filled tubular members

The shear resistance, $V_{\prime \prime}$, of Class 1 and 2 tubular members and concrete-filled tubular members where local wall buckling is prevented shall be taken as
$V_{r}=0.66 \phi(A / 2) F_{y}$
where
$A=$ cross-sectional area of the tubular member portion of the concrete-filled member

13.4.2 Plastic analysis

In structures designed on the basis of a plastic analysis as defined in Clause 8.3.2, the factored shear resistance, V_{n} developed by the web of a flexural member subjected to shear shall be taken as
$V_{r}=0.8 \phi A_{w} F_{s}$
where F_{5} is determined in accordance with Clause 13.4.1.1.

13.4.3 Webs of flexural members not having two flanges

The factored shear resistance for cross-sections not having two flanges (e.g., solid rectangles, rounds, and T_{5}) shall be determined by rational analysis. The factored shear stress at any location in the crosssection shall be taken as not greater than 0.66ϕ Fy and shall be reduced where shear buckling is a consideration.

13.4.4 Pins

The total factored shear, V_{n} resistance of the nominal area of pins shall be taken as
$V_{t}=0.66 \phi A F_{y}$

13.4.5 Gusset plates and coped beams

The shear resistance of gusset plates and the shear resistance at the ends of coped beams shall be computed in accordance with Clause 13.11.

13.5 Bending - Laterally supported members

The factored moment resistance, M_{1}, developed by a member subjected to uniaxial bending moments about a principal axis where effectively continuous lateral support is provided to the compression flange, or where the member has no tendency to buckle laterally, shall be taken as follows:
a) for Class 1 and Class 2 sections (except that singly symmetric 1 -sections and T-sections shall not yield under service loads):

$$
\begin{aligned}
M_{r} & =\phi Z F_{y} \\
& =\phi M_{p}
\end{aligned}
$$

b) for Class 3 sections:

$$
\begin{aligned}
M_{r} & =\phi S F_{y} \\
& =\phi M_{y}
\end{aligned}
$$

c) for Class 4 sections:
i) when both the web and compression flange slenderness exceed the limits for Class 3 sections, the value of M_{r} shall be determined in accordance with CSA S136. The calculated value, F_{r}^{\prime} applicable to cold-formed members, shall be determined using only the values for F_{y} and F_{u} that are specified in the relevant structural steel material standard;
ii) when the flanges meet the requirements of Class 3 but the web slenderness exceeds the limit for Class 3, the requirements of Clause 14 shall apply; and
iii) when the web meets the requirements of Class 3 but the flange slenderness exceeds the limit for Class $3, M_{r}$ shall be calculated as follows: $M_{r}=\phi S_{e} F_{y}$
where
$S_{e}=$ effective section modulus determined using an effective flange width of $670 t / \sqrt{F_{y}}$ for flanges supported along two edges parallel to the direction of stress and an effective width of $200 t / \sqrt{F_{y}}$ for flanges supported along one edge parallel to the direction of stress. For flanges supported along one edge, b_{e} / t shall not exceed 60.

Alternatively, the moment resistance may be calculated using an effective yield stress determined from the flange width-to-thickness ratio meeting the Class 3 limit.

(1) 13.6 Bending - Laterally unsupported members

Where continuous lateral support is not provided to the compression flange of a member subjected to uniaxial strong axis bending, the factored moment resistance, M_{n} of a segment between effective brace points shall be determined as follows:
a) For doubly symmetric Class 1 and 2 sections, except closed square and circular sections:
i) when $M_{u}>0.67 M_{p}$:
$M_{t}=1.15 \phi M_{p}\left[1-\frac{0.28 M_{p}}{M_{u}}\right] \leq \phi M_{p}$
ii) when $M_{u} \leq 0.67 M_{p}$:
$M_{r}=\phi M_{u}$
where the critical elastic moment of the unbraced segment, M_{u}, is given by
$M_{u}=\frac{\omega_{2} \pi}{L} \sqrt{E l_{y} G J+\left(\frac{\pi E}{L}\right)^{2} l_{y} C_{w}}$
where
$\omega_{2}=\frac{4 M_{\operatorname{mox}}}{\sqrt{M_{\max }^{2}+4 M_{a}^{2}+7 M_{b}^{2}+4 M_{c}^{2}}} \leq 2.5$
where
$C_{w} \quad=$ warping torsional constant, taken as 0 for rectangular hollow structural sections
」 = St. Venant torsional constant
$L=$ length of unbraced segment of beam
$M_{\text {mox }}=$ maximum factored bending moment magnitude in unbraced segment
$M_{a}=$ factored bending moment at one-quarter point of unbraced segment
$M_{b}=$ factored bending moment at midpoint of unbraced segment
$M_{c} \quad=$ factored bending moment at three-quarter point of unbraced segment
$\omega_{2}=$ coefficient to account for increased moment resistance of a laterally unsupported doubly symmetric beam segment when subject to a moment gradient

Where the bending moment distribution within the unbraced segment is effectively linear, the equivalent moment factor, ω_{2}, may be taken as
$1.75+1.05 \kappa+0.3 \kappa^{2} \leq 2.5$
where
$\kappa \quad=$ ratio of the smaller factored moment to the larger factored moment at opposite ends of the unbraced length (positive for double curvature and negative for single curvature)

For unbraced beam segments loaded above the shear centre between brace points, where the method of load delivery to the member provides neither lateral nor rotational restraint to the member, the associated destabilizing effect shall be taken into account using a rational method. For loads applied at the level of the top flange, in lieu of a more accurate analysis, M_{u} may be determined using $\omega_{2}=1.0$ and using an effective length, for pinned-ended beams, equal to 1.2 L and, for all other cases, 1.4 L .
b) For doubly symmetric Class 3 and 4 sections, except closed square and circular sections, and for channels:
i) when $M_{u}>0.67 M_{y}$:
$M_{r}=1.15 \phi M_{y}\left[1-\frac{0.28 M_{y}}{M_{u}}\right]$
but not greater than ϕM_{y} for Class 3 sections and the value specified in Clause 13.5 c) iii) for Class 4 sections; and
ii) when $M_{u} \leq 0.67 M_{y}$:
$M_{c}=\phi M_{u}$
where M_{u} and ω_{2} are as specified in Item a) ii).
c) For closed square and circular sections, M_{r} shall be determined in accordance with Clause 13.5 .
d) For cantilever beams, a rational method of analysis taking into account the lateral and torsional restraint conditions at the supports and tip of the cantilever, as well as the loading conditions and the flexibility of the backspan, shall be used.
e) For singly symmetric (monosymmetric) Class 1, 2, or 3 1-sections and T-sections, lateral-torsional buckling strength shall be checked separately for each flange that experiences compression under factored loads at any point along its unbraced length, as follows (except that these sections shall not yield under service loads):
i) when $M_{u}>M_{y r}$;
$M_{r}=\phi\left[M_{p}-\left(M_{p}-M_{\nu r}\right)\left(\frac{L-L_{u}}{L_{\psi r}-L_{u}}\right)\right] \leq \phi M_{\rho}$
except for Class 3 sections, as well as Class 1 and 2 T-sections where at any point within the unbraced segment the stem tip is in compression, where M_{p} is replaced with M_{y}
where
$M_{y r}=0.75_{x} F_{y}$ with S_{x} taken as the smaller of the two potential values
$L_{y r}=$ length L obtained by setting $M_{u}=M_{y r}$
$L_{u}=1.1 r_{t} \sqrt{E / F_{y}}=\frac{490 r_{i}}{\sqrt{F_{v}}}$
where
$r_{t}=\frac{b_{c}}{\sqrt{12\left(1+\frac{n_{n} \pi}{3 c_{c} c t}\right)}}$
where

$$
\begin{aligned}
& h_{c}=\text { depth of the web in compression } \\
& b_{c}=\text { width of compression flange } \\
& t_{c}=\text { thickness of compression flange }
\end{aligned}
$$

ii) when $M_{u} \leq M_{y r}$:
$M_{r}=\phi M_{u}$
where the critical elastic moment of the unbraced segment, M_{u}, is given by
$M_{u}=\frac{\omega_{3} \pi^{2} E I_{v}}{2 L^{2}}\left[\beta_{x}+\sqrt{\beta_{x}^{2}+4\left(\frac{G J L^{2}}{\pi^{2} E I_{y}}+\frac{C_{w}}{I_{v}}\right)}\right]$
and where in lieu of more accurate values the section properties βx and C_{w} may be evaluated as
$\beta_{x}=0.9(d-t)\left(\frac{2 I_{y c}}{I_{y}}-1\right)\left(1-\left(\frac{I_{y}}{I_{x}}\right)^{2}\right)$
$C_{w}=\frac{I_{y c} I_{y t}(d-t)^{2}}{I_{y}}$
where
$\beta_{x}=$ asymmetry parameter for singly symmetric beams
$I_{y c}=$ moment of inertia of the compression flange about the y-axis
$l_{y t}=$ moment of inertia of the tension flange about the y-axis
and when singly symmetric beams are in single curvature
$\omega_{3}=\omega_{2}$ for beams with two flanges
$=1.0$ for T-sections
in all other cases
$\omega_{3}=\omega_{2}\left(0.5+2\left(l_{y c} / l_{y}\right)^{2}\right)$ but ≤ 1.0 for T-sections
For unbraced beam segments loaded above the section mid-height and between brace points, where the method of load delivery to the member provides neither lateral nor rotational
restraint to the member, the associated destabilizing effect shall be taken into account using a rational method.
For other singly symmetric shapes, a rational method of analysis shall be used.
f) For biaxial bending, the member shall meet the following requirement:

$$
\frac{M_{f x}}{M_{r x}}+\frac{M_{f y}}{M_{r y}} \leq 1.0
$$

13.7 Lateral bracing for members in structures analyzed plastically

Members in structures or portions of structures in which the distributions of moments and forces have been determined by a plastic analysis shall be braced to resist lateral and torsional displacement at all hinge locations. However, bracing shall not be required at the location of the last hinge to form in the failure mechanism assumed as the basis for proportioning the structure. The laterally unsupported distance, $L_{c r}$ from braced hinge locations to the nearest adjacent point on the frame similarly braced shall not exceed the following:
a) for static plastic analysis and for seismic design in accordance with Clauses 27.3 and 27.7.9.3:

$$
\frac{L_{c r}}{r_{y}}=\frac{25000+15000 \mathrm{~K}}{F_{y}}
$$

b) for seismic design in accordance with Clauses 27.2 and 27.9:
$\frac{L_{\text {cr }}}{r_{y}}=\frac{17250+15500 \mathrm{~K}}{F_{y}}$
where k is as specified in Clause 13.6 a).
Except as specified in Items a) and b), the maximum unsupported length of members in structures analyzed plastically need not be less than that permitted for the same members in structures analyzed elastically.

13.8 Axial compression and bending

13,8.1 General

In Clause 13.8, a distinction is made between braced and unbraced frames. A frame without bracing is classified as unbraced. A frame with bracing is classified as braced if its sway stiffness is at least five times that of the frame with only the existing moment connections and without the bracing; otherwise, it is classified as unbraced. For members not contributing through bending to the lateral strength and stability of the structure, the conditions applicable to braced frames may be used.
Note: For segmented members, the in-plane compressive resistance may be determined assuming pinned end connections. See Clause 13.3.4.

13.8.2 Member strength and stability - Class 1 and Class 2 sections of I-shaped members

Members required to resist both bending moments and an axial compressive force shall be proportioned so that
$\frac{C_{I}}{C_{r}}+\frac{0.85 U_{1 x} M_{f x}}{M_{\text {rex }}}+\frac{\beta U_{1 y} M_{f v}}{M_{r y}} \leq 1.0$
where
C_{f} and $M_{f}=$ the maximum load effects, including stability effects as specified in Clause 8.4
$\beta=0.6+0.4 \lambda_{y} \leq 0.85$
The capacity of the member shall be examined for
a) cross-sectional strength (members in braced frames only) with $\beta=0.6$, in which case
i) C_{r} shall be as specified in Clause 13.3, with the value $\lambda=0$;
ii) M_{r} shall be as specified in Clause 13.5 (for the appropriate class of section); and
iii) $U_{1 x}$ and $U_{1 y}$ shall be as specified in Clause 13.8.4, but not less than 1.0;
b) overall member strength, in which case
i) C_{r} shall be as specified in Clause 13.3, with the value $K=1$, except that for uniaxial bending, C_{r} shall be based on the axis of bending (see also Clause 10,3.2);
ii) M_{r} shall be as specified in Clause 13.5 (for the appropriate class of section);
iii) $U_{1 x}$ and $U_{1 y}$ shall be taken as 1.0 for members in unbraced frames; and
iv) $U_{1 x}$ and $U_{1 y}$ shall be as specified in Clause 13.8 .4 for members in braced frames; and
c) lateral torsional buckling strength, when applicable, in which case
i) C_{r} shall be as specified in Clause 13.3 and based on weak-axis or torsional-flexural buckling (see also Clause 10.3.3);
ii) $M_{r x}$ shall be as specified in Clause 13.6 (for the appropriate class of section);
iii) $M_{r y}$ shall be as specified in Clause 13.5 (for the appropriate class of section);
iv) $U_{1 x}$ and $U_{1 y}$ shall be taken as 1.0 for members in unbraced frames;
v) $U_{1 x}$ shall be as specified in Clause 13.8.4, but not less than 1.0 , for members in braced frames; and
vi) $U_{1 y}$ shall be as specified in Clause 13.8 .4 for members in braced frames. In addition, the member shall meet the following requirement:

$$
\frac{M_{f x}}{M_{r x}}+\frac{M_{f y}}{M_{r y}} \leq 1.0
$$

where $M_{r x}$ and $M_{r y}$ are as specified in Clause 13.5 or 13.6, as appropriate.

13.8.3 Member strength and stability - All classes of sections except Class 1 and Class 2 sections of I-shaped members

Members required to resist both bending moments and an axial compressive force shall be proportioned so that
$\frac{c_{f}}{c_{f}}+\frac{U_{1 x} M_{f x}}{M_{\text {ex }}}+\frac{U_{1 y} M_{f y}}{M_{r y}} \leq 1.0$
where all terms are as specified in Clause 13.8.2
The capacity of the member shall be examined for the following cases in the manner specified in Clause 13.8.2:
a) cross-sectional strength (members in braced frames and tapered members only);
b) overall member strength; and
c) lateral-torsional buckling strength.

In addition, for braced frames, the member shall meet the following requirement:
$\frac{M_{f x}}{M_{r x}}+\frac{M_{f y}}{M_{r y}} \leq 1.0$
where $M_{r x}$ and $M_{r y}$ are as specified in Clause 13.5 or 13.6 , as appropriate.

13.8.4 Value of U_{1}

In lieu of a more detailed analysis, the value of U_{1} for the axis under consideration, accounting for the second-order effects due to the deformation of a member between its ends, shall be taken as
$U_{1}=\left[\frac{\omega_{1}}{1-\frac{c_{1}}{c_{e}}}\right]$
where ω_{1} is as specified in Clause 13.8.5 and
$C_{e}=\frac{\pi^{2} E I}{L^{2}}$

13.8.5 Values of ω_{1}

Unless otherwise determined by analysis, the following values shall be used for ω_{1} :
a) for members not subjected to transverse loads between supports:
$\omega_{1}=0.6-0.4 K \geq 0.4$
where
$\kappa \quad=$ ratio of the smaller factored moment to the larger factored moment at opposite ends of the member length (positive for double curvature and negative for single curvature)
b) for members subjected to distributed loads or a series of point loads between supports: $\omega_{1}=1.0$
c) for members subjected to a concentrated load or moment between supports: $\omega_{1}=0.85$
For the purpose of design, members subjected to a concentrated load or moment between supports (e.g., segmented columns) may be considered to be divided into segments at the points of load (or moment) application. Each segment shall then be treated as a member that depends on its own flexural stiffness to prevent sidesway in the plane of bending considered and ω_{1} shall be taken as 0.85 . In calculating the slenderness ratio for use in Clause 13.8, the total length of the compression member shall be used.
Note: For references to more exact methods often justified for crane-supporting columns and similar applications, see Annex C.

13.9 Axial tension and bending

13.9.1

Members required to resist both bending moments and an axial tensile force shall be proportioned so that
$\frac{T_{f}}{T_{r}}+\frac{M_{l}}{M_{f}} \leq 1.0$
where M_{r} is as specified in Clause 13.5.

13.9 .2

Additionally, the following shall apply to laterally unsupported members:
a)
$\frac{M_{f}}{M_{t}}-\frac{T_{t} Z}{M_{f} A} \leq 1.0$ for Class 1 and Class 2 sections
b)

$$
\frac{M_{f}}{M_{r}}-\frac{T_{f} S}{M_{P} A} \leq 1.0 \text { for Class } 3 \text { and Class } 4 \text { sections }
$$

where M_{r} is as specified in Clause 13.6.

13.10 Load bearing

The factored bearing resistance in newtons, B_{n} developed by a member or portion of a member subjected to bearing shall be taken as follows:
a) on the contact area of accurately cut or fitted parts:
$B_{r}=1.50 \phi F_{y} A$
b) on expansion rollers or rockers:
$B_{r}=0.00026 \phi\left(\frac{R_{1}}{1-\frac{R_{1}}{R_{2}}}\right) F_{y}^{2}$
where
$F_{y} \quad=$ specified minimum yield point of the weaker part in contact
R_{1} and $L=$ radius and length, respectively, of the rolier or rocker
$R_{2} \quad=$ radius of the groove of the supporting plate

13.11 Block shear - Tension member, beam, and plate connections

The factored resistance for a potential failure involving the simultaneous development of tensile and shear component areas shall be taken as follows:
$T_{r}=\phi_{\psi}\left[U_{\nu} A_{n} F_{\nu}+0.6 A_{g v} \frac{\left(F_{\nu}+F_{u}\right)}{2}\right]$
where
a) U_{t} is an efficiency factor and $U_{t}=1.0$ is used for symmetrical blocks or failure patterns and concentric loading or is taken from the following for specific applications:

Connection type	$\boldsymbol{U}_{\boldsymbol{t}}$
Flange-connected T_{5}	1.0
Angles connected by one leg and stem-connected T_{5}	0.6
Coped beams	
One bolt line	0.9
Two bolt lines	0.3

b) A_{n} is the net area in tension, as specified in Clause 12; and
c) $A_{g v}$ is the gross area in shear.

For steel grades with $F_{y}>460 \mathrm{MPa},\left(F_{y}+F_{y}\right) / 2$ shall be replaced with F_{y} in the determination of T_{n}
The second term of the expression in this Clause may be used to calculate the potential plate tear-out resistance of one or more bolts along parallel planes tangent to the bolt hole(s) and directed towards the edge of the plate.

13.12 Bolts and local connection resistance

13.12.1 Bolts in bearing-type connections

13.12,1.1 General

For bolts subject to shear or tension, ϕ_{θ}, shall be taken as 0.80 .

Δ 13.12.1.2 Bolts in bearing and shear

The factored resistance developed at the bolts in a bolted joint subjected to bearing and shear shall be taken as the lesser of
a) the factored bearing resistance at bolt holes B_{r} (except for long slotted holes loaded perpendicular to the slot), B_{n} as follows:
$B_{r}=3 \phi_{b r}{ }^{n} t d F_{u}$
b) the factored bearing resistance perpendicular to long slotted holes, B_{n} as follows:
$B_{r}=2.4 \phi_{b r} n t d F_{u}$
where
$\phi_{b r}=0.8$
$F_{u}=$ tensile strength of the connected material

The reduced bearing resistance of holes close to the edge in the direction of the loading shall be accounted for by appropriate consideration of the resistance requirements of Clause 13.11; or Note: See also Clauses 13.2 and 13.11 for resistances of bolted parts and Clause 22.3 for limiting end and edge distances.
c) the factored shear resistance of the bolts, V_{r}, as follows:
$V_{r}=0.60 \phi_{b} n m A_{b} F_{u}$
For lap splices with $L \geq 760 \mathrm{~mm}$, where L is the joint length between centres of end fasteners:
$V_{r}=0.50 \phi_{b} n m A_{b} F_{u}$
When the bolt threads are intercepted by a shear plane, the factored shear resistance shall be taken as $0.70 \mathrm{~V}_{\text {r }}$.
Note: The specified minimum tensile strength, F_{u} for bolts is given in the relevant ASTM Standard, e.g., for
a) ASTM A325M, F_{u} is 830 MPa ;
b) ASTM A490M, F_{u} is 1040 MPa ;
c) ASTM A325 or ASTM F1852 bolts 1 inch or less in diameter, F_{u} is 825 MPa ;
d) ASTM A325 or ASTM F 1852 bolts greater than 1 inch in diameter, Fu is 725 MPa ;
e) ASTM A490 or ASTM F2280 bolts, F_{u} is 1035 MPa ; and
f) ASTM A307 Grade A bolts with heavy hex nuts as appropriate, per ASTM A563, $F_{u}=410 \mathrm{MPa}$.

13.12.1.3 Bolts in tension

The factored tensile resistance, T_{6}, that can be developed by a bolt in a joint subjected to factored tensile force, T_{f}, shall be taken as
$T_{r}=0.75 \phi_{b} A_{b} F_{u}$
The calculated factored tensile force, T_{f}, is independent of the pretension and shall be taken as the sum of the external load plus any tension caused by prying action.
Note: See also Clause 26.5 for bolts in tension subjected to load combinations involving fatigue.

13.12.1.4 Bolts in combined shear and tension

A bolt in a joint that is required to develop resistance to both tension and shear shall be proportioned so that
$\left(\frac{V_{f}}{V_{r}}\right)^{2}+\left(\frac{T_{f}}{T_{r}}\right)^{2} \leq 1$
where V_{r} is as specified in Clause 13.12.1.2 and T_{r} is as specified in Clause 13.12.1.3.

13.12.2 Bolts in slip-critical connections

13.12.2.1 General

For a slip-critical connection under the forces and moments produced by specified loads, slip of the assembly shall not occur. In addition, the effects of factored loads shall not exceed the resistances of the connection as specified in Clause 13.12.1.

13.12.2.2 Shear connections

The slip resistance, V_{s}, of a bolted joint, subjected to shear, V, shall be taken as
$V_{s}=0.53 c_{s} k_{5} m n A_{b} F_{u}$
where
$c_{5}=$ the resistance factor for slip resistance of bolted joints
$k_{s}=$ the mean slip coefficient as determined by tests carried out in accordance with "Testing method to Determine the Slip Coefficient for Coatings Used in Bolted Joints", Annex A, of RCSC Specification for Structural Joints Using High-Strength Bolts

See Table 3 for values of k_{5} and c_{5}.
When long slotted holes are used in slip-critical connections, slip resistance shall be taken as $0.75 \mathrm{~V}_{5}$.
(1) 13.12.2.3 Connections in combined shear and tension

The bolts in a bolted joint, required to develop resistance to both tension, T, and shear, V, shall be proportioned so that the following relationship is satisfied for the specified loads:
$\frac{V}{V_{s}}+1.9 \frac{T}{n A_{b} F_{u}} \leq 1.0$
where V_{s} is the slip resistance specified in Clause 13.12.2.2.

13.13 Welds

13.13.1 General

The resistance factor, ϕ_{w}, for welded connections shall be taken as 0.67 .
Note: See Table 4 for matching electrode classifications for C5A G40,21 steels.

13.13.2 Shear

13.13.2.1 Complete and partial joint penetration groove welds, and plug and siot welds

The factored shear resistance shall be taken as the lesser of
a) for the base metal;

$$
V_{r}=0.67 \phi_{w} A_{m} F_{u}
$$

b) for the weld metal:
$V_{r}=0.67 \phi_{w} A_{w} X_{u}$
where
$A_{m}=$ shear area of effective fusion face
$A_{w}=$ area of effective weld throat, plug, or slot

(1) $13,13,2.2$ Fillet welds

The factored resistance for direct shear and tension- or compression-induced shear shall be taken as
$V_{r}=0.67 \phi_{w} A_{w} X_{u}\left(1.00+0.50 \sin ^{1.5} \theta\right) M_{w}$
where
$\theta=$ angle, in degrees, of axis of weld segment with respect to the line of action of applied force (e. g., 0° for a longitudinal weld and 90° for a transverse weld)
$M_{w}=$ strength reduction factor for multi-orientation fillet welds. For joints with a single weld orientation, $M_{w}=1.0$; for joints with multiple weld orientations, for each segment $M_{w}=\frac{0.85+\theta_{1} / 600}{0.85+\theta_{2} / 600}$
where
$\theta_{1}=$ orientation of the weld segment under consideration
$\theta_{2}=$ orientation of the weld segment in the joint that is nearest to 90°
Weld returns that are not accounted for in the joint capacity need not be considered a weld segment in the context of this Clause.

When an overmatched electrode is used, the value of X_{u} in this Clause shall not exceed the value of X_{u} of the matching electrode.

13.13.2.3 Flare bevel groove welds for open-web steel joists

The factored resistance for direct shear and tension- or compression-induced shear shall be taken as
$V_{r}=0.67 \phi_{w} A_{w} F_{u}$
where
$A_{w}=0.50 w_{f} L$ (or as established by procedure qualification tests)
where
$w_{f}=$ width of flare bevel groove weld face
$F_{u}=$ least ultimate tensile strength of the components in the joint

13.13.3 Tension normal to axis of weld

13.13.3.1 Complete joint penetration groove weld made with matching electrodes The factored tensile resistance shall be taken as that of the base metal.

13.13.3.2 Partial joint penetration groove weld made with matching electrodes

The factored tensile resistance shall be taken as
$T_{r}=\phi_{w} A_{n} F_{u} \leq \phi A_{g} F_{y}$
where
$A_{n}=$ nominal area of fusion face normal to the tensile force

When overall ductile behaviour is desired (member yielding before weld fracture), the following shall apply:
$A_{n} F_{u}>A_{g} F_{y}$

13.13.3.3 Partial joint penetration groove weld combined with a fillet weld, made with matching electrodes

The factored tensile resistance shall be taken as
$T_{r}=\phi_{w} \sqrt{\left(A_{n} F_{u}\right)^{2}+\left(A_{w} X_{u}\right)^{2}} \leq \phi A_{g} F_{y}$
where
$A_{g}=$ gross area of the components of the tension member connected by the welds

13.13.4 Compression normal to axis of weld

13.13.4.1 Complete and partial joint penetration groove welds made with matching electrodes

The compressive resistance shall be taken as that of the effective area of base metal in the joint. For partial joint penetration groove welds, the effective area in compression shall be taken as the nominal area of the fusion face normal to the compression plus the area of the base metal fitted in contact bearing (see Clause 28.5).

13.13.4.2 Cross-sectional properties of continuous longitudinal welds

Continuous longitudinal welds made with matching electrodes may be considered as contributing to the cross-sectional properties $\mathrm{A}, \mathrm{S}, \mathrm{Z}$, and I of the cross-section.

13.13.4.3 Welds for hollow structural sections

The provisions of Annex L of CSA W59 may be used for hollow structural sections.

13.14 Welds and high-strength bolts in combination

The factored shear resistance of a joint that combines welds and bolts in the same plane, $V_{r, j o i n t}$, shall be taken as the largest of
a) $V_{\text {friction }}+V_{\text {ctrans }}+0.85 V_{\text {clongi }}$
b) $V_{\text {tretion }}+V_{\text {tomen }}+0.5 V_{\text {tatali }}$ and
c) $V_{\text {tasoll }}$.
where
$V_{\text {friction }}=$ plate friction resistance component
$=0.25 \mathrm{~V}_{5}$ when the bolts are pretensioned in accordance with Clause 23.7
$=0$ when the bolts are not pretensioned
$V_{\text {btrons }}=$ transverse weld resistance component
$=V_{r}$ determined from Clause 13.13.2.2 for $\theta=90^{\circ}$
$V_{\text {rlong }} \quad=$ longitudinal weld resistance component
$=V_{T}$ determined from Clause 13.13.2.2 for $\theta=0^{\circ}$
$V_{r, b o l t}=$ bolt shear resistance component
$=V_{r}$ determined from Clause 13,12.1.2

14 Beams and girders

14.1 Proportioning

Beams and girders consisting of rolled shapes (with or without cover plates), hollow structural sections, or fabricated sections shall be proportioned on the basis of the properties of the gross section or the modified gross section. No deduction need be made for fastener holes in webs or flanges unless the reduction of flange area by such holes exceeds 15% of the gross flange area, in which case the excess shall be deducted. The effect of openings other than holes for fasteners shall be considered in accordance with Clause 14.3.3.

14.2 Flanges

14.2.1

Flanges of welded girders should consist of a single plate or a series of plates joined end-to-end by complete penetration groove welds.

14.2.2

Flanges of bolted girders shall be proportioned so that the total cross-sectional area of cover plates does not exceed 70% of the total flange area.

14.2.3

Fasteners or welds connecting flanges to webs shall be proportioned to resist horizontal shear forces due to bending combined with any loads that are transmitted from the flange to the web other than by direct bearing. Spacing of fasteners or intermittent welds in general shall be in proportion to the intensity of the shear force and shall not exceed the maximum for compression or tension members, as applicable, in accordance with Clause 19.

14.2.4

Partial-length flange cover plates shall be extended beyond the theoretical cut-off point and the extended portion shall be connected with sufficient fasteners or welds to develop a force in the cover plate at the theoretical cut-off point not less than
$P=\frac{A M_{f f} y}{l_{g}}$
where
$P=$ required force to be developed in cover plate
$A=$ area of cover plate
$M_{f c}=$ moment due to factored loads at theoretical cut-off point
$y=$ distance from centroid of cover plate to neutral axis of cover-plated section
$I_{g}=$ moment of inertia of cover-plated section
Additionally, for welded cover plates, the longitudinal welds connecting the cover-plate termination to
the beam or girder shall be designed to develop the force, P, within a length, a^{\prime}, measured from the actual end of the cover plate, determined as follows:
a) when there is a continuous weld equal to or larger than three-fourths of the cover-plate thickness across the end of the plate and along both edges of the cover plate, a^{\prime} shall be taken as the width of the cover plate;
b) when there is a continuous weld smaller than three-fourths of the cover-plate thickness across the end of the plate and along both edges, a^{\prime} shall be taken as 1.5 times the width of the cover plate; and
c) When there is no weld across the end of the plate but there are continuous welds along bath edges, a^{\prime} shall be taken as 2 times the width of the cover plate,

14.3 Webs

14.3.1 Maximum slenderness

The slenderness ratio, h / w, of a web shall not exceed $83000 / F_{v}$
where
$F_{y}=$ specified minimum yield point of the compression flange steel
This limit may be waived if analysis indicates that buckling of the compression flange into the web will not occur at factored load levels.

14.3.2 Web crippling and yielding

The factored bearing resistance of the web shall be taken as follows:
a) for interior loads (concentrated load applied at a distance from the member end greater than the member depth), the smaller of
i) $B_{r}=\phi_{b i} w(N+10 t) F_{y}$
ii) $B_{r}=1.45 \phi_{b i} w^{2} \sqrt{F_{y} E}$
b) for end reactions, the smaller of

1) $B_{r}=\phi_{b e} w(N+4 t) F_{y}$
ii) $B_{r}=0.60 \phi_{b e} w^{2} \sqrt{F_{y} E}$
where
$\phi_{b i}=0.80$
$\phi_{\text {be }}=0.75$
$N=$ length of bearing
Where the bearing resistance of the web is exceeded, bearing stiffeners shall be used (see Clause 14.4).

14.3.3 Openings

14.3.3.1

Except as specified in Clause 14.1, the effect of all openings in beams and girders shall be considered in the design. At all points where the factored shear or moments at the net section would exceed the capacity of the member, adequate reinforcement shall be added to the member at these points to provide the required strength and stability.

14.3.3.2

Unreinforced circular openings may be located in the web of unstiffened prismatic Class 1 and Class 2 beams or girders without considering net section properties, provided that
a) the load is uniformly distributed;
b) the section has an axis of symmetry in the plane of bending;
c) the openings are located within the middle third of the depth and the middle half of the span of the member;
d) the spacing between the centres of any two adjacent openings, measured parallel to the longitudinal axis of the member, is a minimum of 2,5 times the diameter of the larger opening; and
e) the factored maximum shear at the support does not exceed 50% of the factored shear resistance of the section.

14.3.3.3

If the forces at openings are determined by an elastic analysis, the procedure shall be in accordance with published, recognized principles.

14.3.3.4

The strength and stability of the member in the vicinity of openings may be determined on the basis of assumed locations of plastic hinges, such that the resulting force distributions satisfy the requirements of equilibrium, provided that the analysis is carried out in accordance with Items a), b), and f) of Clause 8.3.2. However, for l-type members, the width-to-thickness ratio of the flanges may meet only the requirements of Class 1 or 2 sections, provided that the webs meet the width-to-thickness limit of Class 1 sections.

14.3.4 Effect of thin webs on moment resistance

When the web slenderness ratio, h / w, exceeds $1900 / \sqrt{M_{f} / \phi 5}$, the flange shall meet the width-tothickness ratios of Class 3 sections in accordance with Clause 11, and the factored moment resistance of the beam or girder, M_{r}^{\prime} shall be determined as follows:
$M_{r}^{\prime}=M_{t}\left[1-0.0005 \frac{A_{w}}{A_{f}}\left(\frac{h}{w}-\frac{1900}{\sqrt{M_{f} / \phi S}}\right)\right]$
where
$M_{r}=$ factored moment resistance determined in accordance with Clause 13.5 or 13.6, but not to exceed ϕM_{y}

When an axial compressive force acts on the girder in addition to the moment, the constant 1900 in the expression for $M_{;}^{\prime}$ shall be reduced by the factor $\left(1-0,65 C_{f} / \phi C_{\nu}\right)$ (see also Clause 11.2).

14.4 Bearing stiffeners

14.4.1

Pairs of bearing stiffeners on the webs of single-web beams and girders shall be required at points of concentrated loads and reactions wherever the bearing resistance of the web is exceeded (see Clause 14.3.2). Bearing stiffeners shall also be required at unframed ends of single-web girders having web depth-to-thickness ratios greater than $1100 \sqrt{F_{y}}$, Box girders may employ diaphragms designed to act as bearing stiffeners.

14.4.2

Bearing stiffeners shall bear against the flange or flanges through which they receive their loads and shall extend approximately to the edge of the flange plates or flange angles. They shall be designed as columns in accordance with Clause 13.3, assuming that the column section consists of the pair of stiffeners and a centrally located strip of the web equal to not more than 25 times its thickness at the interior stiffeners or a strip equal to not more than 12 times its thickness when the stiffeners are located at the end of the web. The effective column length, $K L$, shall be taken as not less than threefourths of the length of the stiffeners in calculating the ratio KL / r. Only that portion of the stiffeners outside of the angle fillet or the flange-to-web welds shall be considered effective in bearing. Angle bearing stiffeners shall not be crimped. Bearing stiffeners shall be connected to the web to develop the full force required to be carried by the stiffener into the web or vice versa. The stiffeners shall conform to Clause 11.2 (see Table 1) and have a width to thickness ratio that satisfies $\frac{b}{t} \leq \frac{200}{\sqrt{5}}$.

14.5 Intermediate transverse stiffeners

14.5.1

Intermediate transverse stiffeners, when used, shall be spaced to suit the shear resistance determined in accordance with Clause 13.4, except that at girder end panels or at panels adjacent to large openings, the tension-field component shall be taken as zero unless means are provided to anchor the tension field.

14.5.2

Except as specified in Clause 14.5.1, the maximum distance between stiffeners, when required, shall not exceed the values shown in Table 5.
\triangle 14.5.3
Intermediate transverse stiffeners may be furnished singly or in pairs. Width-to-thickness ratios shall meet the requirements of Clause 11. The moment of inertia of the stiffener, or pair of stiffeners if so furnished, shall be not less than $(h / 50)^{4}$ taken about an axis in the plane of the web. The gross area, $A_{s,}$ of intermediate stiffeners, or pairs of stiffeners if so furnished, shall be as follows:

$$
A_{s}=\frac{a w}{2}\left[1-\frac{a / h}{\sqrt{1+(a / h)^{2}}}\right] C Y D
$$

where

where
$k_{v}=$ shear buckling coefficient (see Clause 13.4.1.1)
$F_{y}=$ specified minimum yield point of web steel
$Y=$ ratio of specified minimum yield point of web steel to specified minimum yield point of stiffener steel
$D=$ stiffener factor
$=1.0$ for stiffeners furnished in pairs
$=1.8$ for single-angle stiffeners
$=2.4$ for single-plate stiffeners

When the greatest shear, V_{f}, in an adjacent panel is less than that permitted by Clause 13.4.1.1, this gross area requirement may be reduced by multiplying by the ratio V_{f} / V_{f}.

14.5.4

Intermediate transverse stiffeners shall be connected to the web for a shear transfer per pair of stiffeners (or per single stiffener when so furnished), in newtons per millimetre of web depth, h, not less than $1 \times 10^{-4} h F_{y}^{1.5}$, except that when the largest calculated shear, V_{f}, in the adjacent panels is less than V_{f}, this shear transfer may be reduced in the same proportion. However, the total shear transfer shall not be less than the value of any concentrated load or reaction required to be transmitted to the web through the stiffener. Fasteners connecting intermediate transverse stiffeners to the web shall be spaced not more than 300 mm from centre-to-centre. If intermittent fillet welds are used, the clear distance between welds shall not exceed 16 times the web thickness or four times the weld length.

14.5.5

When intermediate stiffeners are used on only one side of the web, the stiffeners shall be attached to the compression flange. Intermediate stiffeners used in pairs shall have at least a snug fit against the compression flange. When stiffeners are cut short of the tension flange, the distance cut short shall be equal to or greater than four times but not greater than six times the girder web thickness. Stiffeners should be clipped to clear girder flange-to-web welds.

14.6 Combined shear and moment

Transversely stiffened girders depending on tension-field action to carry shear shall be proportioned such that
a) $0,727 \frac{M_{f}}{M_{1}}+0.455 \frac{V_{f}}{V_{f}} \leq 1.0$
b) $\frac{M_{f}}{M_{t}} \leq 1.0$
c) $\frac{v_{f}}{v_{r}} \leq 1.0$
where
$M_{r}=$ value determined in accordance with Clause 13.5 or 13.6, as applicable
$V_{r}=$ value determined in accordance with Clause 13.4

14.7 Rotational restraint at points of support

Beams and girders shall be restrained against rotation about their longitudinal axes at points of support.

14.8 Copes

14.8.1

The effect of copes on flexural yielding, local web buckling, and lateral torsional buckling resistance of a beam or girder shall be taken into account.

14.8.2

The effect of copes in reducing the net area of the web available to resist transverse shear and the effective net area of potential paths of minimum resistance shall be taken into account (see Clause 13.11).

14.9 Lateral forces

The flanges of beams and girders supporting cranes or other moving loads shall be proportioned to resist any lateral forces produced by such loads.

14.10 Torsion

14.10.1

Beams and girders subjected to torsion shall have sufficient strength and rigidity to resist the torsional moment and forces in addition to other moments or forces. The connections and bracing of such members shall be adequate to transfer the reactions to the supports.

14.10.2

The factored resistance of 1 -shaped members subject to combined flexure and torsion may be determined from moment-torque interaction diagrams that take into account the normal stress distribution due to flexure and warping torsion and the St. Venant torsion. Assumed normal stress distributions shall be consistent with the class of section.

14.10.3

Members subject to torsional deformations required to maintain compatibility of the structure need not be designed to resist the associated torsional moments, provided that the structure satisfies the requirements of equilibrium.

14.10.4

For all members subject to loads causing torsion, the torsional deformations under specified loads shall be limited in accordance with Clause 6,3,1.1. For members subject to torsion or to combined flexure and torsion, the maximum combined normal stress, as determined by an elastic analysis, arising from warping torsion and bending due to the specified loads shall not exceed F_{y}.

15 Trusses

15.1 Analysis

15.1.1 Simplified method

The simplified method assumes that all members are pin-connected and loads are only applied at the panel points, except that bending effects due to transverse loads applied between panel points are
assessed by taking into account any continuity of the members. This method may be used when compression members are at least Class 3.

15.1.2 Detailed method

The detailed method accounts for the actual loading and joint fixity, The detailed method shall be used for trusses
a) with panels adjacent to abrupt changes in the slope of a chord;
b) with Vierendeel panels;
c) with panels at abrupt changes in transverse shear; or
d) designed for fatigue.

15.2 General requirements

) 15.2.1 Effective lengths of compression members

The effective length for buckling in the plane of the truss shall be taken as the distance between the lines of intersection of the working points of the web members and the chord. The effective length for buckling perpendicular to the plane of the truss shall be equal to the distance between the points of lateral support. For built-up members, see Clause 19. For single-angle members, see also Clause 13.3.3. Note: For the effective lengths of compression members in trusses comprising hollow structural sections, see CISC's. Hollow Structural Section; Connections and Trusses - A Design Guide.

15.2.2 Joint eccentricities

Bending moments due to joint eccentricities shall be taken into account. The eccentricity of work points at a joint or at a support shall be taken into account.

15.2.3 Stability

Trusses shall be braced to ensure their lateral stability. Brace members that support compression chords at discrete points shall meet the requirements of Clause 9.2. Ends of compression chords that are not attached to a supporting member shall be braced laterally, unless it can be demonstrated that the support is not necessary.

15.2.4 Chord members

Splices may occur at any point in chord members.

15.2.5 Web members

The factored resistances of the first compression web member subject to transverse shear, and its connections, shall be determined with their respective resistance factors, ϕ, multiplied by 0.85 .

The bending moments due to truss geometric distortions of end compression web members of bottom bearing trusses shall be included in the design. The simplified method may be used.

Splices may occur at any point in web members.

15.2.6 Compression chord supports

Truss web members that provide support to a compression chord in the plane of the truss shall be designed for an additional force equal to 0.02 of the chord force, unless the brace force has been determined by rigorous analysis.

15.2.7 Maximum slenderness ratio of tension chords

The maximum slenderness ratio shall be limited to 240 , except when other means are provided to control flexibility, sag, vibration, and slack in a manner commensurate with the service conditions of the structure.

15.2.8 Deflection and camber

Except for the deflection due to flexural deformation of Vierendeel panels, deflections may be determined from the axial deformations of the truss members. For camber, see Clause 6.3.2.

15.3 Composite trusses

Trusses designed to act compositely with the slab or cover slab shall also meet the requirements of Clause 17.

16 Open-web steel joists

16.1 Scope

Clause 16 specifies requirements for the design, manufacture, transportation, and erection of open-web steel joists used in the construction of buildings. Joists intended to act compositely with the deck slab shall also meet the requirements of Clause 17. Clause 16 shall be used only for the design of joists having an axis of symmetry in the plane of the joist.

16.2 General

Open-web siteel joists are steel trusses of relatively low mass with parallel or slightly pitched chords and triangulated web systems proportioned to span between walls or structural supporting members, or both, and to provide direct support for floor or roof deck. In general, joists are manufactured on a production line that employs jigs, with certain details of the members being standardized by the individual manufacturer. When specified, joists can be designed to provide lateral support to compression elements of beams or columns, to participate in lateral-load-resisting systems, or as continuous joists, cantilevered joists, or joists having special support conditions.

16.3 Materials

Steel used for joists shall be a weldable structural grade meeting the requirements of Clause 5.1. Structural members cold-formed to shape may use the effect of cold-forming in accordance with Clause A7 of CSA S136. The calculated value of F_{ν}^{\prime} shall be determined using only the values for F_{y} and F_{u} that are specified in the relevant structural steel material standard. Yield levels reported on mill test certificates or determined in accordance with Clause F3 of CSA S136 shall not be used as the basis for design.

16.4 Design documents

16.4.1 Building structural design documents

The building structural design documents shall include, as a minimum, the following:
a) all the loads carried by the joists, such as the uniformly distributed specified live and total dead loads, unbalanced loading conditions, any concentrated loads, and any special loading conditions, e.g., non-uniform snow loads, ponding loads, horizontal loads, end moments, net uplift, downward wind load, bracing forces to provide lateral support to compression elements of beams or columns, and allowances for mechanical equipment;
b) joist spacing, deflection limits and camber (see Clause 6.3.2), joist depth, and shoe depth;
c) where joists are not supported on steel members, maximum bearing pressures or sizes of bearing plates;
d) anchorage requirements in excess of the requirements of Clause 16.5.12;
e) bracing required by Clause 16.5.6.2 (if any);
f) method for and spacing of attachments of steel deck to the top chord (the documents shall indicate the special cases where the deck is incapable of supplying lateral support to the top chord [see Clause 16.8.1]);
g) minimum moment of inertia to provide satisfactory design criteria for floor vibrations, if applicable (see Clause 6.3.3.2);
h) any other information necessary for designing and supplying the joists; and
i) a note that no drilling, cutting, or welding is to be done unless approved by the building designer.

Note: The building drawings should include a note warning that attachments for mechanical, electrical, and other services should be made using approved clamping devices or U-bolt-type connectors.

16.4.2 Joist design documents

Joist design documents prepared by the joist manufacturer shall show, as a minimum, the
a) specified loading;
b) factored member loads;
c) material specification;
d) member sizes;
e) dimensions;
f) spacers;
g) welds;
h) shoes;
i) anchorages;
j) bracing;
k) bearings;
I) field splices;
m) bridging locations;
n) camber; and
o) coating type.

16.5 Design

16.5.1 Loading for open-web steel joists

The factored moment and shear resistances of open-web steel joists at every section shall be not less than the moment and shear due to the loading conditions specified by the building designer in the documents described in Clause 16,4.1 a) or to the factored dead load plus the following factored live load conditions, considered separately:
a) for floor joists, an unbalanced live load applied on any continuous portion of the joist to produce the most critical effect on any component;
b) for roof joists, an unbalanced loading condition with 100% of the snow load plus other live loads applied on any continuous portion of the joist and 50\% of the snow load on the remainder of the joist to produce the most critical effect on any component;
c) for roof joists, wind uplift;
d) for roof joists, 100% of the snow load plus 40% of the downward wind load (companion load) (1.5S + 0.4W); and
e) the appropriate factored concentrated load (from the NBCC) applied at any one panel point to produce the most critical effect on any component.

16.5.2 Design assumptions

Open-web steel joists shall be designed for loads acting in the plane of the joist applied to the top chord assumed to be prevented from lateral buckling by the deck. For the purpose of determining axial forces in all members, members may be assumed to be pin-connected and the loads may be replaced by statically equivalent loads applied at the panel points.

The resistance of the deck connections as well as the resistance of the deck shall be verified by the joist designer to ensure that adequate lateral support is provided to the top chord of a joist as determined in accordance with Clause 9.2.7. When additional stability elements are necessary, they shall be designed in accordance with Clause 9.2.6.2.

16.5.3 Member and connection resistance

Member and connection resistance shall be calculated in accordance with Clause 13, except as otherwise specified in Clause 16.

16.5.4 Width-to-thickness ratios

Note: Clause 16.5 .4 is applicable for members made of more than one shape.

16.5.4.1

The width-to-thickness ratios of compressive elements of hot-formed sections and cold-formed HSS shall be governed by Clause 11. The width-to-thickness ratios of compressive elements of cold-formed sections shall be governed by CSA S136.

16.5.4.2

For the purpose of determining the appropriate width-to-thickness ratio of compressive elements supported along one edge, any stiffening effect of the deck or the joist web shall be neglected.

16.5.5 Bottom chord

Δ 16.5.5.1
The bottom chord shall be continuous and, when in tension, may be designed as an axially loaded tension member unless subject to eccentricities in excess of those permitted under Clause 16.5 .10 .4 or subject to applied load between panel points. The governing radius of gyration of the tension chord or any component thereof shall be not less than $1 / 240$ of the corresponding unsupported length. For joists with the web in the y-plane, the unsupported length of chord for computing L_{x} / r_{x} shall be taken as the panel length centre-to-centre of panel points and the unsupported length of chord for calculating L_{y} / r_{y} shall be taken as the distance between bridging lines connected to the tension chord. Joist shoes, when anchored, may be assumed to be equivalent to bridging lines. A bottom chord subjected to concentrated loads between panel points shall be designed, when the chord is in tension, in accordance with Clause 13.9 and, when the chord is in compression, in accordance with Clause 16,5.6.3, respectively.
$\Delta \quad 16.5 .5 .2$
The bottom chord shall be designed in accordance with Clause 16.5 .6 .3 for the resulting compressive forces when
a) net uplift is specified;
b) joists are made continuous or cantilevered;
c) end moments are specified; or
d) it provides lateral support to compression elements of beams or columns.

Bracing, when required, shall be provided in accordance with Clause 9.2. For joists with net uplift, a single line of bottom-chord bridging shall be provided at each end of the joists near the first bottom chord panel points unless the ends of the bottom chord are otherwise restrained. [See also Clause 16.7.9 a)].

16.5.6 Top chord

16.5.6.1

The top chord shall be continuous and may be designed for axial compressive force alone when
a) the panel length does not exceed 610 mm ;
b) concentrated loads are not applied between the panel points; and
c) not subject to eccentricities in excess of those permitted under Clause 16.5.10.4.

When the panel length exceeds 610 mm , the top chord shall be designed as a continuous member subject to combined axial and bending forces.

16.5.6.2

The slenderness ratio, $K L / r$, of the top chord or of its components shall not exceed 90 for interior panels or 120 for end panels. The governing $K L / r$ shall be the maximum value determined by the following:
a) for the x-x (horizontal) axis, L_{x} shall be the centre-to-centre distance between panel points and K shall be taken as 0,9 ;
b) for the y - y (vertical) axis, L_{y} shall be the centre-to-centre distance between the attachments of the deck. The spacing of attachments shall be not more than the design slenderness ratio of the top chord times the radius of gyration of the top chord about its vertical axis and not more than $1000 \mathrm{~mm} . \mathrm{K}$ shall be taken as 1.0 ; and
c) for the z-z (skew) axis of individual components, L_{z} shall be the centre-to-centre distance between panel points or spacers, or both, and K shall be taken as 0.9 . Decking shall not be considered to fulfill the function of batten plates or spacers for top chords consisting of two separated components, where $r=$ the appropriate radius of gyration.

16.5.6.3

Compression chords shall be proportioned such that
$\frac{C_{f}}{C_{r}}+\frac{M_{f}}{M_{r}} \leq 1.0$
where
$M_{r}=$ value specified in Clause 13.5
$C_{r}=$ value specified in Clause 13.3
At the panel point, C_{r} may be taken as $\phi A F_{y}$ and Clause 13.5 a) may be used to determine $M_{r n}$ provided that the chord meets the requirements of a Class 2 section and $M_{f} / M_{\rho}<0.25$.

For top chords with panel lengths not exceeding $610 \mathrm{~mm}, M_{f}$ resulting from any uniformly distributed loading may be neglected.

The chord shall be assumed to be pinned at the joist supports.

16.5.6.4

Top chords in tension whose panel lengths exceed 610 mm shall be designed in accordance with Clause 13.9.

16.5.6.5

When welding is used to attach steel deck to the chord of a joist, the flat width of any chord component in contact with the deck shall be at least 5 mm larger than the nominal design dimensions of the deck welds, measured transverse to the longitudinal axis of the chord.

16.5.6.6

When mechanical fasteners are used to attach steel deck to the chord of a joist, the minimum chord thickness shall be specified by the designer.

16.5.7 Webs

16.5.7.1

Webs shall be designed in accordance with Clause 13 to resist the shear at any point due to the factored loads specified in Clause 16.5.1. Particular attention shall be paid to possible reversals of force in each web member.

16.5.7.2

The length of a web member shall be taken as the distance between the intersections of the neutral axes of the web member and the chords. For buckling in the plane of the web, the effective length factor shall be taken as 0.9 if the web consists of individual members. For all other cases, the effective length factor shall be taken as 1.0 .

16.5.7.3

The factored resistances of the first compression web member subject to transverse shear, and its connections, shall be determined with their respective resistance factors, ϕ, multiplied by 0.85 .

16.5.7.4

The vertical web members of a joist with a modified Warren geometry shall be designed to resist an axial force equal to the calculated sum of the compressive force in the web member plus 0.02 times the force in the compression chord at that location.

16.5.7.5

The slenderness ratio of a web member in tension need not be limited.

16.5.7.6

The slenderness ratio of a web member in compression shall not exceed 200.

16.5.8 Spacers and battens

Compression members consisting of two or more sections shall be interconnected so that the slenderness ratio of each section calculated using its least radius of gyration is less than or equal to the design slenderness ratio of the built-up member. Spacers or battens shall be an integral part of the joist.

16.5.9 Connections and splices

16.5.9.1

Component members of joists shall be connected by welding, bolting, or other approved means.

16.5.9.2

Connections and splices shall develop the factored loads without exceeding the factored member resistances specified in Clause 16. Butt-joint splices shall develop the factored tensile resistance, T_{n} of the member.

16.5.9.3

Splices may occur at any point in chord or web members.

16.5.9.4

Members connected at a joint should have their centroidal axes meet at a point. Where this is impractical and eccentricities are introduced, such eccentricities may be neglected if they do not exceed the following:
a) for continuous web members, the greater of the two distances measured from the neutral axis of the chord member to the extreme fibres of the chord member; and
b) for non-continuous web members, the distance measured from the neutral axis to the back (outside face) of the chord member.

When the eccentricity exceeds these limits, provision shall be made for the effects of the total eccentricity. Eccentricities assumed in design shall be taken as the maximum fabrication tolerances and shall be included with the shop details.

16.5.10 Bearings

16.5.10.1

Bearings of joists shall be proportioned so that the factored bearing resistance of the supporting material is not exceeded.

16.5.10.2

Where a joist bears, with or without a bearing plate, on solid masonry or concrete support, the bearing shall meet the requirements of CSA S304.1 for masonry and CSA A23.3 for concrete.

16.5.10.3

Where a joist bears on a structural steel member, the end of the shoe shall extend at least 65 mm beyond the edge of the support, except that when the available bearing area is restricted, this distance may be reduced, provided that the shoe is adequately proportioned and anchored to the support.

16.5.10.4

The joist shoe and the end panel of the joist shall be proportioned to include the effect of the eccentricity between the centre of the bearing and the intersection of the centroidal axes of the chord and the end diagonal.

16.5.10.5

Bottom bearing joists shall have their top and bottom chords held adequately in position at the supports.

16.5.11 Anchorage

16.5.11.1

Joists shall be properly anchored to withstand the effects of the combined factored loads, including net uplift. As a minimum, the following shall be provided:
a) when anchored to masonry or concrete:
i) for floor joists, a 10 mm diameter rod at least 300 mm long embedded horizontally; and
ii) for roof joists, a 20 mm diameter anchor rod 300 mm long embedded vertically with a 50 mm , 90° hook or a 20 mm diameter headed anchor rod; and
b) when supported on steel, one 20 mm diameter bolt, or a pair of fillet welds satisfying the minimum size and length requirements of CSA W59; the connection shall be capable of withstanding a horizontal load equal to 10% of the reaction of the joist.

16.5.11.2

Tie joists may have their top and bottom chords connected to a column. Unless otherwise specified by the building designer, tie joists shall have top and bottom chord connections that are each at least equivalent to those required by Clause 16.5 .12 . . Either the top or bottom connection shall utilize a bolted connection.

16.5,11.3

Where joists are used as a part of a frame, the joist-to-column connections shall be designed to carry the moments and forces due to the factored loads.

16.5.12 Deflection

16.5.12.1

Steel joists shall be proportioned so that deflection due to specified loads is within acceptable limits for the nature of the materials to be supported and the intended use and occupancy. Such deflection limits shall be as specified in Clause 6.3.1 unless otherwise specified by the building designer.

16.5.12.2

The deflection shall be calculated based on truss action, taking into account the axial deformation of all of the components of the joists.

16.5.13 Camber

Unless otherwise specified by the building designer, the nominal camber shall be 0.002 of the span. Negative cambers to satisfy roof drainage requirements shall be designed for appropriate rainwater ponding loads.
Note: For manufacturing tolerances, see Clause 16.10.9. For maximum deviation between adjacent joists, or joists and adjacent beams or walls, see Clause 16.12.2.5. For special camber requirements, see Clause 6.3.2.2.

16.5.14 Vibration

The building designer shall give special consideration to floor systems where unacceptable vibration can occur. When requested, the joist manufacturer shall supply joist properties and details to the building designer (see Annex E).

16.5.15 Welding

Welding shall meet the requirements of Clause 24 . Specific welding procedures for joist fabrication shall be developed and meet the requirements of CSA W47.1.

16.6 Stability during construction

Means shall be provided to support joist chords against lateral movement and to hold the joist in the vertical or specified plane during construction.

16.7 Bridging

16.7.1 General

Bridging transverse to the span of joists may be used to meet the requirements of Clause 16.6 and also to meet the slenderness ratio requirements for chards. Bridging shall not be considered "bracing" as described in Clause 9.2.

16,7.2 Installation

All bridging and bridging anchors shall be completely installed before any construction loads, except for the weight of the workers necessary to install the bridging, are placed on the joists.

16.7.3 Types

Unless otherwise specified or approved by the building designer, the joist manufacturer shall supply bridging that may be of the diagonal or horizontal type.

16.7.4 Diagonal bridging

Diagonal bridging consisting of crossed members running from the top chord to the bottom chord of adjacent joists shall have a slenderness ratio, L / r, of not more than 200 , where L is the length of the diagonal bridging member or one-half of this length when crossed members are connected at their point of intersection and r is the least radius of gyration. All diagonal bridging shall be connected adequately to the joists by bolts or welds.

16.7.5 Horizontal bridging

A line of horizontal bridging shall consist of a continuous member perpendicular to the joist span attached to either the top chord or the bottom chord of each joist. Horizontal bridging members shall have a slenderness ratio of not more than 300 .

16.7.6 Attachment of bridging

Attachment of diagonal and horizontal bridging to joist chords shall be by welding or mechanical means capable of resisting an axial load of at least 3 kN in the attached bridging member. Welds shall meet the minimum length requirements specified in CSA W59.

16.7.7 Anchorage of bridging

Each line of bridging shall be adequately anchored at each end to sturdy walls or to main components of the structural frame, if practicable. Otherwise, diagonal and horizontal bridging shall be provided in combination between adjacent joists near the ends of bridging lines.

16.7.8 Bridging systems

Bridging systems, including sizes of bridging members and all necessary details, shall be shown on the erection diagrams. If a specific bridging system is required by the design, the design drawings shall show all information necessary for the preparation of shop details and erection diagrams.

16.7.9 Spacing of bridging

Diagonal and horizontal bridging shall be spaced so that the unsupported length of the chord between bridging lines or between laterally-supported ends of the joist and adjacent bridging lines does not exceed
a) $170 r$ for chords in compression; and
b) $240 r$ for chords always in tension
where
$r=$ applicable chord radius of gyration about its axis in the plane of the web.
Ends of joists anchored to supports may be assumed to be equivalent to bridging lines. If ends of joists are not so anchored before the deck is installed, the distance from the face of the support to the nearest bridging member in the plane of the bottom chord shall not exceed $120 r$. There shall not be less than one line of horizontal or diagonal bridging attached to each joist spanning 4 m or more. If only a single line of bridging is required, it shall be placed at the centre of the joist span. If bridging is not used on joists less than 4 m in span, the ends of such joists shall be anchored to the supports to prevent overturning of the joist during placement of the deck.

16.8 Decking

16.8.1 Decking to provide lateral support

Decking shall bear directly on the top chord of the joist. If not sufficiently rigid to provide lateral support to the compression chord of the joist, the compression chord of the joist shall be braced laterally in accordance with Clause 9:2.

16.8.2 Deck attachments

Attachments considered to provide lateral support to top chords shall meet the requirements of Clause 9.2 .3 . The spacing of attachments shall not exceed
a) the design slenderness ratio of the top chord times the radius of gyration of the top chord about its vertical axis; and
b) 1 m .

16.8.3 Diaphragm action

Where decking is used in combination with joists to form a diaphragm for the purpose of transferring lateral applied loads to vertical bracing systems, special attachment requirements shall be fully specified on the building design drawings.

16.8.4 Cast-in-place slabs

Cast-in-place slabs used as decking shall have a minimum thickness of 65 mm . Forms for cast-in-place slabs shall not cause lateral displacement of the top chords of joists during installation of the forms or the placing of the concrete. Non-removable forms shall be positively attached to top chords by means of welding, clips, ties, wedges, fasteners, or other suitable means at intervals not exceeding 1 m ; however, there shall be at least two attachments in the width of each form at each joist. Forms and their method of attachment shall be such that the cast-in-place slab, after hardening, is capable of furnishing lateral support to the joist chords.

16.8.5 Installation of steel deck

16.8.5.1

To facilitate attachment of the steel deck, the location of the top chord of the joist shall be confirmed by marking the deck at suitable intervals or by other means.

16.8.5.2

The installer of the steel deck to be fastened to joists by arc spot welding shall be a company that is certified by the Canadian Welding Bureau to the requirements of CSA W47.1.

The welding procedures shall meet the requirements of CSA W47.1.
The welders shall meet the requirements of CSA W47.1 for arc spot welding.

16.9 Shop coating

Joists shall have a shop coating meeting the requirements of Clause 28.7.3.3, unless otherwise specified by the building designer.

16.10 Manufacturing tolerances

16.10.1

The tolerance on the specified depth of the manufactured joist shall be $\pm 7 \mathrm{~mm}$.

16.10.2

The deviation of a panel point from the design location, measured along the length of a chord, shall not exceed 13 mm . The centroidal axes of the bottom chord and the end diagonals carrying transverse shear should meet at the first bottom panel point even when the end diagonal is an upturned bottom chord (see Clause 16.5.10.4).

16.10.3

The deviation of a panel point from the design location, measured perpendicular to the longitudinal axis of the chord and in the plane of the joist, shall not exceed 7 mm .

16.10.4

The connections of web members to chords shall not deviate laterally more than 3 mm from that assumed in the design.

16.10.5

The sweep of a joist or any portion of the length of the joist, upon completion of manufacture, shall not exceed $1 / 500$ of the length on which the sweep is measured.

16.10.6

The tilt of bearing shoes shall not exceed 1 in 50 measured from a plane perpendicular to the plane of the web and parallel to the longitudinal axis of the joist.

16.10.7

The tolerance on the specified shoe depth shall be $\pm 3 \mathrm{~mm}$.

16.10 .8

The tolerance on the specified length of the joist shall be $\pm 7 \mathrm{~mm}$. The connection holes in a joist shall not vary from the detailed location by more than 2 mm for joists 10 m or less in length or by more than 3 mm for joists more than 10 m in length.

16.10.9

The tolerance in millimetres on the nominal or specified camber shall be $\pm\left(6+\frac{i}{4000}\right)$.
The minimum camber in a joist shall be 4 mm . The range in camber for joists of the same span shall be 20 mm .

16.11 Inspection and quality control

16.11.1 Inspection

Material and quality of work shall be accessible for inspection at all times by qualified inspectors representing the building designer. Random in-process inspection shall be carried out by the manufacturer and all joists shall be thoroughly inspected by the manufacturer before shipping. Thirdparty welding inspection shall be in accordance with Clause 30.5.

16.11.2 Identification and control of steel

Steel used in the manufacture of joists shall be identified in the manufacturer's plant as to its specification (and grade, where applicable) by suitable markings, recognized colour-coding, or a system devised by the manufacturer that will ensure to the satisfaction of the building designer that the correct material is being used.

16.11.3 Quality control

Upon request by the building designer, the manufacturer shall provide evidence of having suitable quality control measures to ensure that the joists meet all specified requirements. When testing is part of the manufacturer's normal quality control program, the loading criteria shall be 1.0/0.9 times the factored loads for the specific joist design.

16.12 Handling and erection

16.12.1 General

Care shall be exercised to avoid damage during strapping, transport, unloading, site storage, stacking, and erection. Dropping of joists shall be avoided. Special precautions shall be taken when erecting long, slender joists, and hoisting cables should not be released until the member is stayed laterally by at least
one line of bridging. Joists shall have all bridging attached and permanently fastened in place before the application of any loads. Construction loads shall be adequately distributed so as not to exceed the capacity of any joist. Field welding shall not cause damage to joists, bridging, deck, and supporting steel members.

16.12.2 Erection tolerances

16.12.2.1

The maximum sweep of a joist or a portion of the length of a joist upon completion of erection shall not exceed the limit specified in Clause 16.10 .5 and shall be in accordance with the requirements of Clause 29.

16.12.2.2

All members shall be free from twists, sharp kinks, and bends.

16.12.2.3

The deviation of joists as erected from the location in the plan shown on the erection diagrams shall not exceed 15 mm .

16.12.2.4

The deviation of the bottom chord with respect to the top chord, normal to the specified plane of the web of a joist, shall not exceed $1 / 50$ of the depth of the joist.

16.12.2.5

The maximum deviation in elevation between the tops of any three adjacent joists shall not be greater than 0.01 times the joist spacing and not greater than 25 mm . The deviation is the vertical offset from the top of the centre joist to the line joining the tops of the centres of the adjacent joists. The maximum shall also apply to joists adjacent to beams or walls.

17 Composite beams, trusses, and joists

17.1 Application

Clause 17 shall apply to composite beams consisting of steel sections, trusses, or joists interconnected with either a reinforced concrete slab or a steel deck with a concrete cover slab. Trusses and joists designed to act compositely with the slab or cover slab shall also meet the requirements of Clauses 15 and 16, respectively. The minimum slab or cover slab thickness shall be 65 mm unless the adequacy of a lesser thickness has been established by appropriate tests.

17.2 Definitions

The following definitions apply in Clause 17:
Cover slab - the concrete above the flutes of the steel deck. All flutes are filled with concrete so as to form a ribbed slab.

Effective cover slab thickness, t - the minimum thickness of concrete measured from the top of the slab to the top of the steel deck.
Δ Effective slab thickness, t - the overall slab thickness, provided that the slab is cast
a) with a flat underside;
b) on corrugated steel forms having a height of corrugation not greater than 0.25 times the overall slab thickness; or
c) on fluted steel forms whose profile has the following characteristics:
i) the minimum concrete rib width is 125 mm ;
ii) the maximum rib height is 40 mm but not more than 0.4 times the overall slab thickness; and
iii) the average width between ribs does not exceed 0.25 times the overall slab thickness nor 0.2 times the minimum width of concrete ribs.

In all other cases, "effective slab thickness" means the overall slab thickness minus the height of the corrugation or the flute.

Flute - the portion of the steel deck that forms a valley.
Rib - the portion of the concrete slab that is formed by the flute.
Slab - a reinforced cast-in-place concrete slab at least 65 mm in effective thickness. The area equal to the effective width times the effective slab thickness should be free of voids or hollows except for those specifically permitted in the definition of effective slab thickness.

Steel deck - a load-carrying steel deck consisting of a
a) single fluted element (non-cellular deck); or
b) two-element section consisting of a fluted element in conjunction with a flat sheet (cellular deck).

Steel joist - an open-web steel joist suitable for composite design (see Clause 16).
Steel section - a steel structural section with a solid web or webs suitable for composite design. Web openings may be used only if their effects are fully investigated and accounted for in the design.

Steel truss - a steel truss suitable for composite design (see Clause 15).

17.3 General

17.3.1 Deflections

Calculation of deflections shall take into account the effects of creep of concrete, shrinkage of concrete, and increased flexibility resulting from partial shear connection and from interfacial slip. These effects shall be established by test or analysis, where practicable. Consideration shall also be given to the effects of full or partial continuity in the steel beams and concrete slabs in reducing calculated deflections,

In lieu of tests or analysis, the effects of partial shear connection and interfacial slip, creep, and shrinkage may be assessed as follows:
a) for increased flexibility resulting from partial shear connection and interfacial slip, the deflections shall be calculated using an effective moment of inertia given by
$I_{e}=I_{s}+0.85 p^{0.25}\left(I_{t}-I_{s}\right)$
where
$I_{s}=$ moment of inertia of a steel beam, or of a steel joist or truss adjusted to include the effect of shear deformations, which may be taken into account by decreasing the moment of inertia based on the cross-sectional areas of the top and bottom chords by 15% or by a more detailed analysis
$p=$ fraction of full shear connection

```
    = 1.00 for full shear connection
It = transformed moment of inertia of composite beam based on the modular ration n=E/E
```

b) for creep, elastic deflections caused by dead loads and long-term live loads, as calculated in Item a), need to be increased by 15%; and
c) for shrinkage of concrete, using a selected free shrinkage strain, strain compatibility between the steel and concrete, and an age-adjusted effective modulus of elasticity of concrete as it shrinks and creeps, the deflection of a simply supported composite beam, joist, or truss shall be calculated as follows:
$\Delta_{s}=\frac{L^{2}}{8} \psi=\frac{L^{2}}{8} c \frac{\varepsilon_{s} A_{c} y}{n_{s} l_{e s}}$
where
$L=$ span of the beam, joist, or truss
$\psi=$ curvature along length of the beam, joist, or truss due to shrinkage of concrete
$c=$ empirical coefficient used to match theory with test results (accounting for cracking of concrete in tension, the non-linear stress-strain relationship of concrete, and other factors)
$\varepsilon_{/}=$free shrinkage strain of concrete
$A_{c}=$ effective area of concrete slab
$y=$ distance from centroid of effective area of concrete slab to centroidal axis of the composite beam, joist, or truss
$n_{s}=$ modular ratio, E / E_{c}^{\prime}
where
$E_{c}^{\prime}=E_{c} /(1+\chi \phi)$
$=$ age-adjusted effective modulus of elasticity of concrete
where
$\chi=$ aging coefficient of concrete
$\phi=$ creep coefficient of concrete
$l_{\text {es }}=I_{s}+0.85 p^{0.25}\left(I_{s s}-I_{s}\right)$
$=$ effective moment of inertia of composite beam, truss, or joist based on the modular ratio n_{s}
where
$I_{t s}=$ transformed moment of inertia based on the modular ratio n_{s}
Note: For typical values of $\bar{c}, \varepsilon_{b} \chi$, and ϕ, see Annex H.

17.3.2 Vertical shear

The web area of steel sections or the web system of steel trusses and joists shall be proportioned to carry the total vertical shear, V_{f}.

17.3.3 End connections

End connections of steel sections, trusses, and joists shall be proportioned to transmit the total end reaction of the composite beam.

17.3.4 Steel deck

The maximum depth of the deck shall be 80 mm and the average width of the minimum flute shall be 50 mm . A steel deck may be of a type intended to act compositely with the cover slab in supporting applied load.

17.4 Design effective width of concrete

17.4.1

Slabs or cover slabs extending on both sides of the steel section or joist shall be deemed to have a design effective width, b, equal to the lesser of
a) 0.25 times the composite beam span; or
b) the average distance from the centre of the steel section, truss, or joist to the centres of adjacent parallel supports.

17.4.2

Slabs or cover slabs extending on one side only of the supporting section or joist shall be deemed to have a design effective width, b, not greater than the width of the top flange of the steel section or top chord of the steel joist or truss plus the lesser of
a) 0.1 times the composite beam span; or
b) 0.5 times the clear distance between the steel section, truss, or joist and the adjacent parallel support.

17.5 Slab reinforcement

17.5.1 General

Slabs shall be adequately reinforced to support all loads and to control both cracking transverse to the composite beam span and longitudinal cracking over the steel section or joist. Reinforcement shall not be less than that required by the specified fire-resistance design of the assembly.

17.5.2 Parallel reinforcement

Reinforcement parallel to the span of the beam in regions of negative bending moment of the composite beam shall be anchored by embedment in concrete that is in compression. The reinforcement of slabs that are to be continuous over the end support of steel sections or joists fitted with flexible end connections shall be given special attention. Reinforcement at the ends of beams supporting ribbed slabs perpendicular to the beam shall be not less than two 15 M bars or equivalent.

17.5.3 Transverse reinforcement - Concrete slab on metal deck

Unless it is known from experience that longitudinal cracking caused by composite action directly over the steel section or joist is unlikely, additional transverse reinforcement or other effective means shall be provided. Such additional reinforcement shall be placed in the lower part of the slab and anchored so as to develop the yield strength of the reinforcement. The area of such reinforcement shall be not less than 0.002 times the concrete area being reinforced and shall be uniformly distributed.

17.5.4 Transverse reinforcement - Ribbed slabs

17.5.4.1

Where the ribs are parallel to the beam span, the area of transverse reinforcement shall be not less than 0.002 times the concrete cover slab area being reinforced and shall be uniformly distributed.

17.5.4.2

Where the ribs are perpendicular to the beam span, the area of transverse reinforcement shall be not less than 0.001 times the concrete cover slab area being reinforced and shall be uniformly distributed.

17.6 Interconnection

17,6.1

Except as permitted by Clauses 17.6 .2 and 17.6.4, interconnection between steel sections, trusses, or joists and slabs or steel decks with cover slabs shall be attained by the use of shear connectors as specified in Clause 17.7.

17.6 .2

Uncoated steel sections, trusses, or joists that support slabs and are totally encased in concrete shall not require interconnection by means of shear connectors, provided that
a) a minimum of 50 mm of concrete covers all portions of the steel section, truss, or joist except as specified in Item c);
b) the cover in Item a) is reinforced to prevent spalling; and
c) the top of the steel section, truss, or joist is at least 40 mm below the top and 50 mm above the bottom of the slab.

17.6 .3

Studs may be welded through a maximum of two steel sheets in contact, each not more than 1.71 mm in overall thickness, including coatings (1.52 mm in nominal base steel thickness plus zinc coating not greater than nominal $275 \mathrm{~g} / \mathrm{m}^{2}$). Otherwise, holes for placing studs shall be made through the sheets as necessary. Welded studs shall meet the requirements of CSA W59.

17.6 .4

Methods of interconnection other than those specified in Clause 17.7 that have been adequately demonstrated by test and verified by analysis may be used to effect the transfer of forces between the steel section, truss, or joist and the slab or steel deck with cover slab. In such cases, the design of the composite member shall conform, to the extent practicable, to the design of a similar member employing shear connectors.

17.6 .5

The diameter of a welded stud shall not exceed 2,5 times the thickness of the part to which it is welded unless test data satisfactory to the designer are provided to establish the capacity of the stud as a shear connector.

17.7 Shear connectors

17.7.1 General

The resistance factor, $\phi_{s c}$, to be used with the shear resistances specified in Clause 17.7 shall be taken as 0.80 . The factored shear resistance, q_{0} of other shear connectors shall be established by tests acceptable to the designer.

17.7.2 End-welded studs

17.7.2.1

End-welded studs shall be headed or hooked with $h / d \geq 4$. The projection of a stud in a ribbed slab, based on its length prior to welding, shall be at least two stud diameters above the top surface of the steel deck. The factored resistance of end-welded studs shall be as specified in Clauses 17.7.2.2 and 17.7.2.4.

17.7.2.2

In solid slabs,
$q_{r s}=0.50 \phi_{s c} A_{s c} \sqrt{f_{c}^{\prime} E_{c}} \leq \phi_{s c} A_{s c} F_{u}$
where
$q_{r s}=$ factored shear resistance
$F_{u}=450 \mathrm{MPa}$ for commonly available studs (CSA W59 Type B studs)

Δ 17.7.2.3

In ribbed slabs with ribs parallel to the beam,
a) when $3.0>w_{d} / h_{d} \geq 1.50$:
$q_{\text {rr }}=q_{r s}\left[0.75+0.167\left(\frac{w_{d}}{h_{d}}-1.5\right)\right] \leq q_{r s}$
b) when $w_{d} / h_{d}<1.50$:
$q_{c t}=\phi_{s c}\left[0.92 \frac{w_{d}}{h_{d}} d h\left(f_{c}^{\prime}\right)^{0.8}+11 s d\left(f_{c}^{\prime}\right)^{0.2}\right] \leq 0.75 q_{r s}$
where
$s=$ longitudinal stud spacing

17.7.2.4

In ribbed slabs with ribs perpendicular to the beam
a) when $h_{d}=75 \mathrm{~mm}$:
$q_{r r}=0.35 \phi_{s c} \rho A_{p} \sqrt{f_{c}^{\prime}} \leq q_{r s}$
b) when $h_{d}=38 \mathrm{~mm}$:
$q_{r r}=0.61 \phi_{s c} \rho A_{\rho} \sqrt{f_{c}^{\prime}} \leq q_{r s}$
where
$A_{p}=$ concrete pullout area, taking the deck profile and stud burnoff into account. For a single stud, the apex of the pyramidal pullout area, with four sides sloping at 45°, shall be taken as the centre of the top surface of the head of the stud. For a pair of studs, the pullout area has a ridge extending from stud to stud
$\rho=1.0$ for normal-density concrete (2150 to $2500 \mathrm{~kg} / \mathrm{m}^{3}$)
$=0,85$ for semi-low-density concrete (1850 to $2150 \mathrm{~kg} / \mathrm{m}^{3}$)

17.7.2.5

The longitudinal spacing of stud connectors in solid slabs and in ribbed slabs when ribs of formed steel deck are parallel to the beam shall be not less than six stud diameters. The spacing of studs shall not exceed 1000 mm (see also Clause 17.8).

The transverse spacing of stud connectors shall be not less than four stud diameters.

17.7.3 Channel connectors

In solid slabs of normal-density concrete with $f_{c}^{\prime} \geq 20 \mathrm{MPa}$ and a density of at least $2300 \mathrm{~kg} / \mathrm{m}^{3}$, the following shall apply:
$q_{r s}=45 \phi_{s c}(t+0.5 w) L_{c} \sqrt{f_{c}^{c}}$
The spacing of the shear connectors shall be in accordance with Clause 17.9.8,

17.8 Ties

Mechanical ties shall be provided between the steel section, truss, or joist and the slab or steel deck to prevent separation. Shear connectors may serve as mechanical ties if suitably proportioned. The maximum spacing of ties shall not exceed 1000 mm . The average spacing in a span shall not exceed 600 mm or be greater than that required to achieve any specified fire-resistance rating of the composite assembly.

17.9 Design of composite beams with shear connectors

17.9.1

The composite beam shall consist of steel section, truss or joist, shear connectors, ties, and slab or steel deck with cover slab,

The flat width of the top chord or that of a component member of the top chord shall be not less than $1.4 d+20 \mathrm{~mm}$
where
d = diameter of the stud connector

17.9.2

The properties of the composite section shall be based on the maximum effective area (equal to effective width times effective thickness), neglecting any concrete area in tension. If a steel truss or joist is used, the area of its top chord shall be neglected in determining the properties of the composite section and only Clause 17.9.3 a) shall apply.

\triangle 17.9.3

The factored moment resistance, $M_{r c}$ of the composite section with the slab or cover slab in compression shall be calculated as follows, where $\phi=0.90$, the resistance factor for concrete, $\phi_{c}=0.65$, and $\alpha_{1}=0.85-0.0015 f_{c}^{\prime}$ (but not less than 0.67):
a) Case 1 - full shear connection and plastic neutral axis in the slab, i.e., $Q_{r} \geq \phi A_{5} F_{y}$ and $\phi A_{5} F_{y} \leq \alpha_{1} \phi_{c} b t f_{c}^{\prime}$
where
$Q_{r}=$ sum of the factored resistances of all shear connectors between points of maximum and zero moment
$M_{r c}=T_{r} e^{\prime}=\phi A_{s} F_{y} e^{\prime}$
where
$e^{\prime}=$ the lever arm and is calculated from the equation
$a=\frac{\beta A_{t} F_{y}}{a_{1} b_{\varepsilon} b f_{z}^{\prime}}$
b) Case 2 - full shear connection and plastic neutral axis in the steel section, i.e., $Q_{r} \geq \alpha_{1} \phi_{c} b t f_{c}^{\prime}$ and $\alpha_{1} \phi_{c} b t f_{c}^{\prime}<\phi A_{s} F_{y}$
$M_{r c}=C_{r} e+C_{r}^{\prime} e^{\prime}$
where
$C_{r}=\frac{\phi A_{r} F_{y}-C_{r}^{\prime}}{2}$
$C_{r}^{\prime}=\alpha_{1} \phi_{c} b t f_{c}^{\prime}$
c) Case 3 - partial shear connection, i.e., $Q_{r}<a_{1} \phi_{c} b t f_{c}^{\prime}$ and $\phi A_{s} F_{y}$
$M_{r c}=C_{r} e+C_{r}^{\prime} e^{\prime}$
where
$C_{r}=\frac{\phi A_{s} F_{v}-C_{r}^{\prime}}{2}$
$C_{r}^{\prime}=Q_{r}$
where
$e^{\prime}=$ the lever arm and is calculated from the equation
$a=\frac{C_{r}^{\prime}}{\alpha_{1} \phi_{c} b f_{c}^{\prime}}$

17.9.4

No composite action shall be assumed in calculating
a) flexural strength when Q_{r} is less than 0.4 times the lesser of $\alpha_{1} \phi_{c} b t f_{c}^{\prime}$ and $\phi A_{s} F_{y}$; and
b) deflections when Q_{r} is less than 0.25 times the lesser of $\alpha_{1} \phi_{c} b t f_{c}^{\prime}$ and $\phi A_{s} F_{y}$.

17.9 .5

For full shear connection, the sum of the factored resistances of all shear connectors distributed between the point of maximum bending moment and each adjacent point of zero moment, Q_{r}, shall equal or exceed the total horizontal shear, V_{h}, at the junction of the steel section, truss, or joist and the concrete slab or steel deck, calculated as $V_{h}=\phi A_{s} F_{y}$ or $V_{h}=\alpha_{1} \phi_{c} b t f_{c}^{\prime}$ for Cases 1 and 2 , as specified in Items a) and b), respectively, of Clause 17.9.3.

17.9 .6

For partial shear connection, the total horizontal shear, V_{h}, as specified in Clause 17.9 .3 c), shall be calculated as $V_{h}=Q_{\text {c }}$.

17.9 .7

Composite beams employing steel sections and concrete slabs may be designed as continuous members. The factored moment resistance of the composite section, with the concrete slab in the tension area of the composite section, shall be the factored moment resistance of the steel section alone, except that when sufficient shear connectors are placed in the negative moment region, suitably anchored concrete slab reinforcement parallel to the steel sections and within the design effective width of the concrete slab may be included in calculating the properties of the composite section. The total horizontal shear, V_{h}, to be resisted by shear connectors between the point of maximum negative bending moment and each adjacent point of zero moment shall be taken as $\phi_{r} A_{r} F_{y n}$

17.9 .8

The number of shear connectors to be located on each side of the point of maximum bending moment (positive or negative, as applicable), distributed between that point and the adjacent point of zero moment, shall be not less than
$n=\frac{V_{n}}{q_{n}}$
Shear connectors may be spaced uniformly, except that in a region of positive bending the number of shear connectors, n^{\prime}, required between any concentrated load applied in that region and the nearest point of zero moment shall be not less than
$n^{\prime}=n\left(\frac{M_{f 1}-M_{r}}{M_{f}-M_{r}}\right)$
where
$M_{f 1}=$ positive bending moment under factored load at concentrated load point
$M_{r}=$ factored moment resistance of the steel section alone
$M_{f}=$ maximum positive bending moment under factored load

17.9 .9

In the end panels of composite joists and trusses, the top chord shall be designed to resist all factored forces, ignoring any composite action unless adequate shear connectors are placed over the seat or along a top chord extension to carry horizontal shear. Studs shall not be placed closer than their height to the end of the concrete slab.

17.9.10

The shear that is to be developed on the longitudinal shear surfaces, $A_{c w}$ of composite beams with solid slabs or with cover slabs and steel deck parallel to the beam shall be taken as
$V_{u}=\Sigma q_{r}-\alpha_{1} \phi_{c} f_{c}^{i} A_{c}-\phi_{f} A_{r} F_{y_{r}}$
where
$A_{r}=$ area of longitudinal reinforcement within the concrete area, A_{c}
For normal-weight concrete, the factored shear resistance along any potential longitudinal shear surfaces in the concrete slab shall be taken as
$v_{r}=\left(0.80 \phi_{r} A_{r} F_{y r}+2.76 \phi_{c} A_{c v}\right) \leq 0.50 \phi_{c} f_{c}^{\prime} A_{c}$
where
$A_{r}=$ area of transverse reinforcement crossing shear planes, $A_{c v}$

17.10 Design of composite beams without shear connectors

17.10.1

Uncoated steel sections or joists supporting concrete slabs and encased in concrete in accordance with Clause 17.6.2 may be proportioned based on the assumption that the composite section supports the total load.

17.10.2

The properties of the composite section for determination of load-carrying capacity shall be calculated using ultimate strength methods, neglecting any area of concrete in tension.

17.10.3

As an alternative method of design, encased simple-span steel sections or joists may be proportioned based on the assumption that the steel section, truss, or joist alone supports 0.90 times the total load.

17.11 Unshored beams

For composite beams that are unshored during construction, the stresses in the tension flange of the steel section, truss, or joist due to the loads applied before the concrete strength reaches $0.75 f_{c}^{\prime}$ plus the stresses at the same location due to the remaining specified loads considered to act on the composite section shall not exceed F_{y}.

17.12 Beams during construction

The steel section, truss, or joist alone shall be proportioned to support all factored loads applied prior to hardening of the concrete without exceeding its calculated capacity under the conditions of lateral support or shoring, or both, to be furnished during construction.

18 Composite columns

18.1 Resistance prior to composite action

The factored resistance of the steel member prior to the attainment of composite action shall be determined in accordance with Clause 13.

18.2 Concrete-filled hollow structural sections

18.2.1 General

18.2.1.1 Scope

Clause 18.2 applies to composite members consisting of steel hollow structural sections completely filled with concrete, provided that
a) the width-to-thickness ratio of the walls of rectangular hollow structural sections does not exceed $\frac{1350}{\sqrt{E_{5}}}$;
b) the outside diameter-to-thickness ratio of circular hollow structural sections does not exceed $28000 / F_{y}$; and
c) the concrete strength is between 20 and 80 MPa for axially loaded columns and between 20 and 40 MPa for columns subjected to axial compression and bending.

18.2.1.2 Axial load on concrete

The axial load assumed to be carried by the concrete at the top level of a column shall be only that portion applied by direct bearing on concrete. At the bottom of a column, a base plate or other means shall be provided for load transfer. At intermediate floor levels, direct bearing on the concrete shall not be considered necessary.

18.2.1.3 Composite action in bending

Full composite resistance as specified in Clause 18.2.3 may be developed at the ends of concrete-filled hollow structural members in bending or combined axial-bending, e.g., at column bases, only if the connection is able to transfer the forces from both the steel and concrete elements to the adjacent structural elements.

Δ 18.2.2 Compressive resistance

The factored compressive resistance of a composite concrete-filled hollow structural section shall be taken as
$C_{r c}=\left(\tau \phi A_{5} F_{y}+\tau^{\prime} \alpha_{1} \phi_{c} A_{c} f_{c}^{\prime}\right)\left(1+\lambda^{2 n}\right)^{-1 / n}$
where
$\tau=\tau^{\prime}$
$=1.0$, except for circular hollow structural sections with a height-to-diameter ratio (L/D) of less than 25 for which
$\tau=\frac{1}{\sqrt{1+\rho+p^{2}}}$
and
$\tau^{\prime}=1+\left(\frac{25 p^{2} \tau}{D / t}\right)\left(\frac{F_{y}}{\alpha_{y} f_{c}^{\prime}}\right)$
where
$\rho=0.02(25-L / D)$
$\alpha_{1}=0.85-0.0015 f_{c}^{\prime}$ (but not less than 0.73)
$\lambda=\sqrt{\frac{C_{p}}{C_{e c}}}$
where

$$
\begin{aligned}
& C_{\rho}=C_{r t}, \text { computed with } \phi=\phi_{c}=1.0 \text { and } \lambda=0 \\
& C_{e c}=\frac{\pi^{2} E_{\sigma}}{(K L)^{2}}
\end{aligned}
$$

where

$$
E l_{e}=E I_{s}+\frac{0.6 E_{c} I_{c}}{1+C_{f s} / C_{f}}
$$

where
I_{s} and $I_{c} \quad=$ moment of inertia of the steel and concrete areas, respectively, as computed with respect to the centre of gravity of the cross-section
Ec modulus of elasticity of concrete as defined in Clause 3
$C_{f s} \quad=$ sustained axial load on the column
$c_{f} \quad=$ total axial load on the column
$n=1.80$

18.2.3 Bending resistance

The factored bending resistance of a composite concrete-filled hollow structural section shall be taken as
$M_{r c}=C_{r} e+C_{r}^{\prime} e^{\prime}$
where
a) for a rectangular hollow structure section:
$C_{r}=\frac{\phi A_{s} F_{y}-C_{r}^{\prime}}{2}$
$C_{r}^{\prime}=1.18 \alpha_{1} \phi_{c} a(b-2 t) f_{c}^{\prime}$
$C_{r}+C_{r}^{\prime}=T_{r}$
$=\phi A_{s t} F_{y}$
Nate: The concrete in compression is taken to have a rectangular stress block of intensity f_{\prime}^{\prime}, over a depth of a.
b) for a circular hollow structural section:

$$
\begin{aligned}
& c_{r}=\phi F_{y} \beta \frac{D t}{2} \\
& c_{r}^{\prime}=1.18 \alpha_{1} \phi f_{c}^{\prime}\left[\frac{\beta D^{2}}{8}-\frac{b_{c}}{2}\left(\frac{D}{2}-a\right)\right] \\
& e=b_{c}\left[\frac{1}{(2 \pi-\beta)}+\frac{1}{\beta}\right] \\
& e^{\prime}=b_{c}\left[\frac{1}{(2 \pi-\beta)}+\frac{b_{c}^{2}}{1.5 \beta D^{2}-6 b_{c}(0.5 D-a)}\right]
\end{aligned}
$$

where
$\beta=$ value in radians found from the recursive equation
$\beta=\frac{\phi A_{s} F_{y}+0.295 \alpha_{1} \phi_{c} D^{2} f_{c}^{\prime}\left[\sin (\beta / 2)-\sin ^{2}(\beta / 2) \tan (\beta / 4)\right]}{\left(0.148 \alpha_{1} \phi_{c} D^{2} f_{c}^{\prime}+\phi D t F_{y}\right)}$
$b_{c}=D \sin \left(\frac{\beta}{2}\right)$
$a=\frac{b_{c}}{2} \tan \left(\frac{\beta}{4}\right)$
Conservatively, $M_{r c}$ may be taken as
$M_{r c}=\left(Z-2 t h_{n}^{2}\right) \phi F_{y}+\left[\frac{2}{3}(0.5 D-t)^{3}-(0.5 D-t) h_{n}^{2}\right] 1.18 \alpha_{1} \phi_{c} f_{c}^{\prime}$
where
$z=$ the plastic modulus of the steel section alone
$h_{n}=\frac{1.18 \alpha_{1} \phi_{c} A_{c} f_{c}^{\prime}}{2.36 D \alpha_{1} \phi_{c} f_{c}^{\prime}+4 t\left(2 \phi F_{y}-1.18 \alpha_{1} \phi_{c} f_{c}^{\prime}\right)}$
$\alpha_{1}=$ value as defined in Clause 18.2.2

18.2.4 Axial compression and bending

Composite concrete-filled hollow structural sections required to resist both bending moments and axial compression shall be proportioned analogously to members conforming to Clause 13.8 .2 so that
$\frac{c_{f}}{C_{r c}}+\frac{\beta \omega_{1} M_{f}}{M_{r c}\left(1-\frac{c_{f}}{c_{x}}\right)} \leq 1.0$ and
$\frac{M_{f}}{M_{c e}} \leq 1.0$
where
$\beta=\frac{C_{\text {coo }}-C_{\text {rcm }}}{C_{\text {cto }}}$
where
$C_{\text {roo }}=$ factored compressive resistance with $\lambda=0$
$C_{r c m}=1.18 \alpha_{1} \phi_{c} A_{f} f_{c}^{\prime}$
where
$\alpha_{1}=$ value as defined in Clause 18.2.2
$M_{r c}=$ value as defined in Clause 18.2.3

18.3 Partially encased composite columns

Note: The Canam Group Inc. holds patents on the partially encased composite columns described in this Clause. Canam Group inc. will make available any patent rights to interested applicants, wherever located, either os a free licence or on reasonable terms and conditions:

18.3.1 General

Clause 18.3 applies to doubly symmetrical composite members consisting of three-plate built-up steel H -sections, with plain tie bars welded between the flange tips at regular intervals, in which the cells between the column flanges and the web are completely filled with concrete in the field during construction, provided that
a) concrete is of normal density and has a compressive strength, f_{c}^{\prime}, between 20 and 70 MPa ;
b) $A_{s}+A_{r} \leq 0.20$ of the gross cross-sectional area;
c) the full width of flange, b_{f}, is between 0.9 and 1.1 times the section depth, $d_{;}$
d) the flanges and the web are of equal thickness, $t_{;}$;
e) the flange width-to-thickness ratio is not greater than 32;
f) a pair of continuous fillet welds, sufficient to develop the shear yield capacity of the web, connects the web to each flange;
g) the vertical spacing of tie bars, s, does not exceed the lesser of 500 mm or two-thirds of the least dimension of the cross-section. The area of a tie bar shall be taken as the greatest of
i) $63 \mathrm{~mm}^{2}$;
ii) 0.01 bft ; and
iii) $0.5 \mathrm{~mm}^{2}$ per mm of tie bar spacing;
h) the tie bars are welded to the flanges to develop the vield strength of the tie bars and the cover of the tie bars is at least 30 mm ;
i) out-of-straightness of the flanges, as measured between any two adjacent ties along the column edges, does not exceed 0.005 times the tie spacing;
j) the specified yield strength of structural steel, F_{y}, does not exceed 350 MPa ;
k) the specified yield strength of reinforcement, $F_{y \text { n }}$ does not exceed 400 MPa ; and

1) the clear height-to-width ratio of the column does not exceed 14.

(1) 18.3.2 Compressive resistance

The factored compressive resistance of a partially encased three-plate built-up composite column shall be taken as
$C_{r c}=\left(\phi A_{s e} F_{y}+0.95 \alpha_{1} \phi_{c} A_{r} f_{c}^{\prime}+\phi_{r} A_{r} F_{y r}\right)\left(1+\lambda^{2 n}\right)^{-1 / n}$
where
$A_{\text {se }}=$ effective area of the steel section

$$
=\left(d-2 t+2 b_{e}\right) t
$$

where
$b_{e}=\frac{b_{f}}{\left(1+\lambda_{p}^{3}\right)^{1 / 1.5}} \leq b_{f}$
where
$\lambda_{p}=\frac{b_{f}}{t} \sqrt{\frac{F_{y}}{720000 k}}$
where
$k=\frac{0.9}{\left(s / b_{f}\right)^{2}}+0.2\left(s / b_{f}\right)^{2}+0.75$
$\alpha_{1}=$ value specified in Clause 18.2.2
$A_{r}=$ area of longitudinal reinforcement
$\lambda=\sqrt{\frac{C_{p}}{C_{e c}}}$
where
$C_{p}=C_{r c}$ computed with ϕ, ϕ_{c} and $\phi_{r}=1.0$ and $\lambda=0$
$C_{e c}=$ value specified in Clause 18.2.2
$n=1.34$

18.3.3 Bending resistance

The factored bending resistance of a partially encased three-plate built-up composite column shall be taken as
$M_{r c}=C_{r} e+C_{r}^{\prime} e^{\prime}$
where
$C_{r}=\frac{\phi A_{s} F_{y}-C_{r}^{\prime}}{2}$
$C_{r}+C_{r}^{\prime}=T_{r}$

$$
=\phi A_{s t} F_{y}
$$

$C_{r}^{\prime} \quad=1.18 \alpha_{1} \phi_{c} a(b-t) f_{c}^{\prime}$ for strong axis bending
$C_{r}^{\prime}=1.18 \alpha_{1} \phi_{c} a(b-2 t) f_{c}^{\prime}$ for weak axis bending
Note; The concrete in compression is taken ta have a rectangular stress block of intensity f_{c}^{\prime} over a depth of a.

18.3.4 Axial compression and bending

Partially encased three-plate built-up composite columns required to resist both bending moments and axial compression shall be proportioned so that
$\frac{C_{f}}{C_{r c}}+\frac{M_{f x}}{M_{r c x}}+\frac{M_{f y}}{M_{r c \gamma}} \leq 1$

18.3.5 Special reinforcement for seismic zones

(1) 18.3.5.1

Columns larger than 500 mm in depth in buildings where the specified one-second spectral acceleration ratio $\left(I_{E} F_{V} S_{0}(1.0)\right)$ is greater than 0,30 shall be reinforced with longitudinal and transverse bars.

18.3.5.2

The longitudinal bars specified in Clause 18.3.5.1 shall
a) have an area not less than 0.005 times the total gross cross-sectional area;
b) be at least two in number in each cell; and
c) be positioned against the tie bars and at a spacing not greater than the tie spacing, s.

18.3.5.3

The transverse bars specified in Clause 18.3.5.1 shall
a) be U-shaped 15 M bars arranged to provide corner support to at least every alternate longitudinal bar in such a way that no unsupported longitudinal bar is farther than 150 mm clear from a laterally supported bar;
b) have ends welded to the web of the stee) shape, in line with the ends of the transverse bars located in the opposite cell, or ends anchored within the concrete core located on the opposite side of the web; and
c) have a vertical spacing not greater than the tie spacing, s, or 16 times the diameter of the smallest longitudinal bar.

18.4 Encased composite columns

18.4.1 General

Clause 18.4 applies to doubly symmetrical steel columns encased in concrete, provided that
a) the steel shape is a Class 1,2 , or 3 section;
b) $A_{5} \geq 0.04$ of the gross cross-sectional area;
c) $A_{s}+A_{r} \leq 0.20$ of the gross cross-sectional area;
d) the concrete is of normal density and has a compressive strength, f_{c}^{\prime}, between 20 and 55 MPa ;
e) the specified yield strength of structural steel, F_{y}, does not exceed 350 MPa ; and
f) the specified yield strength of reinforcement, $F_{y n}$ does not exceed 400 MPa .

(1) 18.4.2 Compressive resistance

The factored compressive resistance of a steel concrete-encased composite column shall be taken as
$C_{c c}=\left(\phi A_{s} F_{y}+\alpha_{1} \phi_{c} A_{c} f_{c}^{\prime}+\phi_{r} A_{r} F_{y t}\right)\left(1+\lambda^{2 n}\right)^{-1 / n}$
where
$\alpha_{1}=$ value specified in Clause 18.2 .2
$A_{r}=$ value specified in Clause 18.3.2
$\lambda=$ value specified in Clause 18.3.2
$n=$ value specified in Clause 18.3.2

18.4.3 Reinforcement

18.4.3.1

The concrete encasement shall be reinforced with longitudinal bars and lateral ties extending completely around the structural steel core. The clear cover shall be not less than 40 mm .

The longitudinal bars shall
a) be continuous at framed levels when considered to carry load;
b) have an area not less than 0.01 times the total gross cross-sectional area;
c) be located at each corner; and
d) spaced on all sides not further apart than the lesser of 525t / $\sqrt{F_{y}}$ and one-half the least dimension of the composite section.

18.4.3.2

The lateral ties shall
a) be 15 M bars, except that 10 M bars may be used when no side dimension of the composite section exceeds 500 mm ; and
b) have a vertical spacing not exceeding the least of the following:
i) two-thirds of the least side dimension of the cross-section;
ii) 16 longitudinal bar diameters; or
iii) 500 mm .

18.4,4 Columns with multiple steel shapes

Where the composite cross-section includes two or more steel shapes, the steel shapes shall be considered built-up members subject to the requirements of Clause 19 until the concrete strength reaches $0.75 f_{c^{*}}^{\prime}$

18.4.5 Load transfer

The portion of the total axial load resisted by the concrete shall be developed by direct bearing at connections. The bearing strength of concrete may be taken as $1.95 \phi_{c} \alpha_{1} f_{L}^{\prime} A_{L}$, where A_{L} is the loaded area, provided that the concrete is restrained against lateral expansion.

18.4.6 Bending resistance

The bending resistance of encased composite columns may be determined according to the Structural Stability Research Council's Guide to Stability Design Criteria for Metal Structures.

19 Built-up members

19.1 General

Components of built-up members shall be joined for the applied forces and other minimum connection requirements specified in this Clause.
Note: The use of fillet welds or partial penetration welds, instead of complete joint penetration welds, is encouraged. If undermatching is permitted per CSA W59, this also needs to be considered. This will provide better ductility, improve fracture resistance, minimize lamellar tearing, and minimize distortion of the overall built-up section.

19.2 Members in compression

19.2.1

All components of built-up compression members and the transverse spacing of their lines of connecting bolts or welds shall meet the requirements of Clauses 10 and 11.

19.2.2

Component parts that are in contact with one another at the ends of built-up compression members shall be connected by
a) bolts spaced longitudinally not more than four diameters apart for a distance equal to 1.5 times the width of the member; or
b) continuous welds having a length of not less than the width of the member.

19.2.3

Unless closer spacing is required for transfer of load or sealing inaccessible surfaces, the longitudinal spacing in-line between intermediate bolts or the clear longitudinal spacing between intermittent welds for the outside plate component of built-up compression members shall not exceed the following, where t is the thickness of the outside plate:
a) when the bolts or intermittent welds are staggered on adjacent lines: $525 t / \sqrt{F_{y}}$, but not more than 450 mm ; and
b) when the bolts on all gauge lines or intermittent welds along the component edges are not staggered: $330 \mathrm{t} / \sqrt{F_{y}}$, but not more than 300 mm .

19.2.4

Compression members composed of two or more shapes in contact or separated from one another shall be interconnected in such a way that the slenderness ratio of any component, based on its least radius of gyration and the distance between interconnections, shall not exceed that of the built-up member. The compressive resistance of the built-up member shall be based on
a) the slenderness ratio of the built-up member with respect to the appropriate axis, when the buckling mode does not involve relative deformation that produces shear forces in the interconnectors; or
b) an equivalent slenderness ratio, with respect to the axis orthogonal to that in Item a), when the buckling mode involves relative deformation that produces shear forces in the interconnectors, taken as follows:
$\rho_{e}=\sqrt{\rho_{o}^{2}+\rho_{i}^{2}}$
where
$p_{e}=$ equivalent slenderness ratio of the built-up member
$\rho_{0}=$ slenderness ratio of the built-up member acting as an integral unit
$\rho_{i}=$ maximum slenderness ratio of component part of the built-up member between interconnectors

For built-up members composed of two interconnected shapes, e.g., back-to-back angles or channels, in contact or separated only by filler plates, the maximum slenderness ratio of component parts between fasteners or welds shall be based on an effective length factor of 1.0 when the fasteners are snug-tight bolts and 0.65 when welds or pretensioned bolts are used.

For built-up members composed of two interconnected shapes separated by lacing or batten plates, the maximum slenderness ratio of component parts between fasteners or welds shall be based on an effective length factor of 1.0 for both snug-tight and pretensioned bolts and for welds.

For compound compression members, connections at the ends and interconnectors should be capable of transferring the shears and moments through a rigid connection up to the factored load levels.

19.2.5

For starred angle compression members interconnected at least at the one-third points, Clause 19.2.4 need not apply.

19.2.6

The fasteners and interconnecting parts, if any, of members identified in Clause 19.2 .4 shall be proportioned to resist a force equal to 0.01 times the total force in the built-up member.

19.2.7

Spacing requirements of Clauses 19.2.3, 19.3.3, and 19.3.4 might not always provide a continuous tight fit between components in contact. When the environment is such that carrosion could be a serious problem, it is possible that the spacing of bolts or welds will need to be less than the specified maximum.

19.2.8

Open sides of compression members built up from plates or shapes shall be connected to each other by lacing, batten plates, or perforated cover plates.

19.2.9

Lacing shall provide a complete triangulated shear system and may consist of bars, rods, or shapes. Lacing shall be proportioned to resist a shear normal to the longitudinal axis of the member of not less than 0.025 times the total axial load on the member plus the shear from transverse loads, if any.

19.2.10

The slenderness ratio of lacing members shall not exceed 140. The effective length for single lacing shall be the distance between connections to the main components; for double lacing connected at the intersections, the effective length shall be half of that distance.

19.2.11

Lacing members shall be inclined preferably to the longitudinal axis of the built-up member at an angle of not less than 45°.

19.2.12

Lacing systems shall have diaphragms in the plane of the lacing and as near to the ends as practicable, as well as at intermediate points where lacing is interrupted. Such diaphragms may be plates (tie plates) or shapes.

19.2.13

End tie plates used as diaphragms shall have a length not less than the distance between the lines of bolts or welds connecting them to the main components of the member. Intermediate tie plates shall be at least one-half the specified length of end tie plates. The thickness of tie plates shall be at least $1 /$ 60 of the width between lines of bolts or welds connecting them to the main components, and the longitudinal spacing of the bolts or clear longitudinal spacing between welds shall not exceed 150 mm . At least three bolts shall connect the tie plate to each main component or a total length of weld not less than one-third the length of tie plate shall be used.

19.2.14

Shapes used as diaphragms shall be proportioned and connected to transmit a longitudinal shear equal to 0.05 times the axial compression in the member from one main component to the other.

19.2.15

Perforated cover plates may be used in lieu of lacing and tie plates on open sides of built-up compressive members. The net width of such plates at access holes may be assumed to resist axial load, provided that
a) the width-to-thickness ratio is as specified in Clause 11;
b) the length of the access hole does not exceed twice its width;
c) the clear distance between access holes in the direction of load is not less than the transverse distance between lines of bolts or welds connecting the perforated plate to the main components of the built-up member; and
d) the periphery of the access hole has a minimum radius of 40 mm at all points.

19.2.16

Battens consisting of plates or shapes may be used on open sides of built-up compression members that do not carry primary bending in addition to axial load. Battens shall be provided at the ends of the member, at locations where the member is laterally supported along its length, and elsewhere as required by Clause 19.2.4.

19.2.17

Battens shall have a length of not less than the distance between lines of bolts or welds connecting them to the main components of the member and shall have a thickness of not less than $1 / 60$ of this distance if the batten consists of a flat plate. Battens and their connections shall be proportioned to resist the following simultaneously:
a) a longitudinal shear force $v_{f}=\frac{0.025 C_{f} d}{n a}$; and
b) a moment $M_{f}=0.025 C_{f} d / 2 n$
where
d = longitudinal centre-to-centre distance between battens
$n=$ number of parallel planes of battens
$a \quad=$ distance between lines of bolts or welds connecting the batten to each main component

19.3 Members in tension

19.3.1

Members in tension composed of two or more shapes, plates, or bars separated from one another by intermittent fillers shall have the components interconnected at fillers spaced so that the slenderness ratio of any component between points of interconnection shall not exceed 300 .

19.3.2

Members in tension composed of two plate components in contact or a shape and a plate component in contact shall have the components interconnected so that the spacing between connecting bolts or clear spacing between welds does not exceed the lesser of 36 times the thickness of the thinner plate or 450 mm (see Clause 19.2.3).

19.3.3

Members in tension composed of two or more shapes in contact shall have the components interconnected so that the spacing between connecting bolts or the clear spacing between welds does not exceed 600 mm , except where it can be determined that a greater spacing would not affect the satisfactory performance of the member (see Clause 19.2.3).

19.3.4

Members in tension composed of two separated main components may have perforated cover plates or tie plates on the open sides of the built-up member. Tie plates, including end tie plates, shall have a length of not less than two-thirds of the transverse distance between bolts or welds connecting them to the main components of the member and shall be spaced so that the slenderness ratio of any component between the tie plates does not exceed 300 . The thickness of tie plates shall be at least 1 / 60 of the transverse distance between the bolts or welds connecting them to the main components, and the longitudinal spacing of the bolts or welds shall not exceed 150 mm . Perforated cover plates shall meet the requirements of Iterns \mathfrak{b}), c), and d) of Clause 19.2.15.

19.4 Open box-type beams and grillages

Two or more rolled beams or channels used side by side to form a flexural member shall be connected at intervals of not more than 1500 mm . Through-bolts and separators may be used, provided that, in beams having a depth of 300 mm or more, not fewer than two bolts are used at each separator location. When concentrated loads are carried from one beam to the other or distributed between the beams, diaphragms having sufficient stiffness to distribute the load shall be bolted or welded between the beams. The design of members shall provide for torsion resulting from any unequal distribution of loads. Where beams are exposed, they shall be sealed against corrosion of interior surfaces or spaced sufficiently far apart to permit cleaning and coating.

20 Plate walls

20.1 General

20.1.1 Definition

A plate wall is a lateral-force-resisting structural system consisting of a framework of columns and beams, with relatively thin infill plates in the plane of the frame connected all around to the
surrounding members. Frame connections between the beams and columns may be moment-resisting or simple shear connections.

20,1.2 Lateral resistance

Lateral storey shears are considered to be carried by a combination of frame action, if applicable, and post-buckling tension fields that develop in the infill plates parallel to the direction of the principal tensile stresses. Axial forces and moments develop in the beams and columns of plate walls as a result of the
a) response of the wall to the overall bending and shear; and
b) tension field action in the adjacent infill plates.

(1) 20.2 Seismic applications

Under seismic loading, plate walls shall also meet the requirements of Clause 27.9 or 27.10 , as appropriate.

(1) 20,3 Analysis and design

Forces and moments in the members and connections, including those resulting from tension field action, may be determined from a plane frame analysis, with the infill plates represented by a series of inclined pin-ended strips.

20.4 Angle of inclination

20.4.1

When the aspect ratio of the panel lies within the limits $0.6 \leq L / h \leq 2.5$, the angle of inclination from the vertical, α, of the inclined pin-ended strips may be taken as 40°. Otherwise, it shall be determined as follows and shall be between 38° and 45°;
$\tan ^{4} a=\frac{1+\frac{w L}{2 A_{i}}}{1+w h\left(\frac{1}{A_{b}}+\frac{h^{h}}{360 \sigma_{\varepsilon} L}\right)}$
where
$w=$ infill plate thickness
$L=$ centre-to-centre distance between columns
$A_{c}=$ cross-sectional area of column
$h=$ storey height
$A_{b}=$ cross-sectional area of beam
$I_{c}=$ moment of inertia of column

20.4.2

A single angle of inclination taken as the average for all the panels may be used to analyze the entire plate wall.

20.5 Limits on column and beam flexibilities

20.5.1

The column flexibility parameter at each panel, ω_{h}, shall be determined as follows and shall not exceed 2.5:
$\omega_{h}=0.7 h\left(\frac{w}{2 L I_{c}}\right)^{0.25}$
This requirement is met by providing columns with moments of inertia, I_{c}, greater than or equal to $0.0031 w h^{4} / L$.

20.5.2

The boundary member flexibility parameter for the extreme panels, ω_{L}, shall be determined as follows:
a) not exceed 2.5 at the top panel of the plate wall;
b) not exceed 2.0 at the bottom panel of the plate wall; and
c) be greater than $0.84 \omega_{n}$:
$\omega_{L}=0.7\left(\left(\frac{h^{4}}{J_{c}}+\frac{L^{4}}{l_{b}}\right) \frac{w}{4 L}\right)^{0.25}$
These requirements are met by providing a beam with a moment of inertia, l_{b}, greater than or equal to $\frac{w L^{4}}{650 L-\left(w h^{4} / I_{c}\right)}$ for the top beam and $\frac{w L^{4}}{267 L-\left(w h^{4} / I_{c}\right)}$ for the bottom beam, if present. See also Clause 20.9.2.

20.6 Infill plates

The factored tensile resistance of the inclined infill plate strips shall be calculated in accordance with Clause 13.2.

20.7 Beams

Beams shall be Class 1 or 2, except as required by Clause 27.9.3.1. Beams shall be proportioned to resist bending moments and axial compressive forces in accordance with Clause 13.8. Infill plates shall not be deemed to provide lateral support to adjacent beams.

20.8 Columns

Columns shall be Class 1 sections and proportioned to resist bending moments and axial forces in accordance with Clause 13.8 or 13.9 , as appropriate. Infill plates shall not be deemed to provide lateral support to adjacent columns.

20.9 Anchorage of infill plates

20.9.1

At the top panel, the vertical component of the infill plate tension field shall be anchored to a beam meeting the requirements of Clause 20.5.2.

20.9 .2

At the bottom panel, the vertical component of the infill plate tension field shall be anchored by connecting the infill plate directly to the substructure or to a beam that meets the requirements of Clause 20.5.2.

20.9 .3

At the bottom panel, the horizontal component of the infill plate tension field shall be transferred to the substructure.

20.10 Infill plate connections

Infill plates shall be connected to the surrounding beams and columns. These connections and, if required, any infill plate splices shall be in accordance with Clause 13.12 or 13.13 . The factored ultimate tensile strength of the infill plate strips shall be developed by the connections.

21 Connections

21.1 Alignment of members

Axially-loaded members that meet at a joint shall have their centroidal axes intersect at a common point if practicable. Bending resulting from joint eccentricity shall be taken into account.

21.2 Unrestrained members

Except as otherwise indicated in the structural design documents, all connections of beams, girders, and trusses shall be designed and detailed as flexible and ordinarily may be proportioned for the reaction shears only. Flexible beam connections shall accommodate end rotations of unrestrained (simple) beams. To accomplish this, inelastic action at the specified load levels in the connection is permitted,

21.3 Restrained members

When bearns, girders, or trusses are subject to both reaction shear and end moment due to full or partial end restraint or to continuous or cantilever construction, their connections shall be designed for the combined effect of shear, bending, and axial load.

When beams are rigidly framed to the flange of an 1 -shaped column and the distance from the end of the column to the top flange of the beam is greater than the depth of the column, stiffeners shall be provided on the column web if the following bearing and tensile resistances of the column are exceeded:
a) opposite the compression flange of the beam:
$B_{c}=\phi_{b i} w_{c}\left(t_{b}+10 t_{c}\right) F_{y c}<\frac{M_{f}}{d_{b}}$
except when the column has a Class 3 or 4 web, in which case the following shall apply:
$B_{r}=\frac{640000 \phi_{b} w_{c}\left(t_{b}+10 t_{c}\right)}{\left(h_{c} / w_{c}\right)^{2}}$
b) opposite the tension flange of the beam when the connected element is
i) welded to the column:

$$
T_{r}=7 \phi t_{z}^{2} F_{y c}<\frac{M_{f}}{d_{b}}
$$

ii) bolted to the column with two rows of bolts centered about the web of column and the tension flange of the beam:

$$
T_{t}=\phi 2 t_{c}^{2} F_{y c}\left[\sqrt{\frac{b_{c}}{g}}+\frac{e+c_{b}}{g}\right]<\frac{M_{f}}{d_{b}}
$$

where
$w_{c}=$ thickness of column web
$t_{b}=$ thickness of beam flange
$t_{5}=$ thickness of column flange
$b_{c}=$ width of column flange, but not to be taken as greater than $0.25\left(9 \mathrm{~g}-5 \mathrm{w}_{c}\right)$
$g=$ bolt gauge, spacing of the tension bolts transverse to long axis of the column
$c_{b}=$ bolt spacing between two bolt rows in tension, taken parallel to the long axis of the column, but not to be taken as greater than $2 \sqrt{b_{c} \times g}$
$e=$ distance from the free end of the unstiffened column to the nearest bolt row in tension, but e is not to be taken as greater than $\sqrt{b_{c} \times g}$
$F_{y c}=$ specified yield point of column
$d_{b}=$ depth of beam
$h_{c}=$ clear depth of column web
The stiffener or pair of stiffeners opposite either beam flange shall develop a force, $F_{\text {st, }}$, equal to
$\left(M_{j} / d_{b}\right)-B_{r}$
Stiffeners shall also be provided on the web of columns, beams, or girders if V_{r} calculated from Clause 13.4.2 is exceeded, in which case the stiffener or stiffeners shall transfer a shear force, $V_{s t}$, equal to
$V_{f}-0.8 \phi A_{w} F_{s}$
The stiffeners shall be connected so that the force in the stiffener is transferred through the stiffener connection. When beams frame to one side of the column only, the stiffeners need not be longer than one-half of the depth of the column. When an axial tension or compression force is acting on the beam, its effects (additive only) shall be considered in the design of the stiffeners.

When beams are rigidly framed to the flange of an 1 -shaped column and the distance from the end of the column to the top flange of the beam is less than or equal to the depth of the column, the requirement of stiffeners shall be evaluated by rational analysis. In lieu of rational analysis, stiffeners shall be provided.

21.4 Connections of tension or compression members

The connections at ends of compression members not finished to bear or of tension members shall be designed for the full factored load effect.

21.5 Bearing joints in compression members

Where columns or other compression members bear on bearing plates or are finished to bear at splices, there shall be sufficient fasteners or welds to hold all parts securely in place to provide a satisfactory level of structural integrity (see Clauses 6.1.2, 28.5, and 29.3.9). The flanges of single web members shall be connected.

21.6 Lamellar tearing

Corner or T-joint details of rolled structural members or plates involving transfer of tensile forces in the through-thickness direction resulting from shrinkage due to welding executed under conditions of restraint shall be avoided where possible. If this type of connection cannot be avoided, measures shall be taken to address the possibility of lamellar tearing.

21.7 Placement of fasteners and welds

Except in members subject to fatigue (see Clause 26) and in braces subject to seismic loads (see Clause 27.5.4.1), disposition of fillet welds to balance the forces about the neutral axis or axes for end connections of single-angle, double-angle, or similar types of axially loaded members shall not be required. Eccentricity between the centroidal axes of such members and the gauge lines of bolted end connections may also be neglected. In axially loaded members subject to fatigue, the fasteners or welds in end connections shall have their centroid on the centroidal axis of the member unless provision is made for the effect of the resulting eccentricity.

21.8 Fillers

21.8.1 Fillers in bolted connections

21.8.1.1

When load-carrying fasteners pass through fillers with a total thickness greater than 19 mm , the fillers shall be extended beyond the splice material and the filler extension shall be secured by sufficient fasteners to distribute the total force in the connected element uniformly over the combined crosssection of the connected element and the filler. , If the filler extension is not provided and/or the filler is not secured by sufficient fasteners, an equivalent number of fasteners shall be included in the connection.

21.8.1.2

When load-carrying fasteners pass through fillers with a total thickness between 6.4 and 19 mm , the shear capacity of the fasteners shall be reduced to account for bending in the fasteners by R_{v}, as follows:
$R_{v}=1.1-0.0158 t$
where
$t=$ thickness of the fillers
Alternatively, the fillers shall be extended beyond the splice material and the filler extension shall be secured by sufficient fasteners to distribute the total force in the connected element uniformly over the combined cross-section of the connected element and the filler or an equivalent number of fasteners shall be included in the connection.

21.8.1.3

When load-carrying fasteners pass through fillers with a total thickness less than or equal to 6.4 mm , the shear capacity of the fasteners need not be reduced.

21.8.2 Fillers in welded connections

In welded construction, any filler with a total thickness greater than 6 mm shail extend beyond the edges of the splice plate and shall be welded to the part on which it is fitted with sufficient weld to transmit the splice plate load, applied at the surface of the filler, as an eccentric load. Welds that connect the splice plate to the filler shall be sufficient to transmit the splice plate load and shall be long enough to avoid overloading the filler along the toe of the weld. Any filler that is 6 mm or less in thickness shall have its edges made flush with the edges of the splice plate and the required weld size shall be equal to the thickness of the filler plate plus the size necessary to transmit the splice plate load.

21.9 Welds in combination

If two or more of the general types of weld (groove, fillet, plug, or slot) are combined in a single connection, the effective capacity of each shall be calculated separately with reference to the axis of the group to determine the factored resistance of the combination.

21.10 Fasteners and welds in combination

21.10.1 New connections

The strength of a joint that combines welds and bolts in the same plane shall be proportioned in accordance with Clause 13.14.

21.10.2 Existing connections

The strength of a joint that combines welds and bolts in the same plane shall be proportioned in accordance with Clause 13.14.

The loads that are being carried by the existing welds and/or bolts at the time that the new fasteners are installed shall be considered when determining the strength of the joint.

21.11 High-strength bolts (in slip-critical joints) and rivets in combination

In making alterations, rivets and high-strength bolts in slip-critical joints may be considered as sharing forces caused by specified dead and live loads.

21.12 Connected elements under combined tension and shear stresses

Except as noted elsewhere in this Standard, welded connection plates under combined normal stress, σ_{n}, and shear stress, τ, shall be proportioned such that $\tau \leq 0.66 \phi F_{v}$ and $\sigma_{n} \leq \sigma_{n R}$, where
when $\tau \leq 0.5 \phi F_{y}, \sigma_{n R}=\phi F_{y}$
when $\tau>0.5 \phi F_{y}, \sigma_{n R}=25 / 4\left(0.66 \phi F_{y}-\tau\right)$

22 Design and detailing of bolted connections

22.1 General

Clause 22 deals primarily with ASTM A325, ASTM A325M, ASTM A490, ASTM A490M, ASTM F1852, and ASTM F2280 bolt assemblies and equivalent fasteners. The bolts may be required to be installed to a specified minimum tension, depending on the type of connection.

22.2 Design of bolted connections

22.2.1 Use of snug-tightened high-strength bolts

Snug-tightened high-strength bolts may be used in connections other than those specified in Clause 22.2.2 (see Clause 23.6).

22.2.2 Use of pretensioned high-strength bolts

Pretensioned high-strength bolts (ASTM A325, ASTM A325M, ASTM A490, ASTM A490M, ASTM F1852, and ASTM F2280) shall be used in
a) slip-critical connections where slippage cannot be tolerated (e.g., connections subject to fatigue or frequent load reversal, or connections in structures that have rigorous deflection or stiffness limit states);
b) shear connections, when required by Clause 27.1;
c) all elements resisting crane loads;
d) connections subject to impact or cyclic loading;
e) connections where the bolts are subject to tensile loading (see Clause 13.12.1.3); and
f) connections using oversize or long slotted holes (unless specifically designed to accommodate movement).

22.2.3 Joints subject to fatigue loading

Joints subject to fatigue loading shall be proportioned in accordance with Clause 26.

22.2.4 Effective bearing area

The effective bearing area of bolts shall be the nominal diameter multiplied by the length in bearing. For countersunk bolts, half of the depth of the countersink shall be deducted from the bearing length.

22.2.5 Fastener components

Δ 22.2.5.1 Structural bolt assemblies

Except as specified in Clause 22.2.5.4, bolts, nuts, and washers for structural bolt assemblies shall meet the requirements of ASTM A325, ASTM A325M, ASTM A490, ASTM A490M, ASTM F1852, or ASTM F2280.

22.2.5.2 Galvanized bolt assemblies

Galvanized ASTM A325 and ASTM A325M bolt assemblies shall meet the galvanizing requirements of ASTM A325 and ASTM A325M.

22.2.5.3 Zinc/aluminum coated bolt assemblies

Zinc/aluminum coated ASTM A325, ASTM A325M, ASTM A490, and ASTM A490M bolt assemblies shall meet the coating requirements of ASTM F1136.

22.2.5.4 Alternatives to ASTM A325, ASTM A325M, ASTM A490, and ASTM A490M bolt assemblies

Other fasteners may be used if they meet the chemical and mechanical requirements of ASTM A325, ASTM A325M, ASTM A490, or ASTM A490M and have body diameters and bearing areas under the head and nut specified in those Standards. Such fasteners may differ in other dimensions and their use shall be subject to the approval of the designer.

22.3 Detailing of bolted connections

22.3.1 Minimum pitch

The minimum distance between centres of bolt holes shall be 2.7 times the bolt diameter.

22.3.2 Minimum edge distance

The minimum distance from the centre of a bolt hole to an edge shall be as specified in Table 6 .

22.3.3 Maximum edge distance

The maximum distance from the centre of any bolt to the nearest edge of parts in contact shall be 12 times the thickness of the outside connected part, but not greater than 150 mm .

22.3.4 Minimum end distance

In the connection of tension members having more than two bolts in a line parallel to the direction of load, the minimum end distance (from the centre of the end fastener to the nearest end of the connected part) shall be governed by the edge distance values specified in Table 6. In members having one or two bolts in the line of load, the end distance shall be not less than 1.5 bolt diameters.

22.3.5 Bolt holes

22.3.5.1

Holes may be punched, sub-punched, sub-drilled and reamed, or drilled, as permitted by Clause 28.4. The nominal diameter of a hole shall be not more than 2 mm greater than the nominal bolt size. This requirement may be waived to permit the use of the following bolt diameters and hole combinations in bearing-type or slip-critical connections:
a) $3 / 4$ in diameter bolt or an M20 bolt in a 22 mm hole;
b) a $7 / 8$ in diameter bolt or an M22 bolt in a 24 mm hole; and
c) a 1 in diameter bolt or an M24 bolt in a 27 mm hole.

Oversized or slotted holes may be used with high-strength bolts 16 mm in diameter and larger when approved by the designer.

22.3.5.2

Joints that use enlarged or slotted holes shall be proportioned in accordance with Clauses 13.11, 13.12, and 23 and meet the following requirements:
a) Oversize holes shall be 4 mm larger than bolts 22 mm and less in diameter, 6 mm larger than bolts 24 mm in diameter, and 8 mm larger than bolts 27 mm and greater in diameter. Oversize holes shall not be used in bearing-type connections but may be used in any or all plies of slip-critical connections. Hardened washers shall be used under heads or nuts adjacent to the plies containing oversize holes.
b) Short slotted holes shall be 2 mm wider than the bolt diameter and have a length that does not exceed the oversize diameter requirements of Item a) by more than 2 mm . Short slotted holes may be used in any or all plies of slip-critical or bearing-type connections and without regard to direction of loading in slip-critical connections, but shall be normal to the direction of the load in bearing-type connections. For pretensioned bolts, hardened washers shall be used under heads or nuts adjacent to the plies containing the slotted holes.
c) Long slotted holes shall be 2 mm wider than the bolt diameter, shall have a length greater than that allowed in Item b) (but not more than 2.5 times the bolt diameter in only one of the connected parts at an individual faying surface of either a slip-critical or bearing-type connection), and may be used in
i) slip-critical connections without regard to the direction of loading (slip resistance shall be decreased in accordance with Clause 13.12.2.2); and
ii) bearing-type connections with the long dimension of the slot normal to the direction of loading, provided that structural plate washers or a continuous bar not less than 8 mm in
thickness covers long slots that are in the outer plies of joints. The plate washers or bar shall have a size sufficient to completely cover the slot after installation. Plate washers or bars shall not be required for bearing-type connections in double shear having long slotted holes in the inner ply only.

22.3.5.3

The maximum and minimum edge distance for bolts in slotted or oversize holes (as permitted in Clause 22.3 .5 .1) shall meet the requirements of Clauses 22.3 .2 to 22.3 .4 , assuming that the fastener can be placed at any extremity of the slot or hole.

23 Installation and inspection of bolted joints

23.1 Connection fit-up

When assembled, all joint surfaces, including those adjacent to bolt heads, nuts, and washers, shall be free of scale (tight mill scale excepted), burrs in excess of 2 mm in height, dirt, and foreign material that could prevent firm contact of the parts. Connections using high-strength bolts shall be in firm contact when assembled and shall not be separated by gaskets or compressible materials.

Δ 23.2 Surface conditions for slip-critical connections

The condition of the contact surfaces for slip-critical connections, as specified in Table 3, shall be as follows:
a) For clean mill scale, the surfaces shall be free of oil, paint, lacquer, or any other coating for all areas within the bolt pattern and for a distance beyond the edge of the bolt hole that is the greater of 25 mm or the bolt diameter.
b) For Classes A and B , the blast-cleaning and the coating application shall be the same as those used in the tests to determine the mean slip coefficient.
c) For hot-dip galvanized surfaces, galvanizing shall be done in accordance with CAN/CSA-G164 and the surface subsequently roughened by hand wire-brushing. Power wire-brushing shall not be used.
d) For all other coatings, the surface preparation and coating application for the joint shall be the same as those used in the tests to determine the mean slip coefficient.

Coated joints shall not be assembled before the coatings have cured for the minimum time used in the tests to determine the mean slip coefficient.

23.3 Minimum bolt length

The length of bolts shall be such that the point of the bolt will be flush with or outside the face of the nut when completely installed.

23.4 Use of washers

23.4.1

ASTM F436 hardened washers shall be used under the turned element
a) as required by Clause 23.4.2;
b) for pretensioned ASTM F1852 and ASTM F2280 bolts; and
c) for bolt arbitration inspection procedures.
(1) 23.4 .2

When high strength bolts are pretensioned, ASTM F436 hardened washers shall
a) be used to cover oversize or slotted holes (see Clause 22.3.5);
b) be used with ASTM F959 washers, as applicable;
c) be placed under the head and nut when used with steel having a specified minimum vield point of less than 280 MPa and the bolts are either ASTM A490, ASTM A490M, or ASTM F2280; and
d) be not less than 8 mm in thickness when either ASTM A490, ASTM A490M, or ASTM F2280 bolts greater than 26 mm in diameter are used in oversize and slotted holes, except that ASTM F436 washers in combination with a 10 mm plate washer covering the holes may be used.

23.4.3

If necessary, washers may be clipped on one side to a point not closer than $7 / 8$ of the bolt diameter from the centre of the washer hole.

23.4 .4

ASTM F436 bevelled washers shali be used to compensate for lack of parallelism where, in the case of ASTM A325, ASTM A325M, and ASTM F1852 bolts, an outer face of bolted parts has more than a 5% slope with respect to a plane normal to the bolt axis. In the case of ASTM A490, ASTM A490M, and ASTM F2280 bolts, bevelled washers shall be used to compensate for any lack of parallelism due to the slope of the outer faces.

23.5 Storage of fastener components for pretensioned bolt assemblies

Fastener components shall
a) be stored in closed containers;
b) be returned to protected storage at the end of the work shift when not incorporated into the work;
c) not have the as-delivered condition altered in any fashion, including cleaning; and
d) not be incorporated into the work if rust or dirt resulting from plant or job site conditions accumulates unless they are cleaned, relubricated, and requalified with a bolt tension calibrator.

ASTM F1852 and ASTM F2280 bolt assemblies shall not be relubricated, except by the manufacturer.

23.6 Snug-tightened bolt assemblies

Snug-tightened bolted assemblies shall have the following two conditions:
a) High-strength fastener assemblies that are not required to be pretensioned shall be installed in properly aligned holes to a snug-tight condition as a minimum (for slotted holes, see Clause 22.3.5.2).
b) Fastener assemblies incorporating ASTM A307 bolts shall only be snug-tightened. Where so specified by the designer, additional security from working loose of ASTM A307 assemblies shall be provided by the use of lock washers, locknuts, jam nuts, thread burring, welding or other methods so approved.

23.7 Pretensioned high-strength bolt assemblies

23.7.1 Installation procedure

Pretensioned bolts shall be installed to at least the minimum bolt tensions specified in Table 7, in accordance with the following procedure:
a) After the holes in a joint are aligned, sufficient bolts shall be placed to secure the member.
b) Bolts shall be placed in the remaining open holes and snug-tightened, with joint assembly progressing systematically from the most rigid part of the joint to its free edges (re-snugging may be necessary in large joints).
c) When all bolts are snug-tight, each bolt in the joint shall be pretensioned, with pretensioning progressing systematically from the most rigid part of the joint to its free edges in a manner that will minimize relaxation of previously pretensioned bolts.

23.7.2 Turn-of-nut method

After the snug-tightening procedure is completed, each bolt in the connection shall be pretensioned additionally by the applicable amount of relative rotation specified in Table 8. During this operation there shall be no rotation of the part not turned by the wrench unless the bolt and nut are matchmarked to enable the amount of relative rotation to be determined.

23.7.3 Use of ASTM F959 washers

When ASTM F959 washers are used (also known as direct tension indicator washers), the pretension of the bolt in accordance with Table 7 shall be verified using a tension calibrator. Prior to installation of ASTM F959 bolt assemblies, a sample of not fewer than three complete bolt assemblies of each combination of diameter, length, grade, and lot to be used in the work shall be placed individually in a bolt-tension calibrator at the site of installation to verify that the pretensioning method develops a tension that is equal to or greater than 1.05 times the minimum tensions specified in Table 7. The preinstallation verification procedure shall be performed at the start of the work and whenever the lot of fastener assembly is changed.

23.7.4 Use of ASTM F1852 and ASTM F2280 bolts

Prior to installation of ASTM F1852 and ASTM F2280 bolt assemblies in joints requiring pretension, a sample of not fewer than three complete bolt assemblies of each combination of diameter, length, grade, and lot to be used in the work shall be placed individually in a bolt-tension calibrator at the site of installation to verify that the pretensioning method develops a tension that is equal to or greater than 1.05 times the minimum tensions specified in Table 7. The pre-installation verification procedure shall be performed at the start of the work and whenever the lot of fastener assembly is changed.

During the snug-tightening procedure, care shall be taken to avoid severing the splined ends. Bolts with severed ends shall be replaced. After the snug-tightening procedure is completed, each bolt in the joint shall be pretensioned.

23.8 Inspection procedures

23.8.1

The inspector shall determine that the requirements of Clauses 23.1 to 23.6 are met. Tensioning of bolts shall be observed during their installation to ascertain that the proper procedures are employed. In addition, the following shall apply:
a) for snug-tight connections, the inspection need ensure only that the bolts have been tightened sufficiently to bring the connected elements into firm contact;
b) for bolts pretensioned by the turn-of-nut method, the turned element of all bolts shall be visually examined for evidence that they have been pretensioned;
c) for ASTM F959 washers, the washers shall be inspected to ensure that adequate deformations have been achieved in accordance with the manufacturer's installation procedures; and
d) for ASTM F1852 and ASTM F2280 bolt assemblies, the splined ends shall be inspected for twist-off. Note: For pretensioned connections, see Annex I if there is disagreement concerning the results of inspection of bolt-tensioning procedures.

23.8 .2

Bolt tensions exceeding those specified in Table 7 shall not be cause for rejection.

24 Welding

24.1 Arc welding

Arc welding shall be designed in accordance with
a) Clause 13.13 for factored resistance of welds under static loading with matching electrode (see CSA W59 for locations and conditions where non-matching is permissible); and
b) Clause 26 for resistance to fatigue loading, with matching electrode (see CSA W59 for locations and conditions where non-matching is permissible).

For all other aspects of welding, the requirements of CSA W59 shall be followed.

24.2 Resistance welding

The resistance of resistance-welded joints shall be in accordance with CSA W55.3. Quality assurance and weld process control procedures shall be as specified in CSA W55.3.

24.3 Fabricator and erector qualification

Fabricators and erectors responsible for welding structures fabricated or erected under this Standard shall be certified by the Canadian Welding Bureau to the requirements of CSA W47.1 (Division 1 or Division 2), CSA W55.3, or both, as applicable. Part of the work may be sublet to a Division 3 fabricator or erector; however, the Division 1 or Division 2 fabricator or erector shall retain responsibility for the sublet work.

25 Column bases and anchor rods

25.1 Loads

Suitable provision shall be made to transfer factored axial loads, including uplift, shears, and moments, to footings and foundations. Forces present during construction and in the finished structure shall be resisted.

25.2 Minimum number of anchor rods

Columns shall be fitted with at least four anchor rods. When four non-colinear anchor rods for erection safety are not feasible, special precautions shall be taken.

25.3 Resistance

25.3.1 Concrete in compression

The compressive resistance of concrete shall be determined in accordance with Clause 10.8 of CSA
A23.3. When compression exists over the entire base plate area, the bearing pressure on the concrete
may be assumed to be uniform over an area equal to the width of the base plate multiplied by the length minus $2 e$, where e is the eccentricity of the column load. Where eccentricity exists about both column axes, the width of the base plate shall also be reduced by twice the eccentricity in that direction.

25.3.2 Tension

25.3.2.1 Anchor rods

The factored tensile resistance of an anchor rod shall be taken as
$T_{r}=\phi_{a r} A_{n} F_{u}$
where
$\phi_{\text {ar }}=0.67$
$A_{n}=$ the tensile area of the rods
$=0.85 A_{g}$

25.3.2.2 Pull-out

The pull-out resistance shall be determined in accordance with CSA A23.3, Annex D. Full anchorage shall be obtained when the factored pull-out resistance of the concrete is equal to or greater than the factored tensile resistance of the rods.

The determination of the pull-out value shall account for single and group anchor behaviour.

25.3.3 Shear

(1) 25.3.3.1 Shear transfer mechanisms

Shear resistance may be developed by friction between the base plate and the foundation unit or by bearing of the anchor rods or shear lugs against the concrete. The appropriate requirements of CSA A23.3, Clause 11 and Annex D, shall be met for
a) anchor rods bearing against the concrete;
b) loads are transferred by friction;
c) shear lugs bearing against the concrete; and
d) shear acting toward a free edge of concrete.

25.3.3.2 Anchor rods in bearing

The factored bearing resistance of an anchor rod shall be determined by CSA A23.3, Annex D. The thickness of the grout layer under the base plate shall be taken into account, in accordance with CSA A23.3.

25.3.3.3 Anchor rods in shear

The factored shear resistance of an anchor rod shall be taken as
$V_{r}=0.60 \phi_{a r} A_{a r} F_{u}$
where
$A_{a r}=$ cross-sectional area of the anchor rod based on its nominal diameter
When the rod threads are intercepted by the shear plane, the factored shear resistance shall be taken as $0.70 V_{r}$.

Δ 25.3.4 Anchor rods in shear and tension

An anchor rod required to develop resistance to both tension and shear shall be proportioned so that
$\left(V_{f} / V_{r}\right)^{2}+\left(T_{f} / T_{r}\right)^{2} \leq 1$
where
$V_{r}=$ the lesser of the factored shear resistance of the anchor rod or the portion of the total shear per rod resisted by bearing of the anchor rods on the concrete
$T_{r}=$ the lesser of the factored tension resistance of the anchor rod or the factored pull-out resistance of the concrete

25.3.5 Anchor rods in tension and bending

An anchor rod required to develop resistance to both tension and bending shall be proportioned to meet the requirements of Clause 13.9.1. The tensile and moment resistances, T_{r} and M_{n} shall be based on the properties of the cross-section at the critical section. M_{r} shall be taken as $\phi_{o_{r}} S F_{y_{r}}$

25.3.6 Moment on column base

The moment resistance of a column base shall be taken as the couple formed by the tensile resistance determined in accordance with Clause 25.3.2 and by the concrete compressive resistance determined in accordance with Clause 25.3.1.

25.4 Fabrication and erection

25.4.1 Fabrication

25.4.1.1 Base plate holes

Base plate holes may be drilled, machined, or thermally cut. The surfaces of thermally cut holes shall meet the requirements of Clause 28.2.

Holes in base plates for anchor rods shall be of sufficient size to meet or exceed the placement tolerances for anchor rods. The Designer shall provide details of corrective work if base plate holes are to be adjusted to suit as-cast locations of anchor rods.

25.4.1.2 Bases resting on masonry or concrete

The bottom surfaces of bearing plates and column bases that rest on masonry or concrete foundations and are grouted to ensure full bearing need not be planed.

25.4.1.3 Rolled steel bearing plates

Finishing of steel-to-steel contact bearing surfaces shall meet the requirements of Clauses 28.5 and 29,3.9, Plates 55 mm or less thick may be used without machining. Plates more than 55 mm thick may be straightened by pressing or machined at bearing locations.

25.4.2 Erection

25.4.2.1 Setting column bases

Column bases shall be set on level finished floors, pre-grouted levelling plates, levelling nuts, or shim packs that are adequate to transfer the construction loads. Steel shim packs may remain in place uniess otherwise specified by the Designer.

25.4.2.2 Tensioning of anchor rods

Nuts on anchor rods need be installed only to a snug-tight condition unless otherwise specified by the designer. If pre-tension is required, the method of tensioning and the pre-tension value shall be defined by the designer.

26 Fatigue

26.1 General

In addition to meeting the fatigue requirements of Clause 26 , all members and connections shall meet the requirements for the static load conditions using the factored loads. Specified loads shall be used for all fatigue calculations. This is calculated using ordinary elastic analysis and the principles of mechanics of materials and includes stresses that may result from bending moments due to joint eccentricities. A specified load less than the maximum specified load but acting with a greater number of cycles can govern and therefore shall be considered. Members and connections subjected to fatigue loading shall be designed, detailed, and fabricated 50 as to avoid abrupt changes in cross-sections and other sources of stress concentration. The life of the structure shall be taken as 50 years, unless otherwise specified by the owner.

26.2 Proportioning

In the absence of more specific requirements by the owner or designer, the requirements of Clause 26 shall be used to proportion members and parts. Fatigue resistance shall be provided only for repetitive loads.

26.3 Live-Ioad-induced fatigue

26.3.1 Calculation of stress range

The controlling stress feature in load-induced fatigue is the range of stress to which the element is subjected. This is calculated using ordinary elastic analysis and the principles of mechanics of materials and includes stresses that may result from the bending moments due to joint eccentricities. More sophisticated analysis shall be required only in cases not covered by Table 9, e.g., major access holes and cut-outs. Stress range is the algebraic difference between the maximum stress and minimum stress at a given location; thus, only live load induces a stress range.

The load-induced fatigue requirements of Clause 26 need be applied only at locations that undergo a net applied tensile stress. Stress ranges that are completely in compression need not be investigated for fatigue.

26.3.2 Design criteria

For load-induced fatigue and constant amplitude fatigue loading, the following design requirement shall apply:
$F_{s r} \geq f_{s r}$
where
$F_{s r}=$ fatigue resistance

$$
=\left(\frac{\gamma}{n N}\right)^{1 / 3} \geq F_{s t t}
$$

$$
=\left(\frac{\gamma^{\prime}}{n N}\right)^{1 / 5} \leq F_{s t t}
$$

where
γ and $\gamma^{\prime}=$ fatigue life constants (see Clause 26.3.4)
$n \quad=$ number of stress range cycles at given detail for each application of load
$N \quad=$ number of applications of load
$F_{\text {srt }} \quad=$ constant amplitude threshold stress range (Clauses 26.3 .3 and 26.3.4)
$f_{s r} \quad=$ calculated stress range at the detail due to passage of the fatigue load including stresses due to eccentricities

(1) 26.3.3 Cumulative fatigue damage

The total damage that results from variable amplitude fatigue loading shall satisfy
$\sum\left[\frac{(n N)_{i}}{N_{f}}\right] \leq 1.0$
where
$(n N)_{i} \quad=$ number of expected stress range cycles at stress range level $i_{,} f_{s r i}$
$N_{/ j} \quad=$ number of cycles that would cause failure at the stress range $f_{\text {sri }}$ obtained from Figure 1 for the appropriate fatigue category. Alternatively, it may be calculated as follows:
$N_{f i}=\gamma f_{s r r^{-3}}$ for $f_{s r i} \geq F_{s r t}$
and

$$
N_{f i}=\gamma^{\prime} f_{s r i} r^{-5} \text { for } f_{s r i} \leq F_{s t r}
$$

The summation shall include both stress cycles above and below $F_{\text {str }}$
The fatigue constant γ^{\prime} shall be as specified in Table 10.

26.3.4 Fatigue constants and detail categories

The fatigue constants $\gamma, \gamma^{\prime}, n N^{\prime}$, and $F_{s t r}$ shall be as specified in Table 10 and shown in Figure 1. The detail categories shall be obtained from Table 9 and are illustrated in Figure 2.

For high-strength bolts, see also Clause 13.12.1.3.

26.3.5 Limited number of cycles

Except for fatigue-sensitive details with high stress ranges (probably with stress reversal), special considerations beyond those specified in Clause 26.1 need not apply in the event that the number of stress range cycles, $n N$, over the life of the structure, expected to be applied at a given detail, is less than the greater of $y / f_{s r}^{3}$ or 20000 .

26.4 Distortion-induced fatigue

26.4.1

Members and connections shall be detailed to minimize distortion-induced fatigue that can occur in regions of high strain at the interconnection of members undergoing differential displacements.

Whenever practicable, all components that make up the cross-section of the primary member shall be fastened to the interconnection member.

26.4.2

Plate girders with $h / w>3150 / \sqrt{F_{y}}$ shall not be used under fatigue conditions.

26.5 High-strength bolts

A high-strength bolt subjected to tensile cyclic loading shall be pretensioned to the minimum preload specified in Clause 23.7. Connected parts shall be arranged so that prying forces are minimized. The prying force per bolt shall not exceed 30% of the externally applied load.

The permissible maximum applied nominal axial stress, including amplification by prying under specified loads, based on the nominal area of the bolt, shall not exceed 214 MPa for ASTM A325, ASTM A325M, and ASTM F1852 bolts and 262 MPa for ASTM A490, ASTM A490M, and ASTM F2280 bolts.

The total maximum cyclic service load that may be applied to a bolt is calculated as the product of the permissible maximum nominal stress above and the nominal area of a bolt. Thus calculated, the service load per bolt, including the amplification by prying, shall not exceed this maximum applied service load on a pretensioned bolt.

27 Seismic design

27.1 General

27.1.1 Scope

Clause 27 specifies requirements for the design of members and connections in the seismic-forceresisting system of steel-framed building structures. With the exception of Clause 27.11, Clause 27 applies to buildings for which seismic design loads are based on a ductility-related force modification factor, R_{d}, greater than 1.5. Clause 27 shall be applied with the requirements of the NBCC. Alternatively, the maximum anticipated seismic loads may be determined from non-linear time-history analyses using appropriate structural models and ground motions. Height restrictions shall not apply when the seismic forces are determined from non-linear time-history analyses or to buildings with specified short-period spectral acceleration ratios $\left(\ell_{E} F_{o} S_{o}(0.2)\right)$ less than 0.35 , unless otherwise specified in Clause 27 or the NBCC.

Clause 27 may be applied to structures other than building structures provided that the structure includes a clearly defined seismic-force-resisting system and that a level of safety and seismic performance comparable to that required by Clause 27 for building structures is provided.

27.1.2 Capacity design

Unless otherwise specified in Clause 27, seismic-force-resisting systems shall be designed according to capacity design principles to resist the maximum anticipated seismic loads, but such loads need not exceed the values corresponding to $R_{d} R_{o}=1.3$,

In capacity design,
a) specific elements or mechanisms are designed and detailed to dissipate energy;
b) all other elements are sufficiently strong for this energy dissipation to be achieved;
c) structural integrity is maintained;
d) elements and connections in the horizontal and vertical load paths are designed to resist the seismic loads;
e) diaphragms and collector elements are capable of transmitting the loads developed at each level to the vertical seismic-force-resisting system; and
f) these loads are transmitted to the foundation.

Connections along the horizontal load path that are designed for forces corresponding to $R_{d} R_{o}=1.3$ shall have a ductile governing ultimate limit state.

27.1.3 Seismic load path

Any element that significantly affects the load path or the seismic response shall be considered in the analysis and shown on the structural drawings.

27.1.4 Members and connections supporting gravity loads

Structural members and their connections that are not considered to form part of the seismic-forceresisting system shall be capable of supporting gravity loads when subjected to seismically induced deformations.

Splices in gravity columns not part of the seismic-force-resisting system shall have a factored shear resistance in both orthogonal axes equal to the sum of $0.2 Z F_{y} / h_{s}$ of the columns above and below the splices.
Note: The gravity loads to be supported are those considered in combination with the earthquake loading.

27.1.5 Material requirements

27.1.5.1

Steel used in the energy-dissipating elements described in Clauses 27.2 to 27.10 shall comply with Clauses 5.1.3 and 8.3 .2 a). Fy shall not exceed 350 MPa unless the suitability of the steel is determined by testing or other rational means. F_{y} shall not exceed 450 MPa in columns in which the only expected inelastic behaviour is at the column base, Other material may be used if approved by the regulatory authority.
Note: F_{y} is the specified minimum yield stress, See Clause 5.1.2.

27.1.5.2

When the specified short-period spectral acceleration ratio $\left(\ell_{E} F_{o} S_{o}(0.2)\right)$ is greater than 0.55 , rolled shapes with flanges 40 mm or thicker, or plates and built-up shapes over 51 mm in thickness, used in energy-dissipating elements or welded parts, shall have a minimum average Charpy V -notch impact test value of 27 J at $20^{\circ} \mathrm{C}$, unless it can be demonstrated that tensile stresses, including local effects, are not critical. The impact tests shall be conducted in accordance with CSA G40.21, with the following exceptions:
a) the central longitudinal axis of the test specimens in rolled shapes shall be located as near as practicable to midway between the inner flange surface and the centre of the flange thickness at the intersection with the web mid-thickness; and
b) one impact test sample shall be taken from each 15 tonnes or less of shapes produced from each heat, or from each ingot for shapes rolled from ingots.

27.1.5.3

This Clause applies to welds in primary members and connections where the specified short-period spectral acceleration ratio $\left(L_{E} F_{\sigma} S_{o}(0,2)\right)$ is greater than 0.35 .

All welds shall be made with filler metals that have a minimum average Charpy V-notch impact test value of 27 J at a test temperature equal to or lower than $-18^{\circ} \mathrm{C}$ as certified in accordance with CSA W48 or a manufacturer's certificate of conformance.

In addition, demand critical welds as designated below shall be made with filler metals that have a minimum average Charpy V -notch impact test value of 54 J at $+20^{\circ} \mathrm{C}$, except that where the structure in service is exposed to temperatures lower than $+10^{\circ} \mathrm{C}$, the maximum testing temperature shall be $20^{\circ} \mathrm{C}$ above the 2.5% January design temperature as defined in Appendix C, Division B of the NBCC. Demand critical welds shall include
a) groove welds in column splices;
b) welds at column-to-base plate connections when plastic hinging or net section fracture in tension is expected at the column bases;
c) except when Item e) applies, complete joint penetration groove welds joining beam flanges and beam webs to columns in moment connections for Type D and MD moment-resisting frames;
d) except when Item e) applies, complete joint penetration groove welds joining beam flanges to columns in moment connections for Type LD moment-resisting frames and Type D plate walls;
e) when moment connections are designed in accordance with the CISC Moment Connections for Seismic Applications, all demand critical welds designated therein;
f) welds joining link beam flanges and webs to columns in Type D eccentrically braced frames;
g) welds joining webs and flanges in built-up tubular link beams in Type D eccentrically braced frames; and
h) welds joining infill plates to perimeter frame members in Type D plate walls.

The requirements of this Clause may be waived when the specified short-period spectral acceleration ratio $\left(I_{E} F_{o} S_{0}(0.2)\right)$ is less than or equal to 0.55 and the welds are loaded primarily in shear.
Note: The maximum testing temperature for demand critical welds in structures exposed to low termperatures is based on a service temperature taken as $10^{\circ} \mathrm{C}$ above the 2.5% January design temperature as defined in Appendix C, Division B of the NBCC.

27.1.5.4

When T-joint or corner-joint details susceptible to through-thickness tensile stresses resulting from welding executed under conditions of restraint cannot be avoided, measures shall be taken to minimize the possibility of lamellar tearing in accordance with CSA W59.

(1) 27.1.6 Bolted connections

Bolted connections shall

a) have pretensioned high-strength bolts;
b) when designed as bearing-type connections, have surfaces of Class A or better, or provide the equivalent slip resistance by increasing the number of bolts, bolt size, bolt strength, or any combination thereof;
c) not be considered to share load with welds;
d) not have long slotted holes;
e) not have short slotted holes unless the load is normal to the slot; and
f) have end distances in the line of seismic force not less than two bolt diameters when the bearing force due to seismic load exceeds 75% of the bearing resistance (see Clause 13.12.1.2).

The requirements of this Clause may be waived when fastener and connection details conform to those of a tested assembly.

27.1.7 Probable yield stress

The probable yield stress shall be taken as $R_{y} F_{y}$. The value of R_{y} shall be taken as 1.1 and the product $R_{y} F_{y}$ as not less than 460 MPa for HSS sections or 385 MPa for other sections, unless the probable yield stress, taken as an average yield stress, is obtained in accordance with CSA G40.20.

Width-to-thickness limits of energy-dissipating elements shall be based on $F_{y y}$, with F_{y} taken as not less than 300 MPa for angles and 350 MPa for other sections.

27.1.8 Stability effects

27.1.8.1

The effects of notional loads and P-delta effects shall be taken into account when sizing the energydissipating elements or mechanisms of the seismic-force-resisting system. Notional loads and P-delta effects shall also be considered when determining the limiting forces corresponding to $R_{d} R_{o}=1.3$. Notional loads and P-delta effects need not be considered when determining member forces induced by yielding of the energy-dissipating elements or mechanisms of the seismic-force-resisting system.

The notional loads shall be calculated in accordance with Clause 8,4.1.

27.1.8.2

When the provisions of the User's Guide - NBC 2015: Structural Commentaries (Part 4) are applied in calculating P-delta effects, the value of U_{2} in Clause 8.4 .2 may be taken as
$U_{2}=1+\left(\frac{\Sigma C_{f} R_{d} \Delta_{f}}{\sum V_{f} h}\right)$
Structural stiffness shall be provided such that U_{2} does not exceed 1.4.

27.1.9 Protected zones

Structural and other attachments that could introduce metallurgical notches or stress concentrations shall not be used in areas designated as protected zones unless engineered and forming part of the design system or forming part of a test assembly that satisfies the physical test requirements of Clauses 27.2.5.1,27.7.8.1, and 27.8.6. Discontinuities created by fabrication or erection operations shall be repaired.

Welded shear studs and decking attachments that penetrate the beam flange shall not be placed on the beam flanges within protected zones unless approved by the designer. Arc-spot welds necessary to secure decking to beam flanges may be used.

Protected zones shall be indicated on the structural design documents and shop details (see Clauses 4.2.2,4.3.2, and 4.3.3).

27.2 Type D (ductile) moment-resisting frames, $R_{d}=5.0, R_{o}=1.5$

27.2.1 General

27.2.1.1

Ductile moment-resisting frames can develop significant inelastic deformation through plastic hinging in beams a short distance from the face of columns. Plastic hinges in columns are permitted to develop only at the base and at the top of a continuous column stack.
Note: Plastic deformation in joints is limited by Clause 27.2.4. See Clause 27.11.2 for cantilever column structures,

27.2.1.2

Energy-dissipating elements shall be proportioned and braced to enable them to undergo large plastic deformations.

27.2.1.3

in Clauses 27.2 .2 to 27.2 .4 , the effects of bearing of slabs on column flanges shall be considered in determining the flexural resistance of, and the loading produced by, composite beams.

27.2.2 Beams

Beams are expected to develop plastic hinges typically at a short distance from the face of columns (see Clause 27,2.5) and shall
a) be Class 1 sections; and
b) be laterally braced in accordance with Clause 13.7 b) unless alternative bracing is demonstrated as satisfactory in accordance with Clause 27.2.5.1. The value of k shall be based on the bending moment distribution for combined gravity and seismic loads. The bending moments due to seismic load may be taken as varying linearly from a maximum at one end of the beam to zero at the other, unless another value can be justified.

The forces acting on other members and connections due to beam plastic hinging shall be calculated using 1.1Ry times the nominal flexural resistance, $Z F_{y}$, except when connections and associated design procedures referenced in Annex」 are selected.

Beams need not meet the requirements of this Clause when plastic hinges are expected to develop near the top of columns instead of in the beams, as permitted in Clause 27.2.1. However, these beams shall meet the requirements of Clause 27.2.3.1 for non-dissipating elements adjacent to plastic hinges in columns.

27.2.3 Columns

27.2.3.1

Columns shall be Class 1 or 2 . When a column is expected to develop plastic hinging, it shall be Class 1 and meet the following requirements:
a) the column shall be laterally braced in accordance with Clause 13.7 b), using $K=0.0$, unless other values of κ can be justified by analysis;
b) when the specified one-second spectral acceleration ratio $\left(I_{E} F_{V} S_{o}(1,0)\right)$ is greater than 0.30 , the factored axial load shall not exceed 0.30AFy for all seismic load combinations; and
c) the column shall meet the requirements of Clause 27.2.8.

Non-dissipating structural elements adjacent to plastic hinges in columns shall be able to resist forces corresponding to $1.1 R_{y}$ times the nominal flexural resistance of the columns. This nominal flexural resistance shall be taken as $1.18 M_{p c}\left(1-C_{j} / R_{y} C_{y}\right)$, but shall not be greater than the nominal plastic moment resistance of the column, $M_{p c}$, where C_{f} is as specified in Clause 27.2.3.2.
(1) 27.2 .3 .2

Columns shall resist the gravity loads together with the forces induced by plastic hinging of the beams as projected at the column centrelines. The following shall apply at each beam-to-column intersection:
$\sum M_{r c}^{\prime} \geq \sum\left(1.1 R_{y} M_{p b}+v_{h}\left(x+\frac{d_{c}}{2}\right)\right)$
where
$\Sigma M_{r c}^{\prime} \quad=$ sum of the column factored flexural resistances projected at the intersection of the beam and column centrelines
and
$M_{r c^{\prime}}^{\prime}=1.18 \phi M_{\rho c}\left(1-\frac{C_{J}}{\phi C_{y}}\right) \leq \phi M_{\rho c}$
where
$M_{\rho b}=$ nominal plastic moment resistance of the beam
$V_{h}=$ shear acting at that beam plastic hinge location due to gravity loads on the beam plus moments equal to $1.1 R_{y} M_{p b}$ at beam hinge locations
$x=$ distance from the centre of a beam plastic hinge to the column face, which shall correspond to that of the assembly used to demonstrate performance in accordance with Clause 27.2.5.1
$M_{p c}=$ nominal plastic moment resistance of the column
$C_{f}=$ axial force from gravity loads plus the summation of V_{h} acting at and above the level under consideration

Columns need not meet the requirements of this Clause when plastic hinges are expected to develop near the top of columns instead of in the beams, as permitted in Clause 27.2.1.

27.2.3.3

When the axial force calculated in accordance with Clause 27.2.3.2 is tensile, column splices having partial-joint-penetration groove welds shall
a) be capable of resisting twice the calculated tensile force;
b) have flange connections that are each capable of resisting at least $0.5 A_{j} R_{y} F_{y}$ where A_{f} is the flange area of the smaller column at the splice; and
c) be located at least one-fourth of the clear distance between beams but not less than 1 m from the beam-to-column joint.

(1) 27.2.4 Joint panel zone

(1) 27.2.4.1

When plastic hinges form in adjacent beams, the panel zone shall resist forces arising from beam moments at the column faces of
$\Sigma\left(1.1 R_{y} M_{\rho b}+V_{l x}\right)$
where the summation is for both beams at a joint, and $M_{p b}, V_{b}$, and x are as specified in Clause 27.2.3.2.

When plastic hinges are expected to develop near the top of columns instead of in the beams, as permitted in Clause 27.2.1, panel zones shall resist forces arising from moments corresponding to plastic hinge moments of $1.1 R_{y}$ times the nominal flexural resistance of the column.

27.2.4.2

The horizontal shear resistance of the column joint panel zone shall be taken as either
a) $V_{f}=0.55 \phi d_{c} w^{\prime} F_{y c}\left[1+\frac{3 b_{c} c_{c}^{2}}{d_{c} d_{b} w^{\prime}}\right] \leq 0.66 \phi d_{c} w^{\prime} F_{v c}$; or
b) $\quad V_{f}=0.55 \phi d_{c} w^{\prime} F_{y c}$
where the subscripts b and c denote the beam and the column, respectively, and w^{\prime} is the thickness of the column web plus the thickness of the doubler plates, when used.

27.2.4.3

The following requirements shall also apply:
a) Where the specified short-period spectral acceleration ratio $\left(l_{E} F_{0} S_{a}(0,2)\right)$ is equal to or greater than 0.55 , and the joint panel zones are designed in accordance with Clause 27.2.4.2 a), the sum of panel zone depth and width divided by the panel zone thickness shall not exceed 90 and the effects of panel-zone deformations on frame stability shall be accounted for.
b) Joint panel zones designed in accordance with Clause 27.2.4.2 b) shail satisfy the width-tothickness limit of Clause 13.4.1.1 a) i).
c) Doubler plates shall be groove- or fillet-welded to the column flanges to develop their full shear resistance.
d) When doubler plates are placed against the column web and continuity plates are used, the doubler plates shall be fillet welded to the continuity plates to develop the proportion of the total force transmitted to the doubler plate. When continuity plates are not used, the doubler plates shall extend above and below the level of the beam flanges and be fillet welded across the top and bottom edges to develop the proportion of the total force transmitted to the doubler plate.
e) When doubler plates are placed away from the column web, they shall be placed symmetrically in pairs and welded to continuity plates to develop the proportions of the total force transmitted to the doubler plate.
f) In calculating width-to-thickness ratios, doubler plate thickness may be included with web thickness only when the doubler plate is connected to the column web near the centre of the panel.
27.2.4.4

Other requirements may apply for the beam-to-column connections selected in accordance with Clause 27.2.5.1.

27.2.5 Beam-to-column joints and connections

27.2.5.1

The beam-to-column joint shall maintain a strength at the column face of at least the nominal plastic moment resistance of the beam, $M_{p b}$, through a minimum interstorey drift angle of 0.04 radians under cyclic loading. When reduced beam sections are used, or when local buckling limits the flexural strength
of the beam, the beam need only achieve $0.8 M_{p b}$ at the column face when an interstorey drift angle of 0.04 radians is developed under cyclic loading.

Beam-to-column connections shall satisfy the requirements in this Clause by one of the following:
a) use of connections designed and detailed in accordance with the CISC Moment Connections for Seismic Applications; or
b) demonstration of the connection performance through at least two physical qualifying cyclic connection tests as described and referenced in Annex J.

27.2.5.2

The factored resistance of the beam web-to-column connection shall equal or exceed the effects of gravity loads combined with shears induced by moments of $1.1 R_{y} Z F_{y}$ acting at plastic hinge locations. Other requirements may apply for the beam-to-column connections selected in accordance with Clause 27.2.5.1.

27.2.5.3

In single-storey buildings, when the column frames into the underside of the beam and plastic hinging is expected near the top of a column, the connection shall meet the requirements of Clause 27.2.5.1.

27.2.6 Bracing

The following bracing requirements shall apply:
a) Beams, columns, and beam-to-column joints shall be braced by members proportioned in accordance with Clause 9.2 where $C_{f}=1.1 R_{y} F_{y}$ times the cross-sectional area in compression. The possibility of complete load reversals shall be considered.
b) When plastic hinges occur in the beam, lateral bracing at the joints shall be provided at least at the level of one beam flange. If bracing is not provided at the level of both beam flanges, the transverse moments produced by the forces that would otherwise be resisted by the lateral bracing shall be included in the seismic load combinations. Attachments in the hinging area shall meet the requirements of Clause 27.2.8.
c) When plastic hinges occur near the top of the column, lateral bracing at the joints shall be provided at the level of both beam flanges.
d) When no lateral support can be provided to the joint at the level considered, the following shall apply:
i) the column maximum slenderness ratio shall not exceed 60; and
ii) transverse moments produced by the forces otherwise resisted by the lateral bracing shall be included in the seismic load combinations.

27.2.7 Fasteners

Fasteners connecting the separate elements of built-up flexural members shall have resistance adequate to support forces corresponding to moments of $1.1 R_{y} Z F_{y}$ at the plastic hinge locations.

27.2.8 Protected zones

The regions at each end of the beams subject to inelastic deformations and in columns where inelastic deformations are anticipated shall be designated as protected zones and meet the requirements of Clause 27.1.9.

The protected zone of the beams shall be defined as the area from the face of the column flange to one-half of the beam depth beyond the theoretical hinge point. Abrupt changes in beam flange crosssections shall be avoided in protected zones, unless specially detailed reduced beam sections are
provided that satisfy Clause 27.2.5. Bolt holes in beam webs, when detailed in accordance with the individual connection requirements of this Standard, may be used.

Where the theoretical hinge point falls at the base of the column, the protected zone of the columns shall be defined as the area from the face of the base plate to one-half of the column depth beyond the theoretical hinge point or the column depth, whichever is greater. Where the theoretical hinge point falls within the column below the beam, the protected zone of the columns shall be defined as the area from the underside of the beam to one-half of the column depth beyond the theoretical hinge point or the column depth, whichever is greater.

27.3 Type MD (moderately ductile) moment-resisting frames, $R_{d}=3.5, R_{o}=1.5$

Moderately ductile moment-resisting frames can develop a moderate amount of inelastic deformation through plastic hinging in the beams at a short distance from the face of columns. The requirements of Clause 27.2 shall apply to such frames, except that
a) with respect to Clause 27.2.2,
i) the beams shall be Class 1 or 2 sections; and
ii) the bracing shall meet the requirements of Clause 13.7 a);
b) with respect to Clause 27.2.3.1 b), the factored axial load shall not exceed 0.50AFy; and
c) with respect to Clause 27.2.5.1, the minimum interstorey drift angle shall be 0.03 radians.

27.4 Type LD (limited-ductility) moment-resisting frames, $R_{d}=2.0, R_{o}=1.3$

27.4,1 General

Limited-ductility moment-resisting frames can develop a limited amount of inelastic deformation through plastic hinging in the beams, columns, or joints. This system may be used in buildings
a) not exceeding 60 m in height where the specified short-period spectral acceleration ratio $\left(l_{E} F_{a} S_{a}(0.2)\right)$ is greater than or equal to 0.35 but less than or equal to 0.75 ; and
b) not exceeding 30 m in height where the specified short-period spectral acceleration ratio $\left\langle\ell_{E} F_{a} S_{a}(0.2)\right)$ is greater than 0.75 or where the specified one-second spectral acceleration ratio $\left({ }_{E} F_{V} S_{o}(1.0)\right)$ is greater than 0.30 .

27.4.2 Beams and columns

27.4.2.1

Beams shall be Class 1 or 2 . Columns shall be Class 1 . Except at roof level, beams shall frame into the columns.

27.4.2.2

When the specified short-period spectral acceleration ratio $\left(l_{E} F_{o} S_{o}(0.2)\right)$ is greater than 0.55 or the building is greater than 60 m in height, columns shall satisfy the requirements of Clause 27.2.3.2. However, when Clause 27.2.3.2 is applied, the term $1.1 R_{y} M_{p b}$ may be replaced by $R_{y} M_{p b}$ and columns may be Class 2 . In addition, the beams shall be designed so that for each storey, the storey shear resistance is not less than that of the storey above.

27.4.3 Column joint panel zone

The horizontal shear resistance of the column joint panel zone shall be that specified in Clause 27.2.4.2.

27.4.4 Beam-to-column connections

27.4.4.1

The beam-to-column joints shall meet the requirements of Clause 27.2.5.1, except that the minimum interstorey drift angle shall be 0.02 radians,

Beam-to-column connections shall satisfy the requirements in this Clause by one of the following:
a) use of connections designed and detailed in accordance with Clause 27.4.4.2;
b) use of connections designed and detailed in accordance with the CISC Moment Connections for Seismic Applications; or
c) demonstration of the connection performance through at least two physical qualifying cyclic connection tests as described and referenced in Annex J.

(1) 27.4.4.2

With respect to Clause 27.4.4.1 a):
a) Columns shall be 1 -shaped sections.
b) The beam flanges shall be directly welded to the column flanges,
c) Beam-to-column connections shall have a moment resistance equal to $R_{y} M_{p b}$, except that, when the controlling limit state is ductile, the moment resistance need not exceed the effect of the gravity loads combined with the seismic load multiplied by 2.0 .
d) Beam-to-column connections designed for a moment resistance of $R_{y} M_{p b}$ shall have a welded web connection.
e) Weld backing bars and run-off tabs shall be removed and repaired with reinforcing fillet welds. Top-flange backing bars may remain in place if continuously fillet welded to the column flange on the edge below the complete joint penetration groove weld. Neither partial-joint-penetration groove welds nor fillet welds shall be used to resist tensile forces in the connections.
f) The tensile resistance of the column flange shall be taken as $0.6 T_{n}$ as specified in Clause 21.3.
g) When columns frame under the beams, the roles of beam and column shall be reversed.

Note: Beam-to-column connections with a welded web connection and complete-penetration groove welds made with matching electrodes in accordance with Clause 13.13.3.1 between the beam flanges and the column flanges are considered to have a moment-resistance equal to $R_{y} M_{p b}$.

27.4.4.3

Beam-to-column connections shall resist shear forces resulting from the gravity load together with shears corresponding to the moments at the beam ends equal to those specified in Clause 27.4.4.2 c).

27.5 Type MD (moderately ductile) concentrically braced frames, $R_{d}=3.0, R_{0}=1.3$

27.5.1 General

Moderately ductile concentrically braced frames can dissipate moderate amounts of energy through yielding of bracing members.

27.5.2 Bracing systems

27.5.2.1 General

Moderately ductile concentrically braced frames include
a) tension-compression bracing systems (see Clause 27,5,2.3);
b) chevron braced systems (see Clause 27.5.2.4);
c) tension-only bracing systems (see Clause 27.5.2.5); and
d) other systems, provided that stable inelastic response can be demonstrated.

Knee bracing and K-bracing, including those systems in which pairs of braces meet a column on one side between floors, are not considered to be moderately ductile concentrically braced frames,

27.5.2.2 Proportioning

At all levels of any planar frame, the diagonal bracing members along any braced column line shall be proportioned in such a way that the ratio of the sum of the horizontal components of the factored tensile brace resistances in opposite directions is between 0,75 and 1.33 .

27.5.2.3 Tension-compression bracing

Except where the specified short-period spectral acceleration ratio $\left(l_{E} F_{a} S_{a}(0.2)\right)$ is less than 0.35 , tension-compression concentric bracing systems shall not exceed 40 m in height. In addition, when the height exceeds 32 m , the factored seismic forces for the ultimate limit states shall be increased by 3% per metre of height above 32 m .

Tension-compression bracing, in which pairs of braces meet a column at one or two points on one side between horizontal diaphragms, may be used provided that the columns meet the requirements of Clause 27.5.6.

27.5.2.4 Chevron bracing

Chevron bracing systems comprise pairs of braces, located either above or below a beam, that meet the beam at a single point within the middle half of the span. Chevron bracing systems shall meet the requirements of Clause 27,5,2.3.

The beams to which the chevron bracing is attached shall
a) be continuous between columns;
b) have both top and bottom flanges laterally braced at the brace connection; and
c) resist bending moments due to gravity loads (assuming no vertical support is provided by the bracing members) in conjunction with bending moments and axial forces induced by forces of T_{u} and C_{u}^{\prime} in the tension and compression bracing members, respectively. In the case of buildings not exceeding four storeys, the tension brace force may be taken as $0.6 T_{u}$, provided that the beam is a Class 1 section. When braces are connected to the beam from above, the case where the brace compression force is equal to C_{u} shall also be considered.

The beam-to-column connections shall resist the forces corresponding to the loading described in ltem c) for beams. However, when the tension brace force is less than T_{u}, the connections shall resist the gravity loads combined with forces associated with the attainment of R_{y} times the nominal flexural resistance of the beam at the brace connection.

The lateral braces at the brace connection shall resist a transverse load of 0.02 times the beam flange yield force.
Note: See Clause 27.5.3.4 for the probable tensile, compressive, and post-buckling compressive resistances of bracing members, T_{u}, C_{u}, and C_{w}^{\prime}, respectively.

(1) 27.5.2.5 Tension-only bracing

The braces in tension-only bracing systems are designed to resist, in tension, 100% of the seismic loads
and are connected at beam-to-column intersections. In addition, except where the specified shortperiod spectral acceleration ratio $\left(l_{E} F_{Q} S_{0}(0.2)\right)$ is less than 0.35 ,
a) the structure shall not exceed 20 m in height and, when the height exceeds 16 m , the factored seismic forces for ultimate limit states shall be increased by 3\% per metre of height above 16 m ;
b) all columns are continuous and of constant cross-section over the building height; and
c) the column splices are proportioned for the full moment resistance of the cross-section and for a shear force of $2.0 Z F_{y} / h_{s}$, where Z is the plastic modulus of the column and h_{s} is the storey height.

Although the braces are proportioned on the basis of tension loading only, this system shall meet the other requirements of Clause 27, including Clauses 27.5.3 to 27.5.7.

27.5.3 Diagonal bracing members

Note: Where possible, ot every storey, the two discontinuous bracing members in every X-bracing bay should be fabricated and installed from the same heat.

27.5.3.1 Brace slenderness

The slenderness ratio, $K L / r$, of bracing members shall not exceed 200.
When the specified short-period spectral acceleration ratio $\left(/_{E} F_{a} S_{a}(0,2)\right)$ is equal to or greater than 0.75 or the specified 1 s spectral acceleration ratio $\left(l_{E} F_{w} S_{a}(1.0)\right)$ is equal to or greater than 0.30 , the slenderness ratio of HSS bracing members shall not be less than 70.
Note: The effects of translational and rotational restraints at the brace ends or along the brace length should be accounted for in the calculation of KL.

(1) 27.5.3.2 Width (diameter)-to-thickness ratios

When the specified short-period spectral acceleration ratios $\left(l_{E} F_{o} S_{a}(0.2)\right)$ are equal to or greater than 0.35 , width-to-thickness ratios shall not exceed the following limits:
a) when $K L / r \leq 100$:
i) for rectangular and square HSS: $330 / \sqrt{F_{y}}$;
ii) for circular HSS: $10000 / F_{y}$;
iii) for legs of angles and flanges of channels: $145 / \sqrt{F_{y}}$; and
iv) for other elements: Class 1;
b) when $K L / r=200$
i) for HSS members: Class 1 ;
ii) for legs of angles: $170 / \sqrt{F_{y}}$; and
iii) for other elements: Class 2; and
c) when $100<K L / r<200$, linear interpolation may be used.

When the specified short-period acceleration ratio $\left(I_{E} F_{G} S_{a}(0.2)\right)$ is less than 0.35 , HSS shall be Class 1 and all other sections shall be Class 1 or 2 . The width-to-thickness ratio for legs of angles shall not exceed $170 / \sqrt{F_{y}}$.

Back-to-back legs of double-angle bracing members for which buckling out of the plane of symmetry governs, the width-to-thickness ratio shall not exceed $200 / \sqrt{F_{v}}$ irrespective of the specified short-period acceleration ratio ($l_{E} F_{a} S_{a}(0,2)$).

27.5.3.3 Built-up bracing members

For buildings with specified short-period spectral acceleration ratios [$\left.I_{E} F_{a} S_{a}(0.2)\right]$ equal to or greater than 0.35 , the slenderness ratio of the individual parts of built-up bracing members, as defined in Clause 19.2.4, shall not be greater than 0.5 times the governing effective slenderness ratio of the
member as a whole. If overall buckling of the brace does not induce shear in the stitch fasteners that connect the separate elements of built-up bracing members, the slenderness ratio of the individual parts shall not exceed 0.75 times the governing effective slenderness ratio of the member as a whole.

If overall buckling of the brace induces shear in the stitch fasteners, the stitch fasteners shall have a resistance adequate to support one-half of the yield load of the larger component being joined, with this force assumed to act at the centroid of the smaller member. Bolted stitch connections shall not be located in the anticipated plastic hinge regions of bracing members.

27.5.3.4 Probable brace resistances

For the purpose of evaluating forces on connections and other members upon yielding and buckling of the bracing members in capacity design, the probable tensile resistance of bracing members, T_{u}, shall be taken as equal to $A_{g} R_{y} F_{y}$; the probable compressive resistance of bracing members, C_{u}, shall be taken as equal to the lesser of $A_{g} R_{y} F_{y}$ and $1.2 C_{r} / \phi$, where C_{r} is computed using $R_{y} F_{y}$; and the probable postbuckling compressive resistance of bracing members, C_{u}^{\prime}, shall be taken as equal to the lesser of $0.2 A_{g} R_{y} F_{y}$ and C_{r} / ϕ, where C_{r} is computed using $R_{y} F_{y}$

Each of the two loading conditions,
a) the compression acting braces attaining their probable compressive resistance, C_{u}; and
b) the compression acting braces attaining their probable buckled resistance, C_{u}^{\prime}, shall be considered as occurring in conjunction with the tension acting braces developing their probable tensile resistance, T_{u}.

For chevron bracing, when plastic hinging in the beam is permitted by Clause 27.5.2.4 c) or 27.6.2.2, the brace tensile force need not exceed the greater of that corresponding to plastic hinging in the beam and that corresponding to C_{u} of the compression brace.

When the forces corresponding to $R_{d} R_{a}=1.3$ are computed, the redistribution of forces due to brace buckling shall be considered.

27.5.4 Brace connections

27.5.4.1 Eccentricities

Eccentricities in connections of braces to gusset plates or other supporting elements shall be minimized.

27.5.4.2 Resistance

The factored resistance of brace connections shall equal or exceed both the probable tensile resistance of the bracing members in tension, T_{u}, and the probable compressive resistance of the bracing members in compression, C_{ν}, specified in Clause 27.5.3.4. For chevron bracing, the brace tension force may be reduced as specified in Clause 27.5.2.4.

The net section fracture resistance of the brace shall be adequate to resist the tension resistance, T_{ψ}. The net section factored resistance of the brace may be multiplied by R_{y} / ϕ_{u}, where R_{y} shall not exceed 1.2 for HSS and 1.1 for other shapes. This multiplier shall not be applied to the factored resistance of any cross-section reinforcement.

27.5.4.3 Ductile hinge rotation

Brace members or connections, including gusset plates, shall be detailed to provide ductile rotational behaviour, either in or out of the plane of the frame, depending on the governing effective brace slenderness ratio. When rotation is anticipated in the bracing member, the factored flexural resistance
of the connections shall equal or exceed $1.1 Z R_{y} F_{y}$ of the bracing member and the net section factored bending resistance of an unreinforced brace may be multiplied by R_{y} / ϕ. This requirement may be satisfied in the absence of axial load.

27.5.5 Columns, beams, and connections other than brace connections

27.5.5.1

The factored resistance of columns, beams, and connections other than brace connections shall equal or exceed the effects of gravity loads and the brace forces corresponding to the brace probable resistances specified in Clause 27.5.3.4. For chevron bracing, the beams shall be designed in accordance with Clause 27.5.2.4 and the brace tension force may be reduced as specified in Clause 27.5,3.4.

27.5.5.2

Columns in multi-storey buildings using the systems specified in Items a) to c) of Clause 27.5.2.1 shall be continuous and of constant cross-section over a minimum of two storeys, except as required by Clause 27.5.2.5.

Columns outside of the braced bays shall meet the requirements of Class 1, 2, or 3 flexural members.
Columns in braced bays shall meet the requirements of Class 1 or 2 beam-columns. Column resistances in the braced bays shall satisfy the requirements of Clause 13.8 including an additional bending moment in the direction of the braced bay of $0.27 F_{y}$ in combination with the computed bending moments and axial loads. Splices in columns in braced bays shall be designed to provide the required axial, shear, and flexural resistances including the effects of the additional bending moments in the direction of the braced bays of $0.22 F_{y}$ acting either in the same or the opposite directions at the column ends.

27.5.5.3

Partial-joint-penetration groove weld splices in columns subject to tension shall meet the requirements of Items a) and b) of Clause 27,2.3.3.

27.5,6 Columns with braces intersecting between horizontal diaphragms

27.5.6.1

Columns with braces intersecting at one or two points between horizontal diaphragms may be used provided that they also satisfy the requirements of this Clause.

27.5.6.2

Columns shall resist the simultaneous effects of
a) the gravity loads;
b) the axial loads, shear forces, and bending moments induced by yielding and buckling of the bracing members at the design storey drift as obtained from non-linear incremental analysis, assuming that yielding develops in the tension-acting bracing members located at any one level along the height of the storey; and
c) an out-of-plane transverse load at each brace-to-column connection equal to 2% of the factored axial compression load in the columns below the connection.

27.5.6.3

Horizontal struts shall be provided between columns at the brace-to-column connection levels in the plane of the bracing bents for transferring loads between tension-acting braces along the height of the storey assuming that the compression-acting braces attain their probable post-buckling resistance.

27.5.7 Protected zones

The protected zone of bracing members shall
a) be designated to include the full brace length;
b) be designated to include elements that connect braces to beams and columns; and
c) meet the requirements of Clause 27.1.9.

Splices shall not be used in bracing members.

27.6 Type LD (limited-ductility) concentrically braced frames, $R_{d}=2.0, R_{a}=1.3$

27.6.1 General

Concentrically braced frames of limited ductility can dissipate limited amounts of energy through yielding of bracing members. The requirements of Clause 27.5 shall be met, except as modified by Clauses 27.6.2 to 27.6.6.

27.6.2 Bracing systems

(1) 27.6.2.1 Tension-compression bracing

Except where the specified short-period spectral acceleration ratio ($\left.\ell_{E} F_{a} S_{a}(0.2)\right)$ is less than 0.35 , tension-compression concentric bracing systems shall not exceed 60 m in height. In addition, when the height exceeds 48 m , the factored seismic forces for ultimate limit states shall be increased by 2% per metre of height above 48 m .

Tension-compression bracing, in which pairs of braces meet a column on one side between floors, may be used in limited-ductility concentrically braced frames provided that the columns meet the requirements of Clause 27,6.6.

(1) 27.6.2.2 Chevron bracing

Except where the specified short-period spectral acceleration ratio ($\left.l_{E} F_{o} S_{a}(0.2)\right)$ is less than 0.35 , tension-compression concentric bracing systems shall not exceed 60 m in height. In addition, when the height exceeds 48 m , the factored seismic forces for ultimate limit states shall be increased by 2% per metre of height above 48 m .

Beams in chevron bracing of 20 m or less in height need not meet the requirements of Clause 27.5.2.4 c) provided that the beams and the beam-to-column connections are proportioned to resist the forces that develop when buckling of the compression brace occurs and provided that when the braces are connected to the beam from below, the beam is a Class 1 section and has adequate nominal resistance to support the tributary gravity loads assuming no vertical support is provided by the bracing members.

27.6.2.3 Tension-only bracing

Except where the specified short-period spectral acceleration ratio ($\left(_{E} F_{O} S_{O}(0.2)\right)$ is less than 0.35 ,
tension-only systems shall
a) not exceed 40 m in height and, when the height exceeds 32 m , the factored seismic forces for ultimate limit states shall be increased by 3% per metre of height above 32 m ; and
b) in multi-storey structures, have all columns fully continuous and of constant cross-section over a minimum of two storeys.

27.6.3 Diagonal bracing members

27.6.3.1

In single- and two-storey structures, the slenderness ratio of bracing members connected and designed in accordance with Clause 27.5.2.5 shall not exceed 300 .

27.6.3.2

The requirements of Clause 27.5.3.2 may be modified as follows:
a) when the brace slenderness ratio exceeds 200 (as permitted by Clause 27.6.3.1), the width-tothickness limits of Clause 27.5.3.2 need not apply; and
b) for buildings less than 40 m in height and with specified short-period spectral acceleration ratios $\left(I_{E} F_{a} S_{a}(0,2)\right)$ less than 0,45 , braces need not be more compact than Class 2 . The width-to-thickness ratio of the legs of angles shall not exceed $170 / \sqrt{F_{y}}$.

27.6.4 Bracing connections

The requirements of Clause 27.5.4.3 shall not apply to buildings with specified short-period spectral acceleration ratios $\left(l_{E} F_{a} S_{o}(0.2)\right)$ less than 0.55 if the brace slenderness ratio is greater than 100 .

(1) 27.6.5 Columns, beams, and other connections

For buildings with specified one-second spectral acceleration ratios $\left(l_{E} F_{V_{O}}(1.0)\right)$ not greater than 0.30 , the design forces for column splices in Clause 27.1.4 need not be taken into account.

27.6.6 Columns with braces intersecting between horizontal diaphragms

Columns with braces intersecting at 4 points or less between horizontal diaphragms may be used provided that they meet the requirements of Clause 27.5.6.
27.7 Type D (ductile) eccentrically braced frames, $R_{d}=4.0, R_{o}=1.5$

27.7.1 General

Ductile eccentrically braced frames can dissipate energy by yielding of links.

27.7.2 Link beam

27.7.2.1

The link beam shall contain a segment (the link) designed to yield, either in flexure or in shear, prior to yielding of other parts of the eccentrically braced frame.

27.7.2.2

The link beam shall be either
a) a segment of the beam, for beams with an I-section or a built-up tubular rectangular cross-section; or
b) a modular link distinct from the rest of the beam. A modular link shall be either
i) an end-plate connected link fabricated from a l-shaped section connected to the beam with unstiffened end-plate moment connections; or
ii) a web connected link consisting of a built-up cross-section made of two C -sections connected back-to-back to the beam web, where the C-sections are channels or wide-flange crosssections with the flanges cut flush with the web on one side.

27.7.2.3

A link shall be provided at least at one end of each brace. A link shall not be required in roof beams of frames over five storeys in height.

27.7.2.4

Link beams shall be Class 1 and designed for the coexisting shears, bending moments, and axial forces. Link beams may have Class 2 flanges and Class 1 webs when $e \leq 1.6 M_{p} / V_{p}$, where e is the length of the link and $V_{p}=0.55 w d F_{y}$, for links with wide-flange cross-sections, or $0.55(2 w) d F_{y}$, for links with built-up tubular cross-sections and links with back-to-back C-sections.

27.7.2.5

The web or webs of the link shall be of uniform depth and have no penetrations, splices, attachments, reinforcement, or doubler plates, other than the stiffeners required by Clause 27.7.6.

For links with built-up tubular rectangular cross-sections, complete-joint-penetration groove welds shall be used to connect the webs to the flanges. Inaccessible backing bars need not be removed in these joints.

27.7.2.6

Flanges of built-up tubular links shall satisfy $b / t \leq 285 / \sqrt{F_{y}}$, where b is the clear flange width. Webs shall satisfy $h / w \leq 750 / \sqrt{F_{y}}$. The moment of inertia of built-up tubular links associated to horizontal, out-of-plane bending shall not be less than 0.67 times the link moment of inertia associated to bending in the vertical plane.

27.7.2.7

For web connected modular links, the flanges of the two C -sections shall be interconnected at both flange levels such that the clear longitudinal spacing between interconnections does not exceed 2.0 times the width of the flange of the individual C -sections.

When plates are used to reinforce the flanges of the C-sections in web connected modular links,
a) the flange reinforcement plates shall be continuously welded along their two longitudinal edges over the full length of the C-sections; and
b) the reinforced flanges shall satisfy Class 1 limit for flanges of l-sections in Table 2, where $b_{e l}$ is taken as the average of the C -section flange width and the flange reinforcement plate width and t is taken as the thickness of an equivalent flange having a moment of inertia for bending in the plane of the frame equal to that of the reinforced flange.

27.7.3 Link resistance

27.7.3.1 Factored link resistance

The factored shear resistance of the link shall be taken as the lesser of
ϕV_{p}^{\prime} and $2 \phi M_{p}^{\prime} / e$
where
$V_{p}^{\prime}=V_{p} \sqrt{1-\left(\frac{P_{f}}{A F_{v}}\right)^{2}}$
where
$V_{p}=0.55 w d F_{y}$ for links with wide-flange cross-sections
$=0.55(2 w) d F y$ for links with built-up tubular cross-sections and modular links with back-toback C-sections
$P_{f}=a x i a l$ force in the link
$=C_{f}$ or T_{f}
$A=$ gross area of the link beam
$M_{p}^{r}=1.18 M_{p}\left(1-\frac{P_{f}}{A F_{y}}\right) \leq M_{p}$
$e=$ length of the link (see Clause 27.7.4)

27.7.3.2 Probable link resistance

The nominal shear resistance of the link shall be taken equal to the lesser of V_{ρ}^{\prime} and $2 M_{\rho}^{\prime} / e$, as defined in Clause 27.7.3.1, except that when P_{f} is equal to T_{f}, V_{p}^{\prime} is given by
$V_{p}^{\prime}=V_{p} \sqrt{1+\left(\frac{P_{f}}{A F_{y}}\right)^{2}}$
The probable shear resistance of the link shall be taken equal to $1.3 R_{y}$ times the nominal link resistance except for links with built-up tubular cross-sections for which the probable shear resistance of the link shall be taken equal to $1.45 R_{y}$ times the nominal link resistance.

27.7.4 Link length

(1) 27.7.4.1

For end-plate connected modular links, the length of the link e shall be taken as the distance between the end plates. For web connected modular links, the length of the link e shall be taken as the distance between the innermost rows of bolts or vertical welds of the web connections.

For links that consist of a segment of the beams, the length of the link e shall be taken as the clear distance between the ends of two braces. When a link is directly connected to a column, the link length is measured from the column face or from the link-to-column connection reinforcement.

27.7.4.2

The link length shall be not less than the depth of the link beam. When $P_{f} /\left(A F_{y}\right)>0.15$, the link length shall be as follows:
a) when $\frac{A_{w}}{A} \geq 0.3 \frac{V_{f}}{P_{f}}$;
$e \leq\left[1.15-0.5 \frac{P_{f}}{V_{f}} \cdot \frac{A_{w}}{A}\right]\left(\frac{1.6 M_{p}}{V_{p}}\right)$
b) when $\frac{A_{w}}{A}<0.3 \frac{V_{f}}{P_{f}}$:
$e \leq \frac{1.6 M_{p}}{V_{p}}$
where
$A_{w}=$ area of web
$=(d-2 t) w$ for links with wide-flange cross-sections
$=(d-2 t)(2 w)$ for links with tubular cross-sections and modular links with back-to-back C-sections

27.7.4.3

The length of modular links shall also be as follows:
$e \leq \frac{1.6 M_{p}}{V_{p}}$

27.7.5 Inelastic link rotation

The inelastic component of the rotation of the link segment relative to the rest of the beam, the inelastic link rotation, taken as the rotation associated to an inelastic drift equal to three times the elastic drift determined under factored seismic loading, Δf, shall not exceed the following limits:
a) when $e \leq 1.6 M_{p} / V_{p}: 0.08$ radians;
b) when $e \geq 2.6 M_{p} / V_{p}: 0.02$ radians; and
c) When $1.6 M_{p} / V_{p}<e<2.6 M_{p} / V_{p}$, linear interpolation may be used.

27.7.6 Link stiffeners

27.7.6.1 Links with wide-flange cross-sections

27.7.6.1.1

Full-depth web stiffeners shall be provided on both sides of the beam web at the ends of the link. The stiffeners shall have a combined width of not less than $b-2 \mathrm{w}$ and a thickness of not less than 0.75 w or 10 mm , whichever is larger.

27.7.6.1.2

Intermediate link web stiffeners shall be full depth and when
a) $e \leq 1.6 M_{p} / V_{p}$, spaced at intervals not exceeding ($30 \mathrm{w}-0.2 d$) when the inelastic link rotation is 0.08 radians or $(52 w-0.2 d)$ when the inelastic link rotation is 0.02 radians or less (for intermediate inelastic link rotations, spacing shall be determined by linear interpolation);
b) $2.6 M_{p} / V_{p}<e<5 M_{p} / V_{p}$, placed at a distance of $1.5 b$ from each end of the link;
c) $1.6 M_{p} / V_{p}<e<2.6 M_{p} / V_{p}$, provided as in Items a) and b); and
d) $e \geq 5 M_{p} / V_{p}$, are not required.

27.7.6.1.3

Intermediate web stiffeners shall be required on only one side of the web for link beams less than 650 mm in depth and on both sides of the web for beams 650 mm or greater in depth. One-sided stiffeners shall have a thickness of not less than w or 10 mm , whichever is larger, and a width of not less than $0.5(b-2 w)$.

27.7.6.1.4

Fillet welds connecting stiffeners to the beam web shall be continuous and develop a stiffener force of $A_{s} F_{y}$. The welds shall be terminated a distance of five times the link web thickness from the transition radius between the web and the flanges of the link.

Fillet welds connecting intermediate stiffeners to the flanges shall develop a force of $0,50 A_{s} F_{y}$. Welds connecting the stiffeners at the link ends to the flanges shall develop a force of $A_{s} F_{y}$.

27.7.6.2 Links with built-up tubular cross-sections

27,7.6.2.1

Full-depth web stiffeners shall be provided on one side of each link web at the diagonal brace connection. These stiffeners shall have a combined width not less than $(b-2 w)$ and a thickness not less than 0.75 w or 13 mm , whichever is larger.
27.7.6.2.2

Intermediate link web stiffeners shall be full depth and when
a) $e \leq 1.6 M_{\rho} / V_{p}$ and $0.64\left(E / F_{y}\right)^{0.5}<h / w \leq 1.67\left(E / F_{y}\right)^{0.5}$ spaced at intervals not exceeding $20 w-(d-2 t) / 8$, on one side of each web; and
b) $h / w \leq 0.64\left(E / F_{y}\right)^{0.5}$, are not required.

27.7.6.2.3

Fillet welds connecting stiffeners to the beam web shall be continuous and develop a stiffener force of $A_{s} F_{\text {r }}$.

27.7.6.3 Modular links

27.7.6.3.1

Link stiffeners of modular links shall be designed and detailed in accordance with Clause 27.7.6.1, except that
a) For end-plate modular links, the end-plates shall be considered as end stiffeners.
b) For web connected modular links, end stiffeners shall be provided on the exterior side of each C. section and have a width of not less than $0.5(b-2 w)$ and a thickness of not less than $0.75 w$ or 10 mm , whichever is larger. End stiffeners shall be located at the location of the inner vertical weld for welded web connections and at a distance of $1.5 d$ inside of the innermost row of bolts for bolted web connections.
c) For web connected modular links, intermediate web stiffeners shall be provided on the exterior side of each C-section and shall have a width of not less than $0.5(b-2 w)$ and a thickness of not: less than 0.75 w or 10 mm , whichever is larger.

27.7.7 Lateral support for link

Except for links with built-up tubular rectangular cross-sections for which lateral bracing is not required, lateral support shall be provided to both top and bottom flanges at the ends of a link. These lateral supports shall have factored resistance equal to at least $0.06 b t R_{y} F_{y}$.

27.7.8 Link beam-to-column connection

27.7.8.1

When a link is directly connected to a column, the link-to-column connection shall be demonstrated by physical tests as being capable of undergoing cyclic inelastic rotation equal to at least 1.2 times the inelastic component of the rotation as specified in Clause 27.7.5.
Note: Physical testing procedures to be used to demonstrate the required behaviour are referenced in Annex J.

27.7.8.2

The demonstration of performance required by Clause 27.7.8.1 may be waived when
a) a link is separated from a column by a short distance in which the beam is reinforced to ensure elastic behaviour of the connection and the beam within this length remains elastic under the forces corresponding to the probable resistance of the link (see Clause 27.7.3.2);
b) the link length does not exceed $1.6 \mathrm{M}_{p} / V_{p}$; and
c) full-depth web stiffeners are provided at the end of the reinforced section.

27.7.8.3

Except for connections designed in accordance with Clauses 27.7.8.1 and 27.7.8.2, link beam-to-column connections may be designed for shear and torsion only. The factored torsional resistance shall equal or exceed $0.02 b t d F_{y_{1}}$

27.7.9 Beam outside the link

27.7.9.1

The beam outside the link shall be Class 1 or 2.

27.7.9.2

The beam outside the link shall resist forces corresponding to the probable resistance of the link (see Clause 27.7.3.2). When subject to these forces, the beam resistance may be taken as the factored resistance multiplied by R_{y} / ϕ when the link and the beam outside the link are part of the same beam piece.

27.7.9.3

The beam outside of the link shall be provided with sufficient lateral support to maintain stability of the beam under the forces defined in Clause 27.7.9.2. If yielding is anticipated at the link end of this outer beam segment, bracing shall be provided in accordance with Clause 13.7 a), Lateral bracing shall be provided to both top and bottom flanges and have factored resistances at least equal to $0.02 b t R_{y} F_{y}$.

27.7.9.4

When welded shear studs are used to transfer horizontal seismic loads from a concrete slab to the beam, shear studs shall not be placed within a distance from the link end equal to
a) four times the overall slab deck thickness for solid slabs or for ribbed slabs with ribs parallel to the beam; or
b) two times the spacing of the ribs for ribbed slabs with ribs perpendicular to the beam.

27.7.10 Modular link-to-beam connections

27.7.10.1

Modular link-to-beam connection shall be demonstrated by physical tests as being capable of undergoing cyclic inelastic rotation equal to at least 1.2 times the inelastic rotation specified in Clause 27.7.5.

Note: Physical testing procedures to be used to demonstrate the required behaviour are referenced in Annex J.

27.7.10.2

Modular link-to-beam connections designed to resist forces corresponding to the probable resistance of the link (see Clause 27.7.3.2) may be considered as achieving the requirements of Clause 27.7.10.1 provided that they satisfy Clause 27.7.10.3 or 27.7.10.4, as applicable.

27.7.10.3 End-plate connected modular links

End connections shall be bolted unstiffened end-plate moment connections designed and detailed in accordance with the CISC Moment Connections for Seismic Applications. The depth limits for the beam in this publication do not apply. Effects of axial forces shall be included in the design procedure.

27.7.10.4 Web connected modular links

Webs of the back-to-back C-sections shall be connected to the web of the beam by means of either welded or bolted connections. The connections shall be designed in accordance with established design procedures for eccentrically loaded connections that account for the load-deformation response of the welds or bolts, as applicable, and the eccentricity of the load with respect to the instantaneous centre of rotation. When doubler plates are used for the webs of the C-sections, the doubler plates shall not extend into the link length.

27.7.11 Diagonal braces

27.7.11.1

Diagonal brace sections shall be Class 1 or 2 .

27.7.11.2

Each diagonal brace and its end connections shall have a factored resistance to support axial force and moment produced by the link developing its probable resistance (see Clause 27.7.3.2).

27.7.12 Brace-to-beam connection

No part of the brace-to-beam connection shall extend into the link. The intersection of the brace and beam centrelines shall be at the end of or within the link. If the brace is designed to resist a portion of the link end moment, full end restraint shall be provided. The beam shall not be spliced within or adjacent to the connection between beam and brace.

27.7.13 Columns

27.7.13.1

Column sections shall be Class 1 or 2.

27.7.13.2

Columns shall be designed to resist the cumulative effect of yielding links together with the gravity loads. The link forces shall be taken as the probable resistances of the links except in storeys below the top two storeys, where the link forces may be taken as 0.90 times the probable resistance of the links.

Column sections in braced bays shall be Class 1 or 2 . Column resistances in the braced bays shall satisfy the requirements of Clause 13.8 assuming an additional bending moment in the direction of the braced bay of $0.2 Z F_{y}$ in combination with the computed bending moments and axial loads. In the top two storeys, the additional bending moment shall be taken as equal to $0.4 Z F_{y}$.

27.7.13.3

Splices in columns in braced bays shall be designed to provide the required axial, shear, and flexural resistances including the effects of the additional bending moments in the direction of the braced bays of $0.2 Z F_{y}$ acting either in the same or the opposite directions at the column ends.

Splices that incorporate partial-joint-penetration groove welds shall be located at least one-fourth of the clear distance between beams but not less than 1 m from the beam-to-column joints. When tension occurs in columns due to the link-induced forces, column splices having partial-joint-penetration groove welds shall be designed in accordance with Items a) and b) of Clause 27.2.3.3.

27.7.14 Protected zone

Link beams shall be designated as a protected zone. The protected zone shall extend to one-half of the depth of the beam beyond the ends of the link beams. Welding on link beams may be used for attachment of link stiffeners. The protected zone shall meet the requirements of Clause 27.1.9.

27.8 Type D (ductile) buckling restrained braced frames, $\boldsymbol{R}_{d}=4.0, \boldsymbol{R}_{0}=1.2$

27.8.1 General

Ductile buckling restrained braced frames can develop significant inelastic deformation through axial yielding in tension and compression of the core of the buckling restrained bracing members.

27.8.2 Bracing systems

Knee bracing and K-bracing, including systems in which pairs of braces meet a columri on one side between floors, shall not be considered to be buckling-restrained braced frames.

Except where the specified short-period spectral acceleration ratio $\left(I_{E} F_{G} S_{0}(0.2)\right)$ is less than 0.35 , buckling restrained braced frames shall not exceed 40 m in height unless stable inelastic response can be demonstrated.

27.8.3 Bracing members

27.8.3.1

The braces shall consist of a structural steel core and a system that restrains the steel core from buckling. The steel core shall be designed to resist the entire axial force in the brace. The factored axial tensile and compression resistances (T_{r} and C_{n} respectively) of the steel core to be used for design of the core shall be taken as follows:
$T_{r}=C_{r}=\phi A_{s c} F_{y s c}$
where
$A_{\text {sc }}=$ cross-sectional area of the yielding segment of the steel core
$F_{y s c}=$ specified minimum yield strength of the steel core, or actual yield strength of the steel core determined from the average of 2 coupon tests. The coupons shall be taken from the actual plate that the steel core is fabricated from. The long axis of the coupons shall be parallel to the long axis of the core. The coupons shall be tested in accordance with CSA G40.20

27.8.3.2

Splices shall not be used in the steel core. Plates used in the steel core that are 50 mm thick or greater shall satisfy the minimum notch toughness requirements of Clause 27.1.5.

27.8.3.3

The buckling restraining system shall be able to resist, without buckling, the forces and deformations that will develop in the brace at deformations corresponding to 2.0 times the seismic design storey drift.

27.8.3.4

The probable tensile, $T_{y s,}$, and compressive, $C_{y s c}$, resistances of the bracing members, including strain hardening, friction, and other effects, shall be taken as follows:
$T_{y s c}=\omega A_{s c} R_{y} F_{y s c}$
$C_{y s c}=\beta \omega A_{s c} R_{y} F_{y s c}$
where
$\omega=$ a strain hardening adjustment factor obtained by dividing the maximum tension force developed in the buckling restrained brace in the qualification testing specified in Clause 27.8.6, up to a deformation corresponding to 2.0 times the seismic design storey drift, by $A_{s c} R_{y} F_{y s c}$
$\beta=$ a friction adjustment factor obtained by dividing the maximum compression force developed in the buckling restrained brace in the qualification testing specified in Clause 27.8.6, up to a deformation corresponding to 2.0 times the seismic design storey drift, by $\omega A_{s c} R_{y} F_{y s c}$

Ry may be taken as equal to 1.0 if $F_{y s c}$ is determined from a coupon test as part of the qualification testing specified in Clause 27.8.6.

27.8.4 Brace connections

The factored resistance of brace connections shall equal or exceed the probable tensile and compressive resistances of the bracing members.

The design of connections shall include consideration of local and overall buckling and shall be consistent with the bracing forces and details considered in the qualification testing required by Clause 27.8.6.

27.8.5 Beams, columns, and connections other than brace connections

27.8.5.1

The factored resistance of beams, columns, and connections other than brace connections shall equal or exceed the effect of gravity forces and the brace connection forces specified in Clause 27.8.4, assuming the redistribution of loads when the bracing members develop their probable tensile and compressive resistances.

27.8.5.2

Columns in multi-storey buildings shall be continuous and of constant cross-section over a minimum of two storeys.

Column sections outside of the braced bays shall be Class 1,2 , or 3 .
Column sections in braced bays shall be Class 1 or 2 . Column resistances in the braced bays shall satisfy the requirements of Clause 13.8 assuming an additional bending moment in the direction of the braced bay of $0.2 Z F y$ in combination with the computed bending moments and axial loads. Splices in columns in braced bays shall be designed to provide the required axial, shear, and flexural resistances including the effects of the additional bending moments in the direction of the braced bays of $0,2 Z F_{y}$ acting either in the same or the opposite directions at the column ends.

27.8.5.3

Partial-joint-penetration groove weld splices in columns subject to tension shall meet the requirements of Items a) and b) of Clause 27.2.3.3.

27.8.6 Testing

Individual buckling restrained brace members and buckling restrained braced frames shall be able to develop their resistance without buckling and with positive strain hardening up to deformations corresponding to 2.0 times the seismic design storey drift and shall exhibit values of ω and β greater than 1.0. Satisfaction of these requirements shall be demonstrated by physical testing as described in Annex J. Qualifying test results shall consist of at least two successful cyclic tests, one a test of a brace subassemblage (including brace connection rotational demands at the specified performance) and the other a uniaxial or subassembly test. Both requirements may be based on
a) tests reported in research or documented tests performed for other projects; or
b) tests conducted specifically for the project.

27.8.7 Protected zone

The steel core of bracing members and the elements that connect the steel core to beams and columns shall be designated as protected zones and shall meet the requirements of Clause 27.1.9.

27.9 Type D (ductile) plate walls, $\boldsymbol{R}_{d}=5.0, R_{o}=1.6$

27.9.1 General

Ductile plate walls are composed of infill plates framed by rigidly connected columns and beams. They can develop significant inelastic deformation by the yielding of the infill plates and plastic hinging in beams a short distance from the face of columns. Plastic hinges in columns shall be allowed only at the base and shear yielding in columns shall be prevented.

The requirements of Clause 20 shall apply unless otherwise specified by Clause 27.9.

27.9.2 Infill plates

27.9.2.1 Shear resistance

The infill plate shall be designed to resist 100% of the applied factored storey shear force. The factored shear resistance of infill plates shall be taken as
$V_{r}=0.4 \phi F_{y} \omega L \sin 2 \alpha$

27.9.2.2 Probable yield force

The forces acting on other members and connections due to yielding of the infill plates shall be calculated as $R y$ times the tension yield resistance of the infill plates, but these forces need not exceed the value corresponding to $R_{d} R_{o}=1.3$.

27.9.2.3 Perforated infill plates

Unreinforced circular perforations may be located in infill plates provided that
a) the perforations are of equal diameter, D, and are regularly spaced vertically and horizontally over the entire area of the infill plates to form a regular grid of staggered holes to allow development of continuous diagonal tension fields at 45°;
b) the shortest centre-to-centre distance between the perforations, $S_{\text {diag, }}$, is such that $D / S_{\text {diog }} \leq 0.6$;
c) the distance between the first holes and infill plate connections to the surrounding beams and columns is at least D, but does not exceed ($D+0.7 S_{\text {diog }}$); and
d) a minimum of four horizontal and four vertical lines of holes is used.

The factored shear resistance of infill plates with circular perforations shall be taken as
$V_{r}=0.4\left(1-0.7 D / S_{\text {diog }}\right) \phi F_{y} W L_{1}$

27.9.2.4 Infill plates with corner cut-outs

Quarter-circular cut-outs may be located at the upper corners of the infill plates if
a) the infill plates are connected to a reinforcement arching plate that follows the edge of the cutouts and are designed to allow development of the full strength of the solid infill plate;
b) the radius of the corner cut-outs is less than one-third of the infill plate clear height; and
c) beams and columns are designed to resist the compression or tension axial forces acting at the end of the arching reinforcement.

27.9.3 Beams

27.9.3.1

Beams shall be Class 1 sections braced in accordance with Clause 13.7 b).

27.9.3.2

Beams at every storey shall have sufficient flexural resistance such that at least 25% of the applied factored storey shear force is resisted by beams and columns forming a moment-resisting frame. Axial loads in beams and gravity load effects on beams need not be considered in calculating this resistance.

27.9.3.3

Beam resistances shall meet the requirements of Clause 13.8, considering the axial loads and bending moments induced by the gravity and lateral loads and the tension force in the infill plate determined in accordance with Clause 27.9.2.2. The effects of the tension force in the infill plate acting on the beams and the columns shall be considered in the calculation of the beam axial loads.

27.9.4 Columns

27.9.4.1

Columns shall be Class 1 sections braced in accordance with Clause 13.7 b).

27.9.4.2

Columns shall resist the effects of gravity loads together with the axial loads, shear forces, and bending moments due to the tension forces in the infill plates as determined in accordance with Clause 27.9.2.2, as well as the forces induced by the beams as determined in accordance with Clause 27.9.7.2.

27.9.4.3

Column splices shall develop the full flexural resistance of the smaller section at the splice, together with the shear force consistent with plastic hinging at column ends, assuming double curvature. Splices shall be located as close as practicable to one-fourth of the storey height above the floor.

27.9.4.4

The columns shall be stiffened so that plastic hinging forms in the columns above the base plate or foundation beam.

27.9.5 Minimum stiffness for beams and columns

Beams and columns shall have sufficient flexural stiffness so that the entire infill plate is yielded at the design storey drift.

The requirement of this Clause may be satisfied by applying Clauses 20.5.1 and 20.5.2.

27.9.6 Column joint panel zones

The horizontal shear resistance of the column joint panel zone shall meet the requirements of Clauses 27.2.4.2 and 27.2.4.3.

27.9.7 Beam-to-column joints and connections

27.9.7.1

Beam-to-column joints and connections shall meet the requirements of Clause 27.4.4, except that the moment resistance in Clause 27.4.4.2 c) shall be taken equal to $1.1 R_{y} M_{p b}$.

27.9.7.2

The factored resistance of the beam web-to-column connection shall equal or exceed the effects of gravity loads and tension forces in the infill plates, as determined in accordance with Clause 27.9.2.2, acting above and below the beams, combined with shears induced by moments of $1.1 \mathrm{R}_{y} M_{p b}$ acting at plastic hinge locations. The moments acting in the beam plastic hinges may be taken as $1.18\left(1.1 R_{y} M_{p b}\right)$ (1-C $C_{f} / \phi C_{y}$), where C_{f} is the beam axial load due to the tension forces in the infill plates and C_{y} is the axial yield resistance of the beam.

27.9.8 Protected zones

Infill plates, the region at each end of the beams subject to inelastic straining, and column bases where inelastic deformations are anticipated shall be designated as protected zones and shall meet the requirements of Clause 27.1.9, The protected zone of beams shall be defined as the area from the face of the column flange to one-half of the beam depth beyond the theoretical hinge point. Bolt holes in beam webs, when detailed in accordance with the individual connection requirements of this Standard, may be used.

27.10 Type LD (limited-ductility) plate walls, $R_{d}=2.0, R_{0}=1.5$

27.10.1 General

Limited-ductility plate walls are composed of infill plates framed by columns and beams that may be connected rigidly or by simple connections. They can develop limited inelastic deformation by the yielding of the infill plates and plastic hinging in the beams, columns, or joints. Except where the specified short-period spectral acceleration ratio $\left(\ell_{\epsilon} F_{0} S_{a}(0.2)\right)$ is less than 0.35 , the height of the structure shall be limited to 60 m

The requirements of Clause 20 and Clause 27.9.8 apply unless otherwise specified by Clause 27.10.

27.10.2 Infill plates

27.10.2.1

The factored shear resistance of infilf plates shall be determined in accordance with Clause 27.9.2.1 and the forces acting on other members and connections due to vielding of the infill plates shall be determined in accordance with Clause 27.9.2.2.

27,10.2.2
Infill plate splices shall be designed to resist forces determined in accordance with Clause 27.9.2.2 and proportioned so as not to inhibit the formation of a uniform tension field in the panel.

27,10.3 Beams

27.10.3.1

Beams shall be Class 1 or Class 2 sections braced in accordance with Clause 13.7 a).
27.10.3.2

Beams shall meet the requirements of Clause 27.9.3.3.

(1) 27.10.4 Columns

Clause 27.9.4 shall apply, except that in applying Clause 27.9.4.2 the forces induced by the beams shall be determined using Clause 27.10.6.2.

Where the specified one-second spectral acceleration ratio $I_{E} F_{V} S_{0}(1.0)$ is less than 0.30 , the design forces for the column splices in Clause 27.1.4 need not be taken into account.

27.10.5 Column joint panel zones

If rigid beam-to-column connections are used, the horizontal shear resistance of the column joint panel zone shall meet the requirements of Clause 27.2.4.2.

27,10.6 Beam-to-column joints and connections

27.10.6.1

If rigid beam-to-column connections are used, they shall have a moment resistance equal to $R_{y} M_{p b}$.

27.10.6.2

The factored resistance of the beam web-to-column connection shall equal or exceed the effects of gravity loads and tension forces in the infill plates, as determined in accordance with Clause 27.9.2.2, acting above and below the beams. If rigid beam-to-column connections are used, the design forces shall include shears induced by moments of $R_{y} M_{p b}$ acting at plastic hinge locations and these moments may be taken as $1.18\left(R_{y} M_{p b}\right)\left(1-C_{f} / \phi C_{y}\right)$, where C_{f} and C_{y} are as defined in Clause 27.9.7.2.

27.11 Conventional construction, $R_{d}=1.5, R_{o}=1.3$

27.11.1

Structural systems in this category have some capacity to dissipate energy through localized yielding and friction that inherently exists in traditional design and construction practices. Except as otherwise specified in Clause 27.11, the requirements of Clauses 27.1 to 27.10 and 27.12 shall not apply to these systems.

Diaphragms and connections of primary framing members and diaphragms of the seismic-load-resisting system of steel-framed buildings with specified short-period spectral acceleration ratios $\left(l_{E} F_{a} S_{a}(0.2)\right)$ greater than 0.45 designed to resist seismic loads based on a force reduction factor, R_{d}, of 1.5 shall be
a) proportioned so that the expected connection failure mode is ductile; or
b) designed to resist gravity loads combined with the seismic load multiplied by R_{d}.

The connection design load need not exceed the gross section strength of the members being joined, as determined using the probable yield stress $R_{y} F_{y}$.

27.11.2

Cantilever column structures composed of single or multiple beam-columns fixed at the base and pinconnected or free at the upper ends shall
a) have Class 1 section columns;
b) have U_{2} not greater than 1.25 ; and
c) have base connections designed to resist a moment of $1.1 R_{y}$ times the nominal flexural resistance of the column, but need not exceed the value corresponding to $R_{d} R_{o}=1.0$.

27.11.3

When the specified short-period spectral acceleration ratio $\left(l_{E} F_{a} S_{a}(0.2)\right)$ is greater than or equal to 0.35 , seismic force resisting systems other than cantilever column structures as specified in Clause 27.11.2 and not part of an assembly occupancy building as specified in the NBCC, may exceed 15 m in height if
a) all factored seismic forces for ultimate limit states are increased linearly by 2% per metre of height above 15 m , without exceeding forces corresponding to $R_{d} R_{0}=1.3$;
b) the height does not exceed 40 m when the specified short-period acceleration ratio $\left(l_{E} F_{a} S_{0}(0.2)\right)$ is greater than 0.75 or the specified one-second spectral acceleration ratio $\left(l_{E} F_{v} S_{a}(1.0)\right)$ is greater than 0.30 ;
c) the height does not exceed 60 m when the specified short-period spectral acceleration ratio ($l_{E} F_{a} S_{a}$ (0.2)) is greater than or equal to 0.35 but less than or equal to 0.75 ;
d) the seismic forces and deformations are determined using the Dynamic Analysis Procedure described in the $N B C C$;
e) the requirements of Clauses 27.1.3 to 27.1.8 are satisfied;
f) beams, columns, and I-shaped or HSS bracing members are Class 1 or Class 2 sections;
g) for bracing members with slenderness equal to or less than 200, the width-to-thickness ratios is less than $170 / \sqrt{F_{v}}$ for the legs of angles and flanges of channels and $670 / \sqrt{F_{\nu}}$ for the webs of channels;
h) the columns are designed to resist in compression the effects of gravity loads combined with 1.30 times the member factored seismic forces, where the seismic induced axial loads for columns that are part of two or more intersecting seismic-force-resisting systems are obtained from analysis of the structure independently in any two orthogonal directions for 100% of the earthquake loads applied in one direction plus 30% of the earthquake loads in the perpendicular direction;
i) connections are designed to resist the effects of gravity loads combined with 1.30 times the member factored seismic forces, without exceeding the gross section strength of the members being joined, as determined using the probable yield stress $R_{y} F_{y}$;
j) connections are designed and detailed such that the governing failure mode is ductile when the member gross section strength does not control the connection design loads;
k) the factored seismic forces for diaphragms are determined for forces corresponding to $R_{0} R_{d}=1.3$; and
I) compression members of the seismic-force-resisting system that are intersected by bracing members at an unbraced location are designed for an additional out-of-plane transverse force equal to 10% of the axial load carried by the compression members at that intersection point.

27.12 Special seismic construction

Other framing systems and frames that incorporate special bracing, ductile truss segments, seismic isolation, or other energy-dissipating devices shall be designed on the basis of published research results or design guides, observed performance in past earthquakes, or special investigation. A level of safety and seismic performance comparable to that required by Clause 27 shall be provided.

28 Shop and field fabrication and coating

28.1 Cambering, curving, and straightening

Cambering, curving, and straightening may be done by mechanical means, local application of heat, or both. The temperature of heated areas as measured by approved methods shall not exceed the limits specified in CSA W59.

28.2 Thermal cutting

Thermal cutting shall be performed by guided machine where practicable. Thermally-cut edges shall meet the requirements of CSA W59. Re-entrant corners shall be free from notches and have the largest practicable radji, with a minimum radius of 14 mm .

28.3 Sheared or thermally cut edge finish

28.3.1

Planing or finishing of sheared or thermally cut edges of plates or shapes shall not be required unless noted on the drawings or included in a stipulated edge preparation for welding.

28.3.2

The use of sheared edges in the tension area shall be avoided in locations subject to plastic hinge rotation at factored loading. Sheared edges, if used, shall be finished smooth by grinding, chipping, or
planing. The requirements of this Clause shall be noted on design drawings and on shop details where applicable.

28.3.3

All burrs over 2 mm in height shall be removed. Projections and burrs under 2 mm in height shall be removed
a) when needed for proper fit-up for welding; and
b) when they create a hazard during or after construction.

28.4 Fastener holes

28.4.1 Drilled and punched holes

Unless otherwise shown on design documents or as specified in Clause 22.3.5, holes
a) shall be made 2 mm larger than the nominal diameter of the fastener;
b) may be punched when the thickness of the material is not greater than the nominal fastener diameter plus 4 mm ;
c) shall be either drilled from the solid or sub-punched or sub-drilled and reamed when the material is greater than the nominal fastener diameter plus 4 mm ; and
d) shall be drilled in CSA G40.21-700Q or ASTM A514 steels more than 13 mm thick.

28.4.2 Holes at plastic hinges

In locations subject to plastic hinge rotation at factored loading, fastener holes in the tension area shall be either sub-punched and reamed or drilled full size. This requirement shall be noted on design drawings and shop details.

28.4.3 Thermally cut holes

Thermally cut holes produced by guided machine may be used in statically loaded structures if the actual hole size does not exceed the nominal hole size by more than 1 mm . Gouges not exceeding 1.5 mm deep may be permitted along edges of thermally cut slots. Manually cut fastener holes may be permitted only with the approval of the designer.

28.4.4 Alignment

Drifting done during assembly to align holes shall not distort the metal or enlarge holes. Holes in adjacent parts shall match well enough to permit easy entry of bolts. Holes, except oversize or slotted holes, may be enlarged to admit bolts by a moderate amount of reaming. However, gross mismatch of holes shall be cause for rejection.

28.5 Joints in contact bearing

Joints in compression that depend on contact bearing shall have the bearing surfaces prepared to a common plane by milling, sawing, or other suitable means. Surface roughness shall have a roughness height rating not exceeding $500(12.5 \mu \mathrm{~m})$, as specified in CSA B95, unless otherwise specified by the designer.

When shop assembled, such joints shall have at least 75% of the entire contact area in bearing, A separation not exceeding 0.5 mm shall be considered acceptable as bearing. The separation of any remaining portion shall not exceed 1 mm . A gap of up to 3 mm may be packed with non-tapered steel shims to meet the requirements of this Clause. Shims need not be other than mild steel, regardless of the grade of the main material.

28.6 Member tolerances

28.6.1

Structural members consisting primarily of a single rolled shape shall be straight within the tolerances allowed in CSA G40.20, except as specified in Clause 28.6.4.

28.6 .2

Built-up bolted structural members shall be straight within the tolerances allowed for rolled wide-flange shapes in CSA G40.20, except as specified in Clause 28.6.4.

28.6.3

Dimensional tolerances of welded structural members shall be those specified in CSA W59, unless otherwise specified by the designer.

28.6.4

The out-of-straightness of fabricated compression members shall not exceed 0.001 of the axial length between points that are to be laterally supported.

28.6 .5

Beams with bow within the straightness tolerance shall be fabricated so that, after erection, the bow due to rolling or fabrication shall be upward.

28.6.6

Completed members shall be free from twists, bends, and open joints. Sharp kinks or bends shall be cause for rejection.

28.6.7

A variation of 1 mm is permissible in the overall length of members with both ends finished for contact bearing.

28.6 .8

Members without ends finished for contact bearing that are to be framed to other steel parts of the structure may have a variation from the detailed length not greater than 2 mm for members 10 m or less in length and not greater than 4 mm for members more than 10 m in length.

28.7 Cleaning, surface preparation, and shop coating

28.7.1 General

Steelwork need not be coated unless required by Clause 6.6 or otherwise specified by the designer.

28.7.2 Uncoated steel

28.7.2.1

Steelwork need not be cleaned of oil, grease, dirt, and other foreign matter unless encased in concrete or otherwise specified by the designer.

28.7.2.2

Steelwork to be encased in concrete need not be coated. Steeiwork that is designed to act compositely with reinforced concrete and depends on natural bond for interconnection shall not be coated.

28.7.3 Coated steel

28.7.3.1 General

The requirements of the coating system, including surface preparation, minimum finished coating thickness, and coating or performance specifications, shall be specified to meet service conditions. The primer and subsequent coats shall be compatible. Coatings shall be applied thoroughly and evenly to dry, clean surfaces.

28.7.3.2 Surface preparation

Steelwork shall be cleaned of all loose mill scale, loose rust, weld slag and flux deposit, oil, grease, dirt, other foreign matter, and excessive weld spatter prior to application of the coating. When specified, special surface preparation prior to coating shall meet the requirements of SSPC SP 1; SSPC SP 2; SSPC SP 3; SSPC SP 5/NACE No. 1; SSPC SP 6/NACE No. 3; SSPC SP 7/NACE No. 4; SSPC SP 10/NACE No. 2; SSPC SP 11; SSPC SP 12; or SSPC SP 14, as applicable.

28.7.3.3 One-coat systems

Steelwork to be coated shall, at a minimum, be given a one-coat paint intended to withstand exposure to an essentially non-corrosive atmosphere for a period not exceeding six months in accordance with CISC/CPMA 1-73a, unless otherwise specified.

A one-coat shop primer intended to withstand exposure to an essentially non-corrosive atmosphere for a period not exceeding 12 months shall comply with CISC/CPMA 2-75, unless otherwise specified by the designer.

28.7.3.4 Inaccessible surfaces

Surfaces that will be inaccessible after assembly shall be cleaned or cleaned and coated, as necessary, prior to assembly. Inside surfaces of enclosed spaces that will be entirely sealed off from any external source of oxygen need not be coated.

28.7.3.5 Field coating

Unless otherwise specified by the designer, the cleaning of steelwork in preparation for field coating, touch-up of shop coat, spot-coating of field fasteners, and general field coating shall not be considered part of the erection work.

28.7.4 Special surfaces

28.7.4.1

Coated-faying surfaces in high-strength bolted slip-critical joints shall meet the requirements of Clause 23.3.

28.7.4.2

For members in compression, surfaces that are finished to bear shall be cleaned before assembly but shall not be coated unless otherwise specified by the designer.

28.7.4.3

Joints that are to be welded shall be kept free of all foreign matter, including paint, primer, or other coatings that could be detrimental to achieving a sound weldment.

28.7.5 Metallic zinc coatings

28.7.5.1

Material to be hot-dip galvanized shall comply with CAN/CSA-G164.

28.7.5.2

Material to be zinc metallized shall comply with CSA G189.

29 Erection

29.1 Temporary conditions

29.1.1 General

Suitable provisions shall be made in accordance with this Standard to ensure that an adequate margin of safety exists in the uncompleted structure and members during erection. (See also Clause 4.3.4.)

29.1.2 Temporary loads

Suitable provisions shall be made to ensure that the loads incurred during steel erection can be safely sustained for their duration and without permanent deformation or other damage to any member of the steel frame and other building components supported thereby.

Temporary loads can include but are not limited to loads due to wind, equipment, equipment operation, and storage of construction materials.

29.1.3 Temporary bracing

Temporary bracing shall be employed whenever necessary to withstand all loads to which the structure may be subject during steel erection. Temporary bracing shall be left in place undisturbed as long as necessary for the safety and integrity of the structure,

29.1.4 Adequacy of temporary connections

As erection progresses, the work shall be securely bolted or welded to resist safely all dead, wind, and erection loads and to provide necessary structural integrity.

29.2 Alignment

Permanent welding or bolting shall not be performed until as much of the structure as will be stiffened thereby has been suitably aligned.

29.3 Erection tolerances

29.3.1 General

The steel framework shall be erected true and plumb within the specified tolerances. The tolerances specified in Clauses 29.3.2 to 29.3.11 are the maximum allowable tolerances for a given member.
Note: A member tolerance can be limited to less than the allowed tolerance due to a stricter tolerance controlling the member to which it is framed into or to a member that it supports.

29.3.2 Elevation of base plates

Column base plates shall be considered to be at their proper elevation if the following tolerances are not exceeded:
a) for single-and multi-storey buildings designed as simple construction as specified in Clause 8.3: ± 5 mm from the specified elevation; and
b) for single- and multi-storey buildings designed as continuous construction as specified in Clause 8.2 or as partially restrained construction as specified in Clause $8.4: \pm 3 \mathrm{~mm}$ from the specified elevation.

29.3.3 Plumbness of columns

Unless otherwise specified by the designer, columns shall be considered plumb if their verticality does not exceed the following tolerances:
a) for exterior columns of multi-storey buildings: 1/1000, but not more than 25 mm toward or 50 mm away from the building line in the first 20 storeys, plus 2 mm for each additional storey, up to a maximum of 50 mm toward or 75 mm away from the building line over the full height of the building;
b) for columns adjacent to elevator shafts: $1 / 1000$, but not more than 25 mm in the first 20 storeys, plus 1 mm for each additional storey, up to a maximum of 50 mm over the full height of the elevator shaft; and
c) for all other columns: $1 / 500$.

Column plumbness shall be measured from the actual column centreline at the base of the column to its centreline at the next adjacent storey. Deviation from straightness of the erected column shall meet the requirements of Clause 28.6.

29.3.4 Horizontal alignment of members

Unless otherwise specified by the designer, spandrel beams shall be considered aligned when the offset of one end relative to the other from the alignment shown on the drawings does not exceed $t / 1000$. However, the offset need not be less than 3 mm and shall not exceed 6 mm .

Other members shall be considered aligned when the offset of one end relative to the other from the alignment shown on the drawings does not exceed $L / 500$. However, the offset need not be less than 3 mm and shall not exceed 12 mm .

29.3.5 Elevations of members

The elevations of the ends of members shall be within 10 mm of the specified member elevation. Allowances shall be made for initial base elevation, column shortening, differential deflections, temperature effects, and other special conditions, but the maximum deviation from the specified slope shall not exceed $L / 500$. The difference from the specified elevation between member ends that meet at a joint shall not exceed 6 mm .

29.3.6 Crane runway beams

Unless otherwise required by the operational characteristics of the crane, crane runway beams and monorail beams shall be erected within the following tolerances:
a) The slope of a member shall not exceed $L / 1000$. However, the difference in elevation of the ends need not be less than 3 mm and shall not exceed 6 mm . The difference in elevation of opposite points on two parallel runway beams shall not exceed $1 / 1000$ of the distance between the runway beams and shall not exceed 6 mm .
b) The affset of one end of the member relative to the other from the horizontal alignment shown on the drawings shall not exceed $L / 500$. However, the offset need not be less than 3 mm and shall not exceed 8 mm .
c) The distance between the ends of two parallel runway beams shall not deviate by more than $1 / 500$ of the span of the runway beam. However, the difference in the distances between the runway beam ends need not be less than 3 mm and shall not exceed 10 mm .

29.3.7 Alignment of braced members

Members such as columns, beams, trusses, and open web steel joists that are braced between their supports shall be erected in such a way that the fabrication tolerances specified in this Standard are maintained.

29.3.8 Members with adjustable connections

Members with adjustable connections (e.g., shelf angles, sash angles, and lintels) shall be considered to be within tolerances when the following requirements are met:
a) Each piece shall be level within $L / 1000$; however, the difference in elevation of the ends need not be less than 3 mm and shall not exceed 6 mm .
b) Adjoining ends of members shall be aligned vertically and horizontally within 2 mm .
c) The location of the members both vertically and horizontally shall be within 10 mm of the location established by the dimensions on the drawings.

29.3.9 Column splices

Column splices and other compression joints that depend on contact bearing as part of the splice resistance shall, after alignment, have a maximum allowable separation of 6 mm . Any gap exceeding 1.5 mm shall be packed with non-tapered steel shims. Shims need not be other than mild steel, regardless of the grade of the main material.

29.3.10 Welded joint fit-up

The fit-up of joints that are to be field-welded shall be within the tolerances shown on the erection diagrams and shall not exceed the tolerances specified in CSA W59 when welding is completed.

29.3.11 Bolted joint fit-up

Bolted joint fit-up shall meet the requirements of Clause 28.4.4.

30 Inspection

30.1 General

Material and quality of work shall at all times be subject to inspection by qualified inspectors who represent and are responsible to the designer. The inspection shall cover shop work and field erection work to ensure compliance with this Standard.

30.2 Co-operation

Insofar as possible, all inspections shall be made in the fabricator's shop. The fabricator shall co-operate with the inspector and permit access for inspection to all places where work is being done. The inspector shall co-operate in avoiding undue delay in the fabrication or erection of the steelwork.

30.3 Rejection

Material or quality of work not meeting the requirements of this Standard may be rejected at any time during the progress of work once non-compliance is established.

30.4 Inspection of high-strength bolted joints

The inspection of high-strength bolted joints shall be performed in accordance with Clause 23.8.

(1) 30.5 Welding inspection

30.5.1 Extent of examination

30.5.1.1 General

The fabricator or erector shall visually inspect all welds. Non-destructive examination of welds (other than visual inspection) shall be completed by the fabricator or erector when specified by the owner. Third-party welding inspection (visual and/or non-destructive) shall be performed when required by the owner.

30.5.1.2 Competency of fabricator or erector inspection personnel

Personnel performing weld quality control for the fabricator or erector shall be competent to perform the assigned weld quality control tasks. The required competency of personnel performing visual weld inspection tasks shall be defined and documented by the fabricator or erector based on their processes. Records of personnel competency shall be maintained by the fabricator or erector.
30.5.1.3 Competency of personnel performing non-destructive testing when
performed by the Fabricator or Erector (not including visual inspection)

Competency of personnel performing non-destructive testing, other than visual, shall be in accordance with CAN/CGSB-48.9712/ISO 9712. The record of compliance with these requirements shall be documented.

30.5.1.4 Competency for third-party personnel performing visual and/or nondestructive testing on behalf of the fabricator or erector

If the fabricator or erector elects to subcontract any visual or non-destructive inspection to a third party to complete on their behalf, then any-third party personnel performing such inspection shall meet the requirements specified in Clauses 30.5.2.2 to 30.5.2.5.

30.5.2 Competency of inspection personnel

30.5.2.1 General

The required competency of personnel performing visual weld inspection tasks shall be defined and documented by the fabricator or erector based on their processes. Records of personnel competency shall be maintained by the fabricator or erector.

30.5.2.2 Competency of all personnel performing non-destructive testing (not including visual inspection)

Competency of all personnel performing non-destructive testing, other than visual, shall be in accordance with CAN/CGSB-48.9712/ISO 9712.

30.5.2.3 Competency for third-party personnel performing non-destructive testing (visual inspection only)

The competency of third-party visual inspection personnel shall meet the requirements of CSA W178.2 or AWS QC1. AWS inspectors shall have evidence of an eye exam showing 20/20 vision corrected or uncorrected within the last 2 years.

30.5.2.4 Compliance records

Compliance with the requirements of CAN/CGSB-48.9712/ISO 9712 shall be documented.

30.5.2.5 Non-destructive testing personnel

Non-destructive testing personnel referenced in Causes 30,5.2.2 and 30.5.2.3 shall meet the requirements of Level 2 or 3 of CSA W178.2, AWS QC1, or CAN/CGSB-48.9712/ISO 9712 as applicable. Level 1 personnel (or a CAWI under AWS QC1) may only perform the applicable tasks under the direct supervision of Level 2 or 3 personnel.
Note: For personnel certified under AWS QC1, a CWI or SCWI is equivalent to an inspector certified to Level II of CSA W178.2.

30.5.3 Acceptance criteria

The fabricator or erector shall ensure that all welds under their responsibility comply with the CSA W59. When third-party welding inspection is required by the owner, such verification shall be completed by the fabricator or erector prior to third-party inspection.

Unless otherwise specified, the acceptance criteria for all welds shall be in accordance with CSA W59.

30.6 Identification of steel by marking

In the fabricator's plant, steel used for main components shall at all times be marked to identify its specification (and grade, if applicable). This shall be done by suitable markings or by recognized colour coding, except that cut pieces identified by piece mark and contract number need not continue to carry specification identification markings when it has been satisfactorily established that such cut pieces meet the required material specifications.

Table 1
Maximum width (or diameter)-to-thickness ratios: Elements in axial compression (See Clauses 11.2, 13.3.1, 13.3.3.1, 13.3.5, and 14.4.2.)

Description of elements	Limits
Elements supported along one edge such as	$\frac{b_{e l}}{t} \leq \frac{200}{\sqrt{F_{y}}}$

Table 1 (Concluded)

Description of elements	Limits
Stiffeners of Plate-girders	$\frac{b_{e l}}{t} \leq \frac{250}{\sqrt{F_{y}}}$
Legs of angles	$\frac{b_{e l}}{t} \leq \frac{340}{\sqrt{F_{y}}}$
Element supported along one edge and restrained by a plate that is substantially stiffer than the element itself, such as: Stems of T-sections	$\frac{b_{e l}}{t} \leq \frac{670}{\sqrt{F_{y}}}$
Element supported along two edges, such as: Flanges of rectangular hollow sections	$\frac{b_{e l}}{t} \leq \frac{840}{\sqrt{F_{y}}}$
Flange cover plates and diaphragm plates between lines of fasteners or welds, web of 1-shape sections.	$\frac{D}{t} \leq \frac{23000}{F_{y}}$
Werforated cover plates	
Circular hollow sections	

Table 2
Maximum width (or diameter)-to-thickness ratios: Elements in flexural compression
(See Clauses 11.2 and 27.7.2.7.)

	Section classification limits		
Description of elements	Class 1	Class 2	Class 3
Element supported along one edge and under flexural compression, such as	$\frac{b_{\text {el }}}{t} \leq \frac{145}{\sqrt{F_{y}}}$	$\frac{b_{e l}}{t} \leq \frac{170}{\sqrt{F_{y}}}$	$\frac{b_{\text {ei }}}{t} \leq \frac{200}{\sqrt{F_{y}}}$

Flanges of 1 -sections or T -
sections under bending about
the major axis
Plates projecting from element in compression elements

Outstanding legs of pairs of angles in continuous contact with an axis of symmetry in the plane of loading

Element supported along one edge

 under compressive stress due to flexural bending but with a part in tension, such as$$
\frac{b_{\text {el }}}{t} \leq \frac{145}{\sqrt{F_{y}}}
$$

$$
\frac{b_{e t}}{t} \leq \frac{170}{\sqrt{F_{y}}}
$$

$$
\frac{b_{e l}}{t} \leq \frac{340}{\sqrt{F_{y}}}
$$

Stems of T-sections

Flange of 1 -section under flexure around the minor axis
Element supported along two edges mainly under compressive stress due to flexural bending, such as

$$
\frac{b_{e l}}{t} \leq \frac{420}{\sqrt{F_{y}}}
$$

$$
\frac{b_{e 1}}{t} \leq \frac{525}{\sqrt{F_{v}}}
$$

$$
\frac{b_{e l}}{t} \leq \frac{670}{\sqrt{F_{y}}}
$$

Flanges of rectangular hollow sections
Element supported along two edges mainly under compressive stress due to flexural bending, such as

$$
\frac{b_{e l}}{t} \leq \frac{525}{\sqrt{F_{y}}}
$$

$$
\frac{b_{e l}}{t} \leq \frac{525}{\sqrt{F_{y}}}
$$

$$
\frac{b_{e l}}{t} \leq \frac{670}{\sqrt{F_{v}}}
$$

Flanges of box sections
Flange cover plates and diaphragm plates between lines of fasteners or welds

Element supported along two edges and subjected to combined axial compression and bending about the major axis, such as

$$
\frac{h}{w} \leq \frac{1100}{\sqrt{F_{y}}}\left(1-0.39 \frac{C_{f}}{\phi C_{y}}\right) \frac{h}{w} \leq \frac{1700}{\sqrt{F_{y}}}\left(1-0.61 \frac{C_{f}}{\phi C_{\nu}}\right) \frac{h}{w} \leq \frac{1900}{\sqrt{F_{y}}}\left(1-0.65 \frac{C_{f}}{\phi C_{y}}\right)
$$

Webs of 1-sections
Web of 1-section subjected to compression due to combined member axial compression and bending about the minor axis:

Table 2 (Concluded)

Description of elements	Section classlfication limits		
	Class 1	Class 2	Class 3
a) For $C_{j}>0.4 \phi C_{\gamma}$			
	$\frac{h}{w} \leq \frac{525}{\sqrt{F_{y}}}$	$\frac{h}{w} \leq \frac{525}{\sqrt{F_{y}}}$	$\frac{h}{w} \leq \frac{1900}{\sqrt{F_{x}}}\left(1-0.65 \frac{C_{f}}{\phi C_{\nu}}\right)$
b) For $C_{t} \leq 0.4 \phi C_{y}$			
	$\frac{h}{w} \leqslant \frac{1100}{\sqrt{F_{y}}}\left(1-1.31 \frac{c_{f}}{\phi c_{y}}\right)$	$\frac{h}{w} \leq \frac{1700}{\sqrt{F_{y}}}\left(1-1.73 \frac{c_{f}}{\phi c_{y}}\right)$	$\frac{h}{w} \leq \frac{1900}{\sqrt{F_{y}}}\left(1-0.65 \frac{c_{f}}{\phi c_{y}}\right)$
Web of 1-section subjected to compression due to combined member axial compression and bending about both principal axes, with	$\frac{h}{w} \leq \frac{525}{\sqrt{F_{y}}}$	$\frac{h}{w} \leq \frac{525}{\sqrt{F_{y}}}$	$\frac{h}{w} \leq \frac{1900}{\sqrt{F_{y}}}\left(1-0.65 \frac{c_{f}}{\phi c_{y}}\right)$
$\underline{M_{f x}}>\underline{0.9 M_{f x}}$			
See Note 2.			
Eircular hollow sections	$\frac{D}{t} \leq \frac{13000}{F_{y}}$	$\frac{D}{t} \leq \frac{18000}{F_{y}}$	$\frac{D}{t} \leq \frac{66000}{F_{y}}$

Notes:

1) Elements with ratios exceeding Class 3 limits are Class 4 sections.
2) If $\frac{M_{k}}{S_{y}} \leq \frac{0.9 M_{f}}{s_{x}}$, the limits for elements supported along two edges and subjected to combined axial compression and bending about the major axis shall apply.

Values of k_{5} and c_{s}
(See Clauses 13.12.2.2 and 23.2.)

Contact surface of bolted parts		$k_{\text {s }}$	$c_{\text {s }}$			
		Turn-of-nut	Other			
Class	Description		A325 and A325M' bolts	$\begin{aligned} & \text { A490 and } \\ & \text { A490M' bolts } \end{aligned}$	$\begin{aligned} & \text { F959, } \\ & \text { F1852, and } \\ & \text { F2280 } \end{aligned}$	
A	Unpainted clean mill scale steel surfaces or surfaces with Class A coatings on blastcleaned steel or hot-dipped galvanized and roughened surfaces		0.30	1.00	0.92	0.78
B	Unpainted blast-cleaned steel surfaces or surfaces with Class B coatings on blastcleaned stee!	0.52	1.04	0.96	0.81	

* Bolts are installed by the turn-of-nut method.

Note: Class A and Class B coatings are those coatings that provide a mean slip coefficient, $k_{s,}$ of not less than 0.30 and 0.52 , respectively.

Table 4
Matching electrode ultimate tensile strengths for CSA G40.21 steels
(See Clause 13.13.1.)

Matching electrode ultimate tensile strength* MPa	G40.21 Grades, MPa						
	260	300	350	380	400	480	700
430	X	X +					
490	\times	x	$x \neq$	x			
550					$x \ddagger$		
620						x	
820							x

*The electrode ultimate tensile strength is ten times the first two digits of the electrode classification in CSA W48.

+ For HSS only.
\ddagger For unpainted applications using " A " or "AT" steels where the deposited weld metal is to have atmospheric corrosion resistance or colour characteristics, or both, similar to the base metal, the requirements of Clauses 5.2.1.4 and 5.2.1.5 of CSA W59 shall apply.
Note: For matching conditions of ASTM steels, see Table 11-1 or 12-1 of CSA W59.
Table 5
Maximum intermediate transverse stiffener spacing
(See Clause 14.5.2.)

Web depth-to-thickness ratio, h / w	Maximum distance between stiffeners, a, in terms of ciear web depth, h
≤ 150	$3 h$
>150	$\frac{67500 h}{(h / w)^{2}}$

Table 6

Minimum edge distance for bolt holes, mm

(See Clauses 22.3.2 and 22.3.4.)

Bolt diameter		Minimum edge distance	
mm	in	At sheared edge	At rolled or sawn edges, or edges cut by gas*, plasma, laser, or water jet
-	5/8	28	22
16	-	28	22
-	3/4	32	25
20	-	34	26
-	7/8	$38+$	28
22	-	38	28
24	-	42	30
-	1	$44 t$	32
27	-	48	34
-	1-1/8	51	38
30	-	52	38
-	1-1/4	57.	41
36	-	64	46
Over 36	Over 1-1/4	$1.75 \times$ diameter	$1.25 \times$ diameter

[^1]Table 7
Minimum bolt tension, kN
(See Clauses 23.7.1, 23.7.3, 23.7.4, 23.8.2, and 1.1.)

Bolt diameter		Minimum bolt tension*	
mm	in	A325, A325M, and F1852 bolts	A490, A490M, and F2280 bolts
-	1/2	53	67
-	5/8	85	107
16	-	91	114
-	3/4	125	157
20	-	142	178
-	7/8	174	218
22	-	176	220
24	-	205	257
-	1	227	285
27	-	267	334
-	1-1/8	249	356
30	-	326	408
-	1-1/4	316	454
-	1-3/8	378	538
36	-	475	595
-	1-1/2	458	658

* Equal to 70% of the specified minimum tensile strength.

Table 8

Nut rotation from snug-tight condition*

(See Clauses 23.7.2and I.1.)

| Disposition of outer faces of bolted parts | Bolt length | Turn |
| :--- | :--- | :--- | :--- |
| Both faces normal to bolt axis or one face normal to axis and
 other face sloped 1:20 max. (bevelled washers not used) \ddagger | Up to and including 4 diameters | $1 / 3$ |
| | Over 4 diameters and not exceeding 8
 diameters or 200 mm | $1 / 2$ |
| | Exceeding 8 diameters or 200 mm | $2 / 3$ |
| Both faces sloped 1:20 max. from normal to bolt axis
 (bevelled washers not used) \ddagger | All lengths of boits | $3 / 4$ |

[^2]
Table 9

Detail categories for load-induced fatigue
(See Clauses 26.3.1 and 26.3.4.)

General condition	Situation	Detail category	Illustrative example (see Figure 2)
Plain members	Base metal		
	- with rolled or cleaned surfaces. Flame-cut edges with a surface roughness not exceeding $1000(25 \mu \mathrm{~m})$ as specified by CSA B95	A	1.2
	- of unpainted weathering steel	B	
	- at re-entrant corners of copes with a radius $\geqq 35 \mathrm{~mm}$ and ground smooth	E1	2a
	- at net section of eyebar heads and pin plates	E	
Buil-up members	Base metal and weld metal in components, without attachments, connected by		3,4,5,7
	- continuous full-penetration groove welds with backing bars removed; or	B	
	- continuous fillet welds parallel to the direction of applied stress;	B	
	- continuous full-penetration groove welds with backing bars in place;or	B1	
	- continuous partial-penetration groove welds paraliel to the direction of applied stress.	B1	
	Base metal at ends of partial-length cover plates		
	- bolts in slip-critical connections;	B	22
	- narrower than the flange, with or without end welds, or wider than the flange with end welds		
	- flange thickness $\leq 20 \mathrm{~mm}$	E	7
	- flange thickness $>20 \mathrm{~mm}$	E1.	7
	- wider than the flange without end welds	E1	7
Groove-welded splice connections with weld soundness established by NDT and all required grinding in the direction of the applied stresses	Base metal and weld metal at full-penetration groove-welded splices		
	- of plates of similar cross-sections with welds ground flush	B	8,9
	- with 600 mm radius transitions in width with welds ground flush	B	11
	- with transitions in width or thickness with welds ground to provide slopes not steeper than 1.0 to 2.5		10,10a
	- G40,21-7000 and 7000T base metal	B1	
	- other base metal grades	B	
	* with or without transitions having slopes not greater than 1.0 to 2.5 , when weld reinforcement is not removed	c	8, 9, 10, 10a

(Continued)

Table 9 (Continued)

General condition	Situation	Detail category	Illustrative example (see Figure 2)
	- at weid access holes		
	- of rolled members	c	
	- of built-up members	D	
Longitudinally loaded groove-welded attachments	Base metal at details attached by fulf- or partial-penetration groove welds		
	When the detail length in the direction of applied stress is		
	- less than 50 mm	C	6,18
	between 50 mm and 12 times the detail thickness, but less than 100 mm	D	18
	* greater than either 12 times the detail thickness or 100 mm		
	- detail thickness < 25 mm	E	18
	- detail thickness $\geq 25 \mathrm{~mm}$	E1	18
	- with a transition radius, R, with the end welds ground smooth, regardless of detail length		12
	$-R \geq 600 \mathrm{~mm}$	B	
	$-600 \mathrm{~mm}>R \geq 150 \mathrm{~mm}$	c	
	$-150 \mathrm{~mm}>R \geq 50 \mathrm{~mm}$	D	
	$-R<50 \mathrm{~mm}$	E	
	- with a transition radius, R, with the end welds not ground smooth	E	12
Transversely loaded groove-welded attachments with weld soundness established by NDT and all required grinding transverse to the direction of stress	Base metal at detail attached by full-penetration groove welds with a transition radius, R		12
	- to flange, with equal plate thickness and weld reinforcement removed		
	$-R \geq 600 \mathrm{~mm}$	B	
	$-600 \mathrm{~mm}>R \geq 150 \mathrm{~mm}$	C	
	$-150 \mathrm{~mm}>R \geq 50 \mathrm{~mm}$	D	
	$-R<50 \mathrm{~mm}$	E	
	- to flange, with equal plate thickness and weld reinforcement not removed, or to web		
	$-R \geq 150 \mathrm{~mm}$	c	
	$-150 \mathrm{~mm}>R \geq 50 \mathrm{~mm}$	0	
	$-R<50 \mathrm{~mm}$	E	
	- to flange, with unequal plate thickness and weld reinforcement removed		
	$-R \geq 50 \mathrm{~mm}$	D	
	$-R<50 \mathrm{~mm}$	E	

Table 9 (Continued)

General condition	Situation	Detail category	Illustrative example (see Figure 2)
	- to flange, for any transition radius with unequal plate thickness and weld reinforcement not removed	E	
Fillet-welded connections with welds normal to the direction of stress	Base metal		
	- at details other than transverse stiffener-to-flange or transverse stiffener-to-web connections	C*	19
	- at the toe of transverse stiffener-to-flange and transverse stiffener-to-web welds	C1	6
Fillet-welded connections with welds normal and/or parallel to the direction of stress	Shear stress on weld throat	E	16
Longitudinally loaded fillet-welded attachments	Base metal at details attached by fillet welds		
	- when the detail length in the direction of applied stress is		
	- less than 50 mm , and stud-type shear connectors	c	$\begin{aligned} & 13,14,15,18, \\ & 20 \end{aligned}$
	- between 50 mm and 12 times the detail thickness, but less than 100 mm	0	14, 18, 20
	- greater than either 12 times the detail thickness or 100 mm		$7,14,16,18,$
	- detail thickness < 25 mm	E	
	- detail thickness $\geq 25 \mathrm{~mm}$	E1	
	- with a transition radius, R, with the end of welds ground smooth, regardless of detail length		12
	$-R \geq 50 \mathrm{~mm}$	D	
	$-R<50 \mathrm{~mm}$	E	
	- with a transition radius with the end of welds not ground smooth	E	12
Transversely loaded fillet-welded attachments with welds parallef to the direction of primary stress	Base metal at details attached by fillet welds		12
	- with a transition radius, R, with the end of weids ground smooth		
	$-R \geq 50 \mathrm{~mm}$	D	
	$-R<50 \mathrm{~mm}$	E	
	- with any transition radius with end of welds not ground smooth	E	
Mechanically fastened connections	Base metal		17
	- at gross section of high-strength bolted slip-critical connections, except axially loaded joints in which out-ofplane bending is induced in connected materials	B	
	- at net section of high-strength bolted non-slip-critical connections	B	

Table 9 (Concluded)

General condition	Situation	Detail category	Illustrative example (see Figure 2)
	- at net section of non-pretersioned bolted connections	D	
	- at net section of riveted connections	D	
Anchor rads and threaded parts	Tensile stress range on the tensile stress area of the threaded part, including effects of bending	E	
Fillet-welded HSS to base plate	Shear stress on fillet weld	E1	21
A325, A325M, and F1852 bolts in axial tension	Tensile stress on area A_{G}	See Clause 13.12.1.3	
A490, A490M, and F2280 bolts in axial tension	Tensile stress on area A_{B}		

Note: The fatigue resistance of fillet welds transversely loaded is a function of the effective throat and plate thickness. See Frank and Fisher (1979).
$F_{s c}=F_{s r}^{c}\left[\left(0.06+0.79 H / t_{p}\right) /\left(0.64 t_{p}{ }^{1 / 6}\right)\right]$
where
$H \quad=$ weld leg size
$C_{s i}=$ fatigue resistance for Cotegory C as determined in accordance with Clause 26.3.3. This assumes no penetration at the weld root
$t_{p}=$ plate thickness
Table 10
Fatigue constants for detail categories
(See Clauses 26.3 .3 and 26.3.4.)

	Fatigue life constant, γ	Constant amplitude threshold stress range, $F_{\text {srr, }}$, MPa	$n N^{e}$	Fatigue life constant, γ^{\prime}
Detail category	8190×10^{9}	165	1.82×10^{6}	223×10^{15}
B	3930×10^{9}	110	2.95×10^{5}	47.6×10^{15}
B1	2000×10^{9}	83	3.50×10^{6}	13.8×10^{15}
C	1440×10^{9}	69	4.38×10^{6}	5.86×10^{15}
C1	1440×10^{9}	83	2.52×10^{6}	9.92×10^{15}
D	721×10^{9}	48	6.52×10^{6}	1.66×10^{15}
E	361×10^{9}	31	12.1×10^{6}	0.347×10^{15}
E1	128×10^{9}	18	21.9×10^{6}	0.0415×10^{15}

Figure 1
Fatigue constants for detail categories
(See Clauses 26.3.3 and 26.3.4.)

Figure 2
Illustrative examples of detail categories
(See Clause 26.3.4 and Table 9.)

Example 1

Example 2

Example 2a

Example 5

Figure 2 (Continued)

Example 10a

Example 11

Figure 2 (Continued)

Example 12

Example 16

Figure 2 (Concluded)

Example 17

Example 18

Example 21

Example 22

Annex A (informative)
 Standard practice for structural steel

Note: This informative Annex has been written in mandatory language to facilitate adoption by anyone wishing to do so.

A. 1 General

Matters concerning standard practice not covered by this Standard but pertinent to the fabrication and erection of structural steel (e.g., classification of material and contract documents) shall be in accordance with the CISC's Code of Standard Practice for Structural Steel unless otherwise clearly specified in the plans and specifications issued to the bidders.

Annex B (informative) Margins of safety

Note: This Annex is an informative (non-mandatory) part of this Standard.

B. 1

Code writers now use limit states design to provide a practical level of reliability over the lifetime of a structure. One of the advantages of limit states design is that by using load and resistance factors based on the statistical variation of the loads and resistances, a relatively uniform degree of reliability is obtained in the design of structures across a variety of configurations and load conditions. At the same time, economies accrue in limit states design since structures or portions of them are not designed for excessive safety, either due to the unrealistic load combinations or inaccurate modelling based on the assumed elastic behaviour of structural steel components used in the past. Moreover, by changing the reliability index in limit states design, greater or lesser safety can be assigned on a quantitative basis to entire structures or to components.

B. 2

The load and resistance factors in limit states design, derived to give the desired reliability index, are related to the calculated probability of failure and are based on the statistical variations of the loads and resistances.

B. 3

Limit states design was first introduced in the NBCC, 1975, where the reliability index for steel buildings as a whole was taken as 3,0. A greater reliability index was used for connectors so that the probability of the connector failing before the member as a whole was reduced and the more ductile mode of failure of the member was favoured. This was done to make the connections stronger than the members they joined. In the current NBCC and this edition of this Standard, the reliability index for steel buildings as a whole remains 3.0, and indices greater than this value are used for connections.

B. 4

The development of member resistance factors used in the first limited states design standard, CSA S16,1-1974, is discussed in Kennedy and Gad Aly (1980) and others in Kennedy and Baker (1984). Since then, other resistance factors have been introduced based on statistical analyses of the resistances. That of 0.67 for welds was confirmed in the 1994 edition of CAN/CSA-S16.1, when the strength of transverse fillet welds was recognized to be 1.50 times that of longitudinal fillet welds (Lesik and Kennedy, 1990). Other resistance factors have been introduced for shear connectors, anchor rods, bearing of bolts on steel, and reinforcing bars, as well as $\phi b=0.80$ for high-strength bolts in shear and tension (Kennedy, 1999a) and $\phi \mathrm{bi}=0.80$ and $\phi \mathrm{be}=0.75$ for bearing on webs of interior loads and end reactions, respectively (Kennedy, et al., 1998; Kennedy, 1999b). Enhanced target reliability indices for calculating resistance factors of 4.5 were used for welds and bolts and 3.5 for bearing on webs. In this edition of the Standard, a new resistance factor for the block shear, net section rupture, and bolt tearout limit states, $\phi u=0.75$, has been introduced based on recent research by Driver et al. (2006) and Cai and Driver (2010). A review of resistance factors used in this Standard is presented by Schmidt and Bartlett (2002).

B. 5

Cai, Q. and Driver, R.G. (2010). "Prediction of bolted connection capacity for block shear failures along atypical paths". AISC Engineering Journal Fourth Quarter, 213-221.

Driver, R.G., Grondin, G.Y., and Kulak, G.L. (2006). "Unified block shear equation for achieving consistent reliability". Journal of Constructional Steel Research, 62 (3), March, 210-222.

Kennedy, D.J.L. (1999a). Bolts in bearing type connections, basis for increasing the resistance factor for high strength bolts to 0.80 . 516 Committee Communication.

Kennedy, D.J.L. (1999b). Web crippling and yielding. S16 Committee Communication.
Kennedy, D.J.L. and Baker, K.A. (1984). "Resistance factors for steel highway bridges". Canadian Journal of Civil Engineering, 11 (2), June, 324-334.

Kennedy, D.J.L. and Gad Aly, M. (1980). "Limit states design of steel structures - performance factors". Canadian Journal of Civil Engineering, 7 (1), March, 45-77.

Kennedy, S.J., Kennedy, D.J.L., and Medhekar, M.S. (1998). "The bearing resistance of webs: Further studies of the post-buckling strength". Proceedings of the Annual Conference, Structural Stability Research Council, Atlanta, GA, September 21-23, 25-41.

Lesik, D.F. and Kennedy, D.J.L., (1990). "Ultimate strength of fillet welded connections loaded in plane". Canadian Journal of Civil Engineering, 17 (1), February, 55-67.

Schmidt, B.J. and Bartlett, F.M. (2002). "Review of resistance factor for steel: Resistance distributions and resistance factor calibration". Canadian journal of Civil Engineering, 29 (1), February, 109-118.

Annex C (normative)

Crane-supporting structures

Note: This Annex is a normative (mandatory) part of this Standard.

C. 1 General

Steel structures that support overhead cranes and hoists require special consideration in order to provide safe and serviceable structures. Electrically-operated top-running overhead travelling cranes, underslung cranes, and monorails impose repetitive loads that can lead to the development and propagation of fatigue cracks in the crane-supporting structure. These loads shall be accounted for in the design and construction of the crane-supporting structure. Conditions that apply to these steel structures, where any component is subjected to fatigue loads as specified in Clause 26, are given in this Annex.

The requirements of this Standard for design for fatigue shall apply. The structural design shall take into account, among other factors, appropriate methods of analysis, rotational restraints at crane runway beam supports, crane load eccentricities, distortion leading to fatigue cracking, welded details, built-up column section details, bracing systems, deflections, and details related to crane rails. The construction specifications shall include (but not necessarily be limited to) requirements for materials, detailing, fabrication, erection, bearing and contact surfaces, dimensional tolerances, crane rail installation, and shop and field inspection.

The designer shall determine the loading parameters and the appropriate number of loading cycles at each level of load by analyzing the duty cycles for the design life of the structure, in addition to other crane details that are necessary to design the structure. This information shall be included in the structural design documents.
Note: For design information and information to be shown on the structural design documents, see the CISC's Crane-Supporting Steel Structures: Design Guide.

Annex D (informative)

Recommended maximum values for deflections for specified design live, snow, and wind loads

Note: This Annex is an informative (non-mandatory) part of this Standard.

D. 1 General

Table D. 1 provides deflection criteria for floor or roof members as a fraction of the span and for lateral drift as a fraction of the storey height. These criteria are related to the serviceability limit states. Although the criteria refer to specified live, snow, and wind loads, the designer should consider the inclusion of specified dead loads in some instances. For example, non-permanent partitions, which are classified by the NBCC as dead load, should be part of the loading considered under this Annex if they are likely to be applied to the structure after the completion of finishes susceptible to cracking.

D. 2 Wind

Some building materials augment the rigidity provided by the steelwork; therefore, the deflections calculated for bare steel structures under wind loads can be somewhat reduced. The more common structural and non-structural elements that contribute to the stiffness of a building are masonry walls, certain types of curtain walls, masonry partitions, and concrete around steel members. Provided that the materials augmenting rigidity are accounted for in the analysis for wind loads, the deflections for comparison to the limits in Table D, 1 can be reduced by a maximum of 15%. The deflections used for strength and stability calculations should not be reduced. In tall and slender structures (height greater than four times the width), the wind effects should be determined by means of dynamic analysis or wind tunnel tests.

Table D. 1
Deflection criteria
(See Clauses D. 1 and D.2.)

Building type	Deflection	Specified loading	Application	Maximum
Industrial	Vertical	Live, snow	Members supporting inelastic roof coverings	L/240
		Live, snow	Members supporting elastic foof coverings	L/180
		Live, snow	Members supporting floors	L/300
		Maximum wheel loads (no impact)	Crane runway girders for crane capacity of 225 kN and over	L/800
		Maximum wheel loads (no impact)	Crane runway girders for crane capacity under 225 kN	L/600
	Lateral	Crane lateral	Crane runway girders	L/600
		Crane lateral or wind	Storey drift*	$\begin{aligned} & h / 400 \text { to } h / \\ & 200 \end{aligned}$
All others	Vertical	Live, snow	Members of floors and roofs supporting construction and finishes susceptible to cracking	L/360
		Live, snow	Members of floors and roofs supporting construction and finishes not susceptible to cracking	L/300
	Lateral	Wind	Building drift due to all effects	h/400
		Wind	Storey drift (relative horizontal movement of any two consecutive floors) in buildings in cladding and partitions without special provision to accommodate building frame deformation	h/500
		Wind	Storey drift, with special provision to accommodate building frame deformation	h/400

Legend:

$h=$ storey height
$L=$ length or span

* The permissible drift of industrial buildings depends an such factors as wall construction, building height, and the effect of deflection on the operation of the crane. Where the operation of the crane is sensitive to lateral deflections, a lateral deflection of less than $h / 400$ may be necessary.

Annex E (informative)

Floor vibrations

Note: This informative Annex has been written in mandatory language to facilitate adoption by anyone wishing to do so.

E. 1 General

The development of floors of lighter construction, longer spans, and less inherent damping can sometimes result in disturbing floor vibrations during normal human activity, The specific vibration characteristics of the floor should be evaluated by the building designer.

Such an evaluation shall, at a minimum, consider the following:
a) the characteristics and nature of the forcing excitations, e.g., walking and rhythmic activities (see also the NBCC);
b) acceptance criteria for human comfort (depending on the use and occupancy of the floor area);
c) a determination of the natural frequency of the floor framing systems, including the effect of continuity;
d) the modal damping ratio; and
e) the effective floor weights.

For guidance, see Murray, et al. (1997) and Commentary I, User's Guide - NBC 2010; Structural Commentaries (Part 4).

E. 2 Light-framed construction

For guidance on vibrations due to walking on light-framed construction made of light steel members and wood deck, see Applied Technology Council (1999).

E. 3 Bibliography

Applied Technology Council (1999). Minimizing floor vibration. ATC Design Guide 1, Applied Technology Council, Redwood City, California.

Murray, T.M., Allen, D.E. and Ungar, E.E. (1997). Floor vibrations due to human activity. Steel Design Guide Series 11. American Institute of Steel Construction, Chicago; Canadian Institute of Steel Construction, Toronto.

Annex F (informative)
 Effective lengths of columns

Note: This Annex is an informative (non-mandatory) part of this Standard.

F. 1

The slenderness ratio of a member whose failure mode involves buckling is defined as the ratio of the effective length to the applicable radius of gyration. The effective length, KL, may be thought of as the actual unbraced length, L, multiplied by a factor, K, so that the product, $K L$, is equal to the length of a pin-ended column of equal capacity to the actual member. The effective length factor, K, of a column of finite unbraced length therefore depends on the conditions of restraint afforded to the column at its braced locations.

F. 2

A variation in K between 0.65 and 2.0 will apply to the majority of cases likely to be encountered in actual structures. Figure F. 1 illustrates six idealized cases in which joint rotation and translation are either fully realized or non-existent.

Figure F. 1
Effective lengths of columns
(See Clause F.2.)

End condition code	4	Rotation fixed, translation fixed
	4	Rotation free, translation fixed
	\square	Rotation fixed, translation free
		Rotation free, translation free

Annex G (informative)
 Criteria for estimating effective column lengths in continuous frames

Note: This Annex is an informative (non-mandatory) part of this Standard.

G. 1

Because this Standard requires the in-plane behaviour of beam columns to be based on their actual lengths (provided that, when applicable, the sway effects are included in the analysis of the structure [see Clause 8.4]), this Annex applies only to cases related to buckling, i.e., to axially loaded columns and beam columns failing by out-of-plane buckling.

G. 2

Figure G. 1 is a nomograph applicable to cases in which the equivalent I / L of adjacent girders that are rigidly attached to the columns is known; it is based on the assumption that all columns, in the portion of the framework considered, reach their individual critical load simultaneously. This is a conservative assumption made in the interest of simplification.

G. 3

The equation on which the nomograph is based is as follows:
$\frac{G_{u} G_{L}}{4}(\pi / K)^{2}+\frac{G_{u}+G_{L}}{2}\left(1-\frac{\pi / K}{\tan \pi / K}\right)+2\left[\frac{\tan \pi / 2 K}{\pi / K}\right]=1$
Subscripts U and L refer to the joints at the two ends of the column section being considered and
$G=\frac{\Sigma I_{c} / L_{c}}{\sum I_{g} / L_{g}}$
where
$\Sigma=$ summation for all members rigidly connected to that joint and lying in the plane in which buckling of the column is being considered
$I_{c}=$ moment of inertia of the column about the axes perpendicular to the plane of buckling
$L_{\varepsilon}=$ unsupported length of a column
$I_{g}=$ moment of inertia of the girder about the axes perpendicular to the plane of buckling
$L_{g}=$ unsupported length of a girder

G. 4

For column ends supported by, but not rigidly connected to, a footing or foundation, G may be taken as 10 for practical designs, If the column end is rigidly attached to a properly designed footing, G may be taken as 1.0 . Smaller values may be used if justified by analysis.

G. 5

Refinements in girder l_{g} / L_{g} may be made when conditions at the far end of any particular girder are
known definitely or when a conservative estimate can be made. For the case with no sideway, multiply girder stiffnesses by the following factors:
a) 1.5 if the far end of the girder is hinged; and
b) 2.0 if the far end of the girder is fixed against rotation (i.e., rigidly attached to a support that is itself relatively rigid).

G. 6

Having determined G_{U} and G_{l} for a column section, the effective length factor, K, is determined at the intersection of the straight line between the appropriate points on the scales for G_{U} and G_{l} with the scale for K.

G. 7

The nomograph may be used to determine the effective length factors for the in-plane behaviour of compression members of trusses designed as axially loaded members even though the joints are rigid. In this case, there should be no in-plane eccentricities and all members of the truss meeting at the joint should not reach their ultimate load simultaneously. If it cannot be shown that all members at the joint do not reach their ultimate load simultaneously, the effective length factor of the compression members should be taken as 1.0 .

Figure G. 1
Nomograph for effective lengths column in continuous frames
(See Clause G.2.)

Annex H (informative)
 Deflections of composite beams, joists, and trusses due to shrinkage of concrete

Note: This Annex is an informative (non-mandatory) part of this Standard.

Abstract

H. 1

Shrinkage-induced deflections result from the following process. Concrete decreases in volume as it cures, at first rapidly and then at a decreasing rate. When restrained, tensile strains and therefore tensile stresses can develop in the concrete. (It can even crack if the tensile strength is reached.)

A curing slab is restrained by the steel shape to which it is connected.

H. 2

Figure H. 1 shows the shrinkage strains that develop through the depth for a composite beam and the corresponding equilibrium conditions for unshored construction. It is evident that unshored composite members will deflect downward. (Shoring reduces the shrinkage deflection substantially, especially in the early stages when the rate of shrinkage is the greatest.)

H. 3

Branson's (1964) method is used in this Standard to determine shrinkage deflections. As illustrated in Figure H. 2 a), the first step in the method is to assume temporarily that the shrinkage of the concrete slab is not restrained by connection to the steel beam. The connection between the concrete slab and the beam is accounted for in two additional steps. First, a tensile force is applied to the centroid of the unrestrained slab so that the displacement of the slab under the force is equal to the unrestrained shrinkage displacement [see Figure H. 2 b)]. Compatibility is satisfied in this step. Second, equilibrium is satisfied by applying an equal and opposite force to the composite section [see Figure H. 2 c)].

The method does not account for the cracking of concrete in tension, the non-linear stress-strain relationship of concrete, and other factors. To account for these factors and match theory with test results, the free shrinkage of the concrete is multiplied by an empirical coefficient.

The method gives reasonable results when an appropriate value is used for the empirical coefficient and suitable values are used for the free shrinkage and modular ratio.

H. 4

The shrinkage deflection is directly proportional to the assumed free shrinkage strain. The free shrinkage strain depends on concrete properties such as the water/cement ratio, percentage of fines, entrained air, cement content, and curing conditions. A value of 583×10^{-6} may be used if other data are not available. This value was determined for composite beams supporting 75 mm concrete topping on 75 mm deck (150 mm total thickness) for inside conditions (see Ghali, et al. (2002), Annex A.2).

H. 5

The modular ratio is calculated from the age-adjusted effective modulus of concrete, which in turn depends on the aging and creep coefficients. These coefficients may be taken as 0.73 and 2.7, respectively, if other data are not available. These coefficients were determined for the composite beams described in Clause H.4, assuming the age at loading is 7 days (see Ghali, et al. (2002), Annexes
A. 7 and A.2, respectively). The shrinkage deflection is not sensitive to the modular ratio because both the transformed moment of inertia of the composite beam and the distance, y, vary with it.

H. 6

The procedure in this Standard is used for determining the shrinkage deflections of simply supported composite beams, joists, and trusses. For many structural configurations, moments develop at the ends of beams, joists, and trusses as a result of partial or full continuity with adjacent members. It is often appropriate to account for continuity with adjacent members when determining shrinkage deflections.

H. 7

Kennedy and Brattland (1992) propose an alternative method to determine shrinkage deflections. The method uses strain compatibility between steel and concrete, and a time-dependent modulus of elasticity of concrete in tension [see Shaker and Kennedy (1991)]. It is iterative because the concrete response is non-linear. It is more difficult to use than the method specified in this Standard; however, the tensile stress-strain relationship of the concrete is satisfied.

H. 8

Montgomery et al. (1983) give an example where the shrinkage deflections were excessive. Jent (1989) provides information on shrinkage effects on continuous composite beams.

H. 9

Bransan, D.E. (1964). Time-dependent effects on composite concrete beams. Proceedings, American Concrete Institute Journal, 61, 212-229.

Ghali, A., Favre, R. and Elbadry, M. (2002). Concrete structures: Stresses and deformations, 3rd ed. London: Spon Press.

Jent, K.A. (1989). Effects of shrinkage, creep and applied loads on continuous deck-slab composite beams. M.Sc. thesis, Queen's University, Kingston, Ontario.

Kennedy, D.J.L. and Brattland, A. (1992). "Shrinkage tests of two full-scale composite trusses". Canadian Journal of Civil Engineering, 19 (2), 296-309.

Montgomery, C.J., Kulak, G.L. and Shwartsburd, G. (1983). "Deflection of a composite floor system". Canadian Journal of Civil Engineering, 10 (2), 192-204.

Shaker, A.F, and Kennedy, D.J.L. (1991). The effective modulus of elasticity of concrete in tension. Structural Engineering Report 172, Department of Civil Engineering, University of Alberta, Edmonton.

Figure H. 1
Composite beam subject to shrinkage forces
(See Clause H.2.)

a) Shrinkage strain

b) Free-body diagram

Legend:

$\varepsilon_{f}=$ free shrinkage strain of the concrete
$\varepsilon_{r}=$ resulting restrained shrinkage strain
$\varepsilon_{t}=$ compressive strain at top of steel beam
$\varepsilon_{b}=$ tensile strain at bottom of steel beam
$T=$ tensile force in concrete
C = compressive force in steel beam
$M=$ moment in steel beam required for equilibrium about reference axis

Figure H. 2

Composite beam subject to shrinkage forces

(See Clause H.3.)

a) Unrestrained shrinkage of concrete slab

b) Enforce compatibility

c) Satisfy equilibrium

Legend:

$c=$ empirical coefficient used to match theory with test results, which may be taken as 0.5
$T_{s}=$ tensile force applied at centroid of unrestrained slab
$A_{c}=$ effective area of concrete slab (for metal deck spanning perpendicular to the beam, the concrete area is taken above the flutes, and for metal deck parallel to the beam, the full concrete area is taken)
$y=$ distance from centroid of effective area of concrete slab to the centroidal axis of the composite steel beam
$E_{c}^{\prime} \quad=$ age-adjusted effective modulus of elasticity of concrete
$E_{f}=$ unrestrained shrinkage strain of the concrete slab

Annex I (informative)
 Arbitration procedure for pretensioning connections

Note: This informative Annex has been written in mandatory language to facilitate adoption by anyone wishing to do 50 .

I. 1 General

For pretensioned connections, when there is disagreement concerning the results of inspection of bolt pretensioning procedures, the following arbitration procedure shall be used unless an alternative has been specified:
a) The inspector shall use a manual or power torque inspection wrench capable of indicating a selected torque value.
b) Three bolts of the same grade and diameter as those under inspection and representative of the lengths and conditions of those in the structure shall be placed individually in a calibration device that indicates bolt tension. There shall be a washer under the part turned if washers are so used in the structure or, if no washer is used, the material abutting the part turned shall be of the same specification and condition as that in the structure.
c) When the inspection wrench is a manual wrench, each bolt specified in Item b) shall be pretensioned in the calibration device by any convenient means to an initial tension of approximately 15% of the required bolt tension and then to the minimum tension specified for its size in Table. 7. Tightening beyond the initial condition shall not produce greater nut rotation than that permitted by Table 8. The inspection wrench shall then be applied to the tightened bolt, and the torque necessary to turn the nut or head an additional 5° shall be determined. The average torque measured in the tests of three bolts shall be taken as the job inspection torque to be used in the manner specified in Item e).
d) When the inspection wrench is a power wrench, it shall first be applied to produce an initial tension of approximately 15% of the required fastener tension and then adjusted so that it will tighten each bolt specified in Item b) to a tension of 5% to 10% greater than the minimum tension specified for its size in Table 7. This setting of the wrench shall be taken as the inspection torque to be used in the manner specified in Item e). Tightening beyond the initial condition shall not produce greater nut rotation than that permitted by Table 8 ,
e) Bolts represented by the sample prescribed in Item b) that have been tightened in the structure shall be inspected by applying, in the tightening direction, the inspection wrench and its job inspection torque to 10% of the bolts, but not less than two bolts, selected at random in each connection. If no nut or bolt head is turned by this application of the job inspection torque, the connection shall be accepted as properly tightened. If any nut or bolt head is turned by the application of the job inspection torque, this torque shall be applied to all bolts in the connection and all bolts whose nut or head is turned by the job inspection torque shall be tightened and reinspected. Alternatively, the fabricator or erector may choose to retighten all the bolts in the connection and then resubmit the connection for the specified inspection.

Annex J (normative) Qualification testing provisions for seismic moment connections and buckling restrained braces

Notes:

1) Where the physical testing alternative as permitted in Clauses 27.2.5.1 b), 27.4.4.1 c), or 27.7.8.1 is chosen as the basis for design of these connections, this Annex serves as a normative (mandatory) part of the Standard.
2) This Annex serves as a normative (mandatory) part of the Standard to describe the qualification testing of buckling restrained braces prescribed in Clause 27.8.6.

J. 1 Seismic moment connections

J.1.1

Clause J. 1 specifies testing protocols that aim to demonstrate the deformation and strength characteristics of moment-resisting connections in moment-resisting frames, eccentrically braced frames, and plate walls that permit the frames to achieve specified interstorey drift capacity when the connections are designed using the full-scale physical testing alternative as provided in Clause 27.2.5.1 b), Clause 27.4.4.1 c), or Clause 27.7.8.1.

J.1.2

Extensive physical testing and analytical studies conducted over the last two decades have advanced the knowledge of behaviour of several connection types now used for construction of ductile momentresisting frames (ANSI/AISC 341 and CISC 2014). However, availability of physical test data for other connection types and configurations, and link-to-column connections used in eccentrically braced frames lags behind. Clause J. 1 provides the requirements and guidance for such physical tests.

J.1.3

The test assemblies shall represent the size, detailing, and fabrication of the prototype, in recognition of the effects of size, bracing arrangements, welding details, and welding procedures on the inelastic cyclic behaviour of the connection type. The test loading shall represent both the deformation magnitude and cyclic nature expected in a severe seismic event. These tests shall comply with the requirements provided in Section K2 of ANSI/AISC 341, except that the criteria of acceptance as pertain to interstorey drift capacity shall comply with the appropriate clauses in this Standard. However, the provisions for welds and welding in accordance with CSA W59 and W48, instead of those in AWS D1.1 where referenced in ANSI/AISC 341, might apply. Existing test data for successful tests conducted in accordance with testing protocols as given in publications by the U.S. Applied Technology Council (ATC24) and U.S. Federal Emergency Management Agency (FEMA350) shall nonetheless remain valid.

J. 2 Buckling restrained braces

J.2.1

Clause J. 2 specifies testing protocols for full-scale qualification testing of bracing members in buckling restrained braced frames, as prescribed in Clause 27.8.6.
Note: The cyclic inelastic response of bracing members in buckling restrained braced frames heavily depends on the design, detail and fabrication of the buckling restrained braces. Physical testing is prescribed to demonstrate the cyclic inelastic performance of the members and obtain design values for the maximum tension and compression forces that are expected to develop in the buckling restrained member at maximum anticipated axial
deformations. This Clause provides the requirements for such physical tests and references to test data. The information given in this Clause may be used for the testing of other bracing members designed to dissipate seismic input energy through nonlinear axial response.

J.2.2

The test specimens shall represent the size, detailing, and fabrication of the prototypes, in recognition of the effects of cross-section size, shape and orientation of the steel core and the material and method of separation between the steel core and the buckling restraining mechanism on the inelastic cyclic behaviour of the buckling restrained braces. The test loading shall represent both the deformation magnitude and cyclic nature expected in a severe seismic event. The tests shall comply with the requirements provided in Section K3 in Chapter K of ANSI/AISC 341, except that the criteria of acceptance as pertain to deformation capacity shall comply with Clause 27,8.6.

J. 3 Bibliography

AISC. (2010). ANSI/AISC 341-10, Seismic provisions for structural steel buildings, American Instiṭute of Steel Construction (AISC),Chicago, Illinois.

AISC. (2011). ANSI/AISC 358-10 and ANSI/AISC 358s1-11, Prequalified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications, including Supplement No, 1,American Institute of Steel Construction (AISC),Chicago, Illinois,

ATC. (1992). Guidelines for seismic testing of components of steel structures. ATC-24. Redwood City, California.

CISC. (2014). Moment connections for seismic applications. Canadian Institute of Steel Construction, Markham, Ontario.

FEMA. (2000a), Recommended seismic design criteria for new steel moment-frame buildings. Report FEMA350. Washington, D.C.

FEMA. (2000b). State of art report on connection performance. Report FEMA355D. Washington, D.C.

Annex K (normative)
 Structural design for fire conditions

Note: This Annex is a normative (mandatory) part of the Standard.

K. 1 General

K.1.1 Scope

This Annex specifies criteria for the design and evaluation of structural steel components, systems and frames for fire conditions. These criteria provide for the determination of the heat input, thermal expansion, and degradation in mechanical properties of materials that cause progressive decreases in strength and stiffness of structural components and systems at elevated temperatures.

K.1.2 Definitions

This Annex uses the following terms in addition to the terms defined in Clause 2:
Active fire protection - building materials and systems that are activated by a fire to mitigate adverse effects or to notify people to take some action to mitigate adverse effects.

Convective heat transfer - the transfer of thermal energy from a point of higher temperature to a point of lower temperature through the motion of an intervening medium.

Design-basis fire - a set of conditions that define the development of a fire and the spread of combustion products throughout a building or portion thereof.

Elevated temperatures - heating conditions experienced by building elements or structures as a result of fire, which are in excess of the anticipated ambient conditions.

Fire - destructive burning, as manifested by one or more of light, flame, heat, or smoke.
Fire endurance - a measure of the elapsed time during which a material or assembly continues to exhibit fire resistance.

Fire resistance - the property of assemblies that prevents or retards the passage of excessive heat, hot gases, or flames under conditions of use and enables them to continue to perform a stipulated function.

Fire resistance rating - the period of time a building element, component, or assembly maintains the ability to contain a fire, continues to perform a given structural function, or both, as determined by test or methods based on tests.

Cire separation - a conctruction assembly that acte as a barrier against the spread of fire and whose construction is formed of fire-resisting materials and tested in accordance with CAN/ULC-S101, or another approved standard fire resistance test, to demonstrate compliance with requirements prescribed by the regulatory authority.

Flashover - the rapid transition to a state of total surface involvement in a fire of combustible materials within an enclosure.

Heat flux - radiant energy per unit surface area.
Heat release rate - the rate at which thermal energy is generated by a burning material.

Passive fire protection - building materials and systems whose ability to resist the effects of fire does not rely on any outside activating condition or mechanism.

Performance-based design or objective-based design - an engineering approach to structural design that is based on agreed-upon performance goals and objectives, engineering analysis, and quantitative assessment of alternatives against the performance goals and objectives using accepted engineering tools, methodologies, and performance criteria.

Prescriptive design - design methads, e.g,, specific technical requirements or deemed-acceptable solutions that document specific compliance with general criteria established by the regulatory authority.

Restrained construction - floor and roof assemblies and individual beams in buildings where the surrounding or supporting structure is capable of resisting substantial thermal expansion throughout the range of anticipated elevated temperatures.

Unrestrained construction - floor and roof assemblies and individual beams in buildings that are assumed to be free to rotate and expand throughout the range of anticipated elevated temperatures.

K.1.3 Performance objectives

Structural components, members, and building frame systems shall be designed so as to maintain their load-bearing function during the design-basis fire and to satisfy other performance requirements specified for the building occupancy.

Deformation criteria shall be applied where the means of providing structural fire resistance or the design criteria for fire barriers require consideration of the deformation of the load-carrying structure.

Within the compartment of fire origin, forces and deformations from the design-basis fire shall not cause a breach of horizontal or vertical fire separation.

K.1.4 Design by engineering analysis

The analysis methods specified in Clause K. 2 may be used to document the anticipated performance of steel framing when subjected to design-basis fire scenarios. These methods provide evidence of compliance with the performance objectives established in Clause K.1.3.

The analysis methods specified in Clause K. 2 may be used to demonstrate an equivalency for an alternative material or method, as permitted by the regulatory authority.

K.1.5 Load combination and required resistance

The required resistance of the structure and its elements shall be determined based on the following gravity load combination specified in User's Guide - NBC 2010: Structural Commentaries (Part 4) Commentary A, Paragraph 25 ("Load Combination for Determination of Fire Resistance"):
$D+T_{s}+(\alpha L$ or $0.25 S)$
where
$D=$ specified dead load, as given in Clause 6.2.1
$T_{S}=$ effects due to expansion, contraction, or deflection caused by temperature changes due to the design-basis fire specified in Clause K.2.2. Tscan be taken equal to zero for statically determinate structures or for structures that have sufficient ductility to allow the redistribution of temperature forces before collapse
$\alpha=1.0$ for storage areas, equipment areas, and service rooms and 0.5 for other occupancies
$L=$ specified occupancy live load, as given in Clause 6.2.1
$S=$ specified variable load due to snow, as given in Clause 6.2.1
Notional lateral loads, in accordance with Clause 8.4.1, shall be applied in combination with this gravity load combination.

K. 2 Structural design for fire conditions by analysis

K.2.1 GeneraI

Structural members, components, and building frames may be designed for elevated temperatures due to fire in accordance with this Clause.

K.2.2 Design-basis fire

K.2.2.1 General

A design-basis fire shall be identified to describe the heating conditions for the structure. These heating conditions shall relate to the fuel commodities and compartment characteristics present in the assumed fire area. The fuel load density based on the occupancy of the space shall be considered when determining the total fuel load. Heating conditions shall be specified in terms of a heat flux or temperature of the upper gas layer created by the fire. The variation of the heating conditions with time shall be determined for the duration of the fire.

When the analysis methods specified in Clause K. 2 are used to demonstrate an equivalency as an alternative material or method as permitted by the regulatory authority, the design-basis fire shall be determined in accordance with CAN/ULC-S101.

K.2.2.2 Localized fire

Where the heat release rate from the fire is insufficient to cause flashover, a localized fire exposure shall be assumed. In such cases, the fuel composition, arrangement of the fuel array, and floor area occupied by the fuel shall be used to determine the radiant heat flux from the flame and smoke plume to the structure.

K.2.2.3 Post-flashover compartment fires

Where the heat release rate from the fire is sufficient to cause flashover, a post-flashover compartment fire shall be assumed. The determination of the temperature versus time profile resulting from the fire shall include fuel load, ventilation characteristics to the space (natural and mechanical), compartment dimensions, and thermal characteristics of the compartment boundary.

K.2.2.4 Exterior fires

The exposure of exterior structure to flames projecting from windows or other wall openings as a result of a post-flashover compartment fire shall be considered along with the radiation from the interior fire through the opening. The shape and length of the flame projection shall be used along with the distance between the flame and the exterior steelwork to determine the heat flux to the steel. The method specified in Clause K.2.2.3 shall be used for describing the characteristics of the interior compartment fire.

K.2.2.5 Fire duration

The fire duration in a particular area shall be determined by considering the total combustible mass, i. e., fuel load, available in the space. In the case of a localized fire or post-flashover compartment fire, the time duration shall be determined as the total combustible mass divided by the mass loss rate, except where determined from Clause K.2.2.3.

K.2.2.6 Active fire protection systems

The effects of active fire protection systems shall be considered when describing the design-basis fire.
Where automatic smoke and heat vents are installed in non-sprinklered spaces, the resulting smoke temperature shall be determined from calculation.

K.2.3 Temperatures in structural systems under fire conditions

Temperatures within structural members, components, and frames due to the heating conditions posed by the design-basis fire shall be determined by a heat transfer analysis.

K.2.4 Material properties at elevated temperatures

K.2.4.1 General

Material properties at elevated temperatures shall be determined from test data. In the absence of such data, the material properties specified in Clause K.2,4 may be used. These reduction factors shall not apply to steels with a yield strength in excess of 450 MPa or concretes with specified compression strength in excess of 55 MPa .

K.2.4.2 Thermal elongation

The following thermal elongation requirements shall apply:
a) Thermal expansion of structural and reinforcing steels: for calculations at temperatures above 65° C , the coefficient of thermal expansion shall be $1.4 \times 10^{-5} /{ }^{\circ} \mathrm{C}$.
b) Thermal expansion of normal weight concrete (NWC): for calculations at temperatures above $65^{\circ} \mathrm{C}$, the coefficient of thermal expansion shall be $1.8 \times 10^{-5} /{ }^{\circ} \mathrm{C}$.
c) Thermal expansion of lightweight concrete (LWC): for calculations at temperatures above $65^{\circ} \mathrm{C}$, the coefficient of thermal expansion shall be $7.9 \times 10^{-6} /{ }^{\circ} \mathrm{C}$.

K.2.4.3 Mechanical properties at elevated temperatures

The deterioration in strength and stiffness of structural members, components, and systems shall be taken into account in the structural analysis of the frame. The values $F_{y m}, F_{p m}, F_{u m} E_{m}, f_{c m,}^{\prime} E_{c m}, E_{c u,}, F_{u b m}$, and $F_{\text {sbm }}$ at elevated temperature to be used in structural analysis, expressed as the ratio with respect to the property at ambient temperature (assumed to be $20^{\circ} \mathrm{C}$), shall be as specified in Tables K.1, K.2, and K.3. Interpolation between these values may be used. Table K. 1 specifies the reduction factors for the stress-strain relationship for steel at the elevated temperatures shown in Figure K.1.

K.2.5 Structural design

K.2.5.1 General structural integrity

The structural frame shall be capable of providing adequate strength and deformation capacity to withstand, as a system, the structural actions developed during the fire within the prescribed limits of deformation. The structural system shall be designed to sustain local damage, with the structural system as a whole remaining stable.

Continuous load paths shall be provided to transfer all forces from the exposed region to the final point of resistance. The foundation shall be designed to resist the forces and to accommodate the deformations developed during the design-basis fire.

K.2.5.2 Strength requirements and deformation limits

Conformance of the structural system to the requirements of this Annex shall be demonstrated by constructing a mathematical model of the structure based on principles of structural mechanics and evaluating this model for the internal forces and deformations in the members of the structure developed by the temperatures from the design-basis fire.

Individual members shall be provided with adequate strength to resist the shears, axial forces, and moments determined in accordance with this Annex.

Connections shall develop the strength of the connected members or the forces specified in this Clause. Where the means of providing fire resistance necessitates consideration of deformation criteria, the deformation of the structural system, or members thereof, under the design-basis fire shall not exceed the prescribed limits.

K.2.5.3 Methods of analysis

K.2.5.3.1 Advanced methods of analysis

The advanced methods of analysis may be used for the design of steel building structures for fire conditions. The design-basis fire exposure shall be that determined in accordance with Clause K.2.2. The analysis shall include both a thermal response and the mechanical response to the design-basis fire.

The thermal response shall produce a temperature field in each structural element as a result of the design-basis fire and shall incorporate temperature-dependent thermal properties of the structural elements and fire-resistive materials in accordance with Clause K.2.3.

The mechanical response results in forces and deflections in the structural system subjected to the thermal response calculated from the design-basis fire. The mechanical response shall explicitly take into account the deterioration in strength and stiffness with increasing temperature, the effects of thermal expansions, and large deformations. Boundary conditions and connection fixity shall represent the proposed structural design. The material properties shall be as specified in Clause K.2.4.

The resulting analysis shall consider all relevant limit states, e.g., excessive deflections, connection fractures, and overall or local buckling.

K.2.5.3.2 Simple methods of analysis

The simple methods of analysis specified in this Clause are applicable to the evaluation of the performance of individual members at elevated temperatures during exposure to fire.

The support and restraint conditions (forces, moments, and boundary conditions) applicable at normal temperatures may be assumed to remain unchanged throughout the fire exposure.

The thermal response may be modeled using a one-dimensional heat transfer equation with heat input as directed by the design-basis fire specified in Clause K.2.2. The maximum steel temperature, T,
obtained from this analysis shall be assumed constant through the member cross-section and shall be used to determine the factored resistances of the members in (tems a) to f) as follows;
a) Tension members: the factored resistance of a tension member shall be determined as specified in Clause 13.2, using steel properties as specified in Clause K.2.4, with the temperature equal to the maximum steel temperature.
b) Compression members: the factored resistance of a compression member shall be determined as specified in Clause 13.3 using steel properties as specified in Clause K.2.4; however, for steel temperatures equal to or greater than $200^{\circ} \mathrm{C}$, the factored compressive resistance for flexural buckling shall be determined as follows:
$C_{r}(T)=\left(1+\lambda(T)^{2 d n)-1 / d n A F_{y}(T)}\right.$
where
$C_{r}=$ the factored compressive resistance at temperature, T
(T)
$\lambda(T)=\frac{K L}{r} \sqrt{\frac{F_{y}(T)}{\pi^{2} E(T)}}=\sqrt{\frac{F_{y}(T)}{F_{e}(T)}}$
$d=0.6$
$n=$ as specified in Clause 13.3.1
c) Flexural members: the factored shear and moment resistance of a flexural member shall be as specified in Clauses 13.4 to 13.6 using steel properties specified in Clause K.2.4; however, for steel temperatures equal to or greater than $200^{\circ} \mathrm{C}$, the bending strength for lateral-torsional buckling of laterally unsupported doubly-symmetric members shall be determined as follows:
$M_{f}(T)=C_{K} M_{p}(T)+\left(1-C_{K}\right) M_{p}(T)\left(1-\left(\frac{C_{K} M_{p}(T)}{M_{\mu}(T)}\right)^{0.5}\right)^{C_{K}(T)}$
where
$c_{K}=0.12$
$M_{p}(T)=$ the plastic moment at elevated temperatures determined using $F_{Y}(T)$
$M_{u}(T)=$ the elastic critical load at elevated temperatures, determined as follows:

$$
M_{u}(T)=\frac{\omega_{2} \pi}{L} \sqrt{E(T) l_{\nu} G(T) J+l_{\nu} C_{w}\left(\frac{\pi E(T)}{L}\right)^{2}}
$$

where
$\omega_{2}=$ as defined in Clause 13.6
$C_{2}(T)=\frac{T+800}{500} \leq 2.4$
d) Combined axial force and flexure: the factored resistance of a member required to resist both bending moments and an axial tensile or compression forces shall be determined as specified in Clauses 13.8 and 13.9 using steel properties specified in Clause K.2.4 and flexural and axial strengths as specified in Clause K.2.5.3.2 a) to C).
e) Composite floor members: the thermal response of flexural elements supporting a concrete slab may be modelled using a one-dimensional heat transfer equation to calculate the maximum temperature of the bottom flange of the steel section. This temperature shall be taken as constant between the bottom flange to the mid-depth of the web and shall decrease linearly from the middepth of the web to the top flange of the steel beam by no more than 25%.
The factored resistance of a composite flexural imember shall be determined as specified in Clause 17 using steel properties specified in Clause K.2.4.
f) Other components and connections: the factored resistance of other components and connections shall be as specified in Clause 13. Factored resistances shall be calculated using steel properties specified in Clause K.2.4 at the maximum temperature determined by the design-basis fire.

K. 3 Bibliography

European Committee for Standardization
EN 1992-1-2:2004
Eurocode 2: Design of concrete structures - Part 1-2: General rules - Structural fire design
EN 1993-1-2:2005
Eurocode 3: Design of steel structures - Part 1-2: General rules - Structural fire design
EN 1994-1-2:2005
Eurocode 4: Design of composite steel and concrete structures - Part 1-2: General rules - Structural fire design

Other publications

Takagi, J., and Deierlein, G. 2009. Proposed design equations for CAN/CSA-S16 Annex K provisions for steel members at high temperatures. Report prepared for the Canadian Institute of Steel Construction, Markham, ON.

Table K. 1
Reduction factors for stress-strain relationship of steel at elevated temperatures (Eurocode 3 and Eurocode 4)
(See Clause K.2.4.3.)

Steel temperature,$T_{\text {steel },}{ }^{\circ} \mathrm{C}$	Reduction factors at temperature, $T_{\text {steel }}$, relative to the value of F_{y} or E at $20^{\circ} \mathrm{C}$			
	Reduction factor (relative to E) for the slope of the linear elastic range, $\boldsymbol{k}_{E}=E_{m} / E$	Reduction factor (relative to F_{y}) for proportional limit, $k_{p}=F_{p m} / F_{y}$	Reduction factor (relative to $F y$) for effective yield strength, $k_{y}=F_{y m} / F_{y}$	Reduction factor (relative to F_{y}) for effective tensile strength, $k_{u}=F_{u m} / F_{y}$
20	1.00	1.00	1.00	1.25
100	1.00	1.00	1.00	1.25
200	0.90	0.807	1.00	1.25
300	0.80	0,613	1.00	1.25
400	0.70	0.420	1.00	1.00
500	0.60	0.360	0.78	0,78
600	0.31	0.180	0.47	0.47
700	0.13	0.075	0.23	0.23
800	0.09	0.050	0.11	0.11
900	0.0675	0.0375	0.06	0.06
1000	0,0450	0.0250	0.04	0.04
1100	0.0225	0.0125	0.02	0.02
1200	0.00	0.00	0.00	0.00

Legend:
$E=$ elastic modulus of steel (200000 MPa assumed; earthquake loads and effects)
$E_{m}=$ slope of the linear elastic range for steel at elevated temperature $T_{\text {sizel }}$
$F_{p m}=$ proportional limit for steel at elevated temperature $T_{\text {steel }}$
$F_{u m}=$ effective tensile strength of steel at elevated temperature $T_{\text {steel }}$
$F_{y}=$ specified minimum yield stress, yield point, or yield strength
$F_{Y \pi}=$ effective yield strength of steel at elevated temperature $T_{\text {steel }}$
$k_{E} \quad=$ slope of linear elastic range, relative to slope at $20^{\circ} \mathrm{C}$
$k_{p} \quad=$ proportional limit, relative to yieid strength at $20^{\circ} \mathrm{C}$
$k_{y}=$ effective tensile strength, relative to yield strength at $20^{\circ} \mathrm{C}$
$k_{y}=$ effective yield strength, relative to yield strength at $20^{\circ} \mathrm{C}$

Table K. 2

Values for the main parameters of the stress-strain relationships of normal weight concrete (NWC) and lightweight concrete (LWC) at elevated temperatures (Eurocode 2 and Eurocode 4)
(See Clause K.2.4.3.)

Concrete temperature, $T_{\text {concrete, }}{ }^{\circ} \mathrm{C}$	Reduction factor (relative to f) for effective compressive strength, $k_{c}=f_{c m}^{\prime} / f_{c}^{f}$		$E_{c m} / E_{c}$	$\frac{\varepsilon_{\text {ci }}, \%}{\text { NWC }}$
	NWC	LWC		
20	1.00	1.00	1.00	0.25
100	1.00	1.00	0.92	0.40
200	0.95	1.00	0.75	0.55
300	0.85	1.00	0.59	0.70
400	0.75	0.88	0.43	1.00
500	0.60	0.76	0.26	1.50
600	0.45	0.54	0.10	2.50
700	0.30	0.52	0.083	2.50
800	0.15	0.40	0.067	2.50
900	0.08	0.28	0.050	2.50
1000	0.04	0.16	0.033	2.50
1100	0.01	0.04	0.017	2.50
1200	0.00	0.00	0.00	-

Legend:
$E_{c}=$ elastic modulus of concrete
$E_{c m}=$ tangent modulus of the stress-strain relationship of the concrete at elevated temperature $T_{\text {contrete }}$
$f^{\prime} \prime \prime=$ specified compressive strength of concrete at 28 days
$f_{c m}^{\prime}=$ effective value for the compressive strength of concrete at elevated temperature $T_{\text {coocicele }}$
$k_{e}=$ effective compressive strength relative to compressive strength at $20^{\circ} \mathrm{C}$
$\varepsilon_{\mathrm{cu}}=$ concrete strain corresponding to $f_{\text {tm }}^{\prime}$
Note: For LWC, values of $\varepsilon_{c u}$ shall be obtained from tests.

Strain range	Stress, σ	Tangent modulus
$\varepsilon \leq \varepsilon_{p m}$	εE_{m}	E_{m}
$\varepsilon_{p m}<\varepsilon<\varepsilon_{y m}$	$F_{\rho m}-c+(b / a)\left[a^{2}-\left(\varepsilon_{y m}-\varepsilon\right)^{2}\right]^{0.5}$	$\frac{b\left(\varepsilon_{y m}-\varepsilon\right)}{a\left[a^{2}-\left(\varepsilon_{y m}-\varepsilon\right)^{2}\right]^{0.5}}$
		0
$\varepsilon_{y m} \leq \varepsilon \leq \varepsilon_{t m}$	$F_{y m}$	0

(Continued)

(Continued)

Strain range	Stress, σ	Tangent modulus
$\varepsilon_{t m} \leq \varepsilon \leq \varepsilon_{u m}$	$F_{y m}\left[1-\left(\varepsilon-\varepsilon_{t m}\right) /\left(\varepsilon_{u m}-\varepsilon_{t m}\right)\right]$	-
$\varepsilon=\varepsilon_{u m}$	0.00	-

Notes:

1) Parameters:
a) $\quad \varepsilon_{p m}=F_{p m} / E_{m}$
b) $\varepsilon_{y m}=0.02$
c) $\varepsilon_{t m}=0.15$
d) $\varepsilon_{u m}=0.20$
2) Functions:
a) $a^{2}=\left(\varepsilon_{\gamma m}-\varepsilon_{\rho m}\right)\left(\varepsilon_{y m}-\varepsilon_{\rho m}+c / E_{m}\right)$
b) $b^{2}=c\left(\varepsilon_{y m}-\varepsilon_{p m}\right) E_{m}+c^{2}$
c) $c=\frac{\left(F_{r m}-F_{m}\right)^{2}}{\left|\varepsilon_{v m}-\varepsilon_{\text {pm }}\right| E_{m}-2\left(F_{r m}-F_{\text {pm }}\right)}$

Table K. 3
Properties of A325M/A325 and A490M/A490 high strength bolts at elevated temperatures
(See Clause K.2.4.3.)

Steel temperature, $T_{\text {bott }}{ }^{\circ} \mathrm{C}$	$F_{\text {ubm }} / F_{u b}$ or $F_{\text {sbm }} / F_{\text {sb }}$
20	1.00
100	0.97
200	0.93
300	0.89
400	0.75
500	0.54
600	0.27
700	0.12
800	0.07
900	0.03
1000	0.03
1100	0.00

Legend:
Fubm $=$ effective tensile strength of boit at elevated temperature
$F_{u b}=$ effective tensile strength of bolt
$F_{\text {sbm }}=$ effective shear strength of bolt at elevated temperature
$F_{s b}=$ effective shear strength of boit

Figure K. 1
Stress-strain relationship for steel at elevated temperatures (Eurocode 3)
(See Clause K.2.4.3.)

Legend:

$E_{m}=$ slope of the linear elastic range
$F_{p m}=$ proportional limit
$F_{y m}=$ effective yield strength
$\varepsilon_{p m}=$ strain at proportional limit
$\varepsilon_{t m}=$ limiting strain for yield strength
$\varepsilon_{u m}=$ ultimate strain
$\varepsilon_{y m}=$ yield strain

Annex L (informative)
 Design to prevent brittle fracture

Note: This Annex is an informative (non-mandatory) part of this Standard.

L. 1 General

Brittle fracture is a fracture mechanism accompanied by limited or no plastic deformation. Consequently, it is sudden and occurs with little to no warning, which makes it an undesirable failure mode that should be avoided by the adoption of a fracture control plan.

The design guidelines presented in this Annex are applicable to members and structural components subjected to tensile stresses arising from direct tension or bending when the rate of applied loading is high, e.g., dynamic or impact loading. Members and connections that contain notches, fabrication discontinuities, or other stress raisers need particular attention. Structures that are exposed to low temperatures are more susceptible to brittle fracture than those that are not. Although relatively uncommon, brittle fracture can also occur at normal temperatures, when fracture-sensitive details or metals (base or weld) with low notch toughness are subjected to dynamic tensile stresses.

The protected zones of seismically loaded structures should be designed to control brittle fracture.
When plates or heavy rolled sections are subjected to tensile stresses in the through-thickness direction, additional consideration needs to be given to the selection of the steel quality (see Clause L.3),

Statically loaded structures that are subjected to low temperature do not normally require the use of notch-tough steel. In these structures, brittle fracture can normally be avoided by following the design and fabrication criteria provided in this Standard and CSA W59. Special attention should be paid to anchor rods (see ASTM F1554) special loading conditions during construction, use of thick steel plates, fabrication procedures that give rise to high tensile residual stresses, and details that give rise to stress concentrations.

Designers should be aware that the availability of notch-tough steel is somewhat limited (see Clause L.3).

L. 2 Material selection

The potential for brittle fracture depends mainly on the following factors (Barsom and Rolfe, 1999):
a) steel strength;
b) material thickness;
c) loading rate;
d) minimum service temperature;
e) material toughness; and
f) type of structural element.

These factors should be considered when selecting steel with appropriate notch toughness (Barsom, 1975; Barsom, 2002). Connection details and the presence of stress raisers also needs to be considered. Required notch toughness is expressed in terms of the test temperature at which the Charpy V-notch energy has a minimum value of 20 J or 27 J or 34 J , as specified in CSA G40.21.

The approach presented in Tables L. 1 to L. 4 consists of defining the Charpy V-notch energy level and the testing temperature for four different service temperature ranges. Figure L. 1 can be used to determine
the minimum service temperature appropriate for structural steel exposed to outdoor conditions. The testing temperature can be significantly different from the service temperature to account for the difference in strain rate between the Charpy impact test and the strain rate applied to the structure.

Dynamic loading and impact loading are recognized in Tables L. 1 to L.4. Dynamic loading is applicable to intermediate strain rates such as those occurring in structures subjected to seismic ground motions, wave loads, or wind-induced vibration or truck traffic loading on highway bridges. The strain rates for such applications are typically around $10^{-3} \mathrm{sec}^{-1}$. Impact loading is applicable to high strain rates that occur, for example in explosive, crash conditions, or impact forces when large weights are dropped on structures. The strain rates for impact conditions are around $10 \mathrm{sec}^{-1}$. The selection of the applicable toughness level should be based on a judicious evaluation of the applicable strain rate.

When specifying steel for a specific application, the engineer should consider the probability of low temperature and extreme loading conditions occurring simultaneously. Care should also be taken not to specify excessively high fracture toughness since specification of higher than necessary fracture toughness can cause delays with sourcing the material.

The consequence of brittle fracture is recognized in the material selection. Fracture-critical members or joints are those for which local failure would cause complete structural collapse with serious consequences to life or very high cost. Primary tension members (tension and bending members or joints) are those for which failure would be restricted to localized areas not resulting in structural collapse. The fracture toughness of secondary framing members need not be considered.

The impact energy for the weld metal needs to be higher than for the base metal because welds usually have discontinuities, stress raisers, and high tensile residual stresses, which make weld metals more susceptible to brittle fracture. Given that the cost of weld metals is small relative to that of the structure, it is good practice to specify high-toughness filler metal to lower the risk of brittle fracture.

Table L. 1
Recommended test temperatures and Charpy V-notch impact test values for primary tension members under dynamic loading
(See Clause L.2.)

Steel Grade	Base metal test temperature, ${ }^{\circ} \mathrm{C}$, for minimum service temperature, $\mathrm{T}_{5},{ }^{\circ} \mathrm{C}$				Weld metal test temperature, ${ }^{\circ} \mathrm{C}$, for minimum service temperature, $\mathrm{T}_{5},{ }^{\circ} \mathrm{C}$		
	Minimum average energy, J	$\mathrm{T}_{5}>0$	$0 T_{5}>-30$	$\begin{gathered} -30>T_{5}>- \\ 52 \end{gathered}$	Minimum average energy, J	$\mathrm{T}_{\mathrm{s}} \gg-40$	$\begin{gathered} -30>T_{s}>- \\ 52 \end{gathered}$
260 WT	20	20	0	-20	20	-30	-30
300 WT	20	20	0	-20	20	-30	-30
$\begin{aligned} & 350 \text { WT } \\ & \text { and AT } \end{aligned}$	27	20	0	-20	27	-30	-30
$\begin{aligned} & 400 \mathrm{WT} \\ & \text { and AT } \end{aligned}$	27	20	0	-20	27	-30	-30
$\begin{aligned} & 480 \mathrm{WT} \\ & \text { and AT } \end{aligned}$	27	10	-10	-30	27	-30	-40
700 QT	48	0	-20	-35	48	-30	-40

Table L. 2
Recommended test temperatures and Charpy V-notch impact test values for primary tension members under impact loading
(See Clause L.2.)

Steel Grade	Base metal test temperature, ${ }^{\circ} \mathrm{C}$, for minimum service temperature, $\mathrm{T}_{5},{ }^{\circ} \mathrm{C}$				Weld metal test temperature, ${ }^{\circ} \mathrm{C}$, for minimum service temperature, $\mathrm{T}_{5},{ }^{\circ} \mathrm{C}$		
	Minimum average energy, J	$\mathrm{T}_{\mathrm{s}}>0$	$0 \mathrm{~T}_{5}>-30$	$\begin{gathered} -30>T_{5}>- \\ 52 \end{gathered}$	Minimum average energy, J	$\mathrm{T}_{5}>-40$	$\begin{gathered} -30>T_{s}> \\ -52 \end{gathered}$
260 WT	20	-30	-50	-70	20	-65	-75
300 WT	20	-25	-45	-65	20	-60	-70
$\begin{aligned} & 350 \mathrm{WT} \\ & \text { and AT } \end{aligned}$	27	-20	-40	-60	27	-55	-65
400 WT and AT	27	-20	-40	-60	27	-55	-65
480 WT and AT	27	-20	-40	-60	27	-55	-65
700 QT	48	-10	-30	-40	48	-40	-45

Table L. 3
Recommended test temperatures and Charpy V-notch impact test values for fracture critical members under dynamic loading
(See Clause L.2.)

Steel Grade	Base metal test temperature, ${ }^{\circ} \mathrm{C}$, for minimum service temperature, $\mathrm{T}_{\mathrm{s}},{ }^{\circ} \mathrm{C}$				Weld metal test temperature, ${ }^{\circ} \mathrm{C}$, for minimum service temperature, $\mathrm{T}_{5},{ }^{\circ} \mathrm{C}$		
	Minimum average energy, J	$\mathrm{T}_{5}>0$	$0 T_{5}>-30$	$\begin{gathered} -30>T_{5}>- \\ 52 \end{gathered}$	Minimum average energy, J	$\mathrm{T}_{5}>-40$	$\begin{gathered} -30>T_{s}>- \\ 52 \end{gathered}$
260 WT	20	0	-20	-30	20	-30	-30
300 WT	20	0	-20	-30	20	-30	-30
$\begin{aligned} & 350 \mathrm{WT} \\ & \text { and AT } \end{aligned}$	27	0	-20	-30	27	-30	-30
$\begin{aligned} & 400 \mathrm{WT} \\ & \text { and AT } \end{aligned}$	27	0	-20	-30	27	-30	-40
$\begin{aligned} & 480 \mathrm{WT} \\ & \text { and AT } \end{aligned}$	27	0	-20	-40	27	-40	-50
700 QT	Not permitted						

Table L. 4
Recommended test temperatures and Charpy V-notch impact test values for fracture critical members under impact loading
(See Clause L.2.)

Steel Grade	Base metal test temperature, ${ }^{\circ} \mathrm{C}$, for minimum service temperature, $\mathrm{T}_{5},{ }^{\circ} \mathrm{C}$				Weld metal test temperature, oC, for minimum service temperature, $\mathrm{T}_{\mathrm{s}},{ }^{\circ} \mathrm{C}$		
	Minimum average energy, 1	$\mathrm{T}_{\mathrm{s}}>0$	$0 \mathrm{~T}_{5}>\mathbf{- 3 0}$	$\begin{gathered} -30>T_{5}> \\ -52 \end{gathered}$	Minimum average energy, I	$\mathrm{T}_{5} \gg-40$	$\begin{gathered} -30>T_{5}> \\ 52 \end{gathered}$
260 WT	20	-45	-65	-70	20	-70	-70
300 WT	20	-45	-60	-70	20	-70	-70
$\begin{aligned} & \hline 350 \mathrm{WT} \\ & \text { and AT } \end{aligned}$	27	-35	-50	-70	27	-70	-70
$\begin{aligned} & 400 \text { WT } \\ & \text { and AT } \end{aligned}$	27	-35	-50	-65	27	-70	-70
$\begin{aligned} & 480 \mathrm{WT} \\ & \text { and AT } \end{aligned}$	27	-30	-45	-65	27	-70	-70
700 QT	Not permitted						

Figure L. 1

Minimum mean daily temperatures

(See Clause L.2.)

L. 3 Steel availability

When selecting materials for structures at risk of brittle fracture, it is recommended to consult with suppliers regarding the availability of notch-tough materials. In general for Grade WT material, plates are more readily available than rolled shapes.

The inherent toughness of Grade W steel is often sufficient to prevent brittle fracture at low temperatures, although the required toughness is not guaranteed. CSA G40.21 type W steel may be substituted for CSA G40.21 type WT steel only when the Charpy impact energy requirements are verified by the submission of test documentation.

L. 4 Control of discontinuities

In addition to specifying materials with appropriate toughness, the control of discontinuities is equally important to provide an acceptably low probability of brittle fracture.

Discontinuities can result from deliberate changes in geometry from the design or unintentional such as flaws in welded connections. Although it is impossible to avoid all flaws in welded construction, Welded structures should meet the requirements of CSA W59 for acceptable size of discontinuities.

Connection details should be designed to minimize stress raisers such as sharp corners and abrupt changes of stiffness resulting from changes in cross-section. Thick or high-strength materials are generally more susceptible to cold cracking in the heat-affected zones of welds and in areas of high residual stresses, In such cases, the choice of appropriate welding procedures is as important as the selection of the material.

When selecting construction details, the designer needs to account for the fact that some materials cannot be welded, or can be welded only under strict conditions:
a) Prestressing steels, anchor rods, and high-strength bolts cannot be welded.
b) High-carbon steels can be welded only under specific conditions. For welding of reinforcing steel, see CAN/CSA-G30.18.

L. 5 Bibliography

ASTM F1554-07a (2011). Standard Specification for Anchor Bolts, Steel, 36, 55, and 105-ksi Yield Strength, ASTM International, West Conshohocken, PA.

Barsom, J.M. (2002). "Development of fracture toughness requirements for weld metals in seismic applications", Journal of Materials in Civil Engineering, Vol. 14, No. 1, pp. 44-49.

Barsom, J.M. (1975). "The development of AASHTO fracture-toughness requirements for bridge steels. American Iron and Steel Institute. Washington, D.C.

Barsom, J.M., and Rolfe, S.T. (1999). Fracture and fatigue control in structures; Applications of fracture mechanics, Third edition, ASTM, West Conshohocken, Pennsylvania

King, P. (2011). Review of the Fracture Toughness Requirements for Weld Metal in the Canadian Highway Bridge Design Code, W793D Individual Studies Report, Department of Materials Science and Engineering, The Ohio State University, May.

Medlock, R.D. (1998), Qualification of Welding Procedures for Bridges: An Evaluation of the Heat Input Method, MSE Thesis, Department of Civil Engineering, The University of Texas, Austin, Texas.

Annex M (informative) Seismic design of industrial steel structures

Note: This informative (non-mandatory) Annex has been written in normative (mandatory) language to facilitate adoption where users of the Standard or regulatory authorities wish to adopt it formally as additional requirements to this Standard.

M. 1 General

M.1. 1

This Annex applies to industrial type structures that are expected not to respond to seismic ground motions in a fashion similar to conventional buildings because of non-uniform distribution of mass, strength and stiffness in the building, absence of clearly defined floors, or reduced damping due to limited architectural components. The intended use of these structures are essentially to support equipment and material for an industrial process that may significantly affect the structure seismic response, and do not include the shelter of persons. These provisions do not apply to warehouses or to office buildings for industrial complexes. These provisions do not apply to nuclear facilities.

M.1.2

All requirements in this Standard shall apply except as otherwise specified in this Annex.

M. 2 Seismic force resisting systems

M.2.1 System restrictions

The seismic force resisting system shall be chosen from Table M.1.

M.2.2 System redundancy

When $I_{E} F_{a} S_{a}(0.2)$ is greater than 0.45 or $I_{E} F_{a} S_{a}(1.0)$ is greater than 0.30 , structures that exceed 40 m in height and that are designed to resist seismic loads based on a ductility-related force modification factor, R_{d}, greater than 1.5 shall be either
a) configured in such a way that failure of any brace or brace connection, or any rigid beam-tocolumn joint, does not increase earthquake effects by more than 33% in the remaining members of the seismic force resisting system; or
b) designed to resist gravity loads combined with 1.3 times the seismic loads.

M. 3 Analysis

M.3.1 Methods of analysis

Analysis for design earthquake actions shall be carried out in accordance with the Dynamic Analysis Procedure described in the NBCC, except that Sentences of 4.1.8.12.(6), 4.1.8.12.(8), 4.1.8.12.(9) and 4.1.8.12.(11) do not apply.

M.3.2 Damping coefficient

The design spectrum $S(T)$ in the NBCC shall be multiplied by the damping coefficient $\beta=(0.05 / \xi)^{0.4}$, where $\xi=0.02$ for welded structures and 0.03 for bolted structures.

M.3.3 Effective mass

The effective mass corresponds to the seismic weight as defined in the NBCC, including the mass of the operational contents of tanks, vessels, bins, hoppers, piping, and other similar equipment.

When determining vertical earthquake effects, the effective mass must include 100% of the mass resulting from the probable accumulation of equipment and storage of materials.

The design of the supporting tower or pedestal, anchorage, and foundation for seismic overturning shall assume the material stored is a rigid mass positioned at its centre of gravity. The effects of fluidstructure interaction may be considered in determining the forces, effective period, and mass centroids of the system if the following requirements are met:
a) the sloshing period, T_{c} is greater than $3 T$ where $T=$ natural period of the tank with confined liquid (rigid mass) and supporting structure; and
b) the sloshing mechanism (i.e., the percentage of convective mass and centroid) is determined for the specific configuration of the container by detailed fluid-structure interaction analysis or testing.

M.3.4 Number of modes

When the modal response spectrum analysis method is used, the number of modes in each direction of analysis shall be sufficient to accurately represent the seismic dynamic response of the structure. As a minimum, the combined participating mass of all the modes included in the analysis should total at least 95% of the total mass.

M.3.5 Direction of analysis

When $l_{E} F_{a} S_{a}(0.2)$ is greater than 0.35 or $l_{E} F_{V} S_{Q}(1.0)$ is greater than 0.30 , columns that form part of two or more intersecting seismic force resisting systems shall be designed to resist 100% of the earthquake effects from the seismic loads applied in one direction plus 30% of the earthquake effects from seismic loads applied in the perpendicular direction, with the combination requiring the greater element strength being used in the design.

M.3.6 Vertical earthquake effects

When $I_{E} F_{0} S_{0}(0.2)$ is greater than 0.35 or $l_{E} F_{V} S_{a}(1.0)$ is greater than 0.30 , vertical earthquake effects shall be considered for
a) bars and rods supporting hanging equipment, including their supports, and steel beams when the dead load of the equipment represents more than 75% of the total tributary gravity loads;
b) foundations, anchors, and bearings for structures and equipment; and
c) structures that can be affected by vertical seismic motion such as cantilevered structures.

Vertical earthquake effects shall be determined using the modal response spectrum analysis method with $2 / 3$ the design spectrum $S(T)$ in the $N B C C$, as multiplied by the damping coefficient defined in Clause M.2.2, and $R_{d} R_{o}=1.3$.

M. 4 Anchorage

M.4.1 Anchorage strength

Anchor rods shall be designed for earthquake forces corresponding to $R_{d} R_{0}=1.3$, without exceeding forces corresponding to the probable resistance of the connected components determined using the probable yield stress $R_{y} F_{\psi}$.

M.4.2 Anchorage detailing

Where anchor rods are not threaded over their full length, they shall
a) be detailed such that $A_{a r u} F_{y} \leq 0.75 A_{a r} F_{u}$, where $A_{a r u}$ is the cross-section area of the unthreaded portion;
and
b) have a minimum length of 75 mm of thread is left under the nut.

For anchorage of towers, chimneys, or cantilevered structures designed with R_{d} equal to or greater than 1.5 , or anchorage of fixed base columns of structures designed with R_{d} equal to or greater than 1.5 , the anchor rods shall have a stretch length sufficient to accommodate the expected inelastic elongation, but not less than the larger of 250 mm and 8 times the diameter of the anchor rod.

M. 5 Special requirements

M.5.1

Design of columns in braced frames
When two orthogonal braced bays share a column, the column shall be design for the forces resulting from the braces in both orthogonal directions reaching their probable resistances simultaneously.

M.5.2 Tanks and vessels supported by buildings

Tanks and vessels that are supported within buildings or are incidental to the primary function of the tower are considered mechanical equipment and shall be designed in accordance with the NBCC Chapter 4.

M.5.3 Welded steel water storage structures

Welded steel elevated water storage structures shall be designed and detailed in accordance with the seismic requirements of AWWA D100 with the height limits imposed in Table M.1.

Table M． 1
Seismic force resisting systems

Structure type	Clause＊	Restrictions \dagger				
		Cases where $I_{E} F_{a} S_{a}(0.2)$				$\begin{gathered} \begin{array}{c} \text { Cases } \\ \text { where } \\ I_{E} F_{w} S_{a}(1.0) \end{array} \\ \hline>0.3 \end{gathered}$
		<0.2	$\begin{gathered} \geq 0,2 \text { to } \\ <0.35 \end{gathered}$	$\begin{gathered} \geq 0.35 \text { to } \\ \leq 0.75 \end{gathered}$	＞ 0.75	
Elevated tanks，vessels，bins，or hoppers supported on symmetrically braced legs	27.5	NL	NL．	60	60	60
Elevated tanks，vessels，bins or hoppers supported on asymmetrically braced legs	27.6	NL	NL	60	60	60
Elevated tanks，vessels，bins or hoppers supported on a single pedestal or skirt	27.11	NL	NL	60才	$60 \ddagger$	60\％
Horizontal saddle supported welded steel vessels	27.5	NL	NL	NL	NL	NL．
All other distributed mass cantilever structures not covered above including stacks，chimneys，silos and skirt supported vertical vessels	27.11	NL	NL	NLF	NL +	NLF
Trussed towers（free standing or guyed）	27.6	NL	NL	NL	NL	NL．
Guyed stacks and chimneys	27.6	NL	NL	NL	NL	NL．
Cooling towers	27.5	NL	NL	60	60	60
	27.11	NL	NL	NL \ddagger	NLF	NLま
Pole towers	27.11	NL	NL	NLF	NLま	NL \ddagger
All other self－supporting structures， tanks or vessels not covered above		NL	NL	NL	NL	NL

[^3]
(1) Annex N (normative)

Design and construction of steel storage racks

Note: This Annex is a mandatory part of the Standard.

N. 1 Introduction

N.1.1

Steel storage racks are unique structures in part because they have semi-rigid frames with proprietary connections. They are high-performance structures in that they typically resist forces 20 to 50 times their self-weight, and often more in high seismic zones.

N.1.2

This Annex provides requirements for the design, fabrication, and installation of steel storage racks.

N.1.3

This Annex is to be used in conjunction with CSA A344.

N.1.4

This Standard is to be used to design hot rolled steel members of steel storage racks. Storage racks are not buildings, and Clauses of this Standard that are not pertinent to the design of storage racks are not requirements of this Annex.
Note: The National Building Code of Canada (NBCC) does not define racks as buildings; however, they are seen as structures that are similar to buildings and can be designed as such in accordance with this Annex.

N. 2 General

N.2.1

This Annex shall be limited to free-standing, selective-type storage racks where the principal structural components are upright frames and load support beams.
Note: Storage racks are typically used to store pallets and loaded by using powered lift equipment.
The selective-type storage racks shall consist of regularly spaced, braced frames in the cross-aisle direction and parallel, multi-level moment resisting frames in the down-aisle direction.
Note: There are limited racks produced with moment frames in both the down-aisle and cross-aisle directions. This introduces biaxial bending in the column, which has not been considered in the Annex. In addition, braced frames in the down-aisle direction are outside the scope of this edition of the Annex. Braced rack frames in the down-aisle direction are not prec/uded, provided that they are properly addressed in the design.

N.2.2

This Annex shall apply only to racks made from steel, either hot-rolled or cold-formed. It shall not apply to racks of other configurations such as drive-in and drive-through racks, cantilever racks, and portable racks.

N.2.3

Certain parts of this Annex, particularly the structural demand criteria, may be used as guidance when designing rack structures outside the scope of this Annex as there are additional forces on these systems that are not considered in this Annex.

N.2.4

Unless otherwise specified in this Annex, the provisions of CSA S136 shall include the requirements of Appendix B (Provisions Applicable to Canada) of that Standard.

N. 3 Definitions

The following definitions shall apply in this Annex:
Note: This includes a list of terms of typical storage rack components (see Figure N.1). These definitions are consistent with those in CSA A344.

Anchor - a post-installed mechanical or adhesive fastener used to secure a pallet rack structure to a building structure, e.g., the baseplate to the floor slab.

Back-to-back row - two parallel rows of pallet racks that are joined by one or more levels of row spacers between frames.

Base plate (footplate) - a plate fixed (usually by welding) to the bottom of frame columns to facilitate anchoring to the floor slab and to distribute the weight of the loaded column over a larger area of the floor slab.

Beam (load beam, load support beam, stringer) - a horizontal member, usually arranged in pairs such that the upper horizontal surfaces support pallets placed on them.
Note: Beams are typically attached to frames by beam connectors welded to each end.
Beam connector locking device - a device such as a lock pin or safety clip or mechanical fastener approved by the manufacturer used to help resist the accidental dislodgement of beam connectors from frames.

Beam connectors (beam brackets, end plates) - a formed, stamped, or punched part welded to each end of the beams to facilitate their attachment to the frames.

Column - the vertical member of a frame.
Cross-aisle ties - horizontal members that span across an aisle connecting the tops of two opposing frames.

Damping-of-the-load - energy dissipation due to the contents, as distinct from that inherent in the rack structure itself.

Diagonal brace - member welded or bolted diagonaliy between frame columns to resist cross-aisle forces imposed on frames and to brace the column.

Double posting - doubling of the front and/or rear frame columns to a specific height, usually by welding one column behind the other to create a composite section.

Frame (end frame, upright frame) - an assembly of two vertical members (columns) and braces that is used to support load beams.

Horizontal brace - members welded or bolted horizontally between frame columns to resist cross-aisle forces imposed on frames and to brace the columns.

Material handling equipment - lift trucks of all classes and other types of powered equipment used to directly or indirectly load and unload a pallet rack.

Owner - a person who purchases and/or directs the use of a pallet rack.
Note: While the interests might not always be the same, in the context of this Annex, the terms "owner", "user", or designates of any of them (such as a consultant) have the same meaning.

Pallet (skids) - a platform on which goods can be stacked to facilitate unit load transportation or storage on a pallet rack.

Pallet rack (storage rack, racking, racks) - a combination of frames, beams, and accessories used after assembly into a structure to support unit loads whether or not such loads are palletized.

Pallet safety bar - a member supported by and oriented perpendicular to load beams, intended to temporarily support misplaced pallets.

Pallet support bar - a bar similar to a safety bar except a pallet support bar is intended to support the full weight of a loaded pallet in cases where the size, strength, or style of a pallet prohibits its placement directly onto a pair of load beams.

Post guard (column guard, post protector) - a member or device designed to resist accidental impact to the column member.

Product load - a maximum load of pallets and products stored on the racks.
Row spacer - a member used to connect two aligned frames, one behind the other, ensuring that while joined they remain separated by a specific distance.

Selective pallet rack - a pallet rack arranged in one row or a series of rows such that every pallet loaded on the rack faces an aisle allowing direct access by material handling equipment.

Single row - a row of a pallet rack that is not joined to an adjacent rack row using row spacers.
Unit load - overall size (depth \times width \times height) of goods, including the pallet, if used.
Unit load weight - overall weight of a unit load, including the weight of the pallet or container.

Figure N. 1
Illustration of typical rack
(See Clause N.3.)

Note: This Figure is also contained in CSA A344 and illustrates some key terms to assist readers who might not be familiar with the construction of selective storage rack systems.

N. 4 Steel and welding specifications

N.4.1 Steel specifications

Structural steel quality shall be in accordance with Clause 5 or CSA S136, Section A2.

N.4.2 Welding specifications

All arc welding shall be as specified in CSA W59. All resistance welding shall be as specified in CSA W55.3.

N.4.3 Fabricator and erector qualification

Fabricators and erectors responsible for welding rack structures fabricated or erected under this Annex shall meet the requirements of CSA W47.1 (Division 1, 2, or 3) or CSA W55,3, or both, as applicable.
Note: Fabricator qualification may be Division 3 for rack structures, similar to previous rack standards, so that welding qualifications would not be misinterpreted by bullding officials for this specific product.

N.4.4 Existing racking components

All welded connections on the racking components shall be inspected for the requirements of the engineer responsible for capacity certification for racking components that are repurposed, resold, or reinstalled and where it cannot be demonstrated that the original welded fabrication met the requirements of Clause N.4. The inspection shall ensure they comply with the requirements of CSA W59 or CSA W55.3, as applicable. The inspector shall be an individual who meets the requirements of CSA W178.2 Level 2 or 3 to ensure the visual acceptance criteria of CSA W59 or CSA W55.3, as applicable, have been met.

Additionally, where the resistance of members or welded connections, or both, cannot be confirmed by the original manufacturer and if $I_{E} F_{a} S_{a}(0.2)$ is less than 0.35 ,
a) the resistance factor of members and welded connections shall be reduced to 67% of that specified in this Standard; and
b) the mechanical properties of the electrode used shall be considered as equivalent to CSA W48 E430XX classification.

Where $l_{E} F_{a} S_{a}(0.2)$ is greater than or equal to 0.35 , the existing racking components shall not be used.

N. 5 Bolted connections

Bolts shall be in accordance with this Standard with the inclusion of SAE J429 bolts. Unmarked bolts shall be assumed to be ASTM A307 bolts.
Note: SAE bolts are subject to hydrogen embrittlement, which can be induced by the zinc plating process. These bolts should be manufactured to mitigate hydrogen embrittlement.

N. 6 Product identification

Beams and frames shall bear a permanent identification mark that is traceable to their manufacturer.
Note: The requirement for permanent identification marks on rack beams and frames is to help both rack manufacturers and rack users identify rack components in the field. CSA A344 cautions that racks must not be assembled using a mixture of components from different manufacturers unless the structure has been reviewed and approved by qualified professionals. Racks could become unstable and collapse when seemingly compatible components from different manufacturers are combined.

N. 7 Design provisions

N.7.1 Design standards

N.7.1.1 Limit states design and structural integrity

Design shall be performed using limit states design principles in accordance with the requirements of Clause 6, including Clause 6.1.2 for structural integrity.

N.7.1.2 Resistance and stiffness of members

Resistance of members shall be determined in accordance with the provisions of this Standard and CSA S136, unless otherwise stated in this Annex. Stiffness of members and their connections shall be determined in accordance with normal engineering provisions and modified where necessary by the provisions of this Annex.

N.7.1.3 Non-calculable by CSA S16 or CSA S136

Where the members/elements are such that the resistance and/or stiffness cannot be determined in accordance with the provisions of Clause N.7.1.2, structural performance shall be established from either of the following:
a) factored resistance or stiffness shall be determined by tests undertaken and evaluated in accordance with Clause N.7.4; or
b) factored resistance or stiffness shall be determined by rational engineering analysis based on appropriate theory, related testing if data are available, and engineering judgment. Specifically, the factored resistance shall be determined from the calculated nominal resistance by applying the resistance factors.
Note: Inelastic action of storage racks typically occurs in the joints and the behaviour of the rack joints used in the design has to be validated through physical testing.

N.7.1.4 Members with perforations

Where hot-rolled members have perforations, their resistance shall be evaluated in accordance with Clause N.7.3.
Note: The cold-formed steel provisions that account for the effects of perforations on the load-carrying capacity of compression members may be applied to hot-rolled members that are typically used as columns in storage racks.

N.7.2 Design principles

N.7.2.1 Load factors

The load factors shall be those specified by the NBCC. The product loads shall be subject to a product load factor of 1.4.
Note: Product load is the weight of items placed into the storage rack and has a load factor between that of a dead and live load. This factor reflects the fact that the upper bound of pallets or maximum pallet loads can be estimated more accurately relative to, for instance, live laads. At a certain pallet load, the lift truck equipment simply cannot lift the pallet loads into the rack sa product loads have a sharp cut-off in the statistical distribution tail.

N.7.2.2 Load combinations

Load combinations used for combining loads shall follow the companion action approach given in the NBCC, Table 4.1.3.2.A

N.7.3 Design provisions for members with perforations

N.7.3.1 Design

Members with perforations, cold formed or hot formed, shall be designed in accordance with Clause N.7.3 of this Standard and CSA S136.

N.7.3.2 Perforation factor

A perforation factor, Q, shall be established using stub column test results in accordance with Chapter F of CSA S136, as follows:
$Q=\frac{P_{u t t}}{F_{y}^{\prime} A_{n m}}$
where
$Q \quad=$ perforation factor and shall be less than or equal to 1.0
$P_{\text {ult }}=$ ultimate compressive strength of stub column by tests
$F_{y}^{\prime}=$ actual yield stress of the column material if no cold work of forming effects are to be considered; or the weighted average yield point F_{y} calculated in accordance with the test methods referred to in Section F3.1 of CSA S136, if cold work of forming affects are to be considered
$A_{n m}=$ net minimum cross-sectional area obtained by passing a plane through the section normal to the axis of the column
Note: Stub column tests are performed to account for the effects of perforations on the load-carrying capacity of compression members such as rack frame columns. Stub column tests are referenced in Section A7.2(a) of CSA S136 for the determination of strength increase due to cold work of forming. This Annex uses the same tests to account for the effects of perforations on the load-carrying capacity of compression members. Section A7.2(a) of CSA S136 makes reference to Section F3.1(b), which deals primarily with how the compressive yield stress is evaluated. Section F3.1 of CSA S136.1 provides additional details, including the specifications that provide test methods for stub column tests.

N.7.3.3 Concentrically loaded compression members

N.7.3.3.1

Where the member satisfies the requirements for $\frac{b_{\text {d }}}{t}$ given in Clause 11 for a class 1, 2, or 3 section, the axial resistance of the member shall be computed using the provisions of Clause 13 appropriate for the class of section and lateral restraint of the member.

N.7.3.3.2

Where the compression member does not satisfy the requirements of a class 3 section as defined in Clause 11, the factored compressive resistance, P_{r}, shall be calculated in accordance with Section C4 of CSA S136, as follows:
$P_{r}=\phi A_{e} F_{n}$
where
$\phi_{c}=$ resistance factor for concentrically loaded compression member
$A_{e}=$ effective area at stress, F_{n}
$F_{n}=$ nominal buckling stress
The parameters used to calculate F_{n} shall be based on the net minimum cross-sectional area.

The effective area, A_{e}, at stress F_{n} shall be determined as follows:

$$
A_{e}=A_{n m}\left[1-(1-Q)\left(F_{n} / F_{y}\right)^{a}\right]
$$

where
$A_{e} \quad=\quad$ effective area at stress F_{n}
$A_{n m}=$ net minimum cross-sectional area obtained by passing a plane through the section normal to the axis of the column
$F_{n} \quad=$ nominal buckling stress
$F_{y} \quad=$ yield point used for design, not to exceed specified yield point or established in accordance with Section F3 of CSA S136 or as increased for cold work of forming in Section A7.2, or as reduced for low ductility steels in Section A2.3 of CSA S136
$Q \quad=$ perforation factor and shall be less than or equal to 1.0

N.7.3.4 Laterally supported members in bending

N.7.3.4.1

Where the bending member satisfies the requirements for $\frac{b_{p 1}}{t}$ given in Clause 11 for a class 1,2, or 3 section, the bending and shear resistance of the bending member shall be computed using the provisions of Clause 13 appropriate for the class of section and lateral restraint of the member.

N.7.3.4.2

Where the bending member does not satisfy the requirements of a class 3 section as defined in Clause 11, the factored moment resistance, M_{n}, calculated using procedure I of Section C3.1.1 of CSA S136, shall be determined as follows:
$\left.M_{r}=\phi_{b} S_{e} F_{y}(Q+1) / 2\right]$
where
$\phi_{b}=$ resistance factor for bending strength
$S_{c}=$ elastic section modulus of effective section calculated relative to extreme compression or tension fibre at F_{y}
$F_{y}=$ yield point used for design, not to exceed specified yield point or established in accordance with Section F3 of CSA S136 or as increased for cold work of forming in Section A7.2 of CSA S136 or as reduced for low ductility steels in Section A2.3 of CSA S136
$Q \quad=$ perforation factor and shall be less than or equal to 1.0
The calculations in procedure 11 of Section C3.1.1 of CSA S136 that utilize inelastic reserve capacity shall not be used.

N.7.3.5 Laterally unsupported members in bending

The factored moment resistance, M_{n}, calculated in accordance with Section C3.1.2.1 (lateral-torsional buckling resistance of open cross section members) of CSA S136, shall be determined as follows:
$M_{r}=\phi_{b} S_{c} F_{c}((Q+1) / 2]$
where
$\phi_{b}=$ resistance factor for bending strength
$S_{c} \quad=$ elastic section modulus of effective section calculated relative to extreme compression fibre at F_{c}
$F_{c}=$ critical buckling stress
$Q \quad=$ perforation factor and shall be less than or equal to 1.0
Calculation of the lateral-torsional buckling stress, F_{c}, shall be based on $\sigma_{e x}, \sigma_{e y}$, and σ_{t}, in accordance with Section C3.1.2.1 of CSA S136, using the full unreduced gross section properties.

N.7.4 Testing

Where the configuration of rack components precludes calculation of performance, the determination shall be made by tests. Testing shall be performed to define the behaviour being investigated. Tests should be done using methods established in RMI/ANSI MH 16.1 and EN 15512. The engineer shall be responsible for selecting the appropriate test procedures, interpreting the results, and using them in conjunction with the calculations to evaluate the storage rack's structural performance, behaviour, and safety.
Note: Established methods for storage racks are available in the standards referenced in this Clause. In some cases new methods will need development, and the engineer should obtain specialist assistance in the design and performance of the test protocol.

N.7.5 Certification

N.7.5.1

The design calculations and, where applicable, capacities evaluated with testing shall be approved in writing by an engineer. These records shall be maintained on file in accordance with Clause $\mathrm{N}, 15$.

N.7.5.2

The user shall be provided documentation that establishes the allowable capacity, configuration, and use.

N. 8 Stability effects and loads

N.8.1 General

The stability effects shall be considered in the design of rack structures in accordance with this Standard, except that notional loads shall be calculated in accordance with Clause N.8.3.

N.8.2 Design loads

Product loads and/or unit load weights shall be those provided by the user or their representative.

N.8.3 Notional and minimum horizontal loads

N.8.3.1

Rack structures and their elements (columns, beams, bracing, connections, etc.) shall be designed to withstand the forces of notional loads combined with factored loads.
Note: Notional loads are introduced to account for the effect of out-of-plumb on the stability of a framed structure and unique characteristics of rack structures.

N.8.3.2

At every level, notional loads shall be equal to the notional load coefficient, ϕ_{N} multiplied by the factored gravity load contributed by that level, where the notional load coefficient is defined as follows:
$\phi_{N}=(0.003+$ erection tolerance as defined in Clause $N .13 .1)$

Erection tolerance shall include any out-of-plumb effects caused by floor slope.
Note: As an example, if the erection tolerance is equal to 1:240 plus an out-of-plumb of 1\% due to floor slope, then ϕ_{N} would be equal to $0.003+(1 / 240)+(0.01)=0.0172$.

N.8.3.3

The notional lateral loads shall be applied at every storage level in both orthogonal directions independently.

N, 8,3.4

The individual column-to-beam connections and bracing members and their connections shall be designed to resist the effect of a minimum horizontal load of not less than 1.5% of the total static vertical load, with forces and moments evaluated using a first-order analysis. These loads shall not to be combined with any other lateral loads.

N.8.4 Loads due to attached equipment

N.8.4.1

Storage racks that support or interact with equipment shall be designed to resist the static and dynamic loads imparted to them by the equipment.

N.8.4.2

The equipment manufacturer shall supply the storage rack designer with the magnitude and location of the maximum static and dynamic forces that result from the equipment. The equipment manufacturer shall also supply any applicable impact factors.

N.8.5 Seismic loads

The computation of seismic loads shall be in accordance with Clause N.9.

N.8.6 Special loads

N.8.6.1 Overturning

Overturning shall be considered for the most unfavourable combination of vertical and horizontal loads using a minimum ratio of the restoring moment to the overturning moment (due to the product load and the dead load) of 1.0. Forces resulting from the product loads and the anchorage of the columns to the floor shall be considered in the stability evaluation. Racks that do not have positive anchorage to a floor slab or other resisting element shall have a minimum ratio of restoring to overturning moment ratio of 1.5 .

Storage racks with a height-to-depth ratio exceeding 6:1 (height of the topmost beam to the upright frame depth), and subject to lateral impacts due to powered loading equipment, shall be designed to resist a lateral force of 10% of the factored weight of the maximum product load that is to be placed on the beams, in a single loading operation, adjacent to the frame being considered.

The lateral force shall be applied to a single-frame location at the topmost beam position in a direction perpendicular to the aisle and need not be applied concurrently with other horizontal design forces.

Restraints shall be designed to resist the uplift forces when applied to a frame supporting empty beam levels.

When the lateral force is transmitted to adjacent structures, the structures shall be designed to resist their calculated portion of the force.
Note: Upright frames with high aspect ratios (height-to-depth ratios exceeding 8:1) that are subject to lateral impacts imparted by powered looding equipment require close examination of their stability, The usual and preferred practice is to improve stability by attaching the top of the upright frame to adjacent racks (top tying). Alternatively, anchorage may be designed that fully occounts for the ability of the base plate, anchors, and slab to withstand the anticipated uplift forces.

N.8.6.2 Single rows

The designer shall consider additional measures appropriate to the unique circumstances of installing single rows.
Nate: Pallet racks are meant for use in typical warehouse environments employing careful, well-trained material handling equipment operators handling stable, common pallet loads. Single rows, even though of equal capacity to back-to-back rows, are more susceptible to overturning or collapse if damaged, Therefore, CSA A344 addresses single rows of rock and encourages the user to consult with the designer, so that the appropriate measures are put in place to lessen the chances of a collapse due to accidental impact. Because there are various methods that con be employed, this Annex does not single out an individual prescriptive requirement for single rows of rack. Additional measures to be considered, but are not limited to, include
a) post guarding;
b) double-posting the aisle leg of the frame;
c) heavy-duty frame bracing;
d) heavy-duty base plates and anchors;
e) overhead cross-aisle ties; and
f) wall connectors (appropriately designed and installed in accordance with Clause N.14).

N.8.7 Other loads

Racks that are located outside and exposed to wind and snow loads shall be designed in accordance with the NBCC, Subsections 4.1.6 and 4.1.7.

N. 9 Seismic loads and design

N.9.1 General

N.9.1.1 Seismic force resisting systems

Resistance to earthquake effects shall be provided by steel concentrically braced frames in the crossaisle direction and steel moment resisting frames in the down-aisle direction. In the braced frame direction, when $l_{E} F_{0} S_{0}(0.2)$ is less than or equal to 0.5 , braces may be absent in any isolated panel of the frame provided that combined axial load and moment have been accounted for as specified in Clause N.9.8.2 c).
Note: On occasion, certain areas of a rack frame may eliminate a panel of bracing to allow a conveyor through the vierendeel section of the frame. If the level of seismicity does not exceed the specified limit, the absence of a brace in an isolated panel (vierendeel section) for the cross-aisle direction may be permitted if properly addressed in the design.

Eccentricity of any centroidal work points for concentrically braced frames shall not exceed 200% of the column dimension in the plane of the connection, unless the eccentric moments have been taken into account (see Figure N.2).

Figure N. 2
 Eccentricities in frame bracing

(See Clause N.9.1.1.)

Legend:
d = overall depth of frame column
e $=$ eccentricity at joint work points

N,9.1.2 Seismic design provisions

N.9.1.2.1

The seismic design of rack structures shall be performed in accordance with Clause 27 or with this Annex.
Note: Reference to Clause 27 was intended to provide the design engineer with another method of seismic analysis for storage racks constructed of hot-rolled structural steel members. This methad precedes all other seismic design options since it is very general and one does not need to go any further in the standard if its provisions are chosen for seismic design.

N.9.1.2.2

When the seismic design is performed in accordance with Clause 27,
a) the seismic force resisting system shall be one of the systems defined in Clauses 27.3, 27.4. 27.5, 27.6, or 27.11;
b) the seismic force resisting system shall be designed using the force-based seismic design method in Clause N.9.3.2.1 using the factors R_{o} and R_{d} defined in Clause 27 for the selected system;
c) the period T_{a} used to determine earthquake effects may be determined in accordance to Clause N.9.4.5.2;
d) all requirements specified in Clause 27 for the selected system shall be satisfied, including requirements on restrictions, section class for columns of brace frames and moment frames, section class for moment frame beams, and connections; and
e) the seismic weights and gravity loads at every level may be determined as defined in Clause N.9.2.

N.9.1.2.3

When the seismic design is performed in accordance with this Annex,
a) the height shall not exceed 10 m to the topmost beam level when $I_{E} F_{a} S_{0}(0.2)$ is greater than or equal to 0.35 ;
Note: For storage racks exceeding 10 m , the structure is to be designed using rational, recognized engineering principles and current engineering practice that demonstrate compliance with the intent of the applicable building code. The design review for these racks needs to be carried out by engineers experienced and knowledgeable in seismic analysis methods and with proper modelling and testing of the actual rack's
behaviour. The rack design must have a clearly defined, seismic force resisting system that validates a stable, seismic response.
b) the provisions of Clause 27.1.2 shall apply;
c) the seismic weights and gravity loads at every level shall be determined as defined in Clause N.9.2;
d) earthquake effects shall be determined using the methods described in Clauses N.9.3 to N.9.5, as applicable;
e) stability effects shall be as specified in Clause N.9.6;
f) drift limits as specified in Clause N. 9.7 shall be satisfied;
g) special design requirements specified in Clause N. 9.8 shall be satisfied; and
h) for the moment frame direction, the performance of the beam-to-column and column base connections shall be demonstrated through a qualification procedure, as specified in Clause N.9.9.

N.9.2 Seismic weight and gravity loads

N.9.2.1 General

Shedding of the load is a performance requirement and not a structural design issue. It is the owner that is ultimately responsible to ensure that loads do not shed because it depends on how the load is restrained on the pallet. The requirements for the retainment of loads during a seismic event is included in CSA A344 as it deals with their maintenance and operation.

N.9.2. 2 Seismic weight

N.9.2.2.1 Calculation

The seismic weight shall be calculated by including the dead load of the structure plus the expected loading as specified by the storage rack user, but not less than 100% of the design product load in the cross-aisle direction and not less than 60% of the design product load in the moment frame direction-

Well-substantiated product statistics from the user of the storage rack that account for the facility's loading practices shall support any reduction of the product load.

Notes:

1) The seismic weight may be reduced by the dynamically active fraction of the load by up to $2 / 3$ of the product load.
2) Research has shown that the stored goods do not move entirely in unison with the rack structure and the $2 / 3$ factor accounts for this damping-of-the-load behaviour. If the designer knows that for a particular application the dynamic portion of the load is likely to be greater than 67%, then such a higher magnitude will be used in the determination of the lateral forces.
3) The products placed on the storage rack shelves are often less than the capacity for which the individual shelves are designed. In most operating warehouses, these are several open product slots available for storing incoming product. Therefore, the total row seismic mass for computing the down-aisle seismic effects may be reduced by the product of a probabilistic factor to account for the amount of load expected on the rack at the time of an earthquake. Reduction in the cross-aisle direction and for the vertical load is not permitted.

N.9.2.2.2 Distribution of seismic weight

The most unfavourable loading configuration shall be considered for the seismic analysis. As a minimum, the following cases shall be considered:
a) in the braced frame direction, rack fully loaded and top level fully loaded only; and
b) in the moment frame direction, rack fully loaded.

N.9.2.2.3 Variation in seismic response

Any variation in seismic response due to reduction in the expected product loading at the time of seismic event shall be evaluated separately in each of the two principal directions.

N.9.2.3 Gravity loads

N.9.2.3.1 General

Vertical load effects considered with lateral seismic loads shall be taken equal to 100% the dead load of the structure plus 100% of the design product load.

N.9.2.3.2 Racks subject to snow loading

Where racks are subject to snow load, the seismic weight W shall include 25% of the snow load applied to the rack in conjunction with the product load.

N.9.3 Analysis methods

N.9.3.1 Direction of analysis and in-plane torsion

N.9.3.1.1

The analysis may be performed independently in each of the two orthogonal directions.

N.9.3.1.2

In-plane torsional effects need not be considered.

N.9.3.2 Racks mounted at ground level

N.9.3.2.1

Earthquake effects shall be determined using force-based methods in accordance with the NBCC and as modified in this Annex, using either
a) the equivalent static force procedure (see Clause N.9.4.5);
b) the linear dynamic analysis method (see Clause N.9.4.6); or
c) the method prescribed for elements of structures, non-structural components, and equipment (see Clause N.9.4.7).

N.9.3.2.2 Displacement-based method

A displacement based-method, as described in Clause $\mathrm{N} .9,5$, may be used in the moment frame direction.

Notes:

1) Displacement-based design was proposed to address concerns with the use of similar ductility values for buildings and storage rack given that their connections are designed to behove differently during an earthquake. While energy dissipation in a building occurs primarily in the beams, storage racks have fairly weak columns and strong beams and the energy dissipation occurs in the connection in the down-aisle direction. It has been included in the NBCC, Structural Commentary J, stipulating that displacement-based design may be used provided they have been proven by testing and analysis.
2) A simplified displacement-based procedure in the down-aisle direction has been developed in FEMA 460 using a traditional linear elostic methodology and is approved in RMI/ANSI MH16.1. The reader may also reference Higgins (2007). for additional guidance.

N.9,3.3 Racks mounted on building floors above grade

Earthquake effects for racks mounted on building floors above grade shall be determined using either
a) the method specified in NBCC, Article 4.1.8.18, when the seismic weight of the rack as defined in Clause N.9.2 of this Standard is less than 30\% of the seismic weight of the supporting floor; the coefficient A_{x} shall be computed with h_{x} equal to the height of the highest point of connection in the building (see Clause N.9.4.7 of this Standard); or
b) the linear dynamic analysis method described where both the rack and the building structures are considered (see Clause N.9,4.6 of this Standard),
Note: In some cases, racks may be installed above grade where the dynamics of the building will affect the seismic behaviour of the racks. In these cases, the methods for mechanical/electrical components might need to be used as they have amplification factors to account for the type of attachment and the variation of the response of the racks with elevation within the building (A_{r} and A_{x} as defined in the NBCC). Treating racks as mechanical/electrical components produces conservative forces; therefore, an analysis that fully accounts for the dynamic behaviour of the building and the racks is the recommended method for evaluating storage racks to be installed above grade.

N.9.4 Force-based methods

N.9.4.1 Seismic force modification factors

The force modification factors shall be those used for conventional construction: $R_{d}=1.5, R_{0}=1.3$. In the moment frame direction, R_{a} shall be taken equal to 1.0 when non-normalized connection test data is used in design and R_{d} may be taken equal to 2.0 provided that the requirements of Clause N.9.8.1.2 are satisfied.

N.9.4.2 Importance factor

The seismic importance factor, I_{E}, shall be taken equal to the importance factor applicable to the building in which the rack is located.
Note: If a building contains hazardous moterial, it may have a higher l_{E} factor, such as 1.3 for a high importance category, and this would also be the seismic importance factor used in the seismic design of the storage rack. Designers may also use a higher I_{E} factor at their discretion for storage racks accessible to the public.

N.9.4.3 Connection stiffness

In the moment frame direction, the rotational stiffness of the beam-to-column and base connections shall be taken equal to the initial secant stiffness obtained at 60% of the connection's moment capacity, $M_{\epsilon, \text { max, }}$ as determined from the connection qualification procedures specified in Clause N.9.9.

N.9.4.4 Seismic design displacements

The seismic design displacements including inelasticity effects shall be taken as the lateral displacements obtained from the analysis multiplied by $R_{o} R_{d} / I_{E}$.

N.9.4.5 Equivalent static force procedure

N.9.4.5.1 Limitations

The equivalent static force procedure may be used for rack structures at the ground level if
a) $l_{E} F_{a} S_{0}(0.2)$ is less than 0.35 ; or
b) the total height h_{n} is less than 6.0 m and the fundamental period T_{0} is less than 1.0 s in the braced frame direction and less than 2.0 s in the moment frame direction.

N.9.4.5.2 Periods

The fundamental period of racks shall not be evaluated using the formulas for the fundamental period of building structures in Part 4 of the NBCC. When determining earthquake forces, the period T_{a} in any direction shall be determined from methods of mechanics, except that the so-computed period for determining base shear and earthquake forces shall not exceed $0.15 h_{n}$ in the braced frame direction and $0.3 h_{n}$ in the moment frame direction. In the moment frame direction, the rotational stiffness of the beam-to-column and base connections shall not be less than the stiffness determined as specified in Clause N,9.4.3.
Note: Typically, a designer will design the rack for seismic loading assuming the rack is full. Under these circumstances, the rack period is evaluated using a model that has a seismic weight in accordance with Clause N.9.2.1. If the rack is to be evaluated half full, then another dynamic analysis is done to determine the fundamental period with the adjusted seismic weight. If the base shear is computed using the procedures of NBCC, Article 4.1.8.18., the calculation of fundamental period for the rack is not required.

N.9.4.5.3 Vertical distribution of loads

The top load (F_{t}), as specified in NBCC Sentence 4.1.8.11(7), shall be taken equal to zero. When the top of the beam level is less than 300 mm above the floor, its seismic weight may be omitted when determining the vertical distribution of the loads.
Note: The static distribution of load provides a good distribution of load if the weight on the racks is similar at all levels but is less accurate if the mass distribution is not equal. Racks that have a large mass on the bottom level can get unreasonably high overturning moments if this is not accounted for. Under these circumstances, the rack designer may elect to use dynamic analysis to get a more accurate distribution of the overturning forces acting on the rack.
a) If the top of the first beam level is less than 300 mm above the floor, the lateral force at the first beam level shall be

$$
F_{1}=\left\langle S\left(T_{a}\right) M_{v} l_{e} w_{1}\right) /\left(R_{d} R_{o}\right)
$$

and, for beams levels above the first level, the lateral force shall be

$$
F_{x}=\frac{\left(V-F_{i}\right) w_{x} h_{x}}{\sum_{i=1}^{n} w_{i} h_{i}}
$$

b) If the top of the first beam level is greater than 300 mm , the lateral force at all beam levels shall be

$$
F_{x}=\frac{v_{w_{x}} h_{x}}{\sum_{i=1}^{n} w_{i} h_{i}}
$$

where
$V \quad=$ total design lateral force or shear at the base of the rack
w_{i} or $w_{x}=$ the portion of the total seismic weight of the rack at the designated beam level, level i or x
$h_{\text {i or }} h_{x}=$ the height from the floor to level i or x

N.9.4.5.4 Minimum earthquake load

Clause 4.1.8.11.(2)(c) of the NBCC shall not be applied.

N.9.4.6 Linear dynamic analysis method

N.9.4.6.1 Limitations

A linear dynamic analysis method may be used without limitations.

N.9.4.6.2 Method

The response spectrum analysis method shall be used.

N.9.4.6.3 Minimum earthquake Ioad

Sentences 4.1.8.12.(6), 4.1.8.12.(8), and 4.1.8.12.(9) of the NBCC shall not be applied.

N.9.4.7 Racks as elements of structures, non-structural components, and equipment

N.9.4.7.1 Limitations

Racks may be designed as elements of structures, non-structural components, and equipment, as defined in Article 4.1.8.18. of the NBCC, if the total height of the rack does not exceed 4.0 m .

N.9.4.7.2 Parameters

The parameters equivalent to those outlined in Table 4.1.8.18 of the NBCC shall be used except that the coefficient A_{X} shall be taken equal to 1.0 for racks mounted on grade.

N.9.5 Displacement-based method

N.9.5.1 Limitations

A displacement-based method may be used in the moment frame direction if the total height of the rack does not exceed 7.6 m .

N.9.5.2 Method

When applying the displacement-based method of analysis,
a) the effective properties of the equivalent single-degree-of-freedom system shall be determined from an appropriate model representing the rack structure inelastic first mode response with the effective stiffness of the beam-to-column and column base connections determined at the seismic design displacement;
b) the effective stiffness and energy dissipation capacity of the beam-to-column and column base connections shall be determined from the qualification procedure specified in Clause N.9.9;
c) P-delta effects shall be taken into account;
d) the seismic design displacement shall be determined using the design displacement spectrum specified in Clause N.9.5.3 using the effective period of the fundamental period and the equivalent damping properties of the rack structure; and
e) the structure equivalent viscous damping properties shall be based on the energy dissipation capacity of the beam-to-column and column base connections as specified in Item b). It may also include the inherent damping of the structure up to 3%.

N.9.5.3 Design displacement spectrum

The design spectral displacement values $S_{d}(T)$ at periods $T=0.0,0.2,0.5,1.0,2.0,5.0$, and 10.0 s shall be determined using $S_{d}(T)=250 \mathrm{~S}(T) T^{2}$ (in millimeters). Values for intermediate values of T shall be determined using linear interpolation.

N.9.5.4 Minimum lateral resistance

At every level, the frame shall have a minimum lateral resistance in the moment frame direction equal to
$\frac{2 \Sigma C_{f} \Delta}{h_{s}}$
where Δ and h_{s} are defined in Clause N.9.6.2, unless it can be demonstrated through nonlinear dynamic analysis as described in the NBCC that the rack has stable seismic response and the drift limits specified in Clause N.9.7 are satisfied. As a minimum, the required analysis shall account for the inelastic cyclic response of the connections as obtained from the qualification procedure specified in Clause N.9.9, including strength degradation, if any, and P-delta effects.

N.9.6 Stability effects

N.9.6.1 Notional loads

Notional lateral loads as specified in Clause N. 8.3 shall be applied when using a force-based analysis method, Notional loads need not be considered when determining drifts.

N.9.6.2 P-delta effects

When using force-based methods of analysis, P-delta effects shall be considered for members and connections for which inelastic response is expected by multiplying forces due to lateral load at every level by the factor U_{2} :
$U_{2}=1+\frac{\Sigma C_{f} \Delta}{R_{a} V_{f} h_{s}}$
where
$\Delta=$ the relative lateral displacement occurring in the level, as obtained from the seismic design displacements
$V_{f}=$ the total horizontal shear force at the level
$h_{s}=$ the height of the level

N.9.7 Drift limits

In the moment frame direction, the seismic displacement shall be such that
a) at any level, the drift angle corresponding to the seismic design displacements does not exceed 0.05 radians; and
b) the total rotation imposed on the beam-to-column connections from gravity loads plus the rotation from the amplified seismic displacements does not exceed the rotation capacity of connections, as prescribed in Clause N.9.8.1.2.
Note: While drift in buildings is limited due to architectural considerations and sensitivity to motion by occupants, racks are allowed greater drifts and yet still be serviceable.

N.9.8 Special design requirements

N.9.8.1 Connecting design

N.9.8.1.1 Bracing member connections

Connections of the frame bracing shall resist forces due the combination of the gravity loads plus the earthquake loads corresponding to force modification factor of $R_{d} R_{o}=1.3$.

N,9.8.1.2 Moment connections

N.9.8.1.2.1

When using force-based analysis methods, the connection strength may be taken as the connection moment capacity, $M_{c, \text { max, }}$ as defined in Clause N.9.9.3.

N.9.8.1.2.2

When using force based analysis methods for moment-resisting frames, the total rotation imposed on the beam-to-column connections from gravity loads plus R_{d} times the seismic design displacements shall not exceed the rotation capacity of the connections, $\theta_{c, \text { mox }}$, as defined in Clause N.9.9.3.6.

N.9.8.1.2.3

When using displacement-based analysis methods, the total rotation imposed on the beam-to-column connections from gravity loads plus two times the seismic design displacements shall not exceed the rotation capacity of the connections, $\theta_{c, \text { max }}$, as defined in Clause N.9.9.3.6.
Note: For displacement-based analysis methods, beam-to-column connections are tested through to a rotation of two times the anticipated rack deflection, in other words, only half the rotation the connection is capable of undergoing is used as a design limit. The rationale behind this provision is that the designer might underestimate the displacements that actually occur during an earthquake and/or to establish occurrence of strength degradation so therefore the connection is tested for a larger rotation than expected.

N.9.8.2 Column design

Column members shall be designed to resist
a) in the braced frame direction, the axial loads due the combination of the gravity loads plus the earthquake loads corresponding to a force modification factor of $R_{d} R_{0}=1.3$;
b) in the moment frame direction, the full gravity loads in combination with the bending moments induced at each level by the lesser of the combination of the gravity loads and the earthquake loads corresponding to the values obtained using a force modification of $R_{d} R_{G}=1.0$ or 1.2 times the ultimate flexural capacity of the beam-to-column connections; and
c) when braces are absent in the braced frame direction, as permitted in Clause N.9.1.1, axial load and bending moments from gravity loads plus earthquake loads determined with $R_{d} R_{o}=1.3$.

N.9,8.3 Beam design

In the moment frame direction, beams shall resist a moment equal to 1.2 times the combined bending moments and shears induced at each level by the lesser of the combination of the gravity loads and the earthquake loads corresponding to the values obtained using a force modification of $R_{d} R_{0}=1.0$ or 1.2 times the ultimate flexural capacity of the beam-to-column connections or that will develop at the attainment of the maximum moment capacity of the beam-to-column connections used at their ends.

N.9.9 Qualification procedures

N.9.9.1 General

Qualification procedures ensure that there is no conflict between the design and the acceptance material. A more consistent design approach or method is achieved through a test program that is controlled within the document. The testing protocol for beam-to-column connections is similar to that of the RMI to harmonize rack product testing between the USA and Canada.

Each type of beam-to-column connection and column base connections used in any a new rack structures or racks that are repurposed, resold, or reinstalled shall have physical qualification tests as prescribed in this Clause. Alternative testing requirements may be used when approved by the engineer of record subject to a third-party review.

Rotational strength and stiffness properties of column base connections may be obtained from calculations.
Note: This protocol provides requirements for qualifying cyclic tests of beam-to-column moment connections in steel storage rack beam-to-column connectors for seismic loads. Testing provides evidence that a beam-to-column connection has the strength, stiffness, and inelastic rotational capacity to satisfy the demands that are being imposed upon them. It is also the purpose of this series of tests to determine the moment-rotation characteristics, or "dynamic spring relationship" of the beam-to-column connections of the various designs and manufacturers.

N.9.9.2 Test specimens

N.9.9.2.1 General

The test specimen shall replicate, as closely as is practical, the pertinent design, detailing, and construction features, and the material properties of the actual rack structural elements, Material used in each member of connection elements that contribute to the inelastic rotation at yielding is tested to determine its yield stress and yield strength. Material properties shall be determined in accordance with the applicable ASTM A370 test procedures and Section F3 of CSA S136 or CSA G40.20/G40.21, as appropriate. When tensile coupons are taken after the completion of testing, they shall originate from flat portions of the specimen at regions of low bending moment and shear force. Tension-test results from certified mill test reports shall be reported but are not permitted to be used in place of specimen testing for the purposes of this Clause. In addition, consideration shall be given to any variation between the design thickness and yield strength, and the actual thickness and material strengths of the specimens used in the tests.

The testing program shall include tests of at least two specimens of each combination of beam and column and connector size.

N.9.9.2.2 Test specimen beams and columns

The size of the beams and columns used in the test specimen shall be representative of typical full-size storage rack beams and columns. The beam-to-column connectors and the connection details used in the test specimen shall represent the prototype connection details as closely as possible. The bolted portions of the test specimen shall replicate the bolted portions of the prototype connection as closely as possible.

N.9.9.3 Beam-to-column connection tests

N.9.9.3.1 General

The test sub-assemblage shall include a column element and two cantilever beam elements with integral attached beam-to-column connectors (see Figure N.3). For members subject to twisting, such as channel and Z sections, the twist shall be restrained.

N.9.9.3.2 Vertical loads on beams

Prior to the application of any cyclic loading, a constant downward load, P_{c}, of 4.45 kN shall be applied to each beam segment adjacent to each connector on both sides of the beam-to-column connection
simulating the design downward-acting gravity pallet loads that serve to fully engage the beams and their connectors into the columns receiving them (see Figure N.3).

N.9.9.3.3 Displacement protocol

The test specimen shall be subjected to cyclic loading by imposing equal cyclic vertical displacements, Δ, at each end of each beam, in accordance to the following protocol defined based on drift angle, θ :
a) 5 cycles at $\theta=0.005$;
b) 3 cycles at $\theta=0.010$;
c) 3 cycles at $\theta=0.015$;
d) 3 cycles at $\theta=0.025$;
e) 3 cycles at $\theta=0,050$;
f) 3 cycles at $\theta=0.075$;
g) 3 cycles at $\theta=0.100$;
h) 2 cycles at $\theta=0.150$; and
i) 2 cycles at $\theta=0.200$,

Additional cycles shall be performed at increments of $\theta=0.050$ radians, with two cycles of loading at each increment, up to failure of the specimen.

Notes:

1) The drift angle, θ, is defined as the vertical displacement, Δ, divided by the distance $\ell($ see Figure $N, 3$).
2) A loading cycle is defined as starting from zero drift angle to zero drift ongle, including one positive and negative peaks ot the prescribed drift angle values.
3) Other loading sequences may be used when they are demonstrated to be of equivalent or greater severity.

N.9.9.3.4 Acceptance criteria

Inelastic rotation shall be developed in the test specimen by inelastic action in the same members and connection elements as anticipated in the prototype, i.e., in the beam, in the column, in the panel zone, or within the connection elements.

The test program shall be satisfactory if the connection moment capacity, $M_{c, m a x}$, and the connection rotation capacity, $\theta_{c, \text { max, }}$, from the two tests are within 10% of the mean value. Otherwise, the test program shall be redone.

When beam-to-connection test results are used for displacement-based analysis, the effective stiffness and energy dissipated per cycle (EDC) of the two tests shall be within 10% of the mean value.
Otherwise, the test program shall be redone. For both parameters, the verification shall be performed for every loading cycle starting from the first loading cycle at a drift angle of 0.03 radians up to and including the loading cycle corresponding to the connection rotation capacity $\theta_{\text {c,max }}$.

N.9.9.3.5 Connection moment capacity

The connection moment, M_{C}, shall be taken as (see Figure N.3):
$M_{c}=0.5\left(P_{L}+P_{R}\right) L$
The connection moment capacity, $M_{c, \text { max, }}$ shall be taken as the maximum value of $M_{\text {c,mox,cycie }}$ among all loading cycles, where $M_{c, \text { mox,cycle }}$ is the average of the peak positive and peak negative moments M_{c}, in absolute values, reached within the same loading cycle [see Figure N. 4 a)].

N.9.9.3.6 Connection rotation capacity

The connection rotation, θ_{C}, is obtained by subtracting from the drift angle θ the drift angle due to elastic flexural deformation of the beams (see Figure N.3):
$\theta_{c}=\theta-0.5\left(P_{L}+P_{R}\right) L^{2} /\left.3 E\right|_{b}$
When significant, the effect of the flexural deformations of the columns on connection rotation shall also be subtracted using the same procedure.

The connection rotation capacity, $\theta_{c, \text { max }}$, shall be taken as the peak connection rotation $\theta_{c, \text { peok }}$ in the last loading cycle during which $M_{c, p e o k}$ is equal to or greater than 0.80 times $M_{c, m a x}$ where $M_{c, p e o k}$ and $\theta_{c, p e o k}$ are respectively the average of the positive and negative moments M_{c} and rotation θ_{c}, in absolute values, reached at the maximum positive and negative drift angles in the same loading cycle (see Figure N .4$)$.

Presentation of test results shall be properly reduced to actual values by correcting, where appropriate, initial readings.
Note: Since rotations are measured at the beam end, the raw displacement data is a sum of beam deflection, connector rotation, and column deflection. To obtain the true connector rotation data, the beam deflection value is to be subtracted from the data. Since the column is fixed at both ends, its deflections may be neglected in the data process due to its very small values.

N.9.9.3.7 Effective stiffness and energy dissipation capacity

For each loading cycle, the effective connection rotation stiffness, $k_{c, e f f}$, shall be determined as follows [see Figure N. 4 b)]:
$k_{c, \text { eff }}=M_{c, \text { peak }} / \theta_{c, \text { peak }}$
For each loading cycle, the energy dissipated per cycle (EDC) shall be taken equal to the area enclosed by the $M_{c}-\Delta_{c}$ connection moment-rotation hysteretic curve during the complete loading cycle. The test values of P_{L} and P_{R} shall be summed for each value of Δ tested.

The following defines the seismic design parameters obtained from beam-to-column connection tests:
a) The average moment M, at each Δ, shall be $\left(P_{L}+P_{R}\right) \ell / 2$.
b) The rotational angle θ, at each Δ, shall be Δ / ℓ.
c) M versus θ shall be plotted for each Δ tested θ.
d) The maximum value of $M_{\max }$ shall be the maximum moment and the maximum rotational capacity $\theta_{\text {max }}$ shall be the lowest value of θ where the maximum moment occurs. The value of $M_{\text {max }}$ shall be sustained for two cycles.
e) The design moment strength shall be $\phi M_{\max }$, where ϕ is 0.9 .
f) The rotational stiffness should be determined based on the calculated moment, M, for the design loads from the analysis using the plot of M versus θ.
Note: As an example, for the calculated design moment, M, one would go to the plot for M and determine the corresponding θ. The rotational stiffness would be M / θ. Since the calculated periad and design forces depend on the stiffness, the value of M depends on θ. This means determining the appropriate rotational stiffness is an iterative process.

Figure N. 3
Beam-to-column test set-up
(See Clauses N.9.9.3.1, N.9.9.3.2, N.9.9.3.3, N.9.9.3.5, and N.9.9.3.6.)

Figure N. 4
Typical moment-rotation response of a beam-to-column connection: a) under the entire loading protocol (27 cycles); b) in the 13 th cycle
(See Clauses N.9.9.3.5, N.9.9.3.6, and N.9.9.3.7.)
a)

b)

$\theta_{\text {c.peak }, 15}=\frac{\theta_{\text {c.peak, } 15}^{*}-\theta_{\text {c.peek. } 15}^{-}}{2}$
$k_{\text {celf,15 }}=\frac{M_{\text {c.peak,15 }}}{\theta_{\text {c.peak,15 }}}$

Note: This Figure represents an example of a moment-rotation response of a rack's beam-to-column moment connection that was obtained through the cyclic testing protocol for a specific manufacturer's beam-to-column connector and is not necessarily representative of all rack manufacturer's product. The last ascending loop is often 2 to 3 cycles before failure in the connections hysteretic response.
The connection rotation capacity, $\theta_{\text {c,max }}$ is taken at the peak connection rotation, $\theta_{\text {c,peok }}$ in the last loading cycle, during which $M_{c, p e o k}$ is equal to or greater than 0.80 times $M_{c, \text { max }}$. This permits some degradation in the rack connector's moment capacity past the last ascending loap and allaws more rotational capacity for ductile connectors that peak early, which is desirable and beneficial.

N.9.9.4 Column base connections

The rotational strength and stiffness of a column base shall be determined with consideration of the strength and stiffness associated to each contributing local and global deformations of the assembly (the base plate, the column, anchor bolts, the supporting floor, and column axial load) up to a base connection rotation corresponding to two times the anticipated rack displacements, including inelastic deformations.

For racks designed using the displacement-based analysis, the effective rotational stiffness, $k_{b, e f f}$, and EDC shall be determined from cyclic tests under the drift angle protocol of Clause N.9.9.3.3 up to the loading cycle corresponding to two times the maximum anticipated rack displacements including inelastic deformations.

Base column properties and performance shall be evaluated for a range of column axial loads up to the maximum compressive resistance of the column. The evaluation may be performed independently for each axial load level considered, assuming a constant axial load intensity.

Column base connections shall maintain 80% of the flexural strength assumed in the design at a peak rotation corresponding to two times the anticipated rack displacements, including inelastic deformations.

Notes:

1) The base fixity of frame columns is influenced by column base plates and their stiffness is typically used in structural analysis models to determine the behaviour and design loads of racks. Given that the magnitude of the axial load in the rack column has a significant effect on the fixity of the base connection, the column base connection test needs to measure the moment-rotation characteristics between the rack column and floor for a range of axial loads up to the maximum compressive resistance of the column. Column base rotation and the corresponding column base moments are to be recorded at constant axial load intensities during test runs.
2) Guidance on a test procedure for the fixity of column base that are bolted to the column can be found in EN 15512. Ongoing research is being performed by the Rack Manufacturers Institute in developing a base testing protocol.

N. 10 Beams and front-to-rear supports

N.10.1 Beam calculations

N.10.1.1

If the end-fixity of the beam connection is considered in the beam analysis, the corresponding connection moment shall be taken into account in the design of the upright column.

N.10.1.2

Where the product load is supported on ancillary structures, or the load is supported on a base that delivers concentrated forces to the beam, the moment shall be evaluated accordingly.
Note: The live load factors provided in this Annex allow for the delivery of pallets by lift trucks with careful operators. Where the delivery of the load does not meet these criteria, the effects of impact are to be evaluated and accounted for in the design of the beams. Where beams are supporting pallets with a construction and vertical spacing that result in a load condition that approximates a uniformly distributed load, the effects of the load on the beam may be simplified by assuming the load to be uniformly distributed.

N.10.1.3

N.10.1.3.1

Except as noted in Clause N.10.1.3.2, pallet support beam deflection shall not exceed $1 / 180$ of the span measured with respect to the ends of the beam.

N.10.1.3.2

Pallet support beam deflection may exceed the maximum specified in Clause N.10.1.3.1, if approved by the design engineer and if the owner is informed in writing of the actual deflection and accepts it in writing.

N.10.1.3.3

Where the product load is supported on ancillary structures, or the load is supported on a base that delivers concentrated forces to the beam, the deflection shall be evaluated accordingly.

N.10.2 Front-to-rear supports

N.10.2.1

The deflection of pallet safety bar need not be considered.

N.10.2.2

Front-to-rear supports shall be positively restrained against lateral displacement.
Note: Front-to-rear supports are intended to provide support for product loads (pallets). They are typically installed between the supporting beams and designed as a simply supported member, although continuous members are possible. The front-to-rear supports may be attached to the load support beam or dropped over the beam using bracketry. The end condition is to be designed for the worst load condition.

N.10.2.3

When specified, pallet safety bars shall be designed with the product load (pallets) placed in the most unfavourable position.
Note: A typical case to be evaluated for the design of the safety bar is when one edge of the pallet, either the front or rear, is overhanging a load support beam such that the distance between the mid-span of the safety bar and the centreline of the pallet is equal to one-fourth of the depth of the pallet. In this condition, the pallet places a point load on the safety bar flexural member a calculated distance from its simple support.

N.10.2.4

Pallet support bars shall be designed using the same methods as specified for pallet support beams in Clause N.9.1.

N. 11 Overall stability of trussed braced upright frames

Where the trussed braced frame has a high aspect ratio (slenderness about the frame's strong axis), a check shall be done to ensure global stability of the upright frame.
Note: It is rare that the capacity of an upright frame is governed by the overall stability of the frame's braced plane (as opposed to member stability); nevertheless, a check is needed to ensure this failure mode does not govern capacity. This condition occurs where the upright frame has a large aspect ratio whereby the buckling occurs in a manner such that the buckling length under consideration is the overall height of the frome. RMI/ANSI MH 16.1 (Section 6.4) and EN 15512 (Appendix C) both provide analytical formulae addressing this condition. This Annex does not provide formulae that address this condition because it seldom comes into play and there are sufficient engineering methods available in other standards and textbooks.

N. 12 Connections and bearing plates

N.12.1 General

The strength and stiffness of proprietary connections shall be determined by tests.

N.12.2 Beam-column connections (beam connectors)

N.12.2.1

Beam-column connections shall be designed for the forces and moments resulting from the load in Clause N.8. The engineer shall distribute the forces in accordance with Clause N. 8 or any other proven methods that employ a rational load path and satisfy static equilibrium. The non-linear, semi-rigid nature of storage rack connectors shall be considered in the analysis. Without ample proof of rigid behaviour, the designer should not make the rigid connection assumption in analysis,
Note: The non-linear, semi-rigid nature of moment rotation response of most storage rack connectors makes them and the entire frame refractory to many forms of analyses.

N.12.2.2

If the moment resistance of the beam connections is less than that required by Clause N.12.2.1, an alternative system shall be provided to resist the full lateral forces in Clause N. 8 .

N.12.2.3

If components from multiple manufacturers are incorporated and are necessary for adequate structural performance of the system, the behaviour of the specific combination of components shall be considered.

N.12.2.4

The behaviour and strength of the beam-to-column connection shall be evaluated using the test methods outlined in Clause N.10.1.

N.12.3 Beam connector locking device (safety pins)

N.12.3.1

Racks loaded by material handling equipment shall have connection-locking devices capable of preventing the disengagement of the beam connector from the upright column when subjected to an upward vertical force of 4.5 kN per connector.

N.12.3.2

Connection-locking devices shall remain functional when exposed to repeated upward vertical forces as specified in Clause N.12.3.1.

N.12.4 Row spacers

N.12.4.1 General

Adjacent (back-to-back) upright frames shall be connected together with row spacers, unless otherwise approved by the rack designer.

N.12.4.2 Row spacer design

Row spacers shall be designed to transmit the forces in Clause N.8. The size of the row spacer and its connections should be selected so that it can perform its intended functions. Vertical spacing of row spacers should be nominally 2.4 m to 3.6 m . Row spacers should be located at elevations that provide a direct load path between the columns in the frame.
Note: Row spacers can provide structural redundancy to the brace member of a frame and improve general structural stability.

N.12.5 Base plate design

N.12.5.1

The base plate shall have provisions for anchorage and designed to support the entire profile of the column placed on it.

N.12.5.2

The base plate shall be designed to transfer the column load to the supporting structure.
Note: This Annex does not provide design criteria for floors that typically support storage racks. The design of the floor is the responsibility of the user and the building engineer. The effective area of the base plate can be evaluated using the CISC Handbook of Steel Construction.

N.12.6 Concrete fasteners (anchors)

N.12.6.1

Concrete fasteners shall be used on all rack columns. Where they are required to resist design forces, specific calculations shall be computed in accordance with Clause N.12.6.3. Where the use of concrete fasteners is not feasible, other attachment methods shall be used.
Note: Racks need to be attached to the supporting structure using a suitable fastener, even if the design forces do not make their use mandatory. Attachment serves to
a) resist design forces;
b) reduce potential damage to the lower portion of the upright should the column be struck by material handling equipment; and
c) maintain the installed geometry of the racks.

N.12.6.2

The selected concrete fastener length shall allow for proper embedment in the concrete with a combined thickness of the base plate, any necessary shims, and any non-structural toppings.

N.12.6.3

The factored tensile and shear resistance of concrete fasteners shall be determined using the requirements of CSA A23.3, Annex D, in conjunction with material supplied by the anchor manufacturer.

N.12.6.4

Concrete anchorage in existing buildings shall be taken into account in the review of the floor. The resistance, thickness, and anchorage embedment and applied loads shall be compatible with the existing concrete slab, The rack designer shall provide rack column loads and proposed anchorage to the building owner for review by an engineer prior to installing the racks.

N. 13 Erection tolerances

N.13.1 Tolerances

The rack erection tolerance on out-of-plumb shall not exceed 1:240. If the rack is deliberately installed on a sloped floor, any out-of-plumb from the floor slope may be added to the erection tolerance. The maximum out-of-plumb erection tolerance shall be considered in the design. If the erection tolerance considered in design differs from 1:240, it shall be shown on the rack design drawings.

N.13.2 Shims

Unless specifically provided for in drawings or documentation, shims shall be the same nominal depth and width as the base plate to be placed upon it and provide full contact between the base plate and the supporting concrete to transfer column loads to the floor.

Where accidental shifting or dislodgement of the shims can occur, measures shall be taken to ensure the shims remain in place.

Shims shall be of a material having equal or greater bearing strength of the floor.
Note: The use of "finger shims" will allow the shims to be placed around anchor bolts, provide essentially full contact, and keep the shims in place.

N. 14 Interaction with buildings

N. 14.1

The connection of storage racks to bulldings, or to other structures other than the floor, is not recommended. Where such connections are made, the engineer(s) responsible for the rack, buildings, or other structures shall provide for their interaction. The design of rack-to-building connections is not within the scope of this Annex.
Note: Storage racks and buildings have inherently different dynamic behaviours. Accordingly, any interconnection of the two will invariably lead to force transfers between them, in seismic events, the transfer is almost invariably from the high drift rack to the low drift building. Given the enormous mass disparity between them, such connections require either careful design or provisions to defeat any force transfer at all by maintaining a proper separation.

N. 14.2

Where connections are not made, storage racks shall be located so that the building and racks do not collide due to the design seismic forces. Deflections shall be computed in accordance with Clause N.9, and separation provided shall be in accordance with the NBCC.

N. 14.3

Storage racks located at levels above the grade elevation shall be designed to resist design seismic forces that consider the responses of the building and storage racks as a combined structure to seismic ground motion.
Note: For racks supported on a floor above grade, this Annex permits a parts-and-portions approach to design or a dynamic analysis provided that seismic amplification is accounted for. The parts and portions method takes into account soil type, the seismic risk at the site, the height of the base of the rack in the building, and whether the rack is storing toxic or flammable liquids but it does not differentiate between racks with short or long periods.

N. 15 Documentation

N.15.1

The users of the rack system shall maintain records of the permissible rack configurations readily available on site.

N.15.2

Where tests have been used to substantiate or determine the capacity of a member, component, or assembly, the test reports shall be maintained on file by the rack manufacturer.

N. 15.3

The user of the rack system shall be responsible for the posting of permanent capacity plaques that are placed in one or more visible locations to specify the load limitations.
Note: The user should reference CSA A344 for the details of capacity plaques or drawings to be posted,

N. 16 Use of rack

N.16.1

The rack user shall be responsible to ensure that the racks are configured, maintained, and used in accordance with the documentation provided by the rack manufacturer,
Note: Rack capacities are based on new, undamaged components. Isolate and discontinue use of damaged components and have them unloaded, replaced, or repaired under the guidance of the rack manufacturer or an engineer.

N.16.2

When modifications are made to the racks or configurations, they shall be approved by an engineer and the documentation specified in Clause N .15 .1 shall be updated accordingly. Any reconfiguration of a rack structure shall comply with this Annex.
Note: CSA A344 provides guidance regarding the reconfiguration and use of storage racks. Reconfiguration or rearrangement of a rack structure, including the relocation of beams, is not permitted without approval or certified documentation from the rack manufacturer or an engineer as it can create an overload condition.

PART TWO CISC COMMENTARY ON CSA S16-14

Preface

This Commentary has been prepared by the Canadian Institute of Steel Construction in order to provide guidance on the intent of various provisions of CSA Standard S16-14, "Design of Steel Structures". This Commentary and the information contained in the references cited provide an extensive background to the development of the Standard and its technical requirements including the changes and new provisions introduced in the 2014 edition. The Preface to the Standard itself outlines the history of its development since the first edition in 1924.

CSA Standard S16-14 has been prepared by the Canadian Standards Association (CSA), an approved standards development organization of the Standards Council of Canada, according to the rules for development of consensus standards. The National Building Code of Canada 2015 has adopted CSA Standard S16-14 by reference.

The Institute gratefully acknowledges the efforts of the various members of the CSA Technical Committee on Steel Structures for their valuable contributions to the Commentary, especially, G. Grondin, R. Tremblay, R.G. Driver, J.A. Packer and A.F. Wong who helped to rewrite a significant portion of this edition. The contributors include many former members of the Committee, in particular, D.J.L. Kennedy who had chaired the committee, served as a key author of the Commentary and provided valuable background information pertaining to many requirements introduced in all previous editions of the Standard prior to S16-09.

The information contained in the Commentary is provided by the Institute. It is not to be considered the opinion of the CSA Committee, nor does it detract from that Committee's responsibility and authority insofar as interpretation and revision of the Standard are concerned. For information on requesting interpretations, see Note (5) to the Preface of CSA S16-14.

The Institute provides this Commentary as a part of its commitment to the education of those interested in the use of steel in construction. Neither the Institute nor the authors of this Commentary assume responsibility for errors or oversights resulting from the use of the information contained herein. Anyone making use of the contents of this Commentary assumes all liability arising from such use. All suggestions for improvements of this Commentary will receive full consideration for future printings.

Introduction

Since the Canadian Standards Association introduced the first limit states design standard for structural steel, S16.1-1974 "Steel Structures for Buildings-Limit States Design" in 1974, the Standard has undergone a number of technical improvements, but its major requirements have remained virtually unchanged. However, with the introduction of the 1989 edition, a number of more significant changes were introduced, in part reflecting the maturing of the Standard but also the acquisition of more detailed information on behaviour of steel structures. Specific seismic design requirements for ductile behaviour were provided, and a new ductile system, eccentrically braced frame, was introduced, The 1994 edition continued this process with the refining of some requirements and the addition of a new lateral load-resisting system, the plate wall. The 2001 edition of the Standard was reorganized in a more logical order. In addition, the Standard underwent a number of technical improvements reflecting the incorporation of research results, including a significant expansion of Clause 27, Seismic Design Requirements.

When CSA S16-09 arrived, 35 years after the birth of its first limit states design version, S16.1-1974 and 25 years after the official withdrawal of its last allowable stress design version, S16-1969, the title of the Standard was shortened to read "Design of Steel Structures". In S1609, two Annexes were added: Annex K, a normative annex that outlines the requirements for structural design for fire conditions and Annex L, an informative annex that provides information on design against brittle fracture,

Notable changes and new provisions incorporated in CSA S16-14 are: explicit recognition of several ASTM structural steel grades, use of non-matching weld electrodes as permitted in W59-13, an optional approach for design of ductile connections in moment-resisting frames, design rules for modular links in eccentrically braced frames and Annex M, an informative annex on seismic design of industrial steel structures. Some specific changes introduced in CSA S16-14 are highlighted in the Preface of the Standard itself.

Background

To serve their intended purposes, all structures must meet the requirement that the probability of occurrence of various types of collapse or unserviceability be limited to a sufficiently small value. Limit states are those conditions of the structure corresponding to the onset of the various types of collapse or unserviceability. The conditions associated with collapse are the ultimate limit states (ULS); those associated with unserviceability are the serviceability limit states (SLS), and that associated with fatigue is the fatigue limit state (FLS).

In limit states design, the capacity or performance of the structure or its components is checked against the various limit states at certain load levels. For the ultimate limit states of strength and stability, for example, the structure must retain its load-carrying capacity up to factored load levels (at the ultimate limit states), with only an acceptably small probability of being exceeded. (A factored load is the product of a specified load and its load factor.) For serviceability limit states, the performance of the structure at service load levels must be satisfactory. (For most applications, the service loads consist of dead load and one variable load only; thus the service loads are the specified loads. The National Building Code of Canada (NBCC) provides guidance on the use of companion load factors for situations where a companion loads should also be accounted for.) Examples of the serviceability requirement include prevention of damage to non-structural elements and restrictions on deflections, permanent deformations, slip in slip-critical connections, and acceleration under vibratory motion. For the fatigue limit state, the stress ranges for critical elements due to the loads applied to the structure over its useful life must not exceed the prescribed stress ranges.

The loads acting on a structure as well as the resistance of a member can only be defined statistically. When considering the ULS, a load factor (α) is applied to the specified load to take into account the fact that loads have a statistical distribution and that loads higher than those anticipated may exist, and also to take into account approximations in the analysis of the load effects. A resistance factor (ϕ) is applied to the nominal member (or component) strengths, or resistances (R), to take into account that the resistance of the member due to variability of the material properties, dimensions, and workmanship may be different than anticipated, and also to take into account the type of failure and uncertainty in the prediction of the resistance. A major advantage, therefore, of limit states design is that the factors assigned to loads arising from different sources can be related to the uncertainty of their prediction, and the factors assigned to different members and components can be related to their reliability and to the different types of failure. Thus, a greater degree of consistency against failure can be obtained (Kennedy 1974; Allen 1975; Kennedy et al. 1976).

For the failure of structural steel members by yielding, the resistance factor is taken to be 0.90 (Kennedy and Gad Aly 1980). To maintain simplicity in design, the resistance formulas for buckling or other types of member failure have been adjusted so that a uniform resistance factor, $\phi=0.90$, can be used, while providing the necessary safety required in the definition of the resistance factor. Several failure modes and applications justify the use of smaller ϕ-values. For example, smaller values for weld metals and bolts have been adopted in the Standard in order to promote a lower probability of failure for connectors.

Probabilistic studies (Allen 1975) show that consistent probabilities of failure are determined for all dead-to-live load ratios when a dead load factor of 1.25 and a live load factor of 1.50 for use and occupancy loads are used. The NBCC gives load factors for environmental loads such as those due to snow and rain, wind, and earthquakes. As well, importance factors are applied to building structures depending on their use and occupancy (building importance category), with the highest factors applied to post-disaster structures. For certain types of structures, if there is a high degree of uncertainty in the loads, the designer may elect to use larger load factors. However, in situations where the dead load and the live loads are counteractive, it
is important that α_{D} be taken as 0.9 or less, as appropriate, except that when dead load counteracts earthquake effects, α_{D} is taken as 1.0 or less.

Kennedy (1974) and Allen (1975) provide considerably more information on the type of probabilistic, calibration, and design studies that were performed while developing the limit states standard. The NBCC 2015 contains a more extensive discussion on limit states design. Kennedy and Gad Aly (1980) and Baker and Kennedy (1984) provide information on the statistical determination of the resistance factors (ϕ).

In the Commentary clauses that follow, the numbers and headings refer to the relevant clause numbers and headings of Canadian Standards Association (CSA) Standard S16-14. This will be referred to simply as S16-14 herein and after.

1. SCOPE AND APPLICATION

This Standard applies generally to steel structures and structural steel components in other structures. The analysis, design, detailing, fabrication, and erection requirements contained in the Standard normally provide a satisfactory level of structural integrity for most steel structures.

Clause 1.2 states that requirements for some specific types of structures and members are given in other CSA Standards. Situations where additional requirements may be necessary are given in Clause 1.3. The Structural Commentaries to the National Building Code of Canada provide references to the technical literature on the topic of structural integrity.

Clause 1.3 describes types of structures that may need supplementary rules for design. Crane-supporting structures are included in this list.

Clause 1.4 prohibits the substitution of any other structural steel design standard (e.g. CSA S16-1969 or AISC) for S16-14. The treatment of a number of important technical issues relating to safety, such as notional loads, beam-columns, ductility of members, and connections for earthquake loads, is either not covered or is treated in a manner inconsistent with the intent of S16-14 or the NBCC.

Clause 1.4 permits the designer (subject to approval from the Regulatory Authority) to supplement the formulas given in the Standard by a rational method of design, It is required that the structural reliability provided by the alternative (as measured by the reliability index, for example) be equal to, or greater, than those in the Standard. An example of such a rational method would be the design of stub-girders using the method set out by Chien and Ritchie (1984) based on tests (Bjorhovde and Zimmerman 1980, Kullman and Hosain 1985, Ahmad et al. 1990). Since structural design is an inextricable part of the design-construction sequence, substitution of other standards or criteria for fabrication, erection, inspection or any combination thereof, unless specifically directed by SI6-14, is prohibited.

2. REFERENCE PUBLICATIONS

The Standards listed are the latest editions at the time of printing. When reference is made to undated publications in specific clauses of this Standard, it is intended that the latest edition and revisions of these publications be used. Two new Standards have been added.

3. DEFINITIONS AND SYMBOLS

In Clauses 3.1 and 3.2, new definitions and symbols have been introduced.

3.3 Units

All coefficients appearing in equations and expressions in this Standard are consistent with forces measured in Newtons and lengths in millimetres. While most coefficients are themselves non-dimensional, in Clause 17.9.10, the coefficient 2.76 has units of megapascals (MPa).

4. STRUCTURAL DOCUMENTS

4.1 General

The title "Structural Documents" reflects the fact that drawings are only part of a broadened range of structural documents that are currently used in the industry.

4.2 Structural Design Documents

4.2.1 Structural steel design documents, by themselves, should show all member designations, axis orientations, and dimensions needed to describe the complete steel structure. It should not be necessary, in order to ascertain information on structural steel components, to refer to documents produced for the use of other trades, as in some situations the fabricator may not be given, or have access to, the documents produced for other trades.
4.2.2 This list gives the minimum information to be included on the structural design documents in a logical order (much of it, no doubt, on Drawing S-1), By serving as a checklist, it will help insure that all the information the fabricator needs is provided and will help resolve disputes before they arise.
4.2.2(l) The development of adequate connections for structural members requires that the design engineer determine the shears, moments, and axial forces resulting from the governing load combinations for which the connection must be designed. For complex combinations, a useful presentation of this information may be to list the maximum value of each (e.g. shear, moment, and axial force), along with the values of the others which coincide with that maximum. The principle is to provide coexistent sets of forces so that free body diagrams can be identified to ensure that governing forces are transmitted through connections and panels.
4.2.2(m) Structural stability, a fundamental consideration of design, extends to the behaviour of elements within a member as well as to the functioning of members in total. Stabilizing components are needed to achieve both the correct local behaviour and the correct overall behaviour anticipated by the design. Therefore, the design engineer must define bracing, stiffeners, and reinforcement that are required to prevent failure due to instability. An example is web reinforcement in moment connections to preyent local instability. It may actually be more economical to use a heavier section and avoid the need for stiffeners or reinforcing detail material. This option should best be considered at the design stage.
4.2.3 The importance of proper recording of revisions on design documents, whether electronic files or paper, is emphasized. Control of documents is addressed in Steel Fabrication Quality Systems Guideline (CISC 2002) and in the CISC Code of Standard Practice, Appendix J, in Part 7 of this Handbook.
4.2.4 Architectural, electrical, and mechanical documents may be used for supplementary information, provided that the requirements in Clauses 4.2.1 and 4.2.2 for structural steel are shown on the structural documents.

4.3 Fabrication and Erection Documents

Although five types of documents are identified in the Standard, many structures which use pre-engineered connections from company or industry sources require only shop details and erection diagrams.

4.3.1 Connection Design Details

Connection design details, which often take the form of design brief sheets, typically show the configuration and details of nonstandard connections developed for specific situations. They are submitted to the design engineer for review to confirm that the structural intent has been understood and met, and they may be stamped by a professional engineer when appropriate. Drafting technicians use connection design details to prepare shop details.

4.3.2 Shop Details

Shop details frequently take the form of traditional shop drawings and are used to provide the fabrication shop with all the specific information required to produce the member. They are
submitted to the design engineer for review to confirm that the structural intent has been understood and met. Shop details are not stamped by a professional engineer because they generally do not contain original engineering.

4.3.3 Erection Diagrams

Erection diagrams convey information about the permanent structure that is required by field personnel in order to assemble it. They are submitted to the design engineer for review, but are not stamped by a professional engineer because original engineering is generally not added by the fabricator.

4.3.4 Erection Procedures

Erection procedures outline methods and equipment, such as falsework and temporary guying cables, employed by the steel erector to assemble the structure safely. They may be submitted to the design engineer for review and may be stamped by a professional engineer when appropriate.

4.3.5 Field Work Details

Field work details are drawings which describe modifications required to fabricate members. The work may be done either in the shop or at the job site depending on circumstances. When extra material is involved, field work details effectively become shop details. They are submitted to the design engineer for review.

5. MATERIAL - STANDARDS AND IDENTIFICATION

The design requirements have been developed on the assumption that the materials and products that will be used are those listed in Clause 5. These materials and products are all covered by standards prepared by the Canadian Standards Association (CSA) or the American Society for Testing and Materials (ASTM).

The standards listed provide controls over manufacture and delivery of the materials, and products that are necessary to ensure that the materials and products will have the characteristics assumed when the design provisions of S16 were prepared. The use of materials and products other than those listed is permitted, provided that approval, based on published specifications, is obtained. In this case, designers should assure themselves that materials and products have the characteristics required to perform satisfactorily in the structure. In particular, ductility is often as important as the strength of the material. Weldability and toughness may also be required in many structures.

The values for yield and tensile strength reported on mill test reports are not to be used for design. Only the specified minimum values published in product standards and specifications may be used. This requirement was implicit in earlier editions of the Standard by definition of the terms F_{y} and F_{z} but was made explicit in more recent editions. Furthermore, when tests are done to identify steel, the specified minimum values of the steel, once classified, shall be used as the basis for design.

When, however, sufficient representative tests are done on the steel of an existing structure to be statistically significant, those statistical data on the variation of the material and geometric properties may be combined with that for test/predicted ratios available in the literature to develop appropriate resistance factors. This is by no means equivalent, for example, to substituting a new mean yield stress for a specified minimum value as the new reference value, and the bias coefficient must be established. It could well be that, although a higher mean value of the yield stress is established, the bias coefficient, depending as it does on the reference value,
would be less. It would be expected that the coefficient of variation for the material properties in particular, derived for the steel in a single structure, would be less than for steel in general.

In Clause 5.1.3, both CSA and ASTM are referenced standards for structural steel. Because W-shapes are no longer produced by Canadian mills, mill test certificates will more often refer to ASTM A992/A992M or to ASTM A572/A572M. While ASTM A572 Grade 50 is comparable to G40.21 350W, ASTM A992 is a more restrictive version of A572 Grade 50 as it was developed specifically for seismic-resistant structures, but has become the most popular grade of wide-flange products available in North America. ASTM A913/A913M grades have been added to this Clause in S16-14. While Grade 65 (450) products are usually specified, Grade 70 (485) and Grade 50 (345) W-shapes are also produced.

The Standard requires that the design properties for ASTM A500/A500M HSS be determined from a wall thickness equal to 90% of the nominal wall thickness to account for the 10% under-tolerance for thickness permitted in ASTM A500/A500M and the lack of under-mass restriction. This requirement is consistent with the practice adopted in the CISC Handbook of Steel Construction. Grade C is the dominant grade for A500 HSS in Canada. ASTM A1085, a standard introduced in 2013, covers HSS that are produced to conform to a minimum average Charpy V-notch impact value. Other specific requirements include maximum yield stress and minimum corner radius controls. At the preparation time of this Commentary, users are advised to confirm availability prior to specifying A1 085 HSS.

In Clause 5.1.7, ASTM Standards for bolts and bolt assemblies are referenced. ASTM F3125, a consolidation and replacement of six standards, A325, A325M, A490, A490M, F1852, and F2280, was published in January 2015. Since the name of each bolt standard becomes a bolt grade in this "umbrella" standard, F3125 (e.g. A490 becomes F3125 Grade A490), a seamless transition is anticipated.

6. DESIGN REQUIREMENTS

This clause clearly distinguishes between those requirements that must be checked using specified loads (the fatigue and serviceability limit states) and those which must be checked using factored loads (the ultimate limit states). Many of the serviceability requirements (deflections, vibrations, etc.) are stipulated qualitatively and guidance, in quantitative form, is provided in Annexes. Thus, the designer is permitted to use the best information available in order to satisfy the serviceability requirements, but is also provided with information that the Technical Committee on Steel Structures considers to be generally suitable, when used with competent engineering judgement.

6.1 General

6.1.2 Structural Integrity

A clause on structural integrity acts as a reminder that measures may be necessary to guard against progressive collapse as a result of a local incident. Being inherently ductile, steel structures have generally had an excellent record of behaviour when subjected to unusual or unexpected loadings. However, connection details are particularly important in achieving this ductile behaviour. Details which rely solely on friction due to gravity to provide nominal lateral force resistance may have little or no resistance to unanticipated lateral loads if subjected to abnormal uplift conditions and should be carefully evaluated for such an eventuality or completely avoided.

6.2 Loads

Dead loads are to include the additional mass of construction materials that will be built into a structure as a result of deflections of supporting members, such as a concrete floor slab placed to a level plane but supported by members that were not cambered and that deflect under the weight of the concrete.

6.3 Requirements Under Specified Loads

6.3.1 Deflection

6.3.1.2 Even though deflections are checked under the actions of specified loads, additional loading may result from ponding of rain on roofs, or the ponding of finishes or concrete, while in the fluid state, on floors or roofs. Such additional loads are to be included in the design of the supporting members under ultimate limit states as required by Clause 7. More information on ponding is available in the National Building Code of Canada (NBCC 2015).

6.3.3 Dynamic Effects

6.3.3.2 Additional information on vibrations of floor systems may be found in Allen (1974), Murray (1975), Allen and Rainer (1976), Rainer (1980), Allen et al. (1985), Allen and Murray (1993), Murray et al. (1997).

6.7 Requirements Under Fire Conditions

Background information on S16-14 Annex K, Structural Design for Fire Conditions, is available on the CISC Fire Protection webpage:
www.cisc-icca.ca/CommentaryS16AnnexK

6.8 Brittle Fracture

Annex L of S16-14 provides some design information to prevent failure of steel structures by brittle fracture. Annex L identifies the circumstances under which brittle fracture can occur and situations where brittle fracture should be considered as part of the design process. Annex L serves as a non-mandatory guide.

7. FACTORED LOADS AND SAFETY CRITERION

This clause sets forth the fundamental safety criterion (strength and stability) that must be met, namely:

$$
\text { Factored Resistance } \geq \text { Effect of Factored Loads, }
$$

or

$$
\phi R \geq \sum \alpha_{i} S_{i}
$$

The factored resistance is given by the product ϕR where ϕ is the resistance factor and R is the nominal member strength, or resistance. The resistance factors of various types of members are given in Clause 13.1.

8. ANALYSIS OF STRUCTURE

Three types of construction are recognized, namely, "rigidly connected and continuous", "simple", and "semi-rigid (or partially restrained)". While semi-rigid construction was
developed in the 1930's and 1940's, both in the USA and in the UK, and was previously a successful practice, it is now not in common use in North America.

With semi-rigid connections, because the angles between connected parts change under applied bending moments, the joint behaviour is non-linear and the moment/rotation response must be established by test, although many connection configurations have been tested and their moment/rotation responses have been compiled (Chen et al. 2011, Faella et al, 2000). Design of a semi-rigidly connected structure must take into account the effect of the "semi-rigid" connection stiffness on the stability of the structure. A second-order analysis is preferred because the non-linearities due to connection response and due to frame drift need to be assessed.

It is assumed that, if the connection has adequate capacity for inelastic rotation when subjected to the first application of factored gravity and lateral loading, under subsequent loading cycles the connection will behave elastically, although it will have a permanent inelastic deformation (Sourochnikoff 1950, Disque 1964). Such an assumption is valid except in joints where load fluctuation would create alternating plasticity in the connection (Popov and Pinkney 1969). With this form of construction, it is also important to consider the possibility of low-cycle, high-strain fatigue.

The use of open-web steel joists as connected members of these frames has been shown to be inadequate (Nixon 1981).

Clause 8 also permits the use of the two general methods of analysis - elastic and plastic analysis. Methods of elastic analysis are familiar to most designers.

8.3.2 Plastic Analysis

The use of plastic analyses at the factored load levels to determine the forces and moments throughout a structure implies that the structure achieves its limiting load capacity when sufficient plastic hinges have developed to transform the frame into a mechanism. As successive plastic hinges form, the load-carrying capacity of the structure increases above that corresponding to the formation of the initial plastic hinge until a mechanism develops. To achieve this, the members in which the hinges form before the mechanism develops must be sufficiently stocky (Class 1 sections) and well braced so that inelastic rotations can occur without loss of moment capacity.

Deflections at the specified load level are, of course, limited in accordance with Clause 6.3.1.1. Plastically designed structures are usually "elastic" at specified load levels, i.e. no plastic hinges have formed. Therefore, the deflections would generally be computed on the basis of an elastic analysis.

8.3.2(a) Material

The plastic method of analysis relies on certain basic assumptions for its validity (ASCE 1971). Therefore, restrictions are imposed to preserve the applicability of the plastic analysis theory. The basic restriction (Clause 8.3.2(a)) that the steel exhibit significant amounts of strainhardening is required to ensure that satisfactory moment redistribution will occur (Adams and Galambos 1969). This behaviour should exist at the temperatures to which the structure will be subjected in service. Also, although not explicitly stated, plastically designed structures usually entail welded fabrication, and therefore the steel specified should also be weldable. At normal temperatures all the steels referred to in Clause 5.1.3 should be satisfactory except for CSA G40.21, 700 Q and 700 QT steels, for which $F_{y}>0.85 F_{u}$.

A reassessment of the stress-strain data (Dexter and Genticore 1997, Dexter et al. 2002) showed that the requirement that the yield strength not exceed 0.80 of the ultimate strength could be relaxed to 0.85 of the latter.

8.3.2(b) Width-to-Thickness Ratios

In order to preclude premature local buckling and thus achieve adequate hinge rotation to ensure sufficient moment redistribution to reach a plastic collapse mechanism, compression elements in regions of plastic moment must have width-to-thickness ratios no greater than those specified for Class I (plastic design) sections in Clause 11.2.

8.3.2(c) Lateral Bracing

The lateral bracing requirements are considerably more severe than those for structures designed on the basis of an elastic moment distribution because of the rotation needed at the location of the plastic hinges. Such requirements, as are needed to ensure adequate behaviour in earthquakes, are the basis for these new requirements. These equations were derived for non-cyclic plastic rotations of 3 and 4 times the elastic rotation at first yield following the procedure proposed by Bansal (1971) and summarized in Chapter 10 (Figure 10.27) of Bruneau et al. (1998). For traditional plastic design, case (a) is applicable, and to provide for the ductility demands implied for the three types of seismic moment frame categories, cases (a) or (b) are applicable as indicated, Test results on inelastic beams under moment gradient are reported by Lay and Galambos (1967).

Because the final hinge in the failure mechanism does not require rotation capacity, the bracing spacing limitations of this clause do not apply, and the elastic bracing requirements of Clause I3.6(a) may be used.

Lateral bracing is required to prevent both lateral movement and twisting at a braced point. Lateral bracing is usually provided by floor beams or purlins that frame into the beam to be braced. These bracing members must have adequate axial strength and axial stiffness to resist the tendency to lateral deflection. These requirements are given in Clause 9.2. Further information on the design of bracing members is given in Lay and Galambos (1966) and Chapter 12 of Ziemian (2010). When the bracing member is connected to the compression flange of the braced member, the brace should possess bending stiffness to resist twisting of the braced member. Some information on the bending stiffness of braces is given in Essa and Kennedy (1995).

A concrete slab in which the compression flange is embedded or to which the compression flange is mechanically connected, as in composite construction, or metal decks welded to the top flange of the beam in the positive moment region, generally provide sufficient restraint to lateral and torsional displacements. When the lateral brace is connected to the tension flange, provision must be made for maintaining the shape of the cross-section and for preventing lateral movement of the compression flange. This can be accomplished with either diagonal struts to the compression flange or adequately designed web stiffeners.

8.3.2(d) Web Crippling

Web stiffeners are required on a member at a point of load application where a plastic hinge would form. Stiffeners are also required at beam-to-column connections where the forces developed in the beam flanges would either cripple the column web or, in the case of tension forces, distort the column flange with incipient weld fracture. The rules for stiffener design are given in Clause 21.3 (Kennedy et al. 1998). See ASCE (1971) for further details of stiffeners and Fisher et al. (1963) for special requirements pertaining to tapered and curved haunches.

When the shear force is excessive, additional stiffening may be required to limit shear deformations. The capacity of an unreinforced web to resist shear is taken to be that related to an average shear yield stress based on the Huber-Henckey-von Mises criterion of $F_{y} / \sqrt{3}$. For an effective depth of the web of a rolled shape of about 95% of the section depth, Clause 13.4.2 gives:

WITHIN HATCHED ZONE
$w_{c} \geq \frac{M}{0.8 \phi d_{c} d_{b} F_{s}}$

Figure 2-1

Web Thickness at Beam-to-Column Connections

$$
V_{r}=0.95 \phi w d F_{y} / \sqrt{3}=0.55 \phi A_{w} F_{y}=0.8 \phi A_{w} F_{s}
$$

At beam-to-column connections, when the shear force exceeds that permitted above, the excess may be carried by providing doubler plates to increase the web thickness or by providing diagonal stiffeners (Figure 2-1). The force in the beam flange that is transferred into the web as a shear is approximately

$$
V=M / d_{b}
$$

Equating this to the shear resistance as given in Clause 13.4.2 (where now, $w=w_{c}$ and $d=d_{c}$), and solving for the required web thickness,

$$
w_{c} \geq \frac{M}{0.8 \phi d_{c} d_{b} F_{s}}
$$

If the actual web thickness is less than w_{c}, the required area of diagonal stiffeners may be obtained by considering the equilibrium of forces at the point where the top flange of the beam frames into the column. Using a lower bound approach, the total force to be transmitted $\left(V=M / d_{b}\right)$ is assumed to be taken by the web and the horizontal component of the force in the diagonal stiffener:

$$
V=M / d_{b}=0.8 \phi w_{c} d_{c} F_{s}+\phi F_{y} A_{s} \cos \theta
$$

where

$$
\begin{aligned}
& A_{s}=\text { cross-sectional area of diagonal stiffeners } \\
& \theta=\tan ^{-1}\left(d_{b} / d_{c}\right)
\end{aligned}
$$

The required stiffener area is therefore

$$
A_{s}=\frac{1}{\cos \theta}\left(\frac{M}{\phi F_{y} d_{b}}-\frac{0.8 w_{c} d_{c} F_{s}}{F_{y}}\right)
$$

Figure 2-2
Observed and Predicted Load-Deflection Relationships

8.3.2(e) Splices

The bending moment diagram corresponding to the failure mechanism is the result of moment redistribution that occurred during the plastic hinging process. For example, points of inflection in the final bending moment distribution may have been required to resist significant moments to enable the failure mechanism to have developed (Hart and Milek 1965). To ensure that splices have sufficient capacity to enable the structure to reach its ultimate load capacity, a minimum connection requirement of $0.25 M_{p}$ is specified in Clause 8.3.2(e). Also, at any splice location, the moments corresponding to various factored loading conditions must be increased by 10% above the computed value. The splice is then designed either for the larger of the moments so increased or for the minimum requirement of $0.25 M_{p}$.

8.3.2(f) Impact and Fatigue

The use of moment redistribution to develop the strength of the structure corresponding to a failure mechanism implies ductile behaviour. Members that may be subjected repeatedly to heavy impact and members that may be subject to fatigue should not be designed on the basis of a plastic analysis because ductile behaviour cannot be anticipated under these conditions, Such members, at least for the present, are best proportioned on the basis of elastic bending moment distribution.

8.3.2(g) Inelastic Deformations

For continuous beams, inelastic deformations may have a negligible effect on the strength of the structure. For other types of structures, in particular multi-storey frames, these secondary effects may have a significant influence on the strength of the structure (ASCE 1971).

Figure 2-3
Load-Deflection Relationships

In the structure shown inset in Figure 2-2, the secondary effects have reduced the lateral load-carrying capacity (while maintaining the same vertical load) by approximately 25% (ASCE 1971; Adams 1974). The first plastic hinge formed at stage A in this structure, while the ultimate strength (considering moment redistribution) was not attained until stage C . The inelastic deformations between these two stages have reduced the overall strength of the structure. Clause 8.4 requires that the sway effects produced by the vertical loads be accounted for in design. Therefore, Clause $8.3 .2(\mathrm{~g})$ requires that, in a structure analyzed on the basis of a plastic moment distribution, the additional effects produced by inelastic sway deformations be accommodated. In most cases the actual strength of the structure can only be predicted by tracing the complete load-deflection relationship for the structure or for selected portions (Beedle et al. 1969). Methods are available to perform this type of design. For braced multi-storey frames, however, simpler techniques have also been developed (AISI 1968).

8.4 Stability Effects

Clause 8.4 recognizes that all building structures, whether unbraced or braced, are subjected to sway deformations. The vertical loads acting on the deformed structure produce secondary bending moments in the case of a moment-resisting frame, or additional forces in the vertical bracing system, in the case of a braced frame. These additional moments or forces (the stability effects) reduce the strength of the structure, as shown for a moment-resisting frame in Figure 2-2. In addition, bending moments and deflections, which exceed those predicted by a first-order analysis, are produced at all stages of loading (Adams 1974). Similar effects are produced in structures containing a vertical bracing system, as shown in Figure 2-3 where the steel frame is linked to a shear wall (Adams 1974).
8.4.1 Within the context of elastic analysis, there are essentially two general categories of procedures used to assess the stability of frames, namely, effective length approaches and notional
load approaches, In S16.1-M89, the effective length approach in use prior to that time was abandoned because of the complexity involved in getting the approach to yield the correct solution. The notional lateral load approach makes use of the actual column length ($K=1.0$) and was adopted in 1989. It has been used for the design of beam-columns in Canada since then (MacPhedran and Grondin, 2007).

The concept of notional lateral loads is an internationally recognized technique for transforming a sway buckling problem into a bending strength problem. It accounts for the effect of initial out-of-plumb in the columns and for partial yielding at factored load levels. Following the recommendation of Kennedy (1995), the notional load is applied to all design load combinations. Thus, the factored lateral force to be used in establishing the value of Δ at the various levels of the building is the summation of the applied lateral force and the notional load and the horizontal reaction to prevent sway from gravity loads. Since the notional loads are applied for the only purpose of accounting fully for the P - Δ effects on the overturning moment without the necessity of incorporating the initial out-of-plumb and inelastic effects in the analysis of the structure, they do not need to be considered for shear design. These notional shear forces do not exist when equilibrium of the structure is considered on the structure in its deformed configuration.

The magnitude of the notional lateral load, applied at each storey, is taken as 0.005 times the sum of the factored gravity loads contributed by that storey. While there is variation in international standards regarding the magnitude of the notional load coefficient (Bridge et al., 1997), Clarke and Bridge $(1992,1995)$ have shown that $0.005 \Sigma P$, established conservatively for a flagpole column (Kennedy et al., 1990b), is an appropriate value that results in an adequate prediction of strengths in comparison with "exact" plastic zone analyses (Kanchanalai, 1977). There may be, as stated above, some conservatism in applying this magnitude of notional load to all load combinations in buildings where double-curvature bending of the columns predominates.

The use of the notional lateral load fulfills several important functions. The applied notional loads transform a bifurcation problem of sway buckling into a bending strength problem. Second, because it accounts for the $P-\Delta$ moments directly, the use of effective length factors greater than 1.0 is obviated, and its use allows effective lengths equal to the actual length to be used. At best the effective lengths used for sway buckling analyses are based on elastic analyses that are not appropriate for use with beam-column interaction equations that take into account inelastic material behaviour. Third, when equilibrium is formulated including the notional loads, the girders and beams restraining the columns are designed for the increased $P-\Delta$ moments that must exist in them for equilibrium just as the columns are. The use of effective lengths only accounts for increased moments in the columns and then only in an approximate manner with assumed elastic behaviour. Thus, although there may be some slight conservatism in using a notional load of $0.005 \Sigma P$ compared to a lesser value, this is more than offset by the three advantages enumerated above.

It is noted that the flagpole column is bent in single curvature, whereas many columns in actual structures have some degree of double curvature. Consider now a sway column with complete fixity at both ends. It has very significant double curvature and an effective length of L. The sway buckling strength is now equal to the bending strength of a pin-ended column of the actual length with no notional lateral load because the effective length for buckling is equal to the actual length, L. These two cases show that the notional load required to transform the bifurcation problem of sway buckling into a bending strength problem depends on the end conditions in the actual structure and is greater when the degree of restraint is less. On the average, therefore, the notional load should be less than $0.005 \Sigma P$, but Clarke and Bridge $(1992,1995)$ deem it to be the appropriate value.

Figure 2-4
Load-Deflection Relationship - Vertical Load Only
The use of the notional lateral load remains of particular importance for structures subject to gravity loads only that may have insignificant lateral deflections and may only fail by elastic or inelastic sway buckling. Figure 2-4 shows a frame subject to vertical loads only. As the loads are increased, the effects of the vertical loads acting on the initial imperfections resulting from fabrication and erection lead to failure through instability, much the same as for the combined load case shown in Figures 2-2 and 2-3. The notional lateral loads of 0,005 times the factored gravity loads acting at each storey, as required by clause 8.4.1, simulate this condition. Figure 2-5 shows, for a frame loaded with gravity loads only, the notional lateral loads that would be used to calculate the translational moments and forces for this load combination.

When either the gravity loads or the structure or both are asymmetric, horizontal reactions at floor levels are obtained when computing $M_{f g}$, defined as the first-order moment under factored gravity loads determined assuming that there is no lateral translation of the frame as shown in Figure 2-6. These horizontal reactions, when released by applying sway forces in the opposite direction, produce translational effects and must be considered for all valid load combinations, in addition to the notional lateral loads or the actual lateral loads as appropriate.
8.4.2 Since the introduction of S16.1-M89, the designer must account for the sway effects directly. This is done by (1) performing a second-order geometric elastic analysis for the moments

Loads	Specified		Factored Gravity			Notional Lateral Load
	DL	LL	DL	LL	Total	
Level 3	10.8	22.5	13.5	33.75	47.25	$0.005(47.25 \times 34)=8.03 \mathrm{kN}$
Level 2	18.0	18.0	22.5	27.00	49.50	$0.005(49.5 \times 34)=8.42 \mathrm{kN}$

Note: For complete analysis of this frame, see Kennedy, et al, 1990.
Figure 2-5
Notional Lateral Loads for a Frame Subject to Gravity Loads
and forces, or (2) accounting for these effects by amplifying the first-order elastic translational moments by the factor U_{2}. The notional lateral loads (discussed in Clause 8.4.1) must be included in both of the above methods of analysis.

Computer programs are now commonly available to perform second-order elastic analyses based on equilibrium of the deformed structure. With these types of programs, the additional moments or forces generated by the vertical loads acting on the displaced structure (the socalled $P-\Delta$ effect) are taken into account directly and this method of analysis is the preferred method in Clause 8.4.2 In addition, most second-order programs also account for the change in column stiffness, caused by their axial loads (Galambos 1968).

The second approach in Clause 8.4 .2 is simply to amplify the results of a first-order analysis to include the $P-\Delta$ effects. With this "amplification factor method", it is necessary to do two first-order analyses, one for gravity loading and the other for translational loading. From the horizontal displacements produced by the factored lateral loads, the amplification factor U_{2} may be established. The factored moments or forces, including the effects of side-sway, may then be computed from:

$$
M_{f}=M_{f g}+U_{2} M_{f t} \text { or from } T_{f}=T_{f g}+U_{2} T_{f t}
$$

where

$$
U_{2}=\frac{1}{1-\frac{\sum C_{f} \Delta_{f}}{\sum V_{f} h}}
$$

Figure 2-6

Starting with the 2001 Standard, the upper limit of 1.4 on the amplification factor U_{2} was removed. The 1.4 limit was removed because the strength predictions for beam-columns compare well with the results of "exact" plastic zone finite element analyses when notional loads are applied to all load combinations. Nevertheless the designer is cautioned against designing structures that have excessive lateral deformations not only for the ultimate limit state of stability but also for serviceability considerations.

The solid line represents the initial misalignment. The dotted line
represents the final displaced configuration due to all the forces
acting on the system.

Figure 2-7
Δ_{0} and Δ_{b} - Two Braces

9. STABILITY OF STRUCTURES AND MEMBERS

9.1 Stability of Structures

Emphasis continues to be placed on the designer's responsibility to ensure stability of the structure and of the individual members. Clause 8.4 requires the structure as a whole to resist the $P-\Delta$ effects.

The stability of the column-girder assembly and the girder web, when a girder is continuous over a column, requires careful assessment. The column, girder web, and the girder flange are all in compression, creating a condition of inherent instability. Stability can be achieved by providing lateral support to the girder-column joint or by properly designed web stiffeners restraining the rotation of the joint. See also the commentary on Clauses 16.5.11.1, 13.6 and the references cited therein.

9.2 Stability of Members

This clause applies equally to columns, the compression chord of joists and trusses, and the compressed portion of beams. For the last, it is only necessary to compute the maximum factored compressive force in that portion. The basic equation for the stiffness of the brace (Winter 1958) is derived on the premise that the brace or braces force the member to buckle into a series of half-sine waves of length, L, the distance between bracing points, with nodes at the bracing points. For this to occur, the braces must provide both strength and stiffness.

Most bracing assemblies in buildings have inherent torsional resistance. Normally, header connections provide sufficient torsional restraint at supports; however, Cheng et al. (1988),

Cheng and Yura (1988) and Yura (1995) note that beams with deep or extended copes should be given special consideration.

Massey (1962) examined lateral bracing forces for beams, while Zuk (1956) and Lay and Galambos (1966) considered requirements for structures analysed plastically. Ziemian (2010) summarized many of the design requirements for bracing assemblies.

For additional discussion on member bracing, refer to Chapter 12 of Ziemian (2010).

9.2.1 Initial Misalignment at Brace Point

This requirement has changed in this edition of S16. Winter also showed that a critical parameter in designing the bracing is the initial out-of-straightness Δ_{0} at the brace point. Based on S16 tolerances (Clause 29.3.3), a value for Δ_{0} of no more than 0.001 times the distance between brace points may be used with Winter's model. A common construction technique used to reduce the initial misalignment is to pull the structure within tolerance at brace locations, bringing all column sections into compliance with the aforementioned Clause 29.3.3 for plumbness. Thus, when the structure is pulled into alignment, one brace point at a time, the Δ_{0} that results is the erection tolerance.

Figure 2-7 shows the critical values of Δ_{0} when two brace points exist.

9.2.2 Displacement of Bracing Systems

Δ_{b} is the displacement of the member being braced at the brace point perpendicular to the member caused by the force P_{b} and any other external forces. This deflection may be the result of axial shortening or elongation of the bracing or its flexural displacement depending on whether the bracing resistance is provided axially or by bending. In addition to the brace deformation, the brace connection deformation and the brace support displacement must be included.

The Simplified method of analysis is premised on a displacement Δ_{b} not greater than Δ_{0}, and therefore Δ_{b} shall not exceed Δ_{0}. When justified, this limit may be exceeded in either of the detailed methods.

In the case of girts bracing columns in the plane of the wall, the girts are the bracing members that deform. There could be deformation in the connections, and the shear deformation of the cladding is the displacement at the brace support.

In the case of a brace angle bracing the lower flange of a beam and connected to the upper flange of a secondary flexural member, the brace angle deforms axially; the connection to the brace angle may deform and the supporting secondary member may deflect flexurally to contribute to the deflection of the brace point perpendicular to the axis of the member.

When braces are supported by a truss system, the deformation of the truss between its points of support (assuming these are on the same line as the support of the members being braced) is the displacement of the brace supports. Figure 2-7 shows values of the displacements Δ_{0} and Δ_{b} for a member braced at two locations.

9.2.4 Twisting and Lateral Displacements

The possibility of twisting of a member at brace points should be investigated and the bracing provided if necessary to prevent this.

The top (tension) flange at a cantilever, if not braced, can deflect laterally more than the bottom flange and therefore bracing of the cantilever end tension flange should be considered.

Torsional bracing can also increase the buckling load of cantilever beams.

The distortional buckling of steel beams in cantilever-suspended-span construction was examined by Albert et al. (1992), and Essa and Kennedy (1995) investigated torsional restraint stiffness provided by open-web steel joists. In this type of construction it is essential to analyze potential lateral displacements at the tops of supporting columns, because the beam web is also in vertical compression.

An inflection point cannot be considered a brace point (Ziemian 2010). Header connections normally provide sufficient torsional restraint at supports; however, Cheng et al. (1988), Cheng and Yura (1988) and Yura (1995) note that beams with deep or extended copes do not have similar torsional stiffness and should be given special consideration. This also applies for extended shear tab connections. Sherman and Ghorbanpoor (2002) indicate that bracing near the connection will compensate for the low torsional stiffness of the connection, and Thornton and Fortney (2011) give some design examples on calculating the torsional stiffness of an unbraced connection.

Simply supported beams in single curvature typically require only lateral bracing at the compression flange.

9.2.5 Simplified Analysis

The simplified analysis permitting a brace to be designed conservatively for a force equal to $0.02 C_{f}$ has been reintroduced but with the qualification that the resulting deflection Δ_{b} shall not exceed the initial misalignment Δ_{0}, which is consistent with Winter's original provisions. As the long history of successful use has shown, this provides a brace of such strength that both the stiffness and strength requirements are generally satisfied.

9.2.6 Detailed Analysis

9.2.6.1 Second-Order Method

To begin this solution manually, a deformed configuration is assumed and bracing forces determined by statics in terms of the deflections. With these calculated forces, the resulting bracing deflections are computed and compared to the deformations initially assumed. The process is repeated until satisfactory convergence is achieved. In checking a design, if the calculated deformations are less than the assumed deformed configuration, the conditions of strength and stiffness are satisfied and there is no need for further calculations, unless further optimization is desired. Alternatively, brace forces and deformations can be obtained from a computerized second-order analysis that accounts for $P-\Delta$ effects provided that the structure is modelled with the most critical initial misalignment condition.

Iterations to determine the forces and deflections are performed on the most critical deformed configuration. Typical deformed configurations to be investigated include those shown on Figure 2-7. When hinges are assumed in the braced member at the brace points, a slightly conservative solution is obtained.

The second-order method is useful in checking as-built conditions.

9.2.6.2 Direct Method

The design brace force is given directly in the expression for P_{b}, where the factor β from Winter (1958) depends on the number of equally spaced braces by assuming that the displacement of the bracing system Δ_{b} is equal to the initial misalignment Δ_{0}. The required brace stiffness is $P_{b} /\left(\Delta_{\mathrm{b}}+\Delta_{0}\right)$.

The initial assumption that Δ_{b} does not exceed Δ_{0} must be confirmed.
By defining the maximum compressive force, C_{f}, as the maximum compression force in the segments bound by the brace points on either side of the brace point under consideration,
the situation where a brace occurs near a point of contraflexure is accounted for. For trusses this applies when there is a significant change in the force in the chord at a panel point.

Consideration shall be made for cantilevered beams and beams bent in double curvature. Yura (1993) gives an amplification factor $C_{d}=\left[1+\left(M_{s} / M_{l}\right)^{2}\right]$ where M_{s} and M_{l} refer to the smaller and larger moments, respectively. This yields a maximum value of 2 when $M_{s}=M_{l}$.

For loads applied above the shear centre, brace forces may be amplified. Yura (1993) gives a factor $C_{d}=(1+1.2 / n)$ where n is the number of braces. Braces counterbalance this effect.

Calibration of the bracing requirements with finite element analyses suggest that in some cases twisting of chords in trusses may result in brace forces 25% higher than those predicted by the direct method.

9.2.8 Accumulation of Forces

When an element in a structure must resist the bracing forces from more than one member, the average maximum out-of-straightness of the members should be used to compute the bracing forces. Provided that member misalignment is independent among members, it can be shown statistically that the average maximum out-of-straightness is a function of the maximum out-of-straightness of one member divided by the square root of the number of members (Kennedy and Neville 1986). The expression given in the standard is a conservative empirical equation that applies the statistical reduction to only 0.80 of the initial misalignment. In the design of such bracing systems it must be recognized that the (axial) displacement of the in-line brace increases from the location where the brace is affixed or restrained to the most remote member, and the force in the in-line brace increases in the opposite direction. Beaulieu and Adams (1980) provide more guidance in selected cases.

In many cases two parallel frames or members are brought into alignment, and whatever misalignment remains is reflected in the initial position of the remaining members. The statistical reduction in the initial misalignment does not apply, and all members have essentially the same Δ_{0}.

9.2.9 Torsion

Because the shear centre of a monosymmetric or an asymmetric section does not coincide with the centroid, these sections may be loaded so as to (unintentionally) produce torsion and biaxial bending. Both the connections and the members providing reactions should be checked.

10. DESIGN LENGTHS AND SLENDERNESS RATIOS

10.1 Simple Span Flexural Members

For design purposes, it is usually convenient to consider the length of a member as equal to the distance between centres of gravity of supporting members. In most instances the difference resulting from considering a member to be that length rather than its actual length, centre-to-centre of end connections, is small. In some cases, however, there is sufficient difference to merit computing the actual length. Regardless of the length used for design, the actual connection detail may cause an eccentric load, or moment, to act on the supporting member, and this effect must be taken into account.

10.3 Members in Compression

10.3.1 General

The unbraced length and the effective length factors may be different for different axes of buckling. Information about effective lengths is given in Ziemian (2010) and Tall et al. (1974).

Further guidance is provided in Annexes F and G of the Standard. The second-to-last sentence of Clause 10,3.1 introduces the concept that effective length factors depend on the potential failure mode - how the member would fail if the forces (and moments) were increased sufficiently - as discussed in subsequent clauses.

10.3.2 Failure Mode Involving Bending In-Plane

When the end moments and forces acting on a beam-column have been determined for the displaced configuration of the structure, that is to say, the sway effects have been included as required by Clause 8.4 , the in-plane bending strength of the beam-column can be determined by analyzing a free-body of the member isolated from the remainder of the structure. In-plane displacements between the ends, which contribute to failure, arise from the end-moments and forces acting on the actual length. When the actual member length and the actual (or at least approximate) deflected shape are used, the analysis of the free-body will yield close to the correct member strength. Recourse to effective length factors is neither necessary nor appropriate.

When the actual member length is used together with the interaction expressions of Clause 13.8, the analysis is approximate and the in-plane member bending strength obtained will tend to be conservative. This simply arises because the value of the compressive resistance inherent in the interaction expression by using a length equal to the actual length (a K factor of 1.00) is that corresponding to single curvature buckling. For any other deflected shape, having accounted for sway effects, the compressive resistance is greater because the points of inflection of the deflected member shape are less than the member length apart. Under these circumstances, a better estimate of the strength, as is indeed permitted under Clause 1.4, can be obtained when the compressive resistance is based on the actual distance between points of inflection. Inelastic action of the member in the structure, however, may make this determination onerous. Therefore the relatively simple but sometimes conservative approach given in the Standard which obviates the use of effective length factors is presented as the usual procedure.

10.3.3 Failure Mode Involving Buckling

The compressive resistance of an axially loaded column depends on its end restraints, as does the out-of-plane buckling resistance of a beam-column under uniaxial strong-axis bending. The failure is a bifurcation mechanism.

10.4 Slenderness Ratios

The maximum slenderness ratio of 200 for compression members, stipulated as long ago as the 1974 Standard, has been retained in S16-14 for the reason that strength, or resistance, of a compression member becomes quite small as the slendermess ratio increases and the member becomes relatively inefficient.

For considerations of strength, no limiting slenderness ratio is required for a tension member and, indeed, none is applied to wire ropes and cables. However, a slenderness ratio limit of 300 is given with permission to waive this limit under specified conditions. The limit does assist in the handling of members and may help prevent flutter under oscillating loads such as those induced in wind bracing designed for tension loads only. Tension chords of trusses and joists have more stringent slenderness ratios (see commentary on Clauses 15 and 16).

Members whose design is governed by earthquake loadings may be subject to more stringent slenderness ratios, depending on the ductility requirements of the lateral load-resisting system. See Commentary on Clause 27.

Detail	Class 1	Class 2	Class 3
	$\frac{b_{e i}}{t} \leq \frac{145}{\sqrt{F_{y}}} \dagger$	$\frac{b_{e t}}{t} \leq \frac{170}{\sqrt{F_{y}}} \dagger$	$\frac{b_{o t}}{t} \leq \frac{200}{\sqrt{F_{y}}}$ Flanges of l's in minor-axis bending $\frac{b_{a t}}{t} \leq \frac{340}{\sqrt{F_{y}}}$
		-	Flanges of C's, asymmetric cover plates, plate girder stiffeners $\frac{b_{\theta 1}}{t} \leq \frac{200}{\sqrt{F_{y}}}$
$\stackrel{t}{4} \stackrel{\text { b }}{\sim}$	-	-	L's not continuously connected $\frac{b_{e 1}}{t} \leq \frac{250}{\sqrt{F_{y}}}$
	$\frac{b_{o i}}{t} \leq \frac{145}{\sqrt{F_{y}}} t$	$\frac{b_{e l}}{t} \leq \frac{170}{\sqrt{F_{y}}} \dagger$	$\frac{b_{a 1}}{t} \leq \frac{340}{\sqrt{F_{y}}}$
	Bending only $\frac{h}{w} \leq \frac{1100}{\sqrt{F_{y}}}$ Axial compression	Bending only $\frac{h}{w} \leq \frac{1700}{\sqrt{F_{y}}}$ Axial compression	Bending only $\frac{h}{w} \leq \frac{1900}{\sqrt{F_{y}}}$ Axial compression $\frac{h}{w} \leq \frac{670}{\sqrt{F_{y}}}$
HSS	$\frac{b_{\text {el }}}{t} \leq \frac{420}{\sqrt{F_{y}}}$	$\frac{b_{e l}}{t} \leq \frac{525}{\sqrt{F_{y}}}$	$\frac{b_{\theta i}}{t} \leq \frac{670}{\sqrt{F_{y}}}$
	$\frac{b_{e l}}{t} \leq \frac{525}{\sqrt{F_{y}}}$	$\frac{b_{e l}}{t} \leq \frac{525}{\sqrt{F_{y}}}$	$\frac{b_{e t}}{t} \leq \frac{670}{\sqrt{F_{y}}}$
		-	$\frac{b_{\text {el }}}{t} \leq \frac{840}{\sqrt{F_{y}}}$
	Bending only $\frac{D}{t} \leq \frac{13000}{F_{y}}$ Axial compression	Bending only $\frac{D}{t} \leq \frac{18000}{F_{y}}$ Axial compression	Bending only $\frac{D}{t} \leq \frac{66000}{F_{y}}$ Axial compression $\frac{D}{t} \leq \frac{23000}{F_{y}}$

\dagger Symmetric about plane of bending or including asymmetry effects in analysis
Figure 2-8
Width-to-Thickness Ratios for Compression Elements

11. WIDTH (OR DIAMETER)-TO-THICKNESS - ELEMENTS IN COMPRESSION

Clause 11 emphasizes the distinction between elements in axial compression and elements in flexural compression by placing the maximum width-to-thickness ratios for these elements in Tables 1 and 2 respectively.

Clause 11.1.1 identifies four categories of cross-sections, Class 1 through Class 4, based upon the width-thickness ratios of the elements of the cross-section in compression that are needed to develop the desired flexural behaviour. With the ratios given in Table 2 of Clause 11 for Classes I, 2, or 3, the respective ultimate limit states will be attained prior to local buckling of the plate elements. These ultimate limit states are: Class I - maintenance of the plastic moment capacity (beams), or the plastic moment capacity reduced for the presence of axial load (beam-columns), through sufficient rotation to fulfill the assumption of plastic analysis; Class 2 - attainment of the plastic moment capacity for beams, and the reduced plastic moment capacity for beam-columns, but with no requirement for rotational capacity; Class 3 -attainment of the yield moment for beams, or the yield moment reduced for the presence of axial load for beam-columns. Class 4 - have plate elements that buckle locally before the yield strength is reached.

Elements in Flexural Compression

The requirements given in Figure 2-8 for elements of Class 1, 2, and 3 sections in flexural compression, particularly those for W -shapes, are based on both experimental and theoretical studies, For example, the limits on flanges have both a theoretical basis (Kulak and Grondin 2014; ASCE 1971; Ziemian 2010) and an extensive experimental background (Haaijer and Thurlimann 1958; Lay 1965; Lukey and Adams 1969). For webs in flexural compression the limits $1100 / \sqrt{F_{y}}, 1700 / \sqrt{F_{y}}$ and $1900 / \sqrt{F_{y}}$ for Class 1,2 and 3 , respectively, when $C_{f} / \phi C_{y}=1.0$ come from both theory and tests on Class 1 sections (Haaijer and Thurlimann 1958) but mostly from test results for Class 2 and 3 sections (Holtz and Kulak 1973 and 1975).

For circular hollow sections in flexure, see Stelco (1973) for the requirements for Class 1 and Class 2 sections and Sherman and Tanavde (1984) for Class 3.

Elements in Axial Compression

The distinction between classes based on moment capacity does not apply to axially loaded members as the plate elements need only reach a strain sufficient for the plate elements to develop the yield stress. This strain is affected by the presence of residual stresses, but there is no applied strain gradient across elements of the cross-section as there is for members subject to flexure. The width-thickness limits for the various plate elements are not dependent on the Class of the section and are only a function of the residual stress pattern and the edge conditions. Thus for webs, from Table 2 in the Standard for each of Classes 1,2 and 3 when $C_{f} / \phi C_{y}=1.0$, the limit on h / w is the same value of about $670 / \sqrt{F_{y}}$ as given in Table 1. The width-thickness limit for the flanges of axially loaded columns, based on the same argument, is the same as for Class 3 beam flanges, i.e., 200/ $\sqrt{F_{y}}$ (Dawe and Kulak 1984). As well the limit on the D / t ratio of $23000 / F_{y}$ (Winter 1970) for circular hollow sections in axial compression is the same irrespective of the Class.

Elements in Compression Due to Bending and Axial Load

(a) Major-axis bending and axial compression

In Figure 2-9, the requirements for webs in compression ranging from compression due to pure bending to that due to pure compression are plotted. Because all of the web is in

Figure 2-9
Width-to-Thickness Ratios for Webs
compression for columns and only one-half for beams, the depth-to-thickness limits vary as a function of the amount of axial load. The results presented here reflect the research results of Dawe and Kulak (1986).
(b) I-sections in minor-axis bending and axial compression

Since the applied stresses in Class 3 I-sections remain linear-elastic, the web experiences little compressive stress due to bending. Hence, the h / w limits for Class 3 sections in combined major-axis bending and axial compression also apply to Class 3 sections in combined minoraxis bending and axial compression. For Class 1 and Class $2 I$-sections, h / w limits that are more stringent than those for major-axis bending and axial compression have been adopted in recognition of the full web in uniform compression.
(c) I-sections in biaxial bending and axial compression

When minor-axis bending stresses dominate in Class 1 and Class 2 I-sections in biaxial bending and axial compression, more stringent h / w limits than those for major-axis bending and axial compression also apply.

Class 4 Sections

Sections used for columns, beams, or beam-columns may be composed of elements whose width-to-thickness ratios exceed those prescribed for Class 3 provided that the resistance equations are adjusted accordingly. These sections, called Class 4, are evaluated according to the rules given in Clause 13.3 or 13.5 as applicable.

12. GROSS AND NET AREAS

12.1 Application

The design and behaviour of tension members is integrally related to the proportioning and detailing of connections. Consequently, Clauses 12,13.2 and 13.11 are related. Two possible overall failure modes exist: unrestricted plastic flow of the gross section and fracture of a net
section. The second of these consists itself of three modes depending on the failure path and the degree of ductility available. The Commentary on Clause 13.2 discusses three specific tensile failure modes and that on Clause 13.11 treats combined tension and shear. Commentaries on failure areas are given here.

12.2 Gross Area

Yielding on the gross area from one end of the member to the other resulting in unrestricted plastic flow can occur before fracture on a net section. The gross area is obtained simply as the sum of the products of the thickness and gross widths of all cross-sectional elements.

12.3 Net Area

This clause defines areas used to determine tension member resistances. The requirements apply to both bolted and welded connections.

12.3.1 General

When each portion of the cross-section of a tension member is connected with sufficient fasteners to transmit the load attributable to that portion, the stress distribution at the connection is reasonably uniform, and the provisions of Clause 12.3.1 apply to the net area calculations. To establish the critical net area, all potential failure paths are examined. When the failure plane includes segments inclined to the applied force, an empirical term, $s^{2} t / 4 \mathrm{~g}$, is added to the net area to correct for the presence of each inclined segment.

In determining the net area by summing the net area of each segment along the critical path, it is assumed, as has been demonstrated (Birkemoe and Gilmor 1978; Ricles and Yura 1983; Hardash and Bjorhovde, 1985), that all segments reach their full capacity simultaneously.

12.3.2 Allowance for Bolt Holes

The 2 mm allowance for bolt holes accounts for distortion or local material damage that may occur in forming the hole by punching. If it is not known at the design stage that the holes will be drilled or sub-punched and reamed, then punched holes should be assumed. The 2 mm allowance also is used with oversize or slotted holes.

12.3.3 Effective Net Area - Shear Lag

When the critical net section fracture path crosses unconnected cross-sectional elements, the directly connected elements tend to reach their ultimate strength before the complete net section strength is reached due to shear lag. When all cross-sectional elements are directly connected, shear lag does not occur and the effective net area is the total net area.

The loss in efficiency due to shear lag can be expressed as a reduction in the net area. Munse and Chesson (1963) suggested that this reduction could be taken as $1-\bar{x} / L$ where \bar{x} is the distance from the shear plane to the centroid of that portion of the cross-section being developed and L is the connected length.

Because the connected length is usually not known at the time of tension member design, reduction factors have been derived for specific cases, as given in Clause 12.3.3.2, based on an extensive examination of the results of over 1000 tests (Kulak et al. 1987). The reduction factor depends on the cross-sectional shape and the number of bolts (2,3 or more) in the direction of the tensile load.

More severe reductions for shear lag are provided for angles connected by one leg based on work by Wu and Kulak (1993), who examined many test results on angles in tension connected with mechanical fasteners.

Figure 2-10 Dimensions Used for Shear Lag Calculations

When block tear-out occurs in those elements that are directly connected, shear lag is not a factor. Shear lag need only be considered when the potential failure path under consideration crosses unconnected elements.
12.3.3.3 Similar reductions due to shear lag have been observed in welded connections (Kulak et al. 1987) when only welds parallel to the tensile load in the member are used. If the elements of the cross-section are connected by welds transverse to the tensile load, no reduction due to shear lag is necessary. For welded connections with matching electrodes and material of G40.21-300W grade steel, shear lag will be critical for cases where $A_{n e} \leq 0.78 \mathrm{Ag}$. For angles, this generally occurs when the length of weld along the toe exceeds the length of weld along the heel.

When the weld length is less than the distance between welds, it is likely that the weld is critical.

Provisions for shear lag in bolted and welded angles are illustrated in Figure 2-10.
12.3.3.4 The shear lag expressions from past specifications have been expanded to specifically address slotted HSS brace end connections. This addition reflects the work of Martinez-Saucedo and Packer (2009) who demonstrated that a non-linear function best described the shear lag effect on a number of different slotted round and rectangular/square HSS connections. This function, designated U for the cross-sectional efficiency such that $A_{n e}=U A_{n}$, is plotted on Figure 2-11 and makes a smooth transition across the three limit states observed during testing: (1) yielding and necking, (2) net section fracture from shear lag effects, and (3) tube wall tear out from block shear. The new expression from clause 12.3.3.4 is seen to be a reasonably conservative linear approximation of the expression proposed by Martinez-Saucedo and Packer. The term was introduced to emphasize that the eccentricity that should be considered in the shear lag expressions should be measured from the face of the gusset.

Figure 2-11
Shear Lag Effects on Slotted HSS Brace Ends

12.4 Pin-Connected Members in Tension

The dimensional requirements presented in Figure 2-12 must be met to provide for the proper functioning of the pin.

The pin hole shall be located midway between the edges of the member in the direction normal to the applied force.

The plate shall be of uniform thickness. The width of the plate at the pin hole shall not be less than $2 b_{e}+d$, and the clear end distance, a, beyond the bearing end of the pin hole, parallel to the axis of the member, shall not be less than $1.33 b_{e}$. The corners beyond the pin hole may be cut at 45° to the axis of the member, provided $c \geq a$ as shown in Figure 2-12.

Pin-connected members are occasionally used as tension members with very large dead loads. Pin-connected members are not recommended when there is sufficient variation in live loading to cause wearing of the pins in the holes.

Dimensional Requirements

1. $a \geq 1.33 b_{e}$
2. $w \geq 2 b_{e}+d$
3. $c \geq a$
where $b_{a}=2 t+16 \mathrm{~mm} \leq b$

Figure 2-12
Dimensional Requirements for Pin-Connected Members

13. MEMBER AND CONNECTION RESISTANCE

13.1 Resistance Factors

For convenience, all resistance factors are listed in Clause 13.1. The long-used basic value of ϕ of 0.90 for most resistances continues to provide consistent and adequate values of the reliability index when used with the load factors of Clause 7.2. (Kennedy and Gad Aly 1980, Baker and Kennedy 1984, Schmidt and Bartlett 2002). In S16-14, no new resistance factors have been added to the group.

In S16-09, the resistance factor for bolt bearing on steel was increased from 0.67 , adopted in a previous edition of the Standard, to 0,80. A recent reliability analysis demonstrated that a resistance factor of 0.80 provides an adequate margin of safety (Stankevicius et al. 2009). In earlier versions of $\$ 16$, the resistance factor $\phi=0.90$ was used in the equation for rupture of tension members at the net section. This resistance factor was multiplied by a factor of 0.85 to increase the safety index to about 4.0 to 4.5 for this ultimate limit state. Beginning in S16-09, 0.85ϕ has been replaced by $\phi_{u}=0.75$, which is just slightly lower than 0.85ϕ. The resistance factor ϕ_{c} is 0.65 , which is consistent with the reinforced concrete design standard A23.3.

13.2 Axial Tension

The two overall potential failure modes for tension members and their connections are yielding of the gross section and fracture of a net section. Fracture of a net section further consists of three possible modes depending on how the elements of the cross-section are connected and how the net sections are loaded. Thus all possible failure modes described must be examined to establish the value that governs the factored tensile resistance. The resistances of two of the fracture modes chiefly involving tension on the net section are presented in Clause 13.2. The failure mode involving a combination of tension and shear, in which a block of material tears out, is referred to as block shear failure and is discussed in the commentary to Clause 13.11.

The appropriate areas to be used in each of the three modes are described in Clause 12.
The first of the three failure modes involves unrestricted plastic flow of the gross section when the yield deformations over the length of the member are excessive. This represents a limit state for which the failure is gradual. A reliability index β of 3.0 is considered acceptable for the tension member and thus the tensile resistance is

$$
T_{r}=\phi A_{g} F_{y} ;(\text { with } \phi=0.90)
$$

The second failure mode, involving a combination of tension and shear, in which a block of material tears out - block shear failure - is discussed in the commentary on Clause 13,11.

The third failure mode involves fracture of the member at the net section. The net section area can either be fully effective if all parts of the cross-section are connected, or it can be only partially effective if shear lag is present. Because this fracture occurs with little deformation and no reserve of strength exists beyond rupture, an increased value of β is appropriate for cases of fracture at the net section. In S16-14 (since S16-09) the tensile resistance for this mode is written as:

$$
T_{r}=\phi_{u} A_{n e} F_{u}
$$

The resistance factor $\phi_{u}=0.75$ used for this limit state results in an increased value of β of about 4.5. This philosophy is consistent with the reduced resistance factor used for connectors (bolts, welds, and shear connectors). The net effective area, $A_{n e}$, accounts for possible shear lag effect. If no shear lag is present, then $A_{n e}=A_{n}$.

Clause 13.2(b) applies to pin connections, except that more specific requirements apply to eyebars. The equation in (i) provides the gross-section yielding resistance; the equation in (ii) gives the net-section fracture resistance, and the equation in (iii) covers shear rupture or end tear-out.

13.2(b) Pin Connections

The tensile strength requirements for pin-connected members use the same resistance factor ϕ as elsewhere in this Standard for similar limit states. However, the definitions of effective net area for tension and shear, as given in Clause 12.4, are different. The requirements in this Clause have been adapted from ANSI/AISC 360-10. Design of eyebars requires more specific rules.

13.3 Axial Compression

Depending on the type of cross-section, the buckling load of an axially loaded compression member may be governed by flexural buckling, by torsional buckling or by flexural-torsional buckling.

13.3.1 Flexural Buckling of Doubly Symmetric Shapes

Axially loaded compression members with doubly-symmetric cross-sections, such as wideflange shapes, I-shaped and HSS members that dominate in steel construction, normally reach their ultimate capacity either by yielding or by flexural buckling, the most common buckling mode.

Steel columns are conveniently classified as short, intermediate, or long members, and each category has an associated characteristic type of behaviour. A short column is one that can resist a load equal to the yield load ($C_{y}=A F_{y}$). A long column fails by elastic buckling. The maximum load depends only on the bending stiffness ($E I$) and length of the member. Columns in the intermediate range are most common in steel buildings. Failure is characterized by inelastic buckling and is greatly influenced by the magnitude and pattern of residual stresses that are present and the magnitude and shape of the initial imperfections or out-of-straightness. These effects are less severe for both shorter and longer columns. The expressions in this clause account for these effects that are dependent on the cross-section (Bjorhovde 1972).

Figure 2-13
Typical Frequency Distribution Histograms for the Maximum Strength of 112 Column Curves ($e / L=1 / 1000$)

Figure 2-13 indicates the variations in strengths for columns of three different values of the slenderness parameter, λ, and with the same out-of-straightness patterns and different residual stress patterns.

The compressive resistance expressions of Clause 13.3.1 are expressed in double exponential form (Loov 1996). With values of the parameter n of 1.34 and 2.24 for the cases shown in Clause 13.3.1, the expressions are always within 3% and generally within 1% of column Curves 2 and 1, respectively, of the Structural Stability Research Council (SSRC) (Ziemian 2010).

Steel shapes, unless explicitly stated, are assigned to SSRC Curve $2(n=1.34)$ which is used for hot-rolled, fabricated structural sections and for cold-formed, non-stress-relieved Class C hollow structural sections manufactured according to CSA Standard G40.20 (Bjorhovde and Birkemoe 1979). HSS produced to ASTM A500 grades B and C are cold-formed non-stress relieved, and the use of $n=1.34$ is therefore appropriate.

Because of a more favourable residual stress pattern and out-of-straightness, hot-formed or cold-formed stress relieved (Class H) hollow structural sections (Kennedy and Gad Aly, 1980) are assigned to SSRC Curve 1 or its equivalent curve here with a value of $n=2.24$. For the same reasons, doubly-symmetric three-plate members with flange edges oxy-flame-cut are also assigned to the curve with $n=2.24$ (Chernenko and Kennedy, 1991).

For heavy sections (W310×313 and heavier and W360×347 and heavier, referred to as Groups 4 and 5 sections in earlier versions of CSA Standard G40.20) made of ASTM A7 or A36 steel and welded sections fabricated from universal mill plate, a resistance less than that corresponding to $n=1.34$ (SSRC Curve 2) is appropriate, and it is recommended that a value of $n=0,93$, corresponding to Column Curve 3 (Ziemian 2010), be used.

Because column strengths are influenced by the magnitude and distribution of residual stresses, care should be exercised in the use of the expressions in this Standard. For example, adding material such as welded cover plates increases the area and may reduce the slenderness ratio of an existing column, but it may also increase the compressive residual stresses in fibres remote from the centroid of the member, thus detracting from the strength.

13.3.2 Flexural, Torsional or Flexural-Torsional Buckling

Two other modes of buckling, which may occur prior to flexural buckling, are torsional or flexural-torsional buckling.

Torsional buckling with twisting about the shear centre is a possible failure mode for pointsymmetric sections, e.g. a cruciform section, and in some circumstances, for doubly-symmetric sections. Flexural-torsional buckling, a combination of torsion and flexure is a possible failure mode for open sections that are singly-symmetric or asymmetric such as T's and angles. Thus, for sections with coincident shear centre and centroid, three potential compressive buckling modes exist (two flexural and one torsional), while for singly symmetric sections two potential compressive buckling modes (one flexural and one flexural-torsional) exist and, for a nonsymmetric section, only one mode (flexural-torsional) exists. Closed sections, strong torsionally, also do not fail by flexural-torsional buckling (see Ziemian 2010). For the theory of elastic flexural-torsional buckling see Goodier (1942), Timoshenko and Gere (1961), Vlasov (1959) and Galambos (1968). The equations given here are developed in the latter among others.

As the problem of inelastic flexural-torsional buckling is quite complex and is amenable generally only to inelastic finite element analyses, the approach given here is to compute the elastic buckling stress, F_{e}, from the equations given for doubly symmetric, singly symmetric or asymmetric sections and then calculate an equivalent slenderness ratio $\lambda=\sqrt{F_{y} / F_{e}}$ to be used in the equations of Clause 13.3. This comes from the fact that an elastic buckling curve,
when non-dimensionalized by dividing by F_{y} can be written as $F_{e} / F_{y}=1 / \lambda^{2}$. When the inelastic equations of 13.3 are entered with the equivalent slenderness ratio, an inelastic compressive resistance results.

The equations given here are equivalent to those in CSA Standard S136. There, however, for singly symmetric sections, the x - x axis is taken as the axis of symmetry, because coldformed channel sections are frequently used.

13.3.3 Single-Angle Members in Compression

The design of single angles subjected to axial compression is addressed. The angle is connected by a single leg, which is attached to a gusset plate or the projecting leg of another member by welding or by a bolted connection (at least two bolts), and is not subjected to any transverse loading. The effect of end eccentricity and rotational end restraint, hence, any resulting flexure of the angle, is indirectly accounted for by incorporating the equivalent slenderness expressions provided in this Clause. These expressions have also been adopted by the AISC Specification (2010b). They are essentially equivalent to those specified for equal-leg angles as web members in latticed transmission towers in ASCE 10-97 (ASCE 2000). The slenderness expressions are considered valid for equal-leg angles or unequal-leg angles connected by the longer leg (ratio of long leg / short leg < 1.7). It is assumed that significant restraint about the y-axis, which is perpendicular to the connected leg (note regarding convention: where the longer leg is connected, this axis is defined as the x -axis in the section properties tables for single angles in the CISC Handbook), exists due to the end connections. This causes the angle to flex and buckle primarily about the x-axis, hence, the use of the radius of gyration about the geometric axis parallel to the connected leg, r_{x}. The expressions for box trusses reflect greater rotational end restraint as compared to that provided by planar trusses. The slenderness expressions are not intended for use in the calculation of compression resistance of single angles used as diagonal braces in a braced frame. The procedure allows for the use of unequal-leg angles attached by the smaller leg provided that the equivalent slenderness is increased by an amount that is a function of the ratio of the longer to the shorter leg lengths. A minimum slenderness limit based on the slenderness about the minor principal axis must be met in all cases.

If the single-angle compression members cannot be evaluated using the equivalent slenderness expressions, then the provisions of Clause 13.3.2 shall be used for design accounting for the effect of end eccentricity and rotational end restraint. In evaluating C_{r}, the effective length due to end restraint should be considered. The procedure documented by Lutz (1992) to compute an effective radius of gyration for the angle can be implemented.

13.3.5 Members in Compression Subjected to Elastic Local Buckling

Two alternatives are available for approximating the factored compressive resistance of compression members that do not meet the local buckling requirements. The first is based on the notional removal of the width in excess of the limit for plate elements in axial compression to determine a reduced cross-sectional area. This area is used with the specified minimum yield strength and a slenderness based on the gross cross section to determine the factored compressive resistance by Clause 13.3 .2 or 13.3 .3 . In the second alternative, the existing b / t ratio is used to establish the effective yield strength of a section just meeting the Class 3 limits. With this reduced yield strength and the gross cross section properties, Clause 13.3.2 or 13.3.3 establishes the factored resistance. Results by the two methods will not necessarily be the same. It is not necessary to refer to CSA S136 for members in axial compression that are subjected to elastic local buckling,

$$
\begin{array}{lll}
F_{c r i}=\frac{290 \sqrt{F_{y} k_{v}}}{h / w} & k_{v}=4+\frac{5.34}{(a / h)^{2}} & \text { when } \frac{a}{h}<1 \\
F_{c r e}=\frac{180000 k_{v}}{(h / w)^{2}} & k_{v}=5.34+\frac{4}{(a / h)^{2}} & \text { when } \frac{a}{h} \geq 1
\end{array}
$$

$$
F_{t}=k_{a}\left(0.50 F_{y}-0.866 F_{c r i}\right) \text { when } 502 \sqrt{k_{v} / F_{y}}<h / w \leq 621 \sqrt{k_{v} / F_{y}}
$$

$$
=k_{a}\left(0.50 F_{y}-0.866 F_{c r e}\right) \text { when } 621 \sqrt{k_{v} / F_{y}}<h / w
$$

Figure 2-14
Ultimate Shear Stress - Webs of Flexural Members

13.4 Shear

13.4.1.1 Elastic Analysis

The expressions for shear strength are given for unstiffened and stiffened plate girders. Unstiffened plate girders and rolled beams are simply special cases for which the shear buckling coefficient, $k_{v}=5.34$.

The four ranges of resistance based on Basler (1961) correspond to the following modes of behaviour and are illustrated in Figure 2-14 for stiffened webs:
(a) Full yielding followed by strain-hardening and large deformation. The limiting stress of $0.66 F_{y}$ corresponds to shear deformation into the strain-hardening range and is higher than that derived from the von Mises criterion $\left(0.577 F_{y}\right)$, which forms the basis of Clause 13.4.2 for plastic analysis.
(b) A transition curve between strain-hardening and inelastic buckling at full shear yielding. ($F_{s}=0.577 F_{y}$);
(c) Inelastic buckling, $F_{c r i}$, accompanied by post-buckling strength, F_{t}, due to tension field action, if the web is stiffened; and,
(d) Elastic buckling, $F_{\text {cre }}$, accompanied by post-buckling strength, F_{t}, due to tension field action, if the web is stiffened.

In computing the shear resistance, it is assumed that the shear stress is distributed uniformly over the depth of the web. The web area $\left(A_{w}\right)$ is the product of web thickness (w) and

Figure 2-15

Moment-Rotation Curves

web depth (h) except for rolled shapes where it is customary to use the overall beam depth (d) in place of the web depth (h).

In panel zones and locations where strain-hardening develops quickly after the onset of shear yielding, the use of $0.66 F_{y}$ is valid.

13.4.2 Plastic Analysis

For structures analyzed plastically, high shears and moments may occur simultaneously at a hinge location. Yang and Beedle (1951) have shown that, when the maximum shear stress is limited to the von Mises value, the flexural resistance can be maintained at M_{p}. Taking the effective section depth as 95% of the nominal depth, this Clause gives an approximate shear resistance limited to the von Mises stress. (See Commentary to Clause 8.3.2(d)).

13.4.3 Webs of Flexural Members Not Having Two Flanges

When cross-sections do not have two flanges, the shear stress distribution can no longer be assumed to be uniform. For W-shapes with one flange coped, the elastic shear stress distribution may be determined from $\tau=V Q / I t$. Limiting the maximum value to $0.66 F_{y}$ is conservative as it does not allow for any plastification as shear yielding spreads from the most heavily stressed region. For W-shapes with two flanges coped, a parabolic shear stress distribution results from this procedure with a maximum shear stress equal to 1.5 times the average. The maximum shear stress can be based on strain-hardening provided shear buckling does not occur.

13.4.4 Pins

Additional information for pins in combined shear and moment is given in the Canadian Highway Bridge Design Code, CSA S6-14.

13.5 Bending - Laterally Supported Members

The factored moment resistances are consistent with the classification of cross-sections given in Clause 11, as illustrated by moment-rotation curves given in Figure 2-15.

Figure 2-16
Variation of Uniform and Nonuniform Moment Resistances

The fully plastic moment, M_{p}, attained by Class 1 and 2 sections, implies that all fibres of the section are completely yielded. Any additional resistance that develops due to strain-hardening has been accounted for in the test/predicted ratio statistics used in developing resistance factors (Kennedy and Gad Aly 1980).

The stress distribution for Class 3 sections at the ultimate moment is assumed linear, with a maximum stress equal to the yield stress.

Class 4 sections reach their maximum moment resistance when a flange or web plate element buckles locally. Class 4 sections are divided into three categories.

The first consists of those sections with Class 4 flanges and webs. This type of section is designed to the requirements of CSA Standard S136 using the material properties appropriate to the structural steel specified.

The second category consists of those sections with Class 3 flanges and Class 4 webs. Clause 13.5(c)(ii) logically requires that these sections be designed in accordance with Clause 14.

For the third category with Class 4 flanges and Class 3 webs, a reduced, effective section modulus (Kalyanaraman et al. 1977) is used to compute the moment resistance. Alternatively, an effective yield stress established from Class 3 limits may be used to calculate the moment resistance.

13.6 Bending - Laterally Unsupported Members

Laterally unsupported beams may fail by lateral-torsional buckling at applied moments significantly less than the full cross-sectional strength (M_{p} or M_{y}). Even when the top flange is laterally supported, under some circumstances - for example, a roof beam subject to uplift - the laterally unsupported bottom flange may be in compression. General information on lateraltorsional buckling is summarized in Chen and Lui (1987).

Loading			
Lateral Restraints (Plan view)			$\frac{4}{4}$
Moment Diagram			$\overbrace{}^{M_{11} \quad M_{12}}$
ω_{2}	1.75 for L_{1} 1.0 for L_{2}	$\begin{gathered} 1.75 \text { for } L_{1} \\ \kappa=\frac{-M_{11}}{M_{12}} \text { for } L_{2} \\ 1.75 \text { for } L_{3} \end{gathered}$	$1.75 \text { for } L_{1}$ 1.0 for L_{2}

Figure 2-17
Various Cases of ω_{2} for Linear Moment Gradients

Besides cross-sectional properties and aspects related to the loading itself, the lateral-torsional moment resistance depends on the unsupported (unbraced) length. Beams may be considered to be short, intermediate, or long depending on whether the moment resistance developed is the full cross-sectional strength, the inelastic lateral-torsional buckling strength, or the elastic lateral-torsional buckling strength, respectively, as shown in Figure 2-16 for Class 1 and 2 shapes capable of attaining M_{p} on the cross-section. The curve for Class 3 sections is similar, except that the maximum moment resistance is M_{y}, while for Class 4 sections, the maximum resistance is limited by local buckling.

The length, L, is generally taken as the distance between lateral supports, When beams are continuous through a series of lateral supports, interaction buckling (Trahair, 1968) occurs, and the segment that tends to buckle laterally first is restrained by the adjoining segments. Nethercot and Trahair (1976a, 1976b), Kirby and Nethercot (1978) and Schmitke and Kennedy (1985) give methods of computing effective lengths under these circumstances. Points of contraflexure for bending about the major axis are not related to lateral-torsional buckling and therefore cannot be considered as points of lateral support (Schmitke and Kennedy 1985).

Without the equivalent moment factor, ω_{2}, the expression given for M_{u} is that for a doublysymmetric beam subject to uniform moment. The factor ω_{2} ranges from 1.0 to 2.5 and takes into account the fact that for lateral-torsional buckling a varying moment is less severe than a uniform moment. Also plotted in Figure 2-16 is the moment resistance for a beam for which $\omega_{2}=1.5$. It is seen that in the elastic region $\left(M_{r} \leq 2 / 3 M_{p}\right)$ the full value of ω_{2} is realized. In the inelastic region, however, the increase in M_{r} due to non-uniform moments gradually decreases to zero as the moment approaches M_{p}.

Wong and Driver (2010) and Driver and Wong (2007) demonstrate that the method for calculating ω_{2} specified in 2001 and earlier editions of the Standard produces highly erroneous results in some common situations. To address this shortcoming, their general equation for
determining ω_{2} based on the moments at the quarter-points of the unbraced segment has been introduced into the Standard. This equation uses a similar method to that specified in the AISC Specification (AISC 2010b), except that it employs a square-root format that eliminates the non-conservative results that would otherwise arise in cases where the ends of the unbraced segment are close to rotationally fixed about the major axis. While the upper limit on the value of ω_{2} of 2.5 that was associated with the previous method is theoretically no longer required, it was retained to acknowledge the fact that very high lateral-torsional buckling capacities attributable largely to the moment distribution can be highly sensitive to the assumptions about loading and end restraint, and they may not be achievable in practice. Wong and Driver (2010) provide a detailed discussion of aspects that affect the accuracy of equivalent moment factors and they compare numerous methods of determining this factor that have been proposed in the literature and that are being used in design standards around the world.

Due to its simplicity and familiarity to Canadian designers, the method from the 2001 edition of the Standard for determining ω_{2} has been retained as an alternative approach for application only to cases where the moment gradient is linear between lateral supports, which is the scenario for which it was derived and therefore produces good results. Figure 2-17 illustrates several cases where this method may still be used. The quarter-point moment method in the Standard also gives excellent results for linear moment gradients.

The expression for M_{u} assumes that the beam is loaded at the elevation of the shear centre. A downward-acting load that is applied below the shear centre stabilizes the beam, whereas such a load applied above the shear centre destabilizes it. The Standard is now explicit that for the latter case, when the beam is laterally unbraced at the load point and the means of applying the load itself provides neither lateral nor rotational restraint, the reduction in moment capacity must be taken into account. For top-flange loading, a simple and conservative effective length approach (Wong et al. 2014) is provided as an alternative to more accurate methods. Since the effective length factor accounts for both the load height and moment distribution effects, ω_{2} is set equal to unity, The two effective length factors specified in the Standard are distinguished by the in-plane rotational restraint at the ends of the unbraced beam segment: either simple or restrained, The method does not apply to cantilevers. Detailed discussions on this approach and a graphical method that gives more accurate effective length factors are presented by Wong et al. (2014). For other positions of the load, unusual loading cases and other support conditions, Ziemian (2010) may be consulted.

Because laterally unsupported, closed, square and circular sections with $I_{x}=I_{y}$ show no tendency to buckle laterally, their moment resistance is established using Clause 13.5 as emphasized in Clause 13.6(c).

For structural systems utilizing cantilever suspended-span construction (Gerber girders), see Albert et al. (1992), Essa and Kennedy (1994(a), 1994(b), 1995), and Ziemian (2010) for a rational method of determining the strength of cantilevered beams.

For members bent about both principal axes, it should be remembered that $M_{r y}$ is either $M_{y y}$, or $M_{y p}$ as a function of the class of the section, because there is no reduction for lateral-torsional buckling for weak axis buckling.

The provisions in Clause 13.6(e) were introduced in the 2009 edition of the Standard and address beams that are generally I-shaped and are symmetric about the web's centreline, but which have flanges of unequal sizes, or only one flange (tee sections). In these sections, the shear centre is not coincident with the centroid of the section, and the smaller flange has higher stresses than the larger flange. The effects of these asymmetries are accounted for in the β_{x} term. The expression provided for β_{x} is an approximation of the complete expression,

$$
\beta_{x}=\frac{1}{I_{x}} \int_{\mathrm{A}} y\left(x^{2}+y^{2}\right) d A-2 y_{o}
$$

where x and y are coordinates on the cross-section based on an origin located at the geometric centroid, and y_{o} is the distance in the y-direction from the centroid to the shear centre. An approximate value for the warping torsional constant, C_{w}, is also provided in this clause. A more thorough treatment of monosymmetric beams can be found in Ziemian (2010).

Sections that have large differences in flange size may experience yielding of the smaller flange under service loads, if designed as Class 1 or Class 2 beams and the factored moment resistance is near ϕM_{p}. The maximum moment caused by the applied service loads must be less than the smaller M_{y} value to prevent permanent deformations from occurring during service conditions.

The method of strength determination generally follows the AISC (2010b) methodology, with the exception that the elastic buckling capacity is determined considering the distribution of moments. This approach requires finding two lengths, $L_{y r}$ and L_{u}, for beams that are in the inelastic buckling regime. $L_{y r}$ is the length at which the elastic buckling moment, M_{u}, reaches $M_{y r}$ and causes the initiation of yielding; i.e., the extreme fibre reaches $0.70 F_{y}$, and yielding would occur in regions where residual stresses reach 30% of yield. The smaller value of S_{x} is used to determine $M_{y r}$ (corresponding to yielding of the smaller flange). $L_{y r}$ can be determined by any method, such as iterative approximations, but can be found via a direct solution with the following equation:

$$
L_{y r}=\sqrt{\frac{\left(2 P \beta_{x}+Q\right)+\sqrt{\left(2 P \beta_{x}+Q\right)^{2}+4 R P^{2}}}{2 P^{2}}}
$$

where $P=\frac{1.4 F_{y} S_{x, \text { min }}}{\omega_{3} \pi^{2} E I_{y}}, Q=\frac{4 G J}{\pi^{2} E I_{y}}$, and $R=\frac{4 C_{w}}{I_{y}}$.
The other length, L_{u}, is the length at which the beam can carry its fully braced capacity, either M_{p} or M_{y}, depending on its local buckling classification. The value of:

$$
1.1 r_{t} \sqrt{E / F_{y}}
$$

is based on work by White and Jung (2004). The term r_{t} is the radius of gyration of the teeshaped area formed by the compression flange, and one-third of the portion of the web in compression as defined by the elastic neutral axis. Inelastic buckling capacity is determined by linear interpolation between $M_{y r}$ and M_{p} (or M_{y}), based on the unbraced length of beam, L.

The value of ω_{3} for tee sections must be less than or equal to 1.0 . This is because reverse curvature in these beams is a worse condition than a uniform moment (Attard and Lawther, 1989), which is different from the case for doubly-symmetric sections. The warping torsional constant for tee sections should be taken as zero.

For monosymmetric sections other than those described above, a rational method must be used.

13.7 Lateral Bracing for Members in Structures Analyzed Plastically

See the Commentary on Clause 8.3.2(c). This clause is consistent with seismic requirements.

13.8 Axial Compression and Bending

This Clause remains unchanged in the 2014 edition. The design for strength and stability of steel frames and beam-columns is based on "second-order analysis" and "notional lateral loads" (Clause 8.4), and "sway stiffness" (Clause 13.8).
(a) A distinction is made between braced and unbraced frames in that the design requirements for beam-columns are different for the two types of frames. The $5 / 1$ stiffness ratio in Clause 13.8 originates from Eurocode 3 where it was stated that if bracing were added to a frame and it reduced the lateral sway deflection by 80% or more, then the bracing was sufficiently effective to consider the frame as being "braced". In the analysis, members such as columns with nominally pinned connections, which do not contribute to the lateral strength and stability of the frame/structure, may be considered to be braced by the frame. The notional loads attributed to such non-contributing columns must be included in the sway analysis of the frame
(b) Cross-sectional strength never governs for prismatic beam-columns in unbraced frames and need not be checked because it will never be smaller than the in-plane strength or the lateral-torsional buckling strength. Parenthetic statements in Clauses 13.8.2(a) and 13.8.3(a) waive this check.
(c) $P-\delta$ effects, related to the member deformation between the ends, have been found to be negligible for beam-columns in unbraced frames. This is because the maximum second-order elastic moment, including $P-\Delta$ (sway) effects, occurs at the ends of the beam-column. Therefore the factor U_{1} is taken as 1.0 in the interaction equation for overall member strength of sway (unbraced) beam-columns in Clauses 13.8.2(b) and (c), and 13.8 .3 (b) and (c). (The $P-\delta$ effects continue to be considered for non-sway beam-columns.)
(d) For weak-axis bending, the in-plane strength interaction equation introduced in Clause 13.8.2 with a factor β accounts more accurately for the effect of distributed plasticity on stability, by fitting the plastic-zone strength curves for different values of λ_{y} more closely. β increases from 0.6 when $\lambda_{y}=0$ to 0.85 for values of λ_{y} greater than 0.625 where the distributed plasticity has a greater effect on the overall weak-axis stiffness.

For a general discussion of all aspects of Clause 13.8 and worked examples, see Essa and Kennedy (2000).

The value each term in the interaction equation takes is prescribed in the three sub-clauses (a), (b), and (c) depending on the particular mode of failure: cross-sectional strength, overall member strength, and lateral-torsional buckling strength, respectively. Clause 13.8.2 is applicable to Class 1 and Class 2 sections of I-shaped members, while Clause 13.8.3 is applicable to all other classes of sections.

The interaction expressions account for the following:

- A laterally supported member fails when it reaches its in-plane moment capacity, reduced for the presence of axial load;
- A laterally unsupported member may fail by lateral-torsional buckling or a combination of weak-axis buckling and lateral buckling;
- A relatively short member can reach its full cross-sectional strength whether it is laterally supported or not;
- When subjected to axial load only, the axial compressive resistance, C_{r}, depends on the maximum slenderness ratio - below the yield load, the column fails by buckling.

Figure 2-18
Idealized Stress Distribution in Plastified Section of Beam-Column

Column buckling is a bifurcation problem, not a bending strength problem;

- Members bent about the weak axis, or with the same strength about both axes, do not exhibit out-of-plane behaviour,
- A constant moment has the most severe effect on in-plane behaviour. Other moment diagrams can be replaced by equivalent moment diagrams of reduced but uniform intensity;
- A constant moment has the most severe effect on the lateral-torsional buckling behaviour. (See commentary on Clause 13.6). This effect disappears if the member is short enough, in which case, cross-sectional strength controls; and
- Moments may be amplified by axial loads increasing the deflections, the $P-\delta$ effect.

Four modes of failure, including local buckling of plate elements, are to be checked in design, as appropriate. They are addressed as follows:

1) Local buckling of an element

Before assessing the member failure modes, the element b / t ratios are checked to confirm the class of the section, the appropriate cross-sectional moment and axial compressive resistances, and to ensure local buckling does not occur prematurely.
2) Strength of the cross-section

The cross-sectional strength of a shape used as a beam-column is not to be exceeded. Clause 13.8.2(a) gives the cross-sectional strength requirements for Class 1 and Class 2 sections of I-shaped members and Clause 13.8.3(a) for all other classes of sections. The cross-sectional strength is also the limiting strength of short members. For prismatic beam-columns in unbraced frames, the cross-sectional strength never governs the design and need not be checked.

The cross-sectional strength of a Class 1 and Class 2 I-shaped section comprising relatively stocky plate elements is derived from the fully plastic stress distribution of the cross-section as shown in Figure 2-18. For uniaxial bending about the $x-x$ axis and the $y-y$ axis, expressions are respectively, using the limit states notation of this Standard:

$$
M_{f x}=1.18 \phi M_{p x}\left(1-\frac{C_{f}}{\phi A F_{y}}\right) \leq \phi M_{p x}
$$

Figure 2-19
Interaction Expressions for Class 1 and Class 2 W-Shapes

$$
M_{f y^{\prime}}=1.67 \phi M_{p y}\left(1-\frac{C_{f}}{\phi A F_{y}}\right) \leq \phi M_{p y}
$$

Transposing the terms in the above expressions gives:

$$
\begin{aligned}
& \frac{C_{f}}{\phi C_{y}}+0.85 \frac{M_{f x}}{\phi M_{p x}} \leq 1.0 ; \frac{M_{f x}}{\phi M_{p x}} \leq 1.0 \\
& \frac{C_{f}}{\phi C_{y}}+0.6 \frac{M_{f y}}{\phi M_{p y}} \leq 1.0 ; \quad \frac{M_{f y}}{\phi M_{p y}} \leq 1.0
\end{aligned}
$$

as shown in Figure 2-19. For biaxial bending it is conservative to combine these expressions linearly to give, using the limit states notation of this Standard:

$$
\frac{C_{f}}{\phi C_{y}}+0.85 \frac{M_{f x}}{\phi M_{p x}}+0.6 \frac{M_{f y}}{\phi M_{p y}} \leq 1.0 ; \quad \frac{M_{f x}}{\phi M_{p x}}+\frac{M_{f y}}{\phi M_{p y}} \leq 1.0
$$

Figure 2-20
Interaction Expressions for Class 3 W-Shapes

This is identical to the two expressions in Clause 13.8 .2 when, in the latter in accordance with Clause 13.8.2(a) for cross-sectional strength, $U_{l x}$ and $U_{l y}$ are set equal to $1.0, C_{r}=\phi A F_{y}$ when $\lambda=0, \beta=0.6$ when $\lambda=0$, and $M_{r x}$ and $M_{r y}$ are equal to $\phi M_{p x}$ and $\phi M_{p y}$, respectively.

For uniaxial bending of sections other than Class 1 and Class 2 I-sections, the appropriate interaction expression is:

$$
\frac{C_{f}}{\phi C_{y}}+\frac{M_{f x}}{M_{r x}} \leq 1.0
$$

Extending this linear expression to biaxial bending gives:

$$
\frac{C_{f}}{\phi C_{y}}+\frac{M_{f x}}{M_{r x}}+\frac{M_{f y}}{M_{r y}} \leq 1.0
$$

This agrees with Clause 13.8.3(a) when the appropriate values of the factored cross-sectional resistance quantities are used. Thus, for Class 3 sections the factored moment resistances are limited to ϕM_{y} and for Class 4 sections the resistances, $C_{r}, M_{r x}$, and $M_{r y}$, are based on local buckling.

Figure 2-21
Variations of Moment Resistance with Slenderness Ratio
3) Overall member strength

The overall strength (in-plane bending strength) of a member depends on its slenderness. As an actual beam-column has length, the axial compressive resistance, C_{r}, depends on its slenderness ratio and will be less than or equal to the yield load. For any particular beam-column, this fraction of the yield load can be established and is illustrated in Figure 2-19 for Class 1 or 2 sections, and in Figure 2-20 for Class 3 sections.

In Figure 2-21 the variation in moment resistance in terms of M / M_{p} as a function of the slenderness L / r_{x} is plotted schematically as a solid line for a particular laterally supported Class 1 (or Class 2) section subject to a uniform moment about the x-axis and carrying an axial load of $0.35 C_{y}$. An appropriate interaction expression for the in-plane strength of such a Class I (or Class 2) I-section is

$$
\frac{C_{f}}{C_{r x}}+0.85 \frac{\omega_{1} M_{f}}{\phi M_{p}\left(1-C_{f} / C_{e}\right)} \leq 1,0
$$

which can be deduced from Clause 13.8 .2 (b) when the terms in that expression are appropriately defined. Note that if the member is short, the expression reduces to that for the crosssectional strength. The compressive resistance, $C_{r x}$, is a function of the slenderness ratio L / r_{x}.

The term:

$$
\omega_{1}=0.6-0.4 \kappa \geq 0.4
$$

multiplied by the maximum non-uniform moment, M_{f}, gives an equivalent uniform moment, $\omega_{1} M_{f}$, having the same effect on the in-plane member strength as the non-uniform moment (Ketter 1961).

In order to account for the $P-\delta$ effects (the amplification of the moments caused by the axial loads acting on the deformed shape), the equivalent uniform moment, $\omega_{1} M_{f}$, is amplified by the factor:

$$
\frac{1}{1-\frac{C_{f}}{C_{e}}} \text { where: } C_{e}=\frac{\pi^{2} E I}{L^{2}}
$$

The in-plane strength of Class 1 or 2 sections is shown in Figure 2-19 for $F_{y}=345 \mathrm{MPa}$ and $L / r_{x}=70$. When $L / r_{x}=0$ and $\omega_{1}=1$, the in-plane strength expressions 13.8.2(b) and 13.8.3(b) become the cross-sectional strength expressions $13.8 .2(\mathrm{a})$ and $13.8 .3(\mathrm{a})$, respectively. The curve for Class 3 sections is given in Figure 2-20.

In Figure 2-21, the curve of moment resistance versus slenderness ratio for the in-plane strength of a Class 3 section of equivalent cross-sectional strength to the Class 1 or 2 section is also given. It is similar to that for a Class 1 or 2 section except that, because the cross-sectional strength expression for Class 3 sections does not have the 0.85 factor that is appropriate for Class 1 or 2 and because the Class 3 section can only attain M_{y}, the curve for Class 3 for zero slenderness ratio reaches only about $0.55 M_{p}$ and not $0.65 M_{p}$ as for the Class 1 or 2 sections.

For biaxial bending, C_{r} is based conservatively on the maximum slenderness ratio. It could be argued that for biaxial bending the value used for C_{r} be interpolated between $C_{r x}$ and $C_{r y}$ on the basis of the proportion of the interaction fractions for bending about two axes. In other words, if a beam-column carries only a small portion of bending about the y-axis, the decrease in C_{r} from $C_{r x}$ toward $C_{r y}$ should likewise be small.

In Figures 2-19 and 2-20, the in-plane strength interaction expressions are shown for $\omega_{1}=1$. When $\omega_{1}<1$, the limiting strength for low ratios of axial load is the cross-sectional strength expression.
4) Lateral-torsional buckling strength

Building beam-columns are usually laterally unsupported for their full length and, even though they are subject to strong-axis bending moments, failure may occur when the column, after bending about the strong axis, buckles about the weak axis and twists simultaneously. Again this is a buckling or bifurcation problem. For such columns, the lateral-torsional buckling strength is likely to be less than both the cross-sectional strength and the overall member strength.

The curves in Figure 2-21 for a beam-column subject to uniform moment for Class 1 and 3 sections marked "interaction equation for lateral-torsional buckling", demonstrate this effect. They are much below those for in-plane strength and would only reach the full cross-sectional strength when the slenderness ratio is zero. The moment resistance is zero for laterally unsupported beam-columns when weak-axis buckling occurs. Thus, for these members the axial compressive resistance is based on L / r_{y}, and $M_{r x}$ is based on the resistance of a laterally unsupported beam. When subjected to weak-axis bending, members do not exhibit out-of-plane buckling behaviour, and therefore the weak-axis moment resistance is based on the full crosssectional strength, the plastic moment or yield moment capacity about the weak axis as appropriate for the Class of the section.

Case	ω_{1}	Case	ω_{1}
	1.0		$1-0.2 \frac{C_{f}}{C_{e}}$
	$1-0,4 \frac{C_{f}}{C_{e}}$		$1-0.3 \frac{C_{f}}{C_{e}}$
$\rightarrow \mid-$	$1-0.4 \frac{C_{f}}{C_{e}}$		$1-0.2 \frac{C_{f}}{C_{e}}$

Figure 2-22

Values of ω_{1} for Special Cases of Laterally Loaded Beam-Columns

In computing $M_{r x}$ from Clause 13.6, the effect of non-uniform moments is included. Therefore, in the interaction expressions when lateral-torsional buckling is being investigated, the factored moment, $M_{f x}$, must also be a non-uniform moment, and not be replaced by an equivalent lesser moment. It is for this reason that the value of $U_{1 . x}$ cannot be less than 1.0.
13.8.5 This clause gives generally conservative values of ω_{1}, the factor by which the maximum value of the non-uniform moment is multiplied to give an equivalent uniform moment having the same effect as the applied non-uniform moment on the overall strength of the member. For further discussion on ω_{1}, see Ziemian (2010) where it is called C_{m}. Figure 2-22 gives values of ω_{1} for some special cases of transverse bending.

Figures 2-23 and 2-24 give additional guidance for the design of beam-columns subjected to various bending moment effects.

13.9 Axial Tension and Bending

The linear interaction expression of Clause 13.9.1 is a cross-sectional strength check. Conservatively, it does not take into account the fact that the bending resistance for Class 1 and 2 sections does not vary linearly with axial force, for which case a factor of 0.85 multiplying the moment term would appear to be appropriate (see Clause 13.8.2).

For members subjected predominantly to bending, i.e. when the tensile force is relatively small, failure may still occur by lateral-torsional buckling. The expressions of Clause 13.9.2 result from that of Clause 13.9 .1 when a negative sign is assigned to the tension interaction component and when M_{r} is based on the overall member behaviour taking lateral-torsional buckling into account.

13.10 Load Bearing

The bearing resistance given for accurately cut or fitted parts in contact, Clause 13.10(a), reflects the fact that a triaxial compressive stress state, restricting yielding of the parts in contact,

Conditions	

${ }^{* *}$ Moments $M_{f 1}$ and $M_{f 2}$ may be applied about one or both axes.

Figure 2-23
Prismatic Beam-Columns - Moments at Ends - No Transverse Loads

** Moments $M_{f 1}$ and $M_{f 2}$ may be applied about one or both axes.

Figure 2-24
Prismatic Beam-Columns with Transverse Loads
generally exists. The value given is based on earlier working stress design standards, which have given satisfactory results.

For a cylindrical roller or rocker, Clause 13.10 (b) recognizes that the roller or rocker may rest in a cylindrical groove in the supporting plate. This results in a supporting or contact area larger than that for the case of a flat supporting plate.

In the case of a cylindrical groove in the supporting plate, the maximum shearing stress developed due to a line load of $q \mathrm{~N} / \mathrm{mm}$, (Seeley and Smith, 1957) is,

$$
\tau_{\max }=0.27 \sqrt{\frac{q E}{2 \pi\left(1-v^{2}\right)}\left(\frac{R_{2}-R_{1}}{R_{2} R_{1}}\right)}
$$

where v is Poisson's ratio. From this, the unfactored bearing resistance, $q L$, is then

$$
\frac{B_{r}}{\phi}=q L=\frac{2 \pi L\left(1-v^{2}\right) \tau_{\max }^{2}}{0.27^{2} E}\left(\frac{R_{2} R_{1}}{R_{2}-R_{1}}\right)
$$

Calibrating this resistance to that given in S16-1969 at $F_{y}=300 \mathrm{MPa}$ gives $\tau_{\max }=0.77 F_{y}$, and

$$
\frac{B_{r}}{\phi}=0.00026\left(\frac{R_{1}}{I-R_{1} / R_{2}}\right) L F_{y}^{2}
$$

For a roller of radius R_{1} on a flat plate with $R_{2}=\infty$, the "Hertz" solution, as reported by Manniche and Ward-Hall (1975), gives the allowable load as

$$
2.86 D L \frac{\left(2.7 F_{y}\right)^{2}}{E}=0.00020 R_{1} L F_{y}^{2}
$$

where D is the roller diameter. The above expression indicates that the value of $0.00026 R_{1}$ obtained by calibration with the existing standard for a yield stress of about 300 MPa is somewhat non-conservative compared to the value of $0.00021 R_{1}$ proposed by Manniche and Ward-Hall (1975).

This is confirmed by Kennedy and Kennedy (1987) who reported that at this load no permanent deformation resulted and recommended that this value be used as a serviceability limit. They also reported that the rolling resistance of rollers varied as the fourth power of the unit normal load in $\mathrm{kN} / \mathrm{mm}$.

13.11 Block Shear - Tension Member, Beam, and Plate Connections

Tension rupture, which is discussed in Clause 13.2, can also take place in combination with shear through the failure of a block of material in a connection component. The provisions for block shear failure in Clause 13.11 reflect the findings of research by Driver et al. (2006), conducted to develop a single unified equation that can be adapted to any block configuration and, in the limit, is consistent with the provisions for pure tensile rupture. An examination of numerous test results on gusset plates, coped beams, angles, and tees indicated that rupture on the tension face occurs before rupture on the shear face of the block of material and, when rupture takes place on the tension face, the shear stress on the gross shear area exceeds the yield strength but is generally less than the ultimate strength. To reflect this limit state, the design equation uses a shear stress equal to the average of the yield and rupture shear strengths on the gross shear area, $A_{g v}$. The shear term alone also gives the end tear-out capacity for individual bolts or lines of bolts in the direction of the applied force (Cai and Driver, 2010). Due to

(b) Block Shear Failure of Angles, Coped Beams, and Tees

Figure 2-25
potentially reduced material ductility, the yield strength is used in the shear term of the design equation for higher strength steels.

The tension component is defined in the unified block shear equation as $U_{1} A_{n} F_{u}$, where U_{t} is an efficiency factor that accounts for the non-uniformity of the stress distribution on the tension face of the block of material at the limit state. Angles, tees connected by the stem, and coped beams have all shown lower block shear resistances than would be expected if the stress on the tension face were assumed to be uniform. In these cases only one shear face exists, thus resulting in eccentric loading on the block of material that causes the non-uniform tensile stress distribution. Values of U_{i} vary from 1.0 for cases where no load eccentricity exists on the block of material (e.g. typical gusset plates) to 0.3 for cases with a large eccentricity (coped beams with two lines of bolts). The low efficiency of the tension face in coped beams with two lines of bolts was noted in the work of Franchuk et al. (2003). Driver et al. (2006) recommended that U_{l} be taken as 0.9 for angles connected by one leg and stem-connected tees, in combination with an analogous coefficient of 0.9 on the shear term. However, since S16 adopted the unified block shear equation without the shear coefficient, the value of U_{l} was modified to 0.6 to maintain the same reliability index for the pool of test data available. The simplified approach in the standard could produce non-conservative results for long blocks with a small tension area.

As illustrated in Figure 2-25, the block shear failure of structural tees can take various forms (Epstein and Stamberg, 2002), depending on whether the tee section is flange-connected or stem-connected. The first mode associated with flange-connected tees consists of tension and shear failure confined in the flange only. The other two modes associated with flangeconnected tees involve a tension plane in the flange (with or without shear planes in the flange) and a shear plane in the stem. The various possible modes should be investigated. Use of the unified block shear equation for common types of welded connections is discussed by Oosterhof and Driver (2011).

Recommended values of U_{t} for various connection details are given in Figure 2-26.

13.12 Bolts and Local Connection Resistance

13.12.1 Bolts in Bearing-Type Connections

13.12.1.2 Bolts in Bearing and Shear

In bearing-type connections (Clause 13.12.1.2(a)) excessive deformation in front of the loaded edge of the bolt hole may occur. Tests have shown (Munse 1959; Jones, 1958; de Back and de Jong 1968; Hirano 1970) that the ratio of the bearing stress ($\left.B_{r} / d t\right)$ to the ultimate tensile strength of the plate $\left(F_{u}\right)$ is in the same ratio as the end distance of the bolt (e) to its diameter (d). Thus,

$$
\frac{B_{r}}{\phi d t}=\frac{e}{d} F_{u}
$$

or, for n fasteners, $B_{r}=\phi_{b r} t n e F_{u}$
Because the test results do not provide data for e / d greater than 3 , an upper limit of $e=3 d$ is imposed. That is,

$$
B_{r} \leq 3 \phi_{b r} t d n F_{u}
$$

For the bearing of bolts on steel, the value of $\phi_{b r}$ in Clause 13.12.1.2 is to be taken as 0.80 . For the bearing resistance perpendicular to long slotted holes, see Clause 13.12.1.2(b).

No.	Connections subject to block shear		U_{t}	No.	Connections	bject to	block shear	U_{1}
1		Coped beam with one row of bolts	0.9	7			set plate, cal block and m tensile esses	1.0
2	Cope two r	Coped beam with two rows of bolts	0.3	8		End pla suppo bolled	welded to ted beam, supporting ember	0.9
3		Angle in tension connected to one leg	0.6	9		Simila abov clippe erec	to Case " 8 " but with a corner for ion safety	0.9
4	Angle leg suppor other 1 3 sides	Angle in shear, one leg bolted to supported beam and other leg welded on 3 sides to supporting member	0.6	10		Doub shear, to sup and oth (or suppo	e angles in ne leg bolted orted beam er leg bolted welded) to ing member	0.6
5		Single plate (shear tab) bolted to supported beam, welded to supporting member	0.6	11			o Case "10" but with a g for erection double-sided nection)	0.6
6a		Flangeconnected Tee in tension	0,9	12		Tee in bolted beam, to supp	shear, stem o supported anges welded rting member	0.6
6b			1.0	13			Stem- connected Tee in tension	0.6
6c			1.0		$\begin{aligned} & \text { SA S16-14 CI } \\ & =\phi_{u}\left[U_{t} A_{n} F_{1}\right. \\ & =0.75 \end{aligned}$	$\begin{aligned} & \text { se } 13.11 \\ & 0.60 A_{g v} \end{aligned}$	$\left(F_{y}+F_{u}\right) /$	

Figure 2-26
Values of U_{t} for Block Shear

Figure 2-27
Lap Joint Length Definition for Lap and Butt Joints

The note directs designers to Clause 13.11, to investigate any potential for block tear-out when the end distance, e, is small and to Clause 22.3 .4 for minimum end distances.

Based on extensive testing, it has been established that the shear strength of high-strength bolts is approximately 0.60 times the tensile strength of the bolt material. However, if threads are intercepted by a shear plane, there is less shear area available. The ratio of the area through the threads of a bolt to its shank area is about 0.70 for the usual structural sizes.

In the case of long joints, the load is not shared equally among the bolts with those fasteners towards the ends of the joint carrying the largest portion of the load. The linear reduction in S16-09 has been replaced by a step reduction in bolt capacity when the joint length, L, equals or exceeds 760 mm . This approach has also been adopted in CSA S6-14.

Note that the length L is that in which the load is transferred from one plate to another. For a lap joint with bolts in single shear, this is the total length between the centrelines of the end fasteners. For a butt joint with two lap plates and the bolts in double shear, it is the "half" length (see Figure 2-27).

In this context, "joint length" refers to an axially loaded connection, such as a lap splice, whose length is measured parallel to the direction of applied force. This clause does not apply to a shear connection at the end of a girder web where the load is distributed reasonably uniformly to the fasteners.

13,12.1.3 Bolts in Tension

The ultimate resistance of a single high-strength bolt loaded in tension is equal to the product of its tensile stress area (a value between the gross bolt area and the area at the root of the thread because the failure plane must intercept a thread) and the ultimate tensile strength of the bolt. The tensile stress area is very nearly equal to 0.75 of the gross area of the bolt.

In addition to the applied load, two other tensile forces - prying action and pretensioning may act on the bolt, and their effects have to be examined. The Standard states, in fact, that the factored tensile force is independent of the pretension but that the tensile prying force shall be added to the external load.

Figure 2-28
Effect of Prying Action on Bolt Tension

Figure 2-28 illustrates qualitatively that the amount of prying action depends on the flexibility of the connected material relative to the bolts. Kulak et al. (1987) present a procedure for calculating the prying force depending on the joint geometry, which is presented in Part 3 of this Handbook along with suggested detailing practices to minimize this force.

The statement that the factored tensile force is independent of the pretension derives from Figure 2-29 where, before any external load P is applied, the bolt pretension is balanced by the plate pre-compression. When the external load is applied without distorting the connected material as shown, or equivalently when the connected material is "stiff", as the external force is increased, the bolt force remains almost constant at the bolt pretension, while the contact pressure between the bolted plates decreases. Once the applied force is sufficiently large to separate the plates, the contact pressure goes to zero, and the sum of the bolt forces becomes equal to the applied external force. The level of bolt pretension therefore affects the force at which the bolted plates will separate, but it has no effect on the joint tension capacity.

On the other hand, when the external load is applied through some thickness of material causing it to compress, more bolt elongation is required and there is some increase in the bolt tension. Measurements of actual bolt forces in connections of practical sizes have shown that the increase in the bolt force due to the flexibility of the connection is usually only about 5 to 10%. The Standard neglects this. Figure 2-30 depicts possible variations of the tension on a pretensioned bolt as it is loaded with an external load, P, as pretensions, T_{0}, decrease and in the presence of a prying force, F.

This Standard requires that high-strength bolts subjected to tensile cyclic loading be fully pretensioned and that the prying force not exceed 30% of the externally applied load. Two options are given to calculate the tensile stress range to compare to the permissible values. The first and most difficult takes into account the prying action, the pretension with possible relaxation due to joint deformations and the applied load. The second assumes the range is that due

Figure 2-29
Effect of Applied Tension on Tightened High-Strengh Bolts
to the applied loads plus prying action. This is obviously conservative as the pretension reduces the applied load stress range.

13.12.1.4 Bolts in Combined Shear and Tension

The expression for the ultimate strength interaction between tension and shear applied to a fastener has been shown to model empirically the results of tests on single fasteners loaded simultaneously in shear and tension. The values of V_{r} and T_{r} are the full resistances in shear and tension, respectively, which would be used in the absence of the other loading. For small components of factored load relative to the resistance in one direction, the resistance in the other direction is reduced only a small amount; e.g. for a factored tension equal to 20% of the full tensile resistance, the resistance available for shear is only reduced by 2% of the full value that would be present in the absence of tension.

13.12.2 Bolts in Slip-Critical Connections

13.12.2.2 Shear Connections

Different installation procedures may result in different probabilities of slip; see Kulak et al. (1987).

Both the slip coefficient and the initial clamping force have considerable variation about their mean values. The coefficients of friction for coatings can vary as a function of the specific coating constituents and, therefore, values of the mean slip coefficient, k_{s}, may differ from one coating specification to another. The value of k_{s} intended for use on a project should be specified.

The clamping force is due to the pretensioning of the bolts to an initial tension, T_{i}, which is a minimum of 70% of the tensile strength $\left(0.70 A_{s} F_{u}\right)$ where $A_{s}=0.75 A_{b}$. Thus, the clamping force per bolt is

Figure 2-30
Total Tension vs. Applied Tension for a Pretensioned Bolt
$0.70 \times 0.75 A_{b} F_{u}$ or $0.53 A_{b} F_{u}$
The values of the resistance factor, c_{s}, establish a uniform probability level of slip for the bolt grades and the installation methods. Table 3 of S16-14 gives values of c_{s} for bolts installed by the three pretensioning methods permitted by the Standard: (a) turn-of-nut method for A325, A325M, A490 and A490M bolts, (b) F1852 and F2280 twist-off type of tension-control bolt assemblies, and (c) use of washer-type direct tension indicators (F959 washers with A325, A325M, A 490 and A490M bolts). For methods (b) and (c), smaller c_{s} values are given as the clamping loads obtained are lower (but still above the minimum required by the Standard) than those obtained by the turn-of-nut procedure. Table 3 also provides the values of k_{s} for two classes of contact surface. In S16-14, hot-dip galvanized surfaces are grouped under Class A. Values of k_{s} for some other common surface conditions are given by Kulak et al. (1987).

The use of slip-critical connections should be the exception rather than the rule. They are the preferred solution only where cyclic loads or frequent load reversals are present, or where the use of the structure is such that the small one-time slips that may occur cannot be tolerated. See also the Commentary to Clause 22.2.2.

The slip resistance is reduced by a factor of 0.75 for slip-critical connections using long slotted holes to account for the reduced clamping force that otherwise would be present (Kulak et al. 1987).
13.12.2.3 The resistance to slip is reduced as tensile load is applied and reaches zero when the parts are on the verge of separation, as no clamping force then remains. The interaction relationship is linear.

The term $1.9 /\left(n A_{b} F_{u}\right)$ is the reciprocal of the initial bolt tension, $0.53 n A_{b} F_{u}$.

Figure 2-31
Fillet Welds to HSS

13.13 Welds

13.13.1 General

Clause 13.13 covers resistances for welded joints that satisfy matching conditions; provisions and restrictions for use of non-matching electrodes are included in Clause 24. Matching electrodes for various grades of base steel as specified in Table 4 of S16-14 and W59-13 typically are those with ultimate strengths similar to that of the base metal. W59 permits the use of electrodes that are one designation higher than matching (i.e. over-matched), provided certain specific conditions are met and the value of X_{u} used in the calculation of the weld resistance does not exceed X_{ν} of the matching electrode. When atmospheric corrosion-resistant steel grades are used in the uncoated condition, additional requirements for compatible corrosion resistance or colour are also required for matching electrodes.

A resistance factor of $\phi_{w}=0.67$ is used universally in this section, recognizing that a larger value of the reliability index is used for connector resistances.

13.13.2 Shear

In general, the shear resistance of a weld is evaluated on the basis of both the resistance of the weld metal and of the base metal adjacent to the weld. Although the calculations indicate that the resistance of the base metal may govem the capacity of the welded joint, this is seldom the case. Thus, CJPG, PJPG, plug, and slot welds loaded in shear have resistances equal to the lesser of the weld throat or fusion face shear strength. Research on fillet-welded splices (Butler et al. 1972; Miazga and Kennedy, 1989; Ng et al., 2004a; 2004b; Deng et al., 2006; Callele et al. 2009) showed that even when fillet welds failed primarily in the fusion zones, the capacity of the weld calculated according to the weld metal capacity only provided a sufficient level of safety with a reliability index of about 4.5 . Therefore, for fillet welds oriented at an angle greater than about 45°, where the calculation of the base metal strength indicates that the strength of the base metal would govern the capacity of the joint, the base metal check effectively prevents the designer from taking advantage of the full capacity of the weld. It was concluded by Callele et al. (2009) that the tensile strength of the base metal does not represent the actual tensile strength of the material at the fusion face, which is influenced by intermixing of the weld and base metals. Even if over-matched electrodes (see Commentary to Clause 13.13.1) are used, the base metal check is not required for the design of fillet welds, provided the resistance is calculated using the tensile strength of the matching electrode, X_{u}.

Using the instantaneous centre of rotation concept, the resistance expression in 13.13.2.2 forms the basis of the eccentric load tables given in Part 3 of the CISC Handbook (Butler and Kulak 1971, Butler et al. 1972, Miazga and Kennedy 1989, Lesik and Kennedy 1990, Kennedy et al. 1990). This ultimate strength analysis, recognizing the true behaviour of the weldments, results in much more consistent strength predictions than the traditional approach (i.e., taking the quantity $1.00+0.50 \sin ^{1.5} \theta$ as 1.0).

In the expression for the shear strength of the weld, the factor 0.67 relates the shear strength of the weld to the weld metal tensile strength, as given by the rated electrode classification number. Lesik and Kennedy (1990) give 0.75 for this factor, based on 126 tests reported in the literature. The coefficient 0.50 in the quantity $1.00+0.50 \sin ^{1.5} \theta$ is for tension-induced shear and is slightly more liberal than the average value of tension- and compression-induced shear of 1.42 reported by Lesik and Kennedy. In addition, the factor 1.50 is the correct value for Clause 13.13.2.2 in which tension is the critical case. The value of 0.50 has also been adopted by AWS and AISC. However, recent experimental research on welded HSS joints (Packer et al. 2015) has shown that, in order to yield a reliability index, $\beta=4.5$, the fillet weld "directional strength enhancement factor" $\left(1.00+0.50 \sin ^{1.5} \theta\right)$ for fillet welds to HSS as shown in Figure 2-31 should be used with a ϕ_{w} value lower than 0.67 . For this application, Packer et al (2015) recommend setting this factor to unity (i.e. $\theta=0$) and keeping $\phi_{w}=0.67$ for a conservative solution (i.e. $\beta>4.5$). For further discussion on fillet welds to HSS when the "effective length concept" is used to proportion fillet welds, see the Commentary to Clause 13.13.4.3.

Callele et al. (2009) showed that when fillet welds with multiple orientations are contained within the same concentrically loaded joint, the lower ductility of the welds oriented closest to 90° prevents the more ductile welds from reaching their full capacity before failure of the joint takes place. The researchers proposed a simple means of accounting for this phenomenon by reducing the capacity of the more ductile weld segments by up to 15%. This method has been adopted into the Standard using the factor M_{w}.

Clause 13.13.2.3 provides users of the Standard with an expression to determine the factored resistance of flare bevel groove welds for open-web steel joists based on (a) observed data relating the face width to the effective throat thickness of flare bevel groove welds as reported by Skarborn and Daneff (1998), (b) other data on welds in general from Lesik and Kennedy (1990), and (c) the principles set forth in Galambos and Ravindra (1973). Thus, using $\phi_{w}=0.67$ with the effective throat taken as 0.50 of the weld face as selected here leads to a reliability index of 4.25 as determined by Kennedy (2004).

13.13.3 Tension Normal to Axis of Weld

Gagnon and Kennedy (1989) established that the net area tensile resistance, i.e. on a unit area basis, transverse to the axis of a PJPG weld, is the same as for the base metal when matching electrodes are used. The previous conservative practice of assigning shear resistances to these welds was replaced in the 1989 edition with tensile resistances, consistent with the tensile resistance of complete penetration welds equalling the full tensile resistance of the member.

For T-type joints consisting of PJPG weld and a reinforcing fillet weld, Clause 13.13.3.3 provides a conservative estimate of the tensile resistance by taking the vector sum of the individual component resistances of the PJPG and fillet welds.

13.13.4.3 Welds for Hollow Structural Sections

There are two methods currently available for the design of welded connections between square and rectangular HSS (Packer et al., 2010; McFadden et al., 2013):

1) The welds may be designed as "fit-for-purpose" and proportioned to resist the applied forces in the branch. The non-uniform loading around the weld perimeter due to the relative
flexibility of the connecting RHS face requires the use of weld effective lengths. This approach may be appropriate when there is high confidence in the design forces or if the branch forces are particularly low relative to the branch member capacity, Where applicable, this approach may result in smaller weld sizes, providing a more economical design. Weld effective lengths, related to the type of HSS connection and type of loading, have been determined from research by Frater and Packer (1992a, 1992b), Packer and Cassidy (1995), McFadden and Packer (2014) and Tousignant and Packer (2015). An up-to-date summary of weld effective lengths (or weld effective properties) for HSS connections is given in Section K4 of the Specification AISC 360 (AISC 2010b).

However, the fillet weld "directional strength enhancement factor" $\left(1.00+0.50 \sin { }^{1.5} \theta\right) M_{w}$, contained in Clause 13.13.2.2, should not be applied to fillet welds to HSS when the "effective length concept" is used to proportion fillet welds (McFadden and Packer, 2014; Tousignant and Packer, 2015).
2) The welds may be proportioned to develop the yield strength of the connected branch wall at all locations around the branch. This approach may be appropriate if there is low confidence in the design forces, uncertainty regarding Method (1) above, or if plastic stress redistribution is required in the connection. This method will produce an upper limit for the weld size required and may be excessively conservative in some situations.

13.14 Welds and High-Strength Bolts in Combination

This clause addresses the design of joints in which welds and high-strength bolts are placed in the same shear plane and are expected to share the applied shear force. The provisions are based on the work of Manuel and Kulak (1999) and Kulak and Grondin (2003). The capacity of each connector in this type of shear splice is reflected by its shear strength and shear deformation characteristics. When bolts and welds share the load, the fastener that possesses the least ductility (welds as opposed to bolts or transverse welds as opposed to longitudinal welds) is able to reach its full capacity before the full capacity of the more ductile fastener is fully developed. Therefore, the shear resistance of the joints consists of the full capacity of the least ductile fastener plus a fraction of the capacity of the more ductile fastener. The resistance of the joint is calculated based on the progression of failure from the least ductile fastener to the most ductile fastener. Consequently, the capacity of a typical joint that combines transverse and longitudinal welds and bolts could be limited by (i) the load at which the transverse weld fractures, (ii) the load at which the longitudinal welds fracture, or (iii) the load at which the bolts fracture.

When considering case (i), tests by Manuel and Kulak have shown that the ductility of transverse welds is insufficient to mobilize a significant portion of the bolt shear strength, but sufficient to mobilize about 85% of the strength of the longitudinal welds. Case (ii) considers that the transverse weld, if present, has already fractured. In this case, the longitudinal welds are sufficiently ductile to mobilize a significant portion of the bolt shear strength. The work of Manuel and Kulak showed that the portion of the bolt shear strength that is mobilized by the time the longitudinal welds have fractured depends on the bearing conditions of the bolts at the time that the welds are added to the joint. They made a distinction between the case where the bolts are in full bearing in the direction of the applied load (positive bearing) and the case where the bolts are in bearing in the direction opposite to the applied load (negative bearing).

The results of later tests presented by Kulak and Grondin showed that joints where the bearing conditions are varied randomly could develop at least 50% of the shear strength of the bolts by the time the longitudinal welds fracture. Case (iii) considers the situation where both the transverse and longitudinal welds have fractured. At this point, only the bolts are able to resist the applied load. It should be noted that in cases (i) and (ii) a contribution from the slip resistance can be accounted for when the bolts have been pretensioned in accordance with Clause
23.7. However, in case (iii) no slip resistance is accounted for since the shear deformation in the bolts at the time that their full strength has been mobilized is sufficient to have released their pretension.

Equation (a) of Clause 13.14 considers case (i) described above. For this case, only the welds contribute to the shear resistance plus 25% of the slip resistance if the bolts are pretensioned. The strength of the welds is calculated using Clause 13.13.2.2 with $\theta=90^{\circ}$ for the transverse weld segment and $\theta=0^{\circ}$ for the longitudinal weld segment. The factor 0.85 is the value of M_{w} when longitudinal and transverse welds are combined in the same shear plane. Equation (b) considers case (ii) where the transverse weld has already fractured, and only the longitudinal welds and the bolts are left to carry the load. By the time the ductility of the longitudinal welds has been exhausted, 50% of the shear capacity of the bolts would be mobilized. Equation (c) considers case (iii) where only the bolts are left in the joint. At this stage the limit state is fracture of the bolts, and the strength of the joint is limited to the shear resistance of the bolts or the bearing resistance of the plates against the bolts.

It should be noted that in all the cases tested experimentally, the bolt resistance was always governed by bolt shear rather than plate bearing. Since the bearing resistance usually requires more deformation to develop than the shear resistance, it is possible that the contribution from the bolts may be less than 50% when plate bearing governs the bolt resistance. When bearing governs, the designer may want to use less than 50% of the bolt shear resistance. For typical examples of joint strength calculations, see Kulak and Grondin (2003).

14. BEAMS AND GIRDERS

14.1 Proportioning

Lilley and Carpenter (1940) have shown that reductions of flange area up to 15% can be disregarded in determining the effective moment of inertia, due to the limited inelastic behaviour near the holes.

14.2 Flanges

The theoretical cut-off point is the location where the moment resistance of the beam without cover plates equals the factored moment (Figure 2-32). The distance a^{\prime} increases as shear lag becomes more significant, as is the case when the weld size is smaller, or when there is no weld across the end of the plate. Theoretical and experimental studies of girders with welded cover plates (ASCE 1967) show that the cover plate load can be developed within length a^{\prime}. Clause 14.2.4 limits the length of a^{\prime} for welded cover plates and may therefore necessitate an increase in weld size or an extension of the cover plate so that the force at a distance a^{\prime} from its end equals that which the terminal welds will support.

14.3 Webs

14.3.1 Maximum Slenderness

This limit prevents the web from buckling under the action of the vertical components of the flange force arising as a result of the curvature of the girder (Kulak and Grondin 2014).

14.3.2 Web Crippling and Yielding

Loads and reactions acting perpendicular to a flange and over a short length along the flange will cause in-plane compressive stresses in the web. The ultimate strength of the unstiffened web subjected to such edge loading may be governed by either yielding of the web or crippling of the web (a localized out-of-plane buckling of the web adjacent to the loaded flange).

Figure 2-32
Cover Plate Development

Unreinforced circular holes may be placed anywhere within the hatched zone without affecting the strength of the beam for design purposes, provided:

1. Beam supports uniformly distributed load.
2. Beam section has an axis of symmetry in plane of bending.
3. Spacing of holes meets the requirements shown below.

SPACING OF HOLES

Figure 2-33
Unreinforced Circular Web Openings in Beams

Figure 2-34

Approximate Stress Distribution in Girders with Buckled Web

If the web is relatively stocky, yielding will occur prior to crippling, and expressions 14.3.2(a)(i) and 14.3.2(b)(i) govern web resistances for interior loads and end reactions, respectively.

Relatively thin webs cripple before yielding, and the strength of the web is governed by expressions 14.3.2(a)(ii) and 14.3.2(b)(ii) for interior loads and end reactions, respectively.

The equations presented in the Standard are based on the work of Kennedy et al. (1998). These equations are much simplified relative to the 1994 Standard and correlate well with a set of 31 full-scale tests by Benichou (1994) and others at Carleton University, In the expression for web crippling, the contribution of the flange is neglected. It is argued that, at interior load points, the normal stress in the flanges of efficiently designed girders would approach the yield stress at factored loads. Consequently the flanges would not have significant plastic hinge capacity in developing a plastic hinge mechanism in the resistance of transverse loads.

For unstiffened portions of webs, when concentrated compressive loads are applied opposite one another to both flanges, the compressive resistance of the web acting as a column should also be investigated. (See also Clause 21.3.)

Care should be taken in assessing the bearing length under yielding or deforming supports such as girders cantilevering over columns.

14.3.3 Openings

The conditions under which unreinforced circular openings may be used are based on Redwood and McCutcheon (1968) and are illustrated in Figure 2-33.

Elastic and plastic analyses to determine the effect of openings in a member are given in Bower et al. (1971) and Redwood (1971, 1972, 1973), respectively. See Part 5 of the Handbook for worked examples.

A combination of vertical and horizontal intersecting stiffeners (particularly on both sides of a web) is seldom justified and quite expensive to fabricate. Generally, horizontal stiffeners alone are adequate. When both vertical and horizontal stiffeners are necessary, the horizontal stiffeners should be on one side of the web, and vertical stiffeners on the other, in order to achieve economy.

14.3.4 Effect of Thin Webs on Moment Resistance

A plate girder with Class 3 flanges and Class 4 webs has a maximum moment resistance less than ϕM_{y} because the Class 4 web may buckle before extreme fibre yielding due to the compressive bending stresses. The reduction in moment resistance is based on Basler and

$$
\frac{M_{r}^{\prime}}{M_{r}}=1.0-0.0005 \frac{A_{w}}{A_{f}}\left[\frac{h}{W}-\frac{1900}{\sqrt{M_{f} /(\phi S)}}\right]
$$

Figure 2-35
Reduced Moment Resistance in Girders with Thin Webs

Figure 2-36
Action of a Thin-Web Plate Girder Under Load

Thurlimann (1961). Figure 2-34 shows an approximate stress distribution in a girder with a buckled web. The reduction in moment resistance is generally small, as shown in Figure 2-35.

The limit of $1900 / \sqrt{F_{y}}$ for the slenderness of a Class 3 web is replaced in this clause by $1900 / \sqrt{M_{f} /(\phi S)}$ to account for the possibility that the factored moment may be less than $M_{r}=\phi S F_{y}$, thereby reducing the propensity for web buckling.

In some circumstances, a plate girder may be subjected to an axial compressive force in addition to the bending moment (e.g. rafters in a heavy industrial gable frame, beams in a braced frame). The constant 1900 is then multiplied by the factor ($1.0-0.65 C_{f} / \phi C_{y}$) to account for the increased tendency for the web to buckle. The compressive stresses due to the axial load add to the compressive stress due to bending, thus increasing the depth of web in compression (see also commentary to Clause 11).

14.4 Bearing Stiffeners

The inclusion of a portion of the web in the column section resisting the direct load, and the assumption of an effective length of 0.75 times the stiffener length, are approximations to the behaviour of the web under edge loading that have proved satisfactory in many years of use.
14.4.2 In S16-14, the limit for width-to-thickness ratio for bearing stiffeners is explicitly stated. This limit corresponds to the Class 3 limit for plate elements supported along one edge and therefore applies to plate stiffeners for single web girders. For other types of stiffeners and stiffeners with other edge support conditions, Class 3 limits appropriate for each respective stiffener type and support condition may apply.

Where the Class 3 limit is exceeded because the plate width exceeds what is needed to satisfy other requirements in this Clause, the effective area method in accordance with Clause 13.3.5(a) may be used.

14.5 Intermediate Transverse Stiffeners

14.5.1 Figure 2-36 illustrates the action of a thin girder web under load. Tension fields are developed in the interior panels but cannot develop in the unanchored end panels, for which the maximum shear stress is, therefore, either the elastic or inelastic critical plate buckling stress in shear.
14.5.2 The limits on stiffener spacing are based on practical considerations. When $a / h>3$, the tension field contribution is reduced. For slender webs $(h / w>150)$ the maximum stiffener spacing is reduced for ease in fabrication and handling.
14.5.3 Clause 14.5 .3 requires that intermediate transverse stiffeners have both a minimum moment of inertia and a minimum area. The former provides the required stiffness when web panels are behaving in an elastic manner; the latter ensures that the stiffener can sustain the compression, to which it is subjected, when the web panel develops a tension field. Because stiffeners subject to compression act as columns, stiffeners placed only on one side of the web are loaded eccentrically and are less efficient. The stiffener factor (D) in the formula for stiffener area accounts for the lowered efficiency of stiffeners furnished singly, rather than in pairs.
14.5.4 The minimum shear to be transferred between the stiffener and the web is based on Basler (1961c).
14.5.5 The requirement of attaching single intermediate stiffeners to the compression flange is to prevent tipping of the flange under loading.

Figure 2-37
Combined Shear and Moment Interaction Expression

14.6 Combined Shear and Moment

This requirement recognizes the limit state of the web yielding by the combined action of flexural stress and the post-buckling components of the tension field development in the web near the flange (Basler, 1961b).

Figure 2-37 illustrates the interaction expression provided in Clause 14.6. When Clause 14.3.4 applies, M_{r}^{\prime} replaces M_{r} in the interaction expression.

14.7 Rotational Restraint at Points of Support

A severe stability problem may exist when a beam or girder is continuous over the top of a column. The compression flange of the beam tends to buckle sideways and simultaneously, the beam-column junction tends to buckle sideways because of the compression in the column. Three mechanisms exist for providing lateral restraint: direct-acting bracing, such as provided by bottom chord extensions of joists, beam web stiffeners welded to the bottom flange, or the distortional stiffness of the web. In the latter two cases, the connection of the beam flange to the column cap plate must have strength and stiffness (Chien, 1989). The restraint offered by the distortion of the web requires very careful assessment. See also the commentaries on Clause 13.6 and Clause 9.2.

14.8 Copes

Flanges are coped to permit beams to be connected to girder webs with simple connections while maintaining the tops of the flanges at the same elevation. Long copes may seriously affect the lateral-torsional buckling resistance of a beam (Cheng and Yura, 1986). The reduced shear and moment resistance at the coped cross-section should be examined. See the Commentary on Clause 9.2.4.

14.10 Torsion

In many cases, beams are not subject to torsion because of the restraint provided by slabs, bracing or other framing members, The torsional resistance of open sections having two flanges consists of the St. Venant torsional resistance and the warping torsional resistance.

Information on moment-torque interaction diagrams for I-shaped members for use in design is given in Driver and Kennedy (1989), Bremault et al. (2008) and Estabrooks and Grondin (2008). Serviceability criteria will often govern the design of a beam subject to torsion. The maximum stress due to bending and warping at the specified load level shall be limited to the yield strength to guard against inelastic deformation. For inelastic torsion of steel I-beams, see Pi and Trahair (1995). For elastic analyses, see Seaburg and Carter (1997), and Brockenbrough and Johnston (1974). For methods of predicting the angle of twist in a wide-flange shape beam, see Englekirk (1994).

15. TRUSSES

15.1 Analysis

A "pure" truss is a triangulated system with pinned joints and with loads applied only at the joints. This being the case, the members of the truss are axially loaded "two-force" members acting either in tension or compression. Such trusses are now seldom made, and the members meeting at a joint are likely welded or bolted together, and not infrequently the chords are continuous through several joints. Under these circumstances, when the truss is loaded and the members change length, the geometry of the triangles (including the angles) changes, resulting in rotations of the joints, and end moments develop in the members, causing single or double in-plane curvatures. These deformation moments are called secondary moments, as they are not due to the primary loading but solely due to the deformation of the truss with rigid joints. Moreover, because the truss members are much stiffer axially than they are flexurally, several researchers (Parcel and Murer 1934, Aziz 1972) have shown that, for steel trusses with rigid welded or bolted joints, after initial elastic behaviour the extreme fibres of the members begin to yield under the axial and bending strains. With further axial straining, the moment that can coexist decreases and approaches zero, as shown schematically in Figure 2-38, when all the strains in a member (though not uniform) are either in compression or tension. Thus the truss with sufficient ductility, even with rigid joints, behaves as though its members were pin-ended.

Primary moments are moments that can be induced in truss members due to loadings or due to connection geometry. Sometimes, for example, a top chord is used to support a roof deck directly and the transverse loads between joints bend the chord and induce end moments at the panel points, which are distributed among the members meeting at a joint with some moments carried over to other joints. Thus, there are primary moments distributed throughout the truss. A common procedure is to analyze such a truss as a pin-jointed assemblage and to add to the forces so found the moments due to the transverse loadings.

Primary moments are also induced when the centroidal axes of the members meeting at a joint do not intersect at a common point, causing a rotation of the joint. These can be analyzed as for the other primary moments, taking the truss members as axially loaded members with the bending moments added. If the trusses with primary moments are analyzed using, say, an elastic plane frame analysis, then the stress resultants found will include the axial forces in the members and both the primary and secondary moments. Because the secondary moments for ductile trusses are of little or no consequence, trusses proportioned on this basis will be stronger than they need be.

Secondary moment, M, due to Jolnt rotation

Figure 2-38
Axial Load - Secondary Moment Interaction Diagram
for a Rigid-Jointed Ductile Steel Truss

15.1.1 Simplified Method

The "Simplified Method" of analysis based on pin-connected truss members predicts closely the failure load of the tests, even with large rigid connections, provided there is sufficient ductility at the connections, so that redistribution of forces and moments may take place at the joints as the failure load is approached. Thus the sections must be at least Class 3. Bending effects of transverse loads applied between joints are simply treated as additional load actions to be carried. Out-of-plane buckling of compression members is conservatively not allowed. Alternatively, though not stated, the reduced strength of the truss because of this failure mode could be taken into account.

15.1.2 Detailed Method

This Clause lists the type of trusses for which the assumption of pin connections is not considered valid. Joint fixity must be considered, and the members must be designed for the combination of axial load and bending.

15.2.1 Effective Lengths of Compression Members

The potential failure modes of compression members in trusses are either in-plane bending or buckling modes. The effective length factors are, therefore, either taken to be equal to one or are based on the restraint at the ends. Thus, the following situations arise for in-plane and out-of-plane behaviour.
(a) In-plane behaviour

A compression member with bolted or welded end connections and with in-plane joint eccentricities acts in-plane as a beam-column with axial forces and end moments that can be established. It can be isolated from the structure and is designed as a beam-column based on its actual length, that is, with an effective length factor of 1.0.

A compression member with bolted or welded end connections and without in-plane joint eccentricities, designed as an axially loaded member, has end restraints, provided that all members meeting at the two end joints do not reach their ultimate loads (yielding in tension or buckling in compression) simultaneously. The effective length factor depends on the degree of restraint. This typically occurs for trusses in which some members are oversize, for example, trusses with constant size chords. All members do not fail simultaneously, and the effective length factors may be less than one.

If, however, all members reach their ultimate loads simultaneously and none restrain others, the effective length factor should be taken as 1.0.
(b) Out-of-plane behaviour

Unless members out-of-plane of the truss exist at the end joints under consideration, the restraint to out-of-plane buckling is small and should be neglected. Provided no out-of-plane displacement of the members' ends occurs, an effective length factor of 1.0 is therefore appropriate. It should be noted that Clause 13.3.3 provides a modified slenderness-ratio method, which accounts for the end eccentricity and fixity, for single-angle members that comply with the conditions stated in that Clause.

15.2.2 Joint Eccentricities

When the centroidal axes of the truss members do not intersect at a common point, the Standard requires that the bending moment due to the joint eccentricities be considered in the design.

15.2.3 Stability

Lateral bracing, which provides stability to the compression chords of trusses, must have stiffness and strength to satisfy the requirements of Clause 9.2 . Braces must be properly attached to the member being braced, and their ends must be fastened to rigid supports.

15.2.5 Web Members

It has been observed, on occasion, in tests of standardized trusses and joists that the first compression web member fails first, even though the truss deformations may be quite significant. In these cases, certain chords and webs had been designed to S16 requirements to reach their factored loads more or less simultaneously. Because the tension chord, after yielding in the panel where the bending moment is a maximum, continues to carry load into the strainhardening range, it overloads itself and the truss. The first compression web member with no such reserve then fails by buckling. By reducing the resistance factors for this member and its connections to 85%, more ductile modes of failure are encouraged at little extra cost. This requirement is also applied to joists in Clause 16.5.7.

In tests of trusses where the bottom chord bears on a reaction, severe bending deformations have been observed near the connections of the end compression diagonal because of the geometric distortion of the truss as deflections increase. The Standard requires that the stresses arising from these bending moments be included in the design of the end diagonal. Thus, the analysis of trusses with the bottom chord bearing must be carried out using the Detailed Method.

15.2.6 Compression Chord Supports

A frequently used rule to provide full support (Winter 1960) is for a brace to have a capacity in the order of 2% of the force in the main compression member.

15.2.7 Maximum Slenderness Ratio of Tension Chords

The slenderness ratio of tension chords is limited to 240 simply to facilitate handling during erection. The exceptions to this are noted in the clause,

16. OPEN-WEB STEEL JOISTS

16.1 Scope

Open-web steel joists (OWSJ or joists), as described in Clause 16.2, are generally proprietary products whose design, manufacture, transport, and erection are covered by the requirements of Clause 16. The Standard clarifies the information to be provided by the building designer (user-purchaser) and the joist manufacturer (joist designer-fabricator).

16.2 Generai

The distinction between a standard and a non-standard OWSJ no longer exists, as OWSJs are designed specifically for each situation by the joist manufacturer.

This clause lists functions that joists may fulfil other than the simple support systems for floors or roofs. These include continuous joists, cantilever joists, joists in lateral-load-resisting systems and support for bracing members.

16.3 Materials

The use of yield strength levels reported on mill test certificates for the purposes of design is prohibited here as throughout the Standard. This practice could significantly lower the margin of safety because any deviation from the specified value has already been accounted for statistically in the bias value - the ratio of the mean strength to the specified minimum value. Thus, all design rules have been, and are, based on the use of the specified minimum yield point or yield strength. For structural members cold-formed to shape, the increase in yield strength due to cold forming, as given in CSA Standard S136, may be taken into account provided that the increase is based on the specified minimum values in the relevant structural steel material standard.

16.4 Design Documents

16.4.1 Building Structural Design Documents

The Standard recognizes that the building designer may not be the joist designer; therefore, the building structural design documents are required to provide specific information for the design of the joists. The information to be supplied includes a note that any drilling, cutting or welding has to be approved by the building designer.

Uplift and downward wind effects, as well as balanced, unbalanced, non-uniform and concentrated loads, are to be shown by the building designer, Figure $2-39$ shows a sample joist schedule that could be used to record all gravity loads on joists and any in-plane wind load acting normal to the top chord. Prior to the introduction of National Building Code of Canada 2005, the significance of downward wind effects on roof members depended primarily on the wind-to-snow load ratio. The adoption of load combinations in companion action format in NBCC 2005 eliminated the application of the combination (reduction) factor when wind acts in combination with variable gravity loads. This change resulted in the addition of downward

Mark	Depth (mm)	Spacing (mm)	Specified Dead Load	Specified Live Load	Specified Snow Load	Specified Wind Load	Remarks
$J 1$	600	1300	4.0 kPa	2.4 kPa			$\begin{aligned} & \Delta_{\text {live }} \leq \frac{\text { span }}{320} \\ & \text { Suggested lout } \\ & \text { for vibration } \end{aligned}$
J2	700	2000	$\begin{gathered} 8.9 \mathrm{kN} \\ 1.5 \mathrm{kN} / \mathrm{m} \\ \hline 12000 \rightarrow \end{gathered}$				$\Delta \leq \frac{\text { span }}{240}$

Figure 2-39
Joist Schedule
wind effects to snow or live load regardless of wind-to-snow load ratios. The NBCC (2015) requires the internal suction in combination with any external downward wind pressure to be included in the total downward wind effect.

All heavy concentrated loads such as those resulting from partitions, large pipes, mechanical, and other equipment to be supported by OWSJs, should be shown on the structural design documents. Small concentrated loads may be allowed for in the uniform dead load.

The building designer should specify the building Importance Category as defined in the NBCC (2015). Alternatively, the NBCC Importance Factors, I_{S}, I_{W} and I_{E}, as appropriate, and the importance factor for live load (see Clause 6.2 .2) when not equal to 1.0 , should be specified.

Options, such as attachments for deck when used as a diaphragm, special camber and any other special requirements should also be provided. Where vibration of a floor system is a consideration, it is recommended that the building designer give a suggested effective composite moment of inertia, $I_{\text {eff }}$ (Murray et al. 1997). Because the depth of joists supplied among different joist manufacturers may vary slightly from nominal values, the depth, when it is critical, should be specified.

When sprayed fire protection is contemplated, reduce clearance by thickness of sprayed fire protection material.

Although steel joist manufacturers may indicate the maximum clear openings for ducts, etc. which can be accommodated through the web openings of each depth of their OWSJs, building designers should, in general, show on the building design drawings the size, location and elevation of openings required through the OWSJs (Figure 2-40). Large ducts may be accommodated by special design. Ducts which require open panels and corresponding reinforcement of the joist should, where possible, be located within the middle half of the joist to minimize shear effects. This information is required prior to the time of tendering to permit appropriate costing.

Specific joist designations from a manufacturer's catalog or from the AISC and Steel Joist Institute of the U.S.A. are not appropriate and should not be specified.

Figure 2-40
Sizes of Openings for Electrical and Mechanical Equipment

16.4.2 Joist Design Documents

The design information of a joist manufacturer may come in varying forms such as: design sheets, computer printout, and tables. Not all joist manufacturers make "traditional" detail drawings.

16.5.1 Loading for Open-Web Steel Joists

Maximum factored moments and shears are established either from the loading conditions in the design documents or from the loading conditions listed in Clause 16.5.1.

These loading conditions are consistent with Section 4.1 and Table 4.1.3.2.A of the National Building Code of Canada (2015). In particular, as required by the National Building Code of Canada, roofs and the joists supporting them may be subject to uplift loads due to wind.

16.5.2 Design Assumptions

The loads may be replaced by statically equivalent loads applied at the panel points for the purpose of determining axial forces in all members. It is assumed that any moments induced in the joist chord by direct loading do not influence the magnitude of the axial forces in the members. Tests on trusses (Aziz 1972) have shown that the secondary moments induced at rigid joints due to joint rotations do not affect the ultimate axial forces determined by a pin-jointed truss analysis.

16.5.5 Bottom Chord

A minimum radius of gyration is specified for bottom chord members, when in tension, to provide a minimum stiffness for handling and erection.

Under certain loading conditions, net compression forces may occur in segments of bottom chords and must be considered. Bracing of the chord, for compression, may be provided by regular bridging only if the bridging meets requirements of Clause 9.2 . As a minimum, lines of bracing are specifically required near the ends of bottom chords in tension in order to enhance stability when the wind causes a net uplift.

Bottom chord bracing may be required for continuous and cantilever joists as shown in Figure 2-41.

In those cases, where the bottom chord has little or no net compression, bracing is not required for cantilever joists. However, it is generally considered good practice to install a line of bridging at the first bottom chord panel point as shown in Figure 2-41.

Figure 2-41
Bracing and Bridging of Cantilever Joists

Figure 2-42

Length of Joist Web Members

16.5.6 Top Chord

When the conditions set out in Clause 16.5.6.1 are fulfilled, only axial force need be considered when the panel length is less than 610 mm (Kennedy and Rowan 1964). In these cases, the stiffness of the floor or roof structure tends to help transfer loads to the panel points of the joist, thus offsetting the reduction in chord capacity due to local bending. When the panel length exceeds 610 mm , axial force and bending moment need to be considered. When calculating bending moments in the end panel, it is customary to assume the end of the chord to be pinned, even though the joist bearing is welded to its support. The stiffening effect of supported deck or of the web is to be neglected when determining the appropriate width-thickness ratio (Clause 16.5.4.1) of the compression top chord.

The requirement in Clause 16.5.6.5, that the flat width of the chord component be at least 5 mm Jarger than the nominal dimension of the weld, should be considered an absolute minimum. Increasing the dimension may improve workmanship. See Clauses 16.8.5.1 and 16.8.5.2 regarding workmanship requirements when laying and attaching deck to joists.

16.5.6.6

S16-14 stipulates this minimum thickness of joist top chord when the deck is connected to it by mechanical fasteners. Joist top chords that are too thin do not work well with pins or screws.

16.5.7 Webs

The length of web members for purposes of design are shown in Figure 2-42. With the exception of web members made of individual members, the effective length factor is always taken as 1.0. For individual members this factor is 0.9 for buckling in the plane of the web (see Clause G7 of Annex G), but is 1.0 for buckling perpendicular to the plane of the web.

It has been observed, on occasion, in the testing of joists that with critical chords and webs designed to reach their factored loads more or less simultaneously using the S16 requirements, that the first compression web member fails first, even though the joist deformations may be quite significant. This appears to happen because the tension chord, after yielding in the panel where the joist bending moment is a maximum, continues to carry load into the strain-hardening range. It overloads itself and the joist. The first compression web member with no such reserve fails by buckling. By reducing the resistance factors for this member and its connections to 85%, more ductile modes of failure are encouraged at little extra cost. This requirement is also applied to trusses in Clause 15.2.5.

Vertical web members of modified Warren geometry are required to resist load applied at the panel point plus a bracing force to preclude in-plane buckling of the compression chord. A frequently used rule to provide full support (Winter 1960) is for a brace to have a capacity in the order of 2% of the force in the main compression member.

Web members in tension are not required to meet a limiting slendemess ratio. This is significant when flats are used as tension members. However, attention should be paid to those loading cases where the possibility of shear reversal along the length of the joist exists. Under these circumstances, it is likely that some diagonals generally near mid-span may have to resist compression forces.

16.5.8 Spacers and Battens

Spacers and battens must be an integral part of the joist, and the steel deck is not to be considered to act as spacers or battens (see Clause 16.5.6.2(c)).

Figure 2-43
Eccentricity Limits at Panel Points of Joists

Figure 2-44
Joist End Bearing Eccentricity

16.5.9 Connections and Splices

Although splices are permitted at any point in chord or web members, the splices must be capable of carrying the factored loads without exceeding the factored resistances of the members. Butt-welded splices are permitted, provided they develop the factored tensile resistance of the member.

As a general rule, the gravity axes of members should meet at a common point within a joint. However, when this is not practical, eccentricities may be neglected if they do not exceed those described in Clause 16.5.9.4; see Figure 2-43. Kaliandasani et al. (1977) have shown that the effect of small eccentricities is of minor consequence, except for eccentricities at the end bearing and the intersection of the end diagonal and bottom chord. (See also Clause 16.5.10.4.)

16.5.10 Bearings

16.5.10.1 As required by Clause 16.4 .1 (c), the factored bearing resistance of the supporting material or the size of the bearing plates must be given on the building design drawings.
16.5.10.2 It is likely that the centre of bearing will be eccentric with respect to the intersection of the axes of the chord and the end diagonal, as shown in Figure 2-44. Because the location of the centre of bearing is dependent on the field support conditions and their construction tolerances, it may be wise to assume a maximum eccentricity when designing the bearing detail. In lieu of specific information, a reasonable assumption is to use a minimum eccentricity of one half the minimum bearing on a steel support of 65 mm . When detailing joists, care must be taken to provide clearance between the end diagonal and the supporting member or wall. See Figure 2-45. A maximum clearance of 25 mm is suggested to minimize eccentricities. One solution, to obtain proper bearing, is to increase the depth of the bearing shoe.

For spandrel beams and other beams on which joists frame from one side only, good practice suggests that the centre of the bearing shoe be located within the middle third of the flange of the supporting beam (Figure 2-46(a)). As the depth of bearing shoes vary, the building designer should check with the joist manufacturer in setting "top of steel" elevations. By using a deep shoe, interference between the support and the end diagonal will be avoided, as shown in Figure 2-46(b).

If the support is found to be improperly located, such that the span of the joist is increased, the resulting eccentricity may be greater than that assumed. Increasing the length of the bearing

Depth of bearing shoes vary, check with manufacturer

Figure 2-45
Joists Bearing on Steel Plate Anchored to Concrete and Masonry

See Clause 16.5.10.3 when bearing is less than 65 mm
Figure 2-46 Joists Bearing on Steel

Figure 2-47
Tie Joists
shoe to obtain proper bearing may create the more serious problem of increasing the amount of eccentricity.

16.5.11 Anchorage

16.5.11.1 When a joist is subject to net uplift, not only must the anchorage be sufficient to transmit the net uplift to the supporting structure, but the supporting structure must be capable of resisting that force.

The anchorage of joist ends to supporting steel beams provide both lateral restraint and torsional restraint to the top flange of the supporting steel beam (Albert et al. 1992). When the supporting beam is simply supported, the restraint provided to the compression flange likely means that the full cross-sectional bending resistance can be realized.

In cantilever-suspended span construction, the restraint provided by the joists is applied to the tension flange in negative moment regions and is, therefore, less effective in restraining the bottom (compression) flange from buckling.

Albert et al. (1992) and Essa and Kennedy (1993) show that, while the increase in moment resistance due to lateral restraint is substantial, in cantilever-suspended span construction, the further increase when torsional restraint is considered is even greater. The torsional restraint develops when the compression flange tends to buckle sideways, distorting the web and twisting the top flange that is restrained by bending of the joists about the strong axis. The anchorage must therefore be capable of transmitting the moment that develops. For welds, a pair of 5 mm fillet welds 50 mm long coupled with the bearing of the joist seat would develop a factored moment resistance of about $1.8 \mathrm{kN} \cdot \mathrm{m}$
16.5.11.2 The function of tie joists is to assist in the erection and plumbing of the steel frame. Either the top or bottom chord is connected by bolting and, after plumbing the columns, the other chord is usually welded (Figure 2-47). In most buildings, tie joists remain as installed with both top and bottom chords connected; however, current practices vary throughout Canada with, in some cases, the bottom chord connections to the columns being made with slotted holes. Shrivastava et al. (1979) studied the behaviour of tie joist connections and concluded that they may be insufficient to carry lateral loads which could result from rigid bolting.

The designation tie joist is not intended to be used for joists participating in frame action.

Table 2-1
Camber for Joists

Camber (mm)			
Span	NominaI Camber	Minimum Camber	Maximum Camber
Up to 6000	$12+$	4	20
7000	14	6	22
8000	16	8	24
9000	18	10	26
10000	20	11	29
11000	22	13	31
13000	24	15	33
14000	26	17	35
16000	28	18	38

16.5.11.3 When joists are used as part of a frame to brace columns, or to resist lateral forces on the finished structure, the appropriate moments and forces are to be shown on the building design drawings to enable the joists and the joist-to-column connections to be designed by the joist manufacturer.

In cantilever-suspended span roof framing, joists may also be used to provide stability for girders passing over columns. See also the commentary on Clauses 16.5.11.1 and 13.6.

16.5.12 Deflection

The method of computing deflections is based on truss action, taking into account the axial deformation of all components rather than the former approximate method of using a moment of inertia equal to that of the truss chords and adding an allowance for the "shear" deformation of the web members.

16.5.13 Camber

The nominal camber based on Clause 16.5 .13 is taken to vary linearly with the span and is tabulated in Table 2-1, rounded to the nearest millimetre. Manufacturing tolerances are covered in Clause 16.10.9. The maximum difference in camber of 20 mm for joists of the same span, set to limit the difference between two adjacent joists, is reached at a span of 16000 mm .

16.5.14 Vibration

Annex E of S16-14, Guide for Floor Vibrations, contains recommendations for floors supported on steel joists. By increasing the floor thickness (mass), both the frequency and the peak acceleration are reduced, thus reducing the annoyance more efficiently than by increasing the
moment of inertia (I_{x}) of the joists. For this reason, the building designer should weigh, at the building design stage, the options in the Guide for Floor Vibrations to achieve the best performance.

16.5.15 Welding

This clause makes reference to Clause 24 , which requires that open-web steel joist fabricators be certified by the Canadian Welding Bureau to CSA W47.1 for are-welded joists, to CSA W55.3 for resistance welded joists, or to both.

This clause further requires that fabricators have welding procedures specific to the fabrication of joists in place; this may include items such as weld sequence, length and profile unique to the joist fabrication. The development and qualification of welding procedures is a mandatory requirement of all fabricators who are certified to the requirements of CSA W47.1 or CSA W55.3.

16.6 Stability During Construction

A distinction is made between bridging, put in to meet the slenderness ratio requirements for top and bottom chords, and the temporary support required by Clause 16.6 to hold joists against movement during construction. Permanent bridging, of course, can be used for both purposes.

16.7 Bridging

Figures 2-48, 2-49 and 2-50 provide illustrations of bridging and details of bridging connections.

16.7.7 Anchorage of Bridging

Ends of bridging lines may be anchored to the adjacent steel frame, or adjacent concrete or masonry walls, as shown in Figure 2-51.

Where attachment to the adjacent steel frame or walls is not practicable, diagonal and horizontal bridging shall be provided in combination between adjacent joists near the ends of bridging lines as shown in Figure 2-52. Joists bearing on the bottom chord will require bridging at the ends of the top chord.

16.7.9 Spacing of Bridging

Either horizontal or diagonal bridging is acceptable, although horizontal bridging is generally recommended for shorter spans, up to about 15 m , and is usually attached by welding. Diagonal bridging is recommended for longer spans and is usually attached by bolting. Bridging need not be attached at panel points and may be fastened at any point along the length of the joists. When horizontal bridging is used, bridging lines will not necessarily appear in pairs as the requirements for support of tension chords are not the same as those for compression chords. Because the ends of joists are anchored, the supports may be assumed to be equivalent to bridging lines.

16.8 Decking

16.8.1 Decking to Provide Lateral Support

When the decking complies with Clause 16.8 and is sufficiently rigid to provide lateral support to the top (compression) chord, the top chord bridging may be removed when it is no longer required. Bottom (tension) chord bridging is permanently required to limit the unsupported length of the chord to $240 r$, as defined in Clause 16.7.9.

Figure 2-48
Diagonal Bridging of Joists

Bridging welded to chord

Figure 2-49
Horizontal Bridging Connections to the Joist's Top Chord

Figure 2-50
Horizontal Bridging Connections to the Joist's Bottom Chord

Figure 2-51

Anchorage of Joist Bridging

16.8.5 Installation of Steel Deck

16.8.5.1 Workmanship is of concern when decking is to be attached by arc-spot welding to top chords of joists. When the joist location is marked on the deck as the deck is positioned, the welders will be more likely to position the arc-spot welds correctly,
16.8.5.2 Arc-spot welds for attaching the deck to joists are structural welds and require proper welding procedures.

Figure 2-52
Bracing of Joist Bridging

16.9 Shop Coating

Interiors of buildings conditioned for human comfort are generally assumed to be of a noncorrosive environment and therefore do not require corrosion protection.

Joists normally receive one coat of paint suitable for a production line application, usually by dipping a bundle of joists into a tank. This paint is generally adequate for three months of exposure, which should be ample time to enclose or paint the joists.

Special coatings and paints that require special surface preparations are expensive, because these have to be applied individually to each joist by spraying or other means. For joists comprised of cold-formed members, surface preparations that were meant to remove mill scale from hot-rolled members are not appropriate.

16.10 Manufacturing Tolerances

Figure 2-53 illustrates many of the manufacturing tolerance requirements.

16.11 Inspection and Quality Control

16.11.3 Quality Control

When testing forms part of the manufacturer's normal quality control program, the test may follow steps 1 to 4 of the loading procedure given in Part 5 of Steel Joist Facts (CISC 1980).

Figure 2-53
Joist Manufacturing Tolerances

16.12 Handling and Erection

16.12.2 Erection Tolerances

Figure 2-54 illustrates many of the erection tolerance requirements. The provisions of Clause 16.12.2.5 aim to control the differential deflection between any three adjacent joists to smooth the supported deck's profile.

Figure 2-54
Joist Erection Tolerances

17. COMPOSITE BEAMS, TRUSSES AND JOISTS

17.2 Definitions

Definitions particular to this Clause are given here. Figure 2-55 illustrates various cases of effective slab and cover slab thickness.

17.3 General

17.3.1 Deflections

The moment of inertia is reduced from the transformed value to account for the increased flexibility resulting from partial shear connection, p, and for interfacial slip, similar to that coefficient proposed by Grant et al. (1977). The factor 0.85 accounts for the loss in stiffness due to interfacial slip, even with full shear connection. To include the effect of shear deformation of the web systems of joists and trusses, the moment of inertia I_{s} is reduced by 15% unless a detailed analysis is used.

The increase of the elastic deflection of 15% for creep is an arbitrary but reasonable value.
Annex H of the Standard gives a detailed discussion of shrinkage deflections, There it is emphasized that appropriate values of the shrinkage strain and age-adjusted effective modulus of concrete, which in turn depends on the aging and creep coefficients, should be used in calculating these deflections. Values of shrinkage strain, and aging and creep coefficients, for conditions not anticipated in the annex may be obtained from Ghali et al (2002), CSA S6 Canadian Highway Bridge Design Code (2014) also contains detailed procedures for evaluating the shrinkage and creep of concrete.

Reference should be made to Ghali et al (2002) for a more complete discussion of the procedure proposed in the standard for evaluating shrinkage deflections. An alternative method is presented by Kennedy and Brattland (1992), with further information provided by Maurer and Kennedy (1994) on interfacial slip and, for composite joists or trusses, increases in the flexibility of the system.

17.3.2 Vertical Shear

Clauses 17.3.2 and 17.3.3 follow from the assumption that the concrete slab does not carry any vertical shear.

17.4 Design Effective Width of Concrete

Although the effective width rules were formulated on the basis of elastic conditions (Robinson and Wallace 1973, Adekola 1968), the differences at ultimate load do not significantly affect the moment resistance of the composite beam (Elkelish and Robinson 1986, Hagood et al. 1968, Johnson 1975, Heins and Fan 1976).

17.5 Slab Reinforcement

17.5.2 The effectiveness of the minimum requirement of two 15 M bars at the ends of beams supporting ribbed slabs perpendicular to the beam proposed by Ritchie and Chien (1980) has been verified experimentally by Jent (1989).
17.5.3 The longitudinal shear forces generated by interconnecting concrete slabs to steel sections, trusses, or joists by means of shear connectors may cause longitudinal cracking of the slab directly over the steel. This effect is independent of any flexural cracking that may occur due to the slab spanning continuously over supports, although the two effects may combine. Longitudinal shear cracking is more apt to start from the underside of the solid slab, whereas flexural cracking is more apt to start at the top surface of the slab. Investigations by Johnson

Figure 2-55
Effective Slab Thickness for Composite Beams
(1970), El-Ghazzi et al. (1976), and Davies (1969) have shown that a minimum area of transverse reinforcing steel is required to improve the longitudinal shear capacity of a composite beam slab. The minimum reinforcement ratio is the same as that specified in CSA Standard A23.3 (CSA 2014) for temperature and shrinkage reinforcement in reinforced concrete slabs.
17.5.4 For the reasons given in Clause 17.5.3, a minimum transverse reinforcement ratio of 0.002 is also specified for composite beams with ribbed slab when the ribs are parallel to the beam span. This ratio is reduced to 0,001 when the ribs are perpendicular to the beam span, because the steel deck provides a measure of transverse reinforcement. Reinforcement of the cover slab may also be necessary for flexure, fire resistance, shrinkage, or temperature effects.

17.6 Interconnection

When unpainted sections, trusses, or joists are totally encased in concrete as specified, effective interconnection is obtained, and no shear connectors are required.

The total sheet thickness and the total amount of zinc coating are limited in order to achieve sound welds.

Tests have shown that a shear connector is not fully effective if weided to a support which is too thin or flexible (Gobel 1968). For this reason, the stud diameter is limited to 2.5 times the thickness of the part to which it is welded.

17.7 Shear Connectors

The factored resistance of end-welded studs in a solid slab is different from that in a ribbed slab, which depends upon the deck ribs' orientation and size.

For end-welded studs in a solid slab, the values given in Clause 17.7.2.2 are based on work by Olgaard et al. (1971) in both normal and light-density solid concrete slabs. The limiting value of $\phi_{s c} A_{s c} F_{u}$ represents the tensile strength of the stud, as the stud eventually bends over and finally fails in tension.

In previous editions of the Standard, Clause 17.7.2.3(a) gave the same factored shear resistance for studs in ribbed slabs, with ribs parallel to the beam, as in solid slabs, provided that the rib flute is wide enough (Johnson 1975). Hosain and Wu (2002) haye shown that this may not always be the case. In S16-09, equation (a) was revised to account for the lower capacity observed through push-out and full-size beam tests. When the flutes are narrow, however, the factored shear resistance of the stud is reduced. The equation in Clause 17.7.2.3(b) of S16-09 gives a more consistent prediction of push-out test results (Hosain and Pashan 2002). A limit is placed on equation (b), such that the shear resistance for $w_{d} / h_{d}<1.5$ does not exceed that obtained with the revised equation (a) at $w_{d} / h_{d}=1.5$.

The provisions for ribbed slabs with ribs perpendicular to the beam are based on work by Jayas and Hosain (1988 and 1989). Push-out tests, as well as full-size beam tests, indicated that failure in this type of composite beam would likely occur due to concrete pull-out. The equations of Clause 17.7.2.4, similar to those suggested by Hawkins and Mitchell (1984), provide better correlation with test results than those using the reduction factor method adopted by AISC (2010b). Figure 2-56 gives diagrams of the pullout surface area. Pullout areas for specific deck profiles and studs are given in Part 5 of the Handbook.

In order to minimize localized stresses in concrete, the lateral spacing centre-to-centre of studs used in pairs should be not less than four stud diameters. The minimum longitudinal spacing of connectors, in both solid slabs and ribbed slabs with ribs parallel to the beam, is based on Olgaard et al. (1971). The maximum spacing limits specified for mechanical ties in Clause 17.8 is applicable to headed studs, as they function in this capacity.

Further information on end-welded studs is found in Johnson (1970), Chien and Ritchie (1984), and Robinson (1988).
17.7.3 The shear value of channel connectors is based on Slutter and Driscoll (1965).

17.9 Design of Composite Beams with Shear Connectors

In order to minimize eccentricities before and after composite action, in composite joists and trusses, the web members should be positioned such that the lines of action intersect at a point halfway between the mid-depth of the cover slab and the centroid of the steel top chord.
17.9.1 A minimum flat width for the top chord of $1,4 d+20 \mathrm{~mm}$ is stipulated to facilitate placement of the shear studs.
17.9.3 The factored moment resistance of a composite flexural member is based on the ultimate capacity of the cross-section (Robinson 1969, Vincent 1969, Hansell and Viest 1971, Robinson and Wallace 1973, Tall et al. 1974) where the following assumptions are made:

- Concrete in tension is neglected;
- Only the lower chord of a steel joist or truss is considered effective when computing the moment resistance;
- The internal couple consists of equal tension and compression forces;

Figure 2-56
Pullout Surface Area with Ribbed Metal Deck

- The forces are obtained as the product of a limit states stress (ϕF_{y} for steel and $\alpha_{1} \phi_{c} f_{c}{ }_{c}$ for concrete) times the respective effective areas; and,
- To take into account the greater variability of concrete elements strengths, the resistance factor is taken as 0.65 for concrete as compared to 0.90 for steel.

Three design cases are considered:

- Case 1 representing full shear connection with the plastic neutral axis in the slab;
- Case 2 representing full shear connection with the plastic neutral axis in the steel section; and,
- Case 3 representing partial shear connection for which the plastic neutral axis is always in the steel section.

Only Case 1 is permitted when joists or trusses are used to prevent buckling of the top chord and overloading of the shear connectors. For Case 3, the depth of the concrete in compression is determined by the expression for " a " (Robinson 1969).

Since the release of S16-09, these assumptions have been modified somewhat such that the resistance factor for concrete and the ratio of average stress in the rectangular compression block to the specified concrete strength are consistent with the CSA Standard A23.3-04 (and

Cross Section at Maximum Moment Location

$$
\begin{aligned}
& V_{u}=\sum q_{r}-\alpha_{1} \phi_{c} f_{c}^{\prime} A_{c}-\phi_{r} A_{r l} F_{y r} \\
& V_{r}=\left(0.80 \phi_{r} A_{r l} F_{y r}+2.76 \phi_{c} A_{c v}\right) \leq 0.50 \phi_{c} f_{c}^{\prime} A_{c \gamma}
\end{aligned}
$$

Figure 2-57
Potential Longitudinal Shear Planes

A23.3-14). Accordingly, $\phi_{c}=0.65$ is used in place of 0.60 , and $\alpha_{1} \phi_{c} f^{\prime}{ }_{c}$ is given as the concrete strength in place of $0.85 \phi_{c} f^{\prime}$. Reasoning for these changes to the concrete resistance factor and strength is described by Bartlett (2007).
17.9.4 Robinson (1988) and Jayas and Hosain (1989) show that a lower limit of 40% of full shear connection is acceptable for strength calculations. Below this value, the interfacial slip is such that integral composite action cannot be assured. A lower limit of 25% of full shear connection is used for deflection designs, as deflections are computed at specified load levels. This latter provision is used where the flexural strength is based on the bare steel beam, but the increased stiffness due to the concrete is considered for deflection calculations.
17.9.5 Between the point of zero and maximum moment, a horizontal force associated with the internal resisting couple must be transmitted across the steel-concrete interface.
17.9.8 Uniform spacing of shear connectors is generally satisfactory because the flexibility of the connectors provides a redistribution of the interface shear among them. However, to ensure that sufficient moment capacity is achieved at points of concentrated load, the second provision of this clause is invoked. As the moment capacity of the steel section does not depend on shear connectors, this capacity is subtracted from both M_{f} and M_{f}.
17.9.9 To justify composite action in the end panel of joists and trusses, sufficient shear studs must be provided above the seat or along a top chord extension, to transfer the horizontal shear from the slab to the steel section, otherwise the steel top chord acting alone must resist all the forces.

17.9.10 Longitudinal Shear

In order to develop the compressive force in the portion of the concrete slab outside the potential shear plane shown in Figure 2-57, net shear forces, totalling V_{u}, must be developed on these planes. The expressions for shear resistance are based on Mattock (1974). Values for semi-low-density and low-density concrete are given by Mattock et al. (1976) and Chien and Ritchie (1984).

17.10 Design of Composite Beams Without Shear Connectors

This conservative approach assumes that the composite section is about 10% stronger than the bare steel member, although the moment resistance computed according to Clause 17.10.2 typically gives a larger value.

17.11 Unshored Beams

This provision guards against permanent deformations under specified loads by limiting the total stress in the bottom fibre of the steel section. This limit has been shown (Kemp and Trinchero 1992) to be conservative. The ultimate strength of the composite beam, which exhibits ductile behaviour, is not affected by the stress state at the specified load level.

18. COMPOSITE COLUMNS

This clause includes, in addition to the concrete-filled hollow structural sections, partially encased composite columns acting in compression in Clause 18.3, and rolled steel shapes encased in concrete in Clause 18.4. The latter parallels the requirements of CSA Standard A23.3, but using a column curve consistent with those used throughout this Standard. Thus the designer has in this Standard three types of steel-concrete columns from which to choose.

The design rules apply to specific research which should be consulted in conjunction with the requirements of this Clause.

18.1 Resistance Prior to Composite Action

For some of the systems described here, the designer should be aware that the steel component may be designed to carry some of the loads before the concrete has gained strength.

18.2 Concrete-Filled Hollow Structural Sections

18.2.1 General

18.2.1.2 Axial Load on Concrete

Kennedy and MacGregor (1984) showed that direct bearing of the load on the concrete was not necessary for either axially loaded columns or beam-columns. When loads are applied to the steel shell, pinching between the steel and concrete quickly transfers loads to the concrete
core. The Standard conservatively retains the requirement of direct bearing for the uppermost level but not for intermediate levels of multi-storey columns.

18.2.1.3 Composite Áction in Bending

CIDECT (1970), Knowles and Park (1970), Wakabayashi (1977), Stelco (1981), Budijgnto (1983) and Bergmann et al. (1995) have demonstrated that the compression resistance of composite columns, consisting of hollow structural sections (HSS) completely filled with concrete, arises from both the steel and the concrete core. Obviously the full composite bending resistance at the ends of such members can only be realized when the connections are able to transfer the loads to the composite beam-column.

18.2.2 Compressive Resistance

The expressions for compressive resistance introduced in S16-01 give a better fit to test results than those found in the preceding standard. The contributions of the concrete core and the hollow steel section are simply superposed. Both the steel and concrete contributions to the compressive resistances are decreased as a function of the slenderness parameter, λ, of the composite section that is considered in turn to depend on the elastic flexural stiffness of the steel section and a flexural stiffness of the concrete that is modified to account for creep under sustained loads. The same double exponential form of column curve, as used for other compressive resistances in the standard, is used for consistency. The value of the exponent " n " in the expression is taken as 1.80 to get the best fit with experimental results.

The triaxial load effect on the concrete due to the confining effect of the walls of circular HSS is based on work by Virdi and Dowling (1976). The triaxial effects increase the failure load of the concrete ($\tau^{\prime}>1.0$) and decrease the capacity of the steel section $(\tau<1.0)$, because the steel is in a biaxial stress state.

In S16-09, the standard introduced a value of $\phi_{c}=0.65$ in place of the earlier 0.60 , and $\alpha_{1} \phi_{c} f^{\prime}{ }_{c}$ in place of $0.85 \phi_{c} f^{\prime}$. Reasoning for these changes to the concrete resistance factor and strength is described by Bartlett (2007). In S16-14 the lower limit for α_{1} is changed to 0.73 , which is the lowest value possible, considering that the scope only covers concrete strengths up to 80 MPa for axially loaded columns.

18.2.3 Bending Resistance

Lu and Kennedy (1994) show, for rectangular hollow sections with measured flange b / t ratios up to $700 / \sqrt{F_{y}}$, that fully plastic stress blocks are developed in the steel and in the concrete. Their proposed model, based on such stress blocks with the steel stress level taken equal to the yield value, F_{y}, and the concrete stress level taken equal to the concrete strength, f_{c}^{\prime}, at the time of testing, agreed excellently with test results. The two components support each other. The steel restrains or confines the concrete, increasing its compressive resistance to the full value rather than 0.85 of it, as used in reinforced concrete theory, while the concrete prevents inward buckling of the steel wall, thus increasing the steel strain at which local buckling occurs. Therefore, sections not even meeting the requirements of Class 3 sections in bending develop fully plastic stress blocks.

Geometric expressions are given to determine the factored compressive forces in the steel and concrete with rectangular stress blocks when in equilibrium, for both rectangular and circular hollow structural sections.

In S16-09, the standard introduced a value of $\phi_{c}=0.65$ in place of the earlier 0.60 , and $\alpha_{1} \phi_{c} f^{\prime}{ }_{c}$ in place of $0.85 \phi_{c} f^{\prime}{ }_{c}$. Reasoning for these changes to the concrete resistance factor and strength is described by Bartlett (2007).

Figure 2-58
Partially Encased Composite Columns

18.2.4 Axial Compression and Bending

This clause is analogous to the expression in Clause 13.8.3 for I-shaped beam-columns. Extending the analogy, the cross-sectional resistance and in-plane strength should be checked and, if applicable, the lateral-torsional buckling strength should be checked for rectangular sections bent about their strong axis. Because of the very large torsional resistance of closed shapes, the latter is very unlikely to be a factor. With expressions introduced in S16-01 for circular hollow sections filled with concrete, the lower bound solution for such sections given in former Standards is no longer required.

In S16-09, the standard introduced a value of $\phi_{c}=0.65$ in place of the earlier 0.60 , and $\alpha_{1} \phi_{c} f^{\prime}{ }_{c}$ in place of $0.85 \phi_{c} f^{\prime \prime}$. Reasoning for these changes to the concrete resistance factor and strength is described by Bartlett (2007).

18.3 Partially Encased Composite Columns

As stated in the note to this Clause, these columns are a patented structural component. By CSA regulations, in the interests of promoting new technology, they are referenced in this Standard on the understanding with the patent holder that any patent rights will be made available either as a free license or on reasonable terms and conditions.

The basic concept is to provide a steel H-shape of relatively thin plates but with sufficient strength to carry gravity loads during construction until the concrete cast around the shape reaches sufficient strength to carry the remaining dead loads and all live and environmental loads, while working compositely with the steel section. It is envisaged that the columns could be used in multi-storey applications, with the concrete of the about-to-be encased steel shapes cast with the next higher floor that the columns support. Figure $2-58$ shows an elevation of the column. The steel links between the column flanges restrain the flanges from buckling locally and at the same time provide limited confinement to the concrete.

18.3.1 GeneraI

The scope Clause lays out in detail the limits on geometry and strength of the component elements and materials - the steel section, the steel reinforcement and the concrete - that must be satisfied. These derive from the limits of the extensive series of tests, including full-scale tests, which were carried out at Lehigh University, University of Toronto, McGill University and Ecole Polytechnique (Tremblay et al. 2000), and the University of Alberta to confirm and quantify the performance of the columns in all respects. While extensive, the limits are sufficiently broad in scope to design columns of different cross-sections and slenderness limits to carry a wide range of loadings. Based on experimental and numerical research by Prickett and Driver (2006) and Begum et al.(2013) on partially encased composite columns with highstrength concrete, the upper limit on concrete strength has been increased from 40 MPa to 70 MPa . The method for determining the bending resistance is provided in Clause 18.3.3, and the interaction expression for combined axial compression and bending in Clause 18.3.4.

18.3.2 Compressive Resistance

The expression for the compressive resistance (Tremblay et al. 2000) is of the same double exponential format used for both steel and other composite columns throughout this Standard. The exponent " n ", 1.34 , is the least value stipulated in the Standard. For both the steel section and the steel reinforcement, specified minimum yield strengths are used as the reference strengths and, for the concrete, $0.95 \alpha_{1}$ of the specified 28 -day strength is used, as this value gave a better fit to the test data than the 0.85 factor commonly used. The resistance factors for the three components are consistent with the remainder of the Standard. In S16-09, the standard introduced a value of $\phi_{c}=0.65$ in place of 0.60 (Bartlett 2007).

18.3.5 Special Reinforcement for Seismic Zones

Details are provided for longitudinal and transverse bars to be used where the specified one-second spectral acceleration ratio, $I_{E} F_{v} S_{a}(1.0)$, is greater than 0.30 , in order to provide satisfactory performance compatible with that of reinforced concrete buildings designed for such seismic categories.

18.4 Encased Composite Columns

18.4.1 General

This Clause is provided because such columns may be found in a steel building structure. This Clause provides the designer with all the information needed to design this composite component as well as all other components in the building. The scope limits the doubly symmetric steel columns encased in concrete to which this clause applies to those given in CSA Standard A23.3.

18.4.2 Compressive Resistance

The factored compressive resistance is of the exact same form as that given in Clause 18.3 for concrete-filled hollow structural sections. In this regard, it differs in form from the resistance given in CSA Standard A23.3 but matches the factored compressive resistance of the
latter closely for all slenderness ratios. The contributions of the concrete, structural steel shape and reinforcing steel to the strength are simply superposed. Both the steel and concrete contributions to the compressive resistances are decreased as a function of the slenderness parameter, λ, of the composite section that is considered in turn to depend on the elastic flexural stiffness of the steel section and a flexural stiffness of the concrete that is modified to account for creep under sustained loads. The same double exponential form of column curve, as used for other compressive resistances in the Standard, is used for consistency. In S16-09, the standard introduced a value of $\phi_{c}=0.65$ in place of the former 0.60 , and $\alpha_{1} \phi_{c} f_{c}^{\prime}$ in place of $0.85 \phi_{c} f^{\prime}{ }_{c}$. Reasoning for these changes to the concrete resistance factor and strength is described by Bartlett (2007).
18.4.4, 18,4.5 and $18,4.6$ In the unusual case with multiple steel shapes enclosed in the concrete, the steel shapes are to meet the requirements of Clause 19 for built-up shapes until the concrete reaches $0.75 f^{\prime}$. Alternatively, the load on the steel shapes could be limited to the sum of their independent resistances, having due regard as to how the loads are applied.
18.4.5 This clause emphasizes that there must be direct transfer of any load considered to be carried by the concrete.
18.4.6 To determine the bending resistance of encased composite columns, the designer is referred to Ziemian (2010). In SI6-09, the standard introduced a value of $\phi_{c}=0.65$ in place of the former 0.60 , and $\alpha_{1} \phi_{c} f^{\prime}{ }_{c}$ in place of $0.85 \phi_{c} f^{\prime}$. Reasoning for these changes to the concrete resistance factor and strength is described by Bartlett (2007).

19. BUILT-UP MEMBERS

The term built-up member refers to any structural member assembled from two or more components. Such members may be used to resist compression, tension or bending, and the requirements for fastening together the various components vary accordingly.

The diagrams of Figures 2-59 and 2-60 illustrate the main provisions of Clause 19.
Many of the provisions are based on long-established practice and have proven satisfactory. In Clause 19.2.3, it is emphasized that the buckling could occur for outside components. In Clause 19.2.10, because it has been established that the tension diagonal of a crossed tensioncompression pair supports the latter (see Commentary to Clause 27.5.3.1), the effective buckling length of the compression lacing can be taken as 0.50 of its total length.

Tension members are stitched together sufficiently to work in unison and to minimize vibration. For exposed members, components in contact should be fitted tightly together to minimize corrosion problems (Brockenbrough 1983).

When a built-up column buckles, shear is introduced in lacing bars (Clause 19.2.9) and battens and their connections (Clause 19.2.17), in addition to any transverse shears (Bleich, 1952).

Further discussion on columns with lacing and battens is given in Ziemian (2010).
For compression members composed of two or more rolled shapes connected at intervals, Clause 19.2.4 requires the use of an equivalent slenderness ratio, increased to take into account the flexibility of the interconnector. This increase is applied to the axis of buckling where the buckling mode of the member involves relative deformation that produces shear forces (see Clause 19.2.6) in the interconnectors between the individual shapes (Duan and Chen, 1988).

The requirements for starred angles are based on work by Temple et al. (1986), who showed that with fewer interconnectors the buckling strength was reduced.

Tension Members	Requirements	Tension Members	Requirements

Figure 2-59

Built-up Tension Member Details

20, PLATE WALLS

20.1 General

Early research at the University of Alberta (Kulak 1991, Driver et al. 1997, 1998(a), and 1998(b)) demonstrated that the plate wall system is an attractive alternative for resisting lateral wind and seismic loads. The system has the advantage that it is stiff enough to minimize displacements under extreme loading conditions and has a high degree of redundancy. The system can be used for both new construction and the upgrading of existing structures.

Figure 2-61 shows a typical plate wall. The walls considered by Clause 20 imply thin, unstiffened infill plates. Under lateral loads, it is assumed that the buckling strength of the infill plate is negligible, but tension field action develops to resist lateral shears.

A brief overview of steel-plate shear wall research, along with a comprehensive list of relevant references, can be found in Chapter 6 of Ziemian (2010). Moghimi and Driver (2013) have provided recommendations specifically for designing plate walls economically when a high degree of ductility is not required (e.g. low seismic zones) by using modular construction and shear connections in the boundary frame.

20.2 Seismic Applications

The provisions of Clause 20 must be met for all plate walls. Additional requirements specifically for seismic applications are laid out in Clause 27.

20.3 Analysis

Thorburn et al. (1983) demonstrated that the strip model shown in Figure 2-63 predicts the development of tension field action in plate walls subjected to lateral loads. The forces and moments in a plate wall may be estimated by extending the strip model over all storeys using

Compression Members	Requirements	Compression Members	Requirements
$x-\frac{e^{y} v}{v} x$	ROLLED SHAPES $d_{\max }=\left(\frac{K L}{r}\right) r_{\min }$ $K L / r=$ slenderness of member as a whole $r_{\text {min }}=$ least radius of gyration of one component - For starred angles, $1 / 3$ points CI. 19.2.5. See Clause 19.2.4 for design slenderness and effective slenderness ratios 19.2 .4		LACING AND TIE PLATES $\begin{aligned} & b \leq 60 t \\ & d_{1} \geq b / 2 \quad d_{2} \geq b \\ & d_{3} \leq\left(\frac{K L}{r_{1}}\right) r_{3} \leq\left(\frac{K L}{r_{2}}\right) r_{3} \end{aligned}$ $L_{B} \leq 140 \times$ radius of gyration of lacing member $\alpha \geq 45^{\circ}$ $K L=$ Effective length of member with respect to appropriate axis $19.2 .9-13$
	STAGGERED FASTENERS OR WELDS $d_{\max }=\frac{525 t}{\sqrt{F_{y}}} \text { or } 450 \mathrm{~mm}$ $t=\text { outside plate thickness }$ $19.2 .3$		BATTENS $\begin{gathered} b \leq 60 t \\ d_{2} \geq b \end{gathered}$
$\left[\begin{array}{l}\text { u } \\ 0 \\ u \\ u \\ i\end{array}\right.$	FASTENERS OR WELDS NOT STAGGERED $P_{\max }=\frac{330 t}{\sqrt{F_{y}}} \text { or } 300 \mathrm{~mm}$ $t=$ outside plate thickness 19.2.3	\times	$\left(\frac{K L}{r}\right)_{a}=\sqrt{\left(\frac{K L}{r}\right)_{y}^{2}+\left(\frac{K L}{r}\right)_{y v 1}^{2}}$ 19.2.4 and 19.2.16
	ENDS OF BUILT-UP COLUMNS Welded connection: $d_{\text {min }}=b$ Bolted connection: $\begin{aligned} & d_{\text {min }}=1.5 b \\ & P_{\text {max }}=4 \times \text { diameter of } \\ & \text { fastener } \end{aligned}$ 19,2.2	Beams and Grillages	Requirements
			NON-LOAD-SHARING BEAMS Not less than one bolt: $d<300 \mathrm{~mm}$ Two or more bolts: $d \geq 300 \mathrm{~mm}$
	PERFORATED COVER PLATES$\begin{array}{ll} b \leq \frac{840 t}{\sqrt{F_{y}}} & \begin{array}{l} \text { Note: } \\ \text { For bolted } \\ \text { fabrication, } \end{array} \\ L \leq 2 W & b \geq 400 \mathrm{~mm} \\ D \geq b & \text { is preferred. } \\ r \geq 40 \mathrm{~mm} & \end{array}$		Centres of separator groups $\leq 1500 \mathrm{~mm}$
			LOAD-SHARING BEAMS Diaphragm shall have sufficient stiffness to distribute required loads. Centres of diaphragms $\leq 1500 \mathrm{~mm}$

Figure 2-60
Built-up Compression Member Details

Figure 2-61
Typical Plate Wall

Figure 2-62
Plate Wall Diagonal Tension Brace Model

Figure 2-63
Strip Model for a Plate Wall
a plane frame structural analysis program. Ten strips per panel have been found to be sufficient in most cases. The continuity of connections between beams and columns, and the actual sizes of the beams, are accounted for in the analysis. When the entire plate wall is modelled, the average angle of inclination may be used for the complete wall, as stated in Clause 20.4.2. The analysis determines the tensile forces in the infill plates from tension field action, the forces imposed by the infill plate on the boundary beams and columns, and the forces and moments in the boundary beams and columns. Shishkin et al. (2009) discuss means of optimizing the strip model in terms of both accuracy and modelling efficiency.

For preliminary design, the overall behaviour of a plate wall can be approximated in a plane frame analysis as a vertical truss by representing each infill panel by a single diagonal tension brace (see Figure 2-62). Thorburn et al. (1983) express the equivalent area, A, of the diagonal tension brace as

$$
A=\frac{w L \sin ^{2} 2 \alpha}{2 \sin \theta \sin 2 \theta}
$$

The beams and columns are taken to have their actual cross-sectional properties in the analysis. When plate walls with moment frames are used, this model also determines the beam and column moments that develop as a result of frame action.

20.4 Angle of Inclination

Shishkin et al. (2009) demonstrate that, when using the strip model to analyze plate walls of typical proportions, the overall behaviour of the walls is relatively insensitive to the angle of inclination of the strips. They showed that selecting an angle of 40° from the vertical provides accurate, yet conservative, results over a wide range of wall configurations.

For cases that fall outside of the limits investigated by Shishkin et al. (2009), an expression developed by Timler and Kulak (1983) for the angle of inclination of the tension field strips is provided. This expression was determined by minimizing the work in one panel owing to the tension field action in the infill plate, flexure and axial forces in the boundary columns, and the axial force in one boundary beam per panel.
The expression was derived assuming:

- The storey shear is approximately the same in the panels above and below the storey under consideration.
- The beams are attached to the columns with pin-ended connections.
- The columns are continuous.
- The storey heights are approximately equal.

When these assumptions are not met, see Appendix A of Timler and Kulak (1983) to apply the least work derivation to other cases.

20.5 Limits on Column and Beam Flexibilities

In order for the tension field to develop relatively uniformly in the infill plate at each storey, the columns of the plate wall must be sufficiently stiff. Based on the work of Kuhn et al. (1952), the column flexibility parameter, ω_{h}, as given in Clause 20.5.1, shall not exceed 2.5.

The uniformity of the tension fields in the top and bottom panels of the plate wall depend on the stiffnesses of both the adjacent columns and the top or bottom beam, as appropriate. Dastfan and Driver (2008) developed a boundary member flexibility parameter, ω_{L}, to characterize the boundary stiffness for these extreme panels. The value of ω_{L} shall not exceed 2.5 at the top of the wall and 2.0 at the bottom, reflecting the relative importance of the behaviour of the bottom panel on the overall performance of the plate wall. The lower limit on ω_{L} of $0.84 \omega_{h}$ is to prevent obtaining a negative beam stiffness. The derivation and application of both ω_{L} and ω_{h} are discussed by Dastfan and Driver $(2008,2009)$.

20.7 Beams and 20.8 Columns

Under high lateral loads, plastic hinges tend to develop in the beams and columns of plate walls. To avoid premature failure, beams shall be Class 1 or Class 2 sections, and columns Class 1 sections.

20.9 Anchorage of Infill Plates

These requirements ensure that the top and bottom infill plates are anchored to members that are sufficiently stiff to develop relatively uniform tension fields, and that the forces developed at the base of the wall are transferred properly into the substructure.

20.10 Infill Plate Connections

The infill plate is to be connected to the surrounding frame - and spliced, if required - to resist the factored ultimate tensile strength of the plate in order to ensure a ductile failure mode. These connections may be either welded or bolted.

21. CONNECTIONS

21.3 Restrained Members

When the compressive or tensile force transmitted by a beam flange to a column (approximated by the factored moment divided by the depth of the beam) exceeds the factored web
bearing or flange tensile resistance of the column, stiffeners are required to develop the load in excess of the bearing or tensile resistance.

Taking the length of the column web resisting the compressive force as the thickness of the beam flange plus ten times the thickness of the column flange as in Clause 14.3.2(a)(i) results in the first equation given in Clause 21.3 for the bearing resistance of columns with Class 1 and 2 webs. For members with Class 3 and 4 webs, the bearing resistance of the web is limited by its buckling strength. The expression for the factored bearing resistance is conservatively based on the critical buckling stress of a plate with simply-supported edges:

$$
\sigma_{c r}=k \frac{\pi^{2} E}{12\left(1-v^{2}\right)\left(h_{c} / w_{c}\right)^{2}}=\frac{723000}{\left(h_{c} / w_{c}\right)^{2}} \text { when } k_{\min }=4
$$

The number 640000 , given in Clause 21.3(a), reflects a further reduction for the effect of possible residual stresses.

Although not stated, the bearing resistance computed from the second equation should not exceed the first. In both expressions, if the compression flange is applied at the end of a column, the loaded length should be reduced to $t_{b}+4 t_{c}$, and the resistance factor should be reduced to $\phi_{b e}$.

Graham et al. (1959) also show, based on a yield line analysis, that the column flange bending resistance, when subject to a tensile load from the beam flange, can be taken conservatively to be $7 t_{c}{ }^{2} F_{y c}$. Tests have shown that connections proportioned in accordance with this equation have carried the plastic moment of the beam satisfactorily.

When moment connections are made between beams and columns with relatively thick flanges (greater than about 50 mm), prudent fabrication practice suggests that the column flanges be inspected (such as radiographically) in the region surrounding the proposed weld locations to detect and thereby avoid any possible laminations that might be detrimental to the through-thickness behaviour of the column flange. Dexter and Melendrez (2000) reported on the results of recent studies on this topic.

Huang et al. (1973) demonstrated that beam-column connections designed such that the web was connected only for the shear force were capable of reaching the plastic capacity of the beam even though in some tests the webs were connected with bolts based on bearing-type connections in round or slotted holes. The slips that occurred were not detrimental to the static ultimate load capacity. For joints in zones of high seismicity, see Commentary on Clause 27.

Bolted extended end-plate-type connections are also commonly used for beam-to-column moment connections. Murray (2003) presents equations for the bearing and tensile resistances of the column flange opposite the flanges of the beam, for use with extended end-plate-type connections. AISC (2013) and Carter (1999) have adopted the design equations presented by Murray (2003). Note that the equation used in calculating the tensile resistance of the column flange is based on research using only ASTM A36 material. For this reason, if columns with higher yield strengths are used, it is recommended (conservatively) that the column yield strength be limited to $250 \mathrm{MPa}(36 \mathrm{ksi}$) for calculating the tensile resistance of the column flange, Detailed design procedures for other limit states (other possible failure modes) for this type of connection are presented in Murray (1990) and AISC (2013). Prying action should also be checked on the end plate connection and the column flange opposite the tension flange of the beam. Clause 22.2 .2 (e) requires that bolts subject to tensile forces be pretensioned.

Figure 2-64
Details to Minimize Lamellar Tearing

Load on Filler $=P \frac{w_{1} t_{1}}{w_{1} t_{1}+w_{2} t_{2}}$
Figure 2-65
Load on Filler Plate

21.4 Connections of Tension or Compression Members

Obviously, the end connections must transmit the factored loads. In order to guard against providing a connection inconsistent with the member it connects, when the member size has been selected for some criterion other than strength, the designer may choose to provide a minimum connection with a capacity higher than the design load.

The requirement for a connection at least equal to 50% of the member's capacity was withdrawn in S16-01 as it was often misapplied, resulting in grossly oversized connections.

21.5 Bearing Joints In Compression Members

When determining the requirement for fasteners or welds to hold all parts securely in place, the stability of the structure shall be considered for all possible load conditions in accordance with the requirements of Clause 6.1.

21.6 Lamellar Tearing

In cases where shrinkage results as a consequence of welding under highly restrained conditions, very large tensile strains may be set up. If these are transferred across the throughthickness direction of rolled structural members or plates, lamellar tearing may result. Thornton (1973) and AISC (1973) give methods of minimizing lamellar tearing. Figure 2-64 illustrates one such case.

21.7 Placement of Fasteners and Welds

Gibson and Wake (1942) have shown that, except for cases of repeated loads, end welds on tension angles and other similar members need not be placed so as to balance the forces about the neutral axis of the member.

21.8 Fillers

The intent of this clause is to ensure that the total load transferred through a connection will be transferred uniformly over the combined cross section of the filler plate and the connected material, in order to avoid bending in the bolt shank. In order to do this, the filler plate should be connected for a load equivalent to the total load multiplied by the ratio of the filler plate thickness to the combined thickness of the filler plate and the connected material (see Figure 2-65). However, in slip-critical joints, tests with fillers up to 25 mm (1 inch) in thickness and with surface conditions comparable to other joint components show that the fillers act integrally with the remainder of the joint, and they need not be developed before the splice material (Kulak et al. 2001).

21.10 Fasteners and Welds in Combination

21.10.1 Requirements for the design of joints that combine welds and high-strength bolts placed in the same shear plane are covered in Clause 13.14.

21.11 High-Strength Bolts (in Slip-Critical Joints) and Rivets in Combination

Hot-driven rivets have a clamping force comparable to that of the pretensioned bolts, albeit somewhat more variable.

21.12 Connected Elements Under Combined Tension and Shear Stresses

The new clause 21.12 in the 2014 edition of the standard addresses the state of combined shear and tensile normal stresses in a plane of a connected element. This combined stress state occurs in many common connecting elements, including gusset plates, shear tabs, and beam webs welded to end plates. The research reported by Guravich and Dawe (2006) suggests that the presence of the state of combined stresses does impact the connecting element's strength, but this only occurs after a certain threshold has been reached, i.e. for certain combinations, normal and shear stresses may be considered in isolation. The new clause recognizes this fact and suggests that the tensile stress at full yield can occur simultaneously with a shear stress within 75% of the ultimate shear stress capacity $(0.75 \times 0.66 \approx 0.5)$. This clause covers the strength limit state only, and stability of the connecting elements under combined stresses should also be considered.

22. DESIGN AND DETAILING OF BOLTED CONNECTIONS

Note: This Clause primarily applies to high-strength bolts. Although the Standard permits the use of A307 bolts in certain applications, some of the requirements in this Clause do not apply to them.

22.1 General

The behaviour of a joint depends both on how the bolts are loaded and installed. In the 1984 edition, for the first time, the use of snug-tightened high-strength bolts was permitted. Their use has proved successful. As there are four basic types of connections, three with bolts in shear and one with bolts in tension, it is absolutely essential that the design documents specify the type of connections used.

Kulak et al. (2001) showed that the ultimate shear and bearing resistances of a bolted connection are not dependent on the pretension in the bolt. As the number of situations (Clause 22.2.2) where pretensioning is required is limited, the norm for building construction is to use snug-tightened bearing-type connections. Departures from the norm are only to be made with due consideration. Few joints in building construction are subject to frequent load reversal nor are there many situations where a one-time slip into bearing cannot be tolerated.

High-strength bolts must be pretensioned when they are subject to shear in slip-critical connections, tension, seismic forces in applications as required in Clause 27.1, or any combination thereof. High-strength bolts subject to shear in bearing-type connections may either be pretensioned or snug-tightened. Only A325 and A490 bolts, the tension-control bolt assemblies (F1852 and F2280), and the metric series (A325M and A490M) may be used in joints requiring pretensioned high-strength bolts.

As a result of normal fabrication practice, minor misalignment of bolt holes may occur in connections with two or more bolts. Such misalignment, if anything, has a beneficial effect (Kulak et al. 2001) resulting in a stiffer joint, improved slip resistance and decreased rigid body motion.

A comprehensive summary of bolt requirements is given by Kulak et al. (2001).

22.2.1 Use of Snug-Tightened High-Strength Bolts

Snug-tightened bolts may be used, except for the specific cases given in Clause 22.2.2 where the use of pretensioned high-strength bolts is required. Bolts that are not pretensioned must be installed to a snug-tightened condition. These may be A307, A325 or A490 bolts. Because the ultimate limit states of shear through the bolt and bearing on the plate material are not significantly affected by the level of pretension (Kulak et al. 2001), it is only logical to permit bolts of higher strength than the A307 bolt to also be installed snug-tight in similar connections. This was recognized, in part, as early as the 1984 edition.

22.2.2 Use of Pretensioned High-Strength Bolts

(a) Pretensioning of the bolts provides the clamping force in slip-critical connections and hence the slip resistance at the specified load level appropriate to the condition of the faying surfaces.
(b) Pretensioning of the bolts provides energy dissipation under cyclic earthquake loading in connections proportioned for seismic applications that trigger the requirements in Clause 27.1, although these connections are proportioned as bearing-type connections for the ultimate limit state. The contact surfaces should be Class A or better for such joints.
(c) See (d).
(d) Pretensioning in both these connections ensures that the bolts don't work loose and, if necessary, ensures adequate fatigue behaviour.
(e) An example of such a connection is a tee-hanger connection. Pretensioning reduces the prying action and the stress range.
(f) In connections with oversize or slotted holes, pretensioning prevents gross movement within the joint. See also Clause 22.3.5.2 to determine for which cases slip-critical connections are required.

For the usual building structure, full wind loads and earthquake loads are too infrequent to warrant design for fatigue, as the number of stress cycles are less than the lower limits given in Clause 26.3.5. Therefore, slip-critical connections are not normally required in buildings for wind or seismic load combinations. However, connections of a member subject to flutter, where the number of cycles is likely higher, is an exception. Popov and Stephen (1972) observed that the bolted web connections of welded-bolted moment connections slipped early in the cyclic process.

Slip-critical connections are required in connections involving oversized holes, certain slotted holes, fatigue loading, or crane runways and bridges. In assessing whether or not the
joint slip is detrimental at service level loads, Popov and Stephen (1972) and Kulak et al, (2001) have shown that, in joints with standard holes, the average slip is much less than a millimetre. Bolts of joints in statically loaded structures are most likely in direct bearing after removal of the drift pins, due to the self weight of the member, and are thus incapable of further slip (RCSC 2014),

22.2.5 Fastener Components

A325M, A $490 \mathrm{M}, \mathrm{A} 325$ and A490 bolts are produced by quenching and tempering (ASTM 2013, 2012, 2010, 2012, respectively). A325 bolts are not as strong as A490 bolts but have greater ductility. For this reason and reasons of availability, the use of A490 bolts is subject to restrictions as discussed subsequently, ASTM F1852 and F2280 bolts, commonly known as "tension control" or "twist-off" bolts, have mechanical and chemical properties equivalent to A325 and A490 bolts, respectively (ASTM 2011, 2012).

The normal bolt assembly consists of an A325, A490, F1852 or F2280 bolt, with a heavy hex head, restricted thread length, coarse threads, and a heavy hex nut. F1852 and F2280 bolt assemblies consist of a bolt with a splined end which typically has a button head. Alternatives to the normal bolt assemblies are available which differ in various aspects and, in some cases, may offer one or more advantages. Their use is permissible under the conditions set forth in Clause 22.2.5.4,

At the time of preparation of this Commentary, availability of A325M and A490M bolts requires an order of unusually large quantity and a long lead time.

Galvanized A325 bolts are permitted; however, metallic coated A490 bolts are not permitted, as they are especially susceptible to stress corrosion and hydrogen stress cracking (Kulak et al. 2001). The rotation requirement of this clause provides a means of testing the galvanized assembly for proper fit and for proper thread lubrication. Installation of F1852 and F2280 assemblies is dependent upon consistent friction properties of the bolt threads and the nut. Therefore, these assemblies should not be hot-dip galvanized. F2280 assemblies should not be electroplated.

22.3.5 Bolt Holes

Details on the sizes and types of holes (standard, oversize, or slotted) permitted for bearingtype and slip-critical connections are given. While the Standard permits several bole-making methods, punching and drilling are the most common. Incremental punching is sometimes used in fabricating slotted holes - especially long slots. Thermal cutting of holes, such as cutting the edges of a slot between two punched holes, is acceptable within the requirements of Clause 28.4.3.

Clause 22.3.5.1 allows selected Imperial bolts in metric holes without restriction.
A hardened washer, when required in Clause 22.3.5.2, is intended to cover the hole (or bridge the slot) if it occurs in an outer ply.

For the use of pretensioned large-diameter A490, A490M and F2280 bolts in oversize or slotted holes, specific requirements for the use of hardened washers apply. See Clause 23.4.2(d).

23. INSTALLATION AND INSPECTION OF BOLTED JOINTS

Note: This Clause primarily applies to high-strength bolts. Although the Standard permits the use of A307 bolts in certain applications, some of the requirements in this Clause do not apply to them.

Bolts required to be pretensioned must be tightened to tensions of at least 70% of their specified minimum tensile strength. All other bolts need only be snug-tightened.

Except when galvanized, A325 bolts may be reused once or twice, providing that proper control on the number of reuses can be established (Kulak et al. 2001; RCSC 2014). A490, F1852 and F2280 bolts should not be reused. The level of pretension attained in bolts of Grade A490 decreases significantly when the bolts are re-used.

23.1 Connection Fit-up

The simple phrase "connections in firm contact when assembled" describes the snug-tightened condition.

23.2 Surface Conditions for Slip-Critical Connections

The treatment of the faying surfaces within the plies of slip-critical joints is to be consistent with the mean slip coefficient chosen for design (Clause 13.12). For clean mill scale, the surfaces must be free of substances which would reduce the slip coefficient. For other coatings, the surface preparation, coating application, and curing should be similar to those used in the tests to obtain the slip coefficient. The Society for Protective Coatings (SSPC) provides specifications for cleaning and coating of steel structures. Kulak et al. (2001) provide information on slip for various surface conditions and coating types.

23.4 Use of Washers

Clauses 23.4.1 and 23.4.2 list the circumstances when ASTM F436 hardened washers are required under the turned element and with pretensioned bolts. It follows that these washers are not required in A325 bolt installations except for oversize or slotted holes in pretensioned connections.

The use of an $8-\mathrm{mm}$ hardened washer for large-diameter A490 bolts in accordance with Clause 23.4.2(d) aims to distribute the high clamping forces of these bolts. Alternatively, the hole may be covered with a $10-\mathrm{mm}$ mild steel plate washer with a standard hardened washer under the head or the nut. The contract documents should specify any specific requirements.

The requirements for bevelled washers with ASTM A490 bolts are more stringent than for A 325 bolts because of the somewhat reduced ductility of the former:

23.5 Storage of Fastener Components for Pretensioned Bolt Assemblies

This clause emphasizes that proper storage of fastener components is particularly critical for ASTM F1852 and F2280 assemblies, because the torque at which the splined end is sheared off the bolt shank depends on the friction characteristics between the bolt threads and the nut, which therefore must be maintained at the as-manufactured condition, so that the relationship between the twist-off torque and bolt pretension is what was intended and is expected to be,

23.7 Pretensioned High-Strength Bolt Assemblies

For all pretensioned high-strength bolt installations, it is critical that inspection for bolt pretension be done while the bolt tightening is in progress. Verification that the installation techniques described in this clause have been followed will provide adequate assurance that the required bolt tensions are being attained.

23.7.1 Installation Procedure

The pretensioning procedures included in this Standard have been proven (Kulak and Birkemoe 1993, Kulak and Undershute 1998) to provide bolt tensions required by this clause. Torque-tension relationships are highly variable and dependent upon many factors including installation procedures, bolt finish, and bolt and nut thread conditions. For this reason, it is not possible to establish a standard bolt torque value that corresponds to the required bolt pretension values. Clause 23.8 describes the proper, simple inspection procedures for bolted connections.

23.7.2 Turn-of-Nut Method

Any installation procedure used for pretensioning high-strength bolts involves elongating the bolt to produce the desired tension. Although the shank of the bolt probably remains elastic, the threaded portion behaves plastically. Because the bolt as a whole is tightened into the inelastic range (the flat portion of the load-deformation curve), the exact location of "snug-tight" is not critical (Kulak et al. 2001). The turn-of-nut method is a strain or deformation control method, and even a considerable change in deformation results in little change in load. Thus, application of the specified amount of nut rotation results in pretensions that are not greatly variable. They are also greater than those prescribed in Table 7, which occur about where inelastic action begins. Although there is a reasonable margin against twist-off, the tolerance of $\pm 30^{\circ}$ or $\pm 1 / 12$ of a turn on nut rotation prescribed in the footnote to Table 8 is good practice, particularly when galvanized A325 bolts or black A490 bolts are used.

23.7.3 and 23.7.4 Use of ASTM F959, F1852 and F2280 Bolting Systems

The Standard permits the use of F1852, F2280 and F959 bolting systems. These systems are proprietary in nature, relying on a discernible physical change in a part of the bolt system indicating that the minimum bolt tension has been achieved. Systems that rely on irreversible deformations or fracture of a part serve only to indicate that, during installation, a force or torque sufficient to deform or fracture the part had been reached. Even with such a system, reliable results are dependent on strict adherence to the installation procedures for snugging of the joint and patterned tightening operations as given in Clause 23.7.1 and to the storage fastener requirements of Clause 23.5 for F1852 and F2280 bolts.

23.8 Inspection Procedures

Bolts, nuts, and washers are normally received with a light residual coating of oil. This coating is not detrimental; in fact it is desirable and should not be removed. This is especially important for F1852 and F2280 bolts, since these bolts depend on the lubricant to achieve the desired level of pretension. Galyanized bolts and/or nuts may be coated with a special lubricant to facilitate tightening. Obviously, this should not be removed.

The inspection procedures used depend on whether the bolts are specified to be snugtightened or pretensioned. In all cases, by Clause 23.8.1, the inspector shall observe that the procedure for the installation of the bolts conforms with the requirements of this Standard.

When snug-tightening is specified, the tightening is deemed satisfactory when all of the connected elements are in full contact. Galling of the turned element may be evident. Inadvertent pretensioning of snug-tightened bolts is normally not a cause for concern.

When pretensioning is specified, the tightening is deemed satisfactory when all of the elements are in full contact, and observation of the sides of the turned elements shows that they have been slightly galled by the wrench. This is all that is required.

When bolts are tightened by the turn-of-nut method and when there is rotation of the part not turned by the wrench, the outer face of the nut may be match-marked with the bolt point
before final tightening, thus affording the inspector visual means of noting nut rotation. Such marks may be made with crayon or paint by the wrench operator after the bolts have been snugged.

Should disagreement arise concerning the results of inspection of bolt tension of bolts specified to be pretensioned, arbitration procedures as given in Annex I are to be followed. The use of inspection torque values other than those established according to the requirements of Annex I is invalid because of the variability of the torque-tension relationship. The inspection procedure given in Annex I is the same as that recommended by the Research Council on Structural Connections (RCSC 2014) and places its emphasis on the need to observe the installation for the proper tightening procedures, rather than using the arbitration procedures which in fact are less reliable.

Regardless of the installation procedure or the type of bolt-washer-nut assembly used, it is important to have all of the plies drawn up tight before starting the specific tightening procedure. This is particularly so for stiff joints that require pattern tightening.

24. WELDING

24.1 and 24.2 Arc and Resistance Welding

Consistent with CSA policy that the requirements of one standard are not repeated in another, the user of this Standard is referred to CSA Standards W59 and W55.3 for the requirements for arc and resistance welding (e.g, weld quality, welding procedure and practice, etc.), respectively, but with two distinct exceptions. The distinction is made that, for are welds with matching electrodes, the factored resistances for static loadings and the fatigue resistance for fatigue loadings are obtained from Clauses 13.13 and 26 of this Standard, respectively. (Much of the research into weld strengths and formulation of weld resistances has been done by members of this Standard committee.)

Designers' attention is drawn to the fact that, in the U.S.A., cracking has been noted after welding of column web stiffener or of doubler plates on heavily rotarized W-shapes in the fillet regions. This is attributed to the loss of ductility due to cold working.

W59 permits the use of intermittent fillet welds in the compression zone, irrespective of whether fatigue is a consideration.

24.3 Fabricator and Erector Qualification

The intent of Clause 24.3 is simply that the responsibility for structural welding shall lie with the fabricators and erectors certified by the Canadian Welding Bureau to the requirements of CSA W47.1 and/or CSA W55.3, as stated specifically in the clause, Such certification should ensure that the fabricators and erectors have the capability to make structural welds of the quality assumed by S16-14.

There is a specific requirement that fabricators and erectors meet the requirements of CSA W47.1 in Division 1 or Division 2 for arc welding. This will ensure that the fabricator or erector has a suitably qualified welding engineer either on staff or on retainer, However, the clause does permit work to be sublet to a Division 3 fabricator or erector (i.e. organizations without a welding engineer on staff or on retainer), provided the Division 1 or 2 fabricator or erector retains responsibility for the work.

25. COLUMN BASES AND ANCHOR RODS

The clauses on column bases and anchor rods have been combined, as the two are likely found together as components of the same foundation unit. The designer is referred to
appropriate clauses of CSA A23.3 (CSA 2014) for the various resistances of the reinforced concrete elements.

In general, the use of base plates bearing directly on grout is preferred to the use of levelling plates interposed between the base plate and the grout. The latter condition may lead to uneven bearing.

Typically, anchor rods - formerly referred to as anchor bolts - are threaded rods that are either supplied in accordance with ASTM F1554 or fabricated from a steel bar of A36 or G40.21300W steel. The expressions for the tensile, shear, and combined shear and tensile resistance of anchor rods are similar to those for high-strength bolts. The basic elliptical interaction diagram is used for combined shear and tension. For tension and bending, the factored moment resistance is limited to the factored yield moment, because the ductility of the steel used may be limited. For anchor rods in tension, the designer should specify a material with fracture toughness appropriate for the minimum service temperature. Pretensioning of anchor rods is usually not recommended, as there is a tendency for relaxation and a possibility of stress corrosion. Pretensioning requires special attention.

All anchor rod resistances, whether for tension, shear, bearing or moment, or for use in interaction equations, are those given in this Clause.

26. FATIGUE

Clause 26 provides the requirements for the design of members and connections subjected to cyclic loading and susceptible to the formation and growth of cracks during the design life of the structure. The phenomenon of formation and growth of cracks under cyclic loading is called fatigue. The fatigue limit state, which is the limiting case of the slow propagation of a crack within a structural element, can result from either live load effects directly or as the consequence of local distortion within the structure due indirectly to live load effects. These two cases are referred to as live-load-induced fatigue and distortion-induced fatigue, respectively. The limit state of fatigue is checked at load levels expected to occur many times during the life of the structure - loads that are considered to be repetitive. In the event that more than 20000 stress cycles take place, the loaded members, connections, and fastening elements shall be proportioned so that the probability of fatigue failure is acceptably small. In such cases, the design shall be based on the best available information on the fatigue characteristics of the materials and components to be used. In the absence of more specific information, which is subject to the approval of the owner, the requirements of Clause 26 in its entirety provide guidance in proportioning members and parts. The fatigue design loads are taken to be the specified loads, In addition, Clause 26.1 requires that all members and connections in the structure meet the ultimate limit state requirements, i.e. that factored resistances be at least equal to the effect of factored static loads - load levels that occur very seldom, perhaps only a few times in the life of the structure, but which the structure must nevertheless be able to withstand in order to achieve the required level of safety.

A substantial amount of experimental data, developed on steel beams since 1967 under the sponsorship of the National Co-operative Highway Research Program (NCHRP 1970, 1974; Fisher 1974) of the U.S.A., has shown that the most important factors governing fatigue resistance are the stress range, the type of detail, and the number of cycles. Steel grade and fracture toughness do not have a significant effect on the fatigue resistance.

The provisions of this clause are those commonly used in North American design standards, except for the long-life region of behaviour. The North American fatigue design approach for most civil engineering structures is to base the fatigue life calculation on a nominal stress range (a stress range calculated using basic strength of materials approach, which does not account
for stress concentration) and to account for stress concentration in the detail of interest by selecting the appropriate fatigue category varying from Category A, the most favorable detail with no stress concentration, to Category E1, the least desirable detail. Experience has shown that fatigue considerations for details of Category A through B1 rarely govern. Nevertheless, these are included for completeness.

While fatigue is generally not a design consideration for buildings such as those for commercial or residential occupancies, industrial buildings may have many members, such as crane girders, for which fatigue is a concern. Other instances where fatigue is likely a consideration are amusement rides, wave guides, sign support structures, and beams supporting reciprocating machinery. When members and connections are subjected to fatigue loading, Clause 26 requires that they be designed, detailed, and fabricated to minimize stress concentrations and abrupt changes in cross-section. Consideration should also be given to the service conditions, which may change the condition of stress concentration, namely, the fatigue category after the structure has been placed in service. For example, a detail with no significant stress concentration can become one with high stress concentration if the member is exposed to a corrosive environment. Therefore, the designer must consider the possibility of changing stress conditions during the service life of the structure.

Fatigue crack growth is referred to either as load-induced or as distortion-induced. Loadinduced stresses are those corresponding to the design loads normally considered by a firstorder analysis where the effect of deformations on force effects are not considered. Distor-tion-induced stresses are those resulting from the relative movement of connected parts of an assemblage in such a way that large localized strains are produced. Because this phenomenon is difficult to include with any level of accuracy in the design calculations, distortion-induced fatigue is best avoided by using recognized details to obviate potential problems. An accurate assessment of distortion-induced stresses requires detailed modeling of the interactions between all structural and non-structural elements of the structure.

26.3 Live-Load-Induced Fatigue

26.3.1 Calculation of Stress Range

The stress range is the algebraic difference between the maximum stress and the minimum stress at a given location due to the passage of the live load. When calculating the applied stress range, the effect of any load eccentricity must be accounted for. Although minor eccentricities are usually ignored at the ultimate limit state because it is expected that yielding of the member at the ultimate limit state will reduce this effect, the member remains elastic at the fatigue limit state. Since the effect of stress concentration is not included in the stress range calculation, its effect must be incorporated by selecting the appropriate fatigue category as described for usual structural details illustrated in Figure 2 and described in Table 9 of the Standard.

Because fatigue cracks grow only if there is a net tensile stress from the live load, it is not necessary to investigate fatigue at locations where the applied stresses are always in compression and at locations where the maximum tensile live load stress is less than the compressive dead load stress.

26.3.2 Design Criteria

The criterion expressed by the relationship $F_{s r} \geq f_{s r}$ simply states that the fatigue resistance (or allowable stress range) of a given detail for the design number of load cycles, $n N$, over the design life of the structure must be equal to or exceed the calculated stress range. The allowable stress range may be calculated from the equation $F_{s r}=(\gamma / n N)^{1 / 3} \geq F_{s r i}$ when the fatigue resistance is greater than the constant amplitude threshold stress range, or from $F_{s r}=\left(\gamma^{\prime} / n N\right)^{1 / 5} \leq F_{s r t}$ when the fatigue resistance is less than the constant amplitude threshold
stress range. Each fatigue curve represents the mean fatigue life minus two standard deviations from a series of constant-amplitude fatigue tests on details representative of the category. The fatigue life constants, γ and γ^{\prime}, for the appropriate detail are obtained from Table 10 of the Standard. Also shown in Table 10 is the constant-amplitude threshold stress range $F_{\text {srt }}$, represented in Figure 1 of the Standard by the horizontal dashed lines. For constant-amplitude stress ranges below $F_{s r \prime}$, crack growth does not occur, i.e. the fatigue life of the detail is infinite. For variable-amplitude fatigue loading, the slope of the fatigue curves below $F_{s r t}$ is reduced to $1 / 5$ because it is expected that some of the applied stress ranges will still lie above $F_{\text {srt }}$, even if the average stress range is smaller than $F_{s r l}$. The number of cycles at which the slope of the fatigue curves changes from $1 / 3$ to $1 / 5$ is designated as $n N^{\prime}$ and can be either calculated from $\left(\gamma / n N^{\prime}\right)^{1 / 3}$ $=\left(\gamma^{\prime} \ln N^{\prime}\right)^{1 / 5}$ or obtained from Table 10.

26.3.3 Cumulative Fatigue Damage

In reality, fatigue loading is rarely at constant amplitude; it is usually of variable stress amplitude, which results in variable numbers of stress ranges of different magnitudes. The cumulative fatigue damage that results from variable-amplitude loading can be evaluated using the linear damage theory known as the Palmgren-Miner rule. Over the design life of the structure, the number of cycles for each identified stress range is estimated, and the fraction of the fatigue life expended by these cycles of loading is obtained by dividing the number of cycles at a given stress range by the fatigue life for that stress range as found from Table 10 or Figure 1 of the Standard. The sum of these fractions so determined, including those for the long-life region of behaviour where the slope of the S-N curve is $1 / 5$, shall not exceed unity as given in this Clause. Chapter 11 of Kulak and Grondin (2014) provides more detailed information on fatigue.

26.3.4 Fatigue Constants and Detail Categories

The fatigue constants defining the eight fatigue curves illustrated in Figure 1 are given in Table 10. Selection of the appropriate fatigue category is carried out with the assistance of Figure 2 and Table 9. Also added to Table 9 are high-strength bolts under tensile cyclic loading.

26.3.5 Limited Number of Cycles

This clause gives a limit on the number of cycles below which no special consideration other than good detailing is necessary for fatigue. The limit is the greater of 20000 cycles and the fatigue life of the detail.

26.4 Distortion-Induced Fatigue

Secondary stresses due to deformations and out-of-plane movements are not normally calculated in the design process but can be a source of fatigue failures when proper detailing practices are not followed (Fisher 1978 and 1984). Crane girders, their attachments, and supports require careful design and attention to details to minimize fatigue cracks (Griggs 1976).

If the web of a plate girder without longitudinal stiffeners is sufficiently slender, fatigue cracks may develop at the web-to-flange juncture due to a lateral bending of the web. Tests on girders with a web of h / w ratio greater than $3150 / \sqrt{F_{y}}$ have shown a significant reduction in fatigue resistance to the out-of-plane movement of the web when subjected to in-plane bending (Toprac and Natarajan 1971).

26.5 High-Strength Bolts

High-strength bolts loaded in shear are not susceptible to fatigue failure. However, this is not the case when bolts are placed in direct tension. Pretensioned high-strength bolts in joints that are nominally loaded in tension experience little, if any, increase in axial stress under
service loads (Kulak et al. 1987). For this reason, bolts that are subjected to cyclic tension shall be pretensioned using the procedure outlined in Clause 23.7 of the Standard. In addition, the prying action shall be kept at a relatively small fraction of the total bolt force. The Research Council on Structural Connections (2014) limits the prying action in joints subjected to cyclic tension to a maximum of 30 percent of the externally applied force.

27. SEISMIC DESIGN

Specific seismic design requirements are given in this clause. While the requirements represent the best available knowledge, designers should be alert to new information leading to improved design procedures.

The NBCC assigns ductility-related force modification factors, R_{d}, and overstrength-related force modification factors, R_{o}, (i.e. load reduction factors) to various structural systems in relation to their capacity to dissipate energy by undergoing inelastic deformations and to the minimum level of overstrength which can be counted on for each particular seismic-forceresisting system. The greater the ability of the structure to dissipate energy, the higher is the assigned value of R_{d}. Values of R_{d} greater than 1.0 can be justified only if the structure has the ability to undergo inelastic deformations without loss of resistance. The product of R_{d} and R_{o} is used as a divisor to reduce the magnitude of the design seismic force.

The objective of Clause 27 is to provide details that will exhibit ductility consistent with the values of R_{d} and R_{o} assumed in the analysis. The Clause applies to all steel structures in Canada for which seismic energy dissipation capability is required through ductile inelastic response, i.e. all structures for which $R_{d} \geq 2.0$. Clause 27 defines the requirements for nine classes of structures with $R_{d} \geq 2.0$:

- Ductile moment-resisting frames (Type D , with $R_{d}=5.0$ and $R_{o}=1.5$)
- Moderately ductile moment-resisting frames (Type MD, with $R_{d}=3.5$ and $R_{o}=1.5$)
- Limited-ductility moment-resisting frames (Type LD with $R_{d}=2.0$ and $R_{o}=1.3$)
- Moderately ductile concentrically braced frames (Type MD, with $R_{d}=3.0$ and $R_{o}=1.3$)
- Limited-ductility concentrically braced frames (Type LD, with $R_{d}=2.0$ and $R_{o}=1.3$)
- Ductile eccentrically braced frames (Type D, with $R_{d}=4.0$ and $R_{o}=1.5$)
- Ductile buckling-restrained braced frames (Type D , with $R_{d}=4.0$ and $R_{o}=1.2$)
- Ductile plate walls (Type D, with $R_{d}=5.0$ and $R_{o}=1.6$)
- Limited-ductility plate walls (Type LD, with $R_{d}=2.0$ and $R_{o}=1.5$).

In addition, other special framing systems are permitted under Clause 27.12.
In each structural system, certain structural elements are designed to dissipate energy by inelastic straining; other members and connections in the frame must be designed to respond elastically to the loads induced by the yielding elements. Generally, the dissipating elements in moment frames are the beams, in concentrically braced frames the braces, in eccentrically braced frames the links, and in plate walls the wall infill plates. Other elements may also contribute, but to a much lesser extent, for example the connection panel zone in moment-resisting frames, the gusset plates in concentrically braced frames, the outer beam segments in eccentrically braced frames, and beams and columns in steel plate walls.

Properly detailed moment-resisting frames can exhibit very ductile behaviour. Three categories of moment-resisting frames are recognized; first, ductile moment-resisting, or Type D frames, in which members and connections are selected and braced to ensure that severe
inelastic straining can take place; second, moderately ductile moment-resisting frames, or Type MD, in which the member details can satisfy the lower inelastic straining demand in structures proportioned to resist the greater design loads, while at the same time, connections are adequate to accommodate the associated forces and deformations. For both systems, beam-to-column connections are required to be designed and detailed in accordance with the CISC Moment Connections for Seismic Applications (CISC 2014), or their performance has to be demonstrated, by means of physical testing, as satisfying minimum criteria under the action of cyclic load as described in Annex J. The third system, Type LD for limited ductility, undergoes still less inelastic demand consistent with the higher design loads and can in general make use of traditional connection detailing, combined with special requirements associated with welding, etc.

Concentrically braced frames are those in which the centre-lines of diagonal braces, beams, and columns are approximately concurrent with little or no joint eccentricity. Inelastic straining must take place in bracing members subjected principally to axial load. Compression members dissipate energy by inelastic bending after buckling, and in subsequent straightening after load reversal. Cyclic local buckling can lead to early fracture, and consequently width-to-thickness limits are restricted for braces. These frames usually have limited redundancy and are prone to concentration of inelastic response in one or a few storeys where energy dissipation is localized. Emphasis in these categories is placed on the presence of braces with similar tensile strength in opposite directions, such that the reduction in storey shear resistance is minimized in the event of brace buckling in a storey.

Two categories of concentrically braced frames are considered, those with moderate ductility (MD) and limited ductility (LD). Both permit several bracing configurations. Compared with past editions of the Standard, the provisions maintain strict limits on width-thickness ratios; overall slendemess limits of braces are relaxed, and changes have been made to the requirements for connection design forces. However, height limitations apply. Since S16-09, bracing configurations with braces intersecting columns at one or more elevations between horizontal diaphragms have been permitted for Type LD braced frames, provided that the columns can accommodate the bending demand due to buckling and yielding of braces within the storey and that horizontal struts are introduced to ensure a continuous load path between tension-acting braces. In S16-2014, the use of this framing configuration has been extended to include Type MD braced frames, and height limits have been extended so that multi-tiered solutions can be obtained from a wider choice.

Ductile eccentrically braced frames are those in which diagonal braces, at least at one end, intersect the beam instead of the beam and column intersection or, in the case of chevron bracing, the two braces do not intersect the beam at a common point. These configurations create eccentric beam links that are designed to dissipate energy. The Standard gives provisions for frames with links in the beams. Beams can be W-shapes or built-up rectangular tubular sections. Lateral bracing at the link ends can be omitted when the latter is used. Provisions for modular links that can be replaced after a severe earthquake have been introduced in CSA S16-14.

The ductile buckling-restrained braced frame system was introduced in CSA S16-09. The braces include a core element with reduced cross-section segment where yielding is expected to develop in both compression and tension. The core is prevented from buckling by means of a lateral restraining mechanism. The system is expected to offer a higher ductility ($R_{d}=4.0$) compared to Type MD and Type LD concentrically braced frames. Typically, brace details vary depending on the suppliers, but the inelastic cyclic performance must be demonstrated by means of sub-assemblage and individual qualification cyclic physical testing. The brace compressive and tensile resistances established in these tests must be used in the capacity design process.

Plate walls are formed by thin infill wall plates framed by beams and columns. These highly redundant and stiff systems dissipate energy by yielding of the infill plate and, often, yielding of the framing members. The good seismic performance anticipated is reflected in their respective applicable values of R_{d} and R_{o}. Two categories are defined, Types D and LD. In S16-09, new design requirements were included for beams and columns of Type D plate walls. The Standard also permits the introduction of uniformly distributed circular perforations in the infill plates, to avoid excessive lateral overstrength without resorting to using plates that are too thin for practical construction. Corner openings can also be introduced in the wall plates to facilitate the passage of electrical and mechanical equipment. In general, the design and detailing requirements specified for Type D walls also apply to Type LD walls, except that beams and columns need not be rigidly connected for Type LD walls.

In all systems, because the behaviour of connections will often be critical for good performance under severe earthquake loading, the engineer's responsibility for a seismically critical structure includes not only the provision of connection design loads but also the specification of connection type and details.

Structures for which $R_{d}=1.5$ have been assumed in the past to have sufficient inherent energy dissipation capacity arising from traditional design and fabrication practices, so that no additional requirements were necessary. However, since energy dissipation properties can only be mobilized if brittle failure is avoided, minimum requirements are prescribed in Clause 27.11 to achieve this for structures subjected to higher seismic demand. The NBCC (since its 2010 edition), permits the use of structures with $R_{d}=1.5$ for buildings taller than 15 m when used for occupancies other than assembly occupancy. Special requirements are given in Clause 27.11 for these taller structures. In addition, other special framing systems are permitted under Clause 27,12.

27.1 General

The expression "I $I_{E} F_{a} S_{a}(0.2)$ ", adopted in the NBCC 2010, is referred to as the "specified short-period spectral acceleration ratio" in Clause 27, whereas the expression "I $I_{E} F_{v} S_{a}(1.0)$ " is referred to as the "specified one-second spectral acceleration ratio".
27.1.1 A distinction is made between the "seismic-force-resisting system" (SFRS) and the "vertical seismic-force-resisting system". The latter corresponds essentially to the vertical bracing, wall or frame system that takes the form of one or more of the systems described in Clause 27. The SFRS is the whole structural system resisting lateral loads, including the foundations, anchorage to foundations, the vertical seismic-force-resisting system, collector elements, and roof and floor diaphragms. In some cases, members specifically designed for gravity loading only may be relied upon for a contribution to a reserve lateral resistance following storey yielding, and in this case some provisions of Clause 27 apply also to these members (see Clause 27.5.5.2).
27.1.2 This Clause sets out the principles of capacity design and states that the ductile energydissipating elements must be clearly identified and detailed along the lateral load path, and that a proper strength hierarchy must be provided in the seismic-force-resisting system to constrain inelastic response to these ductile elements. The energy-dissipating elements must be designed to sustain several reversed cycles of inelastic loading with minimum strength and stiffness deterioration. Other elements must be designed to remain essentially elastic for the duration of the seismic ground motion. Anchor rods must transfer the loads to the foundation.

The maximum anticipated seismic loads imposed on the non-dissipating elements can be determined by hand calculations, static incremental (push-over) analysis or nonlinear dynamic time-history analysis. The inelastic behaviour under cyclic loading of the dissipating elements,
including yielding, strain hardening or strength degradation, must be accounted for in the calculations and numerical models. Non-dissipative elements can be assumed to behave elastically in numerical models. A number of site-representative ground motions are necessary in nonlinear dynamic analysis, and maximum response loads in the members are to be determined. Such analyses may be of particular value for tall buildings, especially those beyond the height limits imposed by some other provisions of Clause 27. Other applications may be justified in cases where the requirements of capacity design are known to lead to conservative design loads (e.g. moment-resisting frames proportioned for stiffness and wind effects, plate walls or eccentrically braced frames with long links (Han 1998)).

In cases where the energy-dissipating elements have been oversized, a limit has been placed on the maximum forces that the non-dissipating elements must resist by setting the maximum anticipated seismic load equal to that corresponding to $R_{d} R_{o}=1.3$, This maximum load corresponds to the elastic seismic load level determined using $R_{d}=1.0$, while it is also recognized that the non-dissipating elements generally possess an overstrength level that justifies $R_{o}=1.3$. Connections designed for seismic loads corresponding to $R_{d} R_{o}=1.3$ must exhibit a ductile governing failure mode, such as yielding in tension or bolt bearing (Tremblay et al. 2009). Otherwise, the limit on seismic loads must be increased to loads corresponding to $R_{d} R_{o}=1.0$. In computing the forces on the structure corresponding to $R_{d} R_{o}=1.3$, the upper limit of $\mathrm{V}=(2 / 3) S(0.2) I_{E} W /\left(R_{d} R_{o}\right)$ given in the NBCC applies, provided that the seismic-force-resisting system has an R_{d} equal to or greater than 1.5. In this case, the upper limit becomes (2/3)S(0.2) $I_{E} W / 1.3$. Also, where foundation "rocking" is accounted for in accordance with NBCC, design forces for the SFRS may be limited to values associated with maximum forces that can develop with foundation rocking. Foundation rocking, however, induces larger storey drifts that must be accounted for in the design.
27.1.3 The vertical seismic force-resisting systems described in Clause 27 are expected to exhibit proper performance when non-structural elements such as walls or interior partitions are separated from the structural elements under earthquake deflections. If this cannot be achieved, the effects of the interaction must be accounted for in the analysis and the design.
27.1.4 Gravity load-carrying elements such as columns and beam-to-column connection elements must be able to support the companion gravity loads while undergoing the large deformations expected during earthquakes. For example, a simple beam end connection in the displaced configuration should resist shear due to the companion gravity loads.

Under a severe ground motion, columns in multi-storey structures will be subjected to shear forces and bending moments due to variations in storey drifts that will develop along the structure height. Splices in the columns that are not part of the seismic force-resisting systems must be designed to resist shear forces associated with this response. This provision applies in both orthogonal directions. Requirements for splices in columns that are part of the seismicresisting systems are given in Clauses 27.2 to 27.11.
27.1.5 This Clause applies principally to the materials used in the yielding elements and connections of the seismic force-resisting system. Limits on the yield stress and the provisions of Clause 8.3.2(a) ensure adequate post-yield behaviour of the material. Use of other materials would require demonstration that the energy-dissipating elements can sustain the very high post-yield strains needed to achieve the performance assumed in design. Because of the dy namic loading, toughness requirements are specified for buildings with specified short-period spectral acceleration ratios, $I_{E} F_{a} S_{a}(0.2)$, greater than 0.55 for thick plates and shapes in energydissipating elements, and in welded members anywhere in the seismic force-resisting system. Weld metal in primary connections is also subject to toughness requirements when $I_{E} F_{a} S_{a}(0.2)$ is greater than 0.35 . Temperatures for Charpy V-notch testing are specified in the Standard.

In S16-14, welds that are expected to sustain high demand under seismic loading are designated as demand-critical welds, and additional notch-toughness requirements are specified for them. The requirements adopted in S16-14 are consistent with those in ANSI/AISC 341-10 (2010) and AWS D1.8 (2009). Weld metals used for demand-critical welds in clad and heated structures, where the service temperatures seldom drop below $+10^{\circ} \mathrm{C}$, are required to meet a minimum average Charpy V-notch impact test value of 54 J at $+20^{\circ} \mathrm{C}$. The 10 -degree temperature difference between test and service temperatures accounts for the severity in strain rate of the impact test, etc. For structures exposed to lower service temperatures, the point-in-time service temperature is taken to be $10^{\circ} \mathrm{C}$ above the 2.5% January design temperature specified in the NBCC. The Standard also permits the test temperature to be 10 degrees warmer to account for the strain rate difference, etc. More stringent test conditions must be considered when more critical service temperatures are expected. For example, for a cold storage structure whose service temperature is lower than the above-mentioned point-in-time temperature, the minimum test temperature should be lower, i.e. 10 degrees above its service temperature.

Lamellar tearing represents a brittle and undesirable failure mode. Welded T-joints and corner-joints must be designed and detailed to minimize the probability of this failure mode in accordance with CSA W59.
27.1.6 The requirements for bolted connections ensure that friction plays a role in load transfer and that too rapid a slip into bearing is avoided. For joints designed as bearing-type and in which bolts are pretensioned, this friction exists if (i) Class A surfaces or better are provided, or (ii) the slip resistance equivalent to (i) is provided by increasing the number of bolts, bolt size, bolt strength, or any combination thereof,

If beam-to-column connections are demonstrated by means of physical testing to meet the various deformation requirements for different categories of moment-resisting frames and eccentrically braced frames, then the requirements of this clause can be waived.
27.1.7 In order to ensure the desired hierarchy of yielding, the relative strengths of dissipating and non-dissipating structural elements must be known. This requires knowledge of the actual, or probable, yield stresses. The specified minimum yield stress must be used when computing the resistance of the non-dissipating elements, whereas the probable yield stress is used in estimating the loads arising from yielding elements. The probable yield stress may be obtained from coupon tests on the same heats of the materials used in the construction or, since the material will not in general be available at the time of design, may be estimated by use of the factor R_{y} given in this clause. The imposed minimum value of 385 MPa implies a high R_{y} value for lower-yield steels in common use until quite recently and is due in part to the use of multi-grade material in recent years, and also to the uncertainty of the actual yields achieved in earlier grades.

For W-shapes, similar ratios between expected and nominal yield strengths are observed for the flanges and the web and, hence, the same R_{y} value can be used for the entire cross section. Surveys by Schmidt and Bartlett (2002) and by Liu et al. (2007) showed that HSS exhibit higher characteristic-to-nominal yield strength ratios compared to W-shapes. Furthermore, the ratio for HSS generally increases when the perimeter-to-wall thickness ratio is decreased, i.e. larger ratios for more compact sections such as those required for the energy-dissipating elements. A higher R_{y} value elevating the product $R_{y} F_{y}$ to 460 MPa is therefore specified for HSS in CSA S16. This value corresponds to the mean yield strength value of the data collected by Schmidt and Bartlett (2002). CSA S16 does not provide any requirements for ASTM A53 pipes used as energy-dissipating elements such as bracing members. If this material is used, appropriate R_{y} values should be considered (see AISC 2010a).

The error in using the minimum specified value rather than the probable value when calculating width-thickness limits is acceptably small. However, a minimum value of F_{y} is set at 350 MPa for use in this calculation due to the common use of multi-grade steels in recent years. A reduced value of 300 MPa is permitted to be used to verify the width-to-thickness ratios of angles when the specified yield strength is equal to or less than 300 MPa .
27.1.8 In the computation of second-order effects, a linear amplification is given following the procedure outlined in the Structural Commentaries to the National Building Code of Canada. This method differs from that given in Clause 8.4 .2 since the displacements, under which this provision ensures that the prescribed lateral resistance can be developed, result from the anticipated inelastic seismic deformations. Notional loads and $P-\Delta$ effects must be considered for the design of the energy-dissipating elements. They need not be considered for the design of the non-dissipating elements (e.g. beams and columns in concentrically braced steel frames) as the lateral load effects on these elements are limited by the capacity of the dissipating elements. In case the dissipating elements are overstrong and the seismic loads corresponding to $R_{d} R_{o}=$ 1.3 (or 1.0, as applicable) are used to size the non-dissipating elements, notional loads and $P-\Delta$ effects must be included in the analysis.
27.1.9 Regions where large inelastic strains are expected to occur in the SFRS are designated as protected zones. Protected zones include plastic hinging regions in moment frames, links of ductile eccentrically braced frames, braces in concentrically braced steel frames, etc. They are defined in the Clauses applicable to the designated system. Within these zones, discontinuity, rapid change in cross-section or material embrittlement caused by welding, cutting or penetration at the fabrication plant or the construction site may lead to premature fracture under cyclic inelastic response. Hence, unless engineered or part of test assemblies satisfying the specified performance, welded, bolted, screwed or shot-in attachments for perimeter edge angles, exterior facades, partitions, ductwork, piping or other construction shall not be placed within protected zones. For instance, welded shear studs and decking attachments that penetrate the beam flange shall not be placed on the beam flanges within the protected zone, unless approved by the Designer. Decking arc-spot welds required to secure decking are, however, permitted, Fabrication or erection operations that cause discontinuities are also prohibited in protected zones. Discontinuities accidentally created within protected zones, such as tack welds, erection aids, air-arc gouging and thermal cutting shall be repaired as required by the Designer. Guidance on acceptable repair methods can be found in CSA-W59.

The extent of the protected zones must be identified on the design documents. The information can be conveyed to the construction site by means of coating and labels on both faces with large lettering pertaining to the restriction on attachments and penetrations. Where the protected zones are subsequently covered by fire protection material, provision for visible labels after the application of fire protection should be considered.

27.2 Type D (Ductile) Moment-Resisting Frames, $R_{d}=5.0, R_{o}=1.5$

27.2,1 General

27.2.1.1 Type D moment-resisting steel frames have traditionally been designed to develop inelastic deformations at beam-to-column joints, either by plastic hinging in the beams or columns, or by inelastic shear deformations in the panel zone of H-shaped columns (bent about the strong axis). However, numerous welded moment frames have suffered connection fractures as a result of the 1994 Northridge and 1995 Kobe earthquakes, calling for a comprehensive review of that design practice. Extensive revisions to Clause 27.2 were introduced in the 2001 edition of S16 based on the research findings and engineering consensus reached following these two earthquakes (FEMA 1995, 1997, 2000).

Figure 2-66
Desirable Beam-Sway Collapse Mechanism and Undesirable Column-Sway Mechanism

The current design philosophy requires that plastic hinges develop at predetermined locations within the frame, such as in beams away from the face of the columns. This is possible either by locally strengthening the beams near the columns (by haunches, cover plates or other methods), by locally weakening the beams at selected plastic hinge locations some distance from the columns, or by using special detailing that ensures ductile response. Annex J references documents giving specific details that will achieve the necessary ductility. Other systems are permissible if demonstrated by physical tests to be capable of providing the performance specified in later Clauses.

Whenever column bases are designed to have a flexural resistance, plastic hinges are necessary to permit development of the preferred plastic collapse mechanism (see Figure 2-66 - Desirable beam-sway collapse mechanism, and undesirable column-sway mechanism). In multi-storey applications, column plastic hinging is otherwise undesirable, as it may lead to formation of a storey plastic mechanism with undue ductility demands compared to other storeys. However, column plastic hinging is permitted at the top of a column stack (usually under a roof beam), as this behaviour is not expected to result in excessive localized damage. This hinging scenario can represent an appropriate solution when deep beams or trusses are used for the roof. Special requirements (see 27.2.3) must be satisfied when column hinging is expected.

Although the panel zone provides excellent ability to absorb energy by means of cyclic plastic shearing deformations (Popov et al. 1986), large inelastic deformations there result in
large curvatures in the column flanges. For joints in which the beams are welded to the columns, these curvatures may precipitate cracking of the beam weld at that location. Panel zone yielding without considerable concurrent beam yielding is generally not desirable for these connections, and the current provisions limit this behaviour except when using a connection detail for which panel zone yielding has been found appropriate by testing, Note that optimization of panel zone and beam yielding is difficult, given the inherent statistical variability in the steel strength of beams and columns.
27.2.1.3 In evaluating the relative strengths of the structural components at the joint, an estimate should be made of the contribution of the slab. Clause 27.2.8 specifies that studs are not permitted in beam plastic hinge regions. Thus the contribution of the slab can be neglected if specific construction details are provided that prevent the slab bearing on the columns. In the absence of such details, under positive bending moment, the ultimate compressive resistance of the concrete can reach values of $1.3 f^{\prime \prime}$.

27.2.2 Beams

In moment frames, beams are nearly always bent in reverse curvature between columns unless one end is pinned. The lateral bracing requirements here assume that the seismic moment at one end of the beam is M_{p}, and that zero seismic moment exists at the other end; to these the gravity load moments must be added.

Lateral bracing of beams near the plastic hinge location should be provided according to the configuration, strength, and stiffness considered in the tests referenced in the commentary on Clause 27.2.5. Attachments in the area of anticipated plastic behaviour are in general proscribed (see Clause 27.2.8).

27.2.3 Columns (Including Beam-Columns)

27.2.3.1 The width-thickness requirements for columns that develop plastic hinging follow from Clause 27.2.1.2. The axial load in the column is also restricted because the rapid deterioration of beam-column flexural strength (when high axial loads are acting) limits the ductility.

When columns are expected to develop plastic hinging, structural elements adjacent to the column plastic hinges must be able to resist the full plastic moment of the columns. For example, at the base of a column, the intended performance would not be achieved if anchor rods yield instead of the column itself. Due to anchor rod elongation, column base fixity would be lost after a few cycles, resulting in a considerable reduction in base shear resistance and storey stiffness, and the ensuing risk of an undesirable localized storey-collapse mechanism at the first level.
27.2.3.2 Columns may accumulate forces from several yielding elements, and these must be considered.

The equation presented in this clause is intended to minimize plastic hinging in columns and promote plastic hinging of beams. Hence, it does not apply to columns in cases where plastic hinging is expected near the top of the columns. This equation cannot ensure that individual columns will not yield at some time during earthquake response, because of the shifting of column inflection points during dynamic response (Bondy 1996), but the extent of this yielding should not be detrimental. This requirement is in addition to the requirements of Clause 13.8.

For the equation presented to be statically correct, equilibrium requires that the moment at the intersection of the beam and column centrelines should be determined by projecting the sum of the nominal column plastic moment from the top and bottom of the beam moment connection (Figure 2-67 - Free-body diagrams to calculate V_{h} at the plastic hinge location, and moment at face and centre of column). However, this may be conservative for connections

Figure 2-67
Type D Moment-Resisting Frame - Free-Body Diagram
having deep panel zones and/or haunches, and current North American practice permits that the sum of moments at the top and bottom of the panel zone be substituted for the statically correct value.

In addition to this requirement, columns that are expected not to develop plastic hinging must satisfy the requirements of Clause 13.8 under the forces induced by plastic hinging of the beams. In this case, the sum of the beam moments at the centreline of the joints, as defined in Clause 27.2.3.2, can be distributed above and below the joints in the same proportion as the moments obtained from an elastic analysis under the factored seismic loads plus gravity loads. Meeting the requirements of Clause 13.8 may be more critical than Clause 27.2.3.2, particularly for slender columns.
27.2.3.3 The moments in a column when the structure is responding inelastically will not, in general, be known. Conservative estimates of the moment at a splice should be made, based on the possible bending strengths at each end of the column. Because partial-joint-penetration groove welded splices are not ductile under tensile loading (Popov and Steven 1977; Bruneau et al.1987), splices are designed more conservatively, and half-penetration welds on flanges are required as a minimum.

27.2.4 Column Joint Panel Zone

27.2.4.1 Shear force demands on joint panel zones are determined from beam forces acting at the column faces and column forces acting at the levels of the top and bottom beam flanges.
27.2.4.2 The column panel zone has a shear strength greater than the von Mises shear yield value on the web due to: (i) considerable strain-hardening in shear, and (ii) flexural resistance of
the column flanges during panel yielding in shear (Krawinkler and Popov 1982), This strength is assumed to be attained at a shear distortion equal to four times the yield shear distortion. This amount of panel zone yielding may be tolerable, provided that plastic hinging first develops in the beams.

Yielding in the panel zone is perceived by some as beneficial, since it reduces the inelastic demand on the beams and provides sharing of energy dissipation. However, some concerns remain for beam welded connections because of the impact of plastic shear distortions and localized column flange bending on the integrity of the beam flange welds. A consensus opinion has not yet been reached. An upper limit of 0.2 is therefore placed on the term $3 b_{c} t_{c}{ }^{2} / d_{c} d_{b} w^{\prime}$ to ensure that the panel zone strength is not reached prior to development of the plastic moment enhanced by strain-hardening in the adjacent beams.

The stronger panel zone option is usually more economical. In this case, the von Mises yield criterion ($0.58 \mathrm{~F}_{y}$ on the entire web of the column) is adopted. The panel zone remains elastic, and special detailing of the panel zone described in the first part of this clause is not warranted. Note that the 0.55 in the shear strength equations is obtained by taking the depth of column web equal to $0.95 d_{c}$.
27.2.4.3 Requirements are provided to ensure stable response of the panel zone. Doubler plates can be used to achieve the required shear strength for the panel zone. Special detailing requirements must then be satisfied to ensure that the shear capacity of the doubler plates can be mobilized and proper load paths exist between the beams, columns, doubler plates and continuity plates, when present.

27.2.5 Beam-to-Column Joints and Connections

27.2.5.1 Extensive research was initiated following the Northridge earthquake to identify the reasons that led to the numerous observed beam-to-column connection fractures and to formulate new connection design requirements. The result of this large research endeavour is a database of connection types that have been experimentally proven able to provide satisfactory seismic performance, with specific information regarding configurations, details, quality control, and other requirements. Minimum performance criteria under reversed cyclic loading are specified in the Standard. The designer must either;
(a) Use connections designed and detailed in accordance with the CISC Moment Connections for Seismic Applications (CISC 2014), or
(b) Use test results in compliance with this Clause. A protocol for such testing is referenced in Annex J.

The 2014 edition of the CISC guide for moment connections provides design and detailing provisions for four different connections: reduced beam section (RBS), bolted unstiffened endplate (BUEP), bolted stiffened end-plate (BSEP), and bolted flange plate (BFP) connections. The latter has been added to the previous edition of the guide. Provisions are now also given for built-up column shapes, and the ranges of acceptable beam and column shapes have been adjusted to reflect new available data, Additional information on pre-qualified beam-to-column connections can be found in AISC (2011).
27.2.5.2 The beam web connection shall have a resistance adequate to carry shears induced by yielding at the beam-to-column joint.

27.2.6 Bracing

Bracing of both top and bottom beam flanges as well as column flanges shall be considered. If no transverse beams exist at a level, the column must be designed to provide restraint to yielding beam flanges in the manner indicated in (d).

27.2.7 Fasteners

Consideration should be given to the fact that plastic hinge locations will not be predicted by an elastic analysis of the frame.

27.2.8 Protected Zones

Clause 27.2 .8 describes the zones that must be protected in ductile moment-resisting frames. This clause should be applied in conjunction with Clause 27.1 .9 where limitations applicable to protected zones are defined. In moment-resisting frames, protected zones include segments along the beams and columns where plastic hinges are expected to occur. Limitations on cross-section changes in beam plastic hinges are also specified.

27.3 Type MD (Moderately Ductile) Moment-Resisting Frames,

$$
R_{d}=3.5, R_{0}=1.5
$$

The ductility-related force modification factor of 3.5 is sufficiently large for Type MD moment-resisting frames to develop large cyclic inelastic deformations during earthquakes. For that reason, and because larger structural members will result from the larger design forces considered, most requirements of Clause 27.2 are applicable. However, beam-to-column joints need only be able to develop a minimum drift angle rotation of 0.03 radians (compared with 0.04 for comparably designed Type D moment-resisting frames). This reduced deformation requirement may be useful when a tested connection fails to reach the 0,04 requirement. A greater advantage of this clause may, however, consist in adopting the relaxed provisions of 27.3(a) and (b) in combination with the higher design load. Practical applications of this system include moment frames in moderate seismicity regions where added frame stiffness is required to satisfy $U_{2} \leq 1.4$ (Clause 27.1.8) or wind effects.

27.4 Type LD (Limited-Ductility) Moment-Resisting Frames,

$$
R_{d}=2.0, R_{0}=1.3
$$

This system can accept limited yielding in beams, columns or joints. Panel zone design follows Clause 27.2.4.2, and thus only limited yielding is expected. These frames are subject to restrictions on height and seismic demand level. They are restricted to 60 metres and 30 metres in height for regions of moderate and high seismicity, respectively. In addition, the strong-column/weak-beam design concept applies to buildings with specified short-period spectral acceleration ratios $\left(I_{E} F_{a} S_{a}(0,2)\right)$ greater than 0.55 and buildings taller than 60 metres (permitted in low seismicity regions only). However, probable plastic beam moments without strain hardening effects ($R_{y} M_{p b}$) may be considered in the strong-column design, because of limited beam yielding in this system as compared to that in the more ductile categories. To accommodate yielding, sections must be Class 2 or better,

It is anticipated that in many cases joint details will conform to traditional forms of construction used for moment-resisting frames, Clause 27.4.4.2 provides design and detailing requirements for joints with beams welded directly to the flanges of I-shaped columns. Connections that either can accommodate an interstorey drift angle of 0.02 radians, following tests as discussed in Annex J, or are in compliance with CISC (2014) may also be used.

Practical applications of this system include moment-resisting frames in moderate seismicity regions where added frame stiffness is required to satisfy drift limits, $U_{2} \leq 1.4$ (Clause 27.1.8) or wind effects, and certain low-rise buildings in higher seismicity areas.

27.5 Type MD (Moderately Ductile) Concentrically Braced Frames,

$$
R_{d}=3.0, R_{o}=1.3
$$

27.5.1 General

Type MD concentrically braced frames are designed to dissipate energy essentially by yielding of the bracing members. Energy dissipation occurs under brace elongation, inelastic buckling of the braces, and inelastic bending when the braces are subsequently straightened. In low-rise V-brace or chevron-brace frames, energy can also be dissipated through limited bending of the beams at the brace intersection point.

27.5.2 Bracing Systems

27.5.2.1 General

Three bracing configurations are explicitly provided for in the braced frame category, and a maximum building height is specified for each. Multi-storey concentrically braced frames have limited capability of distributing vertically the inelastic demand after buckling and yielding of the braces have developed at a given level. Lateral overstrength resulting from the inherent difference in capacity between tension and compression braces acting in pairs serves to prevent the concentration of inelastic demand (Lacerte and Tremblay 2006). The continuity of the columns which, when provided as specified in Clause 27.5.5.2, provides sufficient reserve strength and stiffness, also helps mitigate the formation of a weak storey response and dynamic instability under severe earthquakes (MacRae et al. 2004, Chen et al. 2008),

The tendency to instability is more pronounced in tall frames in which the inelastic demand tends to concentrate in the bottom floors, which are the first affected by the ground motion, or in the upper levels due to higher mode effects. Thus, a maximum height is specified for each of the three concentric bracing configurations explicitly provided for in Clauses 27.5 and 27.6.

The provisions of Clauses 27.5 and 27.6 are based on the results of frame behavioural studies using inelastic time-history analysis (Tremblay 2000, Tremblay and Robert 2001, Marino and Nakashima 2006). The buildings studied were regular in form with uniform storey height varying between 3.5 and 4 m . Frames with heights up to 80% of the height limits as specified in NBCC can be expected to perform satisfactorily with no further inelastic analysis needed. Those within the height range of 80% to 100% of the NBCC limits are required to be designed for additional seismic forces as stipulated in Clauses 27.5.2 and 27.6.2 for each respective braced frame configuration. The additional seismic forces need not be considered for determining deflections. Taller buildings, notably those with significantly greater storey heights or other systems (e.g. bracing combined with moment-resisting beam-to-column connections), may require further study, and such systems can be investigated using inelastic time-history analysis. Alternatively, it would be necessary to demonstrate that each storey possesses a reserve of strength and stiffness at the drifts expected under the inelastic response, to prevent a concentration of inelastic actions.

Judgement must also be exercised when the geometry of the frame deviates significantly from the uniform configuration considered in the referenced studies. For instance, industrial buildings or hangars in which the bracing system in any one level includes a stack of two or more bracing panels may be prone to concentration of the inelastic demand in a few bracing members. Such configuration is only permitted for Type LD braced steel frames, and special requirements apply, as described in Clause 27.6.6.

Knee bracing and K-bracing are excluded from the Type MD braced frame category, because plastic hinging that will develop within the clear length of the columns may lead to their
instability. Braced frames consisting of more than one X-bracing panel are permitted for Type LD braced frames, as described in the subsequent section.

27.5.2.2 Proportioning

In order to achieve symmetric inelastic response, the storey shear resistance in opposite directions should remain equal or nearly the same under the design earthquake. Because the capacity of a concentrically braced frame after buckling of the braces is mainly governed by its tension braces, the requirement is based on the storey shear resistance provided by the tensionacting braces in each direction. In order to avoid excessive torsional response in the inelastic response, this requirement must be met in each vertical plane of braces and in both orthogonal directions,

27.5.2.3 Tension-Compression Bracing

In tension-compression bracing systems, braces in each vertical plane are designed to resist their share of factored tensile and compressive forces based on the analysis. These braces typically act in pairs as is the case of single-storey X-bracing, two-storey (split) X-bracing, chevron bracing, or V-bracing configuration. Tension-compression bracing also includes configurations consisting of an odd number of braces, provided that they satisfy Clause 27.5.2.2 in every plane of bracing at every level. Compared with the tension-only system, the stockier braces in this system provide greater post-buckling capacity and stiffness. This, combined with the stiffness provided by continuous columns, has been shown to provide stability in frames up to about 32 metres in height (Tremblay 2000, Tremblay and Poncet 2007, Izvernari et al. 2007). Therefore, Moderately Ductile tension-compression frames that are within 40 metres in height, as permitted in NBCC, but exceed 32 metres, should be designed for higher forces as required in this clause.

27.5.2.4 Chevron Bracing

The commentary to Clause 27.5.2.3 also applies to this Clause. Chevron bracing, in which the braces (which may be either both above the beam or both below it) meet within the central region of the beam, is permitted in the Type MD concentrically braced frame category, provided that the beams in the bracing bents remain essentially elastic after buckling of the bracing members has occurred. Braces in frames with such strong beams can develop their full yield capacity in tension, and the structure exhibits a more stable hysteretic response than when weaker beams are employed. Frames with weaker beams typically experience rapid and significant deterioration of their storey shear resistance and stiffness after buckling of the braces (Remennikov and Walpole 1998a; Tremblay and Robert 2000, 2001). When the tension brace yields in tension, the compression brace at the same level only develops its post-buckling resistance, $C^{\prime}{ }_{\psi}$, as defined in Clause 27.5.3.4. This case is illustrated in Figure 2-69. When braces are connected to the beam from above, the expected brace compression resistance of the brace, C_{u}, must also be considered; this condition may be more critical when there is an extremely high gravity load and the beam plastic bending produces a downward displacement at the plastic hinge. For both cases, the beams must be checked as beam-columns resisting the bending moments and axial forces due to gravity loading and these brace loads without the vertical support provided by the braces. Beam-to-column connections must be sized for the same loading conditions.

Limited yielding in the beams does not adversely affect the response of low-rise chevron braced frames, and the brace tension load to be used in the design of the beams in frames up to 4 storeys has been reduced for such frames (Tremblay and Robert 2000, 2001). In such a case, plastic hinging will likely develop in the beams, and the beam connections should then be designed for shear forces associated with the probable bending resistance of the beams.

In both designs, the beams must be adequately laterally restrained at the brace connection point to resist out-of-plane components of the axial load acting in the beams and the braces.

27.5.2.5 Tension-Only Bracing

Designing the braces to resist, in tension, 100% of the lateral loads acting in each direction can lead to a more economical design when lateral loads are low or moderate, or when long braces are used. Tension-only bracing is not permitted in V-or chevron bracing. Although the contribution of these braces when acting in compression is ignored in resisting design lateral loads, the braces must meet the slenderness limit and detailing requirements in Clause 27.5.3, and the compression loads they can deliver must be accounted for in the design of connections, beams, and columns (see Clauses 27.5 .4 and 27.5 .5). Because the braces are generally less stocky as compared to tension-compression braces, this system exhibits less energy dissipation capacity, and larger inelastic deformations are therefore expected. Every column in the building is required to be fully continuous in order to resist in bending the concentration of inelastic demand in a single storey. It has been shown that frames up to about 16 metres in height perform satisfactorily (Tremblay 2000). Moderately Ductile tension-only braced frames that are within 20 metres in height, as permitted in NBCC, but exceed 16 metres, should be designed for higher forces as required in this clause. However, other bracing systems may prove to be more economical for frames taller than 3 storeys in height, because erection safety usually dictates field splices for column tiers spanning more than 3 storeys.

27.5.3 Diagonal Bracing Members

In X-bracing, one of the braces is usually built from two segments and inter-connected at the brace intersection. By selecting both brace segments from the same heat of steel, concentration of yielding in the weaker segment and the potential for premature brace fracture can be avoided.

In most cases, including tension-only systems, the post-buckling capacity of braces is necessary to ensure stability, and therefore, in all these systems, the slenderness limits specified in this clause apply to braces in all Type MD concentrically braced frames, including tension-only systems.
27.5.3.1 The energy dissipation capacity of bracing members under cyclic inelastic loading increases when the effective slenderness ratio, KL/r, is decreased (Jain et al. 1980, Popov and Black 1980, Tremblay et al. 2003, Lee and Bruneau 2005), and maximum brace slenderness has traditionally been specified to control the dynamic response of braced frames. Bracing systems with slender braces designed to act both in tension and compression have, however, significant lateral overstrength due to the difference that exists between the compressive and tensile capacities of the braces. This overstrength permits the maintenance of a stable inelastic response under severe earthquakes, and for this reason it is possible to allow a brace slenderness limit of 200 for Type MD frames. This limit still provides a minimum energy dissipation capacity that allows the use of tension-only braces in low-rise structures. Past test programs showed that rectangular and circular HSS bracing members with low slenderness ratios can develop premature fracture at the plastic hinge region (Fell et al 2009, Tang and Goel 1989, Tremblay et al. 2002, Tremblay et al. 2008); a minimum effective slenderness ratio is specified to preclude this undesirable failure mode.

When determining the brace slenderness, the actual support conditions of the braces must be accounted for in determining $K L$. As discussed later (see Clause 27.5.4.3), the brace end connection detail with a single gusset plate and free hinge zone in the gusset, shown in Figure 2-68(a), has gained wide acceptance in practice. When using this detail, the brace effective length $K L$ for out-of-plane buckling can be taken equal to the length between the hinge locations, L_{H}. Tests on double-angle braces using that detail have shown that a K factor of 0.5 can be

Figure 2-68
Out-of-Plane Buckling of a Brace with Gusset Plates Detailed to Accommodate End Inelastic Rotation
applied to evaluate the brace slenderness for in-plane buckling (Astaneh-Asl and Goel 1984). For X-bracing, when the brace end connections are detailed with single vertical gussets, K can be taken equal to 0.4 and 0.5 for in-plane and out-of-plane buckling, respectively, with L taken as the length between the anticipated plastic hinge locations at the ends of the bracing members (El-Tayem and Goel 1986, Sabelli and Hohbach 1999, Tremblay et al. 2003). Caution must be exercised when one of the braces is interrupted at the brace connection point of X-bracing, as this can reduce the stiffness of the tension brace supporting the compression brace and/or lead to local instability of the connecting elements (Kim and Goel 1996, Davaran 2001, Doravan and Hoveidae 2009). These effects can be minimized by reducing the length of the connection or by ensuring minimum continuity at the brace intersection. Additional information on brace effective length can be found in Ziemian (2010).
27.5.3.2 Several cycles of inelastic bending are anticipated at hinge location(s) along the bracing members, and limits are imposed on the width-to-thickness ratios of the braces to prevent premature fracture of these members. Physical testing has shown that HSS bracing members exhibit limited fracture life, and relatively more stringent limits are specified for these sections (Fell et al. 1989, Lee and Goel 1987, Liu 1987, Sherman 1996, Tang and Goel 1989). Relaxation of width-to-thickness limits is permitted when lower inelastic demand is expected in the braces, such as when slender bracing members are used (buckling becomes essentially elastic) or when the structure is located in a region of low seismicity (Tremblay 2001). The inelastic demand is also less critical in the vertical legs of double-angle bracing members buckling about their plane of symmetry, and less stringent requirements are specified for this case.

(a) Beams in X-Bracing and Chevron Bracing

(b) Exterior and Interior Columns

V determined with $R_{o} R_{d}=1.3$

$$
T=\frac{V}{\cos \theta}-C_{u}
$$

(c) Tension Brace Connection - Beam and Column Forces at $R_{d} R_{o}=1.3$

(d) Columns and Struts When Braces Meet Columns Between Floors

Figure 2-69
Brace Axial Loads for the Design of Members and Connections
27.5.3.3 Buckling of the individual elements of built-up bracing members under earthquake loading may result in high localized inelastic deformations which can lead to premature fracture of the braces (Aslani and Goel 1991). Individual buckling is therefore precluded by limiting the slenderness of the individual components. When buckling of the braces induces shear in the stitch fasteners, these fasteners are expected to transfer in shear the full yield capacity of the smaller brace component upon subsequent straightening of the braces, and the stitch connections must be designed accordingly (Astaneh-Asl and Goel 1985).

Braces with bolt holes at the location of the plastic hinges have exhibited early fracture at the net section, and bolted stitches must be avoided in these regions (Astaneh-Asl and Goel 1984). In determining the governing overall slenderness of the bracing members and the location of plastic hinges, attention must be paid to the actual end fixity and support conditions of the bracing members (see also Clause 27.5.3.1). Plastic hinges in the bracing members will develop approximately at half the distance between supports, i.e,, at one quarter and three quarters of the brace length in X-bracing, as well as near the brace end connections if such connections do not permit rotation to develop upon buckling.

27.5.3.4 Probable Brace Resistances

In previous editions of CSA S16, brace expected strength values to be used in capacity design were specified in Clauses related to brace connection design. Recognizing that brace capacities are also used for the design of beams, columns, and connections other than brace connections, etc., a separate clause was introduced in S16-09 to define clearly the expected strength values of braces in tension and compression. A realistic estimate of the expected compressive strength of a brace, C_{u}, is obtained by multiplying its compressive resistance by 1.2 . In this calculation, the probable yield stress of the steel should be used, and the resistance factor does not apply. In tension, the maximum anticipated brace force T_{u} corresponds to the probable yield tensile strength. The compressive resistance of a brace reduces when the brace is subjected to cyclic inelastic axial loading (Lee and Bruneau 2005), and this post-buckling brace compression resistance can lead to more critical loading conditions for members or connections, such as beams of chevron bracing or interior columns. Figure 2-69(a) shows examples where compression-acting braces in the buckled state ($C^{\prime}{ }_{u}$) produce maximum axial compression in the beam of an X-bracing and maximum bending moment in the beam of a chevron bracing. For the frame in Figure 2-69(b), the exterior columns should be designed for the condition at the brace's probable compressive resistance $\left(C_{u}\right)$, whereas the buckled brace condition ($C^{\prime}{ }_{u}$) should be assumed for the interior. In S16, C^{\prime} " is taken as $0.2 A R_{y} F_{y}$, which corresponds to the value observed in tests at a ductility of 3.0. Tests suggest that higher values can be used for bracing members with very low slenderness, i.e, with λ less than 0.4 (Remennikov and Walpole 1998b, Tremblay et al. 2002).

In some cases, braces can be oversized to meet other design criteria such as drift, width-to-thickness ratio, or slenderness limits. For such cases, the brace loads need not exceed the forces induced by a storey shear calculated with $R_{d} R_{o}=1.3$, as specified in Clause 27.1.2. The possibility of brace buckling under that storey shear must be considered in the calculations; the forces in the compression braces are then limited to the probable buckling or post-buckling strength, whichever is more critical, and the load redistribution from the compression braces to the tension braces due to brace buckling must be accounted for when evaluating the forces acting in the tension braces. This is illustrated in Figure 2-69(c) where maximum tension in the tension brace, maximum compression in the beam, and maximum compression in the right-hand-side columns are obtained when the compression brace carries a load $C^{\prime}{ }_{W}$.

27.5.4 Brace Connections

27.5.4.1 Eccentricities in brace connections can lead to damage under cyclic loading and should therefore be kept to a minimum in ductile braced frames.
27.5.4.2 Brace connections must be designed to resist brace axial loads that correspond to the probable buckling strength and tensile yielding strength of the braces. Actual brace end restraint conditions and the presence of intermediate supports must also be taken into account when evaluating the buckling strength of the braces (see Clause 27.5.3.1).

In view of the uncertainty associated with the amplitude of the seismic ground motions and their effects on building structures, connections designed for the upper brace force limit corresponding to $R_{d} R_{\mathrm{o}}=1,3$ must be detailed for a ductile mode of behaviour. Details that may be considered to achieve ductile failure modes include gusset plates proportioned for ductility (Cheng and Grondin, 1999), connections that rely on yielding of elements or in which bearing failure of bolts governs (Tremblay et al. 2009) in preference to net section fracture or bolt shear failure. Otherwise, the limit on seismic loads must be increased to loads corresponding to $R_{d} R_{0}=1.0$.

The brace tension load can be limited by beam yielding in chevron bracing in which the beams are not designed to carry the full tensile yield load of the braces. In such a case, the brace tension connection load at any level is determined assuming the beam yields while the compression brace still carries 1.2 times its probable nominal compressive strength.

The net section resistance of braces may be based on the probable tensile strength of the brace material, since the load level corresponds to the probable yield stress of the brace. Furthermore, since the principal geometrical parameter of the net and gross sections is identical, the resistance factor may be taken as 1.0. Based on coupon test data assembled by Schmidt (2000), this can be achieved by multiplying the factored net section resistance of the brace by R_{y} / ϕ, with R_{y} not exceeding 1.2 for HSS and 1.1 for other shapes. This factor cannot be applied to the factored resistance of other components of the connections such as net section reinforcement plates, gusset plates, bolts, or welds. Information on net section reinforcement for slotted HSS members can be found in Yang and Mahin (2005), and Haddad and Tremblay (2006). Alternative solutions have recently been proposed for HSS brace connections including the modified hidden gap connection by Martinez-Saucedo et al. (2008) and structural cast connectors (de Oliveira et al. 2008).
27.5.4.3 Buckling of the braces will induce a rotational demand at the brace ends, and the connections must be detailed to avoid any premature fracture at this location. Proper detailing must be provided to allow this rotation to develop in the brace connections or through controlled plastic hinging in the bracing members away from the connections. Note that this ductile rotational behaviour must be allowed for, either in or out of the plane of the frame, depending on the governing effective brace slenderness. If a single gusset plate connection is used, the latter case can be achieved by leaving a clear distance equal to two times the thickness of the gusset at the end of the bracing member (or the connecting elements), as illustrated in Figure 2-68, in order to allow the formation of a hinge in the gusset plate along a line perpendicular to the brace member's longitudinal axis (Astaneh-Asl and Goel 1985). Tearing of the gusset plate will rapidly develop if this geometry is not carefully met. If a plastic hinge is to develop in the bracing member, the connection must have a factored flexural resistance about the anticipated buckling axis equal to $1.1 R_{y} M_{p}$ of the bracing member. The Commentary to Clause 27,5.4.2 concerning the factor R_{y} / ϕ applies also here, except that R_{y} is not limited to 1.1 when both load and resistance are directly related to the yield stress.

27.5.5 Columns, Beams, and Connections Other than Brace Connections

This clause provides specific requirements for columns, beams, and connections other than brace connections. For brace connection requirements, refer to Clause 27.5.4 and this commentary.
27.5.5.1 Columns, beams, and other connections in the lateral-load-resisting system must be designed to carry the gravity loads together with the effects due to the brace forces that are expected to develop under the design earthquake. Member forces under this condition can be obtained by replacing the bracing members by the brace forces specified in Clause 27.5.3.4. As illustrated in Figure 2-69, in a given storey, it should be assumed that yielding in the tension braces develops simultaneously with either the probable compressive or post-buckling strength of the compression braces, depending upon which case produces the more critical condition for the element being designed, For tension-only systems, the compressive resistance of the braces should not be ignored. In any case, the brace forces need not exceed those associated with a storey shear corresponding to $R_{d} R_{0}=1.3$ (including load redistribution due to brace buckling).

In multi-storey structures, the likelihood of having all the bracing members reaching their full capacity at the same time diminishes as the number of storeys above the level under consideration becomes large. In X-bracing (or split-X bracing), this can be accounted for in determining axial forces in columns by using statistical combinations of the brace-induced loads that have been proposed in the literature (Redwood and Channagiri 1991, Lacerte and Tremblay 2006, Richards 2009). When the axial force in a column is due to brace buckling only, as in chevron bracing with the braces framing below the beams, this reduction is less important, and all braces must be considered as buckling simultaneously (Tremblay and Robert 2001).

When calculating axial loads in beams, attention should be paid to the lateral load path at the level under consideration.
27.5.5.2 Columns in multi-storey structures are most often continuous over two or more storeys, and the flexural stiffness and strength of these columns contribute to reduce the concentration of inelastic demand in a given storey along the height of the building. This behaviour is now explicitly accounted for in this clause, and the columns must therefore be made continuous to prevent a soft-storey formation unless another system is provided (Tremblay 2000, Tremblay 2003). It should be noted that all columns in the frame, and not only those in the vertical bracing system, are to be treated in this way, In addition, the bending moments that are expected to develop in the columns must be accounted for in design. Non-linear dynamic analyses have shown that these moments reach approximately 20% of the plastic moment of the columns, both for gravity columns and columns in bracing bents. It is permitted to splice columns for axial and shear forces only, In order to maintain structural integrity, every splice in the building must be designed for a shear force assuming double curvature in the columns.

Gravity columns possess some reserve capacity due to the reduced factored gravity loads assumed to be present during the design earthquake, and the bending moments are therefore ignored in their design. Class 3 sections are specified, however, to avoid brittle failure in case inelastic rotation occurs over a short period of time during the earthquake. More stringent provisions are prescribed for columns in braced bays, in view of their primary role in resisting lateral loads and the large axial forces they must sustain due to seismic loading. Class 1 or 2 sections are required, and columns must be designed as beam-columns assuming a moment equal to 0.20 times their plastic moment. In this check, columns must be assumed to be bent in single curvature ($\kappa=-1.0$).
27.5.5.3 See Commentary to Clause 27.2.3.3

27.5.6 Columns with Braces Intersecting Between Horizontal Diaphragms

In CSA S16-09, tension-compression bracing with braces meeting at columns between adjacent diaphragm levels was permitted in Type LD concentrically braced frames. This bracing configuration, also referred to as multi-tiered braced frames, is common in tall single-storey buildings or in multi-storey buildings when it becomes impractical to use braces that extend the full storey height. In seismic design, multi-tiered bracing is also advantageous as brace lengths are reduced, which allows smaller braces to be used and, in turn, results in lower capacity design forces for brace connections and adjacent components along the lateral load path. In S1609 , a horizontal strut was required at every tier level to resist the unbalanced lateral brace loads that develop after the compression braces buckle and the forces in the tension braces increase to reach the yield strengths, T_{u} (Figure 2-70(a)). As shown in Figure 2-70(b), the addition of struts creates a positive continuous load path for the brace forces between adjacent floor levels, or between the roof and the ground for single-storey buildings, so that the full tensile strength of the braces can be mobilized after brace buckling without imposing direct lateral loading on the columns. However, analyses show that brace tension yielding tends to develop in only one tier, even in cases where all tiers have identical bracing members and geometry, as unavoidable initial imperfections and variations in material properties will lead to a weaker tier, This creates non-uniform tier drift demand and induces bending moments in the columns. CSA S16-09 therefore also required that the columns of multi-tiered CBFs resist the bending moments that are induced when brace tension yielding develops in any one tier when the storey drift reaches the anticipated value including inelastic deformation effects, i.e. $R_{d} R_{o} \Delta_{e}$ (where Δ_{e} is the elastic storey drift under the NBCC base shear for the purpose of calculating deflections). In addition, the columns had to resist concomitant out-of-plane moments from notional loads, applied at every brace-to-column intersecting points, equal to 10% of the forces in compression members (Figure 2-70(c)).

In S16-09, use of multi-tiered concentrically braced steel frames was limited to the Type LD category, and the number of tiers was restricted to limit the ductility demand on the braces located in the critical tier and to prevent premature brace fracture. In light of more recent research findings in this area (Imanpour et. al., 2012a, 2012b, 2013; Imanpour and Tremblay, 2012a, 2014a), S16-14 permits the use of concentrically braced steel frames with braces meeting columns between horizontal diaphragms in Type MD CBF category for frames having up to 3 tiers. The design requirements introduced in S16-09 still apply, except that the out-of-plane notional loads have been reduced to 2% of the axial compression force acting in the column below the brace-to-column intersecting point.

Columns of multi-tiered braced frames should first be designed for the loading condition where all compression-acting braces attain their probable compressive resistance, C_{n}, while tension braces develop tension forces equal to T_{u}, as defined in Clause 27.5.3.4. The columns' resistance must then be verified for the combination of axial loads, in-plane bending moments due to non-uniform drifts, and out-of-plane bending moments due to notional loads after the tension brace in the critical tier has yielded, and the storey drift reaches the maximum anticipated drift including inelastic deformations. For this loading case, axial load and in-plane moment demands can be determined using one of three analysis methods: 1) nonlinear dynamic time history analysis, 2) nonlinear static (pushover) analysis, and 3) pseudo-nonlinear static analysis. Concomitant gravity loads must be included in the analysis. The last two methods are generally preferred for design, as the analysis is performed to obtain the conditions at the storey drift $R_{d} R_{o} \Delta_{e}$. In the nonlinear static analysis, brace yielding and buckling nonlinear response must be included in the analysis model, and the rate of brace compressive strength degradation in the post-buckling range must be accentuated to simulate cyclic brace response (Imanpour and Tremblay, 2014b). The pseudo-nonlinear static analysis is simpler because braces are modelled using elastic elements. Elastic static analysis is therefore performed except that the

(a) Without Struts

(b) With a Horizontal Strut

(c) Out-of-Plane Moments from Notional Loads

Figure 2-70
Two-Tiered X-Bracing
tension and compression braces in the critical panel, where brace tension yielding is likely to initiate, are replaced by forces representing their expected tensile (T_{u}) and post-buckling ($C^{\prime}{ }_{u}$) resistances, respectively. The analysis is performed by applying a lateral load at the frame top until the storey drift reaches $R_{d} R_{o} \Delta_{e}$. Alternatively, that storey drift can be directly imposed on the frame in the analysis. After the analysis, the compression braces in the other panels that resist forces exceeding their buckling strength $\left(C_{u}\right)$ must be replaced by a force C_{u}, and the analysis must be repeated. For this method, the critical tier of the frame must have been identified previously. It corresponds to the tier that has the lowest storey shear resistance as provided by the braces reaching their probable resistances C_{u} in compression and T_{u} in tension. When
the frame includes identical tiers, several critical tier scenarios should be considered by slightly varying the probable resistances of the braces in each analysis. This last comment also applies to nonlinear dynamic and static (pushover) analyses,

As an alternative to the above analysis methods, in-plane moments in columns at the maximum anticipated storey drift can be determined by assuming a deformed shape for the frame and by assuming that inelastic lateral deformations occur only in the critical tier. As shown in Figure 2-70(b), the drift in the critical tier is equal to $R_{d} R_{o} \Delta_{e}$ minus the drifts in the non-critical tiers. These non-critical tier drifts can be taken equal to R_{o} times the elastic tier drifts or may be determined by using a more refined method based on brace axial deformations under the storey shear as limited by the critical tier. Using the deformed frame configuration, column moments can be deducted using any stiffness-based method such as the three-moment equations (Imanpour and Tremblay, 2012).

In Clause 27.5.6, it is assumed that brace tension yielding develops in only one tier over the frame height, which is the common situation. In frames with stiff and strong columns, it is possible that brace tension yielding will be triggered in two tiers before the design storey drift is reached. This behaviour is acceptable and can lead to a most economical design, as the distribution of brace tension yielding over several tiers generally results in reduced in-plane flexural demands on the columns. This response is automatically captured by nonlinear dynamic or static (pushover) analysis. In pseudo-nonlinear static analysis, the behaviour will produce tension brace forces exceeding their probable yield tensile strength in a second tier. In that case, the analysis should be interrupted at the point where the brace force reaches T_{u} in that tier, which presents the condition for maximum column moments.

Tier drifts beyond $1.5-2.0 \%$ may lead to premature brace fracture because of low-cycle fatigue. Past studies showed that well-proportioned multi-tiered braced frames are not expected to develop tier drifts in excess of these values. In cases where excessive drifts are obtained in the critical tier, spreading brace tension yielding in multiple tiers can mitigate tier drifts. This behaviour can be achieved by stiffening the columns or by mobilizing the flexural stiffness of adjacent gravity columns. For the latter, the gravity columns must be connected to the braced frame by means of horizontal struts at every tier level. The gravity columns and the struts should then be designed to resist forces resulting from this interaction (Imanpour et al., 2014).

Columns in multi-tiered CBFs should be restrained against rotation about their longitudinal axis at each tier level, so that the unsupported length for lateral-torsional buckling can be reduced to the tier height. Torsional bracing can be provided by the horizontal (out-of-plane) flexural stiffness and strength of the struts. In that case, the struts must be rigidly connected to the columns against rotations in the horizontal plane, and the torsional stiffness per column can be conservatively taken as equal to $2 E I / L$, where I is the moment of inertia of the struts for bending in the horizontal plane and L is the length of the struts. Minimum stiffness and strength requirements for torsional bracing by Helwig and Yura (1999) for inelastic columns can be used to proportion the struts.

27.5.7 Protected Zones

Bracing members are considered as protected zones over their full length, because yielding in tension is expected to occur at any location along the braces. Brace connections are designated as protected zones, as they are likely to sustain high strain and inelastic rotational demands upon brace buckling and under large storey drifts.

27.6 Type LD (Limited-Ductility) Concentrically Braced Frames, $R_{d}=2.0, R_{0}=1.3$

27.6.1 General

Braced frames of this category are designed with an R_{d} factor of 2.0 and are thus expected to undergo lower inelastic response than Type MD braced frames. However, inelastic response is still restricted to bracing members and beams of low-rise chevron braced frames. The frames must therefore be designed according to Clause 27.5 , except that some relaxation is permitted in view of the lower anticipated ductility demand.

27.6.2 Bracing Systems

Frames provided with higher lateral resistance are less prone to soft-storey response, and taller buildings are permitted in this frame category. Frames with heights up to 80% of the height limits specified in NBCC can be expected to perform satisfactorily with no further inelastic analysis needed. Those within the height range of 80% to 100% of the NBCC limits are required to be designed for additional forces stipulated in this clause.

27.6.2.1 Tension-Compression Bracing

This clause applies to all tension-compression bracing configurations, including Chevron bracing systems. Bracing configurations, consisting of pairs of compression and tension braces meeting a column on one side at one or more elevations between horizontal diaphragms, may be used in limited-ductility frames, provided that the specific requirements of Clause 27.6.6 are satisfied.

27.6.2.2 Chevron Bracing

Chevron bracing with no special beam capacity requirements is permitted up to 20 m in this category. During an earthquake, the beams in such frames lose the vertical support provided by the braces and must then be capable of supporting their tributary gravity loads without the help of the braces. Significant plastic hinging is expected in these beams, and beam-to-column connections must be designed to sustain the forces that develop when the probable nominal flexural resistance of the beams is reached (Tremblay and Robert 2000). Chevron braced frames so proportioned exhibit severe deterioration of their storey shear resistance after brace buckling and cannot be used in structures taller than 20 m without risk of soft-storey response. Chevron bracing with a strong-beam design as specified in Clause 27.5.2.4 should be used for these taller structures.

27.6.2.3 Tension-Only Bracing

Compared with Type MD tension-only braced frames, columns in this system are required to be fully continuous and have a constant cross-section over only two storeys.

27.6.3 Diagonal Bracing Members

27.6.3.1 Single-and two-storey braced frames with more slender braces having $K L / r$ up to 300 are permitted in this frame category. Other requirements for ductile braced frames, including minimum brace connection resistance, still apply, however.
27.6.3.2 Limited inelastic compressive strains are expected in braces with $K L / r$ greater than 200, as permitted by Clause 27.6.3.1. Therefore, stringent width-to-thickness ratios do not apply for these braces. The inelastic demand anticipated in frames with specified short-period spectral acceleration ratios ($I_{E} F_{a} S_{a}(0.2)$) less than 0.45 is also small, and Class 2 sections are permitted in these locations.

27.6.4 Bracing Connections

Clause 27.5.4.3 need not apply to slender braces in frames located in lower seismic hazard categories, as low rotational demand is expected at the ends of such braces.

27.6.5 Columns, Beams and Other Connections

Abrupt changes in the inter-storey drift angle from one storey to another is not expected in frames of this category when located in low seismicity regions. For such frames, column splice connections as currently fabricated and built in practice should provide sufficient shear capacity to ensure integrity of the gravity columns, and no minimum shear force is prescribed for splices in these columns.

27.6.6 Columns with Braces Intersecting Between Horizontal Diaphragms

Type LD braced frames with braces intersecting columns between diaphragms must be designed in accordance with the requirements for Type MD concentrically braced frames as given in Clause 27.5.6, except that the limit on the number of tiers for Type LD frames is extended to 5 tiers. This relaxation is permitted in view of the less severe concentration of inelastic demand over the frame height as a result of the higher design seismic loads.

27.7 Type D (Ductile) Eccentrically Braced Frames, $R_{d}=4.0, R_{0}=1.5$

27.7.1 General

Ductile eccentrically braced frames (EBF) are designed to dissipate energy by yielding of links which form part of the beam in braced bays, and other members of the frame are designed to respond elastically while the links are yielding and strain-hardening. Some common configurations of EBF are shown in Figure 2-71. The load in each brace is limited by the fact that a link is located at one or possibly both ends. The brace is designed to remain elastic under the maximum load the link can sustain, and hence the uncertain load-carrying capacity of compression braces following yield or buckling is not a concern.

27.7.2 Link Beam

Short links will yield in shear prior to flexural hinging at the link ends, whereas long links will yield in flexure before shear. Either mode is acceptable, although short links are easier to design and have somewhat more stable and predictable post-yield behaviour (Kasai and Popov 1986, Engelhardt and Popov 1992). Long links must be Class 1 sections as flexural hinging is expected at link ends, whereas short links may have Class 2 flanges, provided the web is Class 1 (Engelhardt, 2005). The link beam will normally carry high axial forces as well as high bending moments, and the axial forces cannot be neglected in the design. For a general discussion of EBF behaviour, see Popov et al. (1989).

For short- and moderate-length links in particular, the web is expected to undergo severe cyclic inelastic action with straining well into the strain-hardening range. For this reason, discontinuities such as openings, splices, and stress raisers such as welded attachments (except stiffeners) must be avoided. Splices within the link are not acceptable and should also be avoided in the outer parts of the link beam near the link ends (with the exception of links attached directly to columns). The webs should be of uniform depth to maintain the same shear capacity throughout the link length, thus avoiding confined yielding.

In earlier research and past applications of the system, link beams were segments of beams made of W-shapes, and design and detailing rules in previous editions of CSA S16 had been developed for W-shape link beams. Based on the work of Berman and Bruneau (2008a), provisions for link beams made of built-up rectangular hollow sections were introduced in CSA S1609 . The use of built-up beam sections allows links to be sized to match closely the design force

Figure 2-71
Common Configurations of Eccentrically Braced Frames
demand and, hence, to minimize the capacity design force demand requirement. Furthermore, when properly sized, tubular links do not require lateral bracing. This option offers an attractive solution in situations where lateral bracing is impossible or impractical, for example in a braced bent along an exterior column line, or next to an elevator or stairway shaft.

W-shaped and tubular links are segments of the beams (Figure 2-72(a)). Provisions for two types of modular link beams have been introduced in CSA S16-14: I-shaped link beams connected to the beam with unstiffened end-plate moment connections, and links made from back-to-back C-sections with eccentrically loaded web-bolted connections to the beam (Figure 2-72(b)). The C-sections may be channels or I-shapes with the flanges cut flush with the web on one side. Modular links are distinct from the beams, and both elements can therefore be designed independently to obtain structurally effective EBF solutions. As shown in Figure 2-72(b), the link length e can be set shorter than the brace eccentricity e^{\prime}, allowing greater flexibility when proportioning the frame. The system allows for EBF segments to be prefabricated

(a) I-Shaped and Built-Up Tubular Link Sections

(b) Modular Links Made from I-Sections with End Plate Connections and Back-to-Back C-Sections with Eccentrically Loaded Web-Bolted Connections

Figure 2.72 EBF Link Beams
and assembled on site (Figure 2-73(a)). Hence, critical connections between beams, braces, and columns can be shop-welded to produce more compact connections. After a severe earthquake, modular links that have sustained large inelastic deformations can be more readily replaced to reduce downtime periods and make the system more resilient.

Mansour et al. (2011) proposed design procedures for modular links. A key requirement is that the links must be detailed to yield in shear so that the flexural demand on the end connections is reduced and controlled. For the C-section web-connected links, lateral support to the top and bottom flanges is required to prevent lateral-torsional buckling of the individual C-sections. Angles welded to the flanges of each C-section and bolted together through their vertical legs can provide lateral support. Flange reinforcement plates may be added to increase the flexural resistance of web-connected links and to ensure shear yielding.

Mansour et al. experimentally verified their design approach for both types of modular links. The performance of links with end plate connections has also been demonstrated in past tests on traditional EBF links (e.g., Stratan and Dubina, 2004; Okasaki and Engelhardt, 2007). Their seismic inelastic response is therefore similar to that of EBF links that are part of the beams, as shown in Figure 2-73(b). Web-connected link specimens by Mansour et al, were sized so that bolt slip and inelastic bearing deformations could develop in the bolted web connections. This resulted in pinched hysteretic response, but the links could sustain larger plastic rotations compared to traditional and end-plate-connected links (Figure 2-73(c)). Replaceability of damaged links and repairability of the concrete floor slab after severe reversed cyclic loading were also reported in their test programs.

In S16, specific requirements are typically presented in parallel for all link types. No reference to link cross-sections or types is made; however, requirements equally apply to EBFs of either type.

Figure 2-73 Modular Link Beams

27.7.3 Link Resistance

The nominal resistances of the link are defined by taking into account the axial force, but this may be neglected if it is low. The interaction between bending moment and shearing force has been found to be negligible and is in fact neglected. The factored values of these resistances (nominal resistance times ϕ) are used when proportioning link beams for the factored load effects.

Nominal values are also used to determine probable resistances of links and capacity design forces applied on other frame members (see Clauses 27.7.9 to 27.7.13). In S16-14, equations for the probable resistance of links have been moved into a new clause 27.7.3.2. The values are unchanged compared to previous codes, except that the increase in shear strength due to axial tension is now accounted for, as was observed in tests by Mansour et al. (2011) and shown in Figure 2-73(d).

Forces due to strain-hardening of a wide-flange link and a modular link are taken as $1.3 R_{y}$ times the nominal strength of the link. The 1.3 factor accounts for the increase above the yield value due to strain-hardening, and R_{y} accounts for the probable yield stress exceeding the minimum specified value. For links with a built-up tubular cross-section, Berman and Bruneau (2008a) reported a higher strain-hardening response than for wide-flange links. Built-up rectangular box links can develop a maximum strength that is typically 11% larger than for wideflange links, and forces associated with strain-hardening for that link type are taken as $1.45 R_{y}$ times the nominal strength of the links.

In S16, the strain-hardening factor of 1.3 or 1.45 applies to all link lengths, i.e. whether yield is related to shear or bending moment.

27.7.4 Link Length

Link lengths are defined for all link types.
Very short links are proscribed, since they tend to undergo very high shearing deformations and develop very high and unpredictable forces.

Upper limits on the length are needed when the link is subjected to axial force. These are based on Engelhardt and Popov (1989).

27.7.5 Inelastic Link Rotation

The inelastic link rotation must be limited as specified in this Clause, to ensure that the ductile capacity of the link is not exceeded. The limits in CSA S16 were based on earlier test programs on links made of ASTM A36 steel with $F_{y}=248 \mathrm{MPa}$. Recent tests by Okazaki et al, (2005) and Okazaki and Engelhardt (2007) showed that the limits also apply to links made of the higher strength steel ASTM A992 ($\left.F_{y}=345 \mathrm{MPa}\right)$. The same limits apply to all link types. Until additional test data for web-connected modular links become available, the additional inelastic rotation capacity due to bolt slip and bearing deformations observed for those links is not considered in design. The inelastic link rotation is computed for each storey in the following way:

- Elastic interstorey deflections δ_{e} are obtained from an elastic analysis of the structure under lateral loads corresponding to the NBCC base shear distributed according to NBCC, for the purpose of calculating deflections (either based on the static method or the distribution obtained from modal analysis).
- These deflections are multiplied by 3 to give an estimate of the maximum inelastic deflections expected under severe shaking.

Inelastic link rotation:

$$
\gamma=(\mathrm{L} / \mathrm{e}) \theta_{\mathrm{p}}
$$

where:

$$
\theta_{\mathrm{p}}=3 \Delta / h_{\mathrm{s}}
$$

Figure 2-74
Inelastic Drift Angle vs Link Rotation in an Eccentrically Braced Frame (Rigid Plastic Mechanism Shown)

- Assuming the frame undergoes an interstorey drift corresponding to the calculated inelastic deflections as a rigid plastic mechanism, with deformations confined to the link, the link rotation angle (i.e. the angle between the link and the link beam outside the link) is obtained. As illustrated in Figure 2-74, γ is determined as a function of the inelastic interstorey drift corresponding to the calculated inelastic deflections.
Figure 2-71 shows rigid plastic mechanisms for two common EBF configurations. This procedure gives reasonable results for frames having relatively low height-to-width aspect ratios, such as those shown in Figures 2-71 and 2-74. However, axial deformation of columns due to overturning effect (chord drift) contributes significantly to interstorey drifts in upper storeys for frames with higher aspect ratios but does not affect the link rotations. This chord drift effect can be eliminated by making the columns axially rigid (i.e. modelled with very large crosssectional areas) in the elastic analysis described above.

27.7.6 Link Stiffeners

27.7.6.1 Links with Wide-Flange Cross-Sections

Full-depth stiffeners on both sides of the web are required to clearly define the end of the link and to transfer the high shearing forces over the full web depth. Requirements for intermediate web stiffeners are based on physical test results and are needed to ensure the ductile performance of the link. For short links, stiffeners control shear buckling of the yielding web, while for long links, stiffeners required near the ends control flange buckling.

Flange-to-stiffener welds of the link end stiffeners are required to develop the full stiffener yield capacity because of the very high forces that must be transferred between the brace and link at a point where high shear and bending loads occur.

Tests by Okasaki et al. (2005) showed that fracture of I-shaped link web can be delayed and link inelastic rotation enhanced by increasing the distance between the upper end of the stiffener-to-link web weld and the k -line of link sections. Stiffener welds for I-shaped links must therefore be terminated a distance from the transition radius between the web and the flanges of the link. In any case, it is good practice to terminate the fillet welds at a short distance from the ends of the stiffeners in cyclically loaded structures.

Figure 2-75
Built-Up Tubular Link Cross-Section with Intermediate Stiffener

27.7.6.2 Links with Built-Up Tubular Cross-Sections

As is the case for wide-flange links, full-depth stiffeners are required at the ends of links. These stiffeners are provided on one side of each link web at the diagonal brace connection.

Full-depth intermediate stiffeners are also needed for shear-yielding built-up tubular links ($e \leq 1.6 M_{p} / V_{p}$). As for wide-flange links, the required stiffener spacing depends on the magnitude of the link rotation angle. In CSA S16, only the equation for the spacing needed to develop a link rotation angle of 0.08 radian $(20 w-(d-2 t) / 8)$ by Berman and Bruneau (2005) is given, as experimental and analytical data is only available to support this closer stiffener spacing. A similar expression $(37 w-(d-2 t) / 8)$ has been proposed for a 0.02 radian rotation, but the more restrictive stiffener spacing is required for all links until other data become available. The presence of intermediate web stiffeners was shown to be significant for shear-yielding built-up box links with h / w greater than $0.64 \sqrt{E / F_{y}}$ and less than or equal to $1.67 \sqrt{E / F_{y}}$ (Berman and Bruneau 2008a). For shear links with h / w less than or equal to $0.64 \sqrt{E / F_{y}}$, flange buckling is the controlling limit state, and intermediate stiffeners have no effect.

For links with lengths exceeding $1.6 M_{p} / V_{p}$, compression local buckling of both webs and flanges (resulting from compressive stresses associated with the development of the plastic moment) dominates link strength degradation. This buckling resistance is unaffected by the presence of intermediate web stiffeners. As a result, intermediate web stiffeners are not required for long links, provided that the webs and flanges have a width-to-thickness ratio not exceeding $0.64 \sqrt{E / F_{y}}$, as they are both subjected to large compressive stresses.

The built-up box beams tested and simulated numerically by Berman and Bruneau (2008a) had intermediate stiffeners welded to both webs and flanges. A typical cross-section is shown in Figure 2-75. However, the presence of stiffeners did not influence flange buckling. Whereas web stiffeners in wide-flange links may also provide stability to the flanges (Malley and Popov 1983), this is not the case with built-up box cross-sections. Therefore, for built-up box section links, weld attachment of intermediate flange stiffeners is not required. In particular, intermediate stiffeners may be welded to the inside faces, enhancing architectural appeal and improving resistance to corrosion by reducing the risk of debris accumulation between stiffeners in exposed applications.

27.7.6.3 Modular Links

The requirements for intermediate stiffeners for modular links are the same as for links of continuous I-shaped link beams. End plates of links with end plate connections serve as end stiffeners. Full-depth end stiffeners are required for both C -sections of the replaceable webconnected links.

27.7.7 Lateral Support for Link

The required capacity of lateral bracing for wide-flange links is much greater than is usually the case for beams, because of the anticipated large inelastic deformations and accompanying forces amplified by strain-hardening. No lateral bracing is required for links with rectangular built-up tubular cross-sections, provided that the moment of inertia of the links about the vertical axis in the plane of the EBF is not less than 0,67 times the moment of inertia about the axis perpendicular to the plane of the EBF, as specified in Clause 27.7.2.6.

27.7.8 Link Beam-to-Column Connection

Links are often connected directly to the column face in order to accommodate doorways adjacent to columns. This configuration causes severe straining of the link, connection welds, and column flanges as the link deforms. Tests by Okazaki et al. (2006) on link-to-column connections designed and fabricated using pre-Northridge practices showed poor performance. Test specimens with improved welding details alone did not develop the level of inelastic rotation intended in design. Until joint details exhibiting satisfactory inelastic behaviour are developed, link connections must be demonstrated to meet the performance criteria defined in this clause. As for moment-resisting frames, this demonstration can be provided by cyclic tests of full-scale prototypes of the link and column assemblage, following the procedures given in AISC (2005).

If the connection region is reinforced so that a short length of beam adjacent to the column remains elastic under the action of strain-hardened link forces, such demonstration may not be necessary. For this to be acceptable the link must be short, thus limiting the flange forces, and have full-depth stiffeners at the end of the elastic region. In this case, the link ends at the stiffeners.

Link beam-to-column connections can be avoided by adopting a chevron bracing configuration, thereby locating the links away from the columns.

27.7.9 Beam Outside the Link

The forces in the outer beam segment caused by the strain-hardened link forces must be calculated; if reinforcement of the outer beam segment is to be avoided, it will often be necessary to provide a moment-resisting connection between brace and link beam, so that the brace can relieve the outer beam segment of some of the resulting bending moment. It should be noted that this part of the beam will normally also carry a high axial force. When the beam segment considered in this clause is part of the same member as the link, (1) its resistance can be increased by the factor R_{y} thus, in this case, nullifying any effect of an enhanced yield stress, and (2) the nominal, rather than factored, resistance is used since most of the uncertainties associated with the resistance factor, ϕ, affect both load and resistance identically. This increase in resistance does not apply to frames with modular links, as the links and beams are built from different shapes.

The outer beam segment is subject to bending and axial loads, and must be adequately laterally braced. If a plastic hinge is expected at the link end of this segment, bracing must conform to Clause 13.7(a), which requires bracing within a specified distance of the hinge. While a floor slab will often be present to provide support to the top flange, the bottom flange at this
location must also be braced (or torsional restraint provided). The likelihood of a plastic hinge at the link end of the outer beam segment can be determined by examining the distribution of the link end moment between beam and brace according to their relative elastic stiffnesses.

In tests by Mansour et al. (2011) on EBF specimens with a concrete floor slab, regularly spaced studs were used on the beam except over the modular links. Cracking of the slab and pulling of the studs closest to the link were observed in the tests, which may affect the integrity of the slab acting as a diaphragm. Studs should therefore be placed at a minimum distance away from the links. This detail will also likely reduce the contribution of the slab to the shear resistance of the links.

27.7.11 Diagonal Braces

The forces used for the design of braces and their connections are consistent with those specified for the outer beam segment in Clause 27,7,9. Although expected to respond elastically, the brace section is restricted to Classes 1 or 2 because of the uncertain stress distribution in the brace-to-beam connection and the possibility of excessive strains in part of the brace cross-section.

27.7.13 Columns

Column design can be based on lower strain-hardening factors than braces and beams since, except for the top several storeys, the cumulative effect of a number of yielding links will be less than the sum of their maximum possible developed forces. A recent study on axial loads in EBF columns is presented by Richards (2009).

Column moments under gravity and lateral loads induced by eccentric shears and mo-ment-resisting beam connections can be calculated. Those arising from variations in inelastic drifts between adjacent storeys cannot be predicted unless an inelastic dynamic analysis is performed. Columns serve an important role by providing an alternative means of resisting storey shear due especially to link yield. Under these conditions, columns can be effective in preventing soft-storey deformations. Column continuity is therefore desirable, and design of the connections should take into account the shear and bending that may occur. On the basis of numerical studies of the dynamic response of a variety of EBF structures (Kasai and Han (1997), Han (1998), Koboevic (2000)), inelastic dynamic analysis may be avoided if the additional end bending moments specified in CSA S16 are combined with the bending moments acting in the plane of the frame and obtained from a linear elastic analysis.

The requirements for column splices containing partial-joint-penetration groove welds follow those for ductile moment frames.

27.7.14 Protected Zone

Links in EBFs are designated as protected zones and shall satisfy the requirements of Clause 27.1.9. Studs are not permitted in links and must be kept at some distance away from links,

27.8 Type D (Ductile) Buckling-Restrained Braced Frames, $R_{d}=4.0, R_{0}=1.2$

27.8.1 General

Buckling-restrained braced frames are essentially concentrically braced steel frames that are constructed with bracing members specifically designed and detailed so as not to buckle. A typical buckling-restrained brace is illustrated in Figure 2-76. The brace has a steel core. A segment of this core is fabricated with a reduced cross-section where axial yielding is expected to develop in both compression and tension. The core is prevented from buckling by means of a restraining system. In the example shown in Figure 2-76, a steel tube filled with mortar is used for this purpose. Unbonding material is placed at the interface between the core and the mortar,

Figure 2-76
Buckling-Restrained Bracing Member (Typical)
so that axial loads are resisted by the core only. In a severe earthquake, energy dissipation is therefore provided by yielding of the brace core in compression and tension. Several alternative designs and systems of buckling-restrained bracing have been developed. More information on the system can be found in Sabelli (2004) and López and Sabelli (2004).

27.8.2 Bracing Systems

When loaded well into the inelastic range, the brace's compression capacity typically exceeds its tension capacity significantly, For this reason, bracing configurations consisting of braces intersecting columns from one side only should intersect the columns at the roof and floor elevations.

Buckling-restrained bracing (BRB) members exhibit very stable hysteretic response with large energy dissipation capacity. However, S16 restricts the application of BRB to frames not exceeding 40 metres in height, except where the specified short-period spectral acceleration ratio is less than 0.35 . Concentration of inelastic demand and soft-storey response of taller frames, without beam-to-column rigid connections, have been observed in analytical studies. For these taller structures, use of this system is permitted only when inelastic dynamic stability is demonstrated. Alternative design solutions for tall frame stability have been reported in the literature (Merzouq and Tremblay 2006, Tremblay 2003, Tremblay and Poncet 2007).

27.8.3 Bracing Members

27.8.3.1 Foreign researchers have reported satisfactory performance in a variety of bucklingrestrained bracing designs (e.g. Uang and Nakashima 2004, Xie 2005). In the U.S., proprietary BRB products are distributed by specialty suppliers. In Canadian applications, BRB members made of mortar-filled tubes have been fabricated and installed by steel fabricators (Tremblay et al. 1999, 2006). Provisions in CSA S16 focus on general performance-based design requirements together with qualification testing requirements for the bracing members. Specific bracing design and detailing required to achieve the specified performance are not given in CSA S16. Typically, BRB manufacturers supply their products in compliance with S16 requirements
and project-specific requirements as specified by the structural engineer for the project, such as dimensions and other geometric details, strength, and deformation capacities, etc.

In CSA S16, the compression and tension resistances of a BRB member are assumed equal in magnitude. Hence, the same expression is used to determine the factored axial resistances in tension and compression. Contrary to other structural steel elements, the factored resistance of BRB members can be determined using the yield stress value obtained from coupon testing. This explains the relatively low value of the overstrength-related seismic force modification factor, R_{0}, specified in NBCC for the system - 1.2 versus 1.3 or greater for the other seismic force-resisting systems. Minimum ductility requirements are specified for the brace core material to prevent premature fracture under inelastic cyclic loading.

Results from nonlinear time-history analyses have shown that axial deformations of buck-ling-restrained members can exceed significantly the values corresponding to the anticipated total deflections (including inelastic response), as defined in NBCC. Therefore, 2.0 times the NBCC value is required.

Strain hardening is expected to develop following yielding of the core of BRB members. In compression, friction between the core and the restraining mechanism and Poisson's effects are expected to enhance the brace resistance at large deformations. These factors must be considered when determining probable brace resistances for capacity design purposes. These effects vary depending on the type of BRB system and will typically be more important as the cyclic brace deformation increases. Therefore, they must be determined based on qualification tests specified in CSA S16 for the bracing system and deformation demands applicable to the project.

27.8.4 Brace Connections

Brace connections must be designed and detailed to resist brace forces corresponding to the attainment of probable brace resistances. The steel core projections at the ends of BRB members and connection elements must also be capable of resisting the local force demand and of accommodating local deformations that accompany large lateral frame deformations (Tsai and Hsiao 2008, Mahin et al. 2004). Information on BRB connections can be found in Berman and Bruneau (2009), Fahnestock et al. (2007), and Tremblay et al. (2006).

27.8.5 Beams, Columns, and Connections Other Than Brace Connections

As in concentrically braced frames, beams, columns, and other connections should resist the effects of gravity loads, if any, together with forces corresponding to the tensile and compressive brace resistances determined in Clause 27.8.3. Differences in compressive and tensile brace resistances must be accounted for in the calculations.

Columns in multi-storey BRB frames serve to distribute vertically the inelastic demand in the structure. They must therefore be designed to account for the effects due to the redistribution of loads when bracing members develop their probable tensile and compressive resistances.

27.8.6 Testing

Performance of the buckling-restrained brace members and the buckling-restrained braced frame system to be used in a construction project must be verified by means of full-scale qualification cyclic tests. Two tests are required: a test of a brace subassemblage (including brace connection rotational demands at the specified performance) and a uniaxial or subassembly test. The purpose of brace subassemblage tests is to demonstrate that a BRB member and its connections can accommodate cyclic force and deformation demands up to twice the design storey drift. The test is typically performed on a frame specimen that includes the bracing member as well as the beams and columns (or parts of beams and columns) to which it is connected.

End connections of the BRB member must conform, as closely as is practical, to those used in construction, and the specimen must be subjected to the cyclic rotation demand corresponding to twice the design storey drift. The objective of testing individual braces is to verify that they can develop the specified strength and deformation capacities, without buckling, and to determine the maximum expected brace forces for capacity design purposes. Uniaxial testing is typically used for an individual brace test. Brace specimens must conform to the material properties, pertinent design, detailing, and construction features of those used in the construction project.

27.8.7 Protected Zone

The steel cores of buckling-restrained braces, as well as the elements used to connect the brace core to beams and columns, are protected zones and must comply with the requirements of Clause 27.1.9.

27.9 Type D (Ductile) Plate Walls, $R_{d}=5.0, R_{\mathrm{o}}=1.6$

27.9.1 General

Plate walls are built of relatively thin infill plates connected at every level to the surrounding beam and column framing members. The infill plates provide for the resistance to storey shear forces, whereas the overturning moment is resisted by the columns. Shear buckling of the infill plates can be controlled by means of stiffeners (Alinia and Dastfan 2007, Chusilp and Usami 2002, Chen et al. 2006, Sabouri-Ghomi et al, 2008) or by encasing them into concrete walls or panels (Zhao and Astaneh 2004). Although this leads to higher initial stiffness and shear capacity being delivered by the infill plates, recent research and practice in North America have shown that unstiffened plate walls can represent an effective design strategy for resisting lateral wind and seismic loads. Provisions in Clause 27 of S16 have therefore been developed for unstiffened plate wall systems.

Stable hysteretic behaviour under cyclic lateral loading has been demonstrated in several past experimental studies (Tromposch and Kulak 1987, Kulak 1991, Driver et al. 1997, 1998a, 1998b, Lubell et al. 2000, Berman and Bruneau 2003, 2005b, Qu et al. 2008, Vian et al. 2009). Much of the cyclic energy imparted to a wall is dissipated by the yielding of infill plates in tension along inclined lines. Upon load reversal, the tension field forces reduce, then the plate buckles under low compressive load, and a new tension field develops in a manner consistent with the shear force in the opposite direction. The advantages of plate walls consist in their high lateral strength and stiffness, which make them very suitable for high seismic applications.

If the beams of a plate wall are attached to the columns using standard, simple shear connections, the hysteretic behaviour is pinched. The behaviour can be improved if moment connections are provided between the beams and columns surrounding the infill plate panels. This Standard distinguishes between Type D (ductile) plate walls, in which rigid frame action contributes to the overall lateral load resistance, and Type LD (limited-ductility) plate walls, in which rigid connections are optional. Type LD walls must satisfy all requirements for Type D walls, except as indicated in Clause 27.10.

For ductile framed plate walls, energy is dissipated during earthquakes by tensile yielding of the infill plates and the development of plastic flexural hinges at the ends of the beams and at the column bases. The provisions in Clause 27 aim at achieving this behaviour, Additional design guidance for the system can be found in Sabelli and Bruneau (2007).

27.9.2 Infill Plates

The infill plate at every level is designed to resist 100% of the factored storey shear force. The equation for the factored shear resistance is based on the shear yielding capacity of the
infill plate, assuming full tension field response is developed (Berman and Bruneau 2003, Sa-bouri-Ghomi and Roberts 1991):

$$
V_{y}=0.5 F_{y} w L \sin 2 \alpha
$$

where α is the angle of inclination of the tension field with respect to the vertical. This angle is determined in accordance with Clause 20.4. Of particular interest is the fact that the shear strength of plate walls designed according to this standard has been found not to be sensitive to the inclination of the tension field and that using a single value of 40° throughout the wall height can give accurate predictions of the shear strength of the plates (Shishkin et al. 2005). The resistance V_{y} corresponds to the full yield capacity of the infill plates. Tension stresses in infill plates are not uniformly distributed, and yielding develops progressively upon increasing lateral loads. The capacity V_{y} is reached only at large lateral deformations under lateral loads equal to 1.1 to 1.5 times the lateral loads initiating yielding in the plates (Berman and Bruneau 2003). In NBCC and S16, the factored resistance of seismic force-resisting systems is typically based on the lateral strength at onset of yielding of the system, the difference between the fully developed lateral capacity and the factored lateral resistance being taken into account by the overstrength-related force modification factor, R_{o} (Mitchell et al. 2003). To make the design consistent with these code assumptions, the factor 0.5 in the equation for V_{y} is reduced to 0.4 in the equation used to determined V_{r} in Clause 27.9.2.1.

In capacity design, beams, columns, and connections in plate walls must be designed to resist tensile yielding forces that will develop in the infill plates at large deformations ($R_{y} F_{y} w$, shown as ω in Figure 2-77. Also see comments below on Clauses 27.9.3 and 27.9.4). These capacity design forces need not exceed forces corresponding to $R_{o} R_{d}=1.3$ (see Clause 27.1.2).

Engineers and fabricators often select a minimum infill plate thickness to ease workmanship and handling or to maintain reasonable flatness. This practice may lead to capacity design forces that significantly exceed the seismic force demand when the design storey shear is low compared to the factored resistance (upper levels, wall width dictated by architectural layout, etc.). When reasons other than structural requirements dictate the minimum plate thickness, design forces can be reduced by using low yield stress steel for the infill plates (Vian and Bruneau 2004). In that case, the probable yield stress should be taken as an average yield stress, obtained in accordance with CSA G40.20 (see Clause 27.1.7), and the availability of the steel must be verified. Alternatively, circular perforations may be introduced in the infill plate to reduce its capacity. As illustrated in Figure 2-78(a), the perforations must be uniformly distributed and aligned so that diagonal tension strips can form upon buckling of the plates. Clause 27.9.2.3 provides an equation for calculating the factored shear resistance of such perforated infill plates. Minimum detailing requirements are also specified in the Clause.

Infill plates made of thin sheet steel $(0.91 \mathrm{~mm})$ have been successfully used, and their adequate inelastic seismic performance has been demonstrated by Berman and Bruneau (2005b). S16 does not include any provision for this application. If this innovative approach is contemplated, caution must be exercised to ensure that the sheet steel used meets the minimum ductility requirements specified in Clause 27.1.5, the fabrication and installation are consistent with methodologies used in supporting research, and reliable welds are consistently provided, etc.

The stiffness of regularly perforated infill plates can be estimated using an effective plate thickness, $w_{\text {eff, }}$ given by:

Figure 2-77
Forces Due to Tension Yielding of the Infill Plate and Plastic Hinging at the Beam Ends

$$
w_{\text {eff }}=\frac{1-\frac{\pi}{4}\left(\frac{D}{S_{\text {diag }}}\right)}{1-\frac{\pi}{4}\left(\frac{D}{S_{\text {diag }}}\right)\left(1-\frac{N_{r} D \sin \theta}{H_{c}}\right)} w
$$

where N_{r} is the number of perforations along the strips (4 in Figure 2-78(a)), θ is the inclination of the strips, and H_{C} is the infill plate clear height. Other parameters are defined in Figure 2-78(a). Additional design information and supporting analytical and experimental evidences on the behaviour of plate walls with perforated infill plates can be found in Roberts and Sabouri-Ghomi (1992), Purba and Bruneau (2009), and Vian et al. (2009). It is noted that the perforations allow the passage of mechanical and electrical ducts and pipes. In S16-14, a minimum number of lines of perforations that reflects the conditions present in the reference test programs is specified.

An alternative solution for the passage of utilities in infill plates is to utilize quarter-circle cut-outs in the plate corners, as permitted in Clause 27.9.2.4 and illustrated in Figure 2-78(b). In that case, the original shear strength and stiffness of the infill plates are preserved, provided that the cut-outs are suitably reinforced with arching plates and meet geometrical requirements.

Figure 2-78

Forces acting in the reinforcing arch are caused by a combination of effects, including arching action under tension forces due to infill plate yielding in tension and thrusting action due to change of angle at the corner of the frame. The factored tensile force, T_{f}, induced in the arch by tension field action in the infill plate can be taken equal to:

$$
T_{f}=\frac{R_{y} F_{y} w R^{2}}{4 e}
$$

Figure 2-79
Infill Plate with Reinforced Cut-Out Corner -
Arch End Reactions Due to Frame Deformations
and Tension Field Forces on the Arches
where the radius R and the distance e are defined in Figure 2-79. For thrusting action due to frame deformation, the arch must resist the combined effect of a factored axial load P_{f} ($P_{\text {frame }}$ in Figure 2-78(b)) and a bending moment $M_{f}=P_{f} e$, where P_{f} is given by:

$$
P_{f}=\frac{15 E I_{y}}{16 e^{2}} \frac{\Delta}{h_{s}}
$$

In the expression for P_{f}, I_{y} is the moment of inertia of the reinforcement, Δ is the design storey drift, and h_{s} is the storey height. It is noted that the arch plate width is irrelevant in that calculation, and it is instead conservatively obtained by considering the strength required to resist the axial component of force in the arch due to the panel forces at the closing corner. The design for the two loading cases, i.e., T_{f}, and P_{f} and M_{f}, can be done independently, because the components of arch forces due to tension field action $\left(T_{f}\right)$ forces are opposing those due to frame corner opening (P_{f}) (see Figures 2-78(b) and 2-79). Beams and columns must resist the tension and compression forces acting at the ends of the arching reinforcement. Further details are given in Vian et al. (2009) and Purba and Bruneau (2007, 2009).

27.9.3 Beams

Beams are expected to develop plastic hinges at their ends. Past tests have shown that lateral resistance and energy dissipation capacity under cyclic loading is essentially supplied by moment-resisting frame response once the infill plate has been stretched in larger cycles. To achieve minimum frame response, CSA S16 requires the boundary moment-resisting frame to be designed for a factored storey shear resistance, $V_{r, M R F}=25 \%$ of the design seismic storey
shear. This factored resistance is taken as $V_{r, M R F}=2 M_{r b} / h_{s}$, where $M_{r b}$ is the beam factored resistance in bending in the absence of axial loads, and h_{s} is the storey height (Berman and Bruneau 2003, Qu and Bruneau 2009).

Beams must also be designed to resist the combined effects of axial loads, shear forces, and bending moments due to gravity loads together with infill plate yielding in tension and plastic hinging at the ends of the beams, as depicted in Figure 2-77. Beam axial loads are due to the horizontal components of the plate yield loads acting both along the beams and the columns (Berman and Bruneau 2008b). When calculating the plastic hinge resistance of the beams, the axial load effects should be taken into account. Beam and column forces can be determined by manual calculations. Alternatively, a static incremental (push-over) analysis can be performed using the infill plate strip model by Thorburn et al. (1983) with inelastic response assigned to the strips, beams, and columns (Berman and Bruneau 2003, 2008b).

In Clause 27.9.2, the shear resistance of the infill plates is based on the assumption that full tension field response can eventually develop in the plates. For this to occur, the horizontal boundary members at the base and top of plate walls should meet the minimum flexural stiffness requirement, as specified in Clause 20.5.2. Alternatively, the plate panel at the wall base can be attached to a steel member embedded in the foundations. For long walls, Sabelli and Bruneau (2007) suggest that vertical struts could be added at the center of the wall to provide a vertical support to the top beam.

27.9.4 Columns

Columns must be designed to remain essentially elastic once yielding develops in the infill plates and beams. Axial loads, shear forces, and bending moments arising from yielding of the infill plate and beams, as illustrated in Figure 2-77, must therefore be added to the effects of gravity loads on the columns (Sabelli and Bruneau 2007, Berman and Bruneau 2008b). Plastic hinges in columns are permitted only at the column bases.

Bending moments and shear forces induced by infill plate forces can be significant. Column shear yielding must be considered. Li et al. (2009) proposed and verified through testing the use of struts between floors to reduce shear and bending moment demands on columns. Composite columns inherently possess high axial and flexural strength and stiffness, and can therefore represent an effective design solution (Astaneh-Asl 2001, Deng et al. 2008).

Columns must satisfy the minimum flexural stiffness requirement of Clause 20.5.1, to ensure adequate infill plate tension field response.

When plastic hinging is expected at the column bases, the columns must be detailed so that plastic rotation develops above the base plate or the foundation beam. Premature local buckling in the plastic hinge region must also be prevented (Driver et al. 1997).

27.9.5 Minimum Stiffness for Beams and Columns

Minimum stiffness is required to develop uniform yielding of the infill plate.

27.9.6 Column Joint Panel Zones

Joint panel zones in plate walls must satisfy the design and detailing requirements specified for panel zones used in ductile moment-resisting frames.

27.9.7 Beam-to-Column Joints and Connections

Beam-to-column connections must be designed to resist forces anticipated in the infill plates, beams, and columns. Plate walls inherently possess high lateral stiffness, and the anticipated storey drifts are less than anticipated in ductile moment-resisting frames; this is reflected in the limited rotation capacity requirement for the beam-to-column joint (0.02 rad). Maximum
moments imposed by beam hinging must however be taken equal to $1.1 R_{y}$ times the plastic moment of the beam. Effects of axial loads acting in the beams may be accounted for when determining the moments imposed by beam hinging.

Reduced beam section (RBS) beam-to-column connections have been used in past cyclic test programs (e.g. Vian et al. 2009, Qu et al. 2008). Well proportioned RBS connections exhibit good plastic rotation capacity and help to minimize shear forces in beams, and flexural and axial load demands on columns.

27.9.8 Protected Zones

Components of the plate walls that are expected to develop large inelastic deformations, such as infill plates, hinges in beams and columns, and their connections, are designated as protected zones and must satisfy the requirements of Clause 27.1.9.

27.10 Type LD (Limited-Ductility) Plate Walls, $R_{d}=2.0, R_{0}=1.5$

For plate walls with limited ductility, seismic energy input is expected to be dissipated primarily by yielding of the infill plate panels. Rigid frame connections are not necessary, However, capacity design requirements for beams, columns, and connections apply.

Commencing in the 2014 edition of the Standard, all requirements for Type LD plate walls have been incorporated in Clause 27.10 to form a stand-alone set of provisions for user friendliness and clarity.

Type LD plate walls are expected to sustain lower inelastic deformation demands compared to Type D plate walls, and several relaxations are permitted. For the beams, Class I and Class 2 sections are permitted, and lateral bracing requirements are reduced. When rigid beam-to-column connections are used, the moment demand imposed by beam plastic hinging used for the design of the columns and beam-to-column joints can be based on $R_{y}, M_{p b}$ rather than $1.1 R_{y} M_{p b}$. Design forces for column splices in structures located in low and moderate seismic regions need not satisfy the requirement of Clause 27.1.4.

27.11 Conventional Construction, $R_{d}=1.5, R_{o}=1.3$

In its 2001 edition, the standard introduced provisions for structures of Conventional Construction. The provisions were considered necessary because it was recognized that Conventional Construction would be used for many low-rise structures subjected to considerable seismic hazard, and that most steel structure failures in seismic events are associated with brittle connection details. Provisions related to connections and diaphragms were introduced to prevent brittle failure either by providing ductile connection details, or increasing the design loads. These provisions still apply for seismic-force-resisting systems with specified shortperiod spectral acceleration ratios $\left(I_{E} F_{a} S_{a}(0.2)\right)$ greater than 0.45 .

Connections of primary framing members forming the seismic-force-resisting system are typically beam-to-column connections in the moment-resisting frame or braced frame, including member splices subjected to seismic forces in tension or shear, or both, and connections to the foundations. In braced frames, they also include brace-to-beam, brace-to-column, and brace-to-brace connections. Beams acting as collectors, chords, and struts in diaphragms are also primary framing members.

Connections that may be considered ductile if appropriately proportioned include extended-end-plate moment connections, flange-plate moment connections, gusset plates proportioned for ductility (Cheng and Grondin 1999), and bolted connections in which the governing failure mode corresponds to bolt bearing failure. Tests (Tremblay et al. 2009) showed that welded
connections comprising fillet welds may not possess sufficient ductility to prevent fracture, regardless of load direction. They should also be designed for the amplified loads.

The failure of steel deck diaphragms is typically controlled by failure of the connections between the individual deck sheets and between the deck sheets and the supporting structure. Diaphragms designed and constructed using connections that have been shown by testing to be ductile can be designed using the factored forces calculated for Conventional Construction, while those diaphragms with connections that have not been shown to be ductile should be designed using forces calculated using $R_{d} R_{o}=1.3$. Button-punched side lap connections or arc-spot welded connections commonly used for steel decks have not shown adequate ductile behaviour under cyclic loading. Research investigation into diaphragm designs for more ductile response is underway. Test results reported by Essa et al. (2003), Tremblay et al. (2004) and Hilti (2007) suggest that diaphragms made of thin steel deck sheets (0.76 mm and 0.91 mm) with power-actuated frame fasteners and screwed sidelaps can accommodate some inelastic deformations through screw tilting and bearing, and tearing of the steel deck sheets at frame fasteners. Welded connections with washers, when properly fabricated, can also sustain inelastic deformation demand (Peuler et al. 2002), although this approach is generally less appealing from a practical standpoint.

Cantilever column structures composed of single or multiple beam-columns fixed at the base and pin-connected or free at their upper ends can be designated as Conventional Construction, provided that they are proportioned to satisfy the specific requirements in this clause.

In NBCC 2005, the use of Conventional Construction for steel buildings subject to moderate and high seismicities was restricted to buildings not exceeding 15 metres in height. This restriction was intended to retain the traditional 3-storey height limit stipulated in previous editions of the NBCC. In NBCC 2010, the height limit for steel seismic force-resisting systems of the Conventional Construction category was extended to 60 m in moderate seismic regions and 40 m when subjected to higher seismicities. This relaxation applies to all building occupancies except assembly occupancy. Structures such as stadia, large exhibition halls, arenas, convention centres, and other similar structures must comply with the 15 m height restrictions.

Conventional Construction was permitted for certain buildings in the User's Guide to NBCC 2005, and special requirements and height restrictions were introduced in S16-09 to ensure proper response and to prevent premature failure and non-ductile behaviour for these taller structures. The additional requirements are maintained in CSA S16-14. Amplified design seismic loads are specified to compensate for the greater uncertainty in the prediction of the force demand in taller structures. Response spectrum or time-history dynamic analysis must be used to determine forces and deformations. Minimum ductility requirements for steel material and notch-toughness for thick plates, heavy shapes, and weld metal apply to these structures, and more stringent cross-section stockiness requirements are prescribed to delay local buckling. Amplified design forces are specified for columns, in view of the consequences of column buckling. Higher design loads for columns should encourage yielding in adjacent members such as beams, braces, etc. A special requirement is given to prevent overloading of columns that serve as part of two or more systems intersecting in plan. To avoid premature connection failure, a member's end connections should resist the lesser of its gross cross-sectional probable capacity and the amplified connection design forces given in this Clause. In addition, unless yielding is expected in the adjoining members, connections must also be designed and detailed for a minimum inelastic deformation capacity. This could be achieved through plate yielding or bolt bearing. Higher seismic design loads are also specified for diaphragms so that they remain essentially elastic and can maintain their capacity to distribute seismic forces among the vertical elements of the seismic force-resisting system. Lastly, a minimum out-of-plane force
is specified at unbraced member intersections to prevent excessive out-of-plane deformations and/or instability.

27.12 Special Seismic Construction

Many different types of alternative structural systems have been developed to dissipate seismic energy in a ductile and stable manner. One such system, the Special Truss Moment Frames (Goel and Itani 1994, Goel et al. 1998), can sustain significant inelastic deformations within a specially designed and detailed segment of the truss. The AISC Seismic Provisions (AISC 2010a) provide design and detailing guidance for this system. Design provisions for seismically isolated structures are available (BSSC 2003). In these cases the provisions could be modified as appropriate to provide a level safety and seismic performance comparable to that implied by the S16 requirements.

28. SHOP AND FIELD FABRICATION AND COATING

This clause and the clauses on erection and inspection serve to show that design cannot be considered in isolation but is part of the design and construction sequence. The resistance factors used in this Standard and the methods of analysis are related to tolerances and good practices in fabrication, erection, and inspection procedures.

CISC Quality Certification for plant fabrication of structural steel is an option for project teams and owners requiring a proven level of fabrication quality and control over processes. This quality management system written specifically for the Canadian structural steel industry is third-party audited by independent auditors. CISC Quality Certification is globally recognized and available to steel fabricators within and outside of Canada. A list of CISC Certified companies is available at www.cisc-icca.ca.

28.1 Cambering, Curving, and Straightening

CSA Standard W59 specifies that the temperature of the heated areas shall not exceed $650^{\circ} \mathrm{C}$ in general and not more than $590^{\circ} \mathrm{C}$ for QT plate.

28.3 Sheared or Thermally Cut Edge Finish

28.3.2 The use of sheared edges is restricted because the micro-cracking induced may reduce the ductility.

28.4 Fastener Holes

28.4.1 The thickness of 700 Q steels that can be punched is restricted because of the excessive damage that occurs at the edge of the hole. The maximum plate thickness for thermally cut holes, as allowed in Clause 28.4.3, is dependent upon the thermal cutting process and equipment used.
28.4.2 The restriction of this clause is similar to that of Clause 28.3.2.
28.4.3 Thermally cut holes are allowed for static load applications when subject to the restrictions of this Clause. Iwankiw and Schlafly (1982) found no significant difference in the connection strength of double lap joints with holes made by punching, drilling, and flame cutting.

28.5 Joints in Contact Bearing

Milling techniques will realistically result in some measurable deviation. Tests by Popov and Stephen (1977a) on columns with intentionally introduced gaps at milled splice joints indicated that the compressive resistance of spliced columns is similar to that of unspliced columns. Local yielding reduces the gap. While in these tests column splice gaps of 1.6 mm
were left unshimmed, the Standard is more restrictive and defines full contact as a separation not exceeding 0.5 mm . Because shims will be subjected to either biaxial or triaxial stress fields, mild steel shims may be used regardless of the grade of the main material.

28.6 Member Tolerances

The resistance factors given in this Standard, particularly for compression members, are consistent with the distribution of out-of-straightness of members produced to the straightness tolerances given here (Kennedy and Gad Aly 1980, Chernenko and Kennedy 1991).

28.7 Cleaning, Surface Preparation, and Shop Coating

Throughout this section, the word "painting" has been replaced by "coating" to accommodate coating systems other than paint.

There are five instances where steelwork need not be or should not be coated:

- steelwork concealed by an interior building finish or in a limited corrosive environment;
- steelwork encased in concrete;
- faying surfaces of slip-critical joints, except as permitted by Clause 23;
- surfaces finished to bear unless otherwise specified;
- steelwork where any coating could be detrimental to achieving a sound weldment; and,
- surfaces in an enclosed space entirely sealed off from an external source of oxygen.

Specific requirements are provided in Clause 28.7.4.3 for a limited number of applications where welding over coating is permitted.

28.7.5 Metallic Zinc Coatings

These represent coatings other than paint and include hot-dip galvanizing and zinc metallized coatings, both of which are to comply with the relevant CSA Standards.

29. ERECTION

29.3 Erection Tolerances

This entire clause provides helpful definitions of tolerances for the location of the ends of members with respect to their theoretical locations. Tolerances are given for column base plates and for the alignment and elevations of horizontal or sloping members. For column splice tolerances, also see the Commentary on Clause 28.5.

Clauses 29.3.4, 29.3.5, 29.3.6, and 29.3.8 are written in a parallel manner, in that the offset of one end relative to the other, or the elevation of one end relative to the other, both with respect to their theoretical locations shown on the drawings (e.g. the member is not plumb or not level), is expressed as a function of the length but with upper and lower limits. The lower limit represents a realistic assessment of adequate positioning, and the upper limit is a maximum not to be exceeded by the largest members, as illustrated in Figure 2-80 for horizontal alignment of spandrel beams.

29.3.7 Alignment of Braced Members

This clause is an outgrowth of the extensive work on restructuring Clause 9 on Stability of Structures and Members during the preparation of S16-01. Clause 9.2.1 requires the structure to be brought into line so that the initial misalignment of members at any brace point when the brace is installed does not exceed the limits of Clause 29.3. Thus, the initial misalignment at the particular brace point, Δ_{0}, relative to the adjacent ones is established, and the analyses given in Clause 9 can follow confidently. This Clause again emphasizes that design, fabrication, and erection are inextricably linked.

Figure 2-80
Horizontal Alignment Tolerances of Spandrel Beams

30. INSPECTION

This clause outlines quality assurance practices with the objective of ensuring that all shop work and field erection work are in essential compliance with this Standard, in order to provide a structure that is fit for purpose with the requisite strength and stiffness.

30.5 Welding Inspection

30.5.1.1 General

CSA W59 requires the welding company (fabricator or erector) to visually inspect all welds as part of its quality control process. This internal inspection may be performed by the company's own personnel in accordance with its quality control process and may use either competent persons and/or inspection technologies built into the process. Formal welding inspector certification such as CSA W178.2 is not required for the welding company.

Non-destructive examination (NDE), other than the standard visual inspection (by the fabricator or erector) specified by CSA W59, is deemed to be a special and extra requirement and therefore must be specified in the project specifications. The type, location, extent and personnel qualifications of the NDE, as well as the party responsible (owner or other) for performing these inspections, must also be specified in the project specifications.

The CISC "Accredited Steel Inspector - Buildings" accreditation provides objective evidence that an inspector has a minimum competency in steel fabrication and erection inspection. This CISC accreditation is considered to be a complementary competency record, to be paired with CSA W178.2 (welding) if needed.

30.5.2 Competency of inspection personnel

This clause refers to the requirements of all third-party NDE personnel (including visual inspection) and company-employed NDE personnel other than visual.

REFERENCES

AASHTO. 2007 (R2009). LRFD bridge design specifications, SI Units, 4th Edition, American Association of State Highway and Transportation Officials, Washington, DC.
Adams, P. F. 1974. The design of steel beam-columns. Canadian Steel Industries Construction Council, Willowdale, Ont.
Adams, P. F., and Galambos, T. V. 1969. Material considerations in plastic design. International Association for Bridge and Structural Engineering, 29-II.
Adekola, A. O. 1968. Effective widths of composite beams of steel and concrete. The Structural Engineer, 46(9): 285-289.
Ahmad, M., Chien, E. Y. L., and Hosain, M. U. 1990. Modified stub-girder floor system: full-scale tests. ASCE Structures Congress. Baltimore, MA.
AISC. 1973. Commentary on highly restrained welded connections. Engineering Journal, American Institute of Steel Construction, Third Quarter,

- 2005. Seismic design manual. American Institute of Steel Construction, Chicago, IL.
- 2010a. Seismic provisions for structural steel buildings, ANSI/AISC 341-10. American Institute of Steel Construction (AISC), Chicago, IL.
- 2010b. Specification for structural steel buildings, ANSI/AISC 360-10. American Institute of Steel Construction (AISC), Chicago, IL.
- 2011. Prequalified connections for special and intermediate steel moment frames for seismic applications, including Supplement No. 1, ANSI/AISC 358-10 and ANSI/AISC 358s1-11. American Institute of Steel Construction (AISC), Chicago, IL.
- 2013. Steel construction manual. 14th Edition. American Institute of Steel Construction. Chicago, IL.

AISI. 1968. Plastic design of braced multi-storey steel frames. American Iron and Steel Institute, Washington, DC.
Albert, C., Essa, H. S., and Kennedy, D.J.L. 1992. Distortional buckling of steel beams in cantileversuspended span construction. Canadian Journal of Civil Engineering, 19(5): 767-780.
Alinia, M.M., and Dastfan, M. 2007. Cyclic behaviour, deformability and rigidity of stiffened steel shear panels. Journal of Constructional Steel Research, 63, 554-563
Allen, D. L. 1974. Vibrational behaviour of long-span floor slabs. Canadian Journal of Civil Engineering, 1 (1).

- 1975. Limit states design - A probabilistic study. Canadian Journal of Civil Engineering, 2(1).

Allen, D. E., and Murray, T. M. 1993. Design criterion for vibrations due to walking. Engineering Journal, American Institute of Steel Construction, 30(4): 117-129.
Allen, D. E., and Rainer, J. H. 1976. Vibration criteria for long-span floors. Canadian Journal of Civil Engineering, 3(2).
Allen, D, E., Rainer, J. H., and Pernica, G. 1985. Vibration criteria for assembly occupancies. Canadian Journal of Civil Engineering, 12(3).
ASCE. 1967. Commentary on welded cover-plated beams. Subcommittee on Cover Plates, Task Committee on Flexural Members, ASCE, J. of the Structural Division, 93(ST4).

- 1971, Commentary on plastic design in steel. Manual of Engineering Practice, No. 41, American Society of Civil Engineers.
- 2000. Design of latticed steel transmission structures, ASCE 10-97. American Society of Civil Engineers, Reston, VA.
Aslani, F., and Goel, S.C. 1991. Stitch spacing and local buckling in seismic-resistant double-angle bracing, J. of Struct. Eng., ASCE, 2442-2463.
Astaneh-Asl, A. 2001. Seismic behavior and design of steel shear walls. Steel Tips, Structural Steel Educational Council, Moraga, CA.

Astaneh-Asl, A., and Goel, S.C. 1984. Cyclic in-plane buckling of double-angle bracing. J. of Struct. Eng., ASCE, 110(ST9): 2036-2055.

- 1985. Cyclic out-of-plane buckling of double-angle bracing. J. of Struct. Eng., ASCE, 111 (ST5): 1135-1153.
Astaneh, A., Goel, S.C., and Hanson, R.D. 1986. Earthquake-resistant design of double-angle bracings. Engineering Journal, AISC, 23(4): 133-147.
ASTM. 2010. Standard specification for structural bolts, steel, heat-treated, $120 / 105$ ksi minimum tensile strength. Standard A325-10e1, American Society for Testing and Material.
- 2011. Standard specification for "twist off" type tension control structural bolt/nut/washer assemblies, steel, heat treated, 120/105 ksi minimum tensile strength. Standard F1852-11, American Society for Testing and Material.
- 2012a. Standard specification for high-strength steel bolts, Class 10.9 and 10.9.3, for structural steel joints (metric). Standard A490M-12, American Society for Testing and Material.
- 2012b. Standard specification for structural bolts, alloy steel, heat-treated, 150 ksi minimum tensile strength. Standard A490-12, American Society for Testing and Material,
- 2012c. Standard specification for "twist off" type tension control structural bolt/nut/washer assemblies, steel, heat treated, 150 ksi minimum tensile strength. Standard F2280-12, American Society for Testing and Material.
- 2013. Standard specification for high-strength bolts for structural steel joints (metric). Standard A325M-13. American Society for Testing and Material.
Attard, M.M., and Lawther, R. 1989, Effect of secondary warping on lateral buckling, Engineering Structures, Vol 11, April 1989, pp 112-118.
Aziz, T.S.A. 1972. Inelastic nonlinear behaviour of steel triangulated planar frames. M. Eng. Thesis, Carleton University, Ottawa, Ont.
Baker, K. A., and Kennedy, D.J.L. 1984. Resistance factors for laterally unsupported steel beams and biaxially loaded steel beam-columns. Canadian Journal of Civil Engineering, 11(4): 1008-1019.
Bansal, J.P. 1971. The lateral instability of continuous steel beams. Ph.D. Department, University of Texas, Austin.
Bartlett, F.M. 2007. Canadian Standards Association standard A23.3-04 resistance factor for concrete in compression, Canadian Journal of Civil Engineering, 34, 1029-1037.
Basler, K. 1961a. New provisions for plate girder design. Proceedings, AISC National Engineering Conference.
- 1961b. Strength of plate girders under combined bending and shear. ASCE Journal of the Structural Division, 87(ST7).
- 1961c. Strength of plate girders in shear. ASCE Journal of the Structural Division, 87(ST7).

Basler, K., and Thurlimann, B. 1961. Strength of plate girders in bending. ASCE Journal of the Structural Division, 87(ST6).
Beaulieu, D., and Adams, P. F. 1980. Significance of structural out-of-plumb forces and recommendations for design. Canadian Journal of Civil Engineering, 7(1).
Beedle, L. S., Lu, L. W., and Lim, L. C. 1969. Recent developments in plastic design practice. ASCE Journal of the Structural Division, 95(ST9).
Begum, M., Driver, R.G., and Elwi, A.E. 2007. Numerical simulations of the behaviour of partially encased composite columns. Structural Engineering Report No. 269, July, Department of Civil and Environmental Engineering, Univ. of Alberta, Edmonton, Canada. 251 pp.
Begum, M., Driver, R.G., and Elwi, A.E. 2013. Behaviour of partially encased composite columns with high strength concrete. Engineering Structures, Vol. 56, November, pp. 1718-1727.
Benichou, N. 1994. Behaviour of webs of rolled steel beams subjected to concentrated loads. Ph.D. Thesis, Dept. of Civ, and Env. Eng., Carleton University, Ottawa, Sept, 219 pages.

Bergmann, R., Matsui, C., Meinsma, C. and Dutta, D. 1995. Design guide for concrete filled hollow section columns under static and seismic loading. CIDECT Design Guide No. 5, International Committee for the Study and Development of Tubular Structures, CIDECT and Verlag TÜV Rheinland GmbH, Köln, Germany.
Berman, J.W., and Bruneau, M. 2003. Plastic analysis and design of steel plate shear walls. J. Struct. Eng., ASCE, 129, 11, 1448-1456.

- 2005a. Approaches for the seismic retrofit of braced steel bridge piers and proof-of-concept testing of a laterally stable eccentrically braced frame. Technical Report MCEER-05-0004, Multidisciplinary Center for Earthquake Engineering Research, Buffalo, NY.
- 2005b. Experimental investigation of light-gauge steel plate shear walls. J. Struct. Eng., ASCE, 131, 2, 259-267.
- 2008a. Tubular links for eccentrically braced frames I: Finite element parametric study \& II: Experimental verification. J. Struct. Eng., ASCE, 134, 5, 692-712.
- 2008b. Capacity design of vertical boundary elements in steel plate shear walls. Eng. J., AISC, 45, 3, 57-71.
- 2009. Cyclic testing of a buckling restrained braced frame with unconstrained gusset connections. J. Struct. Eng., ASCE, 135, 12, 1499-1510.
Birkemoe, P. C., and Gilmor, M. I. 1978. Behaviour of bearing critical, double-angle beam connections. Engineering Journal, A1SC, Fourth Quarter.
Bjorhovde, R. A. 1972. A probabilistic approach to maximum column strength. Proceedings, ASCE Conference on Safety and Reliability of Metal Structures.
Bjorhovde, R., and Birkemoe, P. C. 1979. Limit states design of HSS columns. Canadian Journal of Civil Engineering, 6(2),
Bjorhovde, R., and Zimmerman, T. J. 1980, Some aspects of stub-girder design. Proceedings of the Canadian Structural Engineering Conference. Canadian Steel Construction Council. Willowdale, Ont.
Bleich, F. 1952. Buckling strength of metal structures. McGraw-Hill. New York., NY.
Bondy, K.D. 1996. A more rational approach to capacity design of seismic moment frame columns. Earthquake Spectra. Vol.12, No.3: 395-406.
Bower, J. E., et al. 1971. Suggested design guide for beams with web holes. Journal of the Structural Division, American Society of Civil Engineers, 97(ST11).
Bremault, D., Driver, R., and Grondin, G. 2008, Limit states design approach for rolled wide flange beams subject to combined torsion and flexure. Structural engineering report 279, Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada.
Bridge, R.O., Clarke, M.J., Leon, R.T., Lui, E.M., Sheikh, T.M., White, D.W. and Hajjar, J.F. 1997. Effective length and notional load approaches for assessing frame stability: Implications for American steel design. American Society of Civil Engineers, New York, N.Y.
Brockenbrough, R. L. 1983. Considerations in the design of bolted steel joints for weathering steel. Engineering Journal, American Institute of Steel Construction 20(1).
Brockenbrough, R. L., and Johnston, B. G. 1974. Steel design manual. United States Steel Corp., Pittsburgh, PA.
Bruneau, M., Mahin, S., and Popov, E.P. 1987. Ultimate behavior of butt welded splices in heavy rolled steel sections. Report No. UCB/EERC-87/10 Earthquake Engineering Research Center, Berkeley, CA.
Bruneau, M., Uang, C.M, and Whittaker, A. 1998. Ductile Design of Steel Structures. McGraw-Hill, New York, NY. 485 pp.
BSSC. 2003. NEHRP Recommended provisions for seismic regulations for new buildings and other structures. FEMA 450, Building Seismic Safety Council, Washington, D.C.
Budijgnto, P. 1983. Design methods for composite columns. Project Report G83-6, Department of Civil Engineering, McGill University.

Butler, L.J., and Kulak, G.L. 1971. Strength of fillet welds as a function of direction of load. Welding Research Supplement, Welding Journal. Welding Research Council, 36(5): 2315-2345.
Butler, L.J., Pal, S. and Kulak, G.L. 1972. Eccentrically loaded welded connections. Journal of the Structural Division, American Society of Civil Engineers 98(ST5): 989-1005.

Cai, Q. and Driver, R.G. 2010. Prediction of bolted connection capacity for block shear failures along atypical paths. Engineering Journal, American Institute of Steel Construction, vol. 47, 4th Quarter.
Callele, L.J., Driver, R.G., and Grondin, G.Y. 2009. Design and behavior of multi-orientation fillet weld connections. Engineering Journal, American Institute of Steel Construction, vol. 46, no. 4, pp. 257-272.
Carter, C. J. 1999. Stiffening of wide flange columns at moment connections: wind and seismic applications. American Institute of Steel Construction, Chicago IL
Chen, C.-H., Lai, J.-W., and Mahin, S. 2008. Numerical modelling and performance assessment of concentrically braced steel frames. Proc. ASCE Struct. Congress Crossing Borders, Vancouver, BC, 314, 260.

Chen, W.-F., Kishi, N. and Komuro, M., Editors. 2011. Semi-rigid connections handbook, J. Ross Publishing.

Chen, W. F., and Lui, E.M. 1987. Structural stability, theory and implementation. Elsevier. New York, NY.
Chen, Z., Ge, H., and Usami, T. 2006. Hysteretic model of stiffened shear panel dampers. J. Struct. Eng., ASCE, 132, 3, 478-483.
Cheng, J.J.R. and Grondin, G.Y. 1999. Recent developments in the behavior of cyclically loaded gusset plate connections. Proc. North American Steel Construction Conference, AISC. pp. 8-1 to 8-22.
Cheng, J.J.R., and Yura, J. A. 1986. Local web buckling of coped beams. Journal of Structural Engineering, American Society of Civil Engineers, 112(10).

- 1988. Lateral buckling tests on coped steel beams. Journal of Structural Engineering, American Society of Civil Engineers, 114(1): 16-30.
Cheng, J.J.R., Yura, J.A., and Johnson, C.P. 1988. Lateral buckling of coped steel beams. Journal of Structural Engineering, American Society of Civil Engineers, 114(1): 1-15.
Chernenko, D.E. and Kennedy, D.J.L. 1991. An analysis of the performance of welded wide flange columns. Canadian Journal of Civil Engineering, 18(4).
Chien, E.Y.L. 1989. Roof framing with cantilever (Gerber) girders \& open-web steel joists. Canadian Institute of Steel Construction, Willowdale, Ont.
Chien, E.Y.L., and Ritchie, J. K. 1984. Design and construction of composite floor systems. Canadian Institute of Steel Construction, Willowdale, Ont.
Chusilp, P., and Usami, T. 2002. New elastic stability formulas for multiple-stiffened shear panels. J. Struct. Eng., ASCE, 128, 6, 833-836.
CIDECT. 1970. Concrete filled hollow section steel columns design manual. Monograph No. I, International Committee for the Study and Development of Tubular Structures. Whitefriars Press Ltd., London.
CISC. 1980. Steel Joist Facts, 2nd Edition. Canadian Institute of Steel Construction, Willowdale, Ont.
- 2002. Steel Fabrication Quality Systems Guideline. Canadian Institute of Steel Construction, Willowdale, Ont.
- 2014. Moment connections for seismic applications. 2nd Edition. Canadian Institute of Steel Construction, Markham, Ontario.
Clarke, M.J. and Bridge, R.Q. 1992. The inclusion of imperfections in the design of beam-columns, Proc. 1992 Annual Tech. Session, Structural Stability Research Council, Bethlehem: 327-346.
- 1995. The notional load approach to the design of frames, Res. Rep. No. R718, School of Civil and Mining Eng., University of Sydney, Australia, Dec.
CSA. 1969. Steel structures for buildings. CSA Standard S16-1969, Canadian Standards Association, Toronto, Ont.
- 2007. North American specification for the design of cold-formed steel structural members. CSA Standard S136-07. Canadian Standards Association, Mississauga, Ont.
- 2010. Certification of manufacturers of steel building systems, CSA Standard A660-10, Canadian Standards Association, Mississauga, Ont.
- 2014. Canadian highway bridge design code. CSA Standard S6-14. Canadian Standards Association, Mississauga, Ont.
- 2014. Design of concrete structures. CSA Standard A23.3-14, Canadian Standards Association, Mississauga, Ont,
Dastfan, M. and Driver, R.G. 2008. Flexural stiffness limits for frame members of steel plate shear wall systems. Proci, Annual Stability Conference, Structural Stability Research Council, April 2-5, Nashville, TN, USA.
- 2009. Investigations on the effect of frame member connection rigidity on the behavior of steel plate shear wall systems. Proc., STESSA 2009 Behaviour of Steel Structures in Seismic Areas, August, Philadelphia, PA, USA.
Davaran, A. 2001. Effective length factor for discontinuous X-bracing systems. J. Struct. Eng., ASCE, 127, 2, 106-112.
Davaran, A., and Hoveidae, N. 2009. Effect of mid-connection detail on the behavior of X-bracing systems. J. Constr. Steel Research, 65, 2, 290-298.
Davies, C. 1969. Tests on half-scale steel concrete composite beams with welded stud connectors. The Structural Engineer, 47(I): 29-40.
Dawe, J. L., and Kulak, G. L. 1984. Local buckling of W shape columns and beams. Journal of Structural Engineering, American Society of Civil Engineers, 110(6).
- 1986. Local buckling behavior of beam-columns. Journal of Structural Engineering, American Society of Civil Engineers, 112 (11).
de Back, J., and de Jong, A. 1968. Measurement on connections with high strength bolts, particularly in view of the permissible arithmetical bearing stress. Report 6-68-3, Stevin Laboratory, Delft University of Technology, Netherlands.
de Oliveira, J.C., Packer, J.A., Christopoulos, C. 2008. Cast steel connectors for circular hollow section braces under inelastic cyclic loading. J. Struct. Eng., ASCE, 134, 3, 374-383.
Deng, K., Grondin, G.Y., and Driver, R.G. 2006. Effect of loading angle on the behavior of fillet welds. Engineering Journal, American Institute of Steel Construction, vol. 43, no. 1, pp. 9-23.
Deng, X., Dastfan, M., and Driver, R.G. 2008. Behaviour of steel plate shear walls with composite columns. Proc., Structures Congress 2008 Crossing Borders, ASCE, 314, Vancouver, BC, Canada.
Dexter, R.J., Altstadt, S.A., and Gardner, C.A. 2002. Strength and ductility of HPS70W tension members and tension flanges with holes, Final Report to American Iron and Steel Institute, University of Minnesota, March.
Dexter, R.J., and Gentilcore, M.L. 1997. Evaluation of ductile fracture models for ship structural details, Report SSC-393, Ship Structure Committee, Washington, DC.
Dexter, R.J., and Melendrez, M.I. 2000. Through-thickness properties of column flanges in welded moment connections. Joumal of Structural Engineering, American Society of Civil Engineers, 126(1): 2431.

Disque, R. O. 1964. Wind connections with simple framing. Engineering Journal, AISC, July.
Driver, R. G., Grondin, G. Y., and Kulak, G. L. 2006. Unified block shear equation for achieving consistent reliability. Journal of Constructional Steel Research, Vol. 62, no, 3, pp, 210-222.
Driver, R. G., and Kennedy, D. J. L. 1989. Combined flexure and torsion of I-shaped steel beams. Canadian Journal of Civil Engineering, 16(2): 124-139.
Driver, R.G., et al. 1997. Seismic behaviour of steel plate shear walls, Structural Engineering Report No. 215, Department of Civil and Environmental Engineering, University of Alberta.

- 1998(a), FE and simplified modelling of a steel plate shear wall, Journal of Structural Engineering, American Society of Civil Engineers, 124(2): 121-130.
- 1998(b): Cyclic test of a four storey steel plate shear wall, Journal of Structural Engineering, American Society of Civil Engineers, 124(2): 112-120.
Driver, R.G., and Wong, E. 2007. Critical evaluation of the CSA S16-01 equivalent moment factor for laterally unsupported beams. Proc., Canadian Society for Civil Engineering Annual Conference, June 6-9, Yellowknife, Canada.
Duan, L., and Chen, W-F. 1988. Design rules of built-up members in load and resistance factor design. Journal of Structural Engineering, American Society of Civil Engineers, 114(11): 2544-2554.
El-Ghazzi, M. N., Robinson, H., and Elkholy, I.A.S. 1976. Longitudinal shear capacity of slabs of composite beams. Canadian Journal of Civil Engineering, 3(4),
Elkelish, S., and Robinson, H. 1986. Effective widths of composite beams with ribbed metal deck. Canadian Journal of Civil Engineering, I3(5): 575-582.
El-Tayem, A.A., and Goel, S.C. 1986. Effective length factor for the design of X-bracing systems. Engineering Journal, AISC, 24: 41-45.
Englehardt, M.D., and Popov, E.P. 1989. Behaviour of long links in eccentrically braced frames. EERC Report 89-01, University of California, Berkeley, CA.
- 1992, Experimental performance of long links in eccentrically braced frames. ASCE Journal of Structural Engineering, 118(11): 3067-3088.
Englekirk, R. 1994. Steel structures - Controlling behavior through design. John Wiley \& Sons. New York, NY.
Epstein, H. I., and Stamberg, H. 2002. Block shear and net section capacities of structural Tees in tension: test results and code implications. AISC Engineering Journal, Vol. 39, Fourth quarter, pp. 228-239.
Essa, H.S. and Kennedy, D.J.L. 1994a, Station Square revisited: distortional buckling collapse. Canadian Journal of Civil Engineering, 21(3): 377-381.
- 1994b, Design of cantilever beams: a refined approach. Journal of Structural Engineering, American Society of Civil Engineers. 120 (ST9): 2623-2636.
- 1995, Design of steel beams in cantilever-suspended-span construction. Journal of Structural Engineering, American Society of Civil Engineers. 121(ST11): 1667-1673.
- 2000. Proposed provisions for the design of steel beam-columns in S16-2001. Canadian Journal of Civil Engineering, 27(4): 610-619.
Essa, H.S., Tremblay, R., and Rogers, C. 2003. Behavior of roof deck diaphragms under quasi-static cyclic loading. Journal of Structural Engineering, ASCE, 129(12): 1658-1666.
Estabrooks, B., and Grondin, G. 2008. Combined bending and torsion of steel I-shaped beams. Structural Engineering report 276, Department of Civil and Environmental Engineering, University of Alberta, wwwengineering.ualberta.calstructures/reports.cfm.
EUROCODE No. 4. 1987. Common unified rules for composite steel and concrete structures. Report EUR 9886 EN, Commission of the European Communities, Luxembourg.
Faella, C., Piluso, V., and Rizzano, G. 2000. Structural steel semirigid connections - theory, design and software. CRC Press LLC, Boca Raton, Florida.
Fahnestock, L. A., Ricles, J.M., and Sause, R. 2007. Experimental evaluation of a large-scale bucklingrestrained braced frame, J. Struct. Eng., ASCE, 133, 9, 1205-1214.
Fell, B.V., Kanwinde, A.M., Deierlein, G.G., and Myers, A.T. 2009. Experimental investigation of inelastic cyclic buckling and fracture of steel braces, J. Struct. Eng., ASCE, 135, 1, 1-19.
FEMA. 1995. FEMA 267 (SAC 95-02) Interim guidelines: Evaluation, repair, modification and design of steel moment frames. Federal Emergency Management Agency. Washington, DC.
- 1997. FEMA 267A (SAC 96-03) Interim guidelines advisory no. 1 - Supplement to FEMA 267. Federal Emergency Management Agency. Washington, DC.
- 2000. Recommended seismic design criteria for new steel moment-frame buildings. Report FEMA 350. Federal Emergency Management Agency, Washington, D.C.

Fisher, J. W. 1974. Guide to 1974 AASHTO fatigue specifications. AISC, Chicago, IL.

- 1978. Fatigue cracking in bridges from out-of-plane displacements. Canadian Journal of Civil Engineering, 5(4).
- 1984. Fatigue and fracture in steel bridges - Case studies. John Wiley \& Sons.

Fisher, J, W., Lee, G. C, Yura, J. A., and Driscoll, G. C. 1963. Plastic analysis and tests of haunched corner connections. Bulletin No. 91, Welding Research Council.
Franchuk, C.R., Driver, R.G., and Grondin, G.Y. 2003. Experimental investigation of block shear failure in coped steel beams. Canadian Journal of Civil Engineering, 30: 871-881.
Frank, K. H. 1980. Fatigue strength of anchor bolts. Journal of the Structural Division, American Society of Civil Engineers, 106(ST6).
Gagnon, D. G., and Kennedy, D. J. L. 1989. Behaviour and ultimate tensile strength of partial joint penetration groove welds. Canadian Journal of Civil Engineering, I6(3).
Galambos, T. V. 1968. Structural members and frames. Prentice-Hall Inc., Englewood Cliffs, NJ.
Galambos, T.V., and Ravindra, M.K. 1973. Tentative load and resistance factor design criteria for steel buildings. Res. Rep. 18, Civil Engineering Department, Washington University, St. Louis, MO.
Ghali, A., Favre, R., and Elbadry, M. 2002. Concrete structures: Stresses and deformations, 3rd ed. London: Spon Press,
Ghobarah, A., Korol, R.M., and Osman, A. 1992. Cyclic behaviour of extended end plate joints. ASCE. Journal of Structural Engineering, 118(ST5)
Gibson, G. T., and Wake, B. T. I942. An investigation of welded connections for angle tension members. Welding Journal, American Welding Society.
Gobel, G. 1968. Shear strength of thin flange composite specimens. Engineering Journal, AISC, April.
Goel, S.C., and Itani, A. 1994. Seismic resistant special truss moment frames. ASCE Journal of Structural Engineering. 120(6).
Goel, S.C., Rai, D.C., and Hisham, S. 1998. Special truss moment resisting frames - Design guide, Research Report UMCEE 98-44. Dept. of Civ. Eng., Univ. of Michigan, Ann Arbor, MI.
Goodier, J.N. 1942, Flexural-forsional buckling of bars of open section. Cornell University Engineering Experiment Station Bulletin No. 28, January.
Graham, J. D., Sherbourne, A. N., Khabbaz, R. N., and Jensen, C. D. 1959. Welded interior beam-to-column connections. American Institute of Steel Construction.
Grant, J. A., Fisher, J. W., and Slutter, R. G. 1977. Composite beams with formed steel deck. Engineering Journal, AlSC, First Quarter.
Griggs, P. H. 1976. Mill building structures. Proceedings, Canadian Structural Engineering Conference, Canadian Steel Construction Council, Willowdale, Ont.
Guravich, S.J., and Dawe, J.L. 2006. Simple beam connections in combined shear and tension. Canadian Journal of Civil Engineering, 33: 357-372.
Haaijer, G., and Thurlimann, B. 1958. On inelastic buckling in steel. ASCE Journal of the Engineering Mechanics Division, April.
Haddad, M., and Tremblay, R. 2006. Influence of connection design on the inelastic seismic response of HSS steel bracing members. In Tubular Structures XI: Proc. 1lth Int. Symp. and IIW Int. Conf. on Tubular Structures, Québec, QC, 639-646.
Hagood, T. A., Jr., Guthrie, L., and Hoadley, G. 1968. An investigation of the effective concrete slab width for composite construction. Engineering Journal, AISC, 5(1): 20-25.
Han, X,M., 1998. Design and behaviour of eccentrically braced frames in moderate seismic zones, M.Eng. thesis, Department of Civil Engineering and Applied Mechanics, McGill University, Montreal.

Hansell, W. C., and Viest, I. M. 1971. Load factor design for steel highway bridges. Engineering Journal, AISC, 8(4).
Hardash, S., and Bjorhovde, R. 1985. New design criteria for gusset plates in tension. Engineering Journal, AISC, 21(2): 77-94.
Hart, W. H., and Milek, W. A. 1965. Splices in plastically designed continuous structures, Engineering Journal, AISC, April.
Hawkins, N. M., and Mitchell, D. 1984. Seismic response of composite shear connections. ASCE Journal of Structural Engineering, 110(9): 2120-2136.
Heins, C. P., and Fan, H. M. 1976. Effective composite beam width at ultimate load. ASCE Journal of the Structural Division, 102(ST11).
Hirano, N. 1970. Bearing stresses in bolted joints. Society of Steel Construction of Japan, Tokyo, 6(58).
Holtz, N. M., and Kulak, G. L. 1970. High strength bolts and welds in load-sharing systems, Studies in Structural Engineering, No. 8, Technical University of Nova Scotia.

- 1973. Web slenderness limits for compact beams. SER 43, Department of Civil Engineering, University of Alberta.
- 1975. Web slenderness limits for non-compact beams. SER 51, Department of Civil Engineering, University of Alberta.
Hosain, M.U., and Pashan, A. 2002. Research in Canada on steel-concrete composite floor systems: an update. Proceedings of ICASS'02 -Third International Conference on Advances in Steel Structures, Hong Kong, 9-11 December, Volume 1: 527-534, Elsevier, Oxford, UK.
Hosain, M.U., and Wu. H. 2002. Composite beams with parallel wide ribbed metal deck: push-out and full size beam tests, Composite Construction in Steel and Concrete IV, Special Monograph of the Structural Engineering Institute, ASCE, 415-425.
Huang, J.S., Chen, W.F., and BeedIe, L.S. 1973. Behaviour and design of steel beam-to-column moment connections. Welding Research Council Bulletin, 188: 1-23.
Imanpour, A., Auger, K., and Tremblay, R. 2014. Seismic design of multi-tiered steel braced frames including the contribution from gravity columns. Proceedings 12 th International Conference on Computational Structures Technology CST, Naples, Italy.
Imanpour, A., Stoakes, C., Tremblay, R., Fahnestock, L., and Davaran, A. 2013. Seismic stability response of columns in multi-tiered braced steel frames for industrial applications, Proceedings ASCE Structures Congress 2013, Pittsburgh, PA, 2650-2661.
Imanpour, A., Tremblay, R., and Davaran, A. 2012a. Seismic performance of steel concentrically braced frames with bracing members intersecting columns between floors. Proceedings 7th STESSA Conference, Santiago, Chile, 447-453,
Imanpour, A., Tremblay, R., and Davaran, A. 2012b. Seismic Evaluation of Multi-Panel Steel Concentrically Braced Frames. Proceedings 15th World Conf. on Earthquake Engineering, Lisbon, Portugal, Paper No. 2996.
Imanpour, A., and Tremblay, R. 2012. Analytical assessment of stability of unbraced column in two panel concentrically braced frames. Proceedings 3rd International Structural Specialty Conference, Alberta, Canada, Paper No. 1218.
Imanpour, A., and Tremblay, R. 2014a. Seismic performance evaluation and design of multi-tiered steel concentrically braced frames. Proceedings. 10th U.S. National Conference on Earthquake Engineering, Anchorage, AK.
Imanpour, A., and Tremblay, R. 2014b. Seismic design of steel multi-tiered braced frames: Application of incremental static analysis for design of steel multi-tiered braced frames. Proceedings 2014 Eurosteel Conference, Naples, Italy, Paper no. 688.
Iwankiw, N., and Schlafly, T. 1982. Effect of hole-making on the strength of double lap joints, Engineering Journal, AISC, 19(3): 170-178.

Izvernari, C., Lacerte, M., and Tremblay, R. 2007. Seismic performance of multi-storey concentrically braced steel frames designed according to the 2005 Canadian seismic provisions. Proc, 9th Canadian Conference on Earthquake Engineering, Ottawa, ON. Paper No. 1419.
Jain, A.K., Goel, S.C., and Hanson, R.D. 1980. Hysteretic cycles of axially loaded steel members. J. of the Struct. Div., ASCE, 106: 1777-1795.
Jayas, B. S., and Hosain, M. U. 1988. Behaviour of headed studs in composite beams: push-out tests. Canadian Journal of Civil Engineering, 15(2), 240-253.

- 1989. Behaviour of headed studs in composite beams: full-size tests. Canadian Journal of Civil Engineering, 16(5), 712-724.
Jent, K. A. 1989. Effects of shrinkage, creep and applied loads on continuous deck-slab composite beams. M.Sc. thesis, Queen's University, Kingston, Ont.
Ji, X., Kato, M., Wang, M., Hitaka, T., and Nakashima, M. 2009. Effect of gravity columns on mitigation of drift concentration for braced frames. Joumal of Constructional Steel Research, 65, 12, 2148-2156.
Johnson, R. P. 1970. Longitudinal shear strength of composite beams. ACI Journal Proceedings, 67.
- 1975. Composite structures of steel and concrete. Volume 1: beams, columns, frames and applications in buildings. Crosby Lookwood Staples, London, England : 210.
Johnston, B. G. 1939. Pin connected plate links, Transactions, American Society of Civil Engineers.
Jones, J. 1958. Bearing-ratio effect on strength of riveted joints. Transactions, American Society of Civil Engineers, 123: 964-972.
Kaliandasani, R. A., Simmonds, S. H., and Murray, D. W. 1977. Behaviour of open web steel joists. Report No. 62, Department of Civil Engineering, University of Alberta.
Kalyanaraman, V., Pekoz, T., and Winter, G. 1977. Unstiffened compression elements. ASCE. Journal of the Structural Division, 103(ST9).
Kanchanalai, T. 1977. The design and behavior of beam-columns in unbraced steel frames. CESRL Report No. 77-2, AISI Project No. 189 - Column design in unbraced frames, Report No. 2, Structures Research Laboratory, The University of Texas at Austin.
Kasai, K., and Han, X. 1997. New EBF design method and application: Redesign and analysis of US-Japan EBF. STESSA Conference, Tokyo.
Kasai, K., and Popov, E.P. 1986. General behavior of WF steel shear link beams. ASCE Journal of Structural Engineering, 112(ST2); 362-382.
Kemp, A.R., and Trinchero, P. 1992, Serviceability stress limits for composite beams. Composite Construction and Engineering Foundation Conference, June 15-19, Potosi, MO.
Kennedy, D.J.L. 1967. Evaluation of structural weld defects. Canadian Welding Society Annual Meeting, Montreal, May.
- 1968. Evaluation of structural weld defects. Canadian Welder and Fabricator: 10-14.
- 1974. Limit states design - An innovation in design standards for steel structures. Canadian Journal of Civil Engineering, 1(1).
- 1995. Limit states design of beam-columns in CSA S16.1-94. Proc. Int. Conf. on Struct. Stability and Des., G.J. Hancock and M.A.Bradford, eds., Oct 30-Nov 1, Balkema, Rotterdam, 461-465.
- 2004. Analysis of strength of flare bevel groove welds in open web steel joists. Committee communication.
Kennedy, D.J.L., Allen, D. E., Adams, P. F., Kulak, G. L., Turner, D. K., and Tarlton, D. L. 1976. Limit states design. Proceedings of the Canadian Structural Engineering Conference, Canadian Steel Industries Construction Council, Willowdale, Ont.
Kennedy, D.J.L., and Brattland, A. 1992. Shrinkage tests of two full-scale composite trusses. Canadian Journal of Civil Engineering, 19(2).
Kennedy, D.J.L., and Gad Aly, M. 1980. Limit states design of steel structures - Performance factors. Canadian Journal of Civil Engineering, 7(1).

Kennedy, D.J.L., Kulak, G.L., and Driver, R.G. 1994. Discussion to postbuckling behavior of steel-plate shear walls, by Elgaaly, M., Caccese, V., and Du., C. Journal of Structural Engineering, ASCE, 120(7): 2250-225I.

Kennedy, D.J.L., Miazga, G.S., and Lesik, D.F. 1990. Discussion of evaluation of fillet weld shear strength of FCAW electrodes by McClellan, R.W. Welding Journal, August 1989, Welding Journal Reference, 44-46.
Kennedy, D.J.L., Picard, A., and Beaulieu, D. 1990. New Canadian provisions for the design of steel beam-columns. Canadian Journal of Civil Engineering, 17(6).

Kennedy, D.J.L., and Rowan, W.H.D. 1964. Behaviour of compression chords of open web steel joists. Canadian Institute of Steel Construction, Willowdale, ON.
Kennedy, J.B., and Neville, A.M. 1986. Basic statistical methods for engineers and scientists. Third edition, Harper and Row, New York, NY.
Kennedy, S. J., and Kennedy, D. J. L. 1987. The performance and strength of hardened steel test roller assemblies, Proceedings, CSCE Centennial Conference, May 19-22, Montreal, QC: 513-531.
Kennedy, S. J. Kennedy, D. J. L., and Medhekar, M.S. 1998. The bearing resistance of webs: further studies of the post buckling strength. Proc. Annual Meeting, Structural Stability Research Council, Atlanta, Sept. 21-23
Kennedy, S.J., and MacGregor, J.G. 1984. End connection effects on the strength of concrete filled HSS beam-columns. Structural Engineering Report 115, Department of Civil Engineering, University of AIberta, Edmonton, Alberta.

Ketter, R. L. 1961. Further studies of the strength of beam-columns. ASCE, Journal of the Structural Division, 87(ST6): 135-152.
Kirby, P. A., and Nethercot, D. A. 1978. Design for structural stability. Granada. London, England.
Knowles, R. B., and Park, R. 1970. Axial load design for concrete filled steel tubes. ASCE, Journal of the Structural Division, 96(ST10).
Koboevic, S. 2000. An approach to seismic design of eccentrically braced frames. Ph.D. Thesis, Department of Civil Engineering and Applied Mechanics, McGill University, Montreal.
Krawinkler, H., and Popov, E.P. 1982. Seismic behaviour of moment connections and joints. ASCE, Journal of the Structural Division, 108(ST2), 373-391.
Kuhn, P., Peterson, J. P., and Levin, L. R. 1952, A summary of diagonal tension, Part I - Methods of analysis, Technical Note 2661, National Advisory Committee for Aeronautics, Langley Aeronautical Laboratory, Langely Field, VA.
Kulak, G.L. 1985. Behaviour of steel plate shear walls, Proceedings, The 1985 International Engineering Symposium on Structural Steel, Chicago.

- 1986. Unstiffened steel plate shear walls: Static and seismic behaviour, in steel structures, Recent Research Advances and Their Applications to Design, Edited by M.N. Pavlovic, Elsevier Applied Science Publishers, London.
- 1991. Unstiffened steel plate shear walls. Structures subjected to repeated loading: Stability and strength, R. Narayanan and T.M. Roberts, eds., Elsevier Applied Science, New York, N.Y.
Kulak, G.L., and Birkemoe, P.C. 1993. Field studies of bolt pretension. Journal of Constructional Steel Research, No. 25: 95-106.
Kulak, G.L., and Dawe, J. L. 1991. Discussion of design interaction equations for steel members. Sohal, I. S., Duan, L., and Chen W-F. ASCE, Journal of Structural Engineering, 117(ST7): 2191-2193.

Kulak, G.L., Fisher, J. W., and Struik, J.H.A. 2001. Guide to design criteria for bolted and riveted joints, Second edition. Research Council on Structural Connections. (Original copyright 1987 by John Wiley \& Sons, Inc. transferred to RCSC). www boltcouncil.org/files/2ndEditionGuide.pdf
Kulak, G.L., and Grondin, G.Y., 2000. Block shear failure in steel members - A review of design practice, Proceedings of the Fourth International Workshop on Connections in Steel Structures IV: Steel Connections in the New Millennium, Roanoke, VA., AISC, Chicago.

- 2003. Strength of joints that combine bolts and welds, AISC Engineering Journal, Second quarter, pp. 89-98.
- 2014. Limit states design in structural steel, 9th Edition. Canadian Institute of Steel Construction, Markham, Ontario.
Kulak, G.L., Kennedy, D.J.L., and Driver, R.G. 1994. Discussion to experimental study of thin steelplate shear walls under cyclic load, by Caccese, V., Elgaaly, M., and Chen, R. Journal of Structural Engineering, ASCE, Vol 120, No.10, pp. 3072-3073.
Kulak, G.L., Kennedy, D.J.L., Driver, R.G., and Medhekar, M. 1999. Behavior of steel plate shear walls, Proceedings, 1999 North American Steel Construction Conference, Toronto.
Kulak, G.L., and Smith, I.F.C. 1993. Analysis and design of fabricated steel structures for fatigue: A primer for civil engineers. Dept. of Civil Eng. SER 190. University of Alberta, Edmonton. AB.
Kulak, G.L., and Undershute, S.T. 1998. Tension control bolts: Strength and installation. Journal of Bridge Engineering, ASCE, 3(1),
Kullman R. B., and Hosain, M. U. 1985. Shear capacity of stub-girders: full-scale tests. ASCE, Journal of Structural Engineering, 111(ST1): 56-75.
Lacerte, M., and Tremblay, R. 2006. Making use of brace overstrength to improve the seismic response of multi-storey split-X concentrically braced steel frames. Can. J. of Civ. Eng., 33, 8, 1005-1021.
Lay, M. G. 1965. Flange local buckling in wide-flange shapes. ASCE Journal of the Structural Division, 91(ST6).
Lay, M. G., and Galambos, T. V. 1966. Bracing requirements for inelastic steel beams. ASCE Journal of the Structural Division, 92(ST2).
- 1967. Inelastic beams under moment gradient. ASCE Journal of the Structural Division, 93(ST1).

Lee, K., and Bruneau, M. 2005. Energy dissipation of compression members in concentrically braced frames: Review of experimental data. J. Struct. Eng., ASCE, 131, 4, 552-559.
Lee, S., and Goel, S.C. 1987. Seismic behavior of hollow and concrete-filled square tubular bracing members. Research Report UMCE 87-11, Dept. of Civ. Eng., Univ. of Michigan, Ann Arbor, Mich.
Lesik, D.F., and Kennedy, D.J.L. 1990. Ultimate strength of fillet welded connections loaded in plane. Canadian Joumal of Civil Engineering 17(1), 55-67.
Li, C.-H., Tsai, K.-C., Lin, C.-H., and Chen, P.-C. 2009. Cyclic tests of four two-storey narrow steel plate shear walls. Part 1: Analytical studies and specimen design \& Part 2: Experimental results and design implications. Earthquake Eng. and Struct. Dyn. Published Online: 26 Nov 2009.
Lilley, S. B., and Carpenter, S. T, 1940. Effective moment of inertia of a riveted plate girder. Transactions, American Society of Civil Engineers.
Liu, J., Sabelli, R., Brockenbrough, R.L., and Fraser, T.P. 2007. Expected yield stress and tensile strength ratios for determination of expected member capacity in the 2005 AISC seismic provisions. AISC Eng. J., 44, 1, 15-25.

Liu, Z. 1987. Investigation of concrete-filled steel tubes under cyclic bending and buckling. Ph.D. Thesis, Dept. of Civ. Eng., Univ. of Michigan, Ann Arbor, Michigan.
Liu, Z., and Goel, S.C. 1988. Cyclic load behavior of concrete-filled tubular braces. ASCE Journal of Structural Engineering, 114(ST7): 1488-1506.
Loov, R. 1996. A simple equation for axially loaded steel column design curves. Canadian Journal of Civil Engineering. 23(1): 272-276.
López, W.A., and Sabelli, R. 2004. Seismic design of buckling-restrained braced frames, Steel Tips, Structural Steel Education Council, Moraga, CA.
Lu, Y.Q., and Kennedy, D.J.L. 1994. The flexural behaviour of concrete-filled hollow structural sections, Canadian Journal of Civil Engineering, 21(1), 111-130.
Lubell, A.S., Prion, H.G.L., Ventura, C.E., and Rezai, M. 2000. Unstiffened steel plate shear wall performance under cyclic loading. J. Struct. Eng., ASCE, 126, 4, 453-460.

Lukey, A. F., and Adams, P. F. 1969. Rotation capacity of beams under moment gradient. ASCE Journal of the Structural Division, 95(ST6).
Lutz, L.A. 1992. Critical slenderness of compression members with effective lengths about non-principal axes. Proceedings of the Annual Technical Session and Meeting of the Structural Stability Research Council, Bethlehem, PA, 107-116.
MacPhedran, I.J., and Grondin, G.Y. 2006. A brief history of beam-column design. 1st International Structural Specialty Conference, Calgary, Alberta, May 23-26.
MacRae, G.A., Kimura, Y., and Roeder, C. 2004. Effect of column stiffness on braced frame seismic behavior, ASCE J. Struct. Eng., Vol. 130, No. 3, 381-391.
Mahin, S., Uriz, P., Aiken, L., Field, C., and Ko, E. 2004. Seismic performance of buckling restrained braced frame systems. Proc. 13th World Conf. on Earthquake Eng., Vancouver, B.C., Canada, Paper No. 1681.

Malley, J.O., and Popov. E.P. 1983. Design considerations for shear links in eccentrically braced steel frames. EERC Report No. UCB/EERC-83/24, Univ. of California, Berkeley, CA.
Manniche, K., and Ward-Hall, G. 1975. Mission bridge - Design and construction of the steel box girder. Canadian Journal of Civil Engineering, 2(2).
Mansour, N. 2010. Development of the design of eccentrically braced frames with replaceable shear links. Ph.D. Thesis, Dept. of Civil Engineering, University of Toronto, Toronto, ON.
Mansour, N., Christopoulos, C., and Tremblay, R. 2011, Experimental validation of replaceable shear links for eccentrically braced frame. Journal of Structural Engineering, ASCE, 137, 10, 1141-1152.
Manuel, T.J., and Kulak, G.L. 1998. Strength of joints that combine bolts and welds. Dept. of Civil Eng. SER 222. University of Alberta, Edmonton, AB.

- 2000. Strength of joints that combine bolts and welds. ASCE Journal of Structural Engineering, 126(3): 279-287.
Marino, E.M., and Nakashima, M. 2006. Seismic performance and new design procedure for chevronbraced frames. Earthquake Eng. and Struct. Dyn., Vol. 35, No. 4, 433-452.
Martinez-Saucedo, G., Packer, J.A., and Christopoulos, C. 2008. Gusset plate connections to circular hollow section braces under inelastic cyclic loading. J. Struct. Eng. 134, 7, 1252-1258.
Martinez-Saucedo, G., and Packer, J.A. 2009. Static design recommendations for slotted end HSS connections in tension. ASCE Journal of Structural Engineering, 135(7): 797-805.
Massey, C. 1962. Lateral bracing forces of steel I-beams. ASCE Engineering Mechanics Division, 88(EM6).
Mattock, A. H. 1974. Shear transfer on concrete having reinforcement at an angle to the shear plane. Special Publication 42, Shear in Reinforced Concrete, American Concrete Institute: 17-42.
Mattock, A. H., Li, W. K., and Wang, T.C. 1976. Shear transfer in lightweight reinforced concrete, PCl Journal, 21(1): 20-39.
Maurer, M.B., and Kennedy D.J.L. 1994. Shrinkage and flexural tests of a full-scale composite truss. Structural Engineering Report 206, Department of Civil Engineering, University of Alberta.
McFadden, M.R. and Packer, J.A. 2014. Effective weld properties for hollow structural section T-connections under branch in-plane bending. Engineering Journal, American Institute of Steel Construction, 51(4), pp. 247-266.
McFadden, M.R., Sun, M. and Packer, J.A. 2013. Weld design and fabrication for RHS connections. Steel Construction, 6(1), pp. 5-10.
Merzouq, S., and Tremblay, R. 2006. Seismic design of dual concentrically braced steel frames for stable seismic performance for multi-storey buildings. Proc. 8th U.S. National Conference on Earthquake Eng., San Francisco, CA, Paper 1909.
Miazga, G.S., and Kennedy, D.J.L. 1989. Behaviour of fillet welds as a function of the angle of loading. Canadian Journal of Civil Engineering 16:583-599.

Moghimi, H., and Driver, R.G. 2013. Economical steel plate shear walls for low-seismic regions. Journal of Structural Engineering, American Society of Civil Engineers, Vol. 139, no. 3, pp. 379-388.
Munse, W, H. 1959. The effect of bearing pressure on the static strength of riveted connections, Bulletin No. 454, Engineering Experimental Station, University of Illinois, Urbana, IL.
Munse, W. H., and Chesson, E. 1963. Riveted and bolted joints: net section design. ASCE. Journal of the Structural Division, 89(ST1), Part 1.
Murray, T. M. 1975. Design to prevent floor vibrations. Engineering Journal, AISC, third quarter, pp. 83-87.

- 2003. Extended end plate connections - Seismic and wind applications. Steel Design Guide 4, American Institute of Steel Construction, Chicago.
Murray, T.M., Allen, D.E., and Ungar, E.E. 1997. Floor vibrations due to human activity. Steel Design Guide Series 11. American Institute of Steel Construction, Chicago; Canadian Institute of Steel Construction, Toronto.
Nash, D. S., and Kulak, G. L. 1976. Web slenderness limits for non-compact beam-columns. Report No. 53, Department of Civil Engineering, University of Alberta.
NBCC. 2005. National Building Code of Canada. National Research Council of Canada, Ottawa, Ont.
- 2010. National Building Code of Canada. National Research Council of Canada, Ottawa, Ont.

NCHRP. 1970. Effect of weldments on the fatigue strength of steel beams. Report 102, National Cooperative Highway Research Program, Transportation Research Board, National Academy of Sciences, Washington, DC.

- 1974. Fatigue strength of steel beams with welded stiffeners and attachments. Report I47, National Cooperative Highway Research Program, Transportation Research Board, National Academy of Sciences, Washington, DC.
Nethercot, D. A., and Trahair, N. S. 1976a. Inelastic lateral buckling of determinate beams. ASCE Journal of the Structural Division, 102(ST4):701-717.
- 1976b. Lateral buckling approximations for elastic beams, ISE. The Structural Engineer. 54(6): 197 204.

Ng, A.K.F., Deng, K., Grondin, G.Y., and Driver, R.G. 2004a. Behavior of transverse fillet welds: experimental program. Engineering Journal, American Institute of Steel Construction, vol. 41, no. 2, pp. 39-54.
Ng, A.K.F., Driver, R.G., and Grondin, G.Y. 2004b. Behavior of transverse fillet welds: parametric and reliability analyses. Engineering Journal, American Institute of Steel Construction, vol. 41, no. 2, pp. 55-67.
Nixon, D. 1981. The use of frame action to resist lateral loads in simple construction. Canadian Journal of Civil Engineering, 8(4).
Okazaki, T., Arce, G., Ryu, H.-C., and Engelhardt, M.D. 2005. Experimental study of local buckling, overstrength, and fracture of links in eccentrically braced frames, J. Struct. Eng., ASCE, 131, 10, 1526 1535.

Okazaki,T., Engelhardt, M.D., Nakashima, M., and Suita, K. 2006. Experimental performance of link-to-column connections in eccentrically braced frames. Journal of Structural Engineering, ASCE, 132, 8, 1201-1211.
Okazaki, T., and Engelhardt, M.D. 2007, Cyclic loading behavior of EBF links constructed of ASTM A992 steel. Journal of Constructional Steel Research, 63, 751-765.
Olgaard, J. G., Slutter, R. G., and Fisher, J. W. 1971. Shear strength of stud connectors in light-weight and normal-weight concrete. Engineering Journal, American Institute of Steel Construction (AISC), April.
Oosterhof, S.A., and Driver, R.G. 2011. Performance of the unified block shear equation for common types of welded steel connections. Engineering Journal, American Institute of Steel Construction (AISC), Vol, 48, 2nd Quarter, pp. 77-92.
Packer, J.A., Sherman, D. and Lecce, M. 2010. Hollow structural section connections. Steel design Guide 24, American Institute of Steel Construction, Chicago, Illinois.

Packer, J.A., Sun, M., Oatway, P. and Frater, G.S. 2015. Experimental evaluation of the directional strength increase for fillet welds to rectangular hollow sections. Proceedings of the 15 th. International Symposium on Tubular Structures, Rio de Janeiro, Brazil.
Parcel, J.I., and Murer, E.B. 1934. The effect of secondary stresses upon ultimate strength, Proceedings (with discussions in Transactions) American Society of Civil Engineers, Reston, Virginia, Vol. 60: 55p.
Perlynn, M. J., and Kulak, G. L. 1974. Web slenderness limits for compact beam-columns. Structural Engineering Report 50, Department of Civil Engineering, University of Alberta.
Popov, E.P., Amin, N.R., Louie, J.J.C., and Stephen, R.M. 1986. Cyclic behaviour of large beam-column assemblies. Engineering Journal, AISC, 23(1): 9-23.
Popov, E.P., and Black, R.G. 1980. Steel struts under severe cyclic loading. J. of the Struct. Div., ASCE, 107(ST9): 1587-1881.
Popov, E.P., Englehardt, M.D., and Ricles, J.M. 1989. Eccentrically braced frames: U.S. practice. AISC Engineering Journal, 36(2): 66-80.
Popov, E. P., and Pinkney, R. B. 1969. Cyclic yield reversal in steel building connections. ASCE Journal of the Structural Division, 95(ST3).
Popov, E, P., and Stephen, R. M. 1972. Cyclic loading of full-size steel connections. Steel Research for Construction, Bulletin No.21, AISI.

- 1977a. Capacity of columns with splice imperfections. Engineering Journal, AISC, 14(1).
- 1977b. Tensile capacity of partial penetration groove welds. ASCE. Journal of the Structural Division, 103(ST9).
Prickett, B.S., and Driver, R.G. 2006. Behaviour of partially encased composite columns made with high performance concrete, Structural Engineering Report No. 262, January, Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada.
Purba, R., Bruneau, M., 2007. Design recommendations for perforated steel plate shear walls. Technical Report MCEER-07-0011, MCEER, University at Buffalo, Buffalo, NY.
- 2009. Finite-element investigation and design recommendations for perforated steel plate shear walls. J. Struct. Eng., ASCE, 135, 11, 1367-1376.

Qu, B., and Bruneau, M, 2009, Design of steel plate shear walls considering boundary frame moment resisting action. J. Struct. Eng., ASCE, 135, 12, 1511-1521.
Qu, B., Bruneau, M., Lin, C.H., Tsai, K.C. 2008. Testing of full scale two-story steel plate shear walls, with RBS connections and composite floor. J. Struct. Eng., ASCE, 134, 3, 364-373.
Rainer, J. H. 1980. Dynamic tests on a steel-joist concrete-slab floor. Canadian Journal of Civil Engineering, 7(2).
RCSC. 2004. Specification for structural joints using ASTM A325 or A490 bolts. Research Council on Structural Connections. www.boltcouncil.org/files/2004RCSCSpecification.pdf
Redwood, R. G. 1971. Simplified plastic analysis for reinforced web holes. Eng. J., AISC, 8(4).

- 1972. Tables for plastic design of beams with rectangular holes. Engineering Journal, AISC, 9(1).
- 1973. Design of beams with web holes. Canadian Steel Industries Construction Council, Willowdale, Ont.
Redwood, R. G., and Channagiri, V.S. 1991. Earthquake resistant design of concentricity braced steel frames. Canadian Journal of Civil Engineering, 18(5).

Redwood, R, G., Feng Lu, Bouchard, G., and Paultre, P. 1991. Seismic response of concentrically braced steel frames. Canadian Journal of Civil Engineering, 18(6).
Redwood, R., and McCutcheon, J. 1968. Beam tests with unreinforced web openings. ASCE Journal of the Structural Division, 94(ST1).
Remennikov, A.M., and Walpole, W.R. 1998a. Seismic behavior and deterministic design procedures for steel V-braced frames. Earthquake Spectra, Vol. 14, No, 2, 335-355,

- 1998b. A note on compression strength reduction factor for a buckled strut in seismic-resisting braced system. Eng. Struct., 20, 8, 779-782.

Richards, P.W. 2009. Seismic column demands in ductile braced frames. J. Struct. Eng., ASCE, 135, 1, 33-41.
Ricles, J.M., and Yura, J.A. 1983. Strength of double-row bolted web connections. Journal of Structural Engineering, ASCE, 109(ST1): 126-142.
Ricles, J.M., Zhang, X., Lu, L.-W. and Fisher, J. 2004. Development of seismic guidelines for deepcolumn steel moment connections. ATLSS Report No. 04-13, Lehigh University, Bethlehem, PA.
Ritchie, J.K., and Chien, E.Y.L. 1980. Composite structural systems - Design, construction and cost considerations. Proceedings, Canadian Structural Engineering Conference, CISC.
Roberts, T., and Sabouri-Ghomi, S. 1992. Hysteretic characteristics of unstiffened perforated steel plate shear panels. Thin-Walled Struct., 14, 139-151.
Robinson, H. 1969. Composite beam incorporating cellular steel decking. ASCE Journal of the Structural Division, 95(ST3).

- 1988. Multiple stud shear connections in deep ribbed metal deck. Canadian Journal of Civil Engineering, 15(4).
Robinson, H., and Wallace, I. W. 1973. Composite beams with $11 / 2$ inch metal deck and partial and full shear connection. Transactions, Canadian Society for Civil Engineering, 16(A-8), published in the Engineering Journal, Engineering Institute of Canada.
Sabelli, R. 2004, Recommended provisions for buckling-restrained braced frames, AISC Eng. J., Vol. 41, No. 4, pp. 155-175.
Sabelli, R., and Bruneau, M. 2007. Steel plate shear walls. Steel Design Guide 20, AISC, Chicago, IL.
Sabelli, R. and Hohbach, D. 1999. Design of cross-braced frames for predictable buckling behavior. J. of Struct. Eng., ASCE, 125(ST2): 163-168.
Sabelli, R., Mahin, S., and Chang, C. 2003. Seismic demands on steel braced frame buildings with buckling restrained braces. Engineering Struct., 25, 5, 656-666.
Sabouri-Ghomi, S., Kharrazi M.H.K., Mam-Azizi, S.-E-D., and Sajadi, R.A. 2008. Buckling behavior improvement of steel plate shear wall systems. The Structural Design of Tall and Special Buildings, I7. 4, 823-837.
Sabouri-Ghomi, S., and Roberts, T.M. 1991. Nonlinear dynamic analysis of thin steel plate shear walls. Computers \& Structures, 39, 1-2, 121-127.
Schmidt, B.J. 2000. Review of the resistance factor for steel. M.Sc. thesis, Department of Civil and Environmental Engineering, University of Western Ontario, London, Ontario.
Schmidt B.J., and Bartlett, F.M. 2002. Review of resistance factor for steel: data collection. Can. J. Civ. Eng., 29:(1) 98-108.
Schmidt, B.J., and Bartlett, F.M. 2002. Review of resistance factor for steel: resistance distributions and resistance factor calibration. Canadian Journal of Civil Engineering, 29:(1) 109-118.
Schmitke, C.D., and Kennedy, D.J.L. 1985. Effective lengths of laterally continuous, laterally unsupported steel beams. Canadian Journal of Civil Engineering. 12(3): 603-616.
Schumacher, A. S., Grondin, G. Y., and Kulak, G. L. 1999. Connection of infill panels in steel plate shear walls. Canadian Journal of Civil Engineering, 26(5): 549-563.
Seaburg, P.A., and Carter, C.J. 1997. Torsional analysis of structural steel members, Steel design guide series 9, AISC, Chicago, IL.
Seeley, F. B., and Smith, J. O. 1957. Advanced mechanics of materials (2nd ed.). John Wiley \& Sons, Inc., New York, NY. pp. 365-367.
Shaker, A.F., and Kennedy, D.J.L. 1991. The effective modulus of elasticity of concrete in tension. Structural Engineering Report 172, Department of Civil Engineering, University of Alberta, Edmonton, Alberta.
Sherman, D.R. 1996. Designing with Structural Tubing. Engineering Journal, AISC, 33: 101-109.
Sherman, D. R., and Ghorbanpoor, A. 2002. Final report: Design of extended shear tabs. American Institute of Steel Construction (available via download from AISC website).

Sherman, D. R., and Tanavde, A. S. 1984. Comparative study of flexural capacity of pipes. Department of Civil Engineering, University of Wisconsin-Milwaukee.
Shishkin, J.J., Driver, R.G., and Grondin, G.Y. 2005. Analysis of steel plate shear walls using the modified strip model. Structural Engineering Report No. 261, Dept. of Civ. and Env. Eng., Univ. of Alberta, Edmonton, AB .

- 2009. Analysis of steel plate shear walls using the modified strip model. Journal of Structural Engineering, American Society of Civil Engineers, vol. 135, no. 11, pp. 1357-1366.

Shrivastava, S. C., Redwood, R. G., Harris, P. J., and Ettehadieh, A. A. 1979. End moments in open web steel tie joists. McGill University, June.
Skarborn, S., and Daneff G. 1998. Shear resistance of flare bevel and puddle welds in open-web steel joist applications. Canadian Society for Civil Engineering, Annual Conference, Halifax NS, 10 pp.
Slutter, R. G., and Driscoll, G. C. 1965. Flexural strength of steel concrete composite beams. ASCE Journal of the Structural Division, 95(ST2).
Sourochnikoff, B. 1950. Wind-stresses in semi-rigid connections of steel framework. Transactions, American Society of Civil Engineers.
SSPC. Good Painting Practice, SSPC Painting Manual, Vol, 1, Fourth Edition, Society for Protective Coatings, Pittsburgh, PA.

- Systems and Specifications, SSPC Painting Manual, Vol. 2, Eighth Edition, Society for Protective Coatings, Pittsburgh, PA.
Stankevicius, J., Josi, G., Grondin, G.Y., and Kulak, G.L. 2009. Measurement of slip coefficient for grade ASTM A588 steel. Structural Engineering Report 268, Department of Civil and Environmental Engineering, University of Alberta.
STELCO. 1973. Hollow structural sections - Design manual for columns and beams. The Steel Company of Canada Limited, Hamilton, Ont,
- 1981. Hollow structural sections - Design manual for concrete-filled HSS columns. The Steel Company of Canada Limited, Hamilton, Ont.
Stratan, A., and Dubina, D. 2004. Bolted links for eccentrically braced steel frames. Proceedings 5th Int. Workshop on Connections in Steel Structures V, Delft Univ. of Technology, Netherlands, 223-232.
Tall, L., et al. 1974. Structural steel design (2nd ed.). The Ronald Press Company, New York, NY.
Tang, X., and Goel, S.C. 1989. Brace fractures and analysis of phase I structure. J. of Struct. Engrg., ASCE, 115, 1960-1976.

Temple, M.C., Schepers, J.A., and Kennedy, D.J.L. 1986. Interconnection of starred angle compression members. Canadian Journal of Civil Engineering, 13(6).
Thorburn, L. J., Kulak, G. L., and Montgomery, C. J. 1983. Analysis of steel plate shear walls. Structural Engineering. Report No. 107, Department of Civil Engineering, Univ, of Alberta, Edmonton, Alberta.
Thornton, C. H. 1973. Quality control in design and supervision can eliminate lamellar tearing. Engineering Journal, AISC, Fourth Quarter.
Thornton, W.A., and Fortney, P.J. 2011. On the need for stiffeners for and the effect of lap eccentricity on extended single-plate connections. AISC Engineering Journal, 2nd Quarter, pp. 117-125.
Timler, P. A., and Kulak, G. L. 1983. Experimental study of steel plate shear walls. Structural Engrg. Report No. 114, Department of Civil Engineering, Univ, of Alberta, Edmonton, Alberta.
Timoshenko, S.P., and Gere, J.M. 1961. Theory of elastic stability, Second edition, McGraw-Hill, New York, NY.

Toprac, A., and Natarajan, M. 1971. Fatigue strength of hybrid plate girders. ASCE Journal of the Structural Division, 97(ST4).
Tousignant, K. and Packer, J.A. 2015. Investigation of weld effective length rules for RHS overlapped K-connections. Proceedings of the I5th. International Symposium on Tubular Structures, Rio de Janeiro, Brazil.

Trahair, N.S. 1968. Interaction buckling of narrow rectangular continuous beams. Civil Engineering Trans. Inst. of Eng. Australia.
Tremblay, R. 1997. Seismic performance of RBS connections for steel moment resisting frames: Influence of loading rate and floor slab, Proceedings of Second International Conference on Behaviour of Steel Structures in Seismic Areas, Kyoto, Japan.

- 1998. Conception des cadres rigides en acier - Développements survenus suite aux séismes de Northridge et de Kobe. Calcul parasismique des charpentes d'acier/Earthquake resistant design of steel structures, Seminar notes.
- 2000. Influence of brace slenderness on the seismic response of concentrically braced steel frames. Behaviour of steel structures in seismic areas. Proceedings of the Third STESSA Conference 2000, Montreal, A.A. Balkema, Rotterdam: 527-534.
- 2001. Seismic behaviour and design of concentrically braced steel frames. AISC Eng. J., 38 (3): 148166.
- 2002. Inelastic seismic response of bracing members. J. of Const. Steel Research. 58: 665-701.
- 2003. Achieving a stable inelastic seismic response for concentrically braced steel frames, Eng. J., AISC, 40(2): 111-129.
Tremblay, R., Archambault, M.-H., and Filiatrault, A. 2003. Seismic response of concentrically braced steel frames made with rectangular hollow bracing members. Journal of Structural Engineering, ASCE, 129(12): 1626-1636.
Tremblay, R., Bolduc. P., Neville, R., and DeVall, R. 2006. Seismic testing and performance of buckling restrained bracing systems, Can, J. of Civ. Eng., 33, 2, 183-198.

Tremblay, R., Bruneau, M., Nakashima, M., Prion, H.G.L., Filiatrault, A. and DeVall, R. 1996. Seismic design of steel buildings: Lessons from the 1995 Hyogoken-Nanbu earthquake. Can. J. of Civ. Eng., 23: 727-756.
Tremblay, R., Castonguay, P.X., Guilini-Charette, K., and Koboevic, S. 2009. Seismic performance of conventional construction braced steel frames designed according to Canadian seismic provisions. Proc. 2009 ASCE Structures Congress, Austin, TX, 341, 87.
Tremblay, R., Chicoine, T., and Massicotte, B. 2000. Design equation for the axial capacity of partially encased non-compact columns. Proceedings Composite Construction in Steel and Concrete IV, Banff, Canada, June, United Engineering Foundation, ASCE, Reston, VA: 506-517.
Tremblay, R., Degrange, G., and Blouin, J. 1999. Seismic rehabilitation of a four-storey building with a stiffened bracing system. Proc. 8th Can. Conf, on Earthquake Eng., Vancouver, B.C., 549-554.
Tremblay, R., Haddad, M., Martinez, G., Richard, J., and Moffatt, K. 2008. Inelastic cyclic testing of large size steel bracing members. Proc. 14WCEE, Beijing, China, Paper No. 05-05-0071.
Tremblay, R., Massicotte, B., Filion, 1., and Maranda, R. 1998. Experimental study on the behaviour of partially encased composite columns made of light welded H steel shapes under compressive axial loads. Proc. Annual Meeting, Structural Stability Research Council, Atlanta, Sept. 21-23: 195-204.
Tremblay, R., and Poncet, L. 2007. Improving the seismic stability of concentrically braced steel frames. Eng. J., AISC, 44, 2, 103-116.
Tremblay, R., and Robert, N. 2000. Design of low- and medium-rise chevron braced steel frames. Can. J. of Civ. Eng., 27(6): 1192-1206.

- 2001. Seismic performance of low- and medium-rise chevron braced steel frames. Can. J. of Civ. Eng. 28(4): 699-714.
Tremblay, R., Rogers, C., Martin, É., and Yang, W. 2004. Analysis, testing and design of steel roof deck diaphragms for ductile earthquake resistance. Journal of Earthquake Engineering, Imperial College Press, 8(5): 775-816.
Tremblay, R., Timler, P., Bruneau, M., and Filiatrault, A. 1995. Performance of steel structures during the January 17, 1994 Northridge earthquake. Can. J. of Civ. Eng., 22, 338-360.
Tromposch, E. W., and Kulak, G. L. 1987. Cyclic and static behaviour of thin panel steel plate shear walls, Structural Engineering Report No. 145, Department of Civil Engineering, University of Alberta.

Tsai, K.C., and Hsiao, P.-C. 2008. Pseudo-dynamic test of a full-scale CFT/BRB frame - Part Il: Seismic performance of buckling-restrained braces and connections. Earthquake Eng. and Struct. Dyn., 37, 7, 1099-1115.
Uang, C.-M., and Nakashima, M. 2004. Steel buckling-restrained braced frames. In Earthquake Engineering - From Engineering Seismology to Performance-Based Engineering (ed. Y. Bozorgnia and V. V. Bertero), Chapter 16, CRC Press, Boca Raton.
Vian, D., and Bruneau, M. 2004. Testing of special LYS steel plate shear walls. Proc, 13th World Conf. on Earthquake Eng., Vancouver, Canada, Paper No. 978.
Vian, D., Bruneau, M., Tsai, K.-C., and Lin, U.C. 2009. Special perforated steel plate shear walls with reduced beam section anchor beams. I: Experimental investigation, \& II: Analysis and design recommendations, J. of Struct. Eng., ASCE, 135, 3, 211-228.
Vincent, G. S. 1969. Tentative criteria for load factor design of steel highway bridges. Steel Research Construction Bulletin No. 15, AISI, Washington, DC.
Virdi, K. S., and Dowling, P. J. 1976, A unified design method for composite columns. Memoires, IABSE, No. 36-11.
Wakabayashi, M. 1977 A new design method of long composite beam-columns. Proceedings, ASCE International Colloquium on Stability of Structures under Static and Dynamic Loads, Washington, DC., May.
White, D.W., and Jung, S.-K. 2004. Unified flexural resistance equations for stability design of steel 1section members - uniform bending tests, Structural Engineering, Mechanics and Materials Report No. 04-28. Georgia Institute of Technology.
Winter, G. 1958. Lateral bracing of columns and beams. ASCE Journal of the Structural Division, 84(ST2).

- 1970. Commentary on the 1968 edition of the specification for the design of cold-formed steel structural members. American Iron and Steel Institute, Washington, DC.
Wong, E., and Driver, R.G. 2010. Critical evaluation of equivalent moment factor procedures for laterally unsupported beams. Engineering Journal, American Institute of Steel Construction, vol. 47, no. 1.
Wong, E., Driver, R.G., and Heal, T. 2014. Simplified approach to estimating the elastic lateral-torsional buckling capacity of steel beams with top-flange loading. Canadian Journal of Civil Engineering, 42: in press.
Wu, Y., and Kulak, G. L. 1993. Shear lag in bolted single and double angle tension members. Structural Engineering Report, Department of Civil Engineering, University of Alberta, SER 187.
Yang, C.H., and Beedle, L.S. 1951. Behavior of I and WF beams in shear. Fritz Engineering Lab. Report No. 205B21, Lehigh Univ., Bethlehem, Pa.
Yang, F., and Mahin, S. 2005. Limiting net section fracture in slotted tube braces. Steel Tips, Technical Information and Product Service, Structural Steel Educational Council, Moraga, CA.
Yong Lin Pi and Trahair, N.S. 1995. Inelastic torsion of steel I-beams. ASCE Joumal of Structural Engineering, 121 (ST4).
Yura, J.A. 1993. Fundamentals of Beam Bracing. Proceedings, Structural Stability Research Council Conference "Is Your Structure Suitably Braced?", Milwaukee, WI, April.
- 1995. Bracing for Stability - State-of-the-Art. Proceedings, Structures Congress XIII, American Society of Civil Engineers, Boston, MA, April: 88-103.
Yura, J.A., Birkemoe, P.C., and Ricles, J.M. 1982. Web shear connections; an experimental study. American Society of Civil Engineers. Journal of the Structural Division, 108(ST2).
Zhao, Q., and Astaneh-Asl, A. 2004. Cyclic behavior of traditional and innovative composite shear walls. J. Struct. Eng., ASCE, 130, 2, 271-284.
Ziemian, R.D. (Editor). 2010. Guide to stability design criteria for metal structures, 6th Edition. John Wiley \& Sons, Inc., Hoboken, NJ,
Zuk, W. 1956. Lateral bracing forces on beams and columns. Engineering Mechanics Division, American Society of Civil Engineers, 82(EM3).

PART THREE
 CONNECTIONS AND TENSION MEMBERS

General Information 3-4
Bolts
Bolt Data 3-5
Table 3-1 - Specified Minimum Tensile Strengths 3-6
Table 3-2 - Basic Bolt Data 3-6
Bolts in Bearing-Type Connections 3-7
Table 3-3-CSA S16-14 Summary 3-7
Table 3-4 - Factored Shear and Tensile Resistances per Bolt 3-8
Table 3-5 - Unit Factored Bearing Resistance 3-9
Table 3-6a - Factored Bearing Resistance per Bolt, $\mathrm{F}_{\mathrm{u}}=450 \mathrm{MPa}$ 3-10
Table 3-6b - Factored Bearing Resistance per Bolt, $\mathrm{F}_{\mathrm{u}}=440 \mathrm{MPa}$ 3-10
Table 3-7a - Factored Bearing Resistance per Bolt, $\mathrm{F}_{\mathrm{u}}=400 \mathrm{MPa}$ 3-11
Table 3-7b - Factored Bearing Resistance per Bolt, $\mathrm{F}_{\mathrm{u}}=410 \mathrm{MPa}$ 3-11
Table 3-7c - Factored Bearing Resistance per Bolt, $\mathrm{F}_{\mathrm{u}}=480 \mathrm{MPa}$ 3-12
Table 3-7d - Factored Bearing Resistance per Bolt, $\mathrm{F}_{\mathrm{u}}=520 \mathrm{MPa}$ 3-12
Table 3-7e - Factored Bearing Resistance per Bolt, $\mathrm{F}_{\mathrm{u}}=550 \mathrm{MPa}$ 3-13
Table 3-7f - Factored Bearing Resistance per Bolt, $\mathrm{F}_{\mathrm{u}}=620 \mathrm{MPa}$ 3-13
Table 3-8 - Bearing-Type in Shear and Tension, A325 and F1852 3-15
Table 3-9 - Bearing-Type in Shear and Tension, A490 and F2280 3-15
Bolts in Slip-Critical Connections 3-16
Table 3-10 - Unit Slip Resistance 3-17
Table 3-11 - Slip Resistance per Bolt 3-17
Table 3-12a - Specified Shear and Tension, A325 Tum-of-Nut 3-19
Table 3-12b - Specified Shear and Tension, F1852, A325 with F959. 3-19
Bolts in Tension and Prying Action 3-20
Table 3-13 - Range of t 3-26
Figure 3-1 - Amplified Bolt Force 3-27
Eccentric Loads on Bolt Groups 3-28
Tables 3-14 to 3-20 - Eccentric Loads on Bolt Groups, Coefficients C 3-31
Eccentric Loads on Bolt Groups - Special Case 3-38
Weld Data 3-40
Table 3-21 - Factored Resistance of Welds 3-41
Table 3-22 - Unit Factored Weld Resistance 3-42
Table 3-23 - Factored Shear Resistance on Effective Throat 3-42
Table 3-24a - Factored Shear Resistance of Fillet Welds 3-43
Table 3-24b - Factored Shear Resistance of Fillet Welds, Angle θ 3-43
Strength Reduction Factor for Multi-Orientation Fillet Welds 3-45
Table 3-25 3-45
Eccentric Loads on Weld Groups 3-46
Tables 3-26 to 3-33 - Eccentric Loads on Weld Groups, Coefficients C. 3-48
Eccentric Loads on Weld Groups - Shear and Moment 3-57
Figure 3-2 3-57
Table 3-34-Eccentric Loads on Weld Groups, Coefficients C' 3-59
Framed Beam Shear Connections 3-60
Double-Angle Beam Connections 3-62
Table 3-35 - Fillet Encroachment 3-64
Table 3-36 - Block Shear in Top-Coped Beams 3-65
Table 3-37 - Bolted Double-Angle Beam Connections 3-68
Table 3-38 - Welded Double-Angle Beam Connections 3-69
End-Plate Connections 3-70
Table 3-39 - End-Plate Beam Connections 3-71
Single-Angle Beam Connections 3-72
Table 3-40a - Single-Angle Beam Connections, Bolted-Welded 3-74
Table 3-40b - Single-Angle Beam Connections, All-Bolted 3-75
Shear Tab Beam Connections 3-76
Table 3-41 - Shear Tab Beam Connections 3-77
Tee-Type Beam Connections 3-78
Table 3-42 - Tee-Type Beam Connections, Rigid Supports 3-79
Seated Beam Shear Connections 3-80
Table 3-43 - Welded Unstiffened Angle Seats. 3-82
Table 3-44 - Bolted Unstiffened Angle Seats 3-83
Stiffened Seated Beam Connections 3-84
Table 3-45 - Stiffened Seated Beam Connections 3-86
Moment Connections 3-87
Figure 3-3 3-87
Figure 3-4-Block Shear and Tear-Out 3-92
Hollow Structural Section Connections 3-98
Figure 3-5 - Beam to HSS Column Connections 3-101
Figure 3-6 - Truss to Column and Girder Connections 3-102
Figure 3-7 - HSS Truss Connections 3-103
Figure 3-8 - Connections for Shear and Moment 3-104
Figure 3-9 - Other Truss Configurations 3-105
Figure 3-10 - Welding Details for Hollow Structural Sections 3-106
Table 3-46 - Total Length of Weld 3-107
Tension Members 3-108
Table 3-47-Hole Diameters 3-113
Table 3-48 - Tension-Control Bolt Assemblies and Indicators 3-113
Table 3-49 - Staggered Holes in Tension Members 3-114
Tables 3-50 to 3-51-Shear Lag 3-115
Table 3-52 - Slotted Hole Dimensions 3-116

GENERAL INFORMATION

Part 3 contains tables, examples, dimensions and general information of assistance to designers, detailers and others concerned with the design and detailing of connections and tension members according to the requirements of Clauses 12, 13.2, 13.11, 13.12, 13.13, 21, 22 and 23 of CSA S16-14. Information is provided primarily for Imperial series bolts, although all design data are given in SI units. While the basic steel grade for W shapes is ASTM A992, detail material (angles and plates) is still CSA G40.21-300W.

For convenience, Part 3 is divided into seven main sections:

Bolt Data

Pages 3-5 to 3-39 contain information on diameter, area and strength of bolts, including bolt resistances and unit resistances, for evaluating bolts in bearing-type connections, slipcritical connections, and bolts subjected to tension and prying action, Tables are also included for evaluating eccentric loads on various bolt groups.

Weld Data

Pages 3-40 to 3-59 contain information on the factored resistance of welds, including values for various sizes of fillet welds. Tables are included for evaluating eccentric loads on various weld groups and configurations.

Framed Beam Shear Connections

Pages 3-60 to 3-79 contain information on common types of beam shear connections traditionally considered standard in the industry. Included are double-angle beam connections, simple end-plate connections, single-angle beam connections, shear tab beam connections and tee-type beam connections. Information on all-bolted single-angle connections has been incorporated in this $\left(11^{\text {th }}\right)$ edition of the Handbook.

Seated Beam Shear Connections

Pages 3-80 to 3-86 contain information on unstiffened and stiffened seated beam shear connections of a type commonly used in practice, where direct framing of the supported beam is either not desirable or possible.

Moment Connections

Pages 3-87 to 3-97 contain examples of welded and welded/bolted moment connections, and information for the design of stiffeners on supporting columns.

Hollow Structural Section Connections

Pages 3-98 to 3-107 contain information regarding the connecting of HSS sections.

Tension Members

Pages 3-108 to 3-116 contain tables and examples for calculating net effective areas and for evaluating the tensile resistance of bolted and welded tension members.

BOLT DATA

General

In this ($11^{\text {th }}$) Edition, bolt data in Part 3 are provided for the imperial-series bolts and assemblies based on ASTM Specifications A325, A490, F1852, F2280 and A307 as referenced by CSA S16-14 (see note below). General information on bolts, imperial and metric series, is provided in Part 6. At the time of preparation of this Handbook, metric-series bolts are generally unavailable unless a very large order is placed with advance notice.

This section includes the following:

Bolt Data

Table 3-1 lists the specified minimum tensile strengths for bolts and bolt assemblies. Table 3-2 provides the nominal diameter (mm) and nominal area $\left(\mathrm{mm}^{2}\right)$ for bolt sizes from $1 / 2$ inch to $11 / 2$ inch diameter.

Bolts in Bearing-Type Connections

Tables 3-3 to 3-7 list values of bearing and bolt resistances computed in accordance with Clause 13.12.1. Tables 3-8 and 3-9 assist in evaluating combined shear and tension on bolts.

Bolts in Slip-Critical Connections

Tables 3-10 and 3-11 list resistances for use with bolts in slip-critical connections, computed in accordance with Clause 13.12.2.

Bolts in Tension and Prying Action

Tables and design aids (Table 3-13 and Figure 3-1) assist in evaluating the effects of prying action on bolts loaded in tension.

Eccentric Loads on Bolt Groups

Tables 3-14 to 3-20 are provided for evaluating eccentric loads on bolts in bearing-type and slip-critical connections for various bolt group configurations.

Note: ASTM F3125, a consolidation and replacement of six standards (A325, A325M, A490, A490M, F1852, and F2280) was published in January 2015. The name of each bolt standard becomes a bolt grade in this "umbrella" standard, F3125; e.g. A490 becomes F3125 Grade A490. The design of bolted connections must comply with CSA S16-14, which specifies the bolt strength and resistances, and references the ASTM bolt standards prior to the consolidation. F3125 is not referenced in Part 3 of the Handbook. New purchase orders, however, may be placed in accordance with the ordering requirements in ASTM F3125 as summarized in High-Strength Bolts - Purchase Order Information in Part 6.

SPECIFIED MINIMUM
TENSILE STRENGTHS*, Fu (MPa)

Boit, Bolt Assembly	Specified Minimum Tensile Strength F_{u}
A325, F1852 (d \leq 1' $\left.^{\prime \prime}\right)$	825
A325, F1852 (d > 1")	725
A490, F2280	1035
A307 \dagger	410
A325M	830
A490M	1040

* CSA S16-14 Clause 13.12.1.2
\dagger Use of A307 bolts in connections is covered in CSA S16-14 Clause 23.6(b).

BASIC BOLT DATA
Table 3-2

Bolt Size *		Nominal Diameter of Bolt	Nominal Area A_{b}
Imperial	Metric		
in.	mm	mm	mm^{2}
1/2		12.70	127
5/8		15.88	198
	M16	16.00	201
$3 / 4$		19.05	285
	M20	20.00	314
	M22	22.00	380
\%		22.23	388
	M24	24.00	452
1		25.40	507
	M27	27.00	573
$11 /$		28.58	641
	M30	30.00	707
$11 / 4$		31.75	792
	M36	36.00	1018
11/2		38.10	1140

[^4]
BOLTS IN BEARING-TYPE CONNECTIONS

General

Connections are generally detailed as bearing-type, unless the designer has specified that the connection is slip-critical. Bearing-type connections are designed for factored loads at the ultimate limit states (ULS). In Part 3, bearing-type connections are assumed unless noted otherwise. Although tension-control bolt assemblies, F1852 and F2280, are typically used in slip-critical and other pretensioned joints, bolt data for ULS are provided for them because these connections must also satisfy ULS requirements

Tables 3-3 to 3-9 on the following pages assist in evaluating the requirements of Clause 13.12.1 of CSA S16-14. Clause 22.3.5.2 lists the size and type of holes permitted with bearing-type connections.

Table 3-3 (below) summarizes the requirements of Clause 13.12.1.2 for bolts in shear and Clause 13.12.1.3 for bolts in tension, and lists expressions for the factored resistance and unit factored resistance of bolts in bearing-type connections.

Table 3-4 lists factored shear and tensile resistances in $\mathrm{kN} / \mathrm{bolt}$. Table 3-5 lists values of the specified minimum tensile strength, F_{u}, for common grades of structural steel, and values of unit factored bearing resistances at bolt holes.

Tables 3-6 and 3-7 list factored bearing resistances in $\mathrm{kN} / \mathrm{bolt}$ for different values of F_{u} for the connected material. Bearing resistances in these tables are given in terms of the steel grade and thickness, and bolt size.

Tables 3-8 and 3-9 assist in evaluating bolts in combined shear and tension according to Clause 13.12.1.4.

The tearing out of material beyond a bolt or group of bolts is governed by Clause 13.11 (Block Shear). Other examples of "block shear" failure modes in bolted connections are illustrated in Tension Members at the end of Part 3.

Bearing-Type Connections
Table 3-3
CSA S16-14 Summary

Bolt Situation in Joint	Factored Resistance $\left(\phi_{b}=0.80, \phi_{b r}=0.80\right)$	Factored Resistance Per Unit of Bolt Area (A_{b}) or Unit of Bearing Area ($(-d)$	Clause Reference
BOLTS IN SHEAR			13.12.1.2
Shear on bolts with threads excluded from shear plane	$V_{r}=0.60 \phi_{b} n \mathrm{~mA}_{\mathrm{b}} \mathrm{F}_{u}$	$0.48 \mathrm{~F}_{\mathrm{u}}$	
Shear on bolts with threads intercepted by shear plane	$V_{t}=0.42 \phi_{b} \mathrm{~nm} \mathrm{~A}_{\mathrm{b}} \mathrm{F}_{\mathrm{u}}$	$0.336 \mathrm{Fu}_{4}$	13.12.1.2(c)
For long lap joints with $L \geq 760 \mathrm{~mm}$:			
- Threads excluded from shear plane	$V_{\text {c }}=0.50 \phi_{\mathrm{b}} \mathrm{nm} \mathrm{mb}_{\mathrm{b}} \mathrm{F}_{\mathrm{u}}$	$0.40 \mathrm{~F}_{\mathrm{u}}$	
- Threads intercepted by shear plane	$V_{r}=0.35 \phi_{b} n \mathrm{~mA}_{\mathrm{b}} \mathrm{F}_{\mathrm{u}}$	$0.28 \mathrm{~F}_{\mathrm{u}}$	
Bearing on Bolt Hole:			
- Other than long slotted holes	$\mathrm{B}_{\mathrm{r}}=3.0 \phi_{\mathrm{br}} \mathrm{tdn} \mathrm{F}_{\mathrm{u}}$	$2.40 \mathrm{~F}_{\mathrm{u}}$	13.12.1.2(a)
- Long slotted holes perpendicular to slot	$\mathrm{B}_{\mathrm{t}}=2.4 \phi_{\mathrm{br}} \mathrm{tdn} \mathrm{F}_{\mathrm{u}}$	$1.92 \mathrm{~F}_{\mathrm{u}}$	13.12.1.2(b)
BOLTS IN TENSION	$T_{t}=0.75 \phi_{b} \cap \mathrm{~A}_{\mathrm{b}} \mathrm{F}_{u}$	$0.60 \mathrm{~F}_{\mathrm{u}}$	13.12.1.3

Note: See Clause 22.3.5.2 of CSA S16-14 regarding the use of oversize or slotted bolt holes.

FACTORED SHEAR AND TENSILE
Table 3-4
RESISTANCES PER BOLT
$\phi_{\mathrm{b}}=0.80$

Bolt Diameter in.	Nominal Area, $A_{b}$$\mathrm{mm}^{2}$	Factored Shear Resistance ${ }^{+}$- Single Shear ** (kN)						Factored Tensile Resistance (kN)		
		Threads Excluded			Threads Intercepted \#\#					
		$\begin{array}{r} \text { A325 } \\ \text { F1852 } \end{array}$	$\begin{gathered} \text { A490 } \\ \text { F2280 } \end{gathered}$	A307	$\begin{array}{r} \text { A325 } \\ \text { F1852 } \end{array}$	$\begin{array}{r} \text { A490 } \\ \text { F2280 } \end{array}$	A307	$\begin{gathered} \text { A325 } \\ \text { F1852 * } \end{gathered}$	$\begin{gathered} \text { A490 } \\ \text { F2280 * } \end{gathered}$	A307
1/2	127	50.3	63.1		35.2	44.2		62.9	78.9	
5/8	198	78.4	98.4	39.0	54.9	68.9	27.3	98.0	123	48.7
$3 / 4$	285	113	142	56.1	79.0	99.1	39.3	141	177	70.1
7/6	388	154	193	76.4	108	135	53.5	192	241	95.4
1	507	201	252		141	176		251	315	
1\%	641	223	318		156	223		279	398	
$11 / 4$	792	276	393		193	275		345	492	
$11 / 2$	1140	397	566		278	396		496	708	

* Maximum bolt diameter for ASTM F1852 and F2280 is $11 / 4 \mathrm{in}$. See Table 3-48 for further information.
** For double shear ($m=2$), multiply tabulated values by 2 .
\dagger Resistance for lap splices with $\mathrm{L} \geq 760 \mathrm{~mm}$ shall be reduced by one-sixth. See CSA S16-14 Clause 13.12.1.2.
$\dagger \dagger$ Threads may be intercepted if the thin ply is next to the nut, especially when detailed for minimum bolt stick-through.

	Steel Grade		Specified Minimum Tensile Strength, F_{u}	$3 \phi_{\mathrm{br}} \mathrm{F}_{\mathrm{u}}$	$2.4 \phi_{\text {br }} \mathrm{F}_{\mathrm{u}}{ }^{*}$
			MPa	MPa	MPa
		260W, 260WT	410	984	787
	300W	$300 \mathrm{~W}, 300 \mathrm{WT}$	440	1056	845
	300WT, 350W, 345WM, 345WMT	350W, 350WT	450	1080	864
	350A, 350AT, 350WT, 380W	$\begin{aligned} & \text { 350A, 350AT } \\ & 380 \mathrm{~W} \end{aligned}$	480	1152	922
		400W, 400WT, 400A, 400AT	520	1248	998
		450W, 450WT	550	1320	1056
		480W, 480WT, 480A, 480AT	590	1416	1133
		550W, 550WT, 550A, 550AT	620	1488	1190
		700Q, 700QT	760	1824	1459
	A36	A36	400	960	768
	A572 Gr. 50 (345) A709M Gr. 345S A913 Gr. 50 (345) A992	A572 Gr. 50 (345)	450	1080	864
	A588	A709M Grades 345W, HPS 345W	485	1164	931
	A913 Gr. 65 (450)		550	1320	1056
		A790M Gr. HPS 485W	585	1404	1123
	A913 Gr. 70 (485)		620	1488	1190

* Factored bearing resistance perpendicular to long slotted holes

FACTORED BEARING RESISTANCE PER BOLT, $\mathrm{B}_{\mathrm{r}}^{*}$ ($\mathbf{k N}$) Table 3-6a

Table 3-6b

FACTORED BEARING RESISTANCE PER BOLT, $\mathrm{B}_{\mathrm{r}}{ }^{*}(\mathrm{kN}) \quad$ Table 3-7a

ASTM A36 Plates and Shapes ($\mathrm{F}_{\mathrm{u}}=400 \mathrm{MPa}$)								
t	Bolt Diameter, in.							
(mm)	$1 / 2$	5/8	3/4	7/8	1	1/8	$11 / 4$	$1 / 2$
4	48.8	61.0	73.2	85.3	97.5	110	122	146
4.5	54.9	68.6	82.3	96.0	110	123	137	165
5	61.0	76.2	91.4	107	122	137	152	183
6	73.2	91.4	110	128	146	165	183	219
7	85.3	107	128	149	171	192	213	256
8	97.5	122	146	171	195	219	244	293
9	110	137	165	192	219	247	274	329
10	122	152	183	213	244	274	305	366
11	134	168	201	235	268	302	335	402
12		183	219	256	293	329	366	439
13		198	238	277	317	357	396	475
14			256	299	341	384	427	512
15			274	320	366	411	457	549
16			293	341	390	439	488	585
17				363	415	466	518	622
18				384	439	494	549	658
19				405	463	521	579	695
20					488	549	610	732
21					512	576	640	768
22						604	671	805
23		$\mathrm{F}_{\mathrm{u}}=$	MPa			631	701	841
24						658	732	878
25							762	914
26							792	951

Table 3-7b

CSA G40.21 260W and 260WT Plates ($\mathrm{F}_{\mathrm{u}}=410 \mathrm{MPa}$)								
t	Bolt Diameter, in.							
(mm)	1/2	5/8	3/4	7/8	1	1/8	$11 / 4$	$11 / 2$
4	50.0	62.5	75.0	87.5	100	112	125	150
4.5	56.2	70.3	84.4	98.4	112	127	141	169
5	62.5	78.1	93.7	109	125	141	156	187
6	75.0	93.7	112	131	150	169	187	225
7	87.5	109	131	153	175	197	219	262
8	100	125	150	175	200	225	250	300
9	112	141	169	197	225	253	281	337
10	125	156	187	219	250	281	312	375
11	137	172	206	241	275	309	344	412
12		187	225	262	300	337	375	450
13		203	244	284	325	366	406	487
14			262	306	350	394	437	525
15			281	328	375	422	469	562
16			300	350	400	450	500	600
17				372	425	478	531	637
18				394	450	506	562	675
19					475	534	594	712
20					500	562	625	750
21					525	590	656	787
22						619	687	825
23		$F_{u}=$	O MP			647	719	862
24							750	900
25							781	937
26							812	975

* $\mathrm{B}_{\mathrm{r}}=3 \phi_{\mathrm{br}} \mathrm{td} \mathrm{F}_{\mathrm{u}}$ for one bolt, where $\phi_{\mathrm{br}}=0.80$. For joints with long slotted holes, see S16-14 Clause 13.12.1.2(b).

Shear resistance of bolt, shear rupture or block shear of structural steel may govern.

FACTORED BEARING RESISTANCE PER BOLT, $\mathrm{B}_{\mathrm{r}}{ }^{*}(\mathbf{k N}) \quad$ Table 3-7c

CSA G40.21 350A, 350AT and 380W Plates and Shapes; 350WT Shapes ($\mathrm{F}_{\mathrm{u}}=480 \mathrm{MPa}$)								
t	Bolt Diameter, in.							
(mm)	1/2	5/8	3/4	7/6	1	$11 / 8$	$11 / 4$	$11 / 2$
4	58.5	73.2	87.8	102	117	132	146	176
4.5	65.8	82.3	98.8	115	132	148	165	198
5	73.2	91.4	110	128	146	165	183	219
6	87.8	110	132	154	176	198	219	263
7	102	128	154	179	205	230	256	307
8	117	146	176	205	234	263	293	351
9	132	165	198	230	263	296	329	395
10		183	219	256	293	329	366	439
11		201	241	282	322	362	402	483
12			263	307	351	395	439	527
13			285	333	380	428	475	571
14				358	410	461	512	614
15				384	439	494	549	658
16				410	468	527	585	702
17					497	560	622	746
18					527	593	658	790
19						625	695	834
20						658	732	878
21		$\mathrm{F}_{\mathrm{u}}=480 \mathrm{MPa}$						922
22							805	966
23								1009
24								1053
25								1097
26								1141

Table 3-7d

${ }^{*} \mathrm{~B}_{\mathrm{r}}=3 \phi_{\mathrm{br}} \mathrm{td} \mathrm{F}_{\mathrm{u}}$ for one bolt, where $\phi_{\mathrm{b} r}=0.80$. For joints with long slotted holes, see $\mathrm{S} 16-14$ Clause 13.12.1.2(b).
Shear resistance of bolt, shear rupture or block shear of structural steel may govern.

CSA G40.21 450W and 450WT Plates A913 Gr. 65 Shapes ($F_{u}=550 \mathrm{MPa}$)								
t	Bolt Diameter, in.							
(mm)	1/2	5/8	3/4	7/8	1	1/88	$11 / 4$	11/2
$\begin{gathered} 4 \\ 4.5 \\ 5 \\ \hline \end{gathered}$	$\begin{aligned} & 67.1 \\ & 75.4 \\ & 83.8 \\ & \hline \end{aligned}$	$\begin{gathered} 83.8 \\ 94.3 \\ 105 \\ \hline \end{gathered}$	$\begin{aligned} & 101 \\ & 113 \\ & 126 \\ & \hline \end{aligned}$	$\begin{aligned} & 117 \\ & 132 \\ & 147 \\ & \hline \end{aligned}$	$\begin{aligned} & 134 \\ & 151 \\ & 168 \\ & \hline \end{aligned}$	$\begin{aligned} & 151 \\ & 170 \\ & 189 \\ & \hline \end{aligned}$	$\begin{aligned} & 168 \\ & 189 \\ & 210 \\ & \hline \end{aligned}$	$\begin{aligned} & 201 \\ & 226 \\ & 251 \\ & \hline \end{aligned}$
6	101	126	151	176	201	226	251	302
7	117	147	176	205	235	264	293	352
8	134	168	201	235	268	302	335	402
9		189	226	264	302	339	377	453
10		210	251	293	335	377	419	503
11			277	323	369	415	461	553
12			302	352	402	453	503	604
13				381	436	490	545	654
14				411	469	528	587	704
15					503	566	629	754
16					536	604	671	805
17						641	712	855
18							754	905
19							796	956
20								1006
21		$\mathrm{F}_{\mathrm{u}}=550 \mathrm{MPa}$						1056
22								1106
23								1157
24								
25								
26								

Table 3-7f

CSA G40.21 550W and 550WT Plates A913 Gr. 70 Shapes ($F_{U}=620 \mathrm{MPa}$)								
t	Bolt Diameter, in.							
(mm)	1/2	5/8	$3 / 4$	7/8	1	1/1/8	$11 / 4$	$11 / 2$
4 4.5 5	$\begin{aligned} & 75.6 \\ & 85.0 \\ & 94.5 \end{aligned}$	$\begin{gathered} 94.5 \\ 106 \\ 118 \\ \hline \end{gathered}$	$\begin{aligned} & 113 \\ & 128 \\ & 142 \end{aligned}$	$\begin{aligned} & 132 \\ & 149 \\ & 165 \\ & \hline \end{aligned}$	$\begin{aligned} & 151 \\ & 170 \\ & 189 \\ & \hline \end{aligned}$	$\begin{aligned} & 170 \\ & 191 \\ & 213 \end{aligned}$	$\begin{aligned} & 189 \\ & 213 \\ & 236 \\ & \hline \end{aligned}$	$\begin{aligned} & 227 \\ & 255 \\ & 283 \end{aligned}$
6	113	142	170	198	227	255	283	340
7	132	165	198	231	265	298	331	397
8		189	227	265	302	340	378	454
9		213	255	298	340	383	425	510
10			283	331	378	425	472	567
11			312	364	416	468	520	624
12				397	454	510	567	680
13					491	553	614	737
14					529	595	661	794
15						638	709	850
16							756	907
17							803	964
18								1020
19								1077
20								1134
21		$\mathrm{F}_{\mathrm{u}}=620 \mathrm{MPa}$						
22								
23								
24								
25								
26								

${ }^{*} \mathrm{~B}_{\mathrm{r}}=3 \phi_{\mathrm{br}} \mathrm{td} \mathrm{F}_{\mathrm{u}}$ for one bolt, where $\phi_{\mathrm{b}}=0.80$. For joints with long slotted holes, see S16-14 Clause 13.12.1.2(b). Shear resistance of bolt, shear rupture or block shear of structural steel may govern.

Bolts in Combined Shear and Tension (Bearing-Type Connections)

Clause 13.12.1.4 of CSA S16-14 requires that bolts subjected to shear and tension satisfy the expression:

$$
\left(\frac{V_{f}}{V_{r}}\right)^{2}+\left(\frac{T_{f}}{T_{r}}\right)^{2} \leq 1
$$

where V_{f} is the factored shear load on the bolt and T_{f} is the factored tensile load including prying effects. If the shear-tension ratio X is defined as:

$$
X=\frac{V_{f}}{T_{f}}
$$

solving for V_{f} and T_{f} gives $V_{f}=X T_{f}$, and

$$
T_{f}=\sqrt{\frac{V_{r}^{2} T_{r}^{2}}{X^{2} T_{r}^{2}+V_{r}^{2}}}
$$

Combined shear and tension usually occurs for the threads-excluded case, since a plate or flange thin enough to include threads in the shear plane (about 10 mm) has little capacity to transmit tension. Table 3-8 gives values of V_{f} and T_{f} for various shear-tension ratios X for $3 / 4$, $7 / 8,1,11 / 8$ and $11 / 4$-inch A325 bolts, with threads excluded from the shear plane. Table 3-9 gives values for A490 bolts.

Example

Given:

A bracing connection consisting of a tee section resists an inclined factored load P, with a tension component T_{f} of 750 kN and a shear component V_{f} of 600 kN . Check the number of $3 / 4$-inch, A325 bolts required (threads excluded).

Solution:

Shear-tension ratio is $X=600 / 750=0.80$.
From Table 3-8, permitted $V_{f}=79.8 \mathrm{kN}$ and permitted $T_{f}=99.8 \mathrm{kN}$ per bolt.
Therefore, the number of bolts required $=600 / 79.8$ or $750 / 99.8=7.52 \approx 8$.
Prying action should also be checked to complete the design calculations. See Bolts in Tension and Prying Action for further information.

Factored Resistances (kN)
A325 Bolts and F1852 Assemblies, Threads Excluded, $\phi_{\mathrm{b}}=0.80$

Shear-Tension Ratio$X=V_{1} / T_{1}$		Bolt Size*									
		$3 / 4$		7/8		1		11/8		$11 / 4$	
X	1/X	$V_{\text {f }}$	Tf	$V_{\text {f }}$	T	V_{1}	T_{f}	V_{1}	T	V_{1}	T
0	T,	0	141	0	192	0	251	0	279	0	344
0.10	10.00	14.0	140	19.1	191	24.9	249	27.7	277	34.2	342
0.20	5.00	27.4	137	37.2	186	48.6	243	54.2	271	66.8	334
0.30	3.33	39.6	132	54.0	180	70.5	235	78.3	261	96.6	322
0.40	2.50	50.4	126	68.8	172	89.6	224	100	250	123	308
0.50	2.00	60.0	120	81.5	163	107	213	119	237	146	292
0.60	1.67	67.8	113	92.4	154	121	201	134	223	166	276
0.70	1.43	74.2	106	102	145	132	189	147	210	181	259
0.80	1.25	79.8	99.8	109	136	142	177	158	197	195	244
0.90	1.11	84.3	93.7	115	128	150	167	167	185	206	229
1.00	1.00	88.1	88.1	120	120	157	157	174	174	215	215
1.11	0.90	91.6	82.4	124	112	163	147	181	163	223	201
1.25	0.80	95.1	76.1	130	104	169	135	188	150	233	186
1.43	0.70	98.4	68.9	134	93.8	176	123	194	136	240	168
1.67	0.60	102	61.1	139	83.1	182	109	202	121	248	149
2.00	0.50	105	52.4	143	71.3	186	93.2	208	104	256	128
2.50	0.40	108	43.0	146	58.5	191	76.4	213	85.0	263	105
3.33	0.30	110	32.9	149	44.8	195	58.5	217	65.1	268	80.4
5.00	0.20	112	22.3	152	30.3	198	39.6	221	44.1	272	54.4
10.00	0.10	113	11.3	153	15.3	200	20.0	222	22.2	275	27.5
V_{r}	0	113	0	154	0	201	0	223	0	276	0

* See Table 3-48 for F1852 assemblies.

A490 and F2280, Threads Excluded, $\boldsymbol{\phi}_{\mathrm{b}}=\mathbf{0 . 8 0}$
Table 3-9

Shear-Tension Ratio $\mathrm{X}=\mathrm{V}_{\mathrm{t}} / \mathrm{T}_{\mathrm{t}}$		Bolt Size *									
		$3 / 4$		7/8		1		11/8		$11 / 4$	
X	1/X	V_{1}	T	V_{1}	T	V_{1}	T_{1}	$V_{\text {f }}$	T_{f}	V_{1}	T,
0	T_{r}	0	177	0	241	0	315	0	398	0	492
0.10	10.00	17.6	176	23.9	239	31.2	312	39.5	395	48.8	488
0.20	5.00	34.4	172	46.8	234	61.0	305	77.2	386	95.4	477
0.30	3.33	49.8	166	67.8	226	88.5	295	112	373	138	460
0.40	2.50	63.2	158	86.0	215	112	281	142	356	176	440
0.50	2.00	75.0	150	102	204	134	267	169	338	209	417
0.60	1.67	85.2	142	116	193	151	252	191	319	236	393
0.70	1.43	93.1	133	127	181	166	237	210	300	259	370
0.80	1.25	100	125	136	170	178	223	226	282	278	348
0.90	1.11	106	118	144	160	188	209	239	265	294	327
1.00	1.00	111	111	150	150	197	197	249	249	307	307
1.11	0.90	114	103	157	141	204	184	259	233	319	287
1.25	0.80	119	95.4	163	130	213	170	269	215	331	265
1.43	0.70	124	86.5	169	118	220	154	279	195	343	240
1.67	0.60	128	76.6	173	104	227	136	287	172	355	213
2.00	0.50	131	65.7	179	89.5	234	117	296	148	366	183
2.50	0.40	135	53.9	184	73.4	240	95.9	303	121	375	150
3.33	0.30	138	41.3	187	56.2	245	73.4	310	92.9	383	115
5.00	0.20	140	28.0	191	38.1	249	49.7	315	62.9	389	77.7
10.00	0.10	141	14.1	192	19.2	251	25.1	318	31.8	392	39.2
V_{t}	0	142	0	193	0	252	0	319	0	393	0

${ }^{*}$ See Table 3-48 for F2280 assemblies.

BOLTS IN SLIP-CRITICAL CONNECTIONS

General

The name slip-critical emphasizes that this type of connection is required only when the consequences of slip are critical to the performance of the structure. Clause 22.2.2(a) of CSA S16-14 requires slip-critical connections where slippage into bearing cannot be tolerated, such as structures sensitive to deflection, or subject to fatigue or frequent load reversals. In accordance with Clause 13.12.2, slip-critical shear joints transfer the specified loads by the slip resistance (friction) of the clamped faying surfaces, which is a function of the slip coefficient of the contact surfaces and the clamping force. Table 3 of S16-14 provides the mean slip coefficients, k_{s}, for Class A and Class B surfaces, whereas the resistance factor for slip, c_{s}, accounts for the clamping force that depends on the installation method.

In addition to the slip resistance of the joints, their factored shear resistance as bearing-type joints under factored loads for all applicable ultimate limit states must also be checked.

Tables

Tables 3-10 and 3-11 are based on Clause 13.12.2.2 of S16-14 for bolts in slip-critical connections.

Table 3-10 lists values of c_{s} and values of unit slip resistance ($0.53 c_{s} k_{s} F_{u}$) for combinations of contact surfaces (Class A and Class B), and A325 and A490 bolts installed by the turn-of-nut method and by using F959 washer-type direct tension indicators. Table 3-10 also gives corresponding values when using twist-off-type bolt assemblies, F1852 and F2280.

Table 3-11 lists slip resistance values ($V_{s}=0.53 c_{s} k_{s} m n A_{b} F_{u}$) for bolted joints with a single faying surface ($m=1$) for Class A and Class B contact surfaces for the combinations of bolts and installation methods covered in Table 3-10.

Example

Given:

A single shear connection is subject to 370 kN at the specified load level and 550 kN at the factored load level. Select the number of $3 / 4$ inch A325 bolts required for a slip-critical connection. Steel is G40.21-350W, 6 mm thick, and the surface is clean mill scale (Class A). Assume 80 mm bolt pitch and 30 mm bolt end distance.

Solution:

(a) For specified loads:

From Table 3-11, $V_{s}=37.4 \mathrm{kN}$ ($3 / 4$ inch A325 bolt for clean mill scale). The number of bolts required is $370 / 37.4=9.9$. Use 10 (say 2 lines of 5 , parallel to the force).
(b) Confirm the connection at factored loads. This includes checking bolts for shear resistance, checking material for bolt bearing, and checking material for block shear.
From Table 3-4, $V_{r}=79.0 \mathrm{kN}(3 / 4$ inch A325, threads intercepted). The factored shear resistance of the bolts is $10 \times 79.0=790 \mathrm{kN}>550 \mathrm{kN}$

From Table 3-6, the factored bearing resistance at one $3 / 4$ inch bolt in 6 mm thick 350 W material is 123 kN .10 bolts give a resistance of $123 \times 10=1230 \mathrm{kN}>550 \mathrm{kN}$
The connection also has to be confirmed for different modes of block shear. See S16-14 Clause 13.11.

Table 3-10
For Specified Loads

Bolt Assembly and Installation Method	Bolt Properties		Contact Surfaces of Bolted Parts			
	Diameter in.	$\mathrm{F}_{\mathrm{u}}$$\mathrm{MPa}$	Class A, $\mathrm{k}_{\mathrm{s}}=0.30$ Unpainted clean mill scale steel surfaces or surfaces with Class A coatings on blast-cleaned steel or hot-dipped galvanized and roughened surfaces		Class B, $\mathrm{k}_{\mathrm{s}}=0.52$ Unpainted blast-cleaned steel surfaces or surfaces with Class B coatings on blast-cleaned steel	
			C_{5}	$0.53 \mathrm{c}_{5} \mathrm{k}_{5} \mathrm{~F}_{4}$ (MPa)	C_{3}	$0.53 \mathrm{c}_{\mathrm{s}} \mathrm{k}_{5} \mathrm{~F}_{\mathrm{u}}(\mathrm{MPa})$
$\begin{gathered} \text { A325 } \\ \text { by Turn-of-Nut } \end{gathered}$	$1 / 2$ to 1	825	1.00	131	1.04	236
	11/8 to $11 / 2$	725	1.00	115	1.04	208
F1852 ${ }^{2}$ A325 with F959	$1 / 2$ to 1	825	0.78	102	0.81	184
	11/2 to $11 / 2$	725	0.78	89.9	0.81	162
$\begin{gathered} \text { A490 } \\ \text { by Turn-of-Nut } \end{gathered}$	$1 / 2$ to $11 / 2$	1035	0.92	151	0.96	274
$\begin{gathered} \text { F2280 }{ }^{2} \\ \text { A490 with F959 } \end{gathered}$			0.78	128	0.81	231

1. See S16-14 Clause 13.12.2.2 for values of C_{5} and k_{s}.
2. Maximum bolt diameter for ASTM F1852 and F2280 is $11 / 4 \mathrm{in}$. See Table 3-48.

SLIP RESISTANCE PER BOLT, Vs, (kN)

Table 3-11
For Specified Loads and Single Shear ${ }^{1}$

Bolt Diameter	Nominal Area Ab	Class A Surfaces				Class B Surfaces			
		$\begin{aligned} & \text { A325 by } \\ & \text { Turn-of- } \\ & \text { Nut } \end{aligned}$	$\begin{gathered} \text { F1852 }{ }^{2} \\ \text { A325 } \\ \text { with F959 } \end{gathered}$	A490 by Turn-ofNut	$\begin{gathered} {\mathrm{F} 2280^{2},}_{\text {A490 }} \\ \text { with F959 } \end{gathered}$	A325 by Turn-ofNut	$\begin{gathered} \text { F1852 }{ }^{2} \text { A } \\ \text { A325 } \\ \text { with F959 } \end{gathered}$	A490 by Turn-ofNut	$\begin{gathered} \text { F2280 } \\ \text { A490 } \\ \text { with F959 } \end{gathered}$
in.	mm^{2}								
1/2	127	16.7	13.0	19.2	16.3	30.0	23.4	34.8	29.3
5/8	198	26.0	20.3	30.0	25.4	46.8	36.5	54.2	45.7
$3 / 4$	285	37.4	29.2	43.1	36.6	67.4	52.5	78.0	65.8
7/8	388	50.9	39.7	58.7	49.8	91.7	71.5	106	89.6
1	507	66.5	51.9	76.8	65.1	120	93.4	139	117
11\%	641	73.9	57.6	97.0	82.3	133	104	176	148
11/4	792	91.3	71.2	120	102	165	128	217	183
11/2	1140	131	103	173	146	237	185	312	263

Note: These resistances are for use with specified loads in accordance with CSA S16-14 Clause 13.12.
${ }^{1}$ For double shear ($m=2$), multiply tabulated values by 2.
${ }^{2}$ Maximum bolt diameter for ASTM F1852 and F2280 is $11 / 4 \mathrm{in}$. See Table 3-48.

Bolts in Combined Shear and Tension - Slip-Critical Connections

Clause 13.12.2.3 of CSA S16-14 requires that bolts subjected to both shear and tension in a slip-critical connection satisfy the following relationship for specified loads:

$$
\frac{V}{V_{s}}+1.9 \frac{T}{n A_{b} F_{u}} \leq 1.0
$$

The above relationship can conservatively be expressed (see Commentary on Clause 13.12.2 in Part 2 of this Handbook) as:

$$
\frac{V}{V_{s}}+\frac{T}{T_{i}} \leq 1.0
$$

where T_{i} is the specified installed tension.
If the shear-tension ratio V / T on the bolts is X, solving for V and T gives $V=X T$, and $T=$ $V_{s} /\left(X+V_{s} / T_{i}\right)$.

Table 3-12a lists values of V and T for various shear-tension ratios X for Class A contact surfaces (clean mill scale or blast cleaned with Class A coatings, $k_{s}=0.30$) using A325 bolts in single shear installed by the turn-of-nut method. Table 3-12b lists values of V and T for various shear-tension ratios X for Class A contact surfaces $\left(k_{s}=0.30\right)$ using F1852 twist-off-type bolts (or A325 bolts installed with F959 washer-type direct tension indicators) in single shear. These tables can be used to establish directly the number of bolts required to satisfy the interaction equation for slip-critical connections subjected to a combination of shear and tension.

Example

Given:

Find the number of $3 / 4$ inch A 325 bolts required in a slip-critical connection to resist a specified tension force of 320 kN and a specified shear force of 400 kN . The single faying surface consists of clean mill scale.

Solution:

Prying is not a factor when making the specified shear vs, specified tension interaction check. Within permitted loadings, prying is only a redistribution of the contact forces between the material surfaces, having no significant effect on slip resistance.

Shear-tension ratio is $400 / 320=1.25$
From Table 3-12a, for $3 / 4$ inch A 325 bolts and $V / T=1.25$,
permitted V and T are 30.1 kN and 24.1 kN , respectively, per bolt.
Therefore, number of bolts required is $400 / 30.1$ or $320 / 24.1=13.3$
Try 14 bolts.
The connection also has to be confirmed for strength, including bolt prying and flange bending, as a bearing-type connection at factored loads.

SPECIFIED SHEAR AND TENSION (kN)
Table 3-12a
Slip-Critical Connections, Class A Surfaces
$k_{s}=0.30$
A325 Bolts Installed by Turn-of-Nut Method
$c_{s}=1.00$

Shear/Tension Ratio $\mathrm{X}=\mathrm{V} / \mathrm{T}$		Bolt Size									
		$3 / 4$		7/8		1		11/8		$11 / 4$	
X	1/X	V	T	V	T	V	T	V	T	V	T
0.5		23.3	46.6	31.7	63.4	41.4	82.9	46.1	92.2	56.9	114
0.6		24.9	41.4	33.8	56.4	44.2	73.7	49.2	81.9	60.7	101
0.7		26.1	37.3	35.5	50.8	46.4	66.3	51.6	73.8	63.8	91.1
0.8		27.1	33.9	36.9	46.2	48.2	60.3	53.7	67.1	66.2	82.8
0.9		28.0	31.1	38.1	42.3	49.8	55.3	55.3	61.5	68.3	75.9
1.0	1.0	28.7	28.7	39.1	39.1	51.0	51.0	56.8	56.8	70.1	70.1
1.11	0.9	29.4	26.5	40.0	36.0	52.3	47.0	58.1	52.3	71.8	64.6
1.25	0.8	30.1	24.1	41.0	32.8	53.5	42.8	59.5	47.6	73.5	58.8
1.43	0.7	30.9	21.6	42.0	29.4	54.9	38.4	61.0	42.7	75.3	52.7
1.67	0.6	31.7	19.0	43.1	25.8	56.3	33.8	62.6	37.5	77.3	46.4
2.00	0.5	32.5	16.2	44.2	22.1	57.7	28.9	64.2	32.1	79.3	39.6
2.50	0.4	33.4	13.3	45.4	18.2	59.3	23.7	66.0	26.4	81.4	32.6
3.33	0.3	34.3	10.3	46.7	14.0	60.9	18.3	67.8	20.3	83.7	25.1
5.00	0.2	35.3	7.1	48.0	9.6	62.7	12.5	69.7	13.9	86.1	17.2
10.00	0.1	36.3	3.6	49.4	4.9	64.5	6.5	71.8	7.2	88.6	8.9
V_{s}	0	37.4	0	50.9	0	66.5	0	73.9	0	91.3	0

$\mathrm{V}=\mathrm{XT}, \quad \mathrm{T}=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{X}+\mathrm{V}_{\mathrm{s}} / \mathrm{T}_{\mathrm{i}}}$

SPECIFIED SHEAR AND TENSION (kN)
Slip-Critical Connections, Class A Surfaces
F1852 Assemblies, A325 Bolts Installed with F959

Table 3-12b
$k_{s}=0.30$
$\mathrm{c}_{\mathrm{s}}=0.78$

Shear/Tension Ratio $\mathrm{X}=\mathrm{V} / \mathrm{T}$		Bolt Size*									
		$3 / 4$		7/8		1		11/8		$11 / 4$	
X	1/X	V	T	V	T	V	T	V	T	V	T
0.5		19.8	39.6	27.0	54.0	35.2	70.5	39.2	78.4	48.4	96.8
0.6		20.9	34.9	28.5	47.5	37.2	62.0	41.4	69.0	51.1	85.2
0.7		21.8	31.2	29.7	42.4	38.8	55.4	43.1	61.6	53.3	76.1
0.8		22.5	28.2	30.7	38.3	40.0	50.1	44.5	55.7	55.0	68.7
0.9		23.1	25.7	31.5	35.0	41.1	45.7	45.7	50.8	56.4	62.7
1.0	1.0	23.6	23.6	32.1	32.1	42.0	42.0	46.7	46.7	57.6	57.6
1.11	0.9	24.1	21.7	32.7	29.5	42.8	38.5	47.6	42.8	58.7	52.9
1.25	0.8	24.5	19.6	33.4	26.7	43.6	34.9	48.5	38.8	59.9	47.9
1.43	0.7	25.0	17.5	34.1	23.9	44.5	31.2	49.5	34.6	61.1	42.8
1.67	0.6	25.6	15.3	34.8	20.9	45.4	27.3	50.5	30.3	62.4	37.4
2.00	0.5	26.1	13.0	35.5	17.8	46.4	23.2	51.6	25.8	63.7	31.8
2.50	0.4	26.7	10.7	36.3	14.5	47.4	19.0	52.7	21.1	65.1	26.0
3.33	0.3	27.2	8.2	37.1	11.1	48.4	14.5	53.9	16.2	66.5	19.9
5.00	0.2	27.9	5.6	37.9	7.6	49.5	9.9	55.1	11.0	68.0	13.6
10.00	0.1	28.5	2.8	38.8	3.9	50.7	5.1	56.3	5.6	69.5	7.0
V_{3}	0	29.2	0	39.7	0	51.8	0	57.7	0	71.2	0

$V=X T, \quad T=\frac{V_{s}}{X+V_{s} / T_{1}}$

BOLTS IN TENSION AND PRYING ACTION

General

Connections with fasteners loaded in tension occur in many common situations, such as hanger and bracing connections with tee-type gussets, and end-plate moment connections. When bolts are loaded in direct tension, Clause 13.12.1.3 of CSA S16-14 requires that the effects of prying action be taken into account in proportioning the bolts and connected parts. This clause also requires that the connection be arranged to minimize prying forces when subjected to tensile cyclic loading.

The actual stress distribution in the flange of a tee-type connection is extremely complex as it depends on the bolt size and arrangement, and on the strength and dimensions of the connecting flange. Consequently, various design methods have been proposed in the technical literature for proportioning such connections. The procedures given in this section are based on the recommendations contained in the Guide to Design Criteria for Bolted and Riveted Joints, by Kulak, Fisher and Struik, second edition, page 285.

The procedures include a set of seven equations for selecting a trial section and for evaluating the bolt forces and flange capacity. Equation (4) uses the full tensile resistance, T_{r}, of the bolts to determine α for use in equation (5) which provides the maximum connection capacity. Similarly, equation (6) uses the applied factored tensile load per bolt, P_{f}, to determine α for use in the amplified bolt force expressed by equation (7). This provides a value for the factored load per bolt (including prying), T_{f}.

Based on these equations, Table 3-13 and Figure 3-1 provide aids for preliminary design and checking purposes. They indicate the effect of applied factored tensile load per bolt and flange geometry for various bolt sizes, assuming static loads.

In general, prying effects can be minimized by dimensioning for minimum practical gauge distance and for maximum permissible edge distance. For repeated loading the flange must be made sufficiently thick and stiff so that flange deformation is virtually eliminated. In addition, special attention must be paid to bolt installation to ensure that the bolts are properly pretensioned to provide the required clamping force.

The expressions for prying effects are based on tests carried out on tees. For angles, assuming the distribution of moment shown on the accompanying figure, the moment equilibrium equation can be derived from statics as follows:

$$
P_{f} b=Q a
$$

Therefore,

$$
\frac{Q}{P_{f}}=\frac{b}{a}
$$

Equations

$$
\begin{align*}
& K=\frac{4 \times 10^{3} b^{\prime}}{\phi p F_{y}} \tag{1}\\
& \delta=1-\frac{d^{\prime}}{p} \tag{2}
\end{align*}
$$

Range of $t=\sqrt{\frac{K P_{f}}{1+\delta \alpha}}$
$t_{\text {min }}$ when $\alpha=1.0, t_{\text {max }}$ when $\alpha=0.0$

$$
\begin{equation*}
\alpha=\left(\frac{K T_{r}}{t^{2}}-1\right) \frac{a^{\prime}}{\delta\left(a^{\prime}+b^{\prime}\right)}, \quad 0 \leq \alpha \leq 1.0 \tag{4}
\end{equation*}
$$

Connection capacity $=\frac{t^{2}}{K}(1+\delta \alpha) n$
$\alpha=\left(\frac{K P_{f}}{t^{2}}-1\right) \frac{1}{\delta} \quad($ for use in Eq. 7)
$T_{f} \approx P_{f}\left[1+\frac{b^{\prime}}{a^{\prime}}\left(\frac{\delta \alpha}{1+\delta \alpha}\right)\right] \leq T_{r}$

Nomenclature

$K=$ Parameter as defined in Eq. 1
$P_{f}=$ Applied factored tensile load per bolt, (kN)
$Q=$ Prying force per bolt at factored load, $Q=T_{f}-P_{f},(\mathrm{kN})$
$T_{f}=$ Factored load per bolt including prying (amplified bolt force), (kN)
$T_{r}=$ Factored tensile resistance per bolt, $0.75 \phi_{b} A_{b} F_{u},(\mathrm{kN})$
$F_{y}=$ Yield strength of flange material, (MPa)
$a=$ Distance from bolt line to edge of tee flange, not more than $1.25 b,(\mathrm{~mm})$
$a^{\prime}=a+d / 2$, (mm)
$b=$ Distance from bolt line (gauge line) to face of tee stem, (mm)
$b^{\prime}=b-d / 2$, (mm)
$d=$ Bolt diameter, (mm)
$d^{\prime}=$ Nominal hole diameter, (mm).
$n=$ Number of flange bolts in tension
$p=$ Length of flange tributary to each bolt, or bolt pitch, (mm)
$t=$ Thickness of flange, (mm)
$\alpha=$ Ratio of sagging moment at bolt line to hogging moment at stem of tee
$\delta=$ Ratio of net to gross flange area along a longitudinal line of bolts (see Eq. 2)
$\phi=$ Resistance factor for the tee material, (0.9)

Preliminary Design Tables

Table 3-13 lists the maximum and minimum values of flange thickness t calculated with Eq. 3 using $\alpha=0.0$ and $\alpha=1.0$ for a range of values of P_{f}. Results are tabulated for various flange bolt patterns and bolt sizes.

The maximum and minimum values of t indicate a range of flange thickness within which the bolts and flange are in equilibrium for the particular flange geometry, and in which the effects of flange flexure and prying reduce the effective tension capacity of the bolts. When the flange thickness is greater than the larger value of $t,(\alpha=0.0)$, the flange is generally sufficiently thick and stiff to virtually eliminate prying action, and the connection capacity will be limited by the tensile resistance of the bolts. When the flange thickness is less than the smaller value of $t,(\alpha=1.0)$, the flange thickness will gavern the connection capacity, and the bolts will usually have excess capacity to resist the applied tension load in spite of prying effects.

Within the range of flange thickness for $0.0<\alpha<1.0$, with the bolts and flange in equilibrium, the ratio T_{f} / P_{f} will increase from unity for $t_{\max }$ to a maximum value for $t_{\text {min }}$. In this range, the bolts control the capacity with the flange strength being increasingly consumed as the flange thickness decreases. It can be helpful to note that the typical ratio of maximum-to-minimum flange thickness is about 1.33 , and that at the minimum flange thickness, the prying ratio T_{f} / P_{f} is about the same. When the maximum flange thickness is used, there is essentially no prying and the ratios $t_{\text {mar }} / t_{\text {req'd }}$ and T_{f} / P_{f} are both 1.0.

The bolt pitch p should be approximately 4 to 5 times the bolt size $(4 d \leq p \leq 5 d)$ and the gauge g should be kept as small as practicable. Also, dimension a for design purposes must not exceed $1.25 b$.

Figure 3-1 graphs the amplified bolt force T_{f} for various applied loads P_{f}, flange thicknesses t, and four different values of $b(40 \mathrm{~mm}, 45 \mathrm{~mm}, 50 \mathrm{~mm}$ and 55 mm$)$ with $3 / 4,7 / 8$ and 1 -inch A325 bolts. These graphs can be used to evaluate the effects of flange thickness, gauge distance and bolt size on the amplified bolt force, and to establish reasonable trial connection parameters. The graphs are based on a value of a (distance from bolt line to edge of tee flange) taken equal to b, and are intended to be used within the range $b \leq a \leq 1.25 b$.

Design Procedure

Trial Section

1) Select an intended number and size of bolts as a function of the applied factored tensile load per bolt P_{f} and the anticipated prying ratio.
2) With P_{f}, the bolt size, and trial values of b^{\prime} and p, use equations 1,2 and 3 (with $\alpha=0.0$ and $\alpha=1.0$) to identify a range of acceptable flange thicknesses. Alternatively, use Table 3-13.
3) Identify an intended flange thickness.

Figure 3-1 may also be used to identify an intended bolt size and flange geometry based on the amplified bolt force being less than the bolt tensile resistance.

1) Recalculate K, if necessary, and use Eq. 4 to determine α for use in Eq. 5 .
2) Calculate the connection capacity with Eq. 5. (If α from Eq. $4<0.0$, use $\alpha=0.0$, and if $\alpha>1.0$, use $\alpha=1.0$.)
3) Equations 6 and 7 can be used if desired to determine the total bolt tension, including prying (amplified bolt force), that results from the applied load.
Note
CSA S16-14 Clause 22.2.2(e) requires that all bolts subject to tensile loadings be pretensioned when installed, and Clause 13.12.1.3 requires that connections with tensile cyclic loads on bolts be arranged to minimize prying forces.

Example 1

Given:

Design a tension tee connection with 4 ASTM A325 bolts in tension for a factored static load of 480 kN assuming the bolts are on a 100 mm gauge, at a pitch of 100 mm , with the tee connected to rigid supports. Use ASTM A992 steel ($F_{y}=345 \mathrm{MPa}$).

Solution:

Trial Section

Applied load per bolt $=P_{f}=480 / 4=120 \mathrm{kN}$
Assume $7 / 8$ inch bolts, 24 mm nominal hole diameter, 15 mm web. $T_{r}=192 \mathrm{kN}$
$b=(100-15) / 2=42.5 \mathrm{~mm} \quad b^{\prime}=42.5-22.23 / 2=31.4 \mathrm{~mm}$
$K=4 \times 31.4 \times 10^{3} /(0.9 \times 100 \times 345)=4.05$
$\delta=1-(24 / 100)=0.760$
$t_{\text {min }}=\sqrt{\frac{4.05 \times 120}{1.760}}=16.6 \mathrm{~mm} ; \quad t_{\text {max }}=\sqrt{\frac{4.05 \times 120}{1.0}}=22.0 \mathrm{~mm}$
(Alternatively, the range of t, by interpolation from Table 3-13, could be seen to be 16.6 to 22.0 mm .)

One possible solution is W410x85 $(t=18.2 \mathrm{~mm})$.

Design Check

Try W410x85 with $7 / 8$ inch bolts: $d=22.23 \mathrm{~mm}, d^{\prime}=24 \mathrm{~mm}$
$t=18.2 \mathrm{~mm}, \quad w=10.9 \mathrm{~mm}$, flange width $=181 \mathrm{~mm}$
$b=(100-10.9) / 2=44.6 \mathrm{~mm} ; \quad b^{\prime}=44.6-22.23 / 2=33.5 \mathrm{~mm} ; 1.25 b=55.8 \mathrm{~mm}$
$a=(181-100) / 2=40.5<1.25 b ; a^{\prime}=40.5+22.23 / 2=51.6 \mathrm{~mm} ; a^{\prime}+b^{\prime}=85.1 \mathrm{~mm}$
$K=4 \times 33.5 \times 10^{3} /(0.9 \times 100 \times 345)=4.32$
$\delta=0.760 \quad$ (as above)
$\alpha=\left(\frac{4.32 \times 192}{18.2^{2}}-1\right) \times \frac{51.6}{0.760 \times 85.1}=1.20>1.0$, so use $\alpha=1.0$
$\delta \alpha=0.760 \times 1.0=0.760$
Connection capacity $=\left(18.2^{2} / 4.32\right)(1.760) 4=540 \mathrm{kN}>480 \mathrm{kN}$
To find actual bolt load (including prying), if desired:

$$
\begin{align*}
& \alpha=\left(\frac{4.32 \times 120}{18.2^{2}}-1\right) \times \frac{1}{0.760}=0.743 \tag{Eq,6}\\
& \delta \alpha=0.760 \times 0.743=0.565 \\
& T_{f}=120\left[1+\frac{33.5}{51.6}\left(\frac{0.565}{1+0.565}\right)\right]=148 \mathrm{kN}<192 \mathrm{kN} \tag{Eq.7}
\end{align*}
$$

Prying ratio; $T_{f} / P_{f}=148 / 120=1.23$
Tee stem capacity is $0.9(2 \times 100) 10.9 \times 345=677 \mathrm{kN}>480 \mathrm{kN}$

Example 2

Given:

Use Table 3-13 and Figure 3-1 to select the bolt size and trial dimensions for a tee cut from a W460x177 section of ASTM A992 steel ($F_{y}=345 \mathrm{MPa}$). The factored tensile load is 560 kN and the bolt gauge is 130 mm . Confirm the trial design.

Solution:

Since Table 3-13 and Figure 3-1 are intended only for the selection of a trial section that must be checked with Eqs. 1, 2, 4 and 5 (illustrated in the previous example), precise interpolation is not necessary.
For W460x177: $t=26.9 \mathrm{~mm}, w=16.6 \mathrm{~mm}$, flange width $=286 \mathrm{~mm}$
For $g=130 \mathrm{~mm}, b=(130-16.6) / 2=56.7 \mathrm{~mm}$ (Use $b=55$ in Table 3-13)
With 4 bolts, $P_{f}=560 / 4=140 \mathrm{kN}$, and $T_{r} / P_{f}=192 / 140=1.37$ for $7 / 8$ inch A 325 bolts.
Table 3-13, with $b=55,7 / 8$ inch bolts and $P_{f}=140 \mathrm{kN}, p=90 \mathrm{~mm}$ gives:
$t_{\text {min }}=22.5 \mathrm{~mm}, t_{\text {max }}=29.7 \mathrm{~mm}$.
Alternatively, Figure 3-1 can be used to select the bolt size based on the flange thickness and the amplified bolt force.

Use graph for $b=55 \mathrm{~mm} \quad(b=56.7 \mathrm{~mm}$, see above $)$
Enter graph at applied load per bolt of 140 kN and flange thickness $t \approx 27.0 \mathrm{~mm}$
With $7 / \mathrm{s}$ inch bolts, amplified bolt force, $T_{f} \approx 160 \mathrm{kN}<T_{r}=192 \mathrm{kN}$
Proceed with the design check using $7 / 8$ inch bolts; $d=22.23 \mathrm{~mm}, d^{\prime}=24 \mathrm{~mm}$

$$
\begin{align*}
& 4 d<p=90 \mathrm{~mm}<5 d \\
& b=56.7 \mathrm{~mm} ; \quad b^{\prime}=56.7-22.23 / 2=45.6 \mathrm{~mm} ; \quad 1.25 b=70.9 \mathrm{~mm} \\
& a=(286-130) / 2=78.0 \mathrm{~mm}>1.25 b=70.9 \mathrm{~mm}, \text { therefore } a=70.9 \mathrm{~mm} \\
& a^{\prime}=70.9+22.23 / 2=82.0 \mathrm{~mm} ; a^{\prime}+b^{\prime}=82.0+45.6=127.6 \mathrm{~mm} \\
& K=4 \times 45.6 \times 10^{3} /(0.9 \times 90 \times 345)=6.53 \tag{Eq.1}
\end{align*}
$$

$\delta=1-(24 / 90)=0.733$
$\alpha=\left(\frac{6.53 \times 192}{26.9^{2}}-1\right) \times \frac{82.0}{0.733 \times 127.6}=0.642, \quad 0 \leq \alpha \leq 1.0 \quad \delta \alpha=0.471$
Connection capacity $=\left(26.9^{2} / 6.53\right)(1.471) 4=652 \mathrm{kN}>560 \mathrm{kN}$
Check total bolt load (amplified bolt force):

$$
\begin{align*}
& \alpha=\left(\frac{6.53 \times 140}{26.9^{2}}-1\right) \times \frac{1}{0.733}=0.359 \quad \delta \alpha=0.263 \tag{Eq.6}\\
& T_{f}=140\left[1+\frac{45.6}{82.0}\left(\frac{0.263}{1+0.263}\right)\right]=156 \mathrm{kN}<192 \mathrm{kN} \tag{Eq.7}
\end{align*}
$$

$$
t=\sqrt{\frac{K P_{f}}{(1+\delta \alpha)}}
$$

$\mathrm{t}_{\min }$ when $\alpha=1.0, \mathrm{t}_{\max }$ when $\alpha=0.0$

Bolt Size (in.)	$\begin{gathered} \mathrm{b} \\ (\mathrm{~mm}) \end{gathered}$	$\mathrm{P}_{\mathrm{f}}=80 \mathrm{kN}$			$\mathrm{P}_{1}=100 \mathrm{kN}$			$\mathrm{P}_{1}=120 \mathrm{kN}$			$P_{\text {f }}=140 \mathrm{kN}$		
		pitch p (mm)											
		80	90	100	80	90	100	80	90	100	80	90	100
3/4*	35	13.7	12.8	12.1	15.4	14.4	13.5	16.8	15.7	14.8	18.2	17.0	16.0
	35	18.1	17.1	16.2	20.3	19.1	18.1	22.2	20.9	19.8	24.0	22.6	21.4
	40	15.0	14.1	13.2	16.8	15.7	14.8	18.4	17.2	16.2	19.9	18.6	17.5
	40	19.8	18.7	17.7	22.2	20.9	19.8	24.3	22.9	21.7	26.2	24.7	23.4
	45	16.2	15.2	14,3	18.1	17.0	16.0	19.9	18.6	17.5	21.5	20.1	18.9
	45	21.4	20.2	19,1	23.9	22.5	21.4	26,2	24.7	23.4	28.3	26.7	25.3
	50	17.3	16.2	15,3	19.4	18.1	17.1	21.2	19.8	18.7	22.9	21.4	20.2
		22.8	21.5	20.4	25.5	24.1	22.8	28.0	26.4	25.0	30.2	28.5	27.0
	55	18.4	17.2	16.2	20.5	19.2	18.1	22.5	21.0	19.8	24.3	22.7	21.4
	55	24.2	22.8	21.6	27.1	25.5	24.2	29.6	27.9	26.5	32.0	30.2	28.6
	b	$\mathrm{P}_{1}=120 \mathrm{kN}$			$\mathrm{P}_{\mathrm{f}}=140 \mathrm{kN}$			$\mathrm{P}_{\mathrm{r}}=160 \mathrm{kN}$			$\mathrm{P}_{\mathrm{t}}=180 \mathrm{kN}$		
Size		pitch p (mm)											
(in.)	(mm)	90	100	110	90	100	110	90	100	110	90	100	110
7/8	40	16.9	15.9	$\begin{aligned} & 15.1 \\ & 20.1 \end{aligned}$	18.3	$\begin{aligned} & 17.2 \\ & 270 \end{aligned}$	$16,3$	$\begin{aligned} & 19.5 \\ & 25.7 \end{aligned}$	$18,4$	$\begin{aligned} & 17.4 \\ & 22.3 \end{aligned}$	20.7	19.5	18.5
		18.3	17.3	16.3	19.8	18.6	17.7	21.2	19.9	18.9	22.4	21.1	20.0
		24.1	22.9	21.8	26.1	24.7	23.6	27.9	26.4	25.2	29.5	28.0	26.7
	50	19.6	18.5	17.5	21.2	20.0	18.9	22.7	21.3	20.2	24.0	22.6	21.4
	50	25.8	24.5	23.4	27.9	26.5	25.2	29.8	28.3	27.0	31.7	30.0	28.6
	55	20.9	19.6	18.6	22.5	21.2	20.1	24.1	22.7	21.5	25.5	24.0	22.8
	55	27.5	26.0	24.8	29.7	28.1	26.8	31.7	30.1	28.7	33.6	31.9	30.4
Bot	b	$P_{t}=160 \mathrm{kN}$			$P_{\text {f }}=180 \mathrm{kN}$			$\mathrm{P}_{\mathrm{t}}=200 \mathrm{kN}$			$\mathrm{P}_{1}=220 \mathrm{kN}$		
Size		pitch p (mm)			pitch p (mm)			pitch p (mm)			pitch $\mathrm{p}(\mathrm{mm})$		
(in,)	(0m)	100	110	120	100	110	120	100	110	120	100	110	120
1		18.0	17.1	16.3	19.1	18.1	17.2	20.2	19.1	18.2	21.1	20.0	19.1
		23.7	22.6	21.7	25.2	24.0	23.0	26.5	25.3	24.2	27.8	26.5	25.4
	45	19.6		17.7	20.8	19.7	18.8	21.9	20.8	19.8	23.0	21.8	20.7
	45	25.8	24.6	23.6	27.4	26.1	25.0	28.8	27.5	26.3	30.3	28.8	27.6
	50	21.1	20.0	19.0	22.4	21.2	20.2	23.6	22.3	21.2	24.7	23.4	22.3
	50	27.7	26.4	25.3	29.4	28.0	26.8	31.0	29.6	28.3	32.5	31.0	29.7
		22.4	21.3	20.2	23.8	22.5	21.5	25.1	23.8	22.6	26.3	24.9	23.7
	55	29.5	28.2	27.0	31.3	29.9	28.6	33.0	31.5	30.1	34.6	33.0	31.6
	b	$\mathrm{P}_{1}=200 \mathrm{kN}$			$\mathrm{P}_{1}=220 \mathrm{kN}$			$\mathrm{P}_{1}=240 \mathrm{kN}$			$\mathrm{P}_{\mathrm{f}}=260 \mathrm{kN}$		
Size		pitch p (mm)			pitch p (mm)			pitch p (mm)			pitch p (mm)		
(in.)	(mm)	100	120	140	100	120	140	100	120	140	100	120	140
11/8	45	21.6	19.4	17.8	$\begin{aligned} & 22.6 \\ & 29.5 \end{aligned}$	$\begin{aligned} & \hline 20.4 \\ & 26.9 \end{aligned}$	18.7	$\begin{aligned} & 23.6 \\ & 30.8 \end{aligned}$	$\begin{aligned} & 21.3 \\ & 28.1 \end{aligned}$	$\begin{aligned} & 19.5 \\ & 26.0 \end{aligned}$	$\begin{aligned} & 24.6 \\ & 32.1 \end{aligned}$	$\begin{aligned} & 22.1 \\ & 29.3 \end{aligned}$	$\begin{aligned} & 20.3 \\ & 27.1 \end{aligned}$
		28.1	25.7	23.8	24.4	22.0	20.1	25.5	22.9	21.0	26.5	23.9	21.9
	50	30.3	27.7	25.6	31.8	29.0	26.9	33.2	30.3	28.1	34.6	31.6	29.2
	55	24.8	22.3	20.5	26.1	23.4	21.5	27.2	24.5	22.4	28.3	25.5	23.4
	55	32.4	29.6	27.4	34.0	31.0	28.7	35.5	32.4	30.0	36.9	33.7	31.2
	60	26.3	23.7	21.7	27.6	24.8	22.8	28.8	25.9	23.8	30.0	27.0	24.7
	60	34.3	31.3	29.0	36.0	32.9	30.4	37.6	34.3	31.8	39.1	35.7	33.1
Bolt Size (in.)	$\begin{gathered} b \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\mathrm{P}_{\mathrm{t}}=240 \mathrm{kN}$			$\mathrm{P}_{1}=260 \mathrm{kN}$			$P_{\text {P }}=280 \mathrm{kN}$			$\mathrm{P}_{1}=300 \mathrm{kN}$		
		pitch p (mm)											
		120	140	160	120	140	160	120	140	160	120	140	160
11/4	45	20.9	19.1	17.7	21.7	19.9	18.4	22.5	20.6	19.1	23.3	21.3	19.8
	45	27.4	25.4	23.7	28.5	26.4	24.7	29.6	27.4	25.6	30.6	28.4	26.5
		22.6	20.7	19.2	23.5	21.5	20.0	24.4	22.3	20.7	25.2	23.1	21.4
		29.7	27.5	25.7	30.9	28.6	26.7	32.0	29.7	27.7	33.2	30.7	28.7
	55	24.2	22.1	20.5	25.2	23.0	21.4	26.1	23.9	22.2	27.0	24.7	23.0
	55	31.7	29.4	27.5	33.0	30.6	28.6	34.3	31.7	29.7	35.5	32.9	30.7
	60	25.7	23.5	21.8	26.7	24.5	22.7	27.7	25,4	23.5	28.7	26.3	24.4
	60	33.7	31.2	29.2	35.1	32.5	30.4	36.4	33.7	31.5	37.7	34.9	32.6

$\mathrm{K}=4 \times 10^{3} \mathrm{~b}^{\prime} /(\phi \mathrm{pF})$ where $\phi=0.90$ and $\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$

* Nominal bolt hole diameter, $\mathrm{d}^{\prime}=21 \mathrm{~mm}$.

ECCENTRIC LOADS ON BOLT GROUPS

General

A bolted connection is eccentrically loaded when the line of action of the applied load passes outside the centroid of the bolt group. When the bolts are subjected to shear forces only, the effect of this eccentricity is to cause rotation about a single point called the instantaneous centre of rotation. The location of the instantaneous centre is obtained when the connection satisfies the three equilibrium equations for statics, $\Sigma F_{x}=0, \Sigma F_{y}=0$ and $\Sigma M=0$ about the instantaneous centre.

Calculation of the instantaneous centre described in the references is a trial-and-error process, and the tables included in this section permit rapid evaluation of common bolt groups subjected to various eccentricities. All tables are based on symmetrical arrangements of bolts.

Bearing-Type Connections

For bearing-type connections, a method of analysis is described by Kulak et al. (1987). At the time the ultimate load is reached, it is assumed that the bolt furthest from the instantaneous centre will just reach its failure load. The resistance of each bolt is assumed to act on a line perpendicular to the radius joining the bolt to the instantaneous centre, and Δ is assumed to vary linearly with the length of the radius. The resistance of each bolt is calculated according to the load-deformation relationship:

Forces on Eccentrically Loaded Connection

$$
R=R_{u}\left(1-\mathrm{e}^{-\mu \Delta}\right)^{\lambda}
$$

and the ultimate load is reached when $\Delta=\Delta_{\max }$ for the bolt furthest from the instantaneous centre, where
$R=$ bolt load at any given deformation
$R_{u}=$ ultimate bolt load
$\Delta=$ shearing, bending and bearing deformation of the bolt, and local deformation of the connecting material
$\mu, \lambda=$ regression coefficients
$\mathrm{e}=$ base of natural logarithms

Slip-Critical Connections

For slip-critical connections, the method of analysis is essentially the same as that for bearingtype, except that the limiting slip resistance of the joint is reached when the maximum slip resistance of each individual bolt is reached as expressed by the relationship, $R=V_{s}=0.53 c_{s} k_{s} m n A_{b} F_{u}$ and the slip resistance of each bolt is assumed to be equal.

Forces on Eccentrically Loaded Slip-Critical Connection

Tables

Tables 3-14 to 3-20 have been developed using the method described for bearing-type connections. Values tabulated are non-dimensional coefficients C and may be used for bolts of any diameter. In determining the coefficients C, the following values were used: $R_{u}=74 \mathrm{kips}(329 \mathrm{kN}), \mu=10.0, \lambda=0.55, \Delta_{\max }=0.34$ inches $(8.64 \mathrm{~mm})$. These values were obtained experimentally for $3 / 4$ inch diameter A325 bolts and are reported by Crawford and Kulak (1971). The ultimate load P for each bolt group and eccentricity was computed and then divided by the maximum value of R (when $\Delta=\Delta_{\max }$) to obtain the values of C.

The tables may thus be used to obtain the factored resistance, expressed as a vertical load P, of a connection by multiplying the coefficient C, for any particular bolt group and eccentricity, by the factored shear resistance of a single bolt. i.e. $P_{f}=C V_{r}$.

Coefficients were developed in a similar way for slip-critical connections, except that the individual bolt resistances for all bolts in the group were assumed to be equal. The coefficients calculated in this way were from 5% to 10% higher than those for bearing-type connections. Thus only one set of tables, based on the bearing-type connections, is provided for use with both bearing-type and slip-critical connections.

Use of Tables

Bearing-Type Connections

1) To obtain the coefficient C required for a given geometry of bolts and eccentricity of load, divide the factored load P_{f} by the factored shear resistance V_{r} of a single bolt for the appropriate shear condition, i.e. $C=P_{f} / V_{r}$.
2) To determine the connection capacity, multiply the coefficient C for the bolt group and eccentricity by the appropriate bolt shear resistance value V_{r} of a single bolt: $P_{f}=C V_{r}$.
V_{r} is the factored shear resistance of the bolt from Table 3-4. Used in this way these tables provide a margin of safety which is consistent with bolts in joints less than 760 mm long and subjected to shear produced by concentric loads only.

Slip-Critical Connections

Although developed using the method for bearing-type connections, these tables can also be used for slip-resistant connections using the specified load P and the appropriate slip resistance value V_{s} for the bolt size and condition of the faying surface.

1) Required $C=P / V_{s}$
2) Capacity $P=C V_{s}$
V_{5} is the slip resistance determined from Tables 3-10 and 3-11.

References

Crawford, S.F., and Kulak, G.L. 1971. Eccentrically loaded bolted connections. ASCE Journal of the Structural Division, 97(ST3), March.
KULAK, G.L. 1975. Eccentrically loaded slip resistant connections. AISC Engineering Journal, 12(2), Second Quarter.
Kulak, G.L., and Grondin, G.Y. 2014. Limit states design in structural steel, CISC.
Kulak, G.L., Fisher, J.W., and Struik, J.H.A. 1987. Guide to design criteria for bolted and riveted joints, $2^{\text {nd }}$ Edition. John Wiley and Sons.

SHERMER, C.L. 1971. Plastic behaviour of eccentrically loaded connections. AISC Engineering Journal, 8(2), April.

Example

1. Given:

A double column bracket must be designed to support a factored load of 700 kN at an eccentricity of 400 mm . Find the number of $3 / 4$ inch A325 bolts per flange required for a gauge dimension of 120 mm and a pitch of 80 mm assuming a bearing-type connection.

Solution:

$P_{f}=700 / 2=350 \mathrm{kN} \quad L=400 \mathrm{~mm}$

$V_{r}=113 \mathrm{kN}$ (Table 3-4, single shear, threads excluded)
Required $C=350 / 113=3.10$
From Tables 3-15 and 3-16, for 2 lines of bolts
6 rows at 80 mm gauge, $C=3.49$
at 320 mm gauge, $C=4.77$
Interpolating for 120 mm gauge $C=3.49+(4.77-3.49) \times 40 / 240=3.70$
Use 6 rows of bolts (total 12 bolts)
Capacity is $3.70 \times 113=418 \mathrm{kN}$ per side
The connected material should be thick enough to provide bearing capacity for the 113 kN resistance of the bolts in accordance with CSA S16-14, Clause 13.12.1.2. Minimum edge distances must conform with Clause 22.3.2.

Note: In double-angle beam connections, the eccentricity may be neglected in the web-framing leg when connected with a single row of bolts.

2. Given:

Find the number of $7 / 8$ inch bolts required for a similar bracket assuming a slip-critical connection with clean mill scale and a specified load of 550 kN .

Solution:

$P=550 / 2=275 \mathrm{kN} \quad L=400 \mathrm{~mm}$
$V_{s}=50.9 \mathrm{kN}$ (Table 3-11) Required $C=275 / 50.9=5.40$
From Tables 3-15 and 3-16, for 2 lines of bolts:
8 rows at 80 mm gauge, $C=5.89$
at 320 mm gauge, $C=7.17$
Interpolating for 120 mm gauge, $C=5.89+(7.17-5.89) \times 40 / 240=6.10$
Use 8 rows of bolts (total 16 bolts)
Capacity is $6.10 \times 50.9=310 \mathrm{kN}$ per side
The ultimate strength of the joint would also be checked in bearing and shear for factored loads.

Table 3-14

Moment Arm, L, mm												NumberofBolts	Pitch b mm
50	75	100	125	150	175	200	250	300	400	500	600		
1.20	0.89	0.70	0.57	0.48	0.42	0.37	0.30	0.25	0.19	0.15	0.12	2	
2.26	1.78	1.42	1.17	0.98	0.85	0.74	0.60	0.50	0.37	0.30	0.25	3	
3.37	2.86	2.40	2.04	1.76	1.54	1.37	1.11	0.93	0.71	0.57	0.47	4	
4.47	3.96	3.46	3.00	2.63	2.32	2.07	1.69	1.43	1.08	0.87	0.72	5	
5.54	5.07	4.55	4.05	3.60	3.22	2.90	2.40	2.04	1.56	1.26	1.05	6	
6.59	6.16	5.65	5.13	4.64	4.20	3.82	3.19	2.73	2.10	1.69	1.42	7	75
7.63	7.24	6.75	6.23	5.72	5.24	4.80	4.07	3.50	2.71	2.20	1.85	8	
8.67	8.30	7.85	7.34	6.81	6.31	5.83	5.00	4.34	3.39	2.76	2.33	9	
9.69	9.36	8.93	8.44	7.92	7.40	6.89	5.99	5.24	4.13	3.38	2.85	10	
10.7	10.4	10.0	9.53	9.02	8.50	7.98	7.02	6.19	4.93	4.05	3.43	11	
11.7	11.4	11.1	10.6	10.1	9.60	9.08	8.07	7.18	5.78	4.78	4.05	12	
1.25	0.94	0.74	0.61	0.51	0.44	0.39	0.32	0.26	0.20	0.16	0.13	2	
2.33	1.87	1.50	1.24	1.05	0.90	0.79	0.64	0.53	0.40	0.32	0.27	3	
3.44	2.96	2.51	2.14	1.86	1.63	1.45	1.18	0.99	0.75	0.61	0.51	4	
4.52	4.06	3.58	3.14	2.76	2.45	2.19	1.80	1.52	1.15	0.92	0.77	5	
5.59	5.16	4.68	4.20	3.76	3.38	3.06	2.54	2.16	1.66	1.34	1.12	6	
6.64	6.25	5.78	5.29	4.82	4.39	4.00	3.37	2.89	2.23	1.80	1.51	7	80
7.67	7.32	6.88	6.40	5.91	5.44	5.01	4.28	3.70	2.88	2.34	1.97	8	
8.70	8.38	7.97	7.50	7.01	6.53	6.06	5.24	4.57	3.59	2.93	2.47	9	
9.73	9.43	9.04	8.60	8.11	7.62	7.14	6.26	5.50	4.37	3.59	3.03	10	
10.7	10.5	10.1	9.68	9.22	8.73	8.24	7.30	6.48	5.20	4.30	3.64	11	
11.8	11.5	11.2	10.8	10.3	9.83	9.34	8.38	7.50	6.08	5.05	4.30	12	
1.41	1.11	0.89	0.74	0.63	0.55	0.48	0.39	0.33	0.25	0.20	0.17	2	
2.52	2.13	1.78	1.50	1.28	1.12	0.98	0.79	0.66	0.50	0.40	0.33	3	
3.62	3.25	2.86	2.51	2.21	1.96	1.76	1.45	1.23	0.93	0.75	0.63	4	
4.68	4.35	3.96	3.58	3.22	2.90	2.63	2.19	1.86	1.43	1.15	0.96	5	
5.72	5.43	5.07	4.68	4.29	3.93	3.60	3.06	2.63	2.04	1.66	1.39	6	
6.76	6.49	6.16	5.78	5.39	5.01	4.64	4.00	3.48	2.73	2.23	1.87	7	100
7.78	7.54	7.24	6.88	6.50	6.10	5.72	5.01	4.41	3.50	2.88	2.43	8	
8.80	8.59	8.30	7.97	7.60	7.21	6.81	6.06	5.39	4.34	3.59	3.05	9	
9.82	9.62	9.36	9.04	8.69	8.31	7.92	7.14	6.42	5.24	4.37	3.72	10	
10.8	10.6	10.4	10.1	9.77	9.41	9.02	8.24	7.48	6.19	5.20	4.45	11	
11.8	11.7	11.4	11.2	10.8	10.5	10.1	9.34	8.56	7.18	6.08	5.24	12	
1.56	1.28	1.06	0.89	0.77	0.67	0.60	0.48	0.41	0.31	0.25	0.21	2	
2.67	2.37	2.06	1.78	1.55	1.36	1.21	0.98	0.82	0.62	0.50	0.42	3	
3.74	3.47	3.17	2.86	2.58	2.32	2.11	1.76	1.50	1.15	0.93	0.78	4	
4.79	4.56	4.27	3.96	3.65	3.36	3.09	2.63	2.27	1.76	1.43	1.20	5	
5.82	5.62	5.36	5.07	4.76	4.45	4.15	3.60	3.15	2.49	2.04	1.72	6	
6.84	6.66	6.43	6.16	5.86	5.55	5.24	4.64	4.12	3.30	2.73	2.31	7	125
7.85	7.70	7.49	7.24	6.95	6.65	6.34	5.72	5.15	4.20	3.50	2.98	8	
8.87	8.72	8.53	8.30	8.04	7.75	7.44	6.82	6.21	5.16	4.34	3.72	9	
9.87	9.75	9.57	9.36	9.11	8.83	8.54	7.92	7.29	6.16	5.24	4.52	10	
10.9	10.8	10.6	10.4	10.2	9.91	9.63	9.02	8.39	7.20	6.19	5.38	11	
11.9	11.8	11.6	11.4	11.2	11.0	10.7	10.1	9.49	8.27	7.18	6.28	12	
1.66	1.41	1.20	1.03	0.89	0.79	0.70	0.57	0.48	0.37	0.30	0.25	2	
2.76	2.52	2.26	2.01	1.78	1.59	1.42	1.17	0.98	0.74	0.60	0.50	3	
3.81	3.62	3.38	3.12	2.86	2.62	2.40	2.04	1.76	1.37	1.11	0.93		
4.85	4.68	4.47	4.22	3.96	3.70	3.46	3.00	2.63	2.07	1.69	1.43	5	
5.87	5.72	5.54	5.31	5.07	4.81	4.55	4.05	3.60	2.90	2.40	2.04	6	
6.88	6.76	6.59	6.39	6.16	5.91	5.65	5.13	4.64	3.82	3.19	2.73		150
7.89	7.78	7.63	7.45	7.24	7.00	6.75	6.23	5.72	4.80	4.07	3.50	8	
8.90	8.80	8.67	8.50	8.30	8.08	7.85	7.34	6.81	5.83	5.00	4.34	9	
9.91	9.82	9.69	9.54	9.36	9.15	8.93	8.44	7.92	6.89	5.99	5.24	10	
10.9	10.8	10.7	10.6	10.4	10.2	10.0	9.53	9.02	7.98	7.02	6.19	11	
11.9	11.8	11.7	11.6	11.4	11.3	11.1	10.6	10.1	9.08	8.07	7.18	12	

	$\frac{L}{01}$			$\mathrm{C}=$	$\frac{P_{f}}{V_{r}}$	or						IC LO GRO fficien Table	DS UPS s C -15
$D=80 \mathrm{~mm}$												Bolts per Vertical Row	Pitch b mm
Moment Arm, L, mm													
50	75	100	125	150	175	200	250	300	400	500	600		
0.89	0.70	0.57	0.48	0.42	0.37	0.33	0.28	0.23	0.18	0.15	0.12	1	80
2.66	2.15	1.78	1.52	1.31	1.16	1.03	0.85	0.72	0.55	0.44	0.37	2	
4.66	3.88	3.25	2.77	2.41	2.13	1.91	1.58	1.34	1,03	0.83	0.70	3	
6,82	5.93	5.13	4.47	3.93	3.50	3.14	2.60	2.22	1.70	1.38	1.15	4	
8.97	8.08	7.18	6.36	5.66	5.06	4.57	3.80	3.24	2.50	2.03	1.71	5	
11.1	10.3	9.33	8.42	7.60	6.87	6.25	5.25	4.51	3.49	2.84	2.39	6	
13.2	12.4	11.5	10.6	9.66	8.83	8.09	6.87	5.92	4.61	3.75	3.17	7	
15.3	14.6	13.7	12.7	11.8	10.9	10.1	8.64	7.51	5.89	4.82	4.07	8	
17.4	16.7	15.9	14.9	14.0	13.0	12.1	10.5	9.23	7.30	5.99	5.07	9	
19.4	18.8	18.0	17.1	16.2	15.2	14.3	12.5	11.1	8.83	7.29	6.18	10	
21.4	20.9	20.1	19.3	18.4	17.4	16.4	14.6	13,0	10.5	8.69	7.39	11	
23.5	23.0	22.3	21.4	20.5	19.6	18,6	16.7	15.0	12.2	10.2	8,69	12	
2.78	2.26	1.89	1.61	1.39	1.23	1.10	0.90	0.76	0.58	0.47	0.39	2	
4.85	4.10	3.47	2.97	2.59	2.29	2.05	1.69	1.44	1.11	0.90	0.75	3	
7.02	6.22	5.45	4.79	4.24	3.79	3.41	2.84	2.42	1.86	1.51	1.26	4	
9.16	8.39	7.57	6.79	6.09	5.49	4.97	4.15	3.55	2.74	2.23	1.88	5	
11.3	10.6	9.74	8.91	8.12	7.41	6.77	5.74	4.95	3.85	3.14	2.64	6	
13.4	12.7	11.9	11,1	10.2	9.46	8.73	7.48	6.49	5.08	4.15	3.50	7	90
15.4	14.8	14.1	13.3	12.4	11.6	10.8	9.38	8.21	6.50	5.33	4.51	8	
17.5	16.9	16.3	15.5	14.6	13.8	12.9	11.4	10.1	8.03	6.63	5.62	9	
19.5	19.0	18.4	17.6	16.8	16.0	15.1	13.5	12.0	9.70	8.05	6.85	10	
21.6	21.1	20.5	19.8	19.0	18.2	17.3	15.6	14.0	11.5	9.59	8.19	11	
23.6	23.2	22.6	21.9	21.2	20.3	19.5	17.8	16.1	13.3	11.2	9,62	12	
2.89	2.37	1.99	1.70	1.48	1.30	1.17	0.96	0.81	0.62	0.50	0.42	2	
5.01	4.30	3.68	3.17	2.77	2.45	2.20	1.82	1.55	1.19	0.97	0.81	3	
7.17	6.46	5.74	5.09	4.53	4.07	3.67	3.06	2.62	2.02	1.64	1.38	4	
9.30	8.64	7.90	7.16	6.48	5.88	5.35	4.50	3.86	2.99	2.43	2.05	5	
11.4	10.8	10.1	9.32	8.58	7.89	7.26	6.20	5.37	4.20	3.43	2.89	6	
13.5	12.9	12.3	11.5	10.7	10.0	9.30	8.05	7.04	5.55	4.55	3.85	7	100
15.5	15.0	14.4	13.7	12.9	12.2	11.4	10.0	8.87	7.08	5.84	4.95	8	
17.6	17.1	16.5	15.9	15.1	14.4	13.6	12.1	10.8	8.74	7.25	6.17	9	
19.6	19.2	18.7	18.0	17.3	16.6	15.8	14.3	12.8	10.5	8.79	7.51	10	
21.6	21.3	20.8	20.2	19.5	18.7	18.0	16.4	14.9	12.4	10.4	8.96	11	
23.6	23.3	22.8	22.3	21.6	20.9	20.2	18.6	17.1	14.4	12.2	10.5	12	
3.07	2.58	2.19	1.88	1.64	1.46	1.30	1.07	0.91	0.70	0.56	0.47	2	
5.25	4.64	4.06	3.55	3.12	2.78	2.49	2.06	1.76	1.36	1.10	0.93	3	
7.40	6.83	6.21	5.61	5.06	4.58	4.17	3.51	3.02	2.34	1.90	1.60	4	
9.50	8.99	8.40	7.77	7.15	6.57	6,05	5.16	4.46	3.48	2.84	2.39	5	
11.6	11.1	10.6	9.96	9.32	8.70	8.10	7.04	6.17	4.88	4.01	3.39	6	
13.6	13.2	12.7	12.1	11.5	10.9	10.2	9.06	8.03	6.45	5.33	4.52	7	120
15.7	15.3	14.8	14.3	13.7	13.1	12.4	11.2	10.0	8.17	6.81	5.81	8	
17.7	17.4	17.0	16.4	15.9	15.3	14.6	13.3	12.1	10.0	8.43	7.23	9	
19.7	19.4	19.0	18.6	18.0	17.4	16.8	15.5	14.3	12.0	10.2	8.78	10	
21.7	21.5	21.1	20.7	20.2	19.6	19.0	17.7	16.4	14.0	12.0	10.4	11	
23.7	23.5	23.2	22.8	22.3	21.8	21.2	19.9	18.6	16.1	14.0	12.2	12	
3.36	2.92	2.54	2.22	1.97	1.75	1.58	1.31	1.12	0.86	0.70	0.58	2	
5.53	5.10	4.64	4.18	3.76	3,39	3.07	2.57	2.19	1.69	1.38	1.16	3	
7.64	7.28	6.84	6.37	5.90	5.45	5.04	4.33	3.77	2.97	2.43	2.05	4	
9.70	9.40	9.01	8.56	8.09	7.61	7.14	6.28	5.55	4.42	3.64	3.09	5	
11.7	11.5	11.1	10.7	10.3	9.81	9.33	8.39	7.53	6.14	5.12	4.37	6	
13.8	13.5	13.2	12.9	12.5	12.0	11.5	10.6	9,63	8.01	6.76	5.81	7	160
15.8	15.6	15.3	15.0	14.6	14.2	13.7	12.8	11.8	10.0	8.56	7.41	8	
17.8	17.6	17.4	17.1	16.7	16.3	15.9	15.0	14.0	12.1	10.5	9.16	9	
19.8	19.7	19.4	19.2	18.8	18.5	18.0	17.2	16.2	14.3	12.5	11.0	10	
21.8	21.7	21.5	21.2	20.9	20.6	20.2	19.3	18.4	16.4	14.6	13.0	11	
23.8	23.7	23.5	23.3	23.0	22.7	22.3	21.5	20.6	18.6	16.7	15.0	12	

ECCENTRIC LOADS ON BOLT GROUPS Coefficients C

Table 3-16

$D=320 \mathrm{~mm}$												Bolts per Vertical Row	Pitch b mm
Moment Arm, L, mm													
50	75	100	125	150	175	200	250	300	400	500	600		
1.52	1.36	1.23	1.12	1.03	0.95	0.89	0.78	0.69	0.57	0.48	0.42	1	
3.20	2.89	2.63	2.41	2.22	2.06	1.91	1.68	1.50	1.22	1.04	0.90	2	
5.01	4.56	4.16	3.82	3.53	3.27	3.04	2.67	2.38	1.95	1.65	1.43	3	
6.94	6.37	5.86	5.40	5.00	4.65	4.34	3.82	3.41	2.79	2.36	2.04	4	
8.94	8.30	7.69	7.12	6.62	6.17	5.76	5.08	4.53	3.72	3.15	2.73	5	
11.0	10.3	9.62	8.97	8.37	7.82	7.33	6.49	5.80	4.77	4.04	3.50	6	
13.1	12.4	11.6	10.9	10.2	9.59	9.01	8.01	7.17	5.91	5.01	4.34	7	80
15.1	14.4	13.7	12.9	12.2	11.5	10.8	9.65	8.67	7.17	6.08	5.27	8	
17.2	16.5	15.8	15.0	14.2	13.4	12.7	11.4	10.3	8.52	7.24	6.28	9	
19.3	18.6	17.9	17.1	16.3	15.4	14.7	13.2	12.0	9.97	8.50	7.38	10	
21.3	20.7	20.0	19.2	18.4	17.5	16.7	15.1	13.8	11.5	9.84	8.55	11	
23.3	22.8	22.1	21.3	20.5	19.6	18.8	17.1	15.6	13.2	11.3	9.81	12	
3.22	2.92	2.66	2.44	2.25	2.08	1.94	1.70	1.52	1.24	1.05	0.91	2	
5.08	4.63	4.24	3.90	3.60	3.34	3.11	2.74	2.44	2.00	1.69	1.47	3	
7.05	6.50	6.00	5.55	5.15	4.79	4.48	3.95	3.52	2.89	2.44	2.11	4	
9.08	8.48	7.89	7.34	6.84	6.38	5.97	5.28	4.71	3.87	3.28	2.84	5	
11.1	10.5	9.88	9.25	8.66	8.12	7.63	6.77	6.07	5.00	4.23	3.66	6	
13.2	12.6	11.9	11.3	10.6	9.98	9.40	8.39	7.53	6.22	5.28	4.57	7	90
15.3	14.7	14.0	13.3	12.6	11.9	11.3	10.1	9.13	7.58	6.44	5.59	8	
17.3	16.8	16.1	15.4	14.7	14.0	13.3	12.0	10.8	9.03	7.69	6.68	9	
19.4	18.9	18.2	17.5	16.8	16.0	15.3	13.9	12.7	10.6	9.06	7.88	10	
21.4	20.9	20.3	19.6	18.9	18.1	17.4	15.9	14.6	12.3	10.5	9.16	11	
23.5	23.0	22.4	21.8	21.0	20.3	19.5	18.0	16.5	14.0	12.1	10.5	12	
3.25	2.95	2.69	2.47	2.28	2.11	1.97	1.73	1.54	1.26	1.06	0.92	2	
5.14	4.71	4.32	3.98	3.68	3.41	3.18	2.80	2.49	2.05	1.73	1.50	3	
7.15	6.63	6.14	5.69	5.29	4.93	4.61	4.07	3.63	2.98	2.52	2.18	4	
9.20	8.65	8.08	7.55	7.05	6.60	6.18	5.47	4.90	4.03	3.41	2.96	5	
11.3	10.7	10.1	9.52	8.95	8.41	7.92	7.05	6.33	5.23	4.43	3.84	6	
13.3	12.8	12.2	11.6	10.9	10.3	9.78	8.76	7.89	6.53	5.55	4.81	7	100
15.4	14.9	14.3	13.7	13.0	12.4	11.7	10.6	9.59	7.99	6.80	5.91	8	
17.5	17.0	16.4	15.8	15.1	14.4	13.8	12.5	11.4	9.55	8.15	7.09	9	
19.5	19.1	18.5	17.9	17.2	16.5	15.9	14.5	13.3	11.2	9.62	8.39	10	
21.5	21.1	20.6	20.0	19.4	18.7	18.0	16.6	15.3	13.0	11.2	9.78	11	
23.6	23.2	22.7	22.1	21.5	20.8	20.1	18.7	17.3	14.9	12.9	11.3	12	
3.31	3.02	2.76	2.54	2.34	2.17	2.03	1.78	1.59	1.30	1.10	0.95	2	
5.27	4.86	4.48	4.14	3.84	3.57	3.33	2.93	2.61	2.14	1.82	1.57	3	
7.32	6.86	6.40	5.96	5.57	5.20	4.88	4.32	3.87	3.18	2.69	2.33	4	
9.39	8.93	8.43	7.93	7.45	7.01	6.59	5.87	5.26	4.34	3.68	3.19	5	
11.5	11.0	10.5	9.99	9.46	8.95	8.47	7.60	6.85	5.69	4.84	4.19	6	
13.5	13.1	12.6	12.1	11.5	11.0	10.5	9.46	8.58	7.16	6.10	5.30	7	120
15.6	15.2	14.7	14.2	13.7	13.1	12.5	11.4	10.4	8.79	7.53	6.56	8	
17.6	17.3	16.8	16.3	15.8	15.2	14.6	13.5	12.4	10.5	9.07	7.91	9	
19.6	19.3	18.9	18.4	17.9	17.4	16.8	15.6	14.4	12.4	10.7	9.40	10	
21.7	21.4	21.0	20.5	20.0	19.5	18.9	17.7	16.5	14.3	12.5	11.0	11	
23.7	23.4	23.1	22.6	22.2	21.6	21.1	19.9	18.7	16.3	14.3	12.7	12	
3.43	3.15	2.90	2.67	2.48	2.30	2.15	1.90	1.69	1.38	1.17	1.01	2	
5.48	5.13	4.78	4.45	4.15	3.88	3.63	3.20	2.86	2.35	1.99	1.73	3	
7.56	7.21	6.83	6.45	6.07	5.72	5.40	4.82	4.34	3.59	3.04	2.64	4	
9.62	9.31	8.93	8.53	8.12	7.72	7.33	6.61	5.99	4.98	4.24	3.68	5	
11.7	11.4	11.0	10.7	10.2	9.81	9.39	8.58	7.83	6.60	5.65	4.93	6	
13.7	13.5	13.1	12.8	12.4	11.9	11.5	10.6	9.81	8.36	7.21	6.30	7	160
15.7	15.5	15.2	14.9	14.5	14.1	13.7	12.8	11.9	10.3	8.93	7.84	8	
17.8	17.6	17.3	17.0	16.6	16.2	15.8	14.9	14.0	12.3	10.8	9.51	9	
19.8	19.6	19.4	19.1	18.7	18.4	17.9	17.1	16.2	14.3	12.7	11.3	10	
21.8	21.6	21.4	21.1	20.8	20.5	20.1	19.2	18.3	16.5	14.7	13.2	11	
23.8	23.6	23.4	23.2	22.9	22.6	22.2	21.4	20.5	18.6	16.8	15.1	12	

ECCENTRIC LOADS ON BOLT GROUPS Coefficients C

 Table 3-17| $D=160 \mathrm{~mm}$ | | | | | | | | | | | | Bolts per Vertical Row | $\begin{aligned} & \text { Pitch } \\ & \text { b } \\ & \text { mm } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Moment Arm, L, mm | | | | | | | | | | | | | |
| 50 | 75 | 100 | 125 | 150 | 175 | 200 | 250 | 300 | 400 | 500 | 600 | | |
| 1.79 | 1.49 | 1.28 | 1.11 | 0.98 | 0.87 | 0.77 | 0.63 | 0.53 | 0.40 | 0.32 | 0.27 | 1 | |
| 4.24 | 3.57 | 3.06 | 2.67 | 2.35 | 2.10 | 1.89 | 1.57 | 1.34 | 1.03 | 0.83 | 0.70 | 2 | |
| 7.07 | 6.06 | 5.24 | 4.60 | 4.09 | 3.67 | 3.32 | 2.78 | 2.38 | 1.83 | 1.49 | 1.25 | 3 | |
| 10.2 | 8.98 | 7.92 | 7.02 | 6.27 | 5.65 | 5.13 | 4.31 | 3.70 | 2.87 | 2.34 | 1.97 | 4 | |
| 13.4 | 12.1 | 10.9 | 9.73 | 8.76 | 7.93 | 7.22 | 6.11 | 5.28 | 4.11 | 3.36 | 2.83 | 5 | |
| 16.6 | 15.3 | 14.0 | 12.7 | 11.6 | 10.5 | 9.66 | 8,23 | 7.13 | 5.59 | 4.57 | 3.86 | 6 | |
| 19.7 | 18.5 | 17.2 | 15.9 | 14.6 | 13.4 | 12.3 | 10.6 | 9.20 | 7.26 | 5.96 | 5.04 | 7 | 80 |
| 22.8 | 21.7 | 20.4 | 19.1 | 17.7 | 16.4 | 15.2 | 13.2 | 11.5 | 9.15 | 7.54 | 6.39 | 8 | |
| 25.9 | 24.9 | 23.7 | 22.3 | 20.9 | 19.6 | 18.3 | 16.0 | 14.1 | 11.2 | 9.27 | 7.88 | 9 | |
| 29.0 | 28.1 | 26.9 | 25.6 | 24.2 | 22.8 | 21.4 | 18.9 | 16.8 | 13.5 | 11.2 | 9.53 | 10 | |
| 32.1 | 31.2 | 30.1 | 28.8 | 27.4 | 26.0 | 24.6 | 22.0 | 19.6 | 15.9 | 13.3 | 11.3 | 11 | |
| 35.2 | 34.3 | 33.3 | 32.1 | 30.7 | 29.3 | 27.9 | 25.1 | 22.6 | 18.5 | 15.5 | 13.3 | 12 | |
| 4.35 | 3.68 | 3.17 | 2.76 | 2.44 | 2.18 | 1.96 | 1.63 | 1,39 | 1.07 | 0.87 | 0.73 | 2 | |
| 7.29 | 6.31 | 5.49 | 4.83 | 4.29 | 3.86 | 3.50 | 2.93 | 2.51 | 1.94 | 1.58 | 1.32 | 3 | |
| 10.5 | 9.35 | 8.31 | 7.41 | 6.65 | 6.01 | 5.47 | 4.61 | 3.96 | 3.08 | 2.51 | 2.12 | 4 | |
| 13.7 | 12.5 | 11.4 | 10.3 | 9.32 | 8.47 | 7.73 | 6.56 | 5.68 | 4.45 | 3.64 | 3.07 | 5 | |
| 16.8 | 15.8 | 14.6 | 13.4 | 12.3 | 11.3 | 10.4 | 8.87 | 7.71 | 6.07 | 4.98 | 4.21 | 6 | |
| 20.0 | 19.0 | 17.8 | 16.6 | 15.4 | 14.3 | 13.2 | 11.4 | 9.98 | 7.90 | 6.51 | 5.52 | 7 | 90 |
| 23.1 | 22.2 | 21.1 | 19.8 | 18.6 | 17.4 | 16.2 | 14.2 | 12.5 | 9.99 | 8.26 | 7.01 | 8 | |
| 26.1 | 25.3 | 24.3 | 23.1 | 21.9 | 20.6 | 19.4 | 17.1 | 15.2 | 12.3 | 10.2 | 8.66 | 9 | |
| 29.2 | 28.4 | 27.5 | 26.3 | 25.1 | 23.9 | 22.6 | 20.2 | 18.1 | 14.7 | 12.3 | 10.5 | 10 | |
| 32.3 | 31.6 | 30.7 | 29.6 | 28.4 | 27,1 | 25.9 | 23.4 | 21.1 | 17.3 | 14,6 | 12.5 | 11 | |
| 35.3 | 34.7 | 33.8 | 32.8 | 31.6 | 30.4 | 29.2 | 26.6 | 24.2 | 20.1 | 17.0 | 14.6 | 12 | |
| 4.46 | 3.80 | 3.28 | 2.86 | 2.53 | 2.26 | 2.04 | 1.70 | 1.45 | 1.12 | 0.91 | 0.76 | 2 | |
| 7.49 | 6.55 | 5.73 | 5.05 | 4.50 | 4.05 | 3.68 | 3.09 | 2.65 | 2.06 | 1.67 | 1.40 | 3 | |
| 10.7 | 9.67 | 8.68 | 7.79 | 7.01 | 6.36 | 5.80 | 4.90 | 4.23 | 3.30 | 2.69 | 2.27 | 4 | |
| 13.9 | 12.9 | 11.8 | 10.8 | 9.83 | 8.98 | 8.24 | 7.01 | 6.08 | 4.78 | 3.92 | 3.31 | 5 | |
| 17.0 | 16.1 | 15.1 | 14.0 | 12.9 | 11.9 | 11.0 | 9.49 | 8.29 | 6.55 | 5.39 | 4.57 | 6 | |
| 20.1 | 19.3 | 18.3 | 17.2 | 16.1 | 15.0 | 14.0 | 12.2 | 10,7 | 8.55 | 7.06 | 6.00 | 7 | 100 |
| 23.2 | 22.5 | 21.5 | 20.5 | 19.3 | 18.2 | 17.1 | 15.1 | 13.4 | 10.8 | 8.97 | 7.64 | 8 | |
| 26.3 | 25.6 | 24.7 | 23.7 | 22.6 | 21.5 | 20.4 | 18.2 | 16.3 | 13.3 | 11.1 | 9.44 | 9 | |
| 29.3 | 28.7 | 27.9 | 26.9 | 25.9 | 24.8 | 23.6 | 21.4 | 19.3 | 15.9 | 13.3 | 11,4 | 10 | |
| 32.4 | 31.8 | 31.1 | 30.1 | 29.1 | 28.0 | 26.9 | 24.6 | 22.4 | 18.7 | 15.8 | 13.6 | 11 | |
| 35.4 | 34.9 | 34.2 | 33.3 | 32.4 | 31.3 | 30.2 | 27.9 | 25.6 | 21.6 | 18.4 | 15.9 | 12 | |
| 4.66 | 4.02 | 3.49 | 3.07 | 2.72 | 2.44 | 2.20 | 1.84 | 1.58 | 1.22 | 0.99 | 0.83 | 2 | |
| 7.82 | 6.98 | 6.19 | 5.50 | 4.91 | 4.43 | 4.03 | 3.41 | 2.94 | 2.29 | 1.86 | 1.57 | 3 | |
| 11.0 | 10.2 | 9.31 | 8.47 | 7.70 | 7.03 | 6.44 | 5.49 | 4.76 | 3.73 | 3.05 | 2.58 | 4 | |
| 14.2 | 13.4 | 12.5 | 11.6 | 10.7 | 9,92 | 9.17 | 7.90 | 6.89 | 5.44 | 4.48 | 3,80 | 5 | |
| 17.3 | 16.6 | 15.8 | 14.9 | 14.0 | 13.0 | 12.2 | 10.7 | 9.39 | 7.50 | 6.21 | 5.27 | 6 | |
| 20.4 | 19.8 | 19.0 | 18.1 | 17.2 | 16.3 | 15.4 | 13.6 | 12.1 | 9.80 | 8.15 | 6.95 | 7 | 120 |
| 23.4 | 22.9 | 22.2 | 21.4 | 20.5 | 19.5 | 18.6 | 16.8 | 15.1 | 12.4 | 10.4 | 8.86 | 8 | |
| 26.5 | 26.0 | 25.4 | 24.6 | 23.7 | 22.8 | 21.9 | 20.0 | 18.2 | 15.1 | 12.8 | 11.0 | 9 | |
| 29.5 | 29.1 | 28.5 | 27.8 | 27.0 | 26.1 | 25.2 | 23.2 | 21.4 | 18.0 | 15.3 | 13.3 | 10 | |
| 32.6 | 32.1 | 31.6 | 30.9 | 30.2 | 29.3 | 28.4 | 26.5 | 24.6 | 21.0 | 18.1 | 15.7 | 11 | |
| 35.6 | 35.2 | 34.7 | 34.1 | 33.4 | 32.6 | 31.7 | 29.8 | 27.9 | 24.2 | 21.0 | 18.3 | 12 | |
| 5.01 | 4.42 | 3.91 | 3.47 | 3.11 | 2.80 | 2.54 | 2.14 | 1.84 | 1.43 | 1.16 | 0.98 | 2 | |
| 8.25 | 7.61 | 6.95 | 6.31 | 5.72 | 5.20 | 4.75 | 4.04 | 3.50 | 2.75 | 2.25 | 1.90 | 3 | |
| 11.4 | 10.9 | 10.2 | 9.52 | 8.84 | 8.20 | 7.61 | 6.60 | 5.79 | 4.59 | 3.79 | 3.21 | 4 | |
| 14.5 | 14.0 | 13.5 | 12.8 | 12.1 | 11.4 | 10.7 | 9.47 | 8.39 | 6.75 | 5.59 | 4.76 | 5 | |
| 17.6 | 17.2 | 16.6 | 16.0 | 15.4 | 14.7 | 14.0 | 12.6 | 11.3 | 9.29 | 7.78 | 6.66 | 6 | |
| 20.6 | 20.3 | 19.8 | 19.2 | 18.6 | 17.9 | 17.2 | 15.8 | 14.4 | 12.1 | 10.2 | 8.80 | 7 | 160 |
| 23.7 | 23.3 | 22.9 | 22.4 | 21.8 | 21.2 | 20.5 | 19.1 | 17.7 | 15.0 | 12.9 | 11.2 | 8 | |
| 26.7 | 26.4 | 26.0 | 25.6 | 25.0 | 24.4 | 23.8 | 22.4 | 20.9 | 18.2 | 15.8 | 13.8 | 9 | |
| 29.7 | 29.4 | 29.1 | 28.7 | 28.2 | 27.6 | 27.0 | 25.7 | 24.2 | 21.4 | 18.8 | 16.5 | 10 | |
| 32.7 | 32.5 | 32.2 | 31.8 | 31.3 | 30.8 | 30.2 | 28.9 | 27.5 | 24.6 | 21.9 | 19.5 | 11 | |
| 35.7 | 35.5 | 35.2 | 34.9 | 34.4 | 33.9 | 33.4 | 32.2 | 30.8 | 27.9 | 25.1 | 22.5 | 12 | |

$D=320 \mathrm{~mm}$												Bolts per Vertical Row	$\begin{gathered} \text { Pitch } \\ \text { b } \\ \mathrm{mm} \end{gathered}$
Moment Arm, L, mm													
50	75	100	125	150	175	200	250	300	400	500	600		
2.22	1.98	1.79	1.63	1.49	1.38	1.28	1.11	0.98	0.77	0.63	0.53	1	
4.69	4.21	3.81	3.47	3.18	2.93	2.71	2.35	2.07	1.65	1.36	1.15	2	
7.39	6.67	6.05	5.52	5.06	4.68	4.34	3.77	3.32	2.66	2.20	1.87	3	
10.3	9.39	8.57	7.85	7.23	6.68	6.20	5.41	4.77	3.84	3.19	2.72	4	
13.3	12.3	11.3	10.4	9.61	8.90	8.28	7.25	6.42	5.18	4.32	3.69	5	
16.4	15.3	14.2	13.2	12.2	11.4	10.6	9.32	8.27	6.70	5.60	4.79	6	
19.6	18.4	17.3	16.1	15.0	14.0	13.1	11.6	10.3	8.39	7.03	6.03	7	80
22.7	21.6	20.4	19.2	18.0	16.9	15.9	14.0	12.5	10.3	8.61	7.40	8	
25.8	24.8	23.6	22.3	21.1	19.9	18.7	16.7	14.9	12.3	10.3	8.90	9	
28.9	27.9	26.7	25.5	24.2	22.9	21.7	19.5	17.5	14.5	12.2	10.5	10	
32.0	31,0	29.9	28.7	27.4	26.1	24.8	22.4	20.2	16.8	14.2	12.3	11	
35.0	34.2	33.1	31.9	30.6	29.3	27.9	25.4	23.1	19.3	16.4	14.2	12	
4.74	4.26	3.86	3.51	3.22	2.97	2.75	2.38	2.10	1.67	1.38	1.17	2	
7.51	6.80	6.17	5.64	5.18	4.79	4.44	3.87	3.41	2.74	2.27	1.93	3	
10.5	9.61	8.80	8.09	7.46	6.90	6.42	5.60	4.95	3.99	3.32	2.83	4	
13.6	12.6	11.7	10.8	9.98	9.26	8.62	7.56	6.71	5.43	4.53	3.88	5	
16.7	15.7	14.7	13.7	12.7	11.9	11.1	9.78	8.70	7.07	5.92	5.07	6	
19.8	18.8	17.8	16.7	15.7	14.7	13.8	12.2	10.9	8.90	7.48	6.42	7	90
22.9	22.0	21.0	19.8	18.7	17.7	16.6	14.8	13.3	10.9	9.20	7.92	8	
26.0	25.2	24.1	23.0	21.9	20.7	19.6	17.6	15.9	13.1	11.1	9.56	9	
29.1	28.3	27.3	26.2	25.1	23.9	22.7	20.6	18.6	15.5	13.1	11.4	10	
32.2	31.4	30.5	29.4	28.3	27.1	25.9	23.6	21.5	18.0	15.3	13.3	11	
35.2	34.5	33.6	32.6	31.5	30.3	29.1	26.7	24.5	20.7	17.7	15.4	12	
4.79	4.31	3.91	3.56	3.27	3.01	2.79	2.42	2.13	1.70	1.40	1.19	2	
7.62	6.93	6.31	5.76	5.30	4.90	4.55	3.97	3.50	2.81	2.34	1.99	3	
10.7	9.82	9.03	8.32	7.69	7.13	6.63	5.80	5.13	4.14	3.45	2.95	4	
13.8	12.9	12.0	11.1	10.3	9.61	8.97	7.87	7.00	5.68	4.75	4.07	5	
16.9	16.0	15.1	14.1	13.2	12.4	11.6	10.2	9.13	7.44	6.25	5.36	6	
20.0	19.2	18.2	17.2	16.2	15.3	14.4	12.8	11.5	9.40	7.92	6.82	7	100
23.1	22.3	21.4	20.4	19.4	18.4	17.4	15.6	14.0	11.6	9.79	8.44	8	
26.2	25.5	24.6	23.6	22.6	21.5	20.5	18.5	16.8	13.9	11.8	10.2	9	
29.2	28.6	27.7	26.8	25.8	24.7	23.6	21.6	19.7	16.5	14.0	12.2	10	
32.3	31.7	30.9	30.0	29.0	27.9	26.9	24.7	22.7	19.2	16.4	14.3	11	
35.3	34.8	34.0	33.2	32.2	31.2	30.1	27.9	25.8	22.0	18.9	16.5	12	
4.89	4.42	4.01	3.66	3.36	3.10	2.87	2.49	2.20	1.76	1.45	1.23	2	
7.84	7.18	6.57	6.02	5.55	5.13	4.77	4.17	3.69	2.98	2.48	2.11	3	
10.9	10.2	9.47	8.78	8.15	7.58	7.07	6.21	5.51	4.46	3.73	3.19	4	
14.1	13.3	12.5	11.8	11.0	10.3	9.64	8.51	7.59	6.20	5.20	4.47	5	
17.2	16.5	15.7	14.9	14.0	13.2	12.5	11.1	9.98	8.19	6.91	5.95	6	
20.3	19.6	18.9	18.1	17.2	16.3	15.5	14.0	12.6	10.4	8.82	7.62	7	120
23.3	22.8	22.1	21.3	20.4	19.5	18.6	17.0	15.4	12.9	11.0	9.49	8	
26.4	25.9	25.2	24.5	23.6	22.7	21.8	20.1	18.4	15.5	13.3	11.5	9	
29.5	29.0	28.4	27.6	26.8	26.0	25.1	23.3	21.5	18.3	15.8	13.8	10	
32.5	32.0	31.5	30.8	30.0	29.2	28.3	26.5	24.7	21.3	18.4	16.2	11	
35.5	35.1	34.6	34.0	33.2	32.4	31.6	29.7	27.9	24.3	21.2	18.7	12	
5.09	4.64	4.23	3.88	3.57	3.30	3.07	2.67	2.35	1.89	1.57	1.34	2	
8.18	7.63	7.07	6.54	6.06	5.63	5.24	4.60	4.09	3.32	2.78	2.38	3	
11.3	10.8	10.2	9.57	8.99	8.43	7.92	7.02	6.27	5.13	4.31	3.70	4	
14.4	13.9	13.4	12.7	12.1	11.5	10.9	9.74	8.76	7.22	6.11	5.28	5	
17.5	17.1	16.6	16.0	15.3	14.6	14.0	12.7	11.6	9.67	8.23	7.13	6	
20.6	20.2	19.7	19.1	18.5	17.9	17.2	15.8	14.6	12.3	10.6	9.20	7	160
23.6	23.3	22.8	22.3	21.7	21.1	20.4	19.1	17.7	15.2	13.2	11.5	8	
26.6	26.3	25.9	25.5	24.9	24.3	23.7	22.3	20.9	18.3	16.0	14.1	9	
29.7	29.4	29.0	28.6	28.1	27.5	26.9	25.6	24.2	21.4	18.9	16.8	10	
32.7	32.4	32.1	31.7	31.2	30.7	30.1	28.8	27.4	24.6	22.0	19.6	11	
35.7	35.5	35.2	34.8	34.3	33.8	33.3	32.1	30.7	27.9	25.1	22.6	12	

$D=240 \mathrm{~mm}$												Bolts per Vertical Row	Pitch b mm
Moment Arm, L, mm													
50	75	100	125	150	175	200	250	300	400	500	600		
2.70	2.33	2.04	1.79	1.58	1.41	1.27	1.05	0.90	0.70	0.57	0.48	1	
5.91	5.14	4.52	4.00	3.58	3.22	2.92	2.46	2.11	1.64	1.34	1.13	2	
9.56	8.40	7.43	6.65	5,98	5.42	4.94	4.17	3.59	2.80	2.28	1.93	3	
13.6	12.1	10.9	9.77	8.84	8.05	7.37	6.27	5.43	4.25	3.48	2.94	4	
17.7	16.2	14.6	13.3	12.1	11.0	10.2	8.70	7.57	5.96	4.89	4.14	5	
22.0	20.3	18.7	17.1	15.7	14.4	13.3	11.5	10.0	7.94	6.54	5.54	6	
26.2	24.6	22.9	21.2	19.6	18.1	16.8	14.5	12.8	10.2	8.41	7.14	7	80
30.3	28.9	27.2	25.4	23.7	22.0	20.5	17.9	15.8	12.7	10.5	8.94	8	
34.5	33.1	31.5	29.7	27.9	26.1	24.5	21.6	19.1	15.4	12.8	10.9	,	
38.6	37.3	35.7	34.0	32.2	30.4	28.6	25.4	22.6	18.4	15,4	13.1	10	
42.7	41.5	40.0	38.3	36.5	34.6	32.8	29.4	26.4	21.6	18.1	15.5	11	
46.8	45.7	44.2	42.6	40.8	39.0	37.1	33.5	30.3	25.0	21.0	18.1	12	
6.01	5.24	4.61	4.09	3.66	3.31	3.00	2.53	2.17	1.69	1.38	1.16	2	
9.79	8.65	7.67	6.87	6.20	5.63	5.14	4.35	3.76	2.93	2,39	2.02	3	
13.9	12.5	11.3	10.2	9.26	8.45	7.75	6.61	5.74	4.51	3.70	3.13	4	
18.1	16.7	15.2	13.9	12.7	11.6	10.7	9.23	8.05	6.36	5,23	4.43	5	
22.3	20.9	19.4	17.9	16.5	15,3	14.1	12.2	10.7	8.54	7.05	5.98	6	
26.5	25.2	23.7	22.1	20.6	19.1	17.8	15.5	13.7	11.0	9.10	7.74	7	90
30.6	29.4	28.0	26.4	24.8	23.2	21.8	19.2	17.0	13.7	11.4	9.73	8	
34.8	33.6	32.2	30.7	29.1	27,5	25.9	23.0	20.5	16.7	13.9	11.9	9	
38.9	37.8	36.5	35.0	33.4	31.8	30.1	27.0	24.3	19.9	16.7	14.3	10	
42.9	42.0	40.7	39.3	37.7	36.1	34.4	31.2	28.3	23.4	19.7	17.0	11	
47.0	46.1	45.0	43.6	42.1	40.4	38.8	35.5	32.3	27.0	22.9	19.8	12	
6.12	5.35	4.71	4.19	3.76	3.39	3.08	2.60	2.24	1.74	1.42	1.20		
10.0	8.89	7.92	7.11	6.43	5.85	5.35	4.54	3.92	3.06	2.50	2.11	3	
14.2	12.9	11.7	10.6	9.66	8.84	8.13	6.96	6.05	4.77	3.92	3.31	5	
18.4	17.1	15.8	14.5	13.3	12.2	11.3	9.75	8.54	6.78	5.58	4.73	5	
22.6	21.4	20.0	18.6	17.3	16.0	14.9	13.0	11.4	9,13	7.55	6.42	6	
26.8	25.6	24.3	22.9	21.5	20.1	18.8	16.5	14.6	11.8	9.79	8.35	7	100
30.9	29.9	28.6	27.2	25.7	24.3	22.9	20.3	18,1	14.7	12.3	10.5	8	
35.0	34.0	32.9	31.5	30,1	28.6	27.1	24.3	21.9	17.9	15.1	12.9	9	
39.1	38.2	37.1	35.8	34.4	32.9	31.4	28.5	25.8	21.4	18.1	15.5	10	
43.1	42.3	41.3	40.1	38.7	37.3	35.8	32.8	29.9	25.1	21.3	18,4	11	
47.2	46.4	45.5	44.3	43,0	41.6	40.1	37.1	34.2	28.9	24.7	21.4	12	
6.32	5.56	4.93	4.40	3.95	3.58	3.26	2.76	2.38	1.86	1.52	1.28	2	
10.4	9.36	8.41	7.58	6.87	6.27	5.76	4.92	4.26	3.34	2.74	2.31	3	
14.6	13.5	12.4	11.4	10.4	9.61	8.87	7.65	6.68	5.30	4.36	3.70	4	
18.8	17.8	16.7	15.5	14.4	13.4	12.4	10.8	9.49	7.60	6.29	5.34	5	
23.0	22.1	21.0	19.8	18.6	17.4	16.3	14.4	12.8	10,3	8.57	7.31	6	
27.1	26.3	25.3	24.1	22.9	21.7	20.5	18.3	16.3	13.3	11.1	9,55	7	120
31.2	30.4	29.5	28.4	27.2	26.0	24.8	22.4	20.2	16.7	14.0	12.1	8	
35.3	34.6	33.7	32.7	31.6	30.4	29.1	26.6	24.3	20.3	17.2	14.8	9	
39.3	38.7	37.9	36.9	35.9	34.7	33.5	30.9	28.5	24.1	20.6	17.9	10	
43.4	42.8	42.1	41.2	40.1	39.0	37.8	35.3	32.8	28.1	24.2	21.1	11	
47.4	46.9	46.2	45.4	44.4	43.3	42.2	39.7	37.1	32.2	28.0	24.6	12	
6.69	5.98	5.36	4.82	4.36	3.97	3.63	3.09						
10.9	10.1	9.28	8.49	7.76	7.12	6.57	5.66	4.95	3.92	3.22	2.73	3	
15.1	14.4	13.6	12.7	11.8	11.0	10.3	8.97	7.92	6.35	5.27	4.49	4	
19.3	18.6	17.9	17.0	16.1	15.2	14.3	12.7	11.3	9.19	7.68	6.57	5	
23.4	22.8	22.1	21.3	20.4	19.5	18.6	16.8	15.2	12.5	10.6	9.07	6	
27.5	27.0	26.3	25.6	24.8	23.9	22.9	21.1	19.3	16.2	13.7	11.9	7	160
31.5	31.1	30.5	29.8	29.0	28.2	27.3	25.4	23.5	20.1	17.3	15.0	8	
35.5	35.2	34.6	34.0	33.3	32.5	31.6	29.8	27.9	24.2	21.1	18.5	9	
39.6	39,2	38.8	38.2	37.5	36.8	35.9	34.1	32.2	28.5	25.0	22.1	10	
43.6	43.3	42.8	42.3	41.7	41.0	40.2	38.5	36.6	32.8	29.2	26.0	11	
47.6	47.3	46.9	46.4	45.8	45.2	44.5	42.8	41.0	37.2	33.4	30.0	12	

ECCENTRIC LOADS

Table 3-20

$D=480 \mathrm{~mm}$												Bolts per Vertical Row	$\begin{gathered} \text { Pitch } \\ \mathrm{b} \\ \mathrm{~mm} \end{gathered}$
Moment Arm, L, mm													
50	75	100	125	150	175	200	250	300	400	500	600		
3.18	2.91	2.70	2.50	2.33	2.18	2.04	1.79	1.58	1.27	1.05	0.90	1	
6.54	6.01	5.56	5.16	4.81	4.49	4.20	3.70	3.29	2.66	2.22	1.90	2	
10.1	9.31	8.61	8.01	7.48	6.99	6.56	5.80	5.17	4.20	3.52	3.01	3	
13.9	12.8	11.9	11.1	10.4	9.73	9.13	8.10	7.25	5.93	4.98	4.27	4	
17.8	16.6	15.5	14.4	13.5	12.7	11.9	10.6	9.54	7.84	6.60	5.68	5	
21.8	20.5	19.2	18.0	16.9	15.9	15.0	13.4	12.1	9.95	8.41	7.25	6	
25.9	24.5	23.2	21.8	20.5	19.4	18.3	16.4	14.8	12.3	10.4	8.98	7	80
30.1	28.7	27.2	25.7	24.3	23.0	21.8	19.6	17.7	14.8	12.5	10.9	8	
34.2	32.8	31.3	29.8	28.3	26.8	25.5	23.0	20.8	17.4	14.9	12.9	9	
38.3	37.0	35.5	33.9	32.3	30.8	29.3	26.6	24.2	20.3	17.4	15.1	10	
42.4	41.2	39.7	38.1	36.5	34.9	33.3	30.3	27.7	23.4	20.1	17.5	11	
46.5	45.3	43.9	42.3	40.7	39.0	37.4	34.2	31.4	26.6	22.9	20.0	12	
6.57	6.05	5.60	5.20	4.84	4.52	4.23	3.73	3.32	2.69	2.25	1.92	2	
10.2	9.42	8.72	8.12	7.58	7.09	6.65	5.89	5.26	4.28	3.59	3.07	3	
14.0	13.1	12.1	11.3	10.6	9.94	9.34	8.30	7.43	6.09	5.12	4.41	4	
18.0	16.9	15.8	14.8	13.9	13.0	12.3	11.0	9.85	8.12	6.85	5.90	5	
22.1	20.9	19.7	18.5	17.4	16.4	15.5	13.9	12.5	10.4	8.78	7.58	6	
26.3	25.0	23.7	22.4	21.2	20.0	18.9	17.0	15.4	12.8	10.9	9.44	7	90
30.4	29.2	27.8	26.5	25.1	23.8	22.6	20.4	18.5	15.5	13.2	11.5	8	
34.5	33.4	32.0	30.6	29.2	27.8	26.5	24.0	21.9	18.4	15.7	13.7	9	
38.6	37.5	36.2	34.8	33.4	31.9	30.5	27.8	25.4	21.5	18.5	16.1	10	
42.7	41.7	40.4	39.0	37.6	36.1	34.6	31.8	29.1	24.7	21.3	18.7	11	
46.8	45.8	44.6	43.3	41.8	40.3	38.8	35.8	33.0	28.2	24.4	21.4	12	
6.61	6.09	5.64	5.24	4.88	4.56	4.27	3.77	3.35	2.72	2.27	1.95	2	
10.3	9.53	8.84	8.22	7.68	7.20	6.75	5.99	5.35	4.37	3.66	3.14	3	
14.2	13.3	12.4	11.6	10.8	10.1	9.55	8.50	7.62	6.26	5.28	4.54	4	
18.3	17.2	16.1	15.1	14.2	13.4	12.6	11.3	10.2	8.40	7.11	6.13	5	
22.4	21.3	20.1	19.0	17.9	16.9	16.0	14.4	13.0	10.8	9.16	7.92	5	
26.5	25.4	24.2	23.0	21.8	20.7	19.6	17.7	16.0	13.4	11.4	9.91		100
30.6	29.6	28.4	27.1	25.9	24.6	23.5	21.3	19.4	16.3	13.9	12.1		
34.8	33.8	32.6	31.3	30.0	28.7	27.4	25.0	22.9	19.3	16.6	14.5	9	
38.9	37.9	36.8	35.6	34.2	32.9	31.6	29.0	26.6	22.6	19.5	17.1	10	
42.9	42.1	41.0	39.8	38.5	37.1	35.8	33.1	30.5	26.1	22.6	19.8	11	
47.0	46.2	45.2	44.0	42.7	41.4	40.0	37.2	34.5	29.8	25.9	22.8	12	
6.69	6.18	5.72	5.32		4.63	4.34	3.84	3.42	2.78	2.33	2.00	2	
10.5	9.76	9.08	8.46	7.92	7.42	6.97	6.20	5.55	4.55	3.82	3.28	3	
14.5	13.6	12.8	12.0	11.3	10.6	9.98	8.91	8.02	6.62	5.59	4.83	4	
18.6	17.7	16.8	15.8	14.9	14.1	13.3	11.9	10.8	8.98	7.63	6.60	5	
22.8	21.9	20.9	19.9	18.9	17.9	17.0	15.3	13.9	11.6	9.93	8.62	6	
26.9	26.1	25.1	24.0	22.9	21.9	20.9	19.0	17.3	14.6	12.5	10.9	7	120
31.0	30.2	29.3	28.2	27.1	26.0	24.9	22.8	20.9	17.7	15.3	13.4	8	
35.1	34.4	33.5	32.5	31.4	30.2	29.1	26.9	24.8	21.2	18.3	16.1	9	
39.2	38.5	37.7	36.7	35.6	34.5	33.4	31.0	28.8	24.8	21.6	19.0	10	
43.2	42.6	41.8	40.9	39.9	38.8	37.6	35.3	32.9	28.6	25.1	22.1	11	
47.3	46.7	46.0	45.1	44.1	43.1	41.9	39.6	37.2	32.6	28.7	25.4	12	
6.86	6.36	5.91	5.51	5.14	4.81	4.52	4.00	3.58	2.92	2.46	2.11	2	
10.9	10.2	9.56	8.95	8.39	7.89	7.44	6.65	5.98	4.94	4.17	3.59	3	
15.0	14.3	13.6	12.8	12.1	11.5	10.9	9.78	8.84	7.37	6.27	5.43	4	
19.1	18.5	17.7	17.0	16.2	15.4	14.6	13.3	12.1	10.2	8.69	7.57	5	
23.3	22.7	22.0	21.2	20.3	19.5	18.7	17.1	15.7	13.3	11.5	10.0	6	
27.3	26.8	26.2	25.4	24.6	23.7	22.9	21.2	19.6	16.8	14.5	12.8	7	160
31.4	30.9	30.3	29.6	28.9	28.0	27.2	25.4	23.7	20.5	17.9	15.8	8	
35.5	35.0	34.5	33.8	33.1	32.3	31.4	29.7	27.9	24.5	21.6	19.1	9	
39.5	39.1	38.6	38.0	37.3	36.6	35.7	34.0	32.2	28.6	25.4	22.6	10	
43.5	43.2	42.7	42.1	41.5	40.8	40.0	38.3	36.5	32.8	29.4	26.4	11	
47.5	47.2	46.8	46.3	45.7	45.0	44.2	42.6	40.8	37.1	33.5	30.3	12	

ECCENTRIC LOAD ON BOLT GROUPS - SPECIAL CASE

High-Strength Bolts

For connections where the eccentric load causes both shear and tension in the bolts, the following design method may be used when the fasteners are high-strength bolts that have been tightened to the specified minimum initial tension.

A bracket connected by means of bolts with an initial tension T_{i} is shown below. Both simple and unwieldy methods are available for determining tension that is applied to the upper bolts by the load on the bracket. Generally, the simpler solutions are considerably more conservative than the more accurate but unwieldy ones. The solution presented here is easy to use and conservative.

A neutral axis is assumed through the centre of gravity of the bolt group. Those bolts above the axis are said to carry the tension while those below are considered to be in "compression", so that the applied moment is resisted by a couple applied at the resultants of the upper and the lower bolts. The upper bolts are all taken to be equally loaded; this plastic stress distribution is justified by results that are still conservative compared to more precise methods.

Bolt tension from the applied moment is therefore:

$$
T_{1}=\frac{P L}{n^{\prime} d_{m}}
$$

$n^{\prime}=$ number of bolts above the neutral axis
$d_{m}=$ moment arm between resultants of the tensile and compressive forces.
Bolt shear from the applied load is:

$$
V=\frac{P}{n}
$$

Fasteners in the top half of the connection are subjected to tension, from both the applied moment and from prying (if any), and shear. Bolts in the bottom half are subjected to shear only, with top and bottom bolts participating equally.

The connection should be proportioned so that the bolt tension T_{I} due to the moment $P L$ (plus bolt tension due to prying), when combined with the bolt shear, meets the requirements of CSA S16-14 for bolts subjected to combined shear and tension. The relevant clauses are 13.12.1.4 for bearing-type connections and 13.12.2.3 for slip-critical connections.

Example 1

Given:

Check the adequacy of eight $3 / 4$-inch, A325 bolts (2 rows of 4 , at 80 mm pitch) for the connection shown on the previous page for a factored load P_{f} of 300 kN at an eccentricity L of 150 mm . Assume the material thickness is adequate so that prying action on the bolts is not significant.

Solution:

Factored tension in one bolt:

$$
\begin{aligned}
T_{1}= & \frac{P_{f} L}{n^{\prime} d_{m}}=\frac{300 \times 150}{4(2 \times 80)}=70.3 \mathrm{kN} \\
& <141 \mathrm{kN} \text { (Table 3-4) }
\end{aligned}
$$

Factored shear in one bolt:

$$
V_{f}=\frac{P_{f}}{n}=\frac{300}{8}=37.5 \mathrm{kN}<113 \mathrm{kN} \text { (Table 3-4, threads excluded case assumed) }
$$

Check combined shear and tension for $V_{f} / T_{f}=37.5 / 70.3=0.53$
From Table 3-8, for bearing-type connections,
permissible $V_{f}=62.3 \mathrm{kN}$ (by interpolation) $>37.5 \mathrm{kN}$
and permissible $T_{f}=118 \mathrm{kN}$ (by interpolation) $>70.3 \mathrm{kN}$

Example 2

Given:

Determine the number of $3 / 4$-inch, A325 bolts required to design the connection in Example 1 as a slip-critical connection for a specified load of 200 kN . Assume clean mill scale faying surfaces and bolts installed by the turn-of-the-nut method.

Solution:

Try 10 bolts (2 rows of 5 , at 80 mm pitch)
Specified tension in one bolt:

$$
\begin{aligned}
& T_{1}=\frac{P L}{n^{\prime} d_{m}}=\frac{200 \times 150}{4(2 \times 120)}=31.3 \mathrm{kN} \\
& T_{f}=1.5 \times 31.3=47.0 \mathrm{kN}<141 \mathrm{kN}(\text { Table 3-4) }
\end{aligned}
$$

Specified shear in one bolt:

$$
V=\frac{P}{n}=\frac{200}{10}=20.0 \mathrm{kN}<37.4 \mathrm{kN}(\text { Table 3-11) }
$$

Check combined shear and tension for $V / T=20.0 / 31.3=0.64$
From Table 3-12a,
permissible $V=25.4 \mathrm{kN}$ (by interpolation) $>20.0 \mathrm{kN}$
and permissible $T=39.8 \mathrm{kN}$ (by interpolation) $>31.3 \mathrm{kN}$

WELD DATA

General

Tables in this section are based on CSA S16-14 and other pertinent standards it references. Information on weld resistances and rated electrode tensile strengths in CSA Standard W48 may be found in Table 3-22. Although S16-14 permits the use of non-matching electrodes where permitted in CSA W59, all weld data are provided for matching conditions under static loading, unless noted otherwise.

Tables

Table 3-21 summarizes weld resistances as a function of type of load and type of weld.
Table 3-22 provides information on matching electrode conditions and gives unit factored weld resistances for various rated electrode tensile strengths.

Table 3-23 gives factored shear resistances for a range of effective throats per millimetre of weld length, for various rated electrode tensile strengths and matching electrode applications.

Table 3-24 lists factored shear resistances of a range of fillet weld sizes per millimetre of weld length parallel to the force, for various rated electrode tensile strengths and matching electrode applications.

Table 3-25 shows fillet weld resistances as a function of the angle between the axis of the weld and the direction of the load for matching electrode applications.

Tables 3-26 to 3-33 present the resistance of fillet weld groups in various configurations when they are loaded eccentrically in the plane of the welds.

Table 3-34 presents weld resistances for two parallel fillet welds when the eccentric load is in a plane perpendicular to the plane of the welds.

Type of Load	Type of Weld	Factored Resistance
Shear (including tension or compression-induced shear in fillet welds)	Complete and partial joint penetration groove welds, and plug and slot welds	Lesser of: base metal, $\mathrm{V}_{\mathrm{r}}=0.67 \phi_{w} \mathrm{~A}_{\mathrm{m}} \mathrm{F}_{\mathrm{u}}$ weld metal, $V_{r}=0,67 \phi_{w} A_{w} X_{u}$
	Fillet welds	Weld metal: $V_{r}=0.67 \phi_{w} A_{w} X_{u}\left(1.00+0.50 \sin ^{1.5} \theta\right) M_{w}{ }^{(1)}$ But if over-matched electrodes are used ${ }^{(5)}$, not greater than: $V_{r}=0.67 \phi_{w} A_{m} F_{u} .$
Tension (normal to axis of load)	Complete joint penetration groove weld (made with matching electrodes) ${ }^{(2)}$	Same as the base metal
	Partial joint penetration groove weld (made with matching electrodes) ${ }^{(2)}$	$T_{r}=\phi_{w} A_{n} F_{u} \leq \phi A_{g} F_{y}{ }^{(3)}$
	Partial joint penetration groove weld combined with a fillet weld (made with matching electrodes) ${ }^{(2)}$	$T_{t}=\phi_{w} \sqrt{\left(A_{n} F_{u}\right)^{2}+\left(A_{w} X_{u}\right)^{2}} \leq \phi A_{g} F_{y}$
Compression (normal to axis of load)	Complete joint penetration groove weld (made with matching electrodes) ${ }^{(2)}$	Same as the base metal
	Partial joint penetration groove weld (made with matching electrodes) ${ }^{(2)}$	Same as the base metal. for the nominal area of the fusion face normal to the compression plus the area of the base metal fitted in contact bearing. ${ }^{(4)}$

* The detail design of welded joints is to conform to the requirements of CSA Standard W59.
$A_{m}=$ shear area of effeclive fusion face.
$A_{w}=$ area of effective weid throat, plug or slot.
$A_{n}=$ nominal area of fusion face normal to the tensile force.
$\theta=$ angle of axis of weld with the line of action of force (0° for a longitudinal weld and 90° for a transverse weld).
${ }^{(1)} \mathrm{M}_{w}$ is the strength reduction factor for multi-orientation fillet welds. See CSA S16-14 Clause 13.13.2.2.
${ }^{(2)}$ The base metal resistance need not be checked for matching electrodes, For information on matching electrodes, see CSA S16-14 Table 4.
${ }^{\text {(3) }}$ When overall ductile behaviour is desired (member yielding before weld fracture) $A_{n} F_{u}>A_{9} F_{y}$.
${ }^{(4)}$ See CSA S16-14, Clause 28.5.
${ }^{(5)}$ However, when electrodes stronger than matching are permitted and used, CSA W59-13 restricts the maximum design value of X_{u} to that of the matching electrode.

f; to be used for A_{n} (see CSA Standard W59 for effective fusion face)
t_{w} : to be used for A_{w} (see CSA Standard W59 for effective weld throat)
t : \quad to be used for A_{0}

Application of expression $T_{f}=\phi_{w} \sqrt{\left(A_{n} F_{u}\right)^{2}+\left(A_{w} X_{u}\right)^{2}} \leq \phi A_{g} F_{q}$

Matching Electrode Conditions ${ }^{1}$

$\phi_{\mathrm{w}}=0.67$

WELD METAL			BASE METAL ${ }^{3}$				
Rated Electrode Ultimate Tensile Strength X_{u}	Unit Factored Shear Resistance on Weld Metal ${ }^{2}$		$\begin{aligned} & \text { 믐 } \\ & \text { 豆 } \\ & \text { (W } \end{aligned}$	Specification and Grade	Specified Minimum Strength		Unit Factored Resistance$0.67 \phi_{w} F_{u}$
	On Effective Throat $A_{w} 0.67 \phi_{w} X_{u}$	Per Unit Area Based on Fillet Size, D $0.67 \phi_{\mathrm{w}} \mathrm{X}_{\mathrm{u}} / \sqrt{ } 2$			Tensile Strength F_{u}	Yield Stress Fy	
MPa	MPa	MPa			MPa	MPa	MPa
430	193	136	ㄷ	260W, 260WT	410	260	184
490	220	156		300W, 300WT 300WT (Shapes) $350 \mathrm{~W}, 350 \mathrm{WT}{ }^{5}$ 350WM, 350WMT	$\begin{gathered} 440^{(4)} \\ 450 \\ 450 \\ 450 \end{gathered}$	$\begin{aligned} & 300 \\ & 300 \\ & 350 \\ & 345 \end{aligned}$	$\begin{aligned} & 198 \\ & 202 \\ & 202 \\ & 202 \end{aligned}$
				350WT (Shapes) 350A, 350AT, 350R 380W	$\begin{aligned} & 480 \\ & 480 \\ & 480 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 350 \\ & 350 \\ & 380 \\ & \hline \end{aligned}$	$\begin{aligned} & 215 \\ & 215 \\ & 215 \\ & \hline \end{aligned}$
550	247	175		400W, 400WT 400A, 400AT	520	400	233
620	278	197		$\begin{aligned} & \text { 480W, 480WT } \\ & \text { 480A, 480AT } \end{aligned}$	590	480	265
430	193	136	\sum_{i}^{∞}	A36	400	250	180
490	220	156		$\begin{aligned} & \hline \text { A500 Gr, C } \\ & \text { Round HSS } \\ & \text { Square and Rectangular } \\ & \hline \end{aligned}$	427	$\begin{array}{r} 317 \\ 345 \\ \hline \end{array}$	192
				A572 Gr. 50	450	345	202
				A709M Gr, 345S	450	345	202
				A913 Gr. 50	450	345	202
				A992	450	345	202
				A588 $\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$	485	345	218
				A709M Gr. 345W, HPS 345W	485	345	218
550	247	175		A913 Gr. 65	550	450	247
620	278	197		A709M Gr. HPS 485W	585	485	263

1. For more information concerning matching electrode conditions, refer to Table 4 of CSA S16-14 and CSA W59.
2. Factored weld resistance of fillet welds not parallel to force may be increased, whereas the resistance of weld groups comprising multi-orientation fillet segments shall be reduced in accordance with S16-14, Clause 13.13.2.2.
3. The base metal resistance need not be checked for fillet welds in matching electrode conditions.

See CSA S16-14 Clause 13.13.2.2 and Table 4.
4. $\mathrm{F}_{\mathrm{u}}=410 \mathrm{MPa}$ for 300W HSS; 450 MPa for 300WT Shapes.
5. $F_{u}=480 \mathrm{MPa}$ for 350 WT Shapes.

FACTORED SHEAR RESISTANCE

On Effective Throat Per Millimetre of Weld Length ($\mathrm{kN} / \mathrm{mm}$)

Raled Electrode	Unit Shear	Effective Throat Thickness (mm)												
Strength, X_{w} (MPa)	$\begin{aligned} & \text { ance } \\ & \text { (MPa) } \end{aligned}$	2	3	4	5	6	7	8	10	12	15	20	25	30
430	193	0.386	0.579	0.772	0.965	1.16	1.35	1.54	1.93	2.32	2.90	3.86	4.83	5.79
490	220	0.440	0.660	0.880	1.10	1.32	1.54	1.76	2.20	2,64	3.30	4.40	5,50	6.60
550	247	0.494	0.741	0.988	1.23	1.48	1.73	1.98	2.47	2.96	3.70	4.94	6.17	7.41
620	278	0.557	0.835	1.11	1.39	1.67	1.95	2.23	2.78	3.34	4.17	5.57	6.96	8.35

FACTORED SHEAR RESISTANCE OF FILLET WELDS
Per Millimetre of Weld Length
 Table 3-24a

Matching Electrode Applications

Metric Size Fillet Welds				
Fillet Weld Size, D	Rated Electrode Tensile Strength, X_{u} (MPa)			
	430	490	550	620
mm	$\mathrm{kN} / \mathrm{mm}$			
5	0.682	0.778	0.873	0.984
6	0.819	0.933	1.05	1.18
8	1.09	1.24	1.40	1.57
10	1.36	1.56	1.75	1.97
12	1.64	1.87	2.09	2.36
14	1.91	2.18	2.44	2.76
16	2.18	2.49	2.79	3.15
18	2.46	2.80	3.14	3.54
20	2.73	3.11	3.49	3.94

${ }^{*}$ CSA S16-14 Clause 13.13.2.2: $\mathrm{V}_{\mathrm{r}}=0.67 \phi_{\mathrm{w}} \mathrm{A}_{w} \mathrm{X}_{u}\left(1.0+0.5 \sin ^{1.5} \theta\right) \mathrm{M}_{w}$

FACTORED SHEAR RESISTANCE
of Fillet Welds Per Millimetre of Weld Length for Angle θ

Table 3-24b
$\mathrm{X}_{\mathrm{u}}=490 \mathrm{MPa}$
Matching Electrode Applications

Weld Size	Angle θ between weld axis and force direction									
	0°	10°	20°	30°	40°	50°	60°	70°	80°	90°
mm	$\mathrm{kN} / \mathrm{mm}$									
5	0.778	0.806	0.855	0.915	0.978	1.04	1.09	1.13	1.16	1.17
6	0.933	0.967	1.03	1.10	1.17	1.25	1.31	1.36	1.39	1.40
8	1.24	1.29	1.37	1.46	1.56	1.66	1.75	1.81	1.85	1.87
10	1.56	1.61	1.71	1.83	1.96	2.08	2.18	2.26	2.32	2.33
12	1.87	1.93	2.05	2.20	2.35	2.49	2.62	2.72	2.78	2.80
14	2.18	2.26	2.40	2.56	2.74	2.91	3.05	3.17	3.24	3.27
16	2.49	2.58	2.74	2.93	3.13	3.32	3.49	3.62	3.70	3.73
18	2.80	2.90	3.08	3.29	3.52	3.74	3.93	4.07	4.17	4.20
20	3.11	3.22	3.42	3.66	3.91	4.15	4.36	4.53	4.63	4.67

[^5]
NOTES

STRENGTH REDUCTION FACTOR

θ_{2}
(Deg.)
$\theta_{1}=$ Angle of axis of weld segment under consideration, with respect to the line of action of applied force
$\theta_{2}=$ Angle of axis of weld segment in the joint that is nearest to 90°, with respect to the line of action of applied force See CSA S16-14 Clause 13.13.2.2.

ECCENTRIC LOADS ON WELD GROUPS

When the line of action of a load on a weld group does not pass through the centre of gravity of the group, the connection is eccentrically loaded. The elastic method of analysis was the traditional approach used in the first two editions of this Handbook.

The third edition incorporated the work of Butler et al. (1972), which showed that the margins of safety for eccentrically loaded weld groups analysed elastically were both high and variable. They suggested a method of analysis based on the load-deformation characteristics of the weld and the instantaneous centre of rotation analogy similar to that for eccentrically loaded bolt groups. For this method of analysis, the weld group is considered to be divided into a discrete number of finite weld elements. The resistance of the weld group to the external eccentric load is provided by the combined resistances of the weld elements.

The resistance of each weld element is assumed to act on a line perpendicular to the radius extending from the instantaneous centre of rotation to the centroid of the weld element, as shown on the accompanying figure, where θ is the angle between the axis of the weld and the direction of the weld resistance, R_{n}. The ultimate load is obtained when the ultimate strength and deformation of some weld element is reached. The resistance of the remaining weld elements is then computed by assuming that deformations vary linearly with the distance from the instantaneous centre. The correct location of the instantaneous centre is assured when the connection is in equilibrium, that is, when the three equations of statics, $\Sigma F_{x}=0, \Sigma F_{y}=0$ and
 $\Sigma M=0$ are simultaneously satisfied.

Beginning with the ninth edition of this Handbook, design tables for the factored resistances of eccentrically loaded weld groups (Tables 3-26 to 3-33 on the following pages) were calculated using the work of Lesik and Kennedy (1990). This method of analysis was also based on the instantaneous centre of rotation method and featured refined loaddeformation characteristics. Notably, the shear strength of a fillet weld, V_{θ}, at an angle θ from the line of action of the applied load is expressed by:

$$
\frac{V_{\theta}}{V_{o}}=\left(1+0.5 \sin ^{1.5} \theta\right)
$$

where V_{o} is the shear strength of a longitudinal weld.

Tables

1. Use of Tables

The coefficients C listed in Tables 3-26 to 3-33 are based on a matching electrode, $X_{u}=490 \mathrm{MPa}$, and a resistance factor for welded connections, $\phi_{\mathrm{w}}=0.67$. The tables are applicable to matching electrode applications only. The base metal resistance has not been included; therefore, the tables are not suitable for over-matched applications. For further information, see CSA S16-14 Clause 13.13.2.2 and Table 4.
(a) To determine the capacity P of the eccentrically loaded weld group in kN , multiply the appropriate coefficient C by the number of millimetres of weld size D and the length of the weld L, in millimetres.
(b) To determine the required number of millimetres of weld size D, divide the factored load P, in kN , by the appropriate coefficient C and the length of the weld L, in mm .

2. Other Weld Configurations

For situations not covered by the tables of Eccentric Loads on Weld Groups, interpolating between weld configurations in the tables which "bracket" the situation being evaluated will often be sufficient to confirm adequacy.

Example

For an example on the use of these tables, see the design example following Table 3-33.

References

ButLer, L.J., PaL, S., and Kulak, G.L. 1972. Eccentrically loaded welded connections. ASCE Journal of the Structural Division, 98(ST5), May.
Kulak, G.L., and Timler, P.A. 1984. Tests on eccentrically loaded fillet welds. Structural Engineering Report No, 124, December, University of Alberta.

LESIK, D.F., and KENNEDY, D.J.L. 1990. Ultimate strength of fillet welded connections loaded in plane. Canadian Journal of Civil Engineering, 17(1), February.

SWANNELL, P., and SKEWES, I.C. 1977. Design of welded brackets loaded in-plane: general theoretical ultimate load techniques and experimental programme. Australian WRA, RC \#46, December, University of Queensland.

				\rightarrow	$P=$ Factored eccentric load, kN $L=$ Length of each weld, mm $D=$ Size of fillet weld, mm $C=$ Coefficients tabulated below $P=C D L$							Required Minimum $C=\frac{P}{D L}$ Required Minimum $D=\frac{P}{C L}$ Required Minimum $L=\frac{P}{C D}$				
a	k															
	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	. 467	. 467	. 467	. 467	. 467	. 467	. 467	. 467	. 467	. 467	. 467	. 467	. 467	. 467	. 467	467
0.05	. 395	. 400	. 410	. 422	432	. 440	. 446	. 451	. 454	. 456	. 457	. 460	. 461	. 462	. 462	. 463
0.10	. 355	. 359	. 369	. 383	. 396	. 409	. 420	. 429	. 436	. 441	. 445	. 451	. 454	. 457	. 458	, 459
0.15	. 321	. 324	. 334	. 346	. 362	. 377	. 391	. 403	. 413	. 422	. 428	. 438	. 445	. 449	. 452	. 455
0.20	. 290	. 294	. 303	. 315	. 330	. 346	. 362	. 376	. 389	. 400	. 409	. 423	. 433	. 440	. 445	. 448
0.25	264	. 267	. 276	. 288	. 302	. 318	. 335	. 351	. 365	. 378	. 389	. 407	. 419	. 429	. 436	. 441
0.30	. 241	244	. 253	. 265	278	. 293	. 310	. 326	. 342	. 356	. 368	389	. 405	. 416	. 425	. 432
0.35	. 221	. 224	. 232	, 243	. 256	,271	. 287	. 304	. 320	. 334	. 349	. 371	. 389	. 403	. 414	. 423
0.40	. 204	. 207	. 215	. 225	. 238	. 252	. 267	. 283	. 299	. 314	. 329	354	. 374	. 390	. 402	. 412
0.45	. 189	. 192	. 199	. 209	. 221	. 234	. 249	. 264	. 280	. 296	. 311	. 336	. 358	. 376	. 390	. 401
0.50	. 175	. 178	. 185	. 195	. 206	. 219	. 232	. 247	. 263	. 278	. 293	. 321	. 343	. 362	. 378	. 390
0.60	. 153	. 156	. 162	. 171	. 181	. 193	. 206	. 219	. 233	. 247	. 262	. 290	. 314	. 335	. 353	. 368
0.70	. 136	. 138	. 144	. 152	. 161	. 172	. 184	. 196	. 209	. 222	. 235	. 263	. 288	. 310	. 329	. 346
0.80	. 121	. 124	. 129	. 136	. 145	. 155	. 166	. 177	. 188	. 201	. 213	. 239	. 264	. 287	. 306	. 324
0.90	. 110	. 112	. 117	. 124	. 131	. 141	. 150	. 161	. 172	. 183	. 195	219	. 243	. 265	. 286	, 304
1.00	. 100	. 102	. 106	. 113	120	. 129	. 138	, 148	. 158	. 168	. 179	. 201	. 224	. 246	. 267	. 285
1.20	. 085	. 086	. 090	. 096	. 102	. 110	. 118	. 126	. 135	. 144	. 153	. 173	. 193	. 214	. 233	. 251
1.40	. 074	. 075	. 079	. 083	. 089	. 096	. 103	. 110	. 118	. 126	. 134	. 152	. 169	. 187	. 206	. 224
1.60	. 065	. 066	. 070	. 074	. 079	. 084	. 091	. 097	. 105	. 111	. 119	. 135	, 151	. 167	. 184	, 200
1.80	. 058	. 059	. 062	. 066	. 070	. 076	. 081	,087	. 094	. 100	. 107	. 121	. 135	. 150	. 165	. 180
2.00	. 053	. 054	. 056	. 060	. 064	. 069	. 074	. 079	. 085	. 091	. 097	. 110	. 123	. 136	. 150	. 164
2.20	. 048	. 049	. 051	. 054	. 058	. 063	. 067	. 073	. 078	. 083	. 089	. 100	. 112	. 125	. 137	. 150
2.40	. 044	. 045	. 047	. 050	. 054	. 058	. 062	,067	. 074	. 077	. 082	. 093	. 103	. 115	. 127	. 138
2.60	. 041	. 042	. 044	. 046	. 050	. 053	. 057	. 062	. 066	. 071	. 076	. 086	. 096	. 107	. 117	. 128
2.80	. 038	. 039	. 041	. 043	. 046	. 050	. 054	. 058	, 062	. 066	. 071	. 080	. 089	. 099	. 109	. 120
3.00	. 036	. 036	. 038	. 040	. 043	. 046	. 050	. 054	. 058	. 062	. 066	. 075	. 084	. 093	. 102	. 112

[^6]Matching Electrode $X_{u}=490 \mathrm{MPa}$
Coefficients C

a	k															
	0.0	0.1	0.2	0.3	0.4	0.5	0,6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	. 311	. 311	. 311	. 314	311	. 311	. 311	.311	. 311	. 311	. 311	. 311	. 311	. 311	. 311	. 311
0.05	. 311	. 311	. 311	. 311	. 311	. 311	. 311	.309	. 308	. 307	. 306	. 305	. 303	. 302	. 302	. 301
0.10	. 311	. 311	. 311	. 311	. 309	. 307	. 305	. 303	. 301	. 300	. 299	. 297	. 295	. 295	. 294	. 294
0.15	. 309	. 307	. 305	. 302	. 299	297	. 295	293	. 292	. 290	. 289	. 288	. 287	. 286	. 286	. 286
0,20	. 296	. 294	. 291	. 288	. 286	. 284	. 282	. 281	. 280	. 279	. 279	. 278	. 278	. 278	. 278	. 279
0.25	. 278	. 276	. 274	. 272	. 271	. 269	. 268	. 268	. 267	. 267	. 267	. 268	. 268	. 269	. 270	. 271
0,30	. 259	. 257	. 256	. 255	. 255	254	. 254	. 254	. 255	. 255	. 256	. 257	. 259	. 260	. 262	. 263
0.35	. 240	. 239	. 238	. 238	. 238	. 239	. 240	241	. 242	. 243	. 244	. 247	. 249	. 252	. 254	. 256
0.40	. 222	. 221	. 222	. 222	. 223	. 225	227	. 228	. 230	. 232	. 234	. 237	, 240	. 243	. 246	. 248
0.45	. 205	. 205	. 206	. 208	. 210	. 212	. 214	. 216	. 218	. 221	. 223	. 227	. 231	. 235	. 238	. 241
0.50	. 191	. 191	. 192	. 194	. 197	. 200	202	205	. 208	. 211	. 214	. 219	. 223	. 227	. 231	. 234
0.60	. 165	. 166	. 168	. 171	. 175	. 178	. 182	, 186	. 189	. 192	. 195	. 202	. 208	. 213	. 217	. 221
0.70	. 145	. 146	. 148	. 152	. 156	. 160	. 165	. 169	. 173	. 176	. 180	. 187	. 194	. 200	. 205	, 209
0.80	. 129	. 130	. 133	. 137	. 141	. 145	. 150	. 155	. 159	. 163	. 167	. 174	. 181	. 187	. 193	. 198
0.90	. 116	. 117	. 120	. 124	. 128	. 133	. 138	. 142	. 147	. 151	. 155	. 163	. 170	. 177	. 183	. 188
1.00	. 105	. 106	. 109	. 113	. 118	. 122	. 127	. 132	. 137	. 141	. 145	. 153	, 160	. 168	. 174	. 179
1.20	. 089	. 090	. 092	. 096	. 101	. 105	. 110	. 115	. 119	. 124	. 128	. 136	. 144	. 151	. 158	. 163
1.40	. 076	. 077	. 080	. 084	. 088	. 093	. 097	. 101	. 106	. 110	. 114	. 122	. 130	. 137	. 144	. 149
1.60	. 067	. 068	. 070	. 074	. 078	. 082	. 086	. 091	. 095	. 099	. 103	. 111	. 119	. 126	. 133	. 138
1.80	. 060	. 061	. 063	. 066	. 070	. 074	. 078	. 082	. 086	. 090	. 094	. 102	, 109	. 116	. 123	. 128
2.00	. 054	. 055	. 057	. 060	. 064	. 067	. 071	. 075	. 079	. 083	. 087	. 094	. 101	. 107	. 114	. 119
2.20	. 049	. 050	. 052	. 055	. 058	. 062	. 065	. 069	. 073	. 076	. 080	. 087	. 094	. 100	. 106	. 112
2.40	. 045	. 046	. 048	. 050	. 053	. 057	. 060	. 064	. 067	. 071	. 074	. 081	. 087	, 094	. 100	. 106
2.60	. 042	. 042	. 044	. 047	. 049	. 053	. 056	. 059	. 063	. 066	. 069	. 076	,082	. 088	. 094	. 100
2.80	. 039	. 039	. 041	. 043	. 046	. 049	. 052	. 055	. 059	. 062	. 065	. 071	. 077	. 083	. 089	. 094
3.00	. 036	. 037	. 038	. 041	. 043	. 046	. 049	. 052	. 055	. 058	. 061	. 067	. 073	. 079	. 084	. 089

When over-matched electrodes are used, the base metal capacity should also be checked (S16-14 Clause 13.13.2.2),
The effect of eccentricity is negligible for cases above the solid horizontal line.

Matching Electrode $X_{u}=490 \mathrm{MPa}$

				$P=$ Factored eccentric load, kN $L=$ Length of weld parallel to load, mm $D=$ Size of fillet weld, mm $C=$ Coefficients tabulated below $x L=$ Distance from vertical weld to centre of gravity of weld group							$P=C D L$ uired Minimum $C=\frac{P}{D L}$ uired Minimum $D=\frac{P}{C L}$ uired Minimum $L=\frac{P}{C D}$					
a																
	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0,9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	. 156	. 179	. 226	. 272	. 319	, 366	412	.459	. 505	. 552	. 599	. 692	. 785	. 879	. 972	1.065
0.05	. 156	. 179	. 226	. 272	. 319	, 366	. 412	. 459	. 505	. 552	. 599	. 692	. 785	. 879	. 972	1.065
0.10	. 156	. 179	. 226	. 272	. 319	. 366	. 412	. 459	. 505	. 552	. 599	. 692	. 785	. 877	. 967	1.058
0.15	. 155	. 179	. 226	. 272	. 319	. 364	. 408	. 452	. 496	. 540	. 584	. 672	. 760	. 848	. 936	1.025
0.20	. 148	. 179	. 223	. 264	, 305	. 347	. 388	. 430	. 473	. 515	. 557	. 643	. 728	. 814	. 900	. 986
0,25	. 139	. 173	. 210	. 248	. 287	. 327	. 366	. 407	. 447	. 488	. 529	. 611	. 694	. 778	. 862	. 947
0.30	. 129	. 162	. 196	. 232	. 269	. 306	. 344	. 383	. 421	. 460	. 500	. 580	. 660	. 743	. 825	. 909
0.35	. 120	. 150	. 182	. 216	. 251	. 286	. 322	. 359	. 396	. 433	. 472	. 549	. 628	. 708	. 790	. 872
0.40	. 111	. 139	. 170	. 201	. 234	. 267	. 301	, 336	. 372	. 408	. 445	. 521	. 598	. 676	. 755	. 836
0.45	. 103	130	. 158	. 187	. 218	. 249	. 282	. 316	. 350	. 385	. 420	. 493	. 569	. 646	. 724	. 804
0.50	. 095	. 121	. 147	. 175	. 204	. 234	. 264	. 297	. 330	-363	. 398	. 468	. 542	. 617	. 693	. 773
0.60	. 083	105	. 128	. 153	. 179	. 206	. 234	. 263	. 293	. 324	. 356	. 424	. 492	. 566	. 639	. 716
0.70	. 073	. 093	. 113	. 136	. 159	. 183	. 209	. 235	. 264	. 292	. 323	. 386	. 452	. 521	. 591	. 665
0.80	. 065	,083	. 101	. 121	. 142	. 165	. 188	. 213	. 238	. 265	. 293	. 352	. 416	. 482	. 550	. 620
0.90	. 058	. 074	. 091	. 109	. 129	. 149	. 171	. 194	. 217	243	. 269	. 325	. 384	. 446	. 514	. 581
1.00	. 053	. 067	. 083	. 100	. 117	. 136	. 156	. 177	. 200	223	. 248	. 301	. 358	. 416	. 478	,544
1.20	. 044	. 057	. 070	. 084	. 099	, 115	. 133	. 152	. 171	. 192	. 214	. 262	. 312	. 365	. 422	. 482
1.40	, 038	,049	. 060	. 073	. 086	. 101	. 116	. 133	. 150	. 169	. 189	. 230	. 276	. 324	. 375	. 431
1.60	. 034	. 043	. 053	. 064	. 076	. 089	. 103	. 117	. 133	. 150	. 168	. 205	. 247	. 291	. 338	. 387
1.80	. 030	. 038	. 048	. 057	. 068	. 079	. 092	. 105	. 119	. 134	. 151	. 185	. 223	. 263	. 306	. 353
2.00	. 027	. 035	. 043	. 052	. 062	. 072	. 083	. 095	. 108	122	. 137	. 168	. 202	. 240	. 280	. 323
2.20	. 025	. 032	. 039	. 047	. 056	. 066	. 076	. 087	. 099	. 112	. 125	. 154	. 185	. 221	. 257	. 297
2.40	. 022	. 029	. 036	. 043	. 052	. 060	. 070	. 080	. 091	. 103	. 116	. 142	. 172	. 203	. 238	. 275
2.60	. 021	. 027	. 033	. 040	. 047	. 056	. 065	. 074	. 084	. 095	. 107	. 132	. 159	. 189	. 221	, 256
2.80	. 019	. 025	. 031	. 037	. 044	. 052	. 060	. 069	. 079	. 089	. 099	. 123	. 148	. 176	. 207	. 239
3.00	. 018	. 023	. 029	. 035	. 042	. 048	. 056	. 065	. 074	. 083	. 093	. 115	. 139	. 166	. 194	. 225
x	0	. 008	. 029	. 056	. 089	. 125	. 164	. 204	. 246	. 289	. 333	. 424	. 516	. 610	. 704	. 800

When over-matched electrodes are used, the base metal capacity should also be checked (S16-14 Clause 13.13.2.2).
The effect of eccentricity is negligible for cases above the solid horizontal line.

Matching Electrode $X_{u}=490 \mathrm{MPa}$

				$P=$ Factored eccentric load, kN $L=$ Length of weld parallel to load, mm $D=$ Size of fillet weld, mm $C=$ Coefficients tabulated below $x L=$ Distance from vertical weld to centre of gravity of weld group							$P=C D L$ uired Minimum $C=\frac{P}{D L}$ vired Minimum $D=\frac{P}{C L}$ uired Minimum $L=\frac{P}{C D}$					
a																
	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	. 156	. 179	. 226	. 272	. 319	. 366	. 412	. 459	. 505	. 552	. 599	. 692	. 785	. 879	. 972	1.065
0.05	. 156	. 179	. 226	. 272	. 319	. 366	. 412	. 459	. 505	. 552	. 599	. 686	. 772	. 857	. 943	1.029
0.10	. 156	. 179	. 226	. 272	. 319	. 366	. 412	. 454	. 496	. 537	. 579	. 663	. 746	. 829	. 912	. 996
0.15	. 155	. 179	226	. 272	. 314	. 354	. 395	. 435	. 475	. 516	. 556	. 636	. 717	. 799	. 880	. 962
0.20	. 148	. 179	. 221	. 260	. 299	. 337	. 376	. 414	. 453	. 492	. 531	. 609	. 688	. 767	. 847	. 928
0.25	. 139	. 173	. 209	. 245	. 282	. 319	. 355	. 393	. 430	. 468	. 505	. 581	. 658	. 736	. 815	. 894
0.30	. 129	. 162	. 195	. 230	. 264	. 300	. 335	. 371	. 407	. 443	. 480	. 554	. 629	. 705	. 783	. 861
0.35	, 120	. 151	. 182	, 214	. 248	. 281	. 316	. 350	. 385	. 420	. 455	. 527	. 601	. 675	. 752	. 829
0.40	. 111	. 140	. 170	. 200	. 232	. 264	. 296	. 330	. 363	. 397	. 432	. 502	. 574	. 647	. 721	. 797
0.45	. 103	. 130	. 158	. 187	. 217	. 247	. 279	. 311	. 343	. 376	. 410	. 478	. 548	. 620	. 693	. 768
0.50	. 095	. 121	. 147	. 174	. 203	. 232	. 263	. 293	. 324	. 356	. 388	. 456	. 524	. 595	. 667	. 740
0.60	. 083	. 105	. 129	. 153	. 179	. 206	. 233	. 262	. 291	. 321	. 352	. 415	. 480	. 547	. 617	. 688
0.70	. 073	. 093	. 114	. 136	. 160	. 184	. 210	. 237	. 264	. 291	. 320	. 380	. 442	. 506	. 574	. 642
0.80	. 065	. 083	. 102	. 122	, 144	. 167	. 190	. 215	. 240	. 266	. 294	. 350	. 408	. 471	. 535	. 601
0.90	. 058	. 075	. 092	. 111	. 131	. 152	. 173	. 196	. 220	. 245	. 270	. 323	. 380	. 439	. 500	. 564
1.00	. 053	. 068	. 084	. 101	. 119	. 139	. 160	. 181	. 203	. 227	, 251	. 301	. 355	. 410	. 468	. 530
1.20	. 044	. 057	. 071	. 085	. 101	. 118	. 137	. 156	. 176	. 197	. 218	. 263	. 311	. 363	. 416	. 472
1.40	. 038	. 049	. 061	. 074	. 088	. 103	. 119	. 136	. 154	. 173	. 192	. 233	. 276	. 324	. 373	. 425
1.60	. 034	. 043	. 054	. 065	. 077	. 091	. 105	. 120	. 137	. 154	. 171	. 209	. 249	. 292	. 337	. 385
1.80	. 030	. 039	. 048	. 058	. 069	. 081	. 094	. 108	. 123	. 138	. 155	. 189	. 226	. 265	. 307	. 352
2.00	. 027	. 035	. 043	. 052	. 062	. 073	. 085	. 097	. 111	. 125	. 141	. 172	. 206	. 243	. 281	. 323
2.20	. 025	032	. 039	. 048	. 057	. 067	. 077	. 089	. 101	. 114	. 128	. 158	. 190	. 224	. 260	. 299
2.40	. 022	. 029	. 036	. 044	. 052	. 061	. 071	. 081	. 093	. 105	. 118	. 146	. 176	. 208	. 242	. 278
2.60	. 021	. 027	. 033	. 040	. 048	, 057	. 066	. 075	. 086	. 097	. 109	. 135	. 163	. 193	. 225	. 259
2.80	. 019	. 025	. 031	. 037	. 045	. 053	. 061	. 070	. 080	. 090	. 102	. 126	. 153	. 181	. 211	. 243
3.00	. 018	. 023	. 029	. 035	. 042	, 050	. 057	. 066	. 075	. 084	. 095	. 118	. 143	. 170	. 198	. 229
x	0	. 008	. 029	. 056	. 089	. 125	. 164	. 204	. 246	. 289	. 333	. 424	. 516	. 610	. 704	. 800

When over-matched electrodes are used, the base metal capacity should also be checked (S16-14 Clause 13.13.2.2). The effect of eccentricity is negligible for cases above the solid horizontal line.

Coefficients C
Matching Electrode $X_{u}=490 \mathrm{MPa}$

L	\square		$P=$ Factored eccentric load, kN $L=$ Length of longer welds, mm $D=$ Size of fillet weld, mm $C=$ Coefficients tabulated below Note: When load P is perpendicular to longer side L, use table on facing page.					Req Req Req	$=C D$ d Min d Min d Min		$\begin{gathered} \frac{P}{D L} \\ \frac{P}{C L} \\ \frac{P}{C D} \end{gathered}$
a	k										
	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
0.00	. 311	. 311	. 358	. 404	. 451	. 498	. 544	. 591	. 638	,684	. 731
0.05	. 311	. 311	. 358	. 404	. 451	. 498	. 544	. 591	. 638	. 684	. 731
0.10	. 311	. 311	. 358	. 404	. 451	. 498	. 544	. 591	. 638	. 684	. 731
0.15	. 309	. 311	. 358	. 404	. 451	. 498	. 544	. 587	. 628	. 670	. 711
0.20	. 296	. 311	. 358	. 403	. 441	. 480	. 519	. 559	. 599	. 639	. 680
0.25	. 278	. 311	. 345	. 380	. 416	. 454	. 492	. 530	. 569	. 608	. 648
0,30	. 259	. 290	. 323	. 356	. 392	. 427	. 464	. 501	. 539	. 577	. 615
0.35	. 240	. 270	. 301	. 333	. 367	. 402	. 438	. 473	. 510	. 547	. 584
0.40	. 222	. 250	. 280	. 312	. 344	. 378	. 412	. 447	. 483	. 519	. 555
0.45	. 206	. 233	. 261	. 291	. 322	. 355	. 388	. 422	. 457	. 492	. 529
0.50	. 191	. 217	. 244	. 273	. 303	. 335	. 366	. 400	. 434	. 468	. 503
0.60	. 166	. 189	. 214	. 240	. 268	. 297	. 328	. 360	. 392	. 425	. 459
0.70	. 145	. 167	. 189	. 214	. 240	. 268	. 296	. 325	. 356	. 387	. 420
0.80	. 129	. 148	. 169	. 192	. 217	. 243	. 270	. 298	. 326	. 356	. 386
0.90	. 116	. 133	. 153	. 174	. 198	. 221	. 246	. 273	. 299	. 327	. 357
1.00	. 105	. 121	. 139	. 159	. 180	. 203	. 226	. 251	. 277	. 303	. 331
1.20	. 089	. 102	. 118	. 136	. 154	. 174	. 196	. 218	. 241	. 265	. 288
1.40	. 076	. 088	. 102	. 118	. 134	. 152	. 171	. 191	. 211	. 233	. 255
1.60	. 067	. 078	. 090	. 104	. 119	. 135	. 152	. 170	. 189	. 208	. 228
1.80	. 060	. 069	. 080	. 093	. 107	. 121	. 137	. 153	. 170	. 188	. 206
2.00	. 054	. 062	. 072	. 084	. 097	. 110	. 124	. 139	. 154	. 171	. 188
2.20	. 049	. 057	. 066	. 077	. 088	. 100	. 113	. 127	. 142	. 157	. 173
2.40	. 045	, 052	. 061	. 070	. 081	. 092	. 105	. 117	, 131	. 145	. 160
2.60	. 042	. 048	. 056	. 065	. 075	. 086	. 097	. 109	. 121	. 134	. 148
2.80	. 039	. 045	. 052	. 061	. 070	. 080	. 090	. 101	. 113	. 125	. 138
3.00	. 036	. 042	. 049	. 057	. 065	. 074	. 084	. 095	. 106	. 117	. 129

When over-matched electrodes are used, the base metal capacity should also be checked (S16-14 Clause 13.13.2.2). The effect of eccentricity is negligible for cases above the solid horizontal line,

Matching Electrode $\mathrm{X}_{\mathrm{u}}=490 \mathrm{MPa}$

When over-matched electrodes are used, the base metal capacity should also be checked (S16-14 Clause 13.13.2.2). The effect of eccentricity is negligible for cases above the solid horizontal line.

Coefficients C

Matching Electrode $\mathrm{X}_{\mathrm{u}}=490 \mathrm{MPa}$

				$P=$ Factored eccentric load, kN $L=$ Length of weld parallel to load, mm $D=$ Size of fillet weld, mm $C=$ Coefficients tabulated below $x L=$ Distance from vertical weld to centre of gravity of weld group $y L=$ Distance from horizontal weld to centre of gravity of weld group							Required Minimum $C=\frac{P}{D L}$ Required Minimum $D=\frac{P}{C L}$ Required Minimum $L=\frac{P}{C D}$					
a																
	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0.00	. 156	. 156	. 179	. 202	. 226	. 249	. 272	. 296	. 319	. 342	. 366	. 412	. 459	. 505	. 552	. 599
0.05	. 156	. 156	. 179	. 202	. 226	. 249	. 272	. 296	. 319	. 342	. 366	. 412	. 459	. 505	. 552	. 599
0.10	. 156	. 156	. 179	. 202	. 226	. 249	. 272	. 296	. 319	. 342	. 366	. 412	. 459	. 505	. 552	. 599
0.15	. 155	. 156	. 179	. 202	. 226	. 249	. 272	. 296	319	341	. 362	. 406	. 449	. 493	. 538	. 582
0.20	. 148	. 156	. 179	. 202	. 223	. 243	. 263	. 283	. 304	. 324	. 345	. 387	. 429	. 472	, 516	. 559
0.25	. 139	. 156	. 174	. 192	. 210	. 229	. 248	. 267	. 286	. 306	. 326	. 367	. 409	. 451	. 494	. 537
0.30	. 129	. 145	. 162	. 179	. 196	. 214	. 232	. 250	. 269	. 288	. 307	. 347	. 388	. 430	, 472	, 514
0.35	. 120	. 134	. 150	. 167	. 183	. 199	. 216	. 234	. 252	270	. 289	. 328	. 368	. 408	. 451	. 493
0.40	. 111	. 124	. 139	. 154	. 170	. 186	. 202	. 218	. 235	. 253	. 271	. 309	. 349	. 389	. 430	. 472
0.45	. 103	. 115	. 129	. 143	. 158	. 173	. 188	. 204	. 220	. 238	. 255	. 291	. 330	. 369	. 410	. 451
0.50	. 095	. 107	. 119	. 133	. 147	. 161	. 176	. 191	. 206	. 223	. 240	. 276	. 314	. 352	. 392	. 433
0.60	. 083	. 093	. 104	. 115	. 128	, 141	. 154	. 168	. 182	. 198	. 213	. 247	. 283	. 321	. 359	. 399
0.70	. 073	. 082	. 091	. 102	. 113	. 125	. 137	. 149	. 163	. 177	. 192	. 223	. 257	. 294	, 330	. 369
0.80	. 065	. 073	. 081	. 090	. 100	. 111	. 123	. 134	. 147	. 159	- 174	203	. 236	. 270	. 306	. 342
0.90	. 058	. 065	. 073	. 081	. 090	. 100	. 111	. 121	. 133	. 145	. 158	. 187	. 217	. 249	, 283	, 318
1.00	. 053	. 059	. 066	. 074	. 082	. 091	, 101	. 111	, 122	. 133	145	. 171	. 201	. 231	. 264	. 297
1.20	. 044	. 050	. 056	. 062	. 069	. 077	. 086	. 095	. 104	. 114	. 125	. 149	. 174	. 202	231	. 263
1.40	. 038	. 043	. 048	. 054	. 060	. 067	. 074	. 082	. 090	. 099	. 109	. 130	. 153	. 178	. 205	. 234
1.60	. 034	. 038	. 042	. 047	. 052	. 059	. 066	. 073	. 080	. 088	. 097	. 115	. 137	. 159	. 184	. 210
1.80	. 030	. 034	. 038	. 042	,047	. 052	. 059	. 065	. 072	. 079	. 087	. 104	. 123	. 144	. 167	. 191
2.00	. 027	. 030	. 034	. 038	. 042	. 047	. 053	. 059	. 065	. 071	. 079	. 095	. 112	. 131	. 152	. 174
2.20	. 025	. 028	. 031	. 035	. 038	. 043	. 048	. 054	. 059	. 065	. 072	. 086	. 102	. 121	. 140	. 160
2.40	. 022	. 025	. 028	. 032	. 035	. 040	. 044	. 049	. 055	. 060	. 066	. 080	. 095	. 111	. 129	. 149
2.60	. 021	. 024	. 026	. 029	, 033	. 036	. 041	. 046	. 050	. 056	. 061	. 074	. 088	. 103	. 120	. 138
2.80	. 019	. 022	. 024	. 027	. 030	. 034	. 038	. 042	. 047	. 052	. 057	. 069	. 082	. 096	. 112	. 129
3.00	. 018	. 020	. 023	. 025	. 029	. 032	. 036	. 040	. 044	. 048	. 053	. 064	. 077	. 090	. 105	. 121
x	0	. 005	. 017	, 035	. 057	. 083	. 113	. 144	. 178	. 213	. 250	. 327	. 408	. 492	. 579	. 667
y	. 500	. 455	. 417	. 385	. 357	. 333	, 313	. 294	. 278	. 263	. 250	. 227	208	. 192	. 179	. 167

When over-matched electrodes are used, the base metal capacity should alsa be checked (S16-14 Clause 13.13.2.2),
The effect of eccentricity is negligible for cases above the solid horizontal line.

Matching Electrode $\mathrm{X}_{\mathrm{u}}=490 \mathrm{MPa}$

			$y L$	$P=$ Factored eccentric load, kN $L=$ Length of weld parallel to load, mm $D=$ Size of fillet weld, mm $C=$ Coefficients tabulated below $x L=$ Distance from vertical weld to centre of gravity of weld group $y L=$ Distance from horizontal weld to centre of gravity of weld group								equire equir equire	$C D L$ Mini Mini Mini	um mum um	$\begin{aligned} & =\frac{F}{D} \\ & =\frac{F}{C} \\ & =\frac{F}{C} \end{aligned}$	
a																
	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
0,00	. 156	. 156	. 179	. 202	. 226	. 249	. 272	. 296	. 319	. 342	. 366	. 412	. 459	. 505	. 552	. 599
0.05	. 156	. 156	. 179	. 202	. 226	. 249	. 272	296	. 319	. 342	. 366	. 404	. 441	. 479	. 518	. 557
0.10	. 156	. 156	. 179	. 202	. 226	. 249	. 272	295	. 313	. 330	. 348	. 384	. 420	. 458	. 496	. 535
0.15	. 155	. 156	. 179	. 202	226	, 245	. 262	. 279	. 296	. 312	. 329	. 364	,400	. 437	. 475	. 514
0.20	. 148	. 156	. 179	. 198	. 214	. 230	. 246	. 261	. 277	. 294	. 310	. 344	. 380	. 417	. 455	. 494
0,25	. 139	. 155	. 170	. 185	200	. 215	. 229	. 245	. 260	. 276	. 293	. 326	. 362	. 399	. 436	. 475
0.30	. 129	. 144	. 158	. 172	. 186	. 200	. 214	. 229	. 244	. 259	. 276	. 310	. 345	. 381	. 419	. 457
0.35	. 120	. 134	. 147	. 160	. 173	. 186	. 200	. 214	. 229	. 244	. 260	. 294	. 328	. 365	. 403	. 440
0.40	. 111	. 124	. 136	. 148	. 161	. 173	. 187	. 201	. 215	. 230	. 247	. 279	-314	. 350	. 386	. 425
0.45	. 103	. 115	. 126	. 138	. 150	. 162	. 175	. 189	. 203	218	. 233	. 266	. 299	. 335	. 372	. 410
0.50	. 095	. 107	. 117	. 128	. 140	. 152	. 164	. 178	. 191	. 206	. 221	. 253	. 286	. 321	. 357	. 395
0.60	. 083	. 093	. 102	. 113	. 123	. 134	. 146	. 159	. 171	. 185	. 200	. 230	. 263	. 296	. 331	. 367
0,70	. 073	. 082	. 090	. 099	. 109	. 120	. 131	. 142	. 155	. 168	. 182	. 211	. 242	. 274	. 308	. 343
0.80	. 065	. 073	. 081	. 089	. 098	. 108	. 118	. 129	. 141	. 153	. 166	. 194	. 224	. 254	. 287	. 320
0.90	. 058	. 065	. 073	. 080	. 089	. 098	. 107	. 118	. 129	. 140	. 153	. 179	. 207	. 237	. 268	. 301
1.00	. 053	. 059	. 066	. 073	. 081	. 089	. 098	. 108	. 118	. 129	. 141	. 166	. 193	. 222	. 251	. 283
1.20	. 044	. 050	. 056	. 062	. 069	. 076	. 084	. 092	. 102	. 111	. 122	. 145	. 169	. 195	. 223	252
1.40	. 038	. 043	. 048	. 053	. 059	. 066	. 073	. 081	. 089	. 098	. 107	. 128	. 150	. 174	. 200	. 227
1.60	. 034	. 038	. 042	. 047	. 052	. 058	. 065	. 071	. 079	. 087	. 096	. 114	. 135	. 157	. 181	. 205
1,80	. 030	. 034	. 038	. 042	. 047	. 052	. 058	. 064	. 071	. 078	. 086	. 103	. 122	. 142	. 164	. 188
2.00	. 027	. 030	. 034	. 038	. 042	. 047	. 052	. 058	. 064	. 071	. 078	. 094	. 111	. 130	. 150	. 172
2.20	. 025	. 028	. 031	. 034	. 038	. 043	. 048	. 053	. 059	. 065	. 072	. 086	. 102	. 120	. 139	. 159
2.40	. 022	. 025	. 028	. 032	. 035	. 039	. 044	. 049	. 054	. 060	. 066	. 080	. 095	. 111	129	. 148
2.60	. 021	. 023	. 026	. 029	. 033	. 036	. 041	. 045	. 050	. 055	. 061	. 074	. 088	. 104	. 120	. 138
2.80	. 019	. 022	. 024	. 027	. 030	. 034	. 038	. 042	. 047	. 052	. 057	. 069	. 082	. 097	. 112	. 130
3.00	. 018	. 020	. 023	. 025	. 028	. 032	. 035	. 039	. 044	. 048	. 053	. 065	. 077	. 091	. 106	. 122
x	0	. 005	. 017	. 035	. 057	. 083	. 113	. 144	. 178	. 213	. 250	. 327	. 408	. 492	. 579	. 667
y	. 500	. 455	. 417	. 385	. 357	. 333	. 313	. 294	278	. 263	. 250	. 227	. 208	. 192	. 179	. 167

[^7]The effect of eccentricity is negligible for cases above the solid horizontal line,

Example

Given:

A column bracket of G40.21-300W steel supports a factored load of 650 kN . The width of the bracket is 300 mm . Welds are made using matching electrodes $X_{u}=490 \mathrm{MPa}$. For the weld configuration shown, find the required weld size.

Solution:

Referring to Table 3-28,

$$
D=\frac{P}{C L}
$$

$=$ number of millimetres of fillet weld leg size

$$
k=150 / 500=0.3
$$

From the bottom line of Table 3-28, for $k=0.3 x=0.056$
Referring to the figure in Table 3-28, $a L+x L=300$
For $L=500,500 a+0.056(500)=300, a=0.544$
For $a=0.544$ and $k=0.3, C=0.165$ by interpolation
Therefore, $D=\frac{650}{0.165 \times 500}=7.88$ say 8 mm

Notes:

1. The final choice of the fillet weld size to be used in an actual connection will also depend on the minimum and maximum sizes required by a) the physical thickness of the parts joined and b) the requirements of Standard CSA W59.
2. The strength of an actual connection will also depend on the resistances of the connected parts.

ECCENTRIC LOADS ON WELD GROUPS SHEAR AND MOMENT

Two configurations involving a vertical load applied out-of-plane with respect to the fillet weld group are shown in Figure 3-2. In Figure 3-2(a), a plate is welded to the flange of a column with a pair of vertical fillet welds. The eccentricity of the load, P, with respect to the weld group is denoted by $a L$, where L is the weld length. In Figure 3-2(b), a stiffened seat is welded to the column using a tee-shaped weld configuration. The length of the horizontal welds is denoted by $k L$.

(a)

(b)

Figure 3-2
In both types of connections, the lower portions of the welded parts are assumed to bear against each other at the ultimate load. The closed-form solution given below for the welded connection shown in Figure 3-2(a) was developed by Kwan et al. (2010).

1. Pair of vertical weids $(k=0)$, Figure 3-2(a)

(a) For $a / Q>0.53$, the factored load resistance (based on weld failure) is given by:
$P_{r}=\frac{0.711 \phi F_{y} t L}{a(Q+1.421)}$ where $a=$ eccentricity ratio and $Q=\frac{F_{y} t}{X_{u} D}$
(b) For $a / Q \leq 0.53$, the factored load resistance (based on weld failure) is given by:

$$
\begin{equation*}
P_{r}=P_{r o}[1-1.89(a / Q)]+1.89(a / Q) P_{r 53} \text { where } P_{r o}=2(0.67) \phi 0.7071 X_{n} D L \tag{1b}
\end{equation*}
$$

and $P_{r 53}$ is obtained using equation (1a) for an eccentricity a that yields a value of a / Q of 0.53 for the applicable value of Q.
(c) For all values of a / Q, the factored load resistance based on failure in the plate (due to material yield only - instability is not considered) is given by:

$$
\begin{equation*}
P_{r}=\frac{2 \phi V_{p}\left(\sqrt{a^{2} L^{2} V_{p}^{2}+3 M_{p}^{2}}-a L V_{p}\right)}{3 M_{p}}, \text { where } M_{p}=\frac{t L^{2} F_{u}}{4}, \text { and } V_{p}=\frac{t L F_{u}}{2} \tag{lc}
\end{equation*}
$$

For cases (a), (b) and (c) above, Kwan et al. (2010) demonstrated that designs using a resistance factor of 0.58 for welds and 0.71 for steel correspond to a reliability index, $\beta=4.5$, A resistance factor, $\phi=0.58$, for both welds and steel is adopted for this application in this Handbook. A design table is given in Table 3-34 for $X_{u}=490 \mathrm{MPa}, F_{y}=300 \mathrm{MPa}$ and $F_{u}=$ 440 MPa . The tabulated coefficients are given by: $C^{\prime}=P / L$.

For the case of concentric loading $(a=0)$, the weld resistances were taken from Table 3-27 (with $k=0$).

Plate stability and the resistance of the supporting steel part must also be verified since these modes of behaviour are beyond the scope of the method developed by Kwan et al.

2. Tee-shaped configuration, Figure 3-2(b)

The method described above may be applied for the tee-shape configuration shown in Figure 3-2(b), conservatively ignoring the horizontal welds and the seat plate.

Example

Given:

A 12 mm plate carrying a 265 kN factored load is welded to a column with a pair of vertical fillet welds 250 mm long. Find the fillet weld size required if the 265 kN load acts at an eccentricity of 110 mm .

Solution:

$L=250 \mathrm{~mm}, a L=110 \mathrm{~mm}$; therefore, $a=110 / 250=0.44$
C^{\prime} required is $P / L=265 / 250=1.06$ Try a 6 mm fillet weld
From Table 3-34, for plate thickness, $t=12 \mathrm{~mm}$, and weld size, $D=6 \mathrm{~mm}$:
$C^{\prime}=1.13$ for $a=0.40$, and 1.02 for $a=0.50$
Therefore, for $a=0.44, C^{\prime}=1.09$ (by interpolation) >1.06
The minimum weld size based on the thickness of the materials joined and the resistance of the connected parts must also be checked.

References:

Dawe, J.L., and KULAK, G.L. 1974. Welded connections under combined shear and moment. ASCE Journal of the Structural Division, 100(ST4), April.

Kwan, Y.K., Gomez, I.R., Grondin, G.Y. and Kanvinde, A.M. 2010. Strength of welded joints under combined shear and out-of-plane bending. Canadian Journal of Civil Engineering, 37(2); 250-261.

ECCENTRIC LOADS ON WELD GROUPS Coefficients C^{\prime}

$P=$ Factored eccentric load, kN
$L=$ Length of each weid, mm
$C^{\prime}=$ Coefficients tabulated below
$P=C^{\prime} L$
Required Minimum $C^{\prime}=P / L$
Required Minimum $L=P / C$

Plate Thickness, t Weld Size, D				10 mm			12 mm			16 mm		
		5		5	6		5	6	8	6	8	10
a	0.0	1.56		1.56	1.87		1.56	1.87	2.49	1.87	2.49	3.11
	$\begin{aligned} & \hline 0.1 \\ & 0.2 \\ & 0.3 \\ & 0.4 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1.05 \\ & 0.938 \\ & 0.839 \\ & 0.754 \\ & 0.681 \end{aligned}$		$\begin{aligned} & 1.25 \\ & 1.15 \\ & 1.05 \\ & 0.942 \\ & 0.851 \end{aligned}$	$\begin{aligned} & 1.31 \\ & 1.17 \\ & 1.05 \\ & 0.942 \\ & 0.851 \end{aligned}$		$\begin{aligned} & 1.26 \\ & 1.17 \\ & 1.08 \\ & 0.993 \\ & 0.905 \end{aligned}$	$\begin{aligned} & 1.50 \\ & 1.38 \\ & 1.26 \\ & 1.13 \\ & 1.02 \end{aligned}$	$\begin{aligned} & 1.58 \\ & 1.41 \\ & 1.26 \\ & 1.13 \\ & 1.02 \end{aligned}$	$\begin{aligned} & 1.52 \\ & 1.42 \\ & 1.31 \\ & 1.21 \\ & 1.11 \end{aligned}$	$\begin{aligned} & 2.00 \\ & 1.85 \\ & 1.68 \\ & 1.51 \\ & 1.36 \end{aligned}$	$\begin{aligned} & 2.10 \\ & 1.88 \\ & 1.68 \\ & 1.51 \\ & 1.36 \end{aligned}$
	$\begin{aligned} & \hline 0.6 \\ & 0.7 \\ & 0.8 \\ & 0.9 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 0.617 \\ & 0.563 \\ & 0.515 \\ & 0.458 \\ & 0.412 \end{aligned}$		$\begin{aligned} & 0.767 \\ & 0.668 \\ & 0.585 \\ & 0.520 \\ & 0.468 \end{aligned}$	0.7720.7040.6330.5630.507		$\begin{aligned} & 0.816 \\ & 0.728 \\ & 0.642 \\ & 0.571 \\ & 0.514 \end{aligned}$	$\begin{aligned} & 0.920 \\ & 0.802 \\ & 0.701 \\ & 0.624 \\ & 0.561 \end{aligned}$	$\begin{aligned} & 0.926 \\ & 0.844 \\ & 0.774 \\ & 0.705 \\ & 0.635 \end{aligned}$	$\begin{aligned} & 1.01 \\ & 0.913 \\ & 0.813 \\ & 0.720 \\ & 0.648 \end{aligned}$	$\begin{aligned} & 1.23 \\ & 1.07 \\ & 0.935 \\ & 0.831 \\ & 0.748 \end{aligned}$	$\begin{aligned} & 1.23 \\ & 1.13 \\ & 1.03 \\ & 0.916 \\ & 0.825 \end{aligned}$
	$\begin{aligned} & 1.2 \\ & 1.4 \\ & 1.6 \\ & 1.8 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 0.344 \\ & 0.294 \\ & 0.258 \\ & 0.229 \\ & 0.206 \end{aligned}$		$\begin{aligned} & 0.390 \\ & 0.334 \\ & 0.292 \\ & 0.260 \\ & 0.234 \end{aligned}$	$\begin{aligned} & 0.422 \\ & 0.362 \\ & 0.317 \\ & 0.282 \\ & 0.253 \end{aligned}$		$\begin{aligned} & 0.428 \\ & 0.367 \\ & 0.321 \\ & 0.285 \\ & 0.257 \end{aligned}$	$\begin{aligned} & 0.468 \\ & 0.401 \\ & 0.351 \\ & 0.312 \\ & 0.281 \end{aligned}$	$\begin{aligned} & 0.529 \\ & 0.453 \\ & 0.397 \\ & 0.353 \\ & 0.317 \end{aligned}$	$\begin{aligned} & 0.540 \\ & 0.463 \\ & 0.405 \\ & 0.360 \\ & 0.324 \end{aligned}$	$\begin{aligned} & 0.624 \\ & 0.534 \\ & 0.468 \\ & 0.416 \\ & 0.374 \end{aligned}$	$\begin{aligned} & 0.687 \\ & 0.589 \\ & 0.515 \\ & 0.458 \\ & 0.412 \end{aligned}$
	$\begin{aligned} & 2.2 \\ & 2.4 \\ & 2.6 \\ & 2.8 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 0.187 \\ & 0.172 \\ & 0.159 \\ & 0.147 \\ & 0.137 \end{aligned}$		$\begin{aligned} & 0.213 \\ & 0.195 \\ & 0.180 \\ & 0.167 \\ & 0.156 \end{aligned}$	$\begin{aligned} & 0.230 \\ & 0.211 \\ & 0.195 \\ & 0.181 \\ & 0.169 \end{aligned}$		$\begin{aligned} & 0.233 \\ & 0.214 \\ & 0.198 \\ & 0.183 \\ & 0.171 \end{aligned}$	$\begin{aligned} & 0.255 \\ & 0.234 \\ & 0.216 \\ & 0.200 \\ & 0.187 \end{aligned}$	$\begin{aligned} & 0.288 \\ & 0.264 \\ & 0.244 \\ & 0.227 \\ & 0.212 \end{aligned}$	$\begin{aligned} & 0.295 \\ & 0.270 \\ & 0.249 \\ & 0.232 \\ & 0.216 \end{aligned}$	$\begin{aligned} & 0.340 \\ & 0.312 \\ & 0.288 \\ & 0.267 \\ & 0.249 \end{aligned}$	$\begin{aligned} & 0.375 \\ & 0.344 \\ & 0.317 \\ & 0.294 \\ & 0.275 \end{aligned}$
Plate Thickness, t		20 mm			25 mm				40 mm			
Weld Size, D		8	10	12	8	10	12	14	10	12	14	16
a	0.0	2.49	3.11	3.73	2.49	3.11	3.73	4.35	3.11	3.73	4.35	4.98
	$\begin{aligned} & 0.1 \\ & 0.2 \\ & 0.3 \\ & 0.4 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 2.02 \\ & 1.88 \\ & 1.74 \\ & 1.60 \\ & 1.46 \end{aligned}$	$\begin{aligned} & 2.50 \\ & 2.31 \\ & 2.10 \\ & 1.88 \\ & 1.70 \end{aligned}$	$\begin{aligned} & 2.63 \\ & 2.34 \\ & 2.10 \\ & 1.88 \\ & 1.70 \end{aligned}$	$\begin{aligned} & 2.03 \\ & 1.91 \\ & 1.79 \\ & 1.66 \\ & 1.54 \end{aligned}$	$\begin{aligned} & 2.52 \\ & 2.35 \\ & 2.17 \\ & 2.00 \\ & 1.83 \end{aligned}$	$\begin{aligned} & 3.00 \\ & 2.78 \\ & 2.55 \\ & 2.32 \\ & 2.09 \end{aligned}$	$\begin{aligned} & 3.28 \\ & 2.93 \\ & 2.62 \\ & 2.36 \\ & 2.13 \end{aligned}$	$\begin{aligned} & 2.56 \\ & 2.43 \\ & 2.30 \\ & 2.17 \\ & 2.03 \end{aligned}$	$\begin{aligned} & 3.05 \\ & 2.88 \\ & 2.70 \\ & 2.52 \\ & 2.35 \end{aligned}$	$\begin{aligned} & 3.54 \\ & 3.32 \\ & 3.09 \\ & 2.87 \\ & 2.64 \end{aligned}$	$\begin{aligned} & 4.03 \\ & 3.75 \\ & 3.48 \\ & 3.20 \\ & 2.92 \end{aligned}$
	$\begin{aligned} & \hline 0.6 \\ & 0.7 \\ & 0.8 \\ & 0.9 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.32 \\ & 1.19 \\ & 1.05 \\ & 0.931 \\ & 0.838 \end{aligned}$	$\begin{aligned} & \hline 1.53 \\ & 1.34 \\ & 1.17 \\ & 1.04 \\ & 0.935 \end{aligned}$	$\begin{aligned} & 1.54 \\ & 1.41 \\ & 1.27 \\ & 1.13 \\ & 1.01 \end{aligned}$	$\begin{aligned} & 1.42 \\ & 1.30 \\ & 1.17 \\ & 1.05 \\ & 0.930 \end{aligned}$	$\begin{aligned} & 1.65 \\ & 1.48 \\ & 1.31 \\ & 1.16 \\ & 1.05 \end{aligned}$	$\begin{aligned} & 1.87 \\ & 1.64 \\ & 1.43 \\ & 1.27 \\ & 1.15 \end{aligned}$	$\begin{aligned} & 1.93 \\ & 1.76 \\ & 1.54 \\ & 1.37 \\ & 1.23 \end{aligned}$	$\begin{aligned} & 1.90 \\ & 1.77 \\ & 1.64 \\ & 1.51 \\ & 1.37 \end{aligned}$	$\begin{aligned} & 2.17 \\ & 1.99 \\ & 1.82 \\ & 1.64 \\ & 1.46 \end{aligned}$	$\begin{aligned} & 2.42 \\ & 2.19 \\ & 1.97 \\ & 1.74 \\ & 1.56 \end{aligned}$	$\begin{aligned} & 2.65 \\ & 2.37 \\ & 2.09 \\ & 1.86 \\ & 1.68 \end{aligned}$
	$\begin{aligned} & 1.2 \\ & 1.4 \\ & 1.6 \\ & 1.8 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 0.699 \\ & 0.599 \\ & 0.524 \\ & 0.466 \\ & 0.419 \end{aligned}$	$\begin{aligned} & 0.779 \\ & 0.668 \\ & 0.585 \\ & 0.520 \\ & 0.468 \end{aligned}$	0.845 0.724 0.633 0.563 0.507	$\begin{aligned} & 0.773 \\ & 0.663 \\ & 0.580 \\ & 0.515 \\ & 0.464 \end{aligned}$	$\begin{aligned} & 0.873 \\ & 0.748 \\ & 0.655 \\ & 0.582 \\ & 0.524 \end{aligned}$	$\begin{aligned} & 0.956 \\ & 0.819 \\ & 0.717 \\ & 0.637 \\ & 0.573 \end{aligned}$	$\begin{aligned} & 1.03 \\ & 0.879 \\ & 0.769 \\ & 0.683 \\ & 0.615 \end{aligned}$	$\begin{aligned} & 1.11 \\ & 0.913 \\ & 0.799 \\ & 0.710 \\ & 0.639 \end{aligned}$	$\begin{aligned} & 1.19 \\ & 1.02 \\ & 0.893 \\ & 0.794 \\ & 0.715 \end{aligned}$	$\begin{aligned} & 1.30 \\ & 1.11 \\ & 0.976 \\ & 0.867 \\ & 0.780 \end{aligned}$	$\begin{aligned} & 1.40 \\ & 1.20 \\ & 1.05 \\ & 0.931 \\ & 0.838 \end{aligned}$
	2.2	0.381	0.425	0.461	0.422	0.476	0.521	0.559	0.581	0.650	0.710	0.762
	2.4	0.349	0.390	0.422	0.386	0.437	0.478	0.513	0.533	0.596	0.650	0.699
	2.6	0,322	0.360	0.390	0.357	0.403	0.441	0.473	0.492	0.550	0.600	0.645
	2.8	0.299	0.334	0.362	0.331	0.374	0.410	0.439	0.457	0.511	0.557	0.599
	3.0	0.279	0.312	0.338	0.309	0.349	0.382	0.410	0.426	0.476	0.520	0.559

Matching electrode $X_{u}=490 \mathrm{MPa}$
Base metal: $F_{y}=300 \mathrm{MPa}, F_{u}=440 \mathrm{MPa}$

FRAMED BEAM SHEAR CONNECTIONS

General

This section of Part 3 contains information on five common types of beam shear connections traditionally considered standard in the industry. Double-angle, simple end-plate, single-angle, shear tab and tee-type connections are included. In its Eleventh Edition, this Handbook has incorporated information on all-bolted single-angle connections.

Connections of these types are generally designed for strength requirements under factored static gravity loads. The capacities of welds and of bolts in bearing-type connections are based on their ultimate limit states (ULS) factored resistances.

Tabulated bolt capacities for bearing-type connections are based on threads intercepted by the shear planes (unless noted otherwise) and have been calculated according to CSA S16-14, Clause 13.12.1.2. Starting with the 1989 edition, S16 no longer implies that threads intercept the shear plane when the material thickness adjacent to the nut is less than 10 mm . Without special precautions, however, such thin plies may allow threads to be intercepted. For practical reasons, it is suggested that shear connections be designed on the assumption of intercepted threads when combinations of thin material and detailing for minimum bolt stickthrough (the nuts) are expected.

Slip-critical bolt capacities are included for double-angle and end-plate connections for use with connections such as those subjected to fatigue or frequent load reversal. However, for fatigue and dynamic load applications, suitability of the connections and capacity of the welded joints are beyond the scope of Part 3. Values are based on Class A (clean mill scale, blast-cleaned with Class A coatings or hot-dip galvanized and roughened) contact surfaces (k_{s} $=0.30$). Values for use with twist-off type bolt assemblies, ASTM F1852, and direct tension indicators, ASTM F959, have been incorporated in this Eleventh Edition. The slip-critical bolt capacities are to be used with specified loads only.

Tables of bolt and weld capacities are based on $3 / 4$ and $7 / 8$-inch diameter A325 bolts and F1852 assemblies, and on matching electrodes with $X_{u}=490 \mathrm{MPa}$, except that values based on 1 -inch bolts are also provided for tee-type and bolted seat connections, The tables are based on the use of angles and plates with a specified minimum yield strength, $F_{y}=300 \mathrm{MPa}$, and a specified minimum tensile strength, $F_{u}=440 \mathrm{MPa}$. For the supported and supporting members, $F_{y}=345 \mathrm{MPa}$ and $F_{u}=450 \mathrm{MPa}$ are assumed.

Although based on specific arrangements of bolts and welds, the tables are general in nature when used for common applications. These tables may help steel fabricators to prepare drawing office and shop standards, design authorities to check fabricator standards, and educational institutions to teach structural steel design and detailing.

The standard connections of individual fabricators will depend on fabrication methods and material sources. They may differ from those shown in the tables with respect to steel grade, length and size of angles and other detail material, as well as gauge and pitch of bolts.

Minimum Material Thickness

Together with the tabulated capacities of welds and bolts in bearing-type connections, information is provided concerning the minimum required thickness of supporting and supported material to develop the full connector capacities. All supported beams are assumed to be uncoped. These minimum thicknesses were generally determined in the following manner.

For bolts in bearing-type connections, the minimum material thickness was derived by equating the bearing capacity of the material to the shear capacity of the bolts while assuming that supported beams are not coped. For webs of beams (both supporting and supported) and for webs and flanges of (supporting) columns, the factored bearing resistance has been calculated according to Clause 13.12.1.2(a).

For welded connections, the weld shear resistance for each weld size was equated to the shear resistance of the supported beam web within the weld length, and the equation solved for the web material thickness. The weld resistance is based on S16-14 Clause 13.13.2.2, and the web resistance (Clause 13.4.1.1) is $V_{r}=\phi A_{w} F_{s}$, with $F_{s}=0.66 F_{y}$ and $A_{w}=$ web area.

Block shear failure was also considered in calculating the minimum required material thickness for bolted connections. This mode of failure was evaluated according to Clause 13.11, taking into account the failure patterns as illustrated below.

Block Shear Failure
S16-14 Clause 13.11

Other Failure Modes

Possible failure modes other than those mentioned above, such as effects due to bending, shear and axial forces in the supporting column, in combination as applicable, should also be considered in the design.

DOUBLE-ANGLE BEAM CONNECTIONS

Tables 3-37 and 3-38 list capacities of bolted and welded double-angle beam connections. At the bottom of each table are values for minimum material thickness required to develop the connector capacities listed in the corresponding columns, as described in the preceding pages. For material thicknesses less than those listed, the corresponding connector capacities must be reduced by the ratio of the thickness of material supplied to the thickness of material listed. Any combination of welded or bolted legs can be selected from the tables.

Consistent with long-standing North American practice, bolt capacities are based on concentric loading as tests have shown that eccentricity does not influence the ultimate strength of the bolts in connections using a single line of bolts in the web-framing leg. Weld capacities include the effect of eccentricity for connection angles.

The connection angle length, L, is based on a bolt pitch of 80 mm assuming an end distance of 35 mm . For connection angles with both legs welded, the angle lengths can be adjusted and capacities interpolated in accordance with the length used. Nominal minimum and maximum depths of supported beams appropriate to each length of connection angle are included. The suggested maximum depth assumes a connection length not less than half the beam depth to provide some measure of stiffness and stability. It should be recognized that these depths may not always be appropriate for a particular structure,

Table 3-37 lists bolt capacities for bearing-type and slip-critical connections for three sizes of angle (width of leg and gauge dimension) and includes values for 2 to 13 bolts per vertical line based on a bolt pitch of 80 mm . For web-framing legs, bolt capacities are based on the "double shear" condition and for outstanding legs on the "single shear" condition. Thus two vertical lines of bolts in the outstanding legs (one line in each angle leg) have the same capacity as one vertical line in the web-framing leg. When beams are connected to both sides of the supporting material, the total bolt capacity in the outstanding legs is double that listed, provided the thickness of the supporting material is equal to or greater than that listed for the web of the supported beam.

For connection angles, the minimum required thickness to develop the bolt capacities is listed in the table. To ensure connection flexibility, the angle thickness selected should not be greater than necessary, with a minimum thickness of 6 mm for practical reasons. Bolt capacities are provided separately for both conditions of threads intercepted and threads excluded. See Clause 13.12.1.2 of CSA S16-14.

Table 3-38 lists weld capacities for web-framing legs and for outstanding legs. Values are tabulated for four sizes of fillet weld and are based on the length (L) and size (angle width, W) of connection angles listed. For the web-framing leg welds, capacities were calculated using the instantaneous centre of rotation method. For the outstanding leg welds, the out-ofplane eccentricity between weld lines and the vertical beam reaction, taken to be 65 mm (the largest $g_{\text {I }}$ value listed), was taken into account. It is good practice to select an angle thickness no less than $D / 0.75$, where $D=$ weld size, due to the rolled edges of angles.

Design of bearing-type connections for types and sizes of bolts other than those shown in Table 3-37 will be facilitated by looking up the resistances listed in Tables 3-3 to 3-7, and for slip-critical connections in Tables 3-10 and 3-11.

Encroachment by Framing Angles on Beam Fillets

The maximum length of framing angles needs to be compatible with the clear distance, T, between the flange fillets of a beam. In compact situations, it is customary to tolerate a modest amount of encroachment by the angles onto the toes of the fillets. Encroachments that create a gap not greater than 1 mm under the end of an angle are listed, as a function of the fillet radius, in Table 3-35.

The minimum nominal depth of supported beam given in Tables 3-37 and 3-38 has been adjusted for the fillet radius indicated in mill catalogs, taking into account the encroachment onto the fillets.

Supported Beams with Copes

When copes are required at the ends of supported beams to avoid interference with the supporting material, the capacity of the beam in the vicinity of the connection and/or the capacity of the connection may be reduced. When selecting the beam size, the designer should consider the effect of copes on the load-carrying capacity of the beam, and the detailer should be aware that copes often reduce the capacity of connections on beams with thin webs.

With reference to the beam, the Steel Construction Manual (AISC 2011) provides guidance for a variety of situations that include shear at the reduced section, flexural yielding of the coped section due to bending, and web buckling in the vicinity of the cope due to shear and bending. The shear resistance of the web is calculated according to S16-14 Clause 13.4.3.

For top-coped beams, block shear or "block tear-out" is often the failure mode. See S1614 Clause 13.11. Block shear takes a different pattern when connection material is bolted to the supported beam than it does when connection material is welded to the beam. In the former case, the pattern is usually a tension tear along a horizontal plane from the end of the beam to the bottom bolt hole of the connection combined with a vertical shearing tangential to the bolt holes from the bottom hole to the cope (see Table 3-36 and the accompanying figure). For welded connection angles, there are corresponding tension and shear planes, but along the toes of the welds (although it is common and conservative practice to take these planes along the edges of the angle in the design). The vertical shearing extends all the way to the cope, with the result that the weld across the top of the angles does not participate in the connection resistance.

A detailing aid for evaluating the block shear resistance of a bolted connection on a coped beam is presented in Table 3-36. The two coefficients C_{1} and C_{2} were calculated based on S16-14 Clause 13.11 for combined tension and shear failure. Coefficient C_{1} is a function of the horizontal and vertical edge distances, L_{h} and L_{v}, to the beam end and the cope, respectively. Coefficient C_{2} is a function of the bolt diameter and the number of bolts. The sum of the coefficients multiplied by the web thickness gives the block shear resistance in kN .

Tests cited by Yura et al (1980) have shown that capacities of single-line bolted connections computed assuming failure along the "block tear-out" line are conservative, but when two lines of bolts are used in the web-framing leg, the effects of eccentricity should be taken into account.

References

AISC. 2011. Steel Construction Manual, $14^{\text {th }}$ Edition, American Institute of Steel Construction.

Birkemoe, P.C. and Gllmor, M.I. 1978. Behaviour of bearing-critical double-angle beam connections. Engineering Journal, Fourth Quarter, AISC.

YURA, J.A., Birkemoe, P.E. and ricles, J.M. 1980. Beam web shear connections - an experimental study. Beam-to-Column Building Connections: State of the Art, Preprint 80-179, April, ASCE.

Fillet Encroachment
Table 3-35

	$\begin{aligned} & \text { Fillet Radius } \\ & k-t \\ & (\mathrm{~mm}) \end{aligned}$	Encroachment (mm)
	8	3
	9	4
	10	4
	12	4
	14	5
	16	5
	18	5
	20	6
	22	6
	24	6
	26	7

Standard Holes and 80 mm Bolt Pitch *
ASTM A992, A572 grade 50, CSA G40.21-350W

Coefficient C_{1}													
$\underset{(\mathrm{mm})}{\mathrm{L}_{v}}$	$L_{n}(\mathrm{~mm})$												
	25	26	28	30	32	34	38	45	52	59	66	73	80
25	12.1	12.4	13.0	13.6	14.2	14.8	16.0	18.1	20.3	22.4	24.5	26.6	28.8
26	12.2	12.5	13.2	13.8	14.4	15.0	16.2	18.3	20.4	22.6	24.7	26.8	29.0
28	12.6	12.9	13.5	14.1	14.7	15.3	16.6	18.7	20.8	22.9	25.1	27.2	29.3
30	13.0	13.3	13.9	14.5	15.1	15.7	16.9	19.0	21.2	23.3	25.4	27.5	29.7
32	13.3	13.6	14.2	14.8	15.4	16.1	17.3	19.4	21.5	23.6	25.8	27.9	30.0
34	13.7	14.0	14.6	15.2	15.8	16.4	17.6	19.8	21.9	24.0	26.1	28.3	30.4
38	14.4	14.7	15.3	15.9	16.5	17.1	18.3	20.5	22.6	24.7	26.8	29.0	31.1
45	15.6	15.9	16.6	17.2	17.8	18.4	19.6	21.7	23.8	26.0	28.1	30.2	32.3
52	16.9	17.2	17.8	18.4	19.0	19.6	20.8	23.0	25.1	27.2	29.3	31.5	33.6
59	18.1	18.5	19.1	19.7	20.3	20.9	22.1	24.2	26.3	28.5	30.6	32.7	34.9
66	19.4	19.7	20.3	20.9	21.5	22.1	23.3	25.5	27.6	29.7	31.9	34.0	36.1
73	20.7	21.0	21.6	22.2	22.8	23.4	24.6	26.7	28.9	31.0	33.1	35.2	37.4
80	21.9	22.2	22.8	23.4	24.0	24.6	25.9	28.0	30.1	32.2	34.4	36.5	38.6

Coefficient C_{2}			
n	Bolt		
	$3 / 4 \mathrm{in}$.	$7 / 6$ in.	1 in.
2	10.7	10.4	9.9
3	25.0	24.7	24.2
4	39.3	39.0	38.5
5	53.6	53.3	52.8
6	67.9	67.6	67.1
7	82.2	81.9	81.5
8	96.5	96.2	95.8
9	110.8	110.5	110.1
10	125.1	124.8	124.4

$\phi_{u}=0.75 \quad U_{t}=0.9 \quad F_{y}=345 \mathrm{MPa} \quad F_{u}=450 \mathrm{MPa}$

Block shear

$T_{r}=\phi_{u}\left[U_{t} A_{n} F_{u}+0.6 A_{g v}\left(F_{y}+F_{u}\right) / 2\right]$
(S16-14 Clause 13.11)
$T_{r}=\left(C_{l}+C_{2}\right) w$
(using coefficients in Table 3-36)

Design example

W460x89 beam using four $3 / 4 \mathrm{in}$. bolts with: $L_{v}=45 \mathrm{~mm}, L_{h}=38 \mathrm{~mm}$ and $w=10.5 \mathrm{~mm}$
From Table 3-36: $C_{1}=19.6 \quad C_{2}=39.3$
$T_{r}=\left(C_{1}+C_{2}\right) w=(19.6+39.3) 10.5=618 \mathrm{kN}$, where:

$$
\begin{array}{ll}
T_{r}=\text { factored resistance for block shear } & L_{h}=\text { distance, centre of hole to beam end } \\
w=\text { thickness of the beam web } & L_{v}=\text { distance, center of hole to cope } \\
A_{n}=\text { net area in tension } & n=\text { number of bolts } \\
A_{g v}=\text { gross area in shear } & d_{h}=\text { design hole diameter } *
\end{array}
$$

[^8]
Example 1

Double angles bolted to beam web, bearing-type, welded to column flange.

Given:

W530x92 beam connected to the flange of a W 250×73 column, both ASTM A992 steel.
Reaction due to factored loads $=450 \mathrm{kN}$
Beam web thickness $=10.2 \mathrm{~mm}$; column flange thickness $=14.2 \mathrm{~mm}$.
Detail material G40.21-300W steel, $3 / 4$-inch A325 bolts, $X_{u}=490 \mathrm{MPa}$ matching electrodes.

Solution:

Web-framing legs - bolted (Table 3-37)
Vertical line with four bolts (threads intercepted) provides a capacity of: $632 \mathrm{kN}>450 \mathrm{kN}$ OK
Supported beam web thickness, based on bearing, required for steels with $F_{u}=450 \mathrm{MPa}$ $=7.7 \times 450 / 632=5.5 \mathrm{~mm}<10.2 \mathrm{~mm}$ OK

Angle thickness required:

$$
=7.1 \times 450 / 632=5.1 \mathrm{~mm} . \text { Try } 6.4 \mathrm{~mm} .
$$

Minimum angle length required $=310 \mathrm{~mm}$. (OK for 4 bolts and 530 mm beam depth)
Outstanding legs - welded (Table 3-38)
With $L=310 \mathrm{~mm}, W=89$ or 76 mm
6 mm fillet welds provide a capacity of $480 \mathrm{kN}>450 \mathrm{kN}$ OK
Minimum angle thickness (recommended good practice due to rolled edges of angles): $t \geq D / 0.75=6 / 0.75=8 \mathrm{~mm}$
Also, $t \geq D+2 \mathrm{~mm}=6+2=8 \mathrm{~mm}$. Increase angle thickness to $t=7.94 \mathrm{~mm} \approx 8.0 \mathrm{~mm}$
Flange thickness of supporting column $=4.6 \times 450 / 480=4.3 \mathrm{~mm}<14.2 \mathrm{~mm}$ OK

Use:

$76 \times 76 \times 7.9$ connection angles, 310 mm long, four $3 / 4$-inch A 325 bolts in web-framing legs and 6 mm fillet welds on outstanding legs.

Example 2

Double angles welded to the beam web, bolted to the column flange, bearing-type.

Given:

Same as example 1

Solution:

Web-framing legs - welded (Table 3-38)
6 mm fillet welds provide a capacity of 846 kN with angle length $L=310 \mathrm{~mm}$ and $W=$ 76 mm

Supported beam web thickness required for 6 mm fillet welds, $L=310 \mathrm{~mm}$

$$
=9.1 \times 450 / 846=4.8 \mathrm{~mm}<10.2 \mathrm{~mm} \quad \mathrm{OK}
$$

Minimum angle thickness $=7.94 \mathrm{~mm}$ (same as example 1).

Outstanding legs - bolted (Table 3-37)

For $L=310 \mathrm{~mm}, W=89$ or 76 mm , four bolts (threads intercepted) per vertical line, bolt shear capacity is $632 \mathrm{kN}>450 \mathrm{kN}$ OK

Angle thickness required $=7.1 \times 450 / 632=5.1 \mathrm{~mm}<7.94 \mathrm{~mm} \mathrm{OK}$
The required flange thickness of the supporting column, with a beam framing from one side, is one half the required thickness of the supported beam web:

$$
14.2 \mathrm{~mm}>0.5(7.7 \times 450 / 632)=2.7 \mathrm{~mm} \text { OK }
$$

Use:

$89 \times 76 \times 7.9$ connection angles, 310 mm long, 89 mm outstanding legs, $g=130 \mathrm{~mm}$ with eight $3 / 4$-inch A325 bolts (4 per vertical line) and 6 mm fillet welds on web-framing legs.

Example 3

Double angles bolted to the beam web and bolted to both sides of the supporting member, supported beams not coped, bearing-type.

Given:

W530x92 beam of ASTM A992 steel, factored reaction 450 kN , framing from both sides of 11.9 mm web of W760x134 girder of A992 steel.
Detail material - G40.21-300W steel, $3 / 4$-inch A 325 bolts.
Solution:
Web framing legs - same as example 1

Outstanding legs - bolted to both sides of supporting member (Table 3-37)

Total reaction on girder web is $2 \times 450=900 \mathrm{kN}$
For beams connected to both sides of the supporting member, the bolt capacity is double that listed in the table:

$$
2 \times 632=1260 \mathrm{kN}>900 \mathrm{kN}
$$

Required web thickness of supporting member, based on bearing, is the same as that given for web thickness of supported beam. For angle $L=310 \mathrm{~mm}, W=89$ or 76 mm , four $3 / 4$-inch A325 bolts per vertical line (threads included), the girder web thickness is:

$$
11.9 \mathrm{~mm}>7.7 \times 450 / 632=5.5 \mathrm{~mm} \mathrm{OK}
$$

Use:

$89 \times 89 \times 7.9$ connection angles, 310 mm long, four $3 / 4$-inch A325 bolts per vertical line in both web-framing and outstanding legs.

A325 Bolts, F1852 ${ }^{1}$ Assemblies

CSA G40.21-300W Angles
ASTM A992, A572 Gr. 50, CSA G40.21-350W Beams
and Supporting Members

1. ASTM F1852 twist off type tension control structural bolt/nut/washer assemblies
2. Tabulated values for slip-critical connections assume Class A contact surfaces with $k_{s}=0,30$.
3. For supporting material with beams framing from both sides, minimum required thickness is equal to tabulated values for web thickness of supported beam. For supporting material with beams framing from one side, minimum required thickness is one-half the tabulated values.
4. Coped beams may have additional requirements. See Double-Angle Beam Connections in Part 3,
5. ASTM F959 compressible-washer-type direct tension indicators

WELDED DOUBLE-ANGLE BEAM CONNECTIONS Table 3-38
Fillet Welds: $\mathrm{X}_{\mathrm{u}}=490 \mathrm{MPa}$
CSA G40.21-300W Angles
ASTM A992, A572 Gr. 50, CSA G40.21-350W ${ }^{1}$ Beams and Supporting Members

WELD GROUP RESISTANCE														
Web-Framing Legs with Welds								Outstanding Legs with Welds				Conn. Angle Length L	Nominal Depth of Supported Beam	
TWO C-SHAPE WELDS ULS Factored Load Resistance (kN)								TWO VERTICAL WELDS ULS Fact. Load Resistance (kN)						
Angle Width, W								Angle Width, W						
76 mm				64 mm				89 mm or 76 mm					(mm)	
Fillet Size D (mm)				Fillet Size D (mm)				Fillet Size D (mm)				(mm)		
5	6	8	10	5	6	8	10	5	6	8	10		min.	max.
368	442	590	737	354	425	567	709	115	139	185	231	150	200	310
532	639	852	1060	524	628	838	1050	250	300	400	500	230	310	460
705	846	1130	1410	660	792	1060	1320	400	480	640	800	310	410	610
823	987	1320	1650	768	922	1230	1540	545	654	872	1090	390	460	760
931	1120	1490	1860	874	1050	1400	1750	683	820	1090	1370	470	610	920
1030	1240	1650	2070	979	1170	1570	1960	816	980	1310	1630	550	690	1100
1140	1370	1820	2280	1080	1300	1730	2170	946	1140	1510	1890	630	760	
1250	1500	2000	2500	1190	1430	1910	2390	1070	1290	1720	2150	710	840	
1350	1620	2160	2700	1300	1550	2070	2590	1200	1440	1920	2400	790	920	
1460	1750	2340	2920	1400	1680	2240	2800	1330	1590	2120	2660	870	1000	
1570	1880	2510	3140	1510	1810	2420	3020	1450	1740	2330	2910	950	1100	
1670	2000	2670	3340	1620	1940	2590	3230	1580	1890	2530	3160	1030	Welde	beam
Minimum Required Web Thickness of Supported Beam ${ }^{2}$ (mm)								Min. Thick. of Supporting Steel, Beam Framing on One Side ${ }^{3}(\mathrm{~mm})$					$\begin{gathered} F_{y} \\ (\mathrm{MPa}) \end{gathered}$	
7.6	9.1	12.1	15.2	7.6	9.1	12.1	15.2	3.8	4.6	6.1	7.6		345	

1. Resistances are based on $\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$.
2. Coped beams may have additional requirements. See Double-Angle Beam Connections in Part 3.
3. For supporting material with beams framing from both sides, use double the tabulated value.

END-PLATE CONNECTIONS

End-plate connections with the connection plate welded to the supported beam and bolted to the supporting member are commonly used because of their economy, ease of fabrication, and performance. When beams are saw-cut to length, the use of simple jigging procedures to locate and support end plates during assembly and welding makes it possible to meet the tighter fabrication tolerances required without difficulty,

Research on simple end-plate shear connections has shown that their strength and flexibility compare favourably with double-angle shear connections for similar material thickness, depth of connection, and arrangement of bolts (gauge and pitch). For practical reasons it is suggested that the minimum thickness of the end-plate be 6 mm , and for adequate flexibility, that the maximum thickness be limited to 10 mm . The gauge dimension g should preferably be between 100 mm and 150 mm for plates up to 10 mm thick, but may be as low as 80 mm for minimum thickness plates with F_{y} not greater than 300 MPa .

Table 3-39 lists the capacities of bolts and welds for typical end-plate connections with 2 to 8 bolts per vertical line, together with the minimum thickness of the end plate, supporting, and supported members to develop the full capacity of the bolts and welds, respectively. Endplate thicknesses are based on minimum edge distances in S16-14 Table 6.

For added safety during erection, clipped end plates with one upper corner of the end plate removed may be used. Tests at Queen's University demonstrated that clipped end-plate connections have similar moment-rotation characteristics to unclipped end-plate connections; therefore, weld capacities in Table 3-39 may be used directly for design, but tabulated bolt values must be reduced by the value of one bolt.

Table 3-39 also includes bolt capacities for slip-critical joints for those situations where bearing-type connections are not suitable,

References

VAN DALEN, K., and MACINTYRE, J.R, 1988. The rotational behaviour of clipped endplate connections. Canadian Journal of Civil Engineering, 15(1), February.

Example

Given:

W410x60 beam of ASTM A992 steel framing into web of W760x134 girder of A992 steel. The factored reaction is 325 kN ,

Beam web thickness $=7.7 \mathrm{~mm}$, girder web thickness $=11.9 \mathrm{~mm}$. G40.21-300W steel plate detail material, $3 / 4$-inch A325 bolts, and matching electrodes, $X_{u}=490 \mathrm{MPa}$

Solution:

Try 3 bolts per vertical line (threads intercepted).
Factored resistance $=474 \mathrm{kN}>325 \mathrm{kN}$ OK
For 230 mm -long end plate, weld capacity for 5 mm fillet welds is $342 \mathrm{kN}>325 \mathrm{kN}$
Required end-plate thickness $=6.9 \times 325 / 474=4.7 \mathrm{~mm}$. Use 6 mm minimum.
Minimum thickness of supported beam web $=7.6 \times 325 / 342=7.2 \mathrm{~mm}<7.7 \mathrm{~mm}$

Minimum thickness of supporting girder web (beams framing from one side)

$$
=3.8 \times 325 / 474=2.6 \mathrm{~mm}<11.9 \mathrm{~mm} \mathrm{OK}
$$

If beams were framing from both sides, the required web thickness of the girder would be twice the listed value, pro-rated for the actual factored load:

$$
2 \times 3.8 \times 325 / 474=5.2 \mathrm{~mm}<11.9 \mathrm{~mm} \mathrm{OK}
$$

Use: End plate $160 \times 6 \times 230 \mathrm{~mm}$ connected to the web of the supported beam with 5 mm fillet welds, $X_{u}=490 \mathrm{MPa}$, and six $3 / 4$-inch A325 bolts (2 rows of 3 at 100 mm gauge).

Bolts per	BEARING-TYPE CONNECTION ${ }^{\top}$ Factored Load Resistance (kN) Threads Intercepted				WELD CAPACITY ${ }^{2}$ Factored Load Resistance (kN)			Connection Plate Length (mm)				
Vertical					Fillet Size D (mm)							
	$3 / 4 \mathrm{in}$. Bolts		7/6 in. Bolts		5	6	8					
2	316		430		218	258	333	150				
3	474		645		342	407	533	230				
4	632		860		467	556	732	310				
5	790		1080		591	706	931	390				
6	948		1290		715	855	1130	470				
7	1110		1510		840	1000	1330	550				
8	1260		1720		964	1150	1530	630				
Material F_{u} (MPa)	Minimum Required Thickness of Supporting Member with Beams Framing from One Side ${ }^{3}(\mathrm{~mm})$				Minimum Required Web Thickness of Supported Beam ${ }^{4}$ (mm)			Material F_{y} (MPa)				
450	3.8		4.5		7.6	9.1	12.1	345				
$\mathrm{F}_{\mathrm{y}}=300$	Minimum Required End-Plate Thickness (mm)											
$F_{u}=440$	6.9		9.1		reduce tabulated bolt capacities by the value of one bolt.							
Bolts	SLIP-CRITICAL CONNECTION ${ }^{1}$ Specified Load Resistance (kN) Class A Contact Surfaces, $\mathrm{k}_{\mathrm{s}}=0.30$				2. The effective weld length is taken equal to the plate length minus twice the weld size.							
per Vertical Line	A325 installed by Turn of Nut$\left(c_{s}=1.0\right)$		$\begin{aligned} & \text { A325 installed with } \\ & \text { F959 }^{6}, \text { F1852 }^{5} \\ & \left(\mathrm{c}_{5}=0.78\right) \end{aligned}$		3. Minimum required thickness of supporting member with beams framing from both sides is double that listed.							
	$3 / 4$ in. Bolts	7/6 in. Bolts	$3 / 4 \mathrm{in}$. Bolts	7/8 in. Bolts	4. Coped beams may have additional requirements. See Double-Angle Beam Connections in Part 3.							
2	150	204	117	159								
3	224	305	175	238								
4	299	407	233	318		ASTM F1852 twist off type tension control structural bolt/nut/washer assemblies						
5	374	509	292	397								
6	449	611	350	476								
7	523	712	408	556	6. ASTM F959 compressible-washer-type direct tension indicators							
8	598	814	467	635								

SINGLE-ANGLE BEAM CONNECTIONS

For some applications, single-angle connections provide a satisfactory alternative to double-angle or end-plate connections. They are particularly suitable where limited access prevents the erection of beams with double-angle or end-plate connections, and where speed of erection is a primary consideration.

The connection angle may be either bolted or welded to the supporting and supported members. Usual practice involves shop fillet-welding to the supporting member and fieldbolting to the web of the supported beam.

Bolted-Welded Connections

Tests carried out at the University of British Columbia (Lipson 1968, 1977, 1980), using $4 \times 3 \times 3 / 8$ inch angles with the 4 -inch leg bolted to the beam web with $3 / 4$ inch diameter A325 bolts and the 3 -inch leg welded to the supporting member with $1 / 4$ inch E70XX fillet welds, demonstrated that welded-bolted single-angle connections with 2 to 12 bolts per vertical line possess adequate rotational capacity, and that in those connections loaded to ultimate capacity (2 to 8 bolts per vertical line) the failure occurred in the bolts when the weld pattern included welding along the heel and ends of the connection angle. The tests also demonstrated that the use of horizontal slotted holes in the connection angle reduced the moment at the bolts without affecting the ultimate capacity of the connection.

Table $3-40 \mathrm{a}$ is based on this research and assumes the use of $102 \times 76 \times 9.5$ connection angles with the 76 mm leg welded to the supporting member and the 102 mm leg bolted to the supported web. Bolt capacities for bearing-type connections are provided for $3 / 4$ and $7 / 8$ inch A325 bolts based on their factored shear resistance for the appropriate number of bolts. Weld capacities have been established by assuming that a connection with $1 / 4$ inch fillet welds has the same shear capacity as the $3 / 4$ inch A325 bolts (based on $\phi_{b}=0.67$ in S16.1-94 and with the threads excluded), and then pro-rating for the three sizes of fillet welds shown in the table:

Weld capacity $=V_{r}\{3 / 4$ inch bolts $\} \times D / 6.35$
where D is the fillet weld size in mm .
The bolt capacities tabulated are also valid for $3 / 4$ and $7 / 8$ inch F1852 twist-off-type tension-control structural bolt/nut/washer assemblies.

All-Bolted Connections

While single-angle connections are commonly welded in the shop and bolted in the field, the all-bolted option is viable where proficient bolting facility is available in the shop. Allbolted connections are subjected to both in-plane and out-of-plane eccentric load effects. For connections having one vertical bolt line per angle leg, it is common practice to include the in-plane eccentric load effect on the bolts in the support-side leg only, while restricting the bolt gauge of the beam-side leg and thus reducing eccentric load effects to a non-critical value.

Table 3-40b provides the connection coefficients, C, that account for an in-plane eccentricity on the support-side leg bolt group, e, equal to 65 mm . The table is valid for bearing-type connections in a configuration and having dimensions as shown in the accompanying figure. In addition, the bolt gauge of the beam-side leg, g_{b}, must not exceed 70 mm unless it can be demonstrated otherwise. All bolts must be of the same size, type and
grade. If a shear plane intercepts the threads of any of the bolts, the bolt shear resistance must be based on the thread-intercepted value. The tabulated coefficients, C, are determined by the instantaneous centre of rotation method described by Kulak et al. (1987); see Eccentric Loads on Bolt Groups. The reduced eccentrically loaded bolt group resistance is:

$$
R_{r}=C V_{r}
$$

where $C=$ connection coefficient from Table 3-40b
$V_{r}=$ factored shear resistance of a single bolt from Table 3-4

References

Kulak, G.L., Fisher, J.W., and Struik, J.H.A. 1987. Guide to design criteria for bolted and riveted joints, $2^{\text {nd }}$ Edition, John Wiley and Sons.

LIPSON, S.L. 1980. Single-angle welded-bolted beam connections. Canadian Journal of Civil Engineering, 7(2), June.

LIPSON, S.L. 1977. Single-angle welded-bolted connections. Journal of the Structural Division. ASCE. March.

LIPSON, S.L. 1968. Single-angle and single-plate beam framing connections. Proceedings, Canadian Structural Engineering Conference, Canadian Institute of Steel Construction, Willowdale, Ontario, February: 141-162.

Example 1

Single-angle welded-bolted beam connection (Table 3-40a)

Given

W410x60 beam ASTM A992 steel, factored reaction $=280 \mathrm{kN}$, web thickness $=7.7 \mathrm{~mm}$ L102 $\times 76 \times 7.9$ connection angle of G40.21-300W steel.
$3 / 4$-inch A325 bolts, electrodes rated for $X_{u}=490 \mathrm{MPa}$.

Solution

With threads intercepted in the shear plane, bolt capacity with four $3 / 4$-inch A325 bolts is $316 \mathrm{kN}>280 \mathrm{kN}$ OK

Web thickness required is $3.8 \times 280 / 316=3.4 \mathrm{~mm}<7.7 \mathrm{~mm}$ OK
Angle thickness required is $6.6 \times 280 / 316=5.8 \mathrm{~mm}<7.9 \mathrm{~mm} \mathrm{OK}$
Angle length required for 4 bolts is 310 mm , and weld capacity using 5 mm fillet welds ($X_{u}=490 \mathrm{MPa}$) is $298 \mathrm{kN}>280 \mathrm{kN}$ OK

Use:

L102×76x7.9 connection angle, 310 mm long, 76 mm leg welded to supporting member with 5 mm fillet welds; 102 mm leg bolted to web of supported beam with four $3 / 4$-inch A 325 bolts.

		E-AN NNEC TED- able Its, F18 Welds X 40,21	E BE ONS LDED a ssembli 90 MPa Angles		anding	eam web 0 30 g Member)	
Bolts per Vertical Line	BEARING-TYPE CONNECTION Factored Load Resistance (kN) Threads intercepted		WELD CAPACITY Factored Load Resistance (kN)			Connection Angle Length L (mm)	
	Bolt Size (in.)		Fiilet Size D (mm)				
	$3 / 4$	1/8	5	6	8		
2	158	215	149	179	238	150	
3	237	323	223	268	357	230	
4	316	430	298	357	476	310	
5	395	538	372	447	595	390	
6	474	645	447	536	715	470	
7	553	753	521	625	834	550	
8	632	860	594	713	950	630	
Materia F_{u} (MPa)	Minimum Required Web Thickness of Supported Beam ${ }^{1}$ (mm)		Minimum Required Thickness of Supporting Member with Beams Framing from One Side (mm)			Material Fy (MPa)	
450	3.8	4.5	3.7	4.5	5.9	345	
$\begin{aligned} \mathrm{F}_{\mathrm{y}} & =300 \\ \mathrm{~F}_{\mathrm{u}} & =440 \end{aligned}$	Minimum Required Thickness of Framing Angle (mm)		1. Coped beams may have additional requirements. See Double-Angle Beam Connections in Part 3.				
	6.6	9.0					

Example 2

Bolt group resistance of an all-bolted single-angle beam connection (Table 3-40b)

Given

A W410x54 beam is connected to end supports for a factored end reaction of 220 kN (ULS), using single-angle connections with one vertical line of bolts in both legs. Find the number of $3 / 4$-inch A325 bolts at a pitch distance of 80 mm .

Solution

$R_{f}=220 \mathrm{kN}$
$V_{r}=79.0 \mathrm{kN}$ (Table 3-4, single shear, threads intercepted case assumed)
Required: $C=220 / 79.0=2.78$
Try 4 bolts per leg. From Table 3-40b, $C=3.15>2.78$ Use 4 bolts per leg.

Factored bolt group resistance, $R_{r}=3.15 \times 79.0=249 \mathrm{kN}>220 \mathrm{kN}$
Check support-side leg gauge distance, g_{s} :
Beam web thickness $=7.5 \mathrm{~mm}(\mathrm{~W} 410 \times 54)$
Maximum value of $g_{s}=65-7.5 / 2=61.2 \mathrm{~mm}$ Use $g_{s}=60 \mathrm{~mm}$
To complete the connection design, the angle, the beam and its supporting member (or part) must be proportioned to satisfy other requirements, including bolt hole bearing capacity, end and edge distances, block shear and shear rupture, in accordance with S16-14 Clauses 13.12.1.2, 22.3 and 13.11 , respectively. Other factors such as effects due to beam cope(s) and combined stresses in the supporting member (or part) as applicable, should also be considered.

SINGLE-ANGLE BEAM CONNECTION ALL-BOLTED Table 3-40b Bolt Group Coefficients C * A325, A490, F1852 and F2280 Bolts and Assemblies			
Number of Bolts per Leg	Coefficient C		
2	1.05	Standard holes in support-side leg	
3	2.04		i
4	3.15		Supported be
5	4.25		e ≤ 65
6	5.34		$1+$
7	6.41		111
8	7.47		$80, R_{f}$
9	8.52		80
10	9.56		
11	10.6		
12	11.6		

[^9]
SHEAR TAB BEAM CONNECTIONS

When the load magnitude does not require the strength of bolts in double shear, a simple and economical connection is a single plate welded vertically onto a supporting member with the supported member bolted to the plate. Shear tabs - as they are commonly known - were studied by Astaneh et al. (1989) in an experimental program to define a suitable design method for proportioning and rating them. Table $3-41$ was prepared by following recommendations in that paper.

Astaneh et al. identified that the strength of shear tabs is a function of several variables. The first is the stiffness of the supporting member. A shear tab on a column flange is restrained from following the end rotation of the supported member, whereas a shear tab on one side of a supporting beam is freer to rotate in its own plane. This results in different effective eccentricities upon the bolts. The eccentricities are also a function of the number of bolts in the connection. Generally, shear tabs on flexible supports have larger bolt eccentricities, and therefore lower resistances, than do those on rigid supports. For shear tabs with seven bolts, however, the effective eccentricity is the same for both.

For rigid supports, efficiency in terms of capacity per bolt is a maximum for four bolts because the effective eccentricity is zero.

The test program used only standard-size holes, and the results are considered to be conservative for short slotted holes. Oversize and long slotted holes are not applicable. Holes may be either punched or drilled.

Shear tabs should be at least 6 mm thick, but no thicker than half the bolt diameter plus 2 millimetres in order to provide the potential for minor bolt hole deformation. High strength material should not be used, for the same reason.

The test specimens all measured 75 mm from the plate edge at the weld to the bolt line. A minimum edge distance of 1.5 times the bolt diameter is suggested. Bolts may be either pretensioned or snug tight.

The design methodology used for Table 3-41 consisted in determining the effective eccentricity for the bolts according to Astaneh et al., finding the single shear (threads intercepted) resistance of the bolts, calculating the required thickness of the shear tab to ensure an adequate shear resistance, and selecting welds that develop the shear tab material in shear. Astaneh et al. recommended a fillet weld size equal to $3 / 4$ of the shear tab thickness.

The tabulated bolt resistances are based on a resistance factor, $\phi_{\mathrm{b}}=0.67$, found in older editions of CSA S16 and corresponding approximately to the bolt resistance incorporated into the design method proposed by Astaneh et al.

Reference

Astaneh, A., Call, S.M., and MCMullin, K.M. 1989. Design of single plate shear connections. Engineering Journal, First Quarter, American Institute of Steel Construction, Chicago, Illinois.

End distance:
$\mathrm{L}_{\mathrm{ev}}=40 \mathrm{~mm}$ for 1 -inch bolts, 35 mm for smaller bolts.

SHEAR TAB BEAM CONNECTIONS
Table 3-41
FACTORED LOAD RESISTANCE (KN)
Bearing-Type Connections
Bolt Threads Intercepted
A325 Bolts, F1852 Assemblies
G40.21-300W Plates
Fillet Welds $X_{u}=490 \mathrm{MPa}$

RIGID SUPPORT												
Number of Bolts	$3 / 4$-in. Bolts				7/8-in. Bolts				1-in. Bolts			
	Plate Length (mm)	Resistance (kN)	Plate Thickness (mm)	Weld Size D (mm)	Plate Length (mm)	Resistance (kN)	Plate Thickness (mm)	Weld Size D (mm)	Plate Length (mm)	Resistance (kN)	Plate Thickness (mm)	Weld Size D (mm)
2	150	82.5	6	5	150	112	6	5	160	147	8	6
3	230	184	6	5	230	251	10	8	240	328	12	10
4	310	265	8	6	310	360	10	8	320	471	12	10
5	390	322	8	6	390	438	10	8	400	572	12	10
6	470	370	6	5	470	503	10	8	480	657	12	10
7	550	413	6	5	550	563	8	6	560	735	12	10
FLEXIBLE SUPPORT												
Number	$3 / 4-\mathrm{in}$. Bolts				7/a-in. Bolts				1-in. Bolts			
Bolts	Plate Length (mm)	Resistance (kN)	Plate Thick- ness (mm)	Weld Size D (mm)	Plate Length (mm)	Resistance (kN)	Plate Thickness (mm)	Weld Size D (mm)	Plate Length (mm)	Resistance (kN)	Plate Thick- ness (mm)	Weld Size D (mm)
2	150	62.2	6	5	150	84.6	6	5	160	111	6	5
3	230	123	6	5	230	168	6	5	240	219	8	6
4	310	196	6	5	310	266	8	6	320	348	10	8
5	390	269	6	5	390	366	8	6	400	478	10	8
6	470	342	6	5	470	465	8	6	480	607	12	10
7	550	413	6	5	550	563	8	6	560	735	12	10

TEE-TYPE BEAM CONNECTIONS

Tee-type beam connections combine some of the characteristics of single-angle connections with the web-framing leg bolted in single shear, and of double-angle connections with the outstanding legs welded to the supporting member.

Their main advantage consists in speed and ease of erection. They are also commonly used where hole making in the supporting member is undesirable (e.g. connections to HSS columns), and to avoid coping the bottom flange of the supported beam for erection purposes.

Costs are generally higher than for other types of simple beam connections because of the higher costs of fabricating the tee-sections.

Table 3-42 lists bolt capacities for bearing-type web-framing connections, and weld capacities for connections between the tee flange and its rigid support. (For a discussion of rigid versus flexible supports, see Shear Tab Beam Connections). The table covers connections using $3 / 4,7 / 8$ and 1 -inch diameter A325 bolts and F1852 assemblies. Bolt shear capacities were calculated based on the vertical reaction alone (i.e. without eccentricity), assuming that threads intercept the shear plane. Weld capacities were calculated by taking into account the out-of-plane eccentricity between the face of the support and the bolt line. These values have been computed using the same method applied to those listed in Table 3-38 for the outstanding legs of welded double-angle connections. To ensure adequate connection flexibility, the flange thickness of the tees should be held to a minimum.

Example

Tee-type beam connections with rigid supports (Table 3-42)

Given:

W460x74 beam of ASTM A992 steel, factored reaction $=375 \mathrm{kN}$
Column-HSS $254 \times 254 \times 13$ of G40.21-350W steel
Beam web thickness $=9.0 \mathrm{~mm}$
$3 / 4$-inch A 325 bolts, matching electrodes, $X_{u}=490 \mathrm{MPa}$.

Solution:

Try a tee cut from a W200x59 beam (ASTM A992); web thickness $=9.1 \mathrm{~mm}$.
These thicknesses of beam web and tee web (stem) will result in threads intercepting the shear plane.
Five bolts in a vertical line provide a capacity of $395 \mathrm{kN}>375 \mathrm{kN}$ OK
Beam web thickness required for $F_{u}=450 \mathrm{MPa}$ is
$3.8 \times 375 / 395=3.6 \mathrm{~mm}<9.0 \mathrm{~mm}$ OK
Tee stem (web) thickness required is $6.0 \times 375 / 395=5.7 \mathrm{~mm}<9.1 \mathrm{~mm}$ OK
Length of tee required for 5 bolts is 390 mm , and weld capacity for 5 mm fillet welds is $545 \mathrm{kN}>375 \mathrm{kN}$ OK
Clear depth of beam web between fillets, $T=391 \mathrm{~mm}>390 \mathrm{~mm}$ OK

Use:

Tee cut from W200x59, 390 mm long, five $3 / 4$-inch A325 bolts connecting webs of beam and tee, and 5 mm fillet welds (with matching electrodes, $X_{u}=490 \mathrm{MPa}$) to supporting material.

Web-Framing Leg (Bolted to Supported Web) End distance: $\mathrm{L}_{\mathrm{ev}}=40 \mathrm{~mm}$ for 1 -inch bolts, 35 mm for smaller bolts.			Table 3-42 A325 Bolts, F1852 Assemblies Fillet Welds $X_{u}=490 \mathrm{MPa}$ ASTM A992, A572 Gr. 50, CSA G40.21-350W Steel					\& be anding apportin	
Bolts per Vertical Line	BEARING-TYPE CONNECTIONS Factored Load Resistance (kN) Threads Intercepted						WELD CAPACITY Factored Load Resistance (kN)		
	3/4-in. Bolts		7/8-in. Bolts		1-in. Bolts		Fillet Size D (mm)		
	Conn. Tee Length (mm)	Resistance (kN)	Conn. Tee Length L (mm)	Resistance (kN)	Conn. Tee Length L (mm)	Resistance (kN)	5	6	8
2	150	158	150	215	160	281	115	139	185
3	230	237	230	323	240	421	250	300	400
4	310	316	310	430	320	562	400	480	640
5	390	395	390	538	400	702	545	654	872
6	470	474	470	645	480	843	683	820	1090
- 7	550	553	550	753	560	983	816	980	1310
8	630	632	630	860	640	1120	946	1140	1510
Material F_{u} (MPa)	Minimum Required Web Thickness of Supported Beam ${ }^{2}$ (mm)						Approximate Required Thickness of Supporting Member with Beams Framing from One Side$\begin{gathered} \left(F_{y}=345 \mathrm{MPa}\right) \\ (\mathrm{mm}) \end{gathered}$		
450	3.8		4.5		5.1		3.8	4.6	6.1
Material (MPa) $F_{y}=345$	Minimum Thickness of Tee Stem (mm)								
$\mathrm{F}_{\mathrm{u}}=450$	6.0		8.3		10.5				

1. For information on the distinction between rigid and flexible supports, see Shear Tab Beam Connections.
2. Coped beams may have additional requirements. See Double-Angle Beam Connections.

SEATED BEAM SHEAR CONNECTIONS

General

This section of the Handbook deals with the unstiffened angle seat and the tee-type stiffened seat designed to provide a simple beam shear connection to a supporting member. Although seated beam shear connections are designed to support vertical loads only, eccentricities produced by these connections can influence the design of supporting members as well as the connections.

Seated beam shear connections are most commonly used at beam-to-column supports. If used at beam-to-girder supports, the girder web must be checked for adequate local stability and resistance. Economy with seated beam shear connections results from ease and speed of field erection and, for unstiffened seats, simple shop fabrication.

The unstiffened angle seat consists of a relatively thick angle either shop-welded or bolted to the supporting member. They are usually bolted to column web supports due to restricted access for welding. Load capacity of an angle seat is limited by the angle thickness, unless it is stiffened. However, stiffened angle seats are more expensive to fabricate, and stiffened seats using tee-stubs built up from plate are usually more economical. Stiffened seats designed for large loads are generally referred to as brackets and are beyond the scope of this section.

A seated beam must be stabilized laterally with a flexible clip angle attached either to the top flange of the beam or to the beam web near the top of the beam. The clip angle must be thin enough to permit end rotation of the beam. Either welds or bolts can be used to connect the clip angle to the beam and supporting member. When welds are used, the fillet welds should be located along the toes of the angle.

Unstiffened Angle Seats

The capacity of unstiffened angle seats depends on the bending capacity of the seat angle. However, the beam end reaction resistances are governed by the web thickness, w, and effective bearing length of the supported beam, N, unless the beam web is stiffened. When the vertical leg of the seat angle is welded to the supporting member, the entire vertical leg is restrained by the welds, so that the capacity of the angle seat is assumed to be limited by the bending capacity of the outstanding leg. When the vertical leg is bolted to the supporting member, the top of the angle is not restrained by the bolts. Therefore, it is assumed that bending in the vertical leg, rather than the outstanding leg, controls the bending capacity of the bolted angle seat.

Tables 3-43 and 3-44 list capacities for welded and bolted unstiffened angle seats of various thicknesses for seat lengths, $L=180 \mathrm{~mm}$ and 230 mm , assuming beams of ASTM A992 steel ($F_{y}=345 \mathrm{MPa}$), seat angles of G40.21-300W steel ($F_{y}=300 \mathrm{MPa}$) and welds made with matching electrodes, $X_{u}=490 \mathrm{MPa}$. Capacities are based on unstiffened beam webs and the design models illustrated in the tables, with no allowance made for possible restraint provided by any connection between the seat and the bottom flange of the supported beam.

For detailing purposes, the gap between the beam end and the face of the supporting member is taken equal to 10 mm , although calculations are based on a gap of 20 mm .

Beam web bearing capacities in Tables 3-43 and 3-44 are based on web yielding and crippling according to Clauses 14.3.2(b)(i) and (ii) of CSA S16-14.

Vertical Leg Welded to Supporting Member

Table 3-43 lists the beam web bearing resistance values for welded seats with various angle thicknesses and beam web thicknesses, and the vertical leg weld resistance for various weld sizes and angle vertical leg lengths. The beam web bearing resistance values were calculated according to Clause 14.3 .2 (b), with the bearing length obtained by equating the value from Clause 14.3 .2 (b)(i) to the plastic bending resistance of the angle outstanding leg. The vertical weld capacity was determined using the instantaneous centre-of-rotation method, ignoring any beneficial effects due to the lower part of the angle bearing on the face of the support and weld strength increase due to weld orientation. Angle thicknesses in the top row apply to both the upper and lower parts of the table. Under each angle thickness, the largest eccentricity among all combinations of L and w is listed near the bottom and used to calculate the weld resistances.

Vertical Leg Bolted to Supporting Member

Table 3-44 lists the beam web bearing resistance values for bolted seats and the seat angle bending resistance based on the model illustrated near the top of the table. Bolt capacities are given for three sizes of bolt, two or four bolts per seat angle, for threads excluded and threads intercepted. These bolt capacities are based on assumptions thought to be conservative.

Example

Given: W530x92 beam of ASTM A992 steel, factored reaction $=185 \mathrm{kN}$
Beam web thickness $=10.2 \mathrm{~mm}$, flange width $=209 \mathrm{~mm}$.

Solution:

(a) Unstiffened angle seat welded to supporting member

Seat angle thickness and beam web bearing capacity:
From Table 3-43, a beam web thickness of 10 mm with $L=230 \mathrm{~mm}$ (to permit the 209 mm flange to be welded to the seat) and a 12.7 mm -thick angle provide a beam web bearing capacity of $210 \mathrm{kN}>185 \mathrm{kN}$. The 10.2 mm web is therefore adequate.

Vertical leg connection:
For an angle thickness of 12.7 mm with a vertical leg of 152 mm and a conservatively assumed eccentricity of $45 \mathrm{~mm}, 8 \mathrm{~mm}$ fillet welds provide connection capacity of 242 kN $>185 \mathrm{kN}$ OK.

Use $152 \times 102 \times 12.7$ seat angle 230 mm long with 152 mm leg welded to the supporting member with 8 mm fillet welds, $X_{u}=490 \mathrm{MPa}$, on each side of the vertical leg.
(b) Unstiffened angle seat bolted to supporting member

Seat angle thickness and beam web bearing capacity:
From Table 3-44, a 15.9 mm seat angle 230 mm long provides a capacity of:

$$
183+0.2(206-183)=188 \mathrm{kN}>185 \mathrm{kN}
$$

The 10.2 mm web is adequate. Four $3 / 4$-inch bolts will provide a capacity of 239 kN (threads excluded). Bolt bearing does not govern in this case (not shown).

Use a $152 \times 102 \times 15.9$ seat angle 230 mm long with 152 mm leg bolted to the supporting member with four $3 / 4$-inch A 325 bolts.

Factored Resistances

N/2		ASTM A le length, L	992, A Mat b ${ }^{1} t_{b}$ eg y	572 G CSA hing	50, Electro bearing $\phi_{b e} w(N$ leg fle $\frac{\left(L t^{2}\right)}{N / 2+}$ above solved alculate detailing calculatio ken to b aken to	SA G 300W de X_{u} resista $\left.+4 t_{b}\right)$ xural re 4) $\phi F_{y a}$ $a-t-r$ xpressi or N, wh for the purpos ns are 10 mm 1.6 w	0.21-3 Angles 490 ce (yiel yb istance ns were ch was top half s, gap ased on 3 mm	5W MPa ng) equate sed of the $=10 \mathrm{n}$ $a=20$	emb le.		a Short outsta			
	Angl	$t(\mathrm{~mm})$	7.9		9.5		13		16		19			
	Angl	L (mm)	180	230	180	230	180	230	180	230	180	230		
		5	56.0	61.6	67.2	74.0	89.5							
		6	69,0	75.1	81.5	88.8	107	116	132					
		7	84.7	90.9	98.4	106	126	136	153	166	180			
		8	103	110	118	126	147	158	177	191	206	223		
	w	9		131	141	148	172	183	204	218	235	252		
	(mm)	10			166	174	199	210	233	247	266	283		
		11			196	203	230	241	266	280	301	318		
		12				235	264	275	301	315	338	355		
		13					272	312	340	354	378	395		
	Fillet Weld D (mm)		6		6		8		8		10			
	Seat Angle	89×89	$\begin{gathered} 75.1 \\ 98.1 \\ 100 \\ 149 \\ 212 \end{gathered}$		$\begin{gathered} 80,1 \\ 102 \\ 102 \\ 149 \\ 198 \\ 251 \end{gathered}$		94.9				42			
		102×89												
		102×102			12									
		127×89			18									
		152×102			24									
		178×102			31									
		203x102			38									
	Eccentricity e(mm)		34				39		45		50		55	
Note: Weld resistances in the bottom half of the table were calculated using the instantaneous centre of rotation method. Bearing of the angle on the supporting member and the effect of fillet orientation on the weld strength were ignored.														

Factored Resistances

Factored Resistance - Beam Web Bearing or Seat Angle Bending (kN)									
$\begin{aligned} & \text { Angle } t(\mathrm{~mm}) \\ & \hline \text { Angle } L(\mathrm{~mm}) \end{aligned}$		9.5		13		16		19	
		180	230	180	230	180	230	180	230
Beam web thickness w (mm)	$\begin{array}{r} 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \end{array}$	47.1	$\begin{aligned} & 54.0 \\ & 63.1 \end{aligned}$	$\begin{array}{r} 66.6 \\ 77.3 \\ 89.4 \\ 103 \end{array}$	$\begin{array}{r} 75.9 \\ 87.5 \\ 100 \\ 115 \\ 131 \end{array}$	$\begin{aligned} & 86.5 \\ & 99.5 \\ & 114 \\ & 129 \\ & 147 \\ & 167 \end{aligned}$	$\begin{aligned} & 112 \\ & 127 \\ & 144 \\ & 163 \\ & 183 \\ & 206 \end{aligned}$	$\begin{aligned} & 121 \\ & 137 \\ & 155 \\ & 174 \\ & 196 \\ & 220 \\ & 246 \\ & 276 \end{aligned}$	$\begin{aligned} & 154 \\ & 172 \\ & 193 \\ & 215 \\ & 240 \\ & 267 \\ & 296 \\ & 329 \end{aligned}$

Bolted connection capacities were calculated according to CSA S16-14 Clause 13.12.1.4. For a single row of bolts, the bolt tension is taken equal to the shear. For two rows of bolts, the top row is assumed to resist the total tensile force (taken equal to the shear) and half the total shear.

Single row of bolts $(n=2): V_{r}=\frac{2 T_{r} V_{r}}{\sqrt{T_{r}^{2}+V_{r}^{2}}}$ Two rows of bolts $(n=4): V_{r}=\frac{4 T_{r} V_{r}}{\sqrt{T_{r}^{2}+4 V_{r}^{2}}}$

STIFFENED SEATED BEAM CONNECTIONS

Table 3-45 lists factored resistances of stiffened seats for the tee-shaped weld configuration shown. Capacities are based on the use of matching electrodes, $X_{u}=490 \mathrm{MPa}$, and steeI with $F_{y}=300 \mathrm{MPa}$. They may be used conservatively for steel with $F_{y}=345 \mathrm{MPa}$ or 350 MPa . Factored resistances are computed using the formulas given in the section, Eccentric Loads on Weld Groups, Shear and Moment. For seats having a thin and narrow stiffener, yielding or crippling resistance of the stiffener as determined in accordance with S16-14 Clause 14.3.2(b) governs the tabulated values.

The figures in Table 3-45 show the general arrangement. Although the horizontal welds connecting the seat plate to the support were ignored in the calculations, they are provided for stability. Welds smaller than the vertical stiffener welds may be used, and they do not intersect the vertical welds. Generally, the seat plate is connected to the stiffener with welds having a minimum shear resistance equal to the capacity of the welds connecting the seat plate to the supporting member. Welds or bolts may be used to connect the supported beam to the seat and for attachment of the clip angle required to stabilize the beam. If welds are used, the seat should be long enough to accommodate the fillet welds as shown in the figure. If bolts are used, the seat length should match or exceed the flange width of the beam.

When stiffened seats are in line on opposite sides of a column web, the size of the vertical fillet welds (with $X_{u}=490 \mathrm{MPa}$) shall not exceed $F_{y} / 524$ times the thickness of the column web, so as not to exceed the shear resistance of the column web:

$$
\frac{2 \phi_{w} 0.67 X_{u}}{0.66 \phi \sqrt{2}}=524
$$

As an alternative to limiting the weld size, a longer stiffener may be used to reduce the shear stresses in the column web.

Example

Given:

W530×101 beam without bearing stiffener. Factored reaction $=440 \mathrm{kN}$
Web thickness $=10.9 \mathrm{~mm}$, flange width $=210 \mathrm{~mm}$, flange thickness $=17.4 \mathrm{~mm}$
Connected to web of W310×129 column, web thickness $=13.1 \mathrm{~mm}$
Design stiffened welded seat for beams connected to both sides of column web, which is subjected to axial compression only.
ASTM A992 steel for the beam and column, G40.21-300W steel for the stiffener. Matching electrodes, $X_{u}=490 \mathrm{MPa}$.

Solution:

(a) Vertical stiffener

For an unstiffened beam web, required bearing width, N :
$B_{r}=\phi_{b e} w(N+4 t) F_{y}$
Clause 14.3.2(b)(i)
$N=\frac{B_{r}}{\phi_{b e} w F_{y}}-4 t=\frac{440 \times 10^{3}}{0.75 \times 10.9 \times 345}-4 \times 17.4=86.4 \mathrm{~mm}$

For $a=20 \mathrm{~mm}$ clearance, minimum stiffener width, $W=N+a=86.4+20=106 \mathrm{~mm}$.
Check web crippling:

$$
\begin{align*}
B_{r} & =0.60 \phi_{b e} w^{2} \sqrt{F_{y} E} \tag{b}\\
& =0.60 \times 0.75 \times 10.9^{2} \sqrt{345 \times 200000}=444 \mathrm{kN}>440 \mathrm{kN}
\end{align*}
$$

For stiffeners on both sides of column web, maximum effective weld size so that shear resistance of column web is not exceeded is:
$13.1 \times 345 / 524=8.6 \mathrm{~mm}$
From Table 3-45, with $W=140 \mathrm{~mm}(e=80 \mathrm{~mm})$, stiffener thickness $=15.9 \mathrm{~mm}, 8 \mathrm{~mm}$ fillet welds and $L=275 \mathrm{~mm}$, factored resistance of welded seat provided is:
$463 \mathrm{kN}>440 \mathrm{kN}$ OK
Use 16×140 stiffener, 275 mm long, welded to column web with 8 mm fillet welds.
(b) Horizontal seat plate

Try 10 mm plate and 6 mm fillet welds to attach the seat plate to the column web.
Minimum length of seat plate assuming beam is bolted to seat:
beam flange width $=210 \mathrm{~mm}$
Note: If the beam is welded to the seat, the minimum length of the seat plate is:

$$
210+2(2 \times 6)=234 \mathrm{~mm}
$$

Use a 10x140 seat plate, 210 mm long, welded to the column web with two 60 mm -long segments of 6 mm fillet welds on the underside of the seat, and bolted to the bottom flange of the beam with two $1 / 2$-inch A 325 bolts.
(c) Weld between stiffener and seat plate

Minimum length of weld required $=2 \times 60=120 \mathrm{~mm}$ (same as the length of the seat plate-to-column welds) for 6 mm fillets

Length available is $2 \times 140 \mathrm{~mm}=280 \mathrm{~mm}>120 \mathrm{~mm}$ OK

年		STIFFENED SEATED BEAM CONNECTIONS Table 3-45 CSA G40.21-300W Seat Steel Matching Electrodes $X_{i}=490 \mathrm{MPa}$							size if atta by	in.) am hed Ids 9.5		No loc clip Op loc clip V F	
FACTORED RESISTANCE (kN)													
Stiffener		$\begin{aligned} & \text { Fillet } \\ & \text { Size } \\ & D \\ & (\mathrm{~mm}) \end{aligned}$	Length of Stiffener, L (mm)										
Width, Design Eccentricity (mm)	Thickness t (mm)												
			150	175	200	225	250	275	300	350	400	450	500
$\begin{aligned} W & =100 \\ e & =60 \end{aligned}$	12.0	6	170	210	252	294	319	319	319	319	319	319	319
	15.9	8	225	279	334	389	422	422	422	422	422	422	422
	19.0	10	269	333	399	465	504	504	504	504	504	504	504
	22.0	12	311	386	462	539	584	584	584	584	584	584	584
$\begin{aligned} W & =140 \\ e & =80 \end{aligned}$	12.0	6	148	187	226	267	308	350	392	427	427	427	427
	15.9	8	196	247	300	353	408	463	519	565	565	565	565
	19.0	10	235	295	358	422	488	554	620	675	675	675	675
	22.0	12	272	342	415	489	564	641	718	782	782	782	782
$\begin{aligned} & W=180 \\ & e=100 \end{aligned}$	15.9	8	168	221	271	322	375	428	483	593	705	708	708
	19.0	10	205	264	323	385	448	512	577	709	842	846	846
	22.0	12	239	305	374	445	518	593	668	820	975	980	980
$\begin{aligned} & W=220 \\ & e=120 \end{aligned}$	15.9	8	140	190	245	294	345	397	450	557	667	778	851
	19.0	10	171	232	293	352	412	474	537	666	797	930	1020
	22.0	12	201	273.	340	407	477	549	622	771	923	1080	1180

Notes: Yielding of the stiffener controls the resistance values to the right of the thick vertical lines.
A WT section proportioned to meet the stiffened seat requirements may also be used,

MOMENT CONNECTIONS

General

Continuous construction requires moment-resisting beam-to-column connections that will maintain, virtually unchanged, the original angles between intersecting members at specified loads. Rigid moment connections can be provided by using welds, bolts or combinations of welds and bolts. In general, numerous configurations and details are possible; Figure 3-3 shows four possible arrangements.

The connections illustrated below apply to moment frames subject to gravity and wind loads. They may be used to resist seismic forces corresponding to $R_{d}=1.5$ in frames of "Conventional Construction", subject to these conditions:
(a) Where the building height is within 15 m , Clause 27.11 .1 of CSA S16-14 requires that factored seismic forces be increased for buildings with specified short-period spectral acceleration ratios, $I_{E} F_{a} S_{a}(0.2)$, greater than 0.45 , unless connections are designed so that the expected failure mode is ductile (See Commentary) and
(b) Where the building height exceeds 15 m and $I_{E} F_{a} S_{a}(0.2)$ exceeds 0.35 , Clause $27,11.3$ provides additional connection design requirements for Conventional Construction.

For moment connections in Type D, Type MD and Type LD moment-resisting frames, ductile eccentrically braced frames and Type D plate walls, see the pertinent provisions for each respective system in Clause 27 and Annex J of S16-14, and CISC (2014).

Figure 3-3
Figure 3-3(a) illustrates a heavy plate shop-welded to the end of the beam and field-bolted to the column. The end plate distributes flange forces over a greater length of column web than does a fully welded joint, but prying action must be considered.

Figure 3-3(b) illustrates beam flanges field-welded directly to the column with groove welds. Shear capacity is developed by a seat angle, web-framing angle or plate, or by welding the beam web directly to the column. Backing bars and run-off tabs for the welds may be required.

Figure 3-3(c) illustrates the use of moment plates shop-welded to the column with groove or fillet welds and fillet-welded, or preferably bolted, to the flanges of the beam. The moment plates are spaced to accommodate rolling tolerances for beam depth and flange tilt, and nominal shims are provided to fill any significant gap. Minor gaps are closed by the action of bolting.

Shear capacity is usually provided by a web plate welded to the column and field-bolted to the beam.

Figure 3-3(d) illustrates the use of short beam sections shop-welded to the column, and field-bolted to the beam near a point of contraflexure. An end-plate connection is shown but lapping splice plates for the flanges and web may be more economical, depending on the forces to be transmitted and the relative ease of achieving field fit-up.

To ensure that the connection provided is consistent with the design assumptions used to proportion members of a structure, it is important that the designer provide the connection designer with governing maximum and coincident moments, shears and axial forces to be developed at the connection. See Clause 4 in S16-14 and the Commentary. In addition, the "type" of seismic moment-resisting frame (in this case, Conventional Construction) should be specified.

Column Stiffeners

Where rigid connections are required, the resistance of a column section to local effects in the panel zone is important. With relatively small beams connected to heavy columns, the columns will provide the degree of fixity assumed in the design of beams. With large beams, however, the columns will usually have to be strengthened locally by means of stiffeners, doubler plates or both.

Column stiffeners are provided opposite tension flanges of the connected beams to minimize curling of the column flanges with resultant overstressing of the central portion of the weld connecting the beam flange (or moment flange plate) to the column. Opposite the compression flanges of the beams, column stiffeners are provided to prevent the column web from yielding and, for a less compact web, buckling. The most commonly used stiffeners are horizontal plates. When beams of different depths frame into opposite flanges of the column, either inclined stiffeners or horizontal plate stiffeners opposite the flange of each beam may be used. If shear generated in the column web at the moment connection exceeds the column shear capacity, "doubler" plates or diagonal plate stiffeners are used to increase the column web shear capacity locally. Clause 21.3 of SI6-14 specifies requirements for web stiffeners on H-type columns when a beam is rigidly framed to the column flange.

References

The following references contain more detailed information on the design of moment connections. Some refer to allowable stress rules and must be interpreted for limit states applications.

ASCE. 1971. Commentary on plastic design in steel, American Society of Civil Engineers, New York, N.Y.
Blodgett, O.W, 1966. Design of welded structures. The James F. Lincoln Arc Welding Foundation, Cleveland, Ohio.

CHEN, W.F., and Lui, E.M. 1988. Static flange moment connections. Journal of Constructional Steel Research, Elsevier Science Publishers, New York, N.Y., Vol. 10; 6566.

Chen, Huang and Beedle. 1974. Recent results on connection research at Lehigh. Regional Conference on Tall Buildings, Bangkok, Thailand, pages 799-813.

CISC. 2014. Moment connections for seismic applications, Second edition, Canadian Institute of Steel Construction, Markham, Ontario.

FEMA. 2000. Recommended seismic design criteria for new steel moment-frame buildings. Report FEMA-350, Federal Emergency Management Agency, Washington, DC.
Goel, S.C., Stojadinovic, B. and Lee, K-H. 1997. Truss analogy for steel moment connections. Engineering Journal, American Institute of Steel Construction, 34(2).
Graham, Sherbourne and Khabbaz. 1959. Welded interior beam-to-column connections. American Institute of Steel Construction, Chicago, Illinois.
Huang, Chen and Beedle. 1973. Behavior and design of steel beam-to-column moment connections. Welding Research Council Bulletin, October.
Krishnamurthy, N. 1978. A fresh look at bolted end plate behavior and design. Engineering Journal, American Institute of Steel Construction, 15(2).
MOduLar Learning System. 1996. Principles of welding design, module 32 - moment connections. Gooderham Centre for Industrial Learning (a division of the Canadian Welding Bureau), Mississauga, Ontario.

PACKER, J.A. 1977. A limit state design method for the tension region of bolted beamcolumn connections. The Structural Engineer, 5(10), October.
REGEC, HUANG and CHEN. 1973. Test of a fully-welded beam-to-column connection. Welding Research Council Bulletin, October.
TALL L. (editor). 1964. Structural steel design (2nd. Ed.). The Ronald Press Company, New York, N.Y.

Examples

Note: In the following examples, the solution chosen in each case is intended to illustrate only one of several satisfactory solutions that could be used. In any given situation, the design will be influenced by the individual fabricator's experience, fabrication methods and erection procedures.

Example 1

Given:

Design an interior beam-to-column connection for the following coincident forces and moments due to factored gravity loads.

Factored beam moments $=240 \mathrm{kN} \cdot \mathrm{m}$ and $310 \mathrm{kN} \cdot \mathrm{m}$
Factored beam shears $=110 \mathrm{kN}$ and 130 kN
Steel: ASTM A992 (W shapes), CSA G40.21 300W (plates) $\mathrm{F}_{\mathrm{u}}=440 \mathrm{MPa}$, with matching electrodes $\mathrm{X}_{\mathrm{u}}=490 \mathrm{MPa}$

W310x86 Column	W410x60 Beam
$t_{c}=16.3 \mathrm{~mm}$	$t=12.8 \mathrm{~mm}$
$w_{c}=9.1 \mathrm{~mm}$	$w=7.7 \mathrm{~mm}$
$b=254 \mathrm{~mm}$	$d=407 \mathrm{~mm}$
$d=310 \mathrm{~mm}$	$b=178 \mathrm{~mm}$
$k_{l}=25 \mathrm{~mm}$	Class 1 in bending
$T=234 \mathrm{~mm}$	

Solution:

(a) Web Connection

The design of the connection between the beam web and the column flange need only account for the vertical shear, neglecting eccentricity. (Design for 130 kN shear.)
Two alternatives are shown to illustrate a field-welded and a field-bolted condition.

Alternative 1

Single plate field-welded to beam web, shop-welded to column flange, holes for $2-3 / 4 \mathrm{in}$. erection bolts

To resist the factored shear, try 5 mm fillet welds $\left(X_{u}=490 \mathrm{MPa}\right)$ on 6 mm plate.
Required weld length is $130 / 0.778=167 \mathrm{~mm}$
(Table 3-24(a))
Try a 230 mm long plate, for a W410 beam
Check plate for factored shear capacity.
(Clause 21.12, S16-14)
Gross plate area: $A=230 \times 6=1380 \mathrm{~mm}^{2}$

$$
V_{r}=\phi 0.66 F_{y} A=0.9 \times 0.66 \times 300 \times 1380 / 1000=246 \mathrm{kN}>130 \mathrm{kN}
$$

Use $6 \times 75 \times 230$ plate and 5 mm fillet welds with $\mathrm{X}_{\mathrm{u}}=490 \mathrm{MPa}$ (matching condition).

Alternative 2

Single plate shop-welded to column flange, field-bolted to beam web with $7 / 8 \mathrm{in}$. A325 bolts (or $3 / 4 \mathrm{in}$. bolts if also used to connect the flange plates)
From Table 3-4, factored shear resistance, single shear, threads intercepted, for $7 / 8 \mathrm{in}$. A 325 bolts $=108 \mathrm{kN}$ per bolt

For 2 bolts, $V_{r}=2 \times 108=216 \mathrm{kN}>130 \mathrm{kN}$
Check factored bearing resistance on beam web, $w=7,7 \mathrm{~mm}$
From Table 3-6(a), B_{r} for $t=7 \mathrm{~mm}$ is 168 kN per bolt $>79.0 \mathrm{kN}$
Try 6 mm plate, 230 mm long, 2 bolts at 160 mm pitch:
Bearing resistance on 6 mm plate, Table $3-6(\mathrm{~b}), B_{r}=141 \mathrm{kN}$ per bolt $>79.0 \mathrm{kN}$
Required thickness of plate (based on shear resistance, Clause 13.11) is:

$$
130 \times 10^{3} /[0.75 \times 0.6 \times 230(300+440) / 2]=3.4 \mathrm{~mm}<6 \mathrm{~mm}
$$

Block shear resistance (tension + shear, Clause 13.11) is adequate (not shown).
Use $6 \times 80 \times 230$ plate and two $7 / 8 \mathrm{in}$. A325 bolts at 160 mm pitch.

Alternative 2 replaces the two erection bolts with permanent high-strength bolts, and eliminates vertical field welding (likely a better solution).
(b) Flange Connection

Two alternatives are shown to illustrate field-bolted and field-welded conditions.

Alternative 1

Top and bottom moment plates shop-welded to column, field-bolted to beam flanges with A325 bolts

Flange force due to factored loads is $310 \times 1000 / 407=762 \mathrm{kN}$
Bolts
Assuming joint length, $L<760 \mathrm{~mm}$, from Table 3-4, required number of $1 / 8 \mathrm{in}$. A325 bolts (threads excl.) is:
$762 / 154=4.95$ Use 6 bolts (2 rows of $3 ; L=2(80)=160<760 \mathrm{~mm}$)
Shear per bolt $=762 / 6=127 \mathrm{kN}$
Beam
Factored bearing resistance, $t=12.8 \mathrm{~mm}$
From Table 3-6(a), for $t=12 \mathrm{~mm}, B_{r}=288 \mathrm{kN}$ per bolt $>127 \mathrm{kN}$
Block Shear (Cl. 13.11). Try 80 mm pitch, 70 mm end distance and 35 mm edge distance.
(i) Edge block shear pattern, Figure 3-4(a)
$\mathrm{T}_{\mathrm{r}}=0.75(12.8)[1.0(2 \times 35-26) 450+0.6(2)(70+2 \times 80)(345+450) / 2] / 1000$ $=1240 \mathrm{kN}>762 \mathrm{kN}$
(ii) Tear-out pattern, Figure 3-4(b)

Not critical (calculation not shown).

Flange Plates

Tension (Clause 13.2(a))
Required gross area $=762 \times 10^{3} /(0.9 \times 300)=2820 \mathrm{~mm}^{2}$
Required net effective area $=762 \times 10^{3} /(0.75 \times 440)=2310 \mathrm{~mm}^{2}$
Try 200×16 plate, and check areas.

Block Shear and Tear-Out

Tension Flange and Flange Plate

Figure 3-4
Gross area is $200 \times 16=3200 \mathrm{~mm}^{2}>2820 \mathrm{~mm}^{2}$
Net area is $(200-2 \times 26) 16=2370 \mathrm{~mm}^{2}>2310 \mathrm{~mm}^{2}$
(Holes assumed not drilled. While 24 mm standard holes for $7 / 8 \mathrm{in}$, bolts are assumed here, oversized holes are usually required to facilitate erection. See SI6-14, Clause 22.3.5.1 (a) and Table 3-47)

Try 40 mm end distance and 10 mm beam end clearance
Plate length $=(2 \times 80)+40+70+10=280 \mathrm{~mm}$
Block shear (Cl. 13.11)
(i) Edge block shear pattern, Figure 3-4(c)

$$
\begin{aligned}
\mathrm{T}_{\mathrm{r}} & =0.75(16)[1.0(200-178+2 \times 35-26) 440 \\
& +0.6(2)(40+2 \times 80)(300+440) / 2] / 1000=1410 \mathrm{kN}>762 \mathrm{kN}
\end{aligned}
$$

(ii) Block shear pattern, Figure 3-4(d)

$$
\begin{aligned}
\mathrm{T}_{\mathrm{r}} & =0.75(16)[1.0(178-2 \times 35-26) 440+0.6(2)(40+2 \times 80)(300+440) / 2] / 1000 \\
& =1500 \mathrm{kN}>762 \mathrm{kN}
\end{aligned}
$$

(iii) Tear-out pattern, Figure 3-4(e): Not critical (calculation not shown)

Bolt bearing: Not critical (calculation not shown)
Compression: Not critical (calculation not shown)
Note: The factored tensile resistance of the complete-joint-penetration groove welds with matching electrodes between the top and bottom moment plates and the column flange shall be taken as that of the base metal (S16-14, Clause 13.13.3.1).

Alternative 2

Moment plate field-welded to column flange and top flange of beam, bottom flange of beam welded directly to column flange with groove weld

As in alternative 1, the moment plate is designed to transmit the factored beam flange force of 762 kN .
Plate area required (gross) is $762 \times 10^{3} /(0.9 \times 300)=2820 \mathrm{~mm}^{2}$
Select plate width narrower than beam flange width to permit downhand welding.
Try 140 mm plate. Maximum weld size would be $(178-10-140) / 2=14 \mathrm{~mm}$.
Plate thickness required is $2820 / 140=20.1 \mathrm{~mm}$. Use 22 mm plate
From Table 3-24(a), for matching electrodes $X_{u}=490 \mathrm{MPa}, 12 \mathrm{~mm}$ fillet weld, the factored shear resistance $=1.87 \mathrm{kN} / \mathrm{mm}\left(\right.$ for $\theta=0^{\circ}$)

Approx. weld length required is: $762 / 1.87=407 \mathrm{~mm}$. Try 400 mm .
End weld length is 140 mm , therefore length each side is $(400-140) / 2=130 \mathrm{~mm}$
The factored shear resistance of the transverse end weld $\left(\theta=90^{\circ}\right)$ is $2.80 \mathrm{kN} / \mathrm{mm}$.
(Table 3-24(b)) The base metal check is no longer required when matching electrodes are used. For the two longitudinal welds $\left(\theta_{1}=0^{\circ}\right)$, the strength reduction factor for multiorientation fillet welds (Clause 13.13.2.2),

$$
\begin{aligned}
& M_{w}=(0.85+0 / 600) /(0.85+90 / 600)=0.85 \\
& V_{r}=140 \times 2.80+2(130 \times 1.87 \times 0.85)=805 \mathrm{kN}>762 \mathrm{kN}
\end{aligned}
$$

It is generally recommended that an unwelded length of plate equal to at least 1.2 times the plate width be provided, in order to ensure adequate ductility.

Therefore minimum plate length is: $130+(1.2 \times 140)=298 \mathrm{~mm}$.
Use $22 \times 140 \times 300$ plate welded to column flange with full penetration groove weld and welded to top flange of beam with 400 mm of 12 mm fillet welds.
If the flange plate is also subject to compression, the axial compressive resistance should be checked.
Other common alternatives include: (a) field-welding the top and bottom flanges of the beam directly to the column flange with full-penetration groove welds using backing bars fitted against the column flange and (b) extended end-plate connection.
(c) Column Shear Capacity

The column will be subject to a shear force due to the unbalanced moment. S16-14 Clause 21.3 requires stiffening of the column web if this shear exceeds

$$
V_{r}=0.8 \phi A_{w} F_{s} \quad(\text { Clause 13.4.2) }
$$

where F_{s} is calculated according to Clause 13,4.1.1

$$
\begin{aligned}
& h / w=(310-2 \times 16.3) / 9.1=30.5<1014 / \sqrt{ } F_{y}=54.6 \\
& F_{s}=0.66 F_{y}=0.66 \times 345=228 \mathrm{MPa} \\
& V_{r}=0.8 \times 0.9 \times 9.1 \times 310 \times 228=463 \mathrm{kN}
\end{aligned}
$$

Shear force is $(310-240) \times 1000 / 407=172 \mathrm{kN}<463 \mathrm{kN}$ OK
Thus, no reinforcing of the web is required for shear. (Shear forces from the column, above and below the moment connections, are ignored for simplicity.)
(d) Horizontal Column Panel Zone Stiffeners

Design the column stiffeners to S16-14, Clause 21.3.
Clause 21.3(a): $\quad B_{r}=0.80 \times 9.1[12.8+(10 \times 16.3)] 0.345=442 \mathrm{kN}<762 \mathrm{kN}$
Therefore, stiffeners are required opposite the compression flange for capacity of $762-442=320 \mathrm{kN}$
Clause 21.3(b)(i): $T_{r}=7 \times 0.9 \times 16.3^{2} \times 0.345=577 \mathrm{kN}<762 \mathrm{kN}$
Stiffeners are also required opposite the beam tension flange for a capacity of $762-577=185 \mathrm{kN}$
Total stiffener area required at compression flange is:
$320 /(0.9 \times 0.300)=1190 \mathrm{~mm}^{2}$
Maximum b/t ratio is $200 / \sqrt{300}=11.55$ (S16-14, Clause 14.4.2)
Try 90 mm wide stiffener each side of column web (beam flange is 178 mm wide).
Minimum $t=90 / 11.55=7.8 \mathrm{~mm} \quad$ Try 12 mm
Effective stiffener width to clear column k_{l} distance is $(178 / 2)-25=64 \mathrm{~mm}$
Effective stiffener area is $2 \times 64 \times 12=1540 \mathrm{~mm}^{2}>1190 \mathrm{~mm}^{2} \quad$ OK
Use 12×90 stiffener each side of column web opposite compression flange,
Use same stiffeners opposite tension flange.
(e) Stiffener Welds

Welds connecting stiffeners to column flange must be sufficient to develop a total force in the two stiffeners of 320 kN .

For double fillet welds at stiffener ends (length 64 mm), weld resistance required is

$$
320 /(2 \times 64)=2.5 \mathrm{kN} / \mathrm{mm}
$$

From Table 3-24(b), 8 mm double fillet welds with matching electrodes $X_{u}=490 \mathrm{MPa}$ provide: $2 \times 1.87=3.74 \mathrm{kN} / \mathrm{mm} \quad O K$

Welds connecting stiffeners to column web must transfer shear forces due to unbalanced beam moment of $172 / 2=86.0 \mathrm{kN}$ per side.
Try 150 mm weld length (T distance $=234 \mathrm{~mm}$).
Weld resistance required is $86.0 / 150=0.573 \mathrm{kN} / \mathrm{mm}$ (one-sided weld will do). Use single
5 mm fillet weld on each stiffener for $0.778 \mathrm{kN} / \mathrm{mm}$. (Table 3-24(a))
See Welding Practice in Part 6 for minimum size of fillet welds.

Example 2

Given:

Design an exterior beam-to-column connection for an elastically analyzed frame, in which the column size is the same as example 1, and the beam is a W460x74 having a factored end moment of $310 \mathrm{kN} \cdot \mathrm{m}$ and a factored end shear of 130 kN .

W310x86 column
See example 1
for dimensions

W460x74 beam
$t=14.5 \mathrm{~mm}$
$w=9.0 \mathrm{~mm}$ $d=457 \mathrm{~mm}$ b $=190 \mathrm{~mm}$ Class 1 (in bending)

Solution

This example is basically an extension of Example 1, and the solutions given are intended only to provide information on other possibilities.
(a) Web Connection

Use an unstiffened seat angle shop-welded to the column to carry the beam shear and to support the beam during erection.

From Table 3-43, for a beam web of 9 mm and a seat length of 230 mm , a 9.5 mm thick angle will provide a beam web bearing capacity of $148 \mathrm{kN}>130 \mathrm{kN}$. Also a vertical leg of 127 mm with 6 mm fillet welds provides a vertical leg connection capacity of 149 kN $>130 \mathrm{kN}$.

Use $127 \times 89 \times 9.5$ angle $\times 230 \mathrm{~mm}$ long with 127 mm leg vertical, welded to column flange with 6 mm fillet welds with matching electrodes $X_{u}=490 \mathrm{MPa}$.
(b) Flange Connection

Assume field-welded connection with full-penetration groove welds connecting top and bottom flanges of the beam directly to the column flange (a suggested alternative in Example 1). The seat angle would serve as backing for the bottom flange weld.
(c) Column Shear Capacity

Shear force is $310 \times 1000 / 457=678 \mathrm{kN}$ (shears from column ignored)
Diagonal stiffeners will be used to carry shear in excess of the 463 kN (see Example I) shear capacity of the column web (Use of a doubler plate is an alternative).

Horizontal component of stiffener force is $678-463=215 \mathrm{kN}$
If θ is the angle between stiffener and horizontal plane,
$\cos \theta=310 /\left(310^{2}+457^{2}\right)^{1 / 2}=0.561 \quad\left(\theta=56^{\circ}\right)$
Force in stiffener is $215 / \cos \theta=215 / 0.561=383 \mathrm{kN}$
Total stiffener area required is $383 /(0.9 \times 0.300)=1420 \mathrm{~mm}^{2}$
Effective stiffener width to clear column k_{l} distance is (190/2) - $25=70 \mathrm{~mm}$
Try 90 mm wide stiffener on each side of web.
Stiffener thickness required is $1420 /(2 \times 70)=10.1 \mathrm{~mm}$ Try 12 mm .
b / t is $90 / 12=7.5<11.55$ maximum OK (see Example 1)
Use one 12×90 diagonal stiffener each side of column web.
(d) Horizontal Column Web Stiffeners
$B_{r}=0.80 \times 9.1(14.5+(10 \times 16.3)) 0.345=446 \mathrm{kN}<678 \mathrm{kN}$
Clause 21.3(a)
Stiffeners are required opposite the compression flange for; $678-446=232 \mathrm{kN}$
$T_{r}=7 \times 0.9 \times 16.3^{2} \times 0.345=577 \mathrm{kN}<678 \mathrm{kN}$
Clause 21.3(b)(i)
Stiffeners are also required opposite the tension flange for: $678-577=101 \mathrm{kN}$
Design stiffeners for 232 kN ; area required is: $232 /(0.9 \times 0.300)=859 \mathrm{~mm}^{2}$
Use two 12×90 stiffeners (see Example 1).
(e) Stiffener Welds

Diagonal Stiffeners

Welds connecting the stiffeners to the column flanges must be sufficient to develop a total force in the two stiffeners of 383 kN (see above). Since the dihedral angles are within the range of 30° to 60° (i.e. 34° and 56°), partial-joint-penetration groove welds may be used to carry the calculated forces.

For double PJP groove welds at ends of stiffeners (length $=70 \mathrm{~mm}$), weld resistance required is $383 /(2 \times 70)=2.74 \mathrm{kN} / \mathrm{mm}$
From Table 3-23, factored shear resistance on effective throat of welds with matching electrodes, $X_{u}=490 \mathrm{MPa}$ is 220 MPa . Effective throat required $=2.74 / 2 / 220 \times 1000=$ 6.2 mm . OK

Use PJP groove welds with minimum effective throat $=6.2 \mathrm{~mm}$ and matching electrodes $X_{u}=490 \mathrm{MPa}$, top and bottom at each end of stiffeners (skew joints at 34° and 56° angles), and nominal 5 mm stitch fillet welds between stiffener and column web.

Note that when the dihedral angle $<45^{\circ}$, CSA W59 requires that the effective throat be established through procedure qualification.

Horizontal Stiffeners

The end welds must develop total forces in the stiffeners of 232 kN , for which double 5 mm fillet welds are OK.

Welds connecting the horizontal stiffeners to the column web need transfer only a portion of the stiffener load to the column web, as most of that load proceeds up the diagonal stiffeners. However, it is conservative to size these welds to transfer the total load in the stiffeners. For a weld length of 150 mm (see Example 1), weld resistance required is:

$$
232 /(2 \times 150)=0.773 \mathrm{kN} / \mathrm{mm}
$$

for which a single 5 mm weld on each stiffener provides $0.778 \mathrm{kN} / \mathrm{mm}$.

Shop-welded, field-bolted
Web connections are Alternative 2
Flange connections are Alternative 1

Example 1

Both shop- and fieid-welded

Example 2

HOLLOW STRUCTURAL SECTION CONNECTIONS

General

Hollow structural sections are frequently used for columns, trusses and space structures due to aesthetics, reduced weight for compression members and other reasons. This section of the Handbook presents sketches of some commonly used connections (Figures 3-5 to 3-9), and information for HSS welds (Figure 3-10 and Table 3-46). Since the behaviour and resistance of welded HSS connections are not always intuitive, their detail design should be undertaken only by engineers who are familiar with current literature on the subject.

The connections illustrated in Figures 3-5 and 3-6 are simple shear connections designed in a conventional manner. The recommended width-to-thickness ratio of the Tee flange is 13 or more in order to ensure suitable rotational flexibility.

The International Committee for the Study and Development of Tubular Structures (CIDECT) has played a major role in sponsoring international research that has resulted in the International Institute of Welding (IIW) making comprehensive design recommendations for HSS connections. Subsequently, a series of "state-of-the-art" design guides edited by CIDECT has been produced (see references). Based on this research, CISC has published Hollow Structural Section Connections and Trusses-a Design Guide, $2^{\text {nd }}$ Edition (1997), which is a practical and comprehensive reference dedicated to the Canadian market with design examples that generally meet the requirements of CAN/CSA-S16.1-94.

Basic Considerations for Welded HSS Connections

A prime application of HSS members is in architecturally exposed areas where careful attention must be given to aesthetics of the connections. Simple welded connections without the use of reinforcing material often present the most pleasing and economical solutions. The following fundamentals should be kept in mind.

1. HSS members should not be selected on the basis of minimum mass. That implies that the members will need to be connected for their full capacity, which often is not possible without detail reinforcing material.
2. The force that can be transmitted from one HSS member to another is known as the "connection resistance" and is a function of the relative dimensions and wall thicknesses of the members. It is frequently less than the capacity of the connected member. Therefore, it is necessary to establish that the contemplated members have sufficient connection resistance before the member sizes can be confirmed.
3. Furthermore, design documents that specify "connect for member capacity" often have the effect of causing HSS connections to be reinforced, even if that was not the intent.
4. Square and rectangular HSS are much easier to fabricate than are round HSS because of the complexities of the connection profiles.
5. Try to avoid connections whose members are the same width. Welding is simpler and less expensive if fillet welds can be used along the sides of the connected member. On the other hand, connection resistance increases as the width of branch members approaches the width of main members, and is a maximum when the widths are the same. Therefore, to obtain optimum strength and economy with a square or rectangular HSS connection, the branch member should be as wide as possible, but not wider than the main member minus about five or six times the wall thickness of the main member (since the outer corner radius is generally between two and three times the wall thickness),
6. Connection resistance is improved when branch members have thin walls relative to the main member. A smaller-size main member with a thicker wall may not be much heavier than a larger one with a thinner wall.
7. Full-penetration welds are seldom justified (other than for member splices). They are not advantageous where connection resistance is less than the member capacity. In addition, they are not prequalified for HSS, and the certification for welders is more difficult. Inspection is much more difficult.
8. Ultrasonic inspection has limited application to HSS connections, and radiographic inspection is often only applicable to full-strength splicing of members.

Additional Considerations for HSS Trusses

1. Optimum economy can often be achieved by reducing the number of different size members that are used in a truss. It is less expensive to procure and handle a relatively large amount each of just of few sizes than a small amount each of many sizes.
2. Simple gap connections are usually the most economical when connecting pairs of web members to a truss chord. Overlap connections require additional profiling of members, more precise fitting, and sometimes interrupted fitting to perform concealed welding. Reinforced connections are generally the most expensive.
3. If fatigue is a design consideration, careful attention should be paid to the connection details. It is suggested that overlap connections of at least 50% be used for trusses subjected to fatigue loading.
4. Primary bending moments due to eccentricity e (Figure 3-7) may be ignored, with regard to connection design, provided the intersection of the centre lines of the web members lies within the following range measured from the centre line of the chord: 25% of the chord depth towards the outside of the truss, and 55% of the chord depth towards the inside of the truss.
5. Secondary bending moments (due to local connection deformations) may be neglected provided dimensional parameters of the connected members fall within ranges presented in Packer and Henderson (1997).
6. Since the effectiveness of load transfer from one HSS section to another is more a function of dimensional parameters of the members connected than it is of the amount of welding, Packer and Henderson (1997) outline methods to calculate connection efficiency and weld effectiveness.
7. Profiling of round members is generally required when they are joined to other members. If aesthetics allow the web members to have the ends flattened instead of profiled, cost savings may be achieved.

In HSS connections, members are usually welded all around. Table 3-46 gives the length of welds for square and rectangular web members connected to chord members at various angles θ, calculated in accordance with Clause 10.8.5.1 of AWS D1.1 (1990).

References

AWS. 1990. Structural welding code - steel, $12^{\text {th }}$ ed. ANSI/AWS D1.1-90. American Welding Society, Miami, Florida, U.S.A.

Frater, G.S., and Packer, J.A. 1992a. Weldment design for RHS truss connections. I: Applications. Journal of Structural Engineering, American Society of Civil Engineers, 118(10), pp. 2784-2803.

Frater, G.S., and Packer, J.A. 1992b. Weldment design for RHS truss connections. II: Experimentation. Journal of Structural Engineering, American Society of Civil Engineers, 118(10), pp. 2804-2820.

McFadden, M.R., SUn, M. and Packer, J.A. 2013. Weld design and fabrication for RHS connections. Steel Construction, 6(1), pp. 5-10.

PACKER, J.A., and CASSIDY, C.E. 1995. Effective weld lengths for HSS T, Y and X connections. Journal of Structural Engineering, American Society of Civil Engineers, 121(10).

Packer, J.A., and Henderson, J.E. 1997. Hollow structural section connections and trusses-a design guide, $2^{\text {nd }}$ edition. Canadian Institute of Steel Construction, Willowdale, Ontario,

Packer, J.A., SUN, M., OATWAY, P. and Frater, G.S. 2015. Experimental evaluation of the directional strength increase for fillet welds to rectangular hollow sections. Proceedings of the $15^{\text {th }}$ International Symposium on Tubular Structures, Rio de Janeiro, Brazil.

Packer, J.A., Wardenier, J., Zhao, X.L., Van der Vegte, G.J., and Kurobane, Y. 2009. Design guide for rectangular hollow section (RHS) joints under predominantly static loading. CIDECT Design Guide No. 3, $2^{\text {nd }}$ edition, CIDECT, Geneva, Switzerland.

TOUSIGNANT, K. and PACKER, J.A. 2015. Investigation of weld effective length rules for RHS overlapped K-connections. Proceedings of the 15 th International Symposium on Tubular Structures, Rio de Janeiro, Brazil.

Wardenier, J., Kurobane, Y., Packer, J.A., Van der Vegte, G.J., and Zhao, X.L. 2008. Design guide for circular hollow section (CHS) joints under predominantly static loading. CIDECT Design Guide No. 1, $2^{\text {nd }}$ edition, CIDECT, Geneva, Switzerland.

Figure 3-5

BEAM TO HSS COLUMN CONNECTIONS

Web stiffener when required (A single-sided partial-height stiffener may be adequate.)

BEAM OVER A COLUMN

Figure 3-6

TRUSS TO COLUMN AND GIRDER CONNECTIONS

TRUSS TO COLUMN

Field-bolted to supporting member

Field-welded to supporting member

TRUSS TO GIRDER

Figure 3-7

HSS TRUSS CONNECTIONS

(a) OVERLAP CONNECTION

(b) GAP CONNECTION

(c) STIFFENED GAP CONNECTION

Figure 3-8

CONNECTIONS FOR MOMENT AND SHEAR

STIFFENED HSS TO HSS

WEB STIFFENERS
IF REQUIRED

STIFFENED HSS TO WIDE FLANGE

Figure 3-9

Figure 3-10

WELDING DETAILS FOR HOLLOW STRUCTURAL SECTIONS	
Effective Throat: $E=T-3 \mathrm{~mm} \text { for } 45^{\circ} \leq \theta<60^{\circ}$ Detail A1, $45^{\circ} \leq \theta<60^{\circ}$	Effective Throat: $\mathrm{E}=\frac{\mathrm{S} / 2}{\sin (\theta / 2)}$
Detail $\mathrm{A} 2,30^{\circ} \leq \theta<45^{\circ}$: by procedure qualification	$\begin{aligned} & \text { Detail B } \\ & 60^{\circ} \leq \theta \leq 90^{\circ} \end{aligned}$ See CSA W59-13 Figore 4.8
Effective Throat: $E=0.707 \mathrm{~S}$ Detail C $\theta=90^{\circ}$	Effective Throat: $E=T$ (when $\phi \geq 60^{\circ}$)
Effective Throat: $E=\frac{S / 2}{\sin (\theta / 2)}$	Effective Throat: $E=t$
Detail E $90^{\circ} \leq \theta \leq 135^{\circ}$	$\begin{aligned} & \text { Detail F } \\ & \theta>135^{\circ} \end{aligned}$

HSS Web Members

HSS b $\times \mathrm{h} \times \mathrm{t}$ (mm)	Angle θ Between Web and Chord Member									
	30°	35°	40°	45°	50°	55°	80°	65°	70°	90°
$38 \times 38 \times 4.8$	204	187	174	164	157	151	147	143	140	136
$51 \times 51 \times 6.4$	272	249	232	219	209	201	195	191	187	181
$64 \times 64 \times 6.4$	348	319	297	280	268	258	250	244	240	232
$76 \times 76 \times 9.5$	408	373	348	328	314	302	293	286	281	272
$89 \times 89 \times 9.5$	484	443	413	390	372	359	348	340	333	323
$102 \times 102 \times 13$	544	498	464	438	418	403	391	382	374	363
$127 \times 127 \times 13$	697	637	593	561	535	516	500	488	479	464
$152 \times 152 \times 13$	849	776	723	683	652	628	610	595	584	566
$178 \times 178 \times 16$	980	901	839	793	757	729	707	691	678	657
$203 \times 203 \times 16$	1140	1040	969	915	874	842	817	797	783	758
$254 \times 254 \times 16$	1440	1320	1230	1160	1110	1070	1040	1010	990	961
$305 \times 305 \times 16$	1750	1600	1490	1410	1340	1290	1250	1220	1200	1160
$51 \times 25 \times 4.8$	181	170	161	155	150	146	143	141	139	136
$25 \times 51 \times 4.8$	227	203	186	174	164	156	150	145	142	136
$76 \times 51 \times 7.9$	317	294	277	264	254	247	241	236	233	227
$51 \times 76 \times 7.9$	363	328	302	283	268	257	248	241	235	227
$89 \times 64 \times 6.4$	401	371	349	332	319	309	301	295	291	283
$64 \times 89 \times 6.4$	448	406	375	351	333	319	309	300	294	283
$102 \times 51 \times 9.5$	363	340	322	310	300	292	286	281	278	272
$51 \times 102 \times 9.5$	453	407	373	347	327	312	300	291	284	272
$102 \times 76 \times 9.5$	461	426	400	380	365	353	344	337	332.	323
$76 \times 102 \times 9.5$	507	460	425	399	379	364	351	342	335	323
$127 \times 76 \times 13$	499	464	438	419	404	393	384	377	372	363
$76 \times 127 \times 13$	590	531	489	457	432	413	398	386	377	363
$152 \times 102 \times 13$	650	602	568	541	521	505	493	484	476	464
$102 \times 152 \times 13$	743	672	619	580	549	526	507	493	482	464
$178 \times 127 \times 13$	802	741	697	664	638	618	602	590	581	566
$127 \times 178 \times 13$	896	811	749	703	667	639	617	600	587	566
$203 \times 102 \times 13$	755	706	671	644	624	608	595	585	578	566
$102 \times 203 \times 13$	943	847	776	722	681	649	624	605	590	566
$203 \times 152 \times 16$	938	866	813	773	743	719	700	686	675	657
$152 \times 203 \times 16$	1030	936	865	B12	771	739	715	695	681	657
$254 \times 152 \times 16$	1040	970	916	876	845	821	802	788	776	758
$152 \times 254 \times 16$	1230	1110	1020	954	903	863	832	807	789	758
$305 \times 203 \times 16$	1350	1250	1180	1120	1080	1050	1020	1000	986	961
$203 \times 305 \times 16$	1540	1390	1280	1200	1140	1090	1050	1020	1000	961

Notes:

1. Outside corner radius assumed equal to $2 t$.
2. Perimeters calculated by: $K_{a}[4 \pi t+2(b-4 t)+2(h-4 t)]$, where $\left.K_{a}=[(h / \sin \theta)+b) /(h+b)\right]$
3. Weld lengths for the HSS with the thickest wall in each size group are tabulated;
other sections in the group have slightly longer welds.

TENSION MEMBERS

General

Members subject to axial tension (i.e. when the resultant tensile load on the member is coincident with the longitudinal centroidal axis of the member) can be proportioned assuming a uniform stress distribution. The factored tensile resistance is calculated on the basis of yielding on the gross area and fracture on the net area (or effective net area reduced for shear lag) according to Clause 13.2 of CSA S16-14. Net area and effective net area reduced for shear lag are defined in Clause 12.3.

Net Area

Tables 3-47 and 3-49 to 3-51 are intended to simplify the calculation of net area according to the requirements of Clause 12.3.

Hole Diameters for Net Area

Table 3-47 lists the specified hole diameter for various bolt sizes according to Clause 22,3.5.2, and the diameter of holes for calculating net area according to Clause 12.3.2.

Staggered Holes in Tension Members

Table 3-49 lists values of $s^{2} / 4 g$ required to calculate the net width of any diagonal or zig-zag line of holes according to the requirements of Clause 12.3.1(b) for various pitches from 25 to 240 mm and for various gauges from 25 to 320 mm . Values of $s^{2} / 4 \mathrm{~g}$ for pitches and gauges between those listed can be interpolated.

Effective Net Area - Reduced for Shear Lag

Clause 12.3 .3 of S16-14 contains provisions for determining the loss of efficiency due to shear lag when tension members are not connected by all their elements.

Shear Lag Values of $1-\bar{x} / L$
Table 3-50 lists values of $1-\bar{x} / L$ as a function of \bar{x} and L for use with Clause 12.3.3.3(c) when computing the effective net area reduced for shear lag of section elements projecting from a welded connection.

Shear Lag Values for Slotted HSS

Table 3-51 lists values of $1.1-\bar{x}^{\prime} / L_{w}$ as a function of \bar{x}^{\prime} and L_{w} for use with Clause 12.3.3.4 when computing the effective net area reduced for shear lag of slotted HSS members welded to a plate.

Design Example - Shear Lag

Given:

An HSS152xI52x6.4 of G40.21-350W material supports a factored load of 525 kN in tension and is connected by a single plate welded into slots in the HSS walls as shown, The plate will be bolted between a pair of splice plates. Design the plate using 300W steel.

Solution:

Try a $12 \times 240 \mathrm{~mm}$ plate.
For G40.21-300W steel, $F_{y}=300 \mathrm{MPa}, F_{u}=440 \mathrm{MPa}$.
Tensile gross-area yield for the plate

$$
\begin{array}{rlr}
T_{r} & =\phi A_{g} F_{y} \quad \text { CSA S16-14, Clause 13.2(a)(i) } \\
& =0.9 \times 12 \times 240 \times 300 & \\
& =778 \mathrm{kN}>525 \mathrm{kN} &
\end{array}
$$

Tensile net-area rupture (through the bolt line)

Try three $7 / 8$-inch A325 bolts; use 45 mm edge and end distances.
It is assumed that the bolt holes will be punched. The bolt hole size is taken as $22.2+2+2 \approx 26 \mathrm{~mm}$ for net area calculations (Clause 12,3.2). See also Table 3-47.

$$
\begin{aligned}
A_{n c} & =[240-(3 \times 26)] 12=1940 \mathrm{~mm}^{2} \\
T_{r} & =\phi_{u} A_{n e} F_{u}=0.75 \times 1940 \times 440 \\
& =640 \mathrm{kN}>525 \mathrm{kN}
\end{aligned}
$$

Bolt gauge $=(240-2 \times 45) / 2=75 \mathrm{~mm}$
Net area in tension:

$$
A_{n}=(2 \times 75-2 \times 26) 12=1180 \mathrm{~mm}^{2}
$$

Gross area in shear:

$$
\begin{aligned}
A_{g v} & =2 \times 45 \times 12=1080 \mathrm{~mm}^{2} \\
T_{r} & =\phi_{u}\left[U_{1} A_{n} F_{u}+0.60 A_{g v}\left(F_{y}+F_{u}\right) / 2\right] \quad \text { Clauses 13.2(a) (ii), 13.11 } \\
& =0.75[1.0 \times 1180 \times 440+0.60 \times 1080(300+440) / 2] \\
& =569 \mathrm{kN}>525 \mathrm{kN}
\end{aligned}
$$

Bolt shear

Bolt: $V_{r}=108 \mathrm{kN}$
(Table 3-4, threads intercepted)
Connection bolts (double shear):

$$
\begin{aligned}
V_{r} & =3 \times 2 \times 108 \\
& =648 \mathrm{kN}>525 \mathrm{kN}
\end{aligned}
$$

Bearing resistance at bolt holes

$$
\begin{aligned}
B_{r} & =3 \phi_{b r} n t d F_{u} \\
& =3 \times 0.80 \times 3 \times 12 \times 22.2 \times 440 \\
& =844 \mathrm{kN}>525 \mathrm{kN}
\end{aligned}
$$

Plate shear failure (by bolts pulling out the end of the plate)

End distance (from centre of bolt hole): $e=45 \mathrm{~mm}$

According to Clause 22.3.4, the minimum end distance from the centre of the bolt to the end of the member is 1.5 bolt diameters. The failure mode involves two parallel planes adjacent to each bolt hole, as shown on the previous figure,
Gross shear area:

$$
\begin{align*}
A_{g v} & =3(2 \times 45) 12=3240 \mathrm{~mm}^{2} \\
T_{r} & =\phi_{u}\left[0.60 A_{g_{v}}\left(F_{y}+F_{u}\right) / 2\right] \tag{Clause 13.11}\\
& =0.75[0.60 \times 3240(300+440) / 2] \\
& =539 \mathrm{kN}>525 \mathrm{kN}
\end{align*}
$$

Shear lag for the plate

Clause 12.3.3.3(b) of S16-14 provides for shear lag in plates that are connected by a pair of longitudinal welds along two edges parallel to the load. The effective net area is reduced if the length of the welds is less than $2 w$.
Distance between welds, $w=152 \mathrm{~mm}$
Try a weld length, $L_{w}=150 \mathrm{~mm} \approx w$
Plate area between the welds, $L_{w}<w$:

$$
\begin{aligned}
A_{n 2} & =0.75 L_{w} t \\
& =0.75 \times 150 \times 12=1350 \mathrm{~mm}^{2}
\end{aligned}
$$

Clause 12.3.3.3(b)(iii)

Plate area on either side of the welds, connected by a single longitudinal weld:

$$
\begin{aligned}
& w=(240-152) / 2=44 \mathrm{~mm} . \text { Therefore, } L_{11}>w \\
& A_{n 3}=\left(1-\frac{\bar{x}}{L_{w}}\right) w t=2\left(1-\frac{44 / 2}{150}\right) 44 \times 12=901 \mathrm{~mm}^{2}
\end{aligned}
$$

Total effective net area:

$$
A_{n c}=A_{n 2}+A_{n 3}=1350+901=2250 \mathrm{~mm}^{2}
$$

Tensile resistance of the plate

$$
\begin{align*}
T_{r} & =\phi_{u} A_{n e} F_{u} \tag{a}\\
& =0.75 \times 2250 \times 440 \\
& =743 \mathrm{kN}>525 \mathrm{kN}
\end{align*}
$$

Welds

Factored unit weld resistance:

$$
0.67 \phi_{w} 0.707 X_{u}=0.67 \times 0.67 \times 0.707 \times 490=0.156 \mathrm{kN} / \mathrm{mm}^{2}
$$

For a weld length, $L_{w}=150 \mathrm{~mm}$, the fillet weld size is:

$$
525 \mathrm{kN} /(4 \times 150 \times 0.156)=5.61 \mathrm{~mm}
$$

Use 6 mm

Tensile resistance of the HSS (gross-area yield)
Cross-sectional area of the HSS $152 \times 152 \times 6.4, A_{g}=3610 \mathrm{~mm}^{2}$

$$
\begin{aligned}
T_{r} & =\phi A_{g} F_{y} \\
& =0.9 \times 3610 \times 350=1140 \mathrm{kN}>525 \mathrm{kN}
\end{aligned}
$$

Shear lag for the HSS

Calculate \bar{x}, the distance between the centre of gravity of half of the HSS crosssection and the edge of the connection plate:

It can be shown that, for a square HSS:

$$
\vec{x} \approx\left(\frac{3}{8}\right) d=\left(\frac{3}{8}\right) 152=57 \mathrm{~mm}
$$

Effective net area of the entire HSS section:

$$
\begin{equation*}
\frac{\vec{x}}{L_{w}}=\frac{57}{150}=0.380>0.1 \tag{Clause 12.3.3.4}
\end{equation*}
$$

Net area of the HSS, taking into account the slots and a 3 mm fit-up gap:

$$
\begin{aligned}
A_{n} & =3610-2(12+3) 6.35=3420 \mathrm{~mm}^{2} \\
A_{n e} & =A_{n}\left(1.1-\frac{\bar{x}^{\prime}}{L_{w}}\right)=3420(1.1-0.380)=2460 \mathrm{~mm}^{2} \\
A_{n e} & <0,8 A_{n}=0.8 \times 3420=2740 \mathrm{~mm}^{2}, \text { Therefore, } A_{n e}=2740 \mathrm{~mm}^{2} \\
T_{r} & =\phi_{u} A_{n e} F_{u} \\
& =0.75 \times 2740 \times 450 \\
& =925 \mathrm{kN}>525 \mathrm{kN}
\end{aligned}
$$

Block shear around fillet welds

Failure modes involving block shear in the plate and HSS walls around the fillet welds do not govern for this example (calculations not shown).

Therefore, a PL1 $2 \times 240 \times 250 \mathrm{~mm}$ long, slotted 150 mm into the HSS, is adequate.

Specified and for Net Area

Bolt Size	Standard Hole Diameters, mm			Oversize Hole Diameters, mm		
	Specified"	Net Area Calculation		Specified	Net Area Calculation	
in.		Drilled Holes ${ }^{\dagger}$	Other Than Drilled		Drilled Holes ${ }^{\dagger}$	Other Than Drilled
1/2	14	14	16	-	-	-
5/8	17	17	19	20	20	22
$3 / 4$	21	21	23	23	23	25
,	or 22 *	22	24	2	2	25
\%	24	24	26	$27^{* *}$	27	29
1	27	27	29	$32 *$	32	34
11/8	30	30	32	37	37	39
$11 / 4$	33	33	35	40	40	42
$11 / 2$	40	40	42	46	46	48

Notes:
For slotted hole dimensions, see Table 3-52.
All figures have been rounded to nearest millimetre, U.N.O.

* Rounded down to nearest millimetre.
- Also permitted. See S16-14 Clause 22.3.5.1.
${ }^{\dagger} \mathrm{Net}$ area calculation may be based on the specified hole diameter if the holes are drilled (Clause 12.3.2)
** Undefined in S16; value adopted from RCSC Specification for Structural Joints Using High-Strength Bolts, 2014.

TENSION-CONTROL BOLT ASSEMBLIES AND INDICATORS

Assembly/Indicator	ASTM Standard ${ }^{1}$	Remarks
ASTM F1852 ${ }^{(2)}$	ASTM F1852-11 Standard Specification for "Twist Off" Type Tension Control Structural Bolt/Nut/Washer Assemblies, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength	$F_{y}=725 / 825 \mathrm{MPa}$
ASTM F2280 ${ }^{(2)}$	ASTM F2280-12 Standard Specification for "Twist Off" Type Tension Control Structural Bol/Nut/Washer Assemblies, Steel, Heat Treated, 150 ksi Minimum Tensile Strength	$\mathrm{F}_{\mathrm{u}}=1035 \mathrm{MPa}$
ASTM F959	ASTM F959-13 Standard Specification for Compressible- Washer-Type Direct Tension Indicators for Use with Structural Fasteners	Types 325 and 490 available

[^10]Values of $\mathrm{s}^{2} / 4 \mathrm{~g}$

Pitch	Gauge "g" (mm)															
(mm)	25	30	35	40	45	50	60	70	80	100	120	160	200	240	280	320
25					3.5	3.1	2.6	2.2	2.0	1.6	1.3	1.0	0.8	0.7	0.6	0.5
30				5.6	5.0	4.5	3.8	3.2	2.8	2.3	1.9	1.4	1.1	0.9	0.8	0.7
35			8.8	7.7	6.8	6.1	5.1	4.4	3.8	3.1	2.6	1.9	1.5	1.3	1.1	1.0
40		13.3	11.4	10.0	8.9	8.0	6.7	5.7	5.0	4.0	3.3	2.5	2.0	1.7	1.4	1.3
45	20.3	16.9	14.5	12.7	11.3	10.1	8.4	7.2	6.3	5.1	4.2	3.2	2.5	2.1	1.8	1.6
50	25.0	20.8	17.9	15.6	13.9	12.5	10.4	8.9	7.8	6.3	5.2	3.9	3.1	2.6	2.2	2.0
55	30.3	25.2	21.6	18.9	16.8	15.1	12.6	10.8	9.5	7.8	6.3	4.7	3.8	3.2	2.7	2.4
60	36.0	30.0	25.7	22.5	20.0	18.0	15.0	12.9	11.3	9.0	7.5	5.6	4.5	3.8	3.2	2.8
65	42.3	35.2	30.2	26.4	23.5	21,1	17.6	15.1	13.2	10.6	8.8	6.6	5.3	4.4	3.8	3.3
70	49.0	40,8	35.0	30.6	27.2	24.5	20.4	17.5	15.3	12.3	10.2	7.7	6.1	5.1	4.4	3.8
75		46.9	40.2	35.2	31.3	28.1	23.4	20.1	17.6	14.1	11.7	8.8	7.0	5.9	5.0	4.4
80			45.7	40.0	35.6	32.0	26.7	22.9	20.0	16.0	13.3	10.0	8.0	6.7	5.7	5.0
90				50.6	45.0	40.5	33.8	28.9	25.3	20.3	16.9	12.7	10.1	8.4	7.2	6.3
100						50.0	41.7	35.7	31.3	25.0	20.8	15.6	12.5	10.4	8.9	7.8
110							50.4	43.2	37.8	30.3	25.2	18.9	15.1	12.6	10.8	9.5
120									45.0	36.0	30.0	22.5	18.0	15.0	12.9	11.3
130										42.3	35.2	26.4	21.1	17.6	15.1	13.2
140										49.0	40.8	30.6	24.5	20.4	17.5	15.3
150											46.9	35.2	28.1	23.4	20.1	17.6
160												40.0	32.0	26.7	22.9	20.0
170												45.2	36.1	30.1	25.8	22.6
180												50.6	40.5	33.8	28.9	25.3
190													45.1	37.6	32.2	28.2
200													50.0	41.7	35.7	31.3
210														45.9	39.4	34.5
220														50.4	43.2	37.8
230															47.2	41.3
240																45.0

Values of $1-\overline{\mathbf{x}} / \mathrm{L}$

$\underset{(\mathrm{mm})}{\mathrm{L}}$	$1-\bar{x} / \mathrm{L}$															
	Distance $\overline{\mathrm{x}}$ (mm)															
	10	15	20	25	30	35	40	45	50	55	60	65	70	80	90	100
40	0.75	0.63	0.50	0.38	0.25	0.13										
80	0.88	0.81	0.75	0.69	0.63	0.56	0.50	0.44	0.38	0.31	0.25	0.19	0.13			
120	0.92	0.88	0.83	0.79	0.75	0.71	0.67	0.63	0.58	0.54	0.50	0.46	0.42	0.33	0.25	0.17
160	0.94	0.91	0.88	0.84	0.81	0.78	0.75	0.72	0.69	0.66	0.63	0.59	0.56	0.50	0.44	0.38
200	0.95	0.93	0.90	0.88	0.85	0.83	0.80	0.78	0.75	0.73	0.70	0.68	0.65	0.60	0.55	0.50
240	0.96	0.94	0.92	0.90	0.88	0.85	0.83	0.81	0.79	0,77	0.75	0.73	0.71	0.67	0.63	0.58
280	0.96	0.95	0.93	0.91	0.89	0.88	0.86	0.84	0.82	0,80	0.79	0.77	0.75	0.71	0.68	0.64
320	0.97	0.95	0.94	0.92	0.91	0.89	0.88	0.86	0.84	0,83	0.81	0,80	0.78	0.75	0.72	0.69
360	0.97	0.96	0.94	0.93	0.92	0.90	0.89	0.88	0.86	0.85	0.83	0.82	0.81	0.78	0.75	0.72
400	0.98	0.96	0.95	0.94	0.93	0.91	0.90	0.89	0.88	0.86	0.85	0.84	0.83	0.80	0.78	0.75
440	0.98	0.97	0.95	0.94	0.93	0.92	0.91	0.90	0.89	0.88	0.86	0.85	0.84	0.82	0.80	0.77
480	0.98	0.97	0.96	0.95	0.94	0.93	0.92	0.91	0.90	0.89	0.88	0.86	0.85	0.83	0.81	0.79

See CSA S16-14 Clause 12.3.3.3(c)
SHEAR LAG
Values of $1.1-\overline{\mathbf{x}}^{\prime} / L_{w}$

$\begin{gathered} \mathrm{L}_{\mathrm{w}} \\ (\mathrm{~mm}) \end{gathered}$	$1,1-\bar{x}^{\prime} / L_{w}$															
	Distance $\bar{x}^{\prime}(\mathrm{mm})$															
	10	15	20	25	30	35	40	45	50	55	60	70	80	90	100	120
40	0.85															
60	0.93	0.85														
80	0.98	0.91	0.85													
100		0.95	0.90	0.85	0.80											
120		0.98	0,93	0.89	0.85	0.81										
140		0.99	0.96	0.92	0.89	0.85	0.81									
160			0.98	0.94	0.91	0.88	0.85	0.82								
180			0.99	0.96	0.93	0.91	0.88	0.85	0.82							
200				0.98	0,95	0,93	0.90	0.88	0.85	0.83	0.80					
220				0,99	0.96	0.94	0.92	0.90	0,87	0.85	0.83					
240					0.98	0.95	0.93	0.91	0.89	0.87	0.85	0.81				
260					0.98	0.97	0.95	0.93	0.91	0.89	0.87	0.83				
280					0.99	0.98	0.96	0.94	0.92	0.90	0.89	0.85	0.81			
300						0.98	0.97	0.95	0.93	0.92	0.90	0,87	0.83	0.80		
320						0.99	0.98	0.96	0.94	0.93	0.91	0,88	0.85	0.82		
340							0.98	0.97	0.95	0.94	0.92	0,89	0.86	0.84	0.81	
360							0.99	0.98	0.96	0.95	0.93	0.91	0.88	0.85	0.82	
380							0.99	0.98	0.97	0.96	0.94	0.92	0.89	0.86	0.84	
400								0.99	0.98	0.96	0.95	0.93	0.90	0.88	0.85	0.80
420								0.99	0.98	0.97	0.96	0.93	0.91	0.89	0.86	0.81
440									0.99	0.98	0.96	0.94	0.92	0.90	0.87	0.83
460									0.99	0.98	0.97	0.95	0.93	0.90	0.88	0.84
480										0.99	0.98	0.95	0.93	0.91	0,89	0.85
500										0.99	0.98	0.96	0.94	0.92	0.90	0.86

[^11]

SHORT SLOT DIMENSIONS

Nominal Bolt Diameter	Slot Dimensions*	
	Width, A	Length, B
in.	mm	mm
$5 / 8$	18	$\mathrm{~A}<\mathrm{B} \leq 22$
$3 / 4$	21	$22<\mathrm{B} \leq 25$
$7 / 8$	24	$\mathrm{~A}<\mathrm{B} \leq 29^{* *}$
1	27	$\mathrm{~A}<\mathrm{B} \leq 33^{* *}$
$11 / 8$	31	$\mathrm{~A}<\mathrm{B} \leq 39$
$11 / 4$	34	$\mathrm{~A}<\mathrm{B} \leq 42$
$11 / 2$	40	$\mathrm{~A}<\mathrm{B} \leq 48$

LONG SLOT DIMENSIONS

Nominal Bolt Diameter	Slot Dimensions ${ }^{*}$	
	Width, A	Length, B
in.	mm	mm
s / m	18	$22<\mathrm{B} \leq 40$
$3 / 4$	21	$25<\mathrm{B} \leq 48$
$7 / 6$	24	$29<\mathrm{B} \leq 56$
1	27	$33<\mathrm{B} \leq 64$
$11 / 8$	31	$39<\mathrm{B} \leq 71$
$11 / 4$	34	$42<\mathrm{B} \leq 79$
$11 / 2$	40	$48<\mathrm{B} \leq 95$

See S16-14 Clause 22.3.5.2 for further information.

* Dimensions have been rounded to the nearest millimetre.
** Undefined in S16; value adopted from RCSC Specifications for Structural Joints Using High-Strength Bolts, 2014.

PART FOUR COMPRESSION MEMBERS

General Information 4-3
Limits on Width-to-Thickness Ratios 4-4
Table 4-1 - Width-to-Thickness Limits 4-4
Table 4-2 - Width-to-Thickness Ratios - Elements in Axial Compression 4-5
Unit Factored Compressive Resistances for Compression Members 4-6
Table 4-3 - Unit Factored Compressive Resistances, $n=1,34$ 4-7
Table 4-4 - Unit Factored Compressive Resistances, $n=2,24$ 4-11
Euler Buckling Load per Unit of Area 4-12
Table 4-5 - $\mathrm{C}_{\mathrm{e}} / \mathrm{A}$ 4-12
Factored Axial Compressive Resistances of Columns 4-13
W-Shapes
ASTM A992, A572 Grade 50 4-17
ASTM A913 Grade 65 4-28
Hollow Structural Sections - CSA G40.21-350W - Class C
Square Hollow Sections 4-32
Rectangular Hollow Sections 4-41
Round Hollow Sections 4-50
Hollow Structural Sections - CSA G40.21-350W - Class H
Square Hollow Sections 4-56
Rectangular Hollow Sections 4-65
Round Hollow Sections 4-74
Hollow Structural Sections - ASTM A500 Grade C
Square Hollow Sections 4-80
Rectangular Hollow Sections 4-86
Round Hollow Sections 4.94
Beam-Columns 4-101
Table 4-6 - Width-to-Thickness Ratios - Elements in Flexural Compression 4-102
Table 4-7 - Class of Sections - Combined Axial Compression and Major-Axis Bending 4-103
Table 4-8 - Values of ω_{1} 4-106
Table 4-9 - Amplification Factor, U 4-107
Factored Moment Resistances of Columns 4-108
W-Shapes - ASTM A992, A572 Grade 50 4-108
W-Shapes - ASTM A913 Grade 65 4-110
Design of Beam-Columns - Examples 4-111
Factored Axial Compressive Resistances - Angle Struts 4-115
Single-Angle Struts - CSA G40.21-350W
Equal-Leg Angles 4-116
Unequal-Leg Angles - Long Leg Connected 4-120
Unequal-Leg Angles - Short Leg Connected 4-124
Double-Angle Struts - CSA G40.21-350W
Equal-Leg Angles 4-128
Unequal-Leg Angles - Long Legs Back-to-Back 4-132
Unequal-Leg Angles - Short Legs Back-to-Back 4-138
Star-Shaped Angles 4-144
Single-Angle Strut - Design Example 4-148
Double-Angle Strut - Design Example 4-150
Column Base Plates 4-153
Figure 4-1 - Column Base Plate Thickness 4-155
Anchor Rods 4-158
Bracing Assemblies 4-160
Figure 4-2 4-160
Figure 4-3 4-161

GENERAL INFORMATION

Width-to-Thickness Ratios

Limits on width-to-thickness ratios for various steel grades are listed in Table 4-1 on page 4-4. Width-to-thickness ratios for elements in axial compression are given in Table 4-2 on page 4-5.

Unit Factored Compressive Resistances for Compression Members

Tables 4-3 and 4-4, on pages 4-7 to 4-11, provide tables of unit factored compressive resistances, C_{r} / A, for slenderness ratios from 1 to 200 for various yield stresses of steel and values of n of 1.34 and 2.24. See page 4-6 for more information.

Euler Buckling Load per Unit of Area

Table 4-5, page 4-12, lists values of C_{e} / A for $K L / r$ ratios varying from 1 to 200.

Factored Axial Compressive Resistances of Columns

These are the tables often referred to as "column load tables". See page 4-13 for a description of the contents and examples of use.

Beam-Columns

Width-to-thickness ratios for elements in flexural compression are given in Table 4-6 on page 4-102, and the Class of sections in combined axial compression and major-axis bending is given in Table 4-7 on page 4-103. Table 4-8, page 4-106, lists values of ω_{1} for various ratios of factored end bending moments. For a general description of the design tables for beam-columns, see page 4-101.
Values of the amplification factor, U, corresponding to various values of C_{f} / C_{e} are listed in Table 4-9, page 4-107. For sections not listed in the Beam Selection Table in Part 5, factored moment resistances for various unbraced lengths can be found on page 4-108. Illustrative examples are given on page 4-111.

Factored Axial Compressive Resistances - Angle Struts

See page 4-115 for a description of the contents and design examples for single-angle and double-angle struts.

Column Base Plates

See page 4-153 for information and design examples for column base plates.

Anchor Rods

See page 4-158 for data on anchor rods, hole sizes, washers, and mechanical properties.

Bracing Assemblies

A design example is given on page 4-160.

LIMITS ON WIDTH-TO-THICKNESS RATIOS

Table 4-1 below lists the particular width-to-thickness ($b_{e l} / t, h / w$ or D / t) ratio limits for various material yield strengths, for each general value given in Tables 4-2 and 4-6.

Table 4-2, which is taken from Clause 11 of CSA S16-14, lists the width-to-thickness ratios for Class 1, 2 and 3 sections for various elements in axial compression. All sections not meeting these requirements are Class 4.

WIDTH-TO-THICKNESS LIMITS

General Value	F_{y} (MPa)													
	250	260	280	300	317	320	345	350	380	400	450	480	485	550
$145 / \sqrt{F_{y}}$	9.17	8.99	8.67	8.37		8.11	7.81	7.75	7.44	7.25	6.84	6.62	6.58	6.18
170/ $\sqrt{F_{y}}$	10.8	10.5	10.2	9.81		9.50	9.15	9.09	8.72	8.50	8.01	7.76	7.72	7.25
200/ $\sqrt{F_{y}}$	12.6	12.4	12.0	11.5		11.2	10.8	10.7	10.3	10.0	9.43	9,13	9.08	8.53
$250 / \sqrt{F_{y}}$	15.8			14.4			13.5	13.4	12.8	12.5	11.8	11.4	11.4	
$340 / \sqrt{F_{y}}$	21.5	21.1	20.3	19.6		19.0	18.3	18.2	17.4	17.0	16.0	15.5	15.4	14.5
420/ $\sqrt{F_{y}}$	26.6	26.0	25.1	24.2		23.5	22.6	22.4	21.5	21.0	19.8	19.2	19.1	17.9
$525 / \sqrt{F_{y}}$	33.2	32.6	31.4	30.3		29.3	28.3	28.1	26.9	26.3	24.7	24.0	23.8	22.4
670/ $\sqrt{F_{y}}$.	42.4	41.6	40.0	38.7		37.5	36.1	35.8	34.4	33.5	31.6	30.6	30.4	28.6
$840 / \sqrt{F_{y}}$	53.1	52.1	50.2	48.5		47.0	45.2	44.9	43.1	42.0	39.6	38.3	38.1	35.8
$1100 / \sqrt{F_{y}}$	69.6	68.2	65.7	63.5		61.5	59.2	58.8	56.4	55.0	51.9	50.2	49.9	46.9
$1700 / \sqrt{F_{y}}$	108	105	102	98.1		95.0	91.5	90.9	87.2	85.0	80.1	77.6	77.2	72.5
1900/ $\sqrt{F_{y}}$	120	118	114	110		106	102	102	97.5	95.0	89.6	86.7	86.3	81.0
$13000 / F_{y}$				43.3	41.0		37.7	37.1	34.2	32.5	28.9	27.1		23.6
18000/Fy				60.0	56.8		52.2	51.4	47.4	45.0	40.0	37.5		32.7
$23000 / F_{y}$				76.7	72.6		66.7	65.7	60.5	57.5	51.1	47.9		41.8
$66000 / F_{y}$				220	208		191	189	174	165	147	138		120

${ }^{\star} h / w$ limit for webs in pure compression, $C_{I} /\left(\phi C_{y}\right)=1.0$

WIDTH-TO-THICKNESS RATIOS

Elements in Axial Compression

Description of Element	Maximum Width-to-Thickness Ratios
Flanges of f -sections, T-sections and channels; plate-girder stiffeners	$\frac{b_{\text {ei }}}{t} \leq \frac{200}{\sqrt{F_{y}}}$
Legs of angles	$\frac{b_{\text {ei }}}{t} \leq \frac{250}{\sqrt{F_{y}}}$
Stems of T-sections	$\frac{b_{\text {ei }}}{t} \leq \frac{340}{\sqrt{F_{y}}}$
Flanges of rectangular hollow sections; flange cover plates and diaphragm plates between lines of fasteners or welds; web of on both edghape sections; web supported	$\frac{b_{\text {ei }}}{t} \leq \frac{670}{\sqrt{F_{y}}}$
Perforated cover plates	$\frac{b_{\text {ei }}}{t} \leq \frac{840}{\sqrt{F_{y}}}$
Circular hollow sections	$\frac{D}{t} \leq \frac{23000}{F_{y}}$

See CSA S16-14 Clause 11.

UNIT FACTORED COMPRESSIVE RESISTANCES FOR COMPRESSION MEMBERS, CrIA

General

Table 4-3 on the following pages lists the unit factored compressive resistance, C_{r} / A (in MPa), calculated in accordance with the requirements of CSA S16-14 Clause 13.3.1 for members with F_{y} varying from 250 to 700 MPa , for values of $K L / r$ from 1 to 200 with $n=1.34$. The tabulated resistances apply to hot-rolled, fabricated structural sections and hollow structural sections manufactured according to CSA G40.20, Class C (cold-formed non-stress-relieved), ASTM A500 and A1085.

Table 4-4 lists the unit factored compressive resistance, C_{r} / A, for compression members consisting of doubly-symmetric welded three-plate members with oxy-flame-cut flange plates and $F y=350 \mathrm{MPa}$, and HSS manufactured according to G40.20 Class H (hot-formed or coldformed stress-relieved) with $F_{y}=350 \mathrm{MPa}$. Resistances have been calculated for values of $K L / r$ from 1 to 200 , in accordance with the requirements of Clause 13.3 .1 with $n=2.24$. Table 4-4 may also be used for A1085 HSS specified as Supplement S1, provided an adjustment is made for the small difference in F_{y} values (345 MPa vs, 350 MPa).

Use

To obtain the factored compressive resistance C_{r} for doubly symmetric Class 1, 2 or 3 sections, multiply the unit factored compressive resistance C_{r} / A for the appropriate F_{y} and $K L / r$ ratio, by the cross-sectional area A of the column section. For Class 4 sections, see Clause 13,3.5.

Examples

1. Given:

Find the factored compressive resistance of a W250x131 column of ASTM A992 stee] ($F_{y}=345 \mathrm{MPa}$) for a $K L / r$ ratio of 89 .

Solution:
From the tables of properties and dimensions in Part 6, for W250×131, $A=16700 \mathrm{~mm}^{2}$
From Table 4-3, with $K L / r=89$ and $F_{y}=345 \mathrm{MPa}, C_{r} / A=155 \mathrm{MPa}$
Therefore, $C_{r}=155 \mathrm{MPa} \times 16700 \mathrm{~mm}^{2}=2590 \mathrm{kN}$
2. Given:

Find the factored compressive resistance of an HSS $254 \times 152 \times 13$ Class H column of CSA G40.21 Grade 350W ($F y=350 \mathrm{MPa}$) and $K L / r=89$.

Solution:
From the tables of properties and dimensions in Part 6 for HSS $254 \times 152 \times 13$,
$A=9260 \mathrm{~mm}^{2}$
From Table 4-4, with $K L / r=89$ and $F_{y}=350 \mathrm{MPa}, C_{r} / A=189 \mathrm{MPa}$
Therefore, $C_{r}=189 \mathrm{MPa} \times 9260 \mathrm{~mm}^{2}=1750 \mathrm{kN}$

Note:

For heavy and built-up sections, see Clause 13.3 of the CISC Commentary in Part 2 of this Handbook for more information on compressive resistance.

	F_{y} (MPa)													
r	250	260	280	300	317	345	350	380	400	450	480	485	550	700
1	225	234	252	270	285	310	315	342	360	405	432	436	495	630
2	225	234	252	270	285	310	315	342	360	405	432	436	495	630
3	225	234	252	270	285	310	315	342	360	405	432	436	495	630
4	225	234	252	270	285	310	315	342	360	405	432	436	495	630
5	225	234	252	270	285	310	315	342	360	405	432	436	495	629
6	225	234	252	270	285	310	315	342	360	405	431	436	494	629
7	225	234	252	270	285	310	315	342	359	404	431	436	494	628
8	225	234	252	270	285	310	314	341	359	404	431	435	493	627
9	225	234	252	269	285	310	314	341	359	404	430	435	493	626
10	225	233	251	269	284	309	314	341	359	403	430	434	492	625
11	224	233	251	269	284	309	314	340	358	403	429	434	491	623
12	224	233	251	269	284	309	313	340	358	402	428	433	490	621
13	224	233	251	269	284	308	313	339	357	401	428	432	489	619
14	224	233	250	268	283	308	312	339	356	400	427	431	488	617
15	224	232	250	268	283	308	312	338	356	399	426	430	486	615
16	223	232	250	267	282	307	311	338	355	398	424	429	485	612
17	223	232	249	267	282	306	311	337	354	397	423	427	483	609
18	223	231	249	266	281	306	310	336	353	396	422	426	481	605
19	222	231	249	266	281	305	309	335	352	395	420	424	479	602
20	222	231	248	265	280	304	308	334	351	393	418	422	476	598
21	222	230	248	265	279	303	307	333	350	392	416	421	474	594
22	221	230	247	264	279	302	307	332	348	390	415	419	471	589
23	221	229	246	263	278	301	305	331	347	388	412	416	468	584
24	220	229	246	263	277	300	304	329	346	386	410	414	465	579
25	220	228	245	262	276	299	303	328	344	384	408	412	462	574
26	219	227	244	261	275	298	302	326	342	382	405	409	459	569
27	218	227	243	260	274	297	301	325	341	380	403	407	455	563
28	218	226	243	259	273	295	299	323	339	377	400	404	452	557
29	217	225	242	258	272	294	298	321	337	375	397	401	448	551
30	216	224	241	257	270	292	296	320	335	372	394	398	444	544
31	216	224	240	256	269	291	295	318	333	370	391	395	440	538
32	215	223	239	254	268	289	293	316	330	367	388	391	436	531
33	214	222	238	253	266	288	291	314	328	364	385	388	431	524
34	213	221	237	252	265	286	290	311	326	361	381	385	427	517
35	212	220	235	251	263	284	288	309	323	358	378	381	422	510
36	211	219	234	249	262	282	286	307	321	355	374	377	418	503
37	210	218	233	248	260	280	284	305	318	351	370	374	413	495
38	209	217	232	246	259	278	282	302	316	348	367	370	408	488
39	208	216	230	245	257	276	280	300	313	345	363	366	403	481
40	207	214	229	243	255	274	278	297	310	341	359	362	398	473
41	206	213	228	242	253	272	275	295	307	338	355	358	393	466
42	205	212	226	240	251	270	273	292	304	334	351	354	388	458
43	204	211	225	238	250	268	271	289	301	330	347	349	383	450
44	202	209	223	237	248	265	269	287	298	327	343	345	378	443
45	201	208	222	235	246	263	266	284	295	323	338	341	372	435
46	200	207	220	233	244	261	264	281	292	319	334	337	367	428
47	199	205	218	231	242	258	261	278	289	315	330	332	362	420
48	197	204	217	229	240	256	255	275	286	311	326	328	357	413
49	196	202	215	227	237	253	256	273	283	308	321	324	351	405
50	195	201	213	225	235	251	254	270	280	304	317	319	346	398

Note: Values of C_{r} / A were calculated in accordance with S16-14 Clause 13.3.1 using $n=1.34$, and apply to hot-rolled, fabricated structural sections and HSS produced to G40.20 Class C, ASTM A500 and A1085.
For Class H Hollow Structural Sections, see Table 4-4.

Compression members for which $n=1.34$ applies $\phi=0.90$

KL
r

KL	F_{y} (MPa)													
r	250	260	280	300	317	345	350	380	400	450	480	485	550	700
51	493	200	212	223	233	249	251	267	277	300	313	315	341	391
52	192	198	210	222	231	246	249	264	273	296	308	311	335	383
53	190	196	208	220	229	243	246	261	270	292	304	306	330	376
54	189	195	206	218	227	241	243	258	267	288	300	302	325	369
55	188	193	205	215	224	238	241	255	264	284	296	297	320	362
56	186	192	203	213	222	236	238	252	260	280	291	293	315	355
57	185	190	201	211	220	233	235	249	257	276	287	289	310	349
58	183	189	199	209	218	230	233	246	254	272	283	284	305	342
59	181	187	197	207	215	228	230	243	250	269	279	280	300	336
60	180	185	195	205	213	225	227	240	247	265	274	276	295	329
61	178	184	193	203	211	223	225	236	244	261	270	272	290	323
62	177	182	192	201	208	220	222	233	241	257	266	268	285	317
63	175	180	190	199	206	217	219	230	237	253	262	263	280	310
64	174	178	188	197	204	215	217	227	234	250	258	259	275	305
65	172	177	186	194	201	212	214	224	231	246	254	255	271	299
66	170	175	184	192	199	210	211	221	228	242	250	251	266	293
67	169	173	182	190	197	207	209	219	225	239	246	247	262	287
68	167	172	180	188	194	204	206	216	222	235	242	243	257	282
69	166	170	178	186	192	202	203	213	218	231	238	240	253	276
70	164	168	176	184	190	199	201	210	215	228	235	236	249	271
71	162	167	174	182	188	197	198	207	212	224	231	232	244	266
72	161	165	172	180	185	194	196	204	209	221	227	228	240	261
73	159	163	171	178	183	192	193	201	206	218	224	225	236	256
74	158	161	169	175	181	189	191	198	203	214	220	221	232	251
75	156	160	167	173	179	187	188	196	200	211	217	218	228	246
76	154	158	165	171	176	184	186	193	198	208	213	214	224	242
77	153	156	163	169	174	182	183	190	195	205	210	211	220	237
78	151	155	161	167	172	179	181	188	192	201	206	207	217	233
79	149	153	159	165	170	177	178	185	189	198	203	204	213	228
80	148	151	157	163	168	175	176	182	186	195	200	201	209	224
81	146	150	156	161	166	172	173	180	184	192	197	197	206	220
82	145	148	154	159	164	170	171	177	181	189	194	194	202	216
83	143	146	152	157	161	168	169	175	178	186	190	191	199	212
84	142	145	150	155	159	165	166	172	176	183	187	188	195	208
85	140	143	148	153	157	163	164	170	173	181	184	185	192	204
86	138	141	147	151	155	161	162	167	171	178	182	182	189	200
87	137	140	145	150	153	159	160	165	168	175	179	179	186	197
88	135	138	143	148	151	157	158	163	166	172	176	176	183	193
89	134	137	141	146	149	155	155	160	163	170	173	174	180	190
90	132	135	140	144	147	152	153	158	161	167	170	171	177	186
91	131	133	138	142	146	150	151	156	159	165	168	168	174	183
92	129	132	136	140	144	148	149	154	156	162	165	166	171	180
93	128	130	135	139	142	146	147	151	154	160	162	163	168	177
94	127	129	133	137	140	144	145	149	152	157	160	160	165	174
95	125	127	131	135	138	142	143	147	150	155	157	158	163	171
96	124	126	130	133	136	140	141	145	147	152	155	155	160	168
97	122	124	128	132	135	139	139	143	145	150	153	153	158	165
98	121	123	127	130	133	137	137	141	143	148	150	151	155	162
99	119	121	125	128	131	135	135	139	141	146	148	148	153	159
100	118	120	124	127	129	133	134	137	139	143	146	146	150	157

Note: Values of C_{r} / A were calculated in accordance with S16-14 Clause 13.3.1 using $n=1.34$, and apply to hot-rolled, fabricated structural sections and HSS produced to G40.20 Class C, ASTM A500 and A1085.
For Class H Hollow Structural Sections, see Table 4-4.

Compression members for which $\mathrm{n}=1.34$ applies
$\phi=0.90$

KL
$=101$ to 150

KL	F_{y} (MPa)													
r	250	260	280	300	317	345	350	380	400	450	480	485	550	700
101	117	119	122	125	128	131	132	135	137	141	144	144	148	154
102	115	117	121	124	126	129	130	133	135	139	141	142	145	151
103	114	116	119	122	124	128	128	131	133	137	139	140	143	149
104	113	114	118	121	123	126	127	130	131	135	137	137	141	147
105	111	113	116	119	121	124	125	128	129	133	135	135	139	144
106	110	112	115	118	120	123	123	126	128	131	133	133	137	142
107	109	110	113	116	118	121	122	124	126	129	131	131	134	140
108	108	109	112	115	117	119	120	123	124	127	129	129	132	137
109	106	108	111	113	115	118	118	121	122	126	127	128	130	135
110	105	107	109	112	114	116	117	119	121	124	125	126	128	133
111	104	105	108	110	112	115	115	118	119	122	124	124	127	131
112	103	104	107	109	111	113	114	116	117	120	122	122	125	129
113	102	103	105	108	109	112	112	114	116	119	120	120	123	127
114	100	102	104	106	108	110	111	113	114	117	118	118	121	125
115	99.2	100	103	105	107	109	109	111	113	115	117	117	119	123
116	98.1	99,3	102	104	105	107	108	110	111	114	115	115	117	121
117	96.9	98.2	100	102	104	106	106	108	110	112	113	113	116	119
118	95.8	97.0	99.2	101	103	105	105	107	108	110	112	112	114	117
119	94.7	95.9	98.0	99.8	101	103	104	106	107	109	110	110	112	116
120	93.6	94.8	96.8	98.6	100	102	102	104	105	107	109	109	111	114
121	92.6	93.7	95.6	97.4	98.7	101	101	103	104	106	107	107	109	112
122	91.5	92.6	94.5	96.2	97.5	99.4	99.7	101	102	105	106	106	108	111
123	90.5	91.5	93.4	95.0	96.3	98.1	98.4	100	101	103	104	104	106	109
124	89.4	90.4	92.3	93.9	95.1	96.9	97.2	98.8	99.7	102	103	103	105	107
125	88.4	89.4	91.2	92.7	93.9	95.7	96.0	97.5	98.4	100	101	101	103	106
126	87.4	88.4	90.1	91.6	92.8	94.5	94.7	96.2	97.1	99.0	99.9	100	102	104
127	86.4	87.4	89.0	90.5	91.6	93.3	93.5	95.0	95.9	97.7	98.6	98.7	100	103
128	85.4	86.4	88.0	89.4	90.5	92.1	92.4	93.8	94.6	96.4	97.3	97.4	98.9	101
129	84.5	85.4	87.0	88.4	89.4	91.0	91.2	92.6	93.4	95,1	96.0	96.1	97.6	99.9
130	83.5	84.4	85.9	87.3	88.3	89.8	90.1	91.4	92.2	93.9	94.7	94.8	96.2	98.5
131	82.6	83.4	84.9	86.3	87.3	88.7	89.0	90.3	91.0	92,6	93.4	93.5	94.9	97.1
132	81.7	82.5	84.0	85.2	86.2	87.6	87.9	89.1	89.9	91.4	92.2	92.3	93.7	95.8
133	80.8	81.5	83.0	84.2	85.2	86.6	86.8	88.0	88.7	80.2	91.0	91.1	92.4	94.5
134	79.9	80.6	82.0	83.2	84.2	85.5	85.7	86.9	87.6	89,1	89.8	89,9	91.2	93.2
135	79.0	79.7	81.1	82.3	83.2	84.5	84.7	85.8	86.5	87.9	88.6	88.7	90.0	91.9
136	78.1	78.8	80.1	81.3	82.2	83.4	83.6	84.8	85.4	86.8	87.5	87.6	88.8	90.7
137	77.2	77.9	79.2	80.4	81.2	82.4	82.6	83.7	84.4	85.7	86.4	86.5	87.6	89.4
138	76.4	77.1	78.3	79.4	80.2	81.4	81.6	82.7	83.3	84.6	85.3	85,4	86.5	88.2
139	75.5	76.2	77.4	78.5	79.3	80.5	80.7	81.7	82.3	83.5	84.2	84.3	85.4	87.1
140	74.7	75.4	76.6	77.6	78.4	79.5	79.7	80.7	81.3	82.5	83.1	83.2	84.3	85.9
141	73.9	74.5	75.7	76.7	77.5	78.6	78.7	79.7	80.3	81.5	82.1	82.1	83.2	84.8
142	73.1	73.7	74.8	75.8	76.6	77.6	77.8	78.7	79.3	80.4	81.0	81.1	82.1	83.7
143	72.3	72.9	74.0	74.9	75.7	76.7	76.9	77.8	78.3	79.5	80.0	80.1	81.1	82.6
144	71.5	72.1	73,2	74.1	74.8	75.8	76.0	76.9	77.4	78.5	79.0	79.1	80.0	81.5
145	70.7	71.3	72.3	73.3	73.9	74.9	75.1	76.0	76.5	77.5	78.0	78.1	79.0	80.5
146	70.0	70.5	71.5	72.4	73.1	74.1	74.2	75.0	75.5	76.6	77.1	77.2	78.1	79.4
147	69.2	69.8	70.7	71.6	72.3	73.2	73.3	74.2	74.6	75.6	76.1	76.2	77.1	78.4
148	68.5	69.0	70.0	70.8	71.4	72.3	72.5	73.3	73.8	74.7	75.2	75.3	76.1	77.4
149	67.7	68.3	69.2	70.0	70.6	71.5	71.7	72.4	72.9	73.8	74.3	74.4	75.2	76.5
150	67.0	67.5	68.4	69.2	69.8	70.7	70.8	71.6	72.0	73.0	73.4	73.5	74.3	75.5

Note: Values of $\mathrm{C}_{r} / \mathrm{A}$ were calculated in accordance with S 16 -14 Clause 13.3.1 using $n=1.34$, and apply to hot-rolled, fabricated structural sections and HSS produced to G40.20 Class C, ASTM A500 and A1085.
For Class H Hollow Structural Sections, see Table 4-4.

Compression members for which $\mathrm{n}=1.34$ applies $\phi=0.90$

KL	$\mathrm{F}_{\mathrm{y}}(\mathrm{MPa})$													
r	250	260	280	300	317	345	350	380	400	450	480	485	550	700
151	66.3	66.8	67.7	68.5	69.1	69.9	70.0	70.8	71.2	72,1	72.5	72.6	73.4	74.6
152	65.6	66.1	67.0	67.7	68.3	69.1	69.2	69.9	70.4	71.2	71.7	71.7	72.5	73.6
153	64,9	65.4	66.2	67.0	67.5	68.3	68.4	69.1	69.5	70.4	70.8	70.9	71.6	72.7
154	64.2	64.7	65.5	66.2	66.8	67.5	67.7	68.3	68.7	69.6	70,0	70.0	70.7	71.8
155	63.5	64.0	64.8	65.5	66.0	66.8	66.9	67.6	68.0	68.8	69.2	69.2	69.9	71.0
156	62.9	63.3	64.1	64.8	65.3	66.0	66.2	66.8	67.2	68.0	68.3	68.4	69.1	70.1
157	62,2	62.7	63.4	64.1	64.6	65.3	65.4	66.0	66.4	67.2	67.5	67.6	68.3	69.3
158	61.6	62.0	62.7	63.4	63.9	64.6	64.7	65.3	65.7	86.4	66.8	66.8	67.5	68.4
159	60.9	61.4	62.1	62.7	63.2	63.9	64.0	64.6	64.9	65.6	66.0	66.1	66.7	67.6
160	60.3	60.7	61.4	62.0	62.5	63.2	63.3	63.9	64.2	64.9	65.2	65.3	65.9	66.8
161	59.7	60.1	60.8	61.4	61.8	62.5	62.6	63.1	63.5	64.2	64.5	64.5	65.1	66.0
162	59.1	59.5	60.1	60.7	61.2	61.8	61.9	62.4	62.8	63.4	63.8	63.8	64,4	65.3
163	58.5	58.8	59.5	60.1	60.5	61.1	61.2	61.8	62.1	62.7	63.0	63.1	63.6	64.5
164	57.9	58.2	58.9	59.4	59.9	60.5	60.6	61.1	61.4	62.0	62.3	62.4	62.9	63.7
165	57,3	57.6	58.3	58.8	59.2	59.8	59.9	60.4	60.7	61.3	61.6	61.7	62.2	63.0
166	56.7	57.1	57.7	58.2	58.6	59.2	59.3	59.8	60.1	60.7	60.9	61.0	61.5	62.3
167	56.1	56.5	57.1	57.6	58.0	58.5	58.6	59.1	59.4	60.0	60.3	60.3	60.8	61.6
168	55.6	55.9	56.5	57.0	57.4	57.9	58.0	58.5	58.8	59.3	59.6	59.7	60.1	60.9
169	55.0	55.3	55.9	56.4	56.8	57.3	57.4	57.9	58.1	58.7	59.0	59.0	59.5	60.2
170	54.5	54.8	55.3	55.8	56.2	56.7	56.8	57.2	57.5	58.0	58.3	58.4	58.8	59,5
171	53.9	54.2	54.8	55.3	55.6	56.1	56.2	56.6	56.9	57.4	57.7	57.7	58.2	58.9
172	53.4	53.7	54.2	54.7	55.0	55.5	55.6	56.0	56.3	56.8	57.1	57.1	57.5	58.2
173	52.9	53.2	53.7	54.1	54.5	55.0	55.0	55.4	55.7	56.2	56.4	56.5	56.9	57.6
174	52.4	52.6	53.1	53.6	53.9	54.4	54.5	54.9	55.1	55.6	55.8	55.9	56.3	56.9
175	51.8	52.1	52.6	53.0	53.4	53.8	53.9	54.3	54.5	55,0	55.2	55.3	55.7	56.3
176	51.3	51.6	52.1	52.5	52.8	53.3	53.3	53.7	54.0	54.4	54,6	54.7	55.1	55.7
177	50.8	51.1	51.6	52.0	52.3	52.7	52.8	53.2	53.4	53.8	54.1	54.1	54.5	55,1
178	50,3	50.6	51.1	51.5	51.8	52.2	52.3	52.6	52.8	53.3	53.5	53.5	53.9	54.5
179	49,9	50.1	50.6	51.0	51.2	51.7	51.7	52.1	52.3	52.7	52.9	53.0	53.3	53.9
180	49.4	49.6	50.1	50.4	50.7	51.1	51.2	51.6	51.8	52.2	52.4	52.4	52,8	53.3
181	48.9	49.1	49.6	50.0	50.2	50.6	50.7	51.0	51.2	51.6	51.8	51.9	52.2	52.8
182	48.4	48.7	49,1	49.5	49.7	50.1	50.2	50.5	50.7	51.1	51.3	51.3	51.7	52.2
183	48.0	48.2	48.6	49.0	49.2	49.6	49.7	50.0	50.2	50.6	50.8	50.8	51.1	51.7
184	47.5	47.7	48.1	48.5	48.8	49.1	49.2	49.5	49.7	50.1	50.3	50.3	50,6	51,1
185	47.1	47.3	47.7	48.0	48.3	48.6	48.7	49.0	49.2	49.6	49.8	49.8	50.1	50.6
186	46.6	46.8	47.2	47.6	47.8	48.2	48.2	48.5	48.7	49.1	49.2	49.3	49.6	50.1
187	46.2	46.4	46.8	47.1	47.3	47.7	47.7	48,0	48.2	48.6	48.8	48.8	49.1	49.5
188	45.8	46.0	46.3	46.7	46.9	47.2	47.3	47.6	47.7	48.1	48.3	48.3	48.6	49.0
189	45.3	45.5	45.9	46.2	46.4	46.8	46.8	47.1	47.3	47.6	47.8	47.8	48.1	48.5
190	44.9	45.1	45.5	45.8	46.0	46.3	46.4	46.6	46.8	47.1	47.3	47.3	47.6	48.0
191	44.5	44.7	45.0	45.3	45.6	45,9	45.9	46.2	46.3	46.7	46.8	46.9	47.1	47.6
192	44.1	44.3	44.6	44.9	45.1	45.4	45.5	45.7	45.9	46.2	46.4	46.4	46.7	47.1
193	43.7	43.9	44.2	44.5	44.7	45.0	45.0	45.3	45.5	45.8	45.9	45.9	46.2	46.6
194	43.3	43.5	43.8	44.1	44.3	44.6	44.6	44.9	45.0	45.3	45.5	45.5	45.7	46,1
195	42.9	43.1	43.4	43.7	43.9	44.1	44.2	44.4	44.6	44.9	45.0	45.0	45.3	45.7
196	42.5	42.7	43.0	43.2	43.4	43.7	43.8	44.0	44.2	44.4	44.6	44.6	44.9	45.2
197	42.1	42.3	42.6	42.8	43.0	43.3	43.4	43.6	43.7	44.0	44.2	44.2	44.4	44.8
198	41.7	41.9	42.2	42.4	42.6	42.9	43.0	43.2	43.3	43.6	43.7	43.8	44.0	44.3
199	41.4	41.5	41.8	42.1	42.2	42.5	42.6	42.8	42.9	43.2	43.3	43.3	43.6	43.9
200	41.0	41.1	41.4	41.7	41.9	42.1	42.2	42.4	42.5	42.8	42.9	42.9	43.1	43.5

Note: Values of C, (A were calculated in accordance with S16-14 Clause 13.3.1 using $n=1.34$, and apply to
hot-rolled, fabricated structural sections and HSS produced to G40.20 Class C, ASTM A500 and A1085.
For Class H Hollow Structural Sections, see Table 4-4.

HSS Class H and other sections for which $\mathrm{n}=2.24$ applies
$\phi=0.90$

	$\mathrm{F}_{\mathrm{y}}(\mathrm{MPa})$	$\frac{\mathrm{KL}}{\mathrm{r}}$	F_{y} (MPa)	$\frac{\mathrm{KL}}{\mathrm{r}}$	$\begin{gathered} \mathrm{F}_{y}(\mathrm{MPa}) \\ 350 \\ \hline \end{gathered}$	$\frac{\mathrm{KL}}{\mathrm{r}}$	$\begin{gathered} \mathrm{F}_{\mathrm{y}}(\mathrm{MPa}) \\ 350 \end{gathered}$
	350		350				
1	315	51	293	101	157	151	76.4
2	315	52	291	102	154	152	75.5
3	315	53	289	103	152	153	74.5
4	315	54	287	104	150	154	73.6
5	315	55	285	105	147	155	72.7
6	315	56	283	106	145	156	71.8
7	315	57	281	107	143	157	70.9
8	315	58	279	108	141	158	70,1
9	315	59	276	109	138	159	69.2
10	315	60	274	110	136	160	68.4
11	315	61	272	111	134	161	67.6
12	315	62	269	112	132	162	66.7
13	315	63	266	113	130	163	66.0
14	315	64	264	114	128	164	65.2
15	315	65	261	115	126	165	64.4
16	315	66	258	116	124	166	63.7
17	315	67	255	117	123	167	62.9
18	315	68	253	118	121	168	62.2
19	315	69	250	119	119	169	61.5
20	315	70	247	120	117	170	60.8
21	315	71	244	121	115	171	60.1
22	314	72	241	122	114	172	59.4
23	314	73	238	123	112	173	58.7
24	314	74	235	124	110	174	58.1
25	314	75	231	125	109	175	57.4
26	314	76	228	126	107	176	56.8
27	314	77	225	127	106	177	56.2
28	313	78	222	128	104	178	55.6
29	313	79	219	129	103	179	54.9
30	313	80	216	130	101	180	54.4
31	312	81	213	131	99.9	181	53.8
32	312	82	210	132	98.5	182	53.2
33	312	83	207	133	97.1	183	52.6
34	311	84	204	134	95.8	184	52.1
35	311	85	201	135	94.5	185	51.5
36	310	86	198	136	93.2	186	51.0
37	309	87	195	137	91.9	187	50.4
38	309	88	192	138	90.7	188	49.9
39	308	89	189	139	89.5	189	49.4
40	307	90	186	140	88.3	190	48.9
41	306	91	183	141	87.1	191	48.4
42	305	92	180	142	85.9	192	47.9
43	304	93	178	143	84.8	193	47.4
44	303	94	175	144	83.7	194	46.9
45	302	95	172	145	82.6	195	46.4
46	301	96	170	146	81.5	196	46.0
47	299	97	167	147	80.5	197	45.5
48	298	98	164	148	79.4	198	45.1
49	296	99	162	149	78.4	199	44.6
50	295	100	159	150	77.4	200	44.2

Note: Values of $\mathrm{C}_{\mathrm{r}} / \mathrm{A}$ were calculated in accordance with S16-14 Clause 13.3 .1 using $n=2.24$, and apply to welded 3-plate sections with oxy-flame-cut flanges and HSS produced to G40.20 Class H.
For Class C Hollow Structural Sections, see Table 4-3.

KL / r	$\mathrm{C}_{e} / \mathrm{A}$	KL / r	C_{e} / A	KL / r	$\mathrm{C}_{e} / \mathrm{A}$	KL / r	$\mathrm{C}_{\mathrm{e}} / \mathrm{A}$	KL / r	$\frac{\mathrm{C}_{\mathrm{e}} / \mathrm{A}}{\mathrm{MPa}}$
	MPa		MPa		MPa		MPa		
1	1970000	41	1170	81	301	121	135	161	76.2
2	493000	42	1120	82	294	122	133	162	75.2
3	219000	43	1070	83	287	123	130	163	74.3
4	123000	44	1020	84	280	124	128	164	73.4
5	79000	45	975	85	273	125	126	165	72.5
6	54800	46	933	86	267	126	124	166	71.6
7	40300	47	894	87	261	127	122	167	70.8
8	30800	48	857	88	255	128	120	168	69.9
9	24400	49	822	89	249	129	119	169	69.1
10	19700	50	790	90	244	130	117	170	68.3
1.1	16300	51	759	91	238	131	115	171	67.5
12	13700	52	730	92	233	132	113	172	66.7
13	11700	53	703	93	228	133	112	173	66,0
14	10100	54	677	94	223	134	110	174	65.2
15	8770	55	653	95	219	135	108	175	64.5
16	7710	56	629	96	214	136	107	176	63.7
17	6830	57	608	97	210	137	105	177	63.0
18	6090	58	587	98	206	138	104	178	62.3
19	5470	59	567	99	201	139	102	179	61.6
20	4930	60	548	100	197	140	101	180	60.9
21	4480	61	530	101	194	141	99.3	181	60.3
22	4080	62	514	102	190	142	97.9	182	59.6
23	3730	63	497	103	186	143	96.5	183	58.9
24	3430	64	482	104	183	144	95.2	184	58.3
25	3160	65	467	105	179	145	93.9	185	57.7
26	2920	66	453	106	176	146	92.6	186	57.1
27	2710	67	440	107	172	147	91.3	187	56.4
28	2520	68	427	108	169	148	90.1	188	55.8
29	2350	69	415	109	166	149	88.9	189	55.3
30	2190	70	403	110	163	150	87.7	190	54.7
31	2050	71	392	111	160	151	86.6	191	54.1
32	1930	72	381	112	157	152	85.4	192	53.5
33	1810	73	370	113	155	153	84.3	193	53.0
34	1710	74	360	114	152	154	83.2	194	52.4
35	1610	75	351	115	149	155	82.2	195	51.9
36	1520	76	342	116	147	156	81.1	196	51.4
37	1440	77	333	117	144	157	80.1	197	50.9
38	1370	78	324	118	142	158	79.1	198	50.3
39	1300	79	316	119	139	159	78.1	199	49.8
40	1230	80	308	120	137	160	77.1	200	49.3

To obtain C_{e}, in kN , multiply the tabular value by the cross-sectional area, A , in mm^{2}, and divide by 1000 .

FACTORED AXIAL COMPRESSIVE RESISTANCES OF COLUMNS

Tables

The tables on the following pages list the factored axial compressive resistances, C_{r}, in kilonewtons (kN) for W-shapes and Hollow Structural Sections (HSS) produced to the requirements of CSA Standard G40.21 (Class C and Class H) and ASTM A500 Grade C. The resistances have been computed for effective lengths with respect to the least radius of gyration varying from 0 mm up to 20000 mm in accordance with the requirements of Clauses 13.3.1 and 13.3.5, CSA S16-14 with $n=1.34$ for W-shapes and for HSS produced to G40.21 Class C and ASTM A500, and with $n=2.24$ for HSS produced to G40.21 Class H.

Data for Welded Wide-Flange columns is no longer provided in this Handbook.
In all, 5 sets of tables are provided:
Set 1 - W-shapes conforming to ASTM A992 and ASTM A572 Grade 50
$\left(F_{y}=345 \mathrm{MPa}, n=1.34\right)$. Note; CSA S16-14 Update No, 1 (December 2016) led to significant changes in the $3^{\text {rd }}$ printing of this ($11^{\text {th }}$ edition) Handbook.

Set 2 - W-shapes conforming to ASTM A913 Grade 65 ($F_{y}=450 \mathrm{MPa}, n=1.34$)
Set 3 - HSS conforming to CSA G40.21-350W, Class C ($F_{y}=350 \mathrm{MPa}, n=1.34$)

Set 4 - HSS conforming to CSA G40.21-350W, Class H ($F_{y}=350 \mathrm{MPa}, n=2.24$)
Set 5 - HSS conforming to ASTM A500 Grade C $\left(F_{y}=345 \mathrm{MPa}\right.$ for rectangular and square, $F_{y}=317 \mathrm{MPa}$ for round, $n=1.34$)

The applicable steel grade (and class, as applicable) is listed at the top of each table, and the metric section size and mass are given at the top of the columns, while the equivalent imperial size and weight are listed at the bottom of the tables.

In Set 1, the minimum specified yield stress has been taken as $F_{y}=345 \mathrm{MPa}$, corresponding to steel grades ASTM A992 and A572 grade 50. Tabulated values may also be used for column sections produced to CSA G40.21-350W, although that steel grade is not shown in the table headings. Section sizes that are commonly used and generally readily available are highlighted in yellow colour. In Sets 3 to 5, a number of sizes are identified with an asterisk (*), denoting imported sections, which may be subject to a cost premium.

Class 4 Sections in Axial Compression

Sections that are Class 4 in axial compression only are identified. The factored axial compressive resistances for them have been computed in accordance with the requirements of Clause 13.3.5 of S16-14. The C_{r} values for W-shapes correspond to the greater of the resistances based on the effective area method according to Clause 13.3.5(a) and the effective yield stress method according to Clause 13.3.5(b).

For HSS, factored axial compressive resistances for Class 4 sections were calculated in accordance with Clause 13.3.5(a), except for a small number of square sections identified by a symbol (\#), for which C_{r} was calculated in accordance with Clause 13.3.5(b).

Properties and design data are included at the bottom of the tables as follows:
Area $\quad=$ Total cross-sectional area, mm^{2}
$\left(b_{e l} / t\right) \sqrt{345}=$ Ratio of compression element width to flange thickness or design wall thickness, based on a yield stress, $F_{y}=345 \mathrm{MPa}$, for use in conjunction with S16-14 Tables 1 and 2.
$\left(b_{e l} / t\right) \sqrt{350}=$ Ratio of compression element width to flange thickness or design wall thickness, based on a yield stress, $F_{y}=350 \mathrm{MPa}$, when used as a seismic yielding member for which S16-14, Clause 27.1.7 applies and, for CSA products, also for use in conjunction with S16-14 Tables 1 and 2.
$\left(b_{e l} / t\right) \sqrt{450}=$ Ratio of compression element width to flange thickness or design wall thickness, based on a yield stress, $F_{y}=450 \mathrm{MPa}$, for use in conjunction with S16-14 Tables 1 and 2.
$(D / t) 317=$ Ratio of outside diameter of round HSS to design wall thickness, based on a yield stress, $F_{y}=317 \mathrm{MPa}$, for use in conjunction with S16-14 Tables 1 and 2 ,
$(D / t) 350=$ Ratio of outside diameter of round HSS to design wall thickness, based on a yield stress, $F_{y}=350 \mathrm{MPa}$, when used as a seismic yielding member for which S16-14, Clause 27.1.7 applies.
$(h / w) \sqrt{350}=$ Ratio of clear depth of web to thickness, based on a yield stress, $F_{y}=350$ MPa , when used as a seismic yielding member for which S16-14, Clause 27.1.7 applies and, for CSA products, also for use in conjunction with S16-14 Tables 1 and 2.
$(h / w) \sqrt{450}=$ Ratio of clear depth of web to thickness, based on a yield stress, $F_{y}=450$ MPa, for use in conjunction with SI6-14 Tables 1 and 2.
$L_{u} \quad=$ Maximum unsupported length of compression flange for which no reduction in M_{r} is required, mm
$M_{r x} \quad=$ Factored moment resistance for bending about the X-X axis, computed considering $L \leq L_{u}$, for Class 1 and Class 2 sections ($\phi Z_{x} F_{y}$); for Class 3 sections ($\phi S_{x} F_{y}$); and for Class 4 sections $\left(\phi S_{e} F_{y}\right)$ in accordance with S16-14 Clause 13.5(c)(iii), $\mathrm{kN} \cdot \mathrm{m}$. See Bending Resistances below.

M_{r}	$=$ Factored moment resistance for bending about the Y-Y axis, for Class 1 and Class 2 sections ($\phi Z_{y} F_{y}$); for Class 3 sections ($\phi S_{y} F_{y}$); and for Class 4 sections ($\phi S_{e} F_{y}$) in accordance with S16-14 Clause I3.5(c), $\mathrm{kN} \cdot \mathrm{m}$. See Bending Resistances below.
r_{x}	= Radius of gyration about the major, X-X, axis, mm
r_{x} / r_{y}	$=$ Ratio of radius of gyration of X-X axis to that of Y-Y axis
r_{y}	$=$ Radius of gyration about the minor, Y-Y, axis, mm
t	$=$ Flange thickness, mm
$\phi S_{x} F_{y}, \phi Z_{x} F$	$=$ Factored moment resistance for bending about the $\mathrm{X}-\mathrm{X}$ axis, for Class 3 sections, and for Class I and Class 2 sections, respectively, in accordance with S16-14 Clause 13.5, $\mathrm{kN} \cdot \mathrm{m}$. In the tables below, if either $\phi S_{x} F_{y}$ or $\phi Z_{x} F_{y}$ is not applicable, it is left blank.

$\phi S_{y} F_{y}, \phi Z_{y} F_{y}=$ Factored moment resistance for bending about the Y-Y axis, for Class 3 sections, and for Class 1 and Class 2 sections, respectively, in accordance with S16-14 Clause $13.5, \mathrm{kN} \cdot \mathrm{m}$. In the tables below, if either $\phi S_{y} F_{y}$ or $\phi Z_{y} F_{y}$ is not applicable, it is left blank.

Bending Resistances

For W-shape members, tabulated bending resistances about the X-X axis cannot be used for lateral-torsional buckling when the laterally unsupported length exceeds L_{u}.

The section Class is based on combined uniaxial bending and axial compression. For members subject to bi-axial bending, bending resistances should be checked for compliance with S16-14 Table 2.

For members in combined compression and bending, when the section Class with respect to the web slenderness (h / w ratio) is sensitive to the magnitude of axial compression, the factored bending resistances tabulated have been calculated with these assumptions:

- W-shape members for which bending resistances about either axis are functions of C_{f} are identified by the symbol (\wedge) in the lower portion of the tables. Values of C_{f} at which the section Class changes from 2 to 3 are underlined, and the bending axes affected by the change are indicated by superscripts $\left({ }^{(x}\right)$ and $\left({ }^{y}\right)$. Values of C_{f} at which the section Class changes from 3 to 4 are shown in boldface, but no superscript is shown since both bending axes are affected simultaneously. Bending resistances, $\phi S_{x e} F_{y}$ and $\phi S_{y e} F_{y,}$ are not provided.
- Class 4 sections in pure compression are identified by the symbol (\ddagger) next to the mass in kg / m. When flange slenderness ($b_{e l} / t$ ratio) renders the section a Class 4 section in pure compression, it is also a Class 4 section in combined bending and compression. In particular, the W150x22 section is also a Class 4 in bending about the X -X axis, and the value of $\phi S_{x} F_{y}$ was taken equal to $\phi S_{x e} F_{y}$ and preceded by the symbol (\ddagger).
- For rectangular HSS identified as Class 4 in axial compression, the $M_{r x}$ values tabulated are only valid for C_{f} values below the C_{r} value shown in bold face. Otherwise, the user must calculate $M_{r x}$ as a Class 4 section.

Design of Axially Loaded Columns

The design of axially loaded columns (columns theoretically not subjected to combined bending and compression) involves the determination of the governing effective length and the selection of a section with the required resistance at that effective length. Factored axial compressive resistance tables for columns enable a designer to select a suitable section directly, without following a trial-and-error procedure.

Since the factored axial compressive resistances $\left(C_{r}\right)$ tabulated have been computed on the basis of the least radius of gyration $\left(r_{y}\right)$ for each section, the tables apply directly only to columns unbraced about the Y-Y axis. In certain cases, however, it is necessary to investigate the capacity of a column with reference to both the $\mathrm{X}-\mathrm{X}$ axis and the $\mathrm{Y}-\mathrm{Y}$ axis, or with reference only to the X-X axis. The ratio r_{x} / r_{y} included in the table of properties at the bottom of each resistance table provides a convenient means of investigating the strength of a column with respect to the $\mathrm{X}-\mathrm{X}$ axis.

In general, a column having an effective length $K_{x} L_{x}$ with respect to the $\mathrm{X}-\mathrm{X}$ axis will be able to carry a factored load equal to the tabulated factored axial compressive resistance based on the effective length K_{y}, L_{y} with respect to the $\mathrm{Y}-\mathrm{Y}$ axis if $K_{x} L_{x}<K_{y} L_{y}\left(r_{x} / r_{y}\right)$.

Resistances of HSS Columns Produced to ASTM A500

The tables of resistances for HSS used as columns were computed in accordance with CSA Standard S16-14, with properties and dimensions based on a design wall thickness equal to 90% of the nominal thickness, and a value of $F_{y}=345 \mathrm{MPa}$ for square and rectangular HSS and $F_{y}=317$ for circular HSS MPa, as specified in ASTM A500 for grade C.

For HSS used as columns, the value of $n=1.34$ (for the basic column curve, Clause 13.3, S16-14) was used in determining the factored axial compressive resistance, as HSS produced to ASTM A500 grade C are generally cold-formed non-stress-relieved sections. For more information on HSS produced to ASTM A500, see Hollow Structural Sections in Part 6.

Resistances of HSS Columns Produced to ASTM A1085

Since the manufacturing method for A1085 HSS is also permitted for the manufacturing of Class C CSA G40.21 HSS, the factored axial compressive resistance of an A1085 HSS column may be determined in accordance with S16-14 Clause 13.3.1 with the value of n taken as 1.34. The factored axial compressive resistance tables for Class C G40.21 HSS columns may be used, provided an adjustment for the small difference in F_{y} values (345 MPa vs. 350 MPa) is accounted for.

Examples

1. Given:

A W310 column is required to carry a factored axial load of 3600 kN . The effective lengths $K_{y} L_{y}$ and $K_{x} L_{x}$ are 4500 mm and 7600 mm , respectively. Use ASTM A992 steel.
Solution:
With $K_{y} L_{y}=4500$, the lightest W310 section with sufficient factored axial compressive resistance is W310x129. $C_{r}=3820 \mathrm{kN} ; r_{x} / r_{y}=1.76$.
$K_{x} L_{x}=7600 \mathrm{~mm}$ (required)
$K_{y} L_{y^{\prime}}\left(r_{x} / r_{y}\right)=4500 \times 1.76=7920 \mathrm{~mm}>7600 \mathrm{~mm}$
The W310×129 has a factored compressive resistance of 3820 kN with an effective length of $K_{x} L_{x}=7920 \mathrm{~mm}$, and hence the section is adequate. Use W310x129.
2. Given:

Same as example 1, except $K_{x} L_{x}=9500 \mathrm{~mm}$
Solution:
$K_{y} L_{y}=4500 \mathrm{~mm}, K_{x} L_{x}=9500 \mathrm{~mm}$
Equivalent $K_{y} L_{y}$, for $K_{x} L_{x}$ of $9500 \mathrm{~mm}=K_{x} L_{x} /\left(r_{x} / r_{y}\right)$
Assuming that a heavy W 310 section will be adequate, $r_{x} / r_{y}=1.76$.
Equivalent $K_{y} L_{y}=9500 / 1.76=5400 \mathrm{~mm}>4500 \mathrm{~mm}$
Therefore, $K_{x} L_{x}$ governs, and the effective $K_{y} L_{y}$ is 5400 mm .
With $K_{y} L_{y}=5400 \mathrm{~mm}$, a W310×143 is the lightest W310 that has a factored axial compressive resistance greater than the factored axial load of 3600 kN (C_{r} for 5500 mm $=3630 \mathrm{kN} ; r_{x} / r_{y}=1.76$)
Use W310xI43.

W COLUMNS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

Designation Mass (kg/m)		W360					
		1086	990	900	818	744	677
Effective length (KL) in millimetres with respect to the least radius of gyration	0	43000	39200	35700	32400	29400	26800
	2500	42000	38200	34800	31500	28600	26100
	3000	41400	37700	34300	31000	28100	25600
	3500	40600	36900	33600	30400	27500	25000
	4000	39700	36000	32700	29600	26800	24400
	4500	38600	35000	31800	28700	26000	23600
	5000	37400	33900	30700	27700	25000	22700
	5500	36100	32600	29600	26600	24000	21800
	6000	34600	31300	28300	25500	22900	20800
	6500	33200	29900	27100	24300	21800	19800
	7000	31600	28500	25800	23100	20700	18800
	7500	30100	27100	24500	21900	19600	17700
	8000	28600	25700	23200	20700	18500	16700
	8500	27100	24300	21900	19600	17500	15800
	9000	25700	23000	20700	18500	16500	14900
	9500	24300	21700	19600	17400	15500	14000
	10000	22900	20500	18500	16400	14600	13100
	10500	21600	19300	17400	15500	13700	12400
	11000	20400	18200	16400	14600	12900	11600
	11500	19300	17200	15500	13700	12200	10900
	12000	18200	16200	14600	12900	11500	10300
	12500	17200	15300	13800	12200	10800	9700
	13000	16300	14500	13000	11500	10200	9140
	13500	15400	13700	12300	10900	9600	8620
	14000	14600	12900	11600	10300	9070	8140
	15000	13100	11600	10400	9190	8110	7280
	16000	11800	10400	9370	8260	7280	6530
	17000	10600	9430	8460	7450	6570	5890
	18000	9660	8540	7660	6750	5940	5330
PROPERTIES AND DESIGN DATA							
Area (mm^{2})		139000	126000	115000	105000	94800	86500
t (mm)		125	115	106	97.0	88.9	81.5
$\mathrm{rax}_{\text {(}}(\mathrm{mm})$		207	203	198	194	190	186
$r_{y}(\mathrm{~mm})$		119	117	116	114	112	111
$\mathrm{ra}_{\mathrm{x}} / \mathrm{ray}_{5}$		1.74	1.74	1.71	1.70	1.70	1.68
$\phi S_{x} F_{y}(\mathrm{kN} \cdot \mathrm{m})$							
$\phi \mathrm{Z}_{\mathrm{x}} \mathrm{F}_{y}(\mathrm{kN} \cdot \mathrm{m})$		8450	7550	6710	5990	5340	4750
$\begin{aligned} & \mathrm{L}_{u}(\mathrm{~mm}) \\ & \phi \mathrm{S}_{y} \mathrm{~F}_{y}(\mathrm{kN} \cdot \mathrm{~m}) \end{aligned}$		21200	19600	18300	16900	15700	14600
$\phi \mathrm{Z}_{y} \mathrm{~F}_{\mathrm{y}}(\mathrm{kN} \cdot \mathrm{m})$		4160	3730	3320	2970	2650	2380
${ }^{5}(\mathrm{bei} / \mathrm{t}) \sqrt{350}$		34.0	36.4	39.0	42.1	45.5	49.1
${ }^{5}(\mathrm{~h} / \mathrm{w}) \sqrt{350}$		76.5	83.3	90.6	99.0	108	117
IMPERIAL SIZE AND WEIGHT							
Weight (lb/ft)		730	665	605	550	500	455
Depth \times Width (in.)		$22 \% \times 17 \%$	21\% $\times 17 \%$	20\% $\times 17 \%$	201/4 $\times 171 / 4$	$19 \% \times 17$	$19 \times 16 \%$

[^12]w COLUMNS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

ASTM A992, A572 Grade 50

$\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$ $\phi=0.90$

PROPERTIES AND DESIGN DATA							
Area (mm^{2})	80600	75500	70300	65200	59000	53700	48800
t (mm)	77.1	72.3	67.6	62.7	57.4	52.6	48.0
$\mathrm{rax}_{\mathrm{x}}(\mathrm{mm})$	184	182	180	178	175	172	170
$\mathrm{ry}_{\mathrm{Y}}(\mathrm{mm})$	110	109	108	108	107	106	105
ry/ry	1.67	1.67	1.67	1.65	1.64	1.62	1.62
$\phi S_{x} F_{Y}(\mathrm{kN} \cdot \mathrm{m})$							
$\phi \mathrm{Z}_{\mathrm{x}} \mathrm{F}_{\mathrm{y}}(\mathrm{kN} \cdot \mathrm{m})$	4410	4070	3760	3420	3070	2760	2470
$\mathrm{Lu}(\mathrm{mm})$ $\phi S_{y} F_{y}(\mathrm{kN} \cdot \mathrm{~m})$	13900	13200	12400	11700	10800	10100	9440
$\phi \mathrm{Zy} \mathrm{Fyy}_{y}(\mathrm{kN} \cdot \mathrm{m})$	2210	2040	1880	1720	1550	1390	1250
${ }^{5}(\mathrm{bolt}) \sqrt{350}$	51.4	54.5	57.8	62.1	67.1	72.7	79.1
${ }^{5}(\mathrm{~h} / \mathrm{w}) \sqrt{350}$	126	133	142	153	167	182	201
IMPERIAL SIZE AND WEIGHT							
Weight ($\mathrm{lb} / \mathrm{ft}$)	426	398	370	342	311	283	257
Depth \times Width (in.)	18\% x $163 / 4$	181/2 $\times 16 \%$	$17 \% \times 161 / 2$	$171 / 2 \times 16 \%$	171/6 $\times 161 / 4$	$163 / 4 \times 161 / 6$	$16 \% \times 16$

[^13]W COLUMNS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$
\qquad
$x-\infty$
$\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$ $\phi=0.90$

Designation		W360					
Mass (kg/m)		347	314	287	262	237	216
	0	13700	12400	11400	10400	9340	8550
	2500	13300	12000	11000	10000	9020	8250
	3000	13000	11700	10800	9810	8820	8070
	3500	12700	11400	10500	9550	8580	7840
	4000	12300	11000	10100	9230	8300	7580
	4500	11800	10600	9750	8870	7980	7280
	5000	11300	10200	9330	8480	7630	6950
	5500	10800	9680	8880	8070	7250	6600
	6000	10200	9170	8420	7640	6870	6250
	6500	9660	8670	7950	7210	6480	5890
	7000	9110	8160	7490	6780	6100	5540
	7500	8570	7670	7040	6370	5730	5190
	8000	8040	7190	6600	5970	5370	4860
	8500	7540	6740	6180	5590	5020	4550
	9000	7060	6310	5790	5230	4700	4250
	9500	6620	5900	5420	4890	4400	3970
	10000	6200	5530	5070	4570	4110	3720
	10500	5800	5170	4750	4280	3850	3470
	11000	5440	4850	4450	4000	3600	3250
	11500	5100	4540	4170	3750	3370	3040
	12000	4790	4260	3910	3520	3160	2850
	12500	4500	4000	3670	3300	2970	2680
	13000	4230	3760	3450	3100	2790	2520
	13500	3980	3540	3250	2920	2630	2370
	14000	3750	3330	3060	2750	2470	2230
	15000	3340	2970	2720	2450	2200	1980
	16000	2990	2660	2440	2190	1970	1770
	17000	2690	2390	2190	1970	1770	1590
	18000	2430	2150	1980	1770	1600	1430
PROPERTIES AND DESIGN DATA							
Area (mm^{2})		44200	40000	36600	33400	30100	27500
$\mathrm{t}(\mathrm{mm})$		43.7	39.6	36.6	33.3	30.2	27.7
$\mathrm{rax}_{\mathrm{x}}(\mathrm{mm})$		168	166	165	163	162	161
$r_{y}(\mathrm{~mm})$		104	103	103	102	102	101
$\mathrm{r}_{\mathrm{x}} / \mathrm{r}_{\mathrm{y}}$		1.62	1.61	1.60	1.60	1.59	1.59
$\phi S_{x} \mathrm{~F}_{y}(\mathrm{kN} \cdot \mathrm{m})$							
$\phi \mathrm{Z}_{\mathrm{x}} \mathrm{F}_{\mathrm{y}}(\mathrm{kN} \cdot \mathrm{m})$		2220	1980	1800	1630	1460	1320
$\mathrm{Lu}(\mathrm{mm})$		8860	8290	7890	7490	7120	6880
$\phi S_{y} F_{y}(\mathrm{kN} \cdot \mathrm{m})$							
$\phi \mathrm{Z}_{\mathrm{y}} \mathrm{F}_{\mathrm{y}}(\mathrm{kN} \cdot \mathrm{m})$		1130	1010	919	832	742	677
${ }^{5}(\mathrm{bel} / \mathrm{t}) \sqrt{350}$		86.5	94.7	102	112	122	133
${ }^{5}(\mathrm{~h} / \mathrm{w}) \sqrt{350}$		220	240	265	284	316	346
IMPERIAL SIZE AND WEIGHT							
Weight (lb/ft)		233	211	193	176	159	145
Depth \times Width (in.)		$16 \times 15 \%$	$153 / 4 \times 153 / 4$	$151 / 2 \times 151 / 4$	$151 / 4 \times 15 \%$	$15 \times 15 \%$	$143 / 4 \times 151 / 2$

[^14]W COLUMNS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

ASTM A992, A572 Grade 50

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa} \\
& \phi=0.90
\end{aligned}
$$

Designation Mass (kg/m)		W360					W360	
		196	179	162	$\dagger \dagger 147$	$\dagger \dagger 134$	122	110
	0	7770	7090	6410	5830	5300	4810	4360
	500	7770	7080	6400	5830	5290	4800	4350
	1000	7740	7060	6380	5810	5280	4760	4310
	1500	7690	7010	6330	5770	5240	4660	4220
	2000	7590	6920	6250	5690	5170	4490	4060
	2500	7450	6790	6140	5580	5070	4260	3860
	3000	7270	6620	5980	5440	4940	3980	3600
	3500	7030	6410	5790	5260	4770	3670	3320
	4000	6760	6160	5560	5050	4580	3350	3030
	4500	6460	5880	5310	4820	4370	3030	2740
	5000	6140	5580	5040	4570	4150	2730	2470
	5500	5800	5270	4760	4310	3910	2450	2220
	6000	5460	4960	4470	4050	3670	2200	1990
	6500	5120	4650	4190	3790	3440	1980	1790
	7000	4780	4340	3910	3540	3210	1780	1610
	7500	4460	4050	3650	3300	2990	1600	1450
	8000	4160	3780	3400	3070	2780	1450	1310
	8500	3870	3510	3160	2860	2590	1310	1190
	9000	3610	3270	2940	2660	2410	1190	1080
	9500	3360	3050	2740	2470	2240	1090	983
	10000	3130	2840	2550	2300	2080	993	899
	10500	2920	2640	2380	2150	1940	911	824
	11000	2720	2470	2220	2000	1810	838	758
	11500	2540	2300	2070	1870	1690	773	699
	12000	2380	2150	1940	1750	1580	715	647
	12500	2230	2020	1810	1640	1480	663	600
	13000	2090	1890	1700	1530	1380		
	13500	1960	1780	1600	1440	1300		
	14000	1840	1670	1500	1350	1220		
PROPERTIES AND DESIGN DATA								
Area (mm^{2})		25000	22800	20600	18800	17100	15500	14100
$t(\mathrm{~mm})$		26.2	23.9	21.8	19.8	18.0	21.7	19.9
$\mathrm{rax}^{\text {(}} \mathrm{mm}$)		159	159	158	157	156	154	154
$\mathrm{ray}_{y}(\mathrm{~mm})$		95.6	95.2	94.9	94.3	94.0	63.0	63.0
$\mathrm{r}_{\mathrm{x}} / \mathrm{r}_{\mathrm{y}}$		1.66	1.67	1.66	1.66	1.66	2.44	2.44
$\phi S_{x} F_{y}(\mathrm{kN} \cdot \mathrm{m})$					798	723		
$\phi \mathrm{Z}_{\mathrm{x}} \mathrm{F}_{\mathrm{y}}(\mathrm{kN} \cdot \mathrm{m})$		1190	1080	975			705	640
Lu (mm)		6370	6170	5980	6190	6030	4040	3940
$\phi S_{y} F_{y}(\mathrm{kN} \cdot \mathrm{m})$					281	254		
$\phi \mathrm{Z}_{y} \mathrm{~F}_{y}(\mathrm{kN} \cdot \mathrm{m})$		578	522	472			227	206
${ }^{6}(\mathrm{bel} / \mathrm{t}) \sqrt{350}$		134	146	159	175	192	111	120
${ }^{5}(\mathrm{~h} / \mathrm{w}) \sqrt{350}$		365	399	451	487	535	460	525

IMPERIAL SIZE AND WEIGHT

Weight (Ib/ft)	132	120	109	99	90	82	74
Depth \times Width (in.)	$14 \% \times 14^{3 / 4}$	$141 / 2 \times 14 \%$	$143 / 6 \times 145 / 6$	$141 / 6 \times 14 \%$	$14 \times 141 / 2$	$141 / 4 \times 101 / 8$	$141 / 0 \times 101 / 8$

${ }^{\S}$ See S16-14 Clause 27.1.7 for seismic applications. Sections highlighted in yellow are generally readily available.
\dagger Class 3 in bending about either axis due to flange

W COLUMNS
Factored Axial Compressive

Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

Designation Mass (kg/m)		W360		W360			W310		
		101	91	79	$\ddagger 72$	$\ddagger 64$	500	454	415
Effective length (KL) in millimetres with respect to the least radius of gyration	0	4000	3590	3130	2800	2430	19800	18000	16400
	500	4000	3580	3120	2790	2420	19800	17900	16400
	1000	3960	3550	3070	2740	2370	19700	17900	16300
	1500	3870	3470	2940	2620	$\underline{270}{ }^{\text {x }}$	19500	17700	16200
	2000	3730	3340	2750	2450	2120	19200	17400	15900
	2500	3540	3170	2510	2230	1920	18800	17000	15500
	3000	3300	2960	2240	1990	1710	18200	16500	15000
	3500	3040	2720	1970	1750	1500	17500	15800	14400
	4000	2780	2480	1720	1520	1310	16700	15100	13700
	4500	2510	2240	1500	1320	1130	15800	14200	13000
	5000	2260	2010	1300	1150	985	14900	13400	12200
	5500	2030	1810	1140^{y}	$1000{ }^{\text {y }}$	$858^{\text {x }}$	13900	12500	11400
	6000	1820	1620	994	877	750	13000	11700	10600
	6500	1630^{y}	$1450{ }^{\text {y }}$	874	771	659	12100	10800	9800
	7000	1470	1300	773	681	582	11200	10000	9060
	7500	1320	1170	687	606	516	10400	9260	8380
	8000	1190	1060	613	541	463	9600	8560	7740
	8500	1080	960	550	486	417	8880	7910	7150
	9000	983	872	496	438	377	8220	7320	6610
	9500	896	795	449	397	342	7620	6780	6110
	10000	819	726				7070	6280	5660
	10500	751	666				6560	5830	5250
	11000	691	613				6100	5410	4880
	11500	637	565				5680	5040	4540
	12000	589	522				5300	4700	4230
	12500	546					4950	4380	3950
	13000						4630	4100	3690
	13500						4330	3840	3450
	14000						4070	3600	3240
PROPERTIES AND DESIGN DATA									
Area (mm^{2})		12900	11500	10100	9100	8130	63700	57800	52800
$t(\mathrm{~mm})$		18.3	16.4	16.8	15.1	13.5	75.1	68.7	62.7
$\mathrm{r}_{\mathrm{x}}(\mathrm{mm})$		153	152	150	149	148	163	160	157
$\mathrm{ryy}_{\mathrm{y}}(\mathrm{mm})$		62.7	62.3	48.9	48.5	48.1	88.0	86.8	86.0
$\mathrm{ra}_{\mathrm{x}} / \mathrm{ry}$		2.44	2.44	3.07	3.07	3.08	1.85	1.84	1.83
$\phi S_{X} F_{Y}(\mathrm{kN} \cdot \mathrm{m})$					^ 357	^ 320			
$\phi \mathrm{Z}_{\mathrm{x}} \mathrm{F}_{\mathrm{y}}(\mathrm{kN} \cdot \mathrm{m})$		584	522	444	$\wedge 397$	^ 354	3070	2740	2450
$\mathrm{Lu}(\mathrm{mm})$		3860	3760	3010	2940	2870	12100	11100	10400
$\phi S_{y} \mathrm{~F}_{y}(\mathrm{kN} \cdot \mathrm{m})$		^ 123	^110	^ 73.3	^ 65.2	$\wedge 57.8$			
$\phi \mathrm{Z}_{y} \mathrm{~F}_{y}(\mathrm{kN} \cdot \mathrm{m})$		^ 188	^ 167	^112	^ 100	^ 88.2	1390	1240	1120
${ }^{5}\left(\mathrm{bab}^{\prime} / \mathrm{t}\right) \sqrt{350}$		130	145	114	126	141	42.3	45.7	49.8
${ }^{5}(\mathrm{~h} / \mathrm{w}) \sqrt{350}$		571	631	638	696	777	115	126	134
IMPERIAL SIZE AND WEIGHT									
Weight (lb/ft)		68	61	53	48	43	336	305	279
Depth \times Width (in.)		14×10	$13 \% \times 10$	$13 \% \times 8$	$133 / 4 \times 8$	$135 / 8 \times 8$	$16 \% \times 13 \%$	$16 \% \times 131 / 4$	$15 \% \times 13 \%$

[^15]$\wedge^{x},{ }^{y}$ See "Bending Resistances" in the previous section.
\ddagger Class 4

W COLUMNS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

ASTM A992, A572 Grade 50

Designation Mass (kg/m)		W310							
		375	342	313	283	253	226	202	179
	0	14800	13600	12400	11200	10000	8970	8010	7070
	500	14800	13600	12400	11200	9990	8960	8000	7060
	1000	14700	13500	12300	11100	9950	8920	7960	7030
	1500	14600	13400	12200	11000	9840	8820	7870	6940
	2000	14400	13100	12000	10800	9650	8650	7720	6800
	2500	14000	12800	11700	10500	9390	8410	7500	6610
	3000	13500	12400	11300	10100	9040	8090	7210	6350
	3500	13000	11800	10800	9700	8630	7720	6870	6040
	4000	12300	11200	10200	9190	8160	7290	6480	5700
	4500	11600	10600	9610	8640	7660	6840	6070	5330
	5000	10900	9920	8990	8070	7150	6370	5650	4950
	5500	10100	9240	8360	7500	6630	5910	5230	4580
	6000	9420	8570	7750	6940	6130	5460	4830	
	6500	8720	7930	7160	6410	5650	5030	4440	3880
	7000	8060	7320	6600	5900	5200	4620	4080	3560
	7500	7440	6750	6080	5440	4790	4250	3750	3270
	8000	6860	6230	5600	5000	4400	3910	3440	3000
	8500	6330	5740	5160	4610	4050	3590	3170	2760
	9000	5850	5300	4760	4250	3730	3310	2910	2540
	9500	5400	4900	4400	3920	3440	3050	2690	2340
	10000	5000	4530	4070	3630	3180	2820	2480	2160
	10500	4640	4200	3770	3360	2940	2610	2290	1990
	11000	4300	3900	3500	3110	2730	2420	2120	1850
	11500	4000	3620	3250	2890	2530	2240	1970	1710
	12000	3730	3370	3020	2690	2360	2090	1830	1590
	12500	3480	3150	2820	2510	2200		1710	1480
	13000	3250	2940	2630	2340	2050	1810	1590	1380
	13500	3040	2750	2460	2190	1920	1700	1490	1290
	14000	2850	2580	2310	2050	1800	1590	1400	
PROPERTIES AND DESIGN DATA									
Area (mm^{2})		47800	43700	39900	36000	32300	28800	25700	22800
t (mm)		57.2	52.6	48.3	44.1	39.6	35.6	31.8	28.1
$\mathrm{r}_{\mathrm{r}}(\mathrm{mm})$		154	152	150	148	146	144	142	140
$\mathrm{ryy}^{\text {(}}$ (mm)		84.8	84.2	83.3	82.6	81.6	81.0	80.2	79.5
$\mathrm{rax}_{x} / \mathrm{r}_{\mathrm{y}}$		1.82	1.81	1.80	1.79	1.79	1.78	1.77	1.76
$\phi S_{x} F_{y}(\mathrm{kN} \cdot \mathrm{m})$									
$\phi \mathrm{Z}_{\mathrm{x}} \mathrm{F}_{\mathrm{y}}(\mathrm{kN} \cdot \mathrm{m})$		2170	1970	1780	1580	1390	1230	1090	947
$\mathrm{Lu}(\mathrm{mm})$		9620	8980	8350	7760	7180	6690	6220	5820
$\phi \mathrm{Z}_{y} \mathrm{~F}_{y}(\mathrm{kN} \cdot \mathrm{m})$		997	904	814	727	640	568	500	435
${ }^{6}(\mathrm{bel} / \mathrm{t}) \sqrt{350}$		54.0	58.3	62.9	68.3	75.4	83.3	92.7	104
${ }^{5}(\mathrm{~h} / \mathrm{w}) \sqrt{350}$		146	159	173	193	212	234	258	288
IMPERIAL SIZE AND WEIGHT									
Weight (lb/ft)		252	230	210	190	170	152	136	120
Depth \times Width (in.)		15\% $\mathrm{x} \times 13$	$15 \times 127 / 0$	$143 / 4 \times 123 / 4$	$14 \% \times 12 \%$	$14 \times 12 \%$	$133 / 4 \times 121 / 2$	$133 \% \times 12 \%$	$131 \% \times 12 \%$

[^16]Factored Axial Compressive

Resistances, C_{r} (kN)
$\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$
$\phi=0.90$

Designation		W310						W310	
Mass (kg/m)		158	143	129	118	107	$\dagger \dagger 97$	86	79
	0	6220	5660	5130	4650	4230	3830	3410	3120
	500	6220	5650	5120	4640	4220	3820	3410	3110
	1000	6190	5620	5090	4620	4200	3800	3380	3080
	1500	6110	5560	5030	4560	4150	3760	3310	3020
	2000	5990	5440	4920	4460	4060	3670	3190	2910
	2500	5810	5280	4770	4320	3930	3560	3030	2760
	3000	5580	5070	4580	4150	3770	3410	2840	2580
	3500	5300	4810	4350	3930	3570	3230	2620	2380
	4000	5000	4530	4090	3700	3360	3030	2390	2170
	4500	4670	4240	3820	3450	3130	2830	2170	1960
	5000	4340	3930	3540	3200	2900	2620	1960	1770
	5500	4010	3630	3270	2950	2670	2410	1760	1590
	6000	3690	3340	3000	2710	2450	2210	1580	1430
	6500	3390	3070	2760	2480	2250	2030	$1420{ }^{\text {y }}$	$1280{ }^{\text {y }}$
镸	7000	3110	2820	2530	2280	2060	1850	1280	1150
	7500	2850	2580	2310	2080	1880	1700	1150	1040
	8000	2620	2370	2120	1910	1720	1550	1040	937
	8500	2400	2170	1950	1750	1580	1420	944	849
	9000	2210	2000	1790	1610	1450	1310	859	772
	9500	2030	1840	1650	1480	1340	1200	783	704
	10000	1880	1700	1520	1360	1230	1110	716	644
	10500	1730	1570	1400	1260	1140	1020	657	590
	11000	1600	1450	1300	1170	1050	945	605	543
	11500	1490	1340	1200	1080	974	876	558	501
	12000	1380	1250	1120	1000	905	814	516	463
	12500	1290	1160	1040	934	842	757	478	429
	13000	1200	1090	970	871	785	706		
	13500	1120	1010	906	814	734	660		
	14000	1050	950	849	762	687	618		

PROPERTIES AND DESIGN DATA

Area $\left(\mathrm{mm}^{2}\right)$	20100	18200	16500	15000	13600	12300	11000	10100
$\mathrm{t}(\mathrm{mm})$	25.1	22.9	20.6	18.7	17.0	15.4	16.3	14.6
$\mathrm{r}_{\mathrm{x}}(\mathrm{mm})$	139	138	137	136	135	134	134	133
$\mathrm{r}_{y}(\mathrm{~mm})$	78.9	78.6	78.0	77.6	77.2	76.9	63.6	63.0
$\mathrm{r}_{x} / \mathrm{r}_{y}$	1.76	1.76	1.76	1.75	1.75	1.74	2.11	2.11
$\phi \mathrm{~S}_{\mathrm{x}} \mathrm{F}_{y}(\mathrm{kN} \cdot \mathrm{m})$						447		
$\phi \mathrm{ZX} \mathrm{F}_{y}(\mathrm{kN} \cdot \mathrm{m})$	829	751	671	605	546		441	397
$\mathrm{Lu}(\mathrm{mm})$	5480	5270	5080	4920	4800	4970	3900	3810
$\phi \mathrm{~S}_{\mathrm{y}} \mathrm{F}_{y}(\mathrm{kN} \cdot \mathrm{m})$						148	$\wedge 109$	$\wedge 97.5$
$\phi \mathrm{Zy} \mathrm{F}_{y}(\mathrm{kN} \cdot \mathrm{m})$	379	345	308	277	250		$\wedge 165$	$\wedge 148$
${ }^{5}(\mathrm{be} / \mathrm{t}) \sqrt{350}$	116	126	140	154	168	185	146	163
${ }^{\boldsymbol{s}}(\mathrm{h} / \mathrm{w}) \sqrt{350}$	334	370	395	435	475	524	570	588

IMPERIAL SIZE AND WEIGHT

Weight (lb/ft)	106	96	87	79	72	65	58	53
Depth \times Width (in.)	$121 / 6 \times 121 / 4$	$123 / 4 \times 121 / 4$	$121 / 2 \times 121 / 9$	$121 / 4 \times 121 / 9$	$121 / 4 \times 12$	$121 / \mathrm{x} \times 12$	$121 / 4 \times 10$	12×10

[^17]W COLUMNS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

ASTM A992, A572 Grade 50
$\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$
$\phi=0.90$

Designation Mass (kg/m)		W310			W250				
		74	67	$\ddagger 60$	167	149	131	115	101
	0	2930	2620	2320	6620	5890	5190	4540	4000
	500	2920	2610	2320	6610	5880	5180	4530	4000
	1000	2870	2570	2270	6560	5840	5140	4500	3960
	1500	2760	2470	2180	6440	5730	5040	4410	3880
	2000	2580	2310	2040	6250	5560	4890	4270	3760
	2500	2360	2110	1870	5990	5310	4670	4080	3580
	3000	2120	1890	1670	5660	5010	4400	3840	3370
	3500	1880	1670	1470	5280	4670	4090	3560	3130
	4000	1640	1460	1290	4870	4310	3770	3280	2870
	4500	1430	1270	1120	4460	3940	3440	2990	2610
	5000	$1250^{\text {y }}$	1110^{y}	977	4060	3580	3120	2710	2370
	5500	1090	968	$853^{\text {y }}$	3690	3240	2830	2450	2140
	6000	959	848	747	3340	2930	2550	2210	1930
	6500	844	747	657	3020	2650	2310	1990	1740
	7000	747	660	581	2730	2400	2080	1800	1570
	7500	664	587	516	2480	2170	1880	1630	1420
	8000	594	524	462	2250	1970	1710	1480	1280
	8500	533	470	415	2040	1790	1550	1340	1160
	9000	480	424	374	1860	1630	1420	1220	1060
	9500	435	384	339	1710	1490	1290	1110	968
	10000				1560	1370	1180	1020	886
	10500				1440	1260	1090	938	814
	11000				1320	1160	1000	864	749
	11500				1220	1070	926	797	691
	12000				1130	990	857	738	640
	12500				1050	919	796	685	594
	13000				979	855	740	637	552
	13500				913				
	14000								
PROPERTIES AND DESIGN DATA									
Area (mm^{2})		9480	8520	7610	21200	19000	16700	14600	12900
t (mm)		16.3	14.6	13.1	31.8	28.4	25.1	22.1	19.6
$\mathrm{rax}_{\mathrm{x}}(\mathrm{mm})$		132	131	130	119	117	115	114	113
$\mathrm{ryy}_{\mathrm{y}}(\mathrm{mm})$		49.9	49.5	49.3	68.1	67.4	66.8	66.2	65.6
$\mathrm{r}_{\mathrm{x}} / \mathrm{r}_{\mathrm{y}}$		2.65	2.65	2.64	1.75	1.74	1.72	1.72	1.72
$\phi S_{x} F_{y}(\mathrm{kN} \cdot \mathrm{m})$				^ 261					
$\phi \mathrm{Z}_{\times} \mathrm{F}_{y}(\mathrm{kN} \cdot \mathrm{m})$		366	326	^290	755	661	574	497	435
$\mathrm{Lu}(\mathrm{mm})$		3100	3020	2960	5900	5480	5080	4740	4470
$\phi S_{y} \mathrm{~F}_{\mathrm{y}}(\mathrm{kN} \cdot \mathrm{m})$		$\wedge 71.1$	${ }^{\wedge} 63.0$	${ }^{\wedge} 55.9$					
$\phi \mathrm{Z}_{y} \mathrm{~F}_{\mathrm{y}}(\mathrm{kN} \cdot \mathrm{m})$		^ 109	$\wedge 96.3$	$\wedge 85.4$	354	311	270	234	204
${ }^{5}(\mathrm{bel} / \mathrm{t}) \sqrt{350}$		118	131	145	78.0	86.6	97.3	110	123
${ }^{5}(\mathrm{~h} / \mathrm{w}) \sqrt{350}$		552	609	690	220	244	273	312	353
IMPERIAL SIZE AND WEIGHT									
Weight (lb/ft)		50	45	40	112	100	88	77	68
Depth \times Width (in.)		$121 / 4 \times 81 / n$	12×8	12×8	$113 \% \times 10 \%$	11\% $\times 10 \%$	10\%/6 $\times 10 \%$	$10 \% \times 101 / 4$	$10 \% \times 10 \%$

${ }^{5}$ See S16-14 Clause 27.1 .7 for seismic applications. Sections highlighted in yellow are generally readily available.
$\wedge{ }^{y}$ See "Bending Resistances" in the previous section.
\ddagger Class 4

W COLUMNS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

ASTM A992, A572 Grade 50

$$
\begin{array}{r}
\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa} \\
\phi=0.90
\end{array}
$$

DesignationMass (kg/m)		W250			W250		
		89	80	73	67	58	† 49
	0	3540	3170	2880	2660	2300	1940
	500	3540	3160	2880	2650	2300	1930
	1000	3510	3140	2850	2600	2260	1900
	1500	3440	3070	2790	2510	2170	1820
	2000	3320	2970	2700	2360	2040	1700
	2500	3170	2830	2570	2170	1870	1560
	3000	2970	2660	2410	1950	1680	1390
	3500	2750	2460	2230	1730	1490	1230
	4000	2530	2260	2040	1530	1310	1070
	4500	2300	2050	1860	1340	1140	934
	5000	2080	1860	1680	1170	998	813
	5500	1880	1670	1510	1020	873	710
	6000	1690	1510	1360	899	766	621
	6500	1520	1360	1220	793	675	547
	7000	1370	1220	1100	703	598	483
	7500	1240	1110	996	626	532	430
	8000	1120	1000	901	559	475	384
	8500	1020	908	818	502	427	344
	9000	926	827	744	453	385	310
	9500	845	755	679	411	349	281
	10000	774	691	621	374	317	
	10500	710	634	570			
	11000	654	584	525			
	11500	604	539	484			
	12000	559	498	448			
	12500	518	462	416			
	13000	482	430				
	13500						
PROPERTIES AND DESIGN DATA							
Area (mm^{2})		11400	10200	9290	8580	7420	6260
t (mm)		17.3	15.6	14.2	15.7	13.5	11.0
$\mathrm{rax}_{\mathrm{x}}(\mathrm{mm})$		112	111	110	110	108	106
$\mathrm{r}_{\mathrm{y}}(\mathrm{mm})$		65.1	65.0	64.6	51.0	50.4	49.2
r_{x} / r_{y}		1.72	1.71	1.70	2.16	2.14	2.15
$\phi S_{x} F_{y}(\mathrm{kN} \cdot \mathrm{m})$							178
$\phi \mathrm{Z}_{\times} \mathrm{F}_{\mathrm{y}}(\mathrm{kN} \cdot \mathrm{m})$		382	338	306	280	239	
Lu (mm)		4260	4130	4010	3260	3130	3160
$\phi S_{y} \mathrm{~F}_{y}(\mathrm{kN} \cdot \mathrm{m}$)							46.6
$\phi \mathrm{Z}_{y} \mathrm{~F}_{y}(\mathrm{kN} \cdot \mathrm{m})$		178	159	144	103	87.9	
${ }^{5}(\mathrm{bel} / \mathrm{t}) \sqrt{350}$		138	153	167	122	141	172
${ }^{5}(\mathrm{~h} / \mathrm{w}) \sqrt{350}$		394	447	489	474	526	569
IMPERIAL SIZE AND WEIGHT							
Weight (lb/ft)		60	54	49	45	39	33
Depth \times Width (in.)		$101 / 4 \times 10 \%$	10\% $\times 10$	10×10	$101 / 2 \times 8$	97/8 $\times 8$	$93 / 4 \times 8$

[^18]$\dagger \dagger$ Class 3 in bending about either axis due to flange

W COLUMNS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

ASTM A992, A572 Grade 50
$\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$
$\phi=0.90$

Designation		W200					
	(kg/m)	100	86	71	59	52	†46
	0	3930	3430	2830	2350	2070	1820
	500	3920	3420	2820	2340	2060	1810
	1000	3870	3370	2780	2300	2030	1780
	1500	3740	3260	2680	2220	1960	1720
	2000	3550	3080	2540	2100	1840	1620
	2500	3290	2860	2340	1930	1700	1490
	3000	2990	2600	2130	1750	1540	1340
	3500	2690	2320	1900	1560	1370	1190
	4000	2390	2060	1680	1380	1210	1050
	4500	2110	1820	1480	1210	1060	919
	5000	1860	1600	1300	1060	928	804
	5500	1640	1410	1140	930	815	705
	6000	1440	1240	1010	819	717	619
	6500	1280	1100	892	723	633	546
	7000	1140	976	792	642	561	484
	7500	1010	871	706	572	500	431
	8000	909	780	632	512	447	386
	8500	819	702	569	460	402	346
	9000	740	634	514	415	363	313
	9500	671	575	466	376	329	283
	10000	611	524	424	342	299	258
	10500	559	479	387			
	11000						
	11500						
	12000						
	12500						
	13000						
	13500						
	14000						
PROPERTIES AND DESIGN DATA							
Area (mm^{2})		12700	11000	9100	7550	6650	5890
$t(\mathrm{~mm})$		23.7	20.6	17.4	14.2	12.6	11.0
$r_{\text {r }}(\mathrm{mm})$		94.5	92.6	91.7	89.9	89.0	88.1
$r_{y}(\mathrm{~mm})$		53.8	53.3	52.8	52.0	51.8	51.2
r_{x} / r_{y}		1.76	1.74	1.74	1.73	1.72	1.72
$\phi S_{x} F_{y}(\mathrm{kN} \cdot \mathrm{m})$							139
$\phi \mathrm{Z}_{\times} \mathrm{F}_{\mathrm{y}}(\mathrm{kN} \cdot \mathrm{m})$		357	305	249	203	177	
Lu (mm)		4460	4110	3730	3430	3300	3370
							46.9
$\begin{aligned} & \phi S_{y} F_{y}(\mathrm{kN} \cdot \mathrm{~m}) \\ & \phi \mathrm{Z}_{y} \mathrm{~F}_{y}(\mathrm{kN} \cdot \mathrm{~m}) \end{aligned}$		165	142	116	94.1	82.6	
${ }^{5}(\mathrm{bol} / \mathrm{t}) \sqrt{350}$		82.9	94.9	111	135	151	173
${ }^{5}(\mathrm{~h} / \mathrm{w}) \sqrt{350}$		234	260	332	373	428	470

IMPERIAL SIZE AND WEIGHT

Weight (lb/ft)	67	58	48	40	35	31
Depth \times Width (in.)	$9 \times 81 / 4$	$81 / 4 \times 81 / 4$	$81 / 2 \times 81 / 4$	$81 / 4 \times 81 / 4$	$81 / 4 \times 8$	8×8

${ }^{5}$ See S16-14 Clause 27.1.7 for seismic applications.
Sections highlighted in yellow are generally readily available.
$\dagger \dagger$ Class 3 in bending about either axis due to flange

W COLUMNS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

ASTM A992, A572 Grade 50

$$
F_{y}=345 \mathrm{MPa}
$$

$\phi=0.90$

[^19]w COLUMNS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

ASTM A913 Grade 65

$\mathrm{F}_{\mathrm{y}}=450 \mathrm{MPa}$
 $\phi=0.90$

Designation		W360					
Mass (kg/m)		1299	1202	1086	990	900	818
	0	67000	62000	56100	51100	46500	42300
	2500	65000	60100	54300	49400	44900	40700
	3000	63800	58900	53200	48300	43900	39800
	3500	62300	57500	51800	47000	42700	38600
	4000	60600	55800	50200	45500	41300	37300
	4500	58500	53800	48300	43700	39700	35800
	5000	56300	51700	46300	41800	37900	34100
	5500	53800	49400	44.100	39800	36000	32400
	6000	51300	47000	41900	37700	34100	30600
	6500	48700	44500	39600	35600	32200	28800
	7000	46100	42100	37300	33500	30300	27100
	7500	43500	39700	35100	31500	28400	25400
	8000	41000	37300	33000	29500	26600	23700
	8500	38600	35100	30900	27600	24900	22200
	9000	36300	32900	29000	25900	23300	20700
	9500	34100	30900	27100	24200	21800	19300
	10000	32000	29000	25400	22600	20400	18100
	10500	30000	27200	23800	21200	19100	16900
	11000	28200	25500	22300	19800	17800	15800
	11500	26500	24000	20900	18600	16700	14800
	12000	24900	22500	19600	17400	15700	13800
	12500	23500	21200	18400	16400	14700	13000
	13000	22100	19900	17300	15400	13800	12200
	13500	20800	18800	16300	14500	13000	11500
	14000	19600	17700	15400	13600	12200	10800
	15000	17500	15800	13700	12100	10900	9590
	16000	15700	14100	12300	10900	9730	8570
	17000	14200	12700	11000	9750	8740	7690
	18000	12800	11500	9960	8800	7890	6940
	19000	11600	10400	9030	7970	7140	6280
	20000	10600	9500	8220	7250	6500	5710

PROPERTIES AND DESIGN DATA						
Area (mm^{2})	165000	153000	139000	126000	115000	105000
1 (mm)	140	130	125	115	106	97.0
$\mathrm{rx}_{\mathrm{x}}(\mathrm{mm})$	214	208	207	203	198	194
$\mathrm{ryy}^{\text {(}} \mathrm{mm}$)	124	122	119	117	116	114
$\mathrm{rax}_{x} / \mathrm{r}_{\mathrm{y}}$	1.73	1.70	1.74	1.74	1.71	1.70
$\mathrm{Mxx}(\mathrm{kN} \cdot \mathrm{m})(\mathrm{L}<\mathrm{Lu})$	13400	12200	11000	9840	8750	7820
$\mathrm{Lu}(\mathrm{mm})$	18900	17900	16300	15100	14100	13100
Mry (kN.m)	6760	6160	5430	4860	4330	3870
(bolt) $\sqrt{450}$	36.1	38.4	38.5	41.3	44.2	47.8
(h/w) $\sqrt{450}$	67.9	71.5	86.8	94.4	103	112
IMPERIAL SIZE AND WEIGHT						
Weight ($\mathrm{l} / \mathrm{/t}$)	873	808	730	665	605	550
Depth \times Width (in.)	$23 \% \times 183 / 4$	22\% $\times 181 / 2$	22\% $\times 17 \%$	21\% $\times 17 \%$	20\% $\times 17 \%$	201/4 $\times 171 / 4$

Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

ASTM A913 Grade 65

$$
\begin{array}{r}
\mathrm{F}_{\mathrm{y}}=450 \mathrm{MPa} \\
\phi=0.90
\end{array}
$$

Designation		W360						
Mass (kg/m)		744	677	634	592	551	509	463
	0	38400	35000	32700	30600	28400	26300	23900
	2500	36900	33600	31400	29300	27200	25200	22800
	3000	36000	32800	30600	28600	26500	24500	22200
	3500	35000	31800	29700	27700	25600	23700	21500
	4000	33700	30600	28600	26600	24600	22800	20600
	4500	32300	29300	27300	25400	23500	21700	19700
	5000	30700	27900	25900	24100	22300	20600	18600
	5500	29100	26400	24500	22800	21000	19500	17600
	6000	27500	24900	23100	21400	19800	18300	16500
	6500	25800	23300	21700	20100	18500	17100	15400
	7000	24200	21900	20300	18800	17300	16000	14400
	7500	22600	20400	18900	17500	16100	14900	13400
	8000	21100	19100	17700	16300	15000	13900	12500
	8500	19700	17800	16500	15200	14000	12900	11600
	9000	18400	16600	15300	14200	13000	12000	10800
	9500	17200	15400	14300	13200	12100	11200	10000
	10000	16000	14400	13300	12300	11300	10400	9340
	10500	15000	13400	12400	11400	10500	9710	8700
	11000	14000	12600	11600	10700	9790	9060	8110
	11500	13100	11700	10800	9980	9140	8460	7570
	12000	12200	11000	10100	9330	8540	7910	7080
	12500	11500	10300	9490	8740	8000	7400	6620
	13000	10800	9660	8900	8190	7500	6940	6210
	13500	10100	9070	8360	7690	7040	6510	5820
	14000	9510	8530	7860	7230	6610	6120	5470
	15000	8450	7580	6980	6420	5870	5430	4850
	16000	7550	6760	6230	5720	5230	4840	4320
	17000	6770	6070	5580	5130	4690	4340	3880
	18000	6100	5470	5030	4620	4220	3910	3490
	19000	5520	4950	4550	4180	3820	3530	3160
	20000	5020	4500	4140	3800	3470	3210	2870
PROPERTIES AND DESIGN DATA								
Area (mm^{2})		94800	86500	80600	75500	70300	65200	59000
t (mm)		88.9	81.5	77.1	72.3	67.6	62.7	57.4
$\mathrm{rax}_{\text {(}}(\mathrm{mm})$		190	186	184	182	180	178	175
$\mathrm{ryy}^{\text {(}} \mathrm{mm}$)		112	111	110	109	108	108	107
$\mathrm{ra}_{\mathrm{x}} / \mathrm{r}_{\mathrm{y}}$		1.70	1.68	1.67	1.67	1.67	1.65	1.64
$\mathrm{Mrx}(\mathrm{kN} \cdot \mathrm{m})\left(\mathrm{L}<\mathrm{Lu}^{\prime}\right)$		6970	6200	5750	5310	4900	4460	4000
$\mathrm{Lu}(\mathrm{mm})$		12100	11300	10800	10200	9630	9140	8520
$\left.\mathrm{Mry}^{(} \mathrm{kN} \cdot \mathrm{m}\right)$		3460	3110	2880	2660	2450	2250	2020
(bolt) $\sqrt{450}$		51.5	55.7	58.3	61.8	65.6	70.4	76.1
(h/w) $\sqrt{450}$		122	133	143	151	162	174	190
IMPERIAL SIZE AND WEIGHT								
Weight (lb/ft)		500	455	426	398	370	342	311
Depth x Width (in.)		$19 \% \times 17$	$19 \times 167 / 8$	$18 \% \times 163 / 4$	$181 / 4 \times 165 / 8$	$177 / 2 \times 161 / 2$	$171 / 2 \times 163 / 8$	171\% $\times 161 / 4$

W COLUMNS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

ASTM A913 Grade 65

$$
\begin{array}{r}
\mathrm{F}_{\mathrm{y}}=450 \mathrm{MPa} \\
\phi=0.90
\end{array}
$$

Designation		W360					
Mass (kg/m)		421	382	347	314	287	262
	0	21800	19700	17900	16200	14800	13600
	2500	20800	18800	17100	15400	14100	12900
	3000	20200	18300	16600	14900	13700	12500
	3500	19500	17700	16000	14400	13200	12000
	4000	18700	16900	15300	13800	12600	11500
	4500	17800	16100	14600	13100	12000	10900
	5000	16900	15200	13800	12300	11300	10300
	5500	15900	14300	12900	11600	10600	9650
	6000	14900	13400	12100	10800	9940	9010
	6500	14000	12500	11300	10100	9270	8390
	7000	13000	11700	10500	9390	8610	7790
	7500	12100	10900	9750	8710	8000	7220
	8000	11300	10100	9050	8080	7410	6690
	8500	10500	9370	8400	7490	6870	6200
	9000	9710	8700	7790	6950	6370	5750
	9500	9030	8080	7230	6440	5910	5330
	10000	8400	7510	6720	5980	5490	4940
	10500	7820	6990	6250	5560	5100	4590
	11000	7280	6510	5820	5180	4750	4270
	11500	6800	6070	5430	4830	4430	3980
	12000	6350	5670	5070	4500	4130	3720
	12500	5940	5300	4740	4210	3860	3470
	13000	5570	4970	4430	3940	3620	3250
	13500	5220	4660	4160	3690	3390	3040
	14000	4910	4380	3910	3470	3180	2860
	15000	4350	3880	3460	3070	2820	2530
	16000	3870	3450	3080	2730	2510	2250
	17000	3470	3090	2760	2450	2250	2010
	18000	3120	2780	2480	2200	2020	1810
	19000	2820	2520	2240	1990	1830	1640
	20000	2570	2290	2040	1810	1660	1490
PROPERTIES AND DESIGN DATA							
Area (mm^{2})		53700	48800	44200	40000	36600	33400
t (mm)		52.6	48.0	43.7	39.6	36.6	33.3
$\mathrm{rfx}^{(m m)}$		172	170	168	166	165	163
$r_{y}(\mathrm{~mm})$		106	105	104	103	103	102
r_{x} / r_{y}		1.62	1.62	1.62	1.61	1.60	1.60
$\mathrm{Mrx}(\mathrm{kN} \cdot \mathrm{m})(\mathrm{L}<\mathrm{Lu})$		3600	3220	2890	2580	2350	2130
$\mathrm{Lu}(\mathrm{mm})$		8010	7520	7110	6710	6430	6160
$M_{r}(\mathrm{kN} \cdot \mathrm{m})$		1820	1630	1470	1310	1200	1090
($\mathrm{bol} / \mathrm{t}) \sqrt{450}$		82.5	89.7	98.1	107	116	127
(h/w) $\sqrt{450}$		207	228	249	272	300	322

IMPERIAL SIZE AND WEIGHT

Weight (Ib/ft)	283	257	233	211	193	176
Depth \times Width (in.)	$163 / 4 \times 161 / 6$	$16 \% \times 16$	$16 \times 15 \% / 8$	$153 / 4 \times 151 / 4$	$151 / 2 \times 153 / 4$	$151 / 4 \times 155 / 4$

W COLUMNS
Factored Axial Compressive
Resistances, C_{r} (kN)

$$
\begin{array}{r}
\mathrm{F}_{\mathrm{y}}=450 \mathrm{MPa} \\
\phi=0.90
\end{array}
$$

Designation Mass (kg/m)		W360		W360			
		237	216	196	179	$\dagger 162$	$\dagger 147$
	0	12200	11200	10100	9240	8360	7610
	500	12200	11100	10100	9240	8350	7600
	1000	12100	11100	10100	9200	8310	7570
	1500	12000	11000	9980	9100	8220	7490
	2000	11800	10800	9810	8940	8080	7350
	2500	11600	10600	9550	8710	7860	7150
	3000	11200	10300	9220	8400	7590	6900
	3500	10800	9880	8830	8040	7260	6590
	4000	10300	9430	8370	7620	6880	6240
	4500	9810	8940	7880	7170	6470	5870
	5000	9250	8420	7380	6710	6050	5480
	5500	8680	7890	6870	6240	5620	5100
	6000	8100	7360	6370	5780	5210	4720
	6500	7540	6840	5880	5340	4810	4350
	7000	7010	6350	5430	4930	4440	4010
	7500	6500	5880	5010	4540	4090	3690
	8000	6020	5440	4610	4180	3770	3400
	8500	5580	5040	4250	3860	3470	3130
	9000	5170	4670	3930	3560	3200	2890
	9500	4790	4330	3630	3290	2960	2670
	10000	4450	4010	3350	3040	2730	2460
	10500	4130	3730	3110	2810	2530	2280
	11000	3840	3460	2880	2610	2350	2120
	11500	3580	3230	2680	2430	2180	1970
	12000	3340	3010	2490	2260	2030	1830
	12500	3120	2810	2330	2110	1890	1700
	13000	2920	2630	2170	1970	1770	1590
	13500	2740	2460	2030	1840	1650	1490
	14000	2570	2310	1910	1730	1550	1400
	15000	2270	2050	1680	1520	1370	1230
	16000	2020	1820	1500	1350	1220	1090
PROPERTIES AND DESIGN DATA							
Area (mm^{2})		30100	27500	25000	22800	20600	18800
t (mm)		30.2	27.7	26.2	23.9	21.8	19.8
rx (mm)		162	161	159	159	158	157
$\left.\mathrm{ryy}^{(} \mathrm{mm}\right)$		102	101	95.6	95.2	94.9	94.3
$\mathrm{r}_{\mathrm{x}} / \mathrm{r}_{\mathrm{y}}$		1.59	1.59	1.66	1.67	1.66	1.66
$M_{r x}(\mathrm{kN} \cdot \mathrm{m})\left(\mathrm{L}<\mathrm{L}_{u}\right)$		1900	1730	1560	1410	1150	1040
$\mathrm{Lu}(\mathrm{mm})$		5900	5740	5340	5200	5400	5260
Mry (kN.m)		968	883	753	680	405	366
(bot $/ \mathrm{t}) \sqrt{450}$		139	151	151	166	181	198
(h/w) $\sqrt{450}$		359	392	413	453	511	553
IMPERIAL SIZE AND WEIGHT							
Weight (lb/ft)		159	145	132	120	109	99
Depth \times Width (in.)		$15 \times 15 \%$	$143 / 4 \times 151 / 2$	$14 \% \times 143 / 4$	$141 / 2 \times 14 \%$	$143 / 14 \times 14$	$141 / 6 \times 14 \%$

\dagger Class 3 in bending about both axes

SQUARE HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

Y

G40.21 350W CLASS C $\phi=0.90$

Section ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)		HSS 559×559				
		19**	22^{*}	19^{*}	16^{*}	$\ddagger 13^{*}$ \#
Mass (kg/m)		316	329	285	240	194
	0	12700	13200	11400	9640	7700
	500	- 12700	13200	11400	9640	7700
	1000	12700	13200	11400	9630	7700
	1500	12600	13200	11400	9620	7690
	2000	12600	13200	11400	9610	7670
	2500	12600	13100	11400	9580	7650
	3000	12600	13100	11300	9540	7630
	3500	12500	13000	11300	9500	7590
	4000	12500	12900	11200	9440	7540
	4500	12400	12800	11100	9360	7490
	5000	12300	12700	11000	9280	7420
	5500	12200	12500	10.900	9180	7340
	6000	12100	12400	10700	9070	7250
	6500	11900	12200	10600	8940	7160
	7000	11800	12000	10400	8800	7050
	7500	11600	11800	10200	8650	6930
	8000	11400	11600	10000	8490	6810
	8500	11300	11300	9840	8320	6670
	9000	11100	11100	9620	8140	6530
	9500	10900	10800	9400	7960	6390
	10000	10600	10500	9160	7760	6230
	10500	10400	10300	8930	7570	6080
	11000	10200	9990	8680	7370	5920
	11500	9940	9710	8440	7160	5760
	12000	9700	9420	8190	6960	5600
	12500	9450	9140	7950	6750	5440
	13000	9210	8860	7700	6550	5270
	14000	8720	8300	7220	6140	4950
	15000	8230	7760	6760	5750	4640
	16000	7760	7250	6310	5380	4340
	17000	7300	6760	5890	5030	4060
	18000	6860	6300	5500	4690	3800
PROPERTIES AND DESIGN DATA						
$\begin{aligned} & \text { Area }\left(\mathrm{mm}^{2}\right) \\ & r((\mathrm{~mm}) \\ & \mathrm{M}_{r}(\mathrm{kN} \cdot \mathrm{~m}) \\ & \left(\mathrm{b}_{\mathrm{el}} / \mathrm{t}\right) \sqrt{350} \end{aligned}$		40200	41900	36300	30600	24700
		219	197	198	200	201
		2540	2380	2080	1770	1240
		474	353	424	524	673
IMPERIAL SIZE AND WEIGHT						
Weight (Ib./ft.)		212	221	192	162	131
Thickness (in.)		0.750	0.875	0.750	0.625	0.500
Size (in.)		22×22	20×20			

- Imported section
\# $\mathrm{C}_{\text {t }}$ calculated according to S16-14 Clause 13.3.5(b)
\ddagger Class 4

SQUARE HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

Y

Section ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)		HSS 457×457				HSS 406×406				
		22*	19*	$16 *$	†13*	22*	19**	16^{*}	13^{*}	$\ddagger 9.5$ *
Mass (kg/m)		294	255	215	174	258	224	190	154	117
uop̣èк6 ן о sn!pes ןseeן	0	11800	10200	8630	6990	10400	9010	7620	6170	4370
	500	11800	10200	8630	6990	10400	9010	7620	6170	4370
	1000	11800	10200	8620	6990	10400	9000	7620	6170	4370
	1500	11800	10200	8610	6980	10300	8980	7600	6160	4360
	2000	11700	10200	8590	6960	10300	8950	7580	6140	4340
	2500	11700	10200	8560	6940	10200	8910	7540	6110	4320
	3000	11600	10100	8520	6900	10200	8840	7480	6060	4290
	3500	11500	10000	8460	6860	10100	8760	7410	6010	4260
	4000	11400	9950	8390	6800	9940	8660	7330	5940	4210
	4500	11300	9840	8300	6730	9800	8530	7230	5860	4150
	5000	11200	9720	8200	6660	9630	8390	7110	5770	4090
	5500	11000	9580	8090	6560	9430	8230	6970	5660	4010
	6000	10800	9430	7960	6460	9220	8050	6820	5540	3930
	6500	10600	9250	7810	6350	8990	7850	6660	5410	3840
	7000	10400	9070	7660	6220	8740	7640	6480	5270	3740
	7500	10200	8870	7490	6090	8480	7420	6290	5130	3640
	8000	9910	8650	7310	5950	8210	7190	6100	4970	3530
	8500	9650	8430	7130	5800	7930	6950	5900	4810	3420
	9000	9380	8200	6930	5650	7650	6710	5700	4650	3310
	9500	9100	7960	6730	5490	7370	6460	5490	4490	3190
	10000	8820	7720	6530	5330	7080	6220	5290	4320	3080
	10500	8540	7480	6330	5170	6800	5980	5080	4160	2960
	11000	8250	7230	6120	5000	6520	5740	4880	4000	2850
	11500	7970	6990	5920	4840	6250	5500	4690	3840	2730
	12000	7690	6750	5710	4670	5990	5280	4490	3690	2620
	12500	7410	6510	5510	4510	5730	5050	4310	3530	2520
	13000	7140	6270	5320	4350	5490	4840	4120	3390	2410
	14000	6620	5820	4940	4050	5020	4440	3780	3110	2220
	15000	6120	5390	4570	3750	4600	4060	3470	2850	2040
	16000	5660	4990	4240	3480	4210	3720	3180	2620	1870
	17000	5240	4620	3920	3230	3860	3420	2920	2410	1720
	18000	4850	4280	3630	2990	3540	3140	2680	2210	1580

PROPERTIES AND DESIGN DATA

$\begin{aligned} & \text { Area }\left(\mathrm{mm}^{2}\right) \\ & r(\mathrm{~mm}) \\ & M_{r}(\mathrm{kN} \cdot \mathrm{~m}) \\ & \left(\mathrm{b}_{\mathrm{el}} / \mathrm{t}\right) \sqrt{350} \end{aligned}$	$\begin{array}{r} 37400 \\ 176 \\ 1900 \\ 310 \end{array}$	$\begin{array}{r} 32500 \\ 178 \\ 1660 \\ 374 \end{array}$	$\begin{array}{r} 27400 \\ 179 \\ 1410 \\ 464 \end{array}$	$\begin{array}{r} 22200 \\ 181 \\ 995 \\ 599 \end{array}$	$\begin{array}{r} 32900 \\ 155 \\ 1470 \\ 267 \end{array}$	$\begin{array}{r} 28600 \\ 157 \\ 1290 \\ 324 \end{array}$	$\begin{array}{r} 24200 \\ 158 \\ 1100 \\ 404 \end{array}$	$\begin{array}{r} 19600 \\ 160 \\ 904 \\ 524 \end{array}$	$\begin{array}{r} 14900 \\ 161 \\ 570 \\ 723 \end{array}$
IMPERIAL SIZE AND WEIGHT									
Weight (lb./ft.)	197	171	144	117	174	151	127	103	78.6
Thickness (in.)	0.875	0.750	0.625	0.500	0.875	0.750	0.625	0.500	0.375
Size (in.)	18×18				16×16				

* Imported section
\dagger Class 3 \ddagger Class 4

SQUARE HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

Section ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)		HSS 356×356				HSS 305×305				
		16*	13^{*}	+9.5**	$\ddagger 7.9^{*}$	16	13	9.5	+7.9	$\ddagger 6.4$
Mass (kg/m)		164	133	102	85.4	139	113	86.5	72.7	58.7
	0	6580	5360	4100	3040	5580	4540	3470	2920	1940
	500	6580	5350	4090	3040	5570	4530	3460	2920	1940
	1000	6570	5350	4090	3030	5560	4530	3460	2910	1940
	1500	6560	5330	4080	3030	5540	4510	3440	2900	1930
	2000	6520	5310	4060	3010	5500	4470	3420	2880	1920
	2500	6480	5270	4030	2990	5440	4430	3380	2850	1900
	3000	6410	5220	3990	2960	5350	4360	3340	2810	1870
	3500	6330	5150	3940	2930	5250	4270	3270	2760	1840
	4000	6220	5070	3880	2880	5120	4170	3200	2700	1790
	4500	6100	4970	3810	2830	4970	4050	3110	2630	1750
	5000	5960	4860	3730	2770	4.800	3920	3010	2550	1690
	5500	5810	4730	3640	2700	4620	3780	2910	2460	1630
	6000	5640	4600	3530	2620	4430	3620	2790	2360	1570
	6500	5460	4450	3430	2540	4230	3460	2670	2260	1500
	7000	5260	4300	3310	2460	4030	3300	2550	2160	1440
	7500	5070	4140	3190	2370	3830	3140	2430	2060	1370
	8000	4870	3980	3070	2280	3630	2970	2300	1960	1300
	8500	4660	3810	2950	2190	3430	2820	2190	1860	1230
	9000	4460	3650	2820	2090	3240	2660	2070	1760	1170
	9500	4260	3490	2700	2000	3060	2510	1960	1660	1100
	10000	4060	3330	2580	1910	2890	2370	1850	1570	1040
	10500	3870	3170	2460	1830	2720	2240	1750	1490	987
	11000	3690	3020	2350	1740	2570	2110	1650	1400	933
	11500	3510	2880	2240	1660	2420	1990	1560	1330	881
	12000	3340	2740	2130	1580	2280	1880	1470	1250	833
	12500	3180	2610	2030	1510	2160	1780	1390	1180	787
	13000	3020	2480	1930	1430	2040	1680	1310	1120	744
	14000	2740	2250	1750	1300	1820	1500	1180	1000	667
	15000	2480	2040	1590	1180	1630	1350	1060	901	599
	16000	2260	1850	1450	1080	1470	1210	951	812	540
	17000	2050	1690	1320	980	1320	- 1090	859	734	488
	18000	1870	1540	1210	895	1200	991	779	666	443
PROPERTIES AND DESIGN DATA										
$\begin{aligned} & \text { Area }\left(\mathrm{mm}^{2}\right) \\ & \mathrm{r}(\mathrm{~mm}) \\ & M_{1}(\mathrm{kN} \cdot \mathrm{~m}) \\ & \left(\mathrm{b}_{\mathrm{et}} / \mathrm{t}\right) \sqrt{350} \end{aligned}$		20900	17000	13000	10900	17700	14400	11000	9270	7480
		138	139	141	141	117	118	120	121	121
		832	684	454	353	595	491	381	279	197
		344	449	623	763	284	374	524	643	823
IMPERIAL SIZE AND WEIGHT										
Weight (lb./ft.)		110	89.7	68.4	57.4	93.4	76.1	58.1	48.9	39.4
Thickness (in.)		0.625	0.500	0.375	0.313	0.625	0.500	0.375	0.313	0.250
Size (in.)		14×14				12×12				

*Imported section
\dagger Class 3
\ddagger Class 4

SQUARE HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

G40.21 350W CLASS C $\phi=0.90$

Section ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)		HSS 254×254					
		16	13	9.5	7.9	$\ddagger 6.4$ \#	$\ddagger 4.8$
Mass (kg/m)		114	93.0	71.3	60.1	48.6	36.9
	0	4570	3720	2860	2410	1930	1100
	500	4560	3710	2860	2410	1930	1100
	1000	4550	3700	2850	2400	1920	1100
	1500	4520	3680	2830	2390	1910	1090
	2000	4460	3630	2800	2360	1890	1080
	2500	4380	3570	2750	2320	1860	1060
	3000	4270	3480	2690	2270	1820	1040
	3500	4130	3380	2610	2200	1770	1010
	4000	3970	3250	2520	2120	1710	972
	4500	3790	3110	2410	2040	1640	933
	5000	3600	2960	2300	1940	1570	891
	5500	3400	2800	2180	1840	1490	846
	6000	3200	2640	2050	1740	1410	800
	6500	3000	2470	1930	1640	1330	753
	7000	2810	2320	1810	1530	1250	708
	7500	2620	2160	1690	1440	1170	663
	8000	2440	2020	1580	1340	1090	621
	8500	2270	1880	1480	1250	1020	580
	9000	2110	1750	1380	1170	957	542
	9500	1970	1640	1290	1090	894	506
	10000	1830	1530	1200	1020	836	473
	10500	1710	1420	1120	954	781	442
	11000	1600	1330	1050	892	731	414
	11500	1490	1240	979	834	685	387
	12000	1390	1160	917	782	642	363
	12500	1310	1090	860	733	602	340
	13000	1220	1020	807	688	566	320
	14000	1080	902	713	609	501	283
	15000	958	801	634	541	445	252
	16000	855	715	566	483	398	225
	17000	766	641	508	434	357	202
	18000	690	578	458	391	322	182
PROPERTIES AND DESIGN DATA							
$\begin{aligned} & \text { Area }\left(\mathrm{mm}^{2}\right) \\ & \mathrm{r}(\mathrm{~mm}) \\ & M_{r}(\mathrm{kN} \cdot \mathrm{~m}) \\ & \left(\mathrm{b}_{\mathrm{el}} / \mathrm{t}\right) \sqrt{350} \end{aligned}$		14500	11800	9090	7650	6190	4710
		96.1	97.6	99.1	99.9	101	101
		400	334	260	221	155	96.6
		224	299	424	524	673	919
IMPERIAL SIZE AND WEIGHT							
Weight (lb.ft.)		76.4	62.5	47.9	40.4	32.6	24.8
Thickness (in.)		0.625	0.500	0.375	0.313	0.250	0.188
Size (in.)		10×10					

\ddagger Class 4
\# C, calculated according to S16-14 Clause 13.3.5(b)

SQUARE HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

G40.21 350W CLASS C $\phi=0.90$

Section ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)		HSS 203×203					
		16	13	9.5	7.9	6.4	$\ddagger 4.8$
Mass (kg/m)		88.3	72.7	56.1	47.4	38.4	29.3
Effective length (KL) in millimetres with respect to the least radius of gyration	0	3530	2920	2250	1900	1540	1100
	500	3520	2910	2250	1900	1540	1100
	1000	3500	2900	2240	1890	1530	1090
	1500	3450	2860	2210	1870	1520	1080
	2000	3370	2800	2160	1830	1490	1060
	2500	3260	2710	2100	1770	1440	1030
	3000	3110	2590	2010	1700	1390	987
	3500	2940	2450	1910	1620	1320	940
	4000	2750	2300	1800	1520	1240	888
	4500	2550	2140	1680	1420	1160	831
	5000	2350	1980	1550	1320	1080	774
	5500	2160	1820	1430	1220	999	716
	6000	1980	1670	1320	1120	920	661
	6500	1810	1530	1210	1030	846	608
	7000	1650	1400	1110	947	776	559
	7500	1510	1280	1010	868	712	513
	8000	1380	1170	929	796	654	471
	8500	1260	1070	853	731	601	433
	9000	1150	985	783	672	552	398
	9500	1060	905	721	618	509	367
	10000	974	834	664	570	469	339
	10500	898	769	613	527	434	313
	11000	830	712	568	488	402	290
	11500	769	659	526	452	373	269
	12000	714	612	489	420	346	250
	12500	664	570	455	392	323	233
	13000	619	531	425	365	301	218
	14000	540	464	371	320	263	191
	15000	476	409	327	282	232	168
	16000 17000						149
	18000						
PROPERTIES AND DESIGN DATA							
$\begin{aligned} & \text { Area }\left(\mathrm{mm}^{2}\right) \\ & \mathrm{r}(\mathrm{~mm}) \\ & \mathrm{M}_{\mathrm{r}}(\mathrm{kN} \cdot \mathrm{~m}) \\ & \left(\mathrm{b}_{\mathrm{el}} / \mathrm{t}\right) \sqrt{350} \end{aligned}$		11200	9260	7150	6040	4900	3730
		75.3	76.9	78.4	79.2	79.9	80.7
		244	205	162	138	113	71.6
		165	224	324	404	524	720
IMPERIAL SIZE AND WEIGHT							
Weight (lb./ft.)		59.3	48.9	37.7	31.9	25.8	19.7
Thickness (in.)		0.625	0.500	0.375	0.313	0.250	0.188
Size (in.)		8×8					

\ddagger Class 4

SQUARE HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

Y

Section ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)		HSS 178×178						HSS 152×152				
		16	13	9.5	7.9	6.4	$\dagger 4.8$	13	9.5	7.9	6.4	4.8
	(kg/m)	75.6	62.6	48.5	41.1	33.4	25.5	52.4	40.9	34.7	28.3	21.7
	0	3040	2510	1950	1650	1340	1020	2100	1640	1400	1140	869
	500	3030	2510	1940	1650	1340	1020	2100	1640	1390	1130	868
	1000	3000	2490	1930	1630	1330	1010	2070	1620	1380	1120	858
	1500	2940	2440	1890	1600	1300	998	2010	1570	1340	1090	837
	2000	2840	2360	1840	1560	1270	971	1910	1500	1280	1050	802
	2500	2710	2250	1760	1490	1220	932	1780	1410	1200	984	755
	3000	2540	2120	1660	1410	1150	883	1630	1290	1110	910	700
	3500	2350	1970	1540	1320	1080	826	1480	1170	1010	829	639
	4000	2150	1810	1420	1220	995	766	1320	1050	907	748	578
	4500	1950	1650	1300	1110	913	704	1170	939	810	670	518
	5000	1760	1490	1180	1010	833	643	1040	835	721	597	463
	5500	1590	1350	1070	920	757	585	917	741	641	532	413
	6000	1430	1220	971	833	686	531	812	658	570	474	368
	6500	1290	1100	877	754	622	482	721	586	508	423	329
	7000	1160	992	794	683	564	437	643	523	454	378	294
	7500	1050	897	719	619	511	397	575	468	407	339	264
	8000	946	812	652	562	465	361	516	421	366	305	238
	8500	858	738	593	511	423	329	465	380	330	276	215
	9000	781	672	541	466	386	300	421	344	299	250	195
	9500	712	614	494	427	353	275	382	312	272	227	177
	10000	652	562	453	391	324	252	348	285	248	207	162
	10500	598	516	416	360	298	232	318	261	227	190	148
	11000	550	475	384	331	275	214	292	239	209	174	136
	11500	508	439	354	306	254	198			192	161	126
	12000	470	406	328	284	235	183					
	12500	436	377	305	263	219	170					
	$\begin{aligned} & 13000 \\ & 14000 \\ & 15000 \\ & 16000 \\ & 17000 \end{aligned}$		351	283	245	203	$\begin{aligned} & 158 \\ & 138 \end{aligned}$					
	18000											
PROPERTIES AND DESIGN DATA												
	$\left(\mathrm{mm}^{2}\right)$	9640	7970	6180	5230	4250	3250	6680	5210	4430	3610	2760
		64.9	66.5	68.0	68.8	69.6	70.3	56.1	57.6	58.4	59.2	59.9
	$\mathrm{N} \cdot \mathrm{m}$)	180	152	121	104	85.4	57.0	108	86.6	74.7	61.7	47.9
		135	187	274	344	449	621	150	224	284	374	522
IMPERIAL SIZE AND WEIGHT												
	ht (lb.fft.)	50.8	42.1	32.6	27.6	22.4	17.1	35.2	27.5	23.3	19.0	14.6
	ness (in.)	0.625	0.500	0.375	0.313	0.250	0.188	0.500	0.375	0.313	0.250	0.188
	(in.)	7×7						6×6				

SQUARE HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

G40.21 350W CLASS C $\phi=0.90$

Section ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)				HSS			
		13	9.5	7.9	6.4	4.8	$\ddagger 3.2$ \#
Mass (kg/m)		42.3	33.3	28.4	23.2	17.9	12.2
	0	1700	1340	1140	932	718	485
	500	1690	1330	1140	929	716	483
	1000	1650	1300	1110	912	703	475
	1500	1570	1240	1070	874	675	457
	2000	1450	1160	991	815	631	428
	2500	1300	1040	899	742	576	392
	3000	1140	925	799	661	515	352
	3500	992	808	700	581	454	312
	4000	855	700	608	507	397	273
	4500	736	606	527	440	346	239
	5000	634	524	457	383	301	208
$\begin{aligned} & \text { © } \\ & \stackrel{5}{E} \\ & \hline \end{aligned}$	5500	549	455	398	333	263	182
	6000	478	397	347	292	230	160
	6500	418	349	305	256	203	141
	7000	368	307	269	226	179	125
	7500	326	273	239	201	159	111
育	8000	290	243	213	179	142	99
	8500	260	218	191	161	128	89
	9000	234	196	172	145	115	80
	9500			156	131	104	73
	10000						66
	10500						
	11000						
	11500						
	12000						
	13000						
	$\begin{aligned} & 15000 \\ & 16000 \end{aligned}$						
	17000						
	18000						
PROPERTIES AND DESIGN DATA							
$\begin{aligned} & \text { Area }\left(\mathrm{mm}^{2}\right) \\ & r(\mathrm{~mm}) \\ & M_{\mathrm{t}}(\mathrm{kN} \cdot \mathrm{~m}) \\ & \left(\mathrm{b}_{\mathrm{el}} / \mathrm{t}\right) \sqrt{350} \end{aligned}$		5390	4240	3620	2960	2280	1550
		45.7	47.3	48.0	48.8	49.6	50.3
		70.9	57.6	50.1	41.6	32.4	19.4
		112	174	224	299	422	672
IMPERIAL SIZE AND WEIGHT							
Weight (lb./ft.)		28.4	22.4	19.1	15.6	12.0	8.17
Thickness (in.)		0.500	0.375	0.313	0.250	0.188	0.125
Size (in.)		5×5					

SQUARE HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

Y

SQUARE HOLLOW SECTIONS

G40.21 350W CLASS C
$\phi=0.90$
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

Y

RECTANGULAR HOLLOW SECTIONS

G40.21 350W CLASS C
$\phi=0.90$
Y

Section ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)		HSS 305×203					HSS 305×152				
		16	13	9.5	+7.9	$\ddagger 6.4$	16	13	9.5	$\dagger 7.9$	$\ddagger 6.4$
Mass (kg/m)		114	93.0	71.3	60.1	48.6	101	82.8	63.7	53.7	43.5
	0	4570	3720	2860	2410	1740	4060	3340	2560	2160	1540
	500	4560	3710	2860	2410	1740	4060	3330	2550	2150	1530
	1000	4540	3700	2850	2400	1730	4010	3300	2530	2130	1520
	1500	4490	3650	2820	2370	1710	3910	3220	2470	2090	1490
	2000	4400	3580	2760	2330	1680	3750	3100	2380	2010	1440
	2500	4270	3480	2690	2270	1640	3530	2930	2260	1910	1370
	3000	4100	3350	2590	2190	1580	3280	2720	2110	1790	1280
	3500	3900	3190	2480	2090	1520	2990	2500	1940	1650	1180
	4000	3670	3020	2340	1980	1440	2710	2270	1770	1510	1080
	4500	3440	2830	2200	1860	1350	2430	2040	1600	1360	981
	5000	3190	2630	2060	1740	1270	2170	1830	1440	1230	886
	5500	2950	2440	1910	1620	1180	1940	1640	1290	1100	797
	6000	2720	2250	1770	1500	1090	1730	1460	1160	991	716
	6500	2500	2070	1630	1380	1010	1540	1310	1040	890	644
	7000	2290	1910	1500	1270	930	1380	1180	932	801	580
	7500	2100	1750	1380	1170	857	1240	1060	839	722	523
	8000	1930	1610	1270	1080	790	1120	954	758	652	473
	8500	1770	1480	1170	996	728	1010	863	686	591	429
	9000	1630	1360	1080	918	672	916	783	624	537	390
	9500	1500	1260	995	848	621	834	713	568	490	356
	10000	1390	1160	919	784	574	761	652	520	448	325
	10500	1280	1070	851	726	532	697	597	476	411	299
	11000	1190	993	789	673	493	641	549	438	378	275
	11500	1100	922	733	625	458	590	506	404	349	254
	12000	1020	858	682	582	427	545	468	374	323	235
	12500	952	799	635	543	398			346	299	217
	13000	889	746	593	507	372					
	14000	778	653	520	444	326					
	15000	686	576	459	392	288					
	16000		511	408	348	256					
PROPERTIES AND DESIGN DATA											
Area (mm^{2})		14500	11800	9090	7650	6190	12900	10600	8120	6850	5540
$\mathrm{r}_{\mathrm{x}}(\mathrm{mm})$		110	111	113	114	115	105	106	108	109	110
$r_{y}(\mathrm{~mm})$		79.8	81.2	82.7	83.4	84.1	60.1	61.5	62.9	63.7	64.4
$\mathrm{r}_{\mathrm{x}} / \mathrm{r}_{\mathrm{y}}$		1.38	1.37	1.37	1.37	1.37	1.75	1.72	1.72	1.71	1.71
$\mathrm{Mrx}^{\text {(}} \mathrm{kN} \cdot \mathrm{m}$)		450	375	292	248	^ 202	375	315	247	210	- 171
$M_{r y}(\mathrm{kN} \cdot \mathrm{m})$		340	283	221	165	116	230	193	152	115	80.5
$\left(\mathrm{b}_{\text {el }} / \mathrm{t}\right) \sqrt{350}$		284	374	524	643	823	284	374	524	643	823
IMPERIAL SIZE AND WEIGHT											
Weight (lb./ft.)		76.4	62.5	47.9	40.4	32.6	67.8	55.7	42.8	36.1	29.2
Thickness (in.)		0.625	0.500	0.375	0.313	0.250	0.625	0.500	0.375	0.313	0.250
Size (in.)		12×8					12×6				

\dagger Class 3 in bending about $Y-Y$ axis $\quad{ }^{\wedge} M_{r x}$ decreases for C_{r} values above the number in bold. Check the class of section. \ddagger Class 4

RECTANGULAR HOLLOW SECTIONS

G40.21 350W
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$ CLASS C
$\phi=0.90$

Section ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)		HSS 254×203					HSS 254×152					
		16	13	9.5	7.9	$\ddagger 6.4$	16	13	9.5	7.9	$\ddagger 6.4$	$\ddagger 4.8$
Mass (kg/m)		101	82.8	63.7	53.7	43.5	88.3	72,7	56.1	47.4	38.4	29.3
	0	4060	3340	2560	2160	1740	3530	2920	2250	1900	1540	983
	500	4060	3340	2560	2160	1740	3520	2910	2250	1900	1540	981
	1000	4040	3320	2540	2150	1730	3480	2880	2230	1880	1520	972
	1500	3990	3280	2510	2120	1710	3390	2810	2170	1840	1490	952
	2000	3900	3210	2460	2080	1680	3240	2690	2090	1770	1430	918
	2500	3780	3110	2390	2020	1630	3050	2540	1980	1680	1360	872
	3000	3620	2990	2300	1950	1570	2810	2360	1840	1560	1270	815
	3500	3440	2840	2190	f 860	1500	2560	2150	1690	1440	1170	752
	4000	3230	2680	2070	1760	1420	2310	1950	1530	1310	1070	687
	4500	3010	2500	1940	1650	1330	2060	1750	1380	1180	964	622
	5000	2790	2320	1810	1530	1240	1840	1560	1240	1060	868	561
	5500	2570	2150	1670	1420	1160	1640	1400	1110	950	779	504
	6000	2360	1980	1540	1310	1070	1460	1250	992	851	698	453
	6500	2160	1810	1420	1210	985	1300	1110	889	763	627	407
	7000	1980	1660	1300	1110	907	1160	997	797	685	563	366
	7500	1810	1530	1200	1020	834	1040	896	717	617	507	330
	8000	1660	1400	1100	940	767	936	807	647	557	458	298
	8500	1520	1290	1010	865	706	845	729	585	504	415	270
	9000	1400	1180	931	797	651	766	662	531	458	377	246
	9500	1290	1090	858	734	600	697	602	484	417	344	224
	10000	1190	1000	792	678	554	636	550	442	381	314	205
	10500	1100	927	732	627	513	582	504	405	349	288	188
	11000	1010	858	678	581	476	534	463	373	321	265	173
	11500	939	796	629	540	442	492	426	343	296	245	159
	12000	872	739	585	502	411		394	317	274	226	147
	12500	812	689	545	468	383					210	137
	13000	757	642	509	437	358						
	14000	662	562	446	383	313						
	15000	584	496	393	338	277						
	16000			349	300	246						
PROPERTIES AND DESIGN DATA												
Area $\left(\mathrm{mm}^{2}\right)$		12900	10600	8120	6850	5540	11200	9260	7150	6040	4900	3730
$\mathrm{r}_{\mathrm{x}}(\mathrm{mm})$		92.8	94.4	96.0	96.8	97.6	88.3	90.1	91.9	92.8	93.6	94.5
$\mathrm{r}_{y}(\mathrm{~mm})$		77.9	79.3	80.8	81.6	82.3	58.8	60.3	61.7	62.4	63.1	63.8
r_{x} / r_{y}		1.19	1.19	1.19	1.19	1.19	1.50	1.49	1.49	1.49	1.48	1.48
$\mathrm{M}_{\mathrm{cx}}(\mathrm{kN} \cdot \mathrm{m})$		340	284	223	190	^ 155	280	235	186	158	^ 129	^ 99.9
$\mathrm{M}_{\text {ry }}(\mathrm{kN} \cdot \mathrm{m})$		291	244	191	163	116	195	164	130	111	80,3	49.1
$\left(\mathrm{b}_{\text {el }} / \mathrm{t}\right) \sqrt{350}$		224	299	424	524	673	224	299	424	524	673	919
IMPERIAL SIZE AND WEIGHT												
Weight (lb./ft.)		67.8	55.7	42.8	36.1	29.2	59.3	48.9	37.7	31.9	25.8	19.7
Thickness (in.)		0.625	0.500	0.375	0.313	0.250	0.625	0.500	0.375	0.313	0.250	0.188
Size (in.)		10×8					10×6					

\ddagger Class 4
${ }^{\wedge} M_{x x}$ decreases for C_{r} values above the number in bold. Check the class of section.

RECTANGULAR HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

G40.21 350W CLASS C
$\phi=0.90$

Section ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)		HSS 203×152						HSS 203×102				
		16	13	9.5	7.9	6.4	$\ddagger 4.8$	13	9.5	7.9	6.4	$\ddagger 4.8$
	(kg/m)	75.6	62.6	48.5	41.1	33.4	25.5	52.4	40.9	34.7	28.3	21.7
	0	3040	2510	1950	1650	1340	985	2100	1640	1400	1140	831
	500	3030	2510	1940	1640	1340	983	2090	1630	1390	1130	826
	1000	2990	2480	1920	1630	1320	973	2020	1580	1350	1100	804
	1500	2910	2410	1870	1590	1290	951	1880	1480	1260	1030	758
	2000	2770	2310	1800	1520	1240	915	1680	1330	1140	938	690
	2500	2590	2160	1690	1440	1170	867	1450	1160	1000	825	610
	3000	2380	2000	1570	1340	1090	807	1230	992	859	712	528
	3500	2160	1820	1430	1220	1000	742	1030	839	730	607	451
	4000	1930	1640	1290	1110	909	675	865	708	618	515	384
	4500	1720	1460	1160	996	819	609	729	599	524	438	328
	5000	1530	1300	1040	892	734	547	618	510	447	374	280
	5500	1360	1160	926	797	657	490	528	437	384	321	241
	6000	1200	1030	826	712	587	439	455	377	332	278	209
	6500	1070	919	738	636	526	393	395	328	289	242	182
	7000	954	821	660	570	472	353	345	287	253	212	160
	7500	854	736	593	513	424	318	304	253	223	188	141
	8000	767	662	534	462	382	287		225	198	167	125
	8500	692	598	483	418	346	259					112
	9000	626	542	438	379	314	236					
	9500	569	493	398	345	286	215					
	10000	519	450	364	315	261	196					
	10500	475	412	333	289	240	180					
	11000	436	378	306	265	220	165					
	11500		348	282	245	203	152					
	12000			261	226	188	141					
	12500											
	$\begin{aligned} & 13000 \\ & 14000 \\ & 15000 \\ & 16000 \end{aligned}$											
PROPERTIES AND DESIGN DATA												
Area (mm^{2})		9640	7970	6180	5230	4250	3250	6680	5210	4430	3610	2760
$\mathrm{r}_{\mathrm{x}}(\mathrm{mm})$		71.7	73.4	75.1	75.9	76.7	77.5	68.4	70.3	71.2	72.2	73.1
$r_{y}(\mathrm{~mm})$		57.1	58.6	60.0	60.8	61.5	62.2	39.1	40.5	41.3	42.0	42.7
r_{x} / r_{y}		1.26	1.25	1.25	1.25	1.25	1.25	1.75	1.74	1.72	1.72	1.71
$\mathrm{Mrx}_{\text {(}}(\mathrm{kN} \cdot \mathrm{m})$		196	166	132	113	92.9	^71.8	128	103	88.5	73.1	^ 56.7
$\mathrm{Mry}^{\text {(}}$ (kN$\cdot \mathrm{m}$)		160	136	108	92.9	76.5	49.3	77.5	62.7	54.2	45.0	29.4
$\left(\mathrm{b}_{\text {el }} / \mathrm{t}\right) \sqrt{350}$		165	224	324	404	524	720	224	324	404	524	720
IMPERIAL SIZE AND WEIGHT												
Weight (lb./ft.)		50.8	42.1	32.6	27.6	22.4	17.1	35.2	27.5	23.3	19.0	14.6
Thickness (in.)		0.625	0.500	0.375	0.313	0.250	0.188	0.500	0.375	0.313	0.250	0.188
Size (in.)		8×6						8×4				

\ddagger Class 4
${ }^{\wedge} M_{r x}$ decreases for C_{r} values above the number in bold. Check the class of section.

RECTANGULAR HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

G40.21 350W
CLASS C
$\phi=0.90$

\dagger Class 3 in bending about $Y-Y$ axis $\quad \wedge M_{r x}$ decreases for C_{r} values above the number in bold. Check the class of section.
\ddagger Class 4

RECTANGULAR HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

G40.21 350W CLASS C
$\phi=0.90$

\ddagger Class 4
${ }^{\wedge} \mathrm{M}_{\mathrm{rx}}$ decreases for C_{r} values above the number in bold. Check the class of section.

RECTANGULAR HOLLOW SECTIONS

Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

\ddagger Class 4
${ }^{\wedge} M_{r x}$ decreases for C_{r} values above the number in bold. Check the class of section.

RECTANGULAR HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

G40.21 350W CLASS C $\phi=0.90$

RECTANGULAR HOLLOW SECTIONS

G40.21 350W
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

RECTANGULAR HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

G40.21 350W CLASS C
$\phi=0.90$

Section ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)		HSS 76×38			HSS 64×38			HSS 51×25	
		6.4	4.8	3.2	6.4	4.8	3.2	4.8	3.2
	(kg/m)	9.31	7.40	5.18	8.05	6.45	4.55	4.54	3.28
	0	375	297	208	324	259	183	182	132
	500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000 10500 11000 11500 12000 12500 13000 14000 15000 16000	$\begin{array}{r} 341 \\ 235 \\ 144 \\ 92 \\ 62 \end{array}$	$\begin{array}{r} 273 \\ 194 \\ 122 \\ 79 \\ 53 \end{array}$	$\begin{array}{r} 193 \\ 141 \\ 91 \\ 60 \\ 41 \\ 29 \end{array}$	$\begin{array}{r} 293 \\ 197 \\ 120 \\ 75 \\ 51 \end{array}$	$\begin{array}{r} 236 \\ 165 \\ 103 \\ 66 \\ 44 \end{array}$	$\begin{array}{r} 169 \\ 122 \\ 78 \\ 51 \\ 35 \\ 25 \end{array}$	$\begin{array}{r} 139 \\ 67 \\ 35 \end{array}$	$\begin{array}{r} 105 \\ 54 \\ 28 \end{array}$

PROPERTIES AND DESIGN DATA

Area (mm^{2})	1190	942	660	1030	821	580	578	418
$\mathrm{r}_{\mathrm{x}}(\mathrm{mm})$	24.7	25.6	26.6	20.7	21.6	22.5	16.1	17.1
$\mathrm{r}_{\mathrm{y}}(\mathrm{mm})$	14.0	14.7	15.4	13.6	14.3	15.1	9.08	9.78
r_{x} / r_{y}	1.76	1.74	1.73	1.52	1.51	1.49	1.77	1.75
$\mathrm{Mrx}_{\text {(}}(\mathrm{kN} \cdot \mathrm{m})$	8.16	6.74	4.91	5.92	4.98	3.69	2.59	2.00
$\mathrm{Mry}^{\text {(}}$ ($\mathrm{kN} \cdot \mathrm{m}$)	4.91	4.10	3.02	4.10	3.47	2.57	1.55	1.21
$\left(\mathrm{b}_{\text {el }} / \mathrm{t}\right) \sqrt{350}$	150	223	373	112	174	299	124	224
IMPERIAL SIZE AND WEIGHT								
Weight (lb./ft.)	6.26	4.97	3.48	5.41	4.33	3.06	3.05	2.21
Thickness (in.)	0.250	0.188	0.125	0.250	0.188	0.125	0.188	0.125
Size (in.)	$3 \times 11 / 2$			$21 / 2 \times 11 / 2$			2×1	

ROUND HOLLOW SECTIONS
Factored Axial Compressive
Resistances, C_{r} (kN)

$\begin{aligned} & \text { Section } \\ & (\mathrm{mm} \times \mathrm{mm}) \end{aligned}$		HSS 406				HSS 356			HSS 324		
		16	13	9.5	+6.4	13	9.5	$\dagger 6.4$	13	9.5	6.4
	(kg / m)	153	123	93.3	62.6	107	81.3	54.7	97.5	73.9	49.7
	0	6140	4950	3750	2510	4320	3280	2200	3910	2960	1990
	500	6140	4940	3750	2510	4310	3270	2190	3900	2960	1990
	1000	6130	4940	3740	2510	4310	3270	2190	3900	2960	1990
	1500	6120	4930	3730	2500	4290	3260	2180	3880	2940	1980
	2000	6090	4900	3720	2490	4260	3240	2170	3840	2920	1960
	2500	6040	4870	3690	2480	4220	3200	2150	3790	2880	1940
	3000	5980	4820	3650	2450	4160	3160	2120	3720	2830	1900
	3500	5900	4760	3610	2420	4080	3100	2080	3640	2760	1860
	4000	5810	4680	3550	2380	3990	3030	2040	3530	2690	1810
	4500	5690	4590	3480	2340	3880	2950	1980	3420	2600	1750
	5000	5560	4490	3410	2290	3760	2860	1920	3290	2500	1690
Effective length (KL) in millimetres with	5500	5420	4370	3320	2230	3630	2770	1860	3150	2400	1620
	6000	5260	4250	3230	2170	3490	2660	1790	3000	2290	1550
	6500	5090	4110	3130	2100	3340	2550	1720	2850	2180	1470
	7000	4910	3970	3020	2030	3190	2440	1640	2700	2060	1400
	7500	4730	3820	2910	1960	3040	2320	1570	2550	1950	1320
	8000	4540	3670	2800	1880	2890	2210	1490	2400	1840	1250
	8500	4350	3520	2680	1810	2740	2100	1420	2260	1730	1180
	9000	4160	3370	2570	1730	2600	1990	1340	2130	1630	1110
	9500	3970	3220	2460	1660	2460	1880	1270	2000	1530	1040
	10000	3790	3070	2350	1580	2320	1780	1200	1880	1440	980
	10500	3610	2930	2240	1510	2200	1680	1140	1760	1350	922
	11000	3440	2790	2130	1440	2070	1590	1080	1660	1270	867
	11500	3280	2660	2030	1370	1960	1500	1020	1560	1200	816
	12000	3120	2530	1940	1310	1850	1420	963	1470	1130	768
	12500	2970	2410	1840	1250	1750	1340	911	1380	1060	723
	13000		2290		1190	1660	1270	862	1300		682
	14000	2560	2080	1590	1080	1480	1140	773	1160	890	607
	15000	2320	1880	1440	978	1330	1020	695	1030	795	543
	16000	2100	1710	1310	890	1200	924	627	926	714	487
	17000	1910	1560	1200	811	1090	835	568	834	643	439
	18000	1750	1420	1090	740	984	758	515	754	581	397
PROPERTIES AND DESIGN DATA											
Area $\left(\mathrm{mm}^{2}\right)$ r (mm) $\mathrm{M}_{\mathrm{r}}(\mathrm{kN} \cdot \mathrm{m})$ (D/t) 350		19500	15700	11900	7980	13700	10400	6970	12400	9410	6330
		138	139	140	141	121	122	123	110	111	112
		762	621	473	248	469	359	188	387	297	202
		8960	11200	14900	22400	9800	13100	19600	8930	11900	17900
IMPERIAL SIZE AND WEIGHT											
	ht (lb./ft.)	103	82.9	62.7	42.1	72.2	54.7	36.8	65.5	49.6	33.4
	ness (in.)	0.625	0.500	0.375	0.250	0.500	0.375	0.250	0.500	0.375	0.250
Size (in.)		16 OD				14 OD			12.75 OD		

\dagger Class 3

Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

$\begin{aligned} & \text { Section } \\ & (\mathrm{mm} \times \mathrm{mm}) \end{aligned}$		HSS 273					HSS 245	
		13	9.5	7.9	6.4	$\dagger 4.8$	9.5	6.4
	(kg/m)	81.6	61.9	51.9	41.8	31.6	55.2	37.3
Effective length (KL) in millimetres with respect to the least radius of gyration	0	3280	2490	2080	1680	1270	2210	1500
	500	3270	2480	2080	1670	1270	2210	1500
	1000	3260	2480	2070	1670	1260	2200	1490
	1500	3240	2460	2060	1660	1260	2180	1470
	2000	3190	2420	2030	1630	1240	2140	1450
	2500	3130	2370	1990	1600	1220	2080	1410
	3000	3040	2310	1940	1560	1180	2010	1360
	3500	2930	2230	1870	1510	1140	1920	1300
	4000	2810	2140	1800	1450	1100	1820	1240
	4500	2670	2040	1710	1380	1050	1710	1160
	5000	2520	1930	1620	1310	995	1600	1090
	5500	2370	1810	1530	1230	938	1480	1010
	6000	2220	1700	1430	1160	881	1370	938
	6500	2070	1590	1340	1080	825	1270	867
	7000	1930	1480	1250	1010	770	1170	800
	7500	1800	1380	1160	941	718	1070	738
	8000	1670	1280	1080	876	668	989	680
	8500	1550	1190	1000	814	622	911	627
	9000	1440	1110	934	757	578	840	578
	9500	1330	1030	868	704	538	775	534
	10000	1240	955	808	655	501	716	494
			889	752		466	663	458
	11000	1070	828	701	569	435	615	424
	11500	1000	773	654	531	406	571	395
	12000	935	722	611	496	380	532	367
	12500	874	675	572	464	355	496	343
	13000	819	633	536	435	333	463	320
	14000	721	557	472	384	294	406	281
	15000	639	494	419	340	261	358	248
	16000	569	440	373	303	232	318	220
	17000	510	394	334	272	208		
	18000	459	355	301	245	187		
PROPERTIES AND DESIGN DATA								
	$\left(\mathrm{mm}^{2}\right)$	10400	7890	6610	5320	4030	7030	4750
		92.2	93.2	93.8	94.3	94.9	83.1	84.2
	$\mathrm{N} \cdot \mathrm{m})$	272	209	176	142	83.8	166	113
		7530	10000	12000	15100	20000	8980	13500
IMPERIAL SIZE AND WEIGHT								
	ht (lb./ft.)	54.8	41.6	34.9	28.1	21.3	37.1	25.1
	ness (in.)	0.500	0.375	0.313	0.250	0.188	0.375	0.250
	ze (in.)	10.75 OD					9.625 OD	

\dagger Class 3

ROUND HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

G40.21 350W CLASS C $\phi=0.90$

G40.21 350W
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

ROUND HOLLOW SECTIONS
Factored Axial Compressive Resistances， $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$
$\phi=0.90$

$\begin{aligned} & \text { Section } \\ & (\mathrm{mm} \times \mathrm{mm}) \end{aligned}$		HSS 89			HSS 76			HSS 73		
		6.4	4.8	3.2	6.4	4.8	3.2	6.4	4.8	3.2
Mass（kg／m）		12.9	9.92	6.72	10.9	8.42	5.73	10.4	8.04	5.48
	0	520	397	270	438	337	230	419	321	220
	500	513	392	266	428	330	225	409	314	215
	1000	477	366	249	385	298	204	363	280	193
	1500	414	319	218	314	245	169	291	226	157
	2000	339	263	181	242	191	133	220	173	121
	2500	270	210	145	184	145	102	165	130	92
	3000	213	167	116	140	112	78	125	99	70
	3500	170	133	93	109	87	61	97	77	54
	4000	137	108	75	87	69	49	77	61	43
	4500	112	88	62	70	56	40	62	49	35
	5000	93	73	51		46	33			
$\stackrel{\otimes}{\leftrightarrows}$	5500	78	62	43						
응	6000			37						
$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \text { D } \end{aligned}$	6500									
	7000									
	7500									
	8000									
¢	8500									
	9000									
	9500									
E	10000									
．	10500									
$\frac{3}{3}$	11000									
䂞	11500									
	12000									
¢	12500									
0亲ó岕	13000									
	14000									
	15000									
	16000									
	17000									
	18000									
PROPERTIES AND DESIGN DATA										
Area（ mm^{2} ）		1650	1260	856	1390	1070	729	1330	1020	698
r （mm）		29.3	29.8	30.3	24.8	25.3	25.8	23.7	24.2	24.7
$\mathrm{M}_{\mathrm{r}}(\mathrm{kN} \cdot \mathrm{m})$		13.7	10.7	7.37	9.80	7.69	5.36	8.91	7.02	4.88
（D／t） 350		4900	6510	9780	4200	5580	8390	4020	5350	8030
IMPERIAL SIZE AND WEIGHT										
Weight（（1b．／ft．）		8.69	6.66	4.52	7.35	5.66	3.85	7.01	5.40	3.68
Thickness（in．）		0.250	0.188	0.125	0.250	0.188	0.125	0.250	0.188	0.125
Size（in．）		3.5 OD			300			2.875 OD		

Factored Axial Compressive

Section ($\mathrm{mm} \times \mathrm{mm}$)			HSS 64			HSS 60			
		6.4	4.8	3.2	6.4	4.8	3.2	4.8	3.2
Mass (kg/m)		8.95	6.92	4.73	8.45	6.54	4.48	5.13 '	3.54
	0	359	278	190	340	263	180	206	142
	500	346	268	184	326	252	173	191	133
	1000	291	228	158	268	210	146	141	100
	1500	218	172	121	195	154	108	91	66
	2000	155	124	88	136	109	77	60	43
	2500	112	90	64	97	78	56	41	30
	3000	83	67	48	71	58	41	29	21
	3500	63	51	37	54	44	31		
	4000	49	40	29			25		
	4500								
	5000								
	5500								
	6000								
	6500								
	7000								
	7500								
	8000								
	8500								
	9000								
	9500								
	10000								
	10500								
	11000								
	11500								
	12500								
	13000								
	14000								
	15000								
	16000								
	17000								
PROPERTIES AND DESIGN DATA									
Area (mm^{2}) r (mm) $\mathrm{M}_{\mathrm{r}}(\mathrm{kN} \cdot \mathrm{m})$ (D/t) 350		1140	882	603	1080	834	571	654	451
		20.3	20.8	21.4	19.2	19.7	20.2	15.5	16.0
		6.55	5.20	3.65	5.86	4.66	3.28	2.86	2.04
		3500	4650	6990	3320	4420	6640	3540	5320
IMPERIAL SIZE AND WEIGHT									
Weight (lb./ft.)		6.01	4.65	3.18	5.68	4.40	3.01	3.45	2.38
Thickness (in.)		0.250	0.188	0.125	0.250	0.188	0.125	0.188	0.125
Size (in.)		2.5 OD			2.375 OD			1.9 OD	

SQUARE HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

G40.21 350W CLASS H
$\phi=0.90$

Section ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)		HSS 559×559				
		19^{*}	22*	19**	$16 *$	$\ddagger 13^{*}$ \#
Mass (kg/m)		316	329	285	240	194
	0	12700	13200	11400	9640	7700
	500	12700	13200	11400	9640	7700
	1000	12700	13200	11400	9640	7700
	1500	12700	13200	11400	9640	7700
	2000	12700	13200	11400	9640	7700
	2500	12700	13200	11400	9640	7700
	3000	12700	13200	11400	9640	7700
	3500	12700	13200	11400	9630	7700
	4000	12700	13200	11400	9630	7690
	4500	12600	13200	11400	9620	7690
	5000	12600	13200	11400	9610	7680
	5500	12600	13100	11400	9590	7660
	6000	12600	13100	11300	9570	7650
	6500	12600	13100	11300	9540	7620
	7000	12500	13000	11300	9500	7590
	7500	12500	12900	11200	9450	7560
	8000	12400	12800	11100	9390	7510
	8500	12400	12700	11000	9320	7460
	9000	12300	12600	10900	9230	7390
	9500	12200	12500	10800	9130	7310
	10000	12100	12300	10700	9020	7220
	10500	12000	12100	10500	8880	7120
	11000	11800	11900	10300	8730	7000
	11500	11700	11600	10100	8570	6880
	12000	11500	11400	9890	8390	6740
	12500	11300	11100	9660	8190	6580
	13000	11100	10800	9410	7990	6420
	14000	10600	10200	8880	7550	6080
	15000	10100	9550	8320	7080	5720
	16000	9540	8890	7750	6610	5340
	17000	8980	8250	7200	6140	4970
	18000	8410	7640	6660	5700	4610
PROPERTIES AND DESIGN DATA						
$\begin{aligned} & \text { Area }\left(\mathrm{mm}^{2}\right) \\ & r(\mathrm{~mm}) \\ & M_{\mathrm{r}}(\mathrm{kN} \cdot \mathrm{~m}) \\ & \left(\mathrm{b}_{\mathrm{el}} / \mathrm{t}\right) \sqrt{350} \end{aligned}$		40200	41900	36300	30600	24700
		219	197	198	200	201
		2540	2380	2080	1770	1240
		474	353	424	524	673
IMPERIAL SIZE AND WEIGHT						
Weight (lb./ft.)		212	221	192	162	131
Thickness (in.)		0.750	0.875	0.750	0.625	0.500
Size (in.)		22×22	20×20			

* Imported section
\# C, calculated according to S16-14 Clause 13.3.5(b)
\ddagger Class 4

SQUARE HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

G40.21 350W CLASS H
$\phi=0.90$

Section ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)		HSS 457×457				HSS 406×406				
		22^{*}	19*	16^{*}	+13*	22*	$19 *$	16^{*}	13^{*}	$\ddagger 9.5^{*}$
Mass (kg/m)		294	255	215	174	258	224	190	154	117
	0	11800	10200	8630	6990	10400	9010	7620	6170	4370
	500	11800	10200	8 630	6990	10400	9010	7620	6170	4370
	1000	11800	10200	8630	6990	10400	9010	7620	6170	4370
	1500	11800	10200	8630	6990	10.400	9010	7620	6170	4370
	2000	11800	10200	8630	6990	10.400	9010	7620	6170	4370
	2500	11800	10200	8630	6990	10400	9010	7620	6170	4370
	3000	11800	10200	8630	6990	10400	9000	7620	6170	4370
	3500	11800	10200	8620	6990	10300	8990	7610	6160	4360
	4000	11800	10200	8610	6980	10300	8980	7600	6150	4360
	4500	11700	10200	8600	6970	10300	8960	7580	6140	4350
	5000	11700	10200	8590	6960	10300	8920	7550	6120	4330
-	5500	11700	10200	8560	6940	10200	8880	7520	6090	4310
	6000	11600	10100	8530	6910	10100	8820	7470	6060	4290
	6500	11600	10100	8490	6880	10.000	8740	7400	6010	4250
	7000	11500	10000	8430	6840	9.920	8650	7320	5940	4210
	7500	11400	9910	8360	6790	9780	8520	7220	5870	4160
	8000	11300	9810	8280	6720	9600	8380	7100	5770	4090
	8500	11100	9690	8180	6640	9400	8210	6960	5670	4020
	9000	10900	9540	8060	6550	9170	8020	6800	5540	3930
	9500	10700	9380	7920	6440	8910	7800	6630	5400	3840
	10000	10500	9190	7770	6320	8630	7570	6430	5250	3730
	10500	10300	8990	7600	6190	8330	7310	6220	5080	3610
	11000	10000	8760	7410	6040	8020	7050	6000	4910	3490
	11500	9730	8520	7210	5880	7700	6770	5770	4720	3360
	12000	9420	8260	6990	5710	7370	6490	5530	4540	3230
	12500	9110	7990	6770	5540	7040	6210	5290	4350	3100
	13000	8790	7720	6540	5350	6720	5930	5060	4160	2960
	14000	8130	7160	6070	4980	6090	5390	4600	3790	2700
	15000	7480	6600	5600	4600	5510	4880	4170	3440	2460
	16000	6860	6060	5150	4230	4980	4420	3780	3120	2230
	17000	6280	5550	4720	3890	4510	4000	3420	2830	2020
	18000	5750	5090	4330	3570	4080	3630	3110	2570	1840

PROPERTIES AND DESIGN DATA

Area (mm^{2})	37400	32500	27400	22200	32900	28600	24200	19600	14900
r (mm)	176	178	179	181	155	157	158	160	161
$\mathrm{M}_{\mathrm{r}}(\mathrm{kN} \cdot \mathrm{m})$	1900	1660	1410	995	1470	1290	1100	904	570
($\left.\mathrm{b}_{\text {el }} / \mathrm{t}\right) \sqrt{350}$	310	374	464	599	267	324	404	524	723
IMPERIAL SIZE AND WEIGHT									
Weight (lb./ft.)	197	171	144	117	174	151	127	103	78.6
Thickness (in.)	0.875	0.750	0.625	0.500	0,875	0,750	0.625	0.500	0.375
Size (in.)	18×18				16×16				

[^20]SQUARE HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

G40.21 350W CLASS H
$\phi=0.90$

Section ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)		HSS 356×356				HSS 305×305				
		16*	13^{*}	+ $9.5{ }^{*}$	$\ddagger 7.9^{*}$	16	13	9.5	$\dagger 7.9$	$\ddagger 6.4$
Mass (kg/m)		164	133	102	85.4	139	113	86.5	72.7	58.7
Effective length (KL) in millimetres with respect to the least radius of gyration	0	6580	5360	4100	3040	5580	4540	3470	2920	1940
	500	6580	5350	4090	3040	5580	4540	3460	2920	1940
	1000	6580	5350	4090	3040	5580	4540	3460	2920	1940
	1500	6580	5350	4090	3040	5570	4540	3460	2920	1940
	2000	6580	5350	4090	3040	5570	4530	3460	2920	1940
	2500	6580	5350	4090	3040	5570	4530	3460	2920	1940
	3000	6570	5350	4090	3030	5560	4520	3450	2910	1930
	3500	6560	5340	4080	3030	5540	4500	3440	2900	1930
	4000	6540	5320	4070	3020	5500	4480	3430	2890	1920
	4500	6510	5300	4060	3010	5460	4440	3400	2870	1900
	5000	6470	5270	4030	2990	5390	4390	3360	2830	1880
	5500	6420	5220	4000	2970	5290	4320	3310	2790	1860
	6000	6340	5170	3960	2940	5180	4220	3240	2740	1820
	6500	6250	5090	3900	2900	5030	4110	3160	2670	1770
	7000	6130	5000	3840	2850	4860	3970	3060	2590	1720
	7500	5990	4890	3760	2790	4660	3820	2950	2490	1660
	8000	5830	4760	3660	2720	4450	3640	2820	2390	1590
	8500	5640	4610	3550	2640	4.220	3460	2690	2280	1510
	9000	5440	4450	3430	2550	3990	3280	2550	2160	1440
	9500	5230	4280	3310	2450	3760	3090	2400	2050	1360
	10000	5000	4090	3170	2350	3530	2900	2260	1930	1280
	10500	4770	3910	3030	2250	3310	2720	2130	1810	1200
	11000	4530	3720	2890	2140	3100	2550	2000	1700	1130
	11500	4300	3530	2750	2040	2900	2390	1870	1600	1060
	12000	4070	3350	2610	1930	2710	2230	1750	1500	994
	12500	3860	3170	2470	1830	2530	2090	1640	1400	932
	13000	3640	3000	2340	1740	2370	1960	1540	1310	874
	14000	3250	2680	2090	1550	2080	1720	1350	1160	770
	15000	2910	2390	1870	1390	1840	1520	1200	1020	681
	16000	2600	2140	1680	1250	1630	1350	1060	910	605
	17000	2340	1930	1510	1120	1460	1200	949	813	540
	18000	2100	1740	1360	1010	1310	1080	852	729	484
PROPERTIES AND DESIGN DATA										
$\begin{aligned} & \text { Area }\left(\mathrm{mm}^{2}\right) \\ & r(\mathrm{~mm}) \\ & M_{r}(\mathrm{kN} \cdot \mathrm{~m}) \\ & \left(\mathrm{b}_{\mathrm{el}} / \mathrm{t}\right) \sqrt{350} \end{aligned}$		20900	17000	13000	10900	17700	14400	11000	9270	7480
		138	139	141	141	117	118	120	121	121
		832	684	454	353	595	491	381	279	197
		344	449	623	763	284	374	524	643	823
IMPERIAL SIZE AND WEIGHT										
	((lb./ft.)	110	89.7	68.4	57.4	93.4	76.1	58.1	48.9	39.4
Thi	ess (in.)	0.625	0.500	0.375	0.313	0.625	0.500	0.375	0.313	0.250
Size (in.)		14×14				12×12				

* Imported section
\dagger Class 3
\ddagger Class 4

SQUARE HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

Section ($m m \times m m \times m m$)		HSS 254×254					
		16	13	9.5	7.9	$\ddagger 6.4$ \#	$\ddagger 4.8$
Mass (kg/m)		114	93.0	71.3	60.1	48.6	36.9
	0	4570	3720	2860	2410	1930	1100
	500	4570	3720	2860	2410	1930	1100
	1000	4570	3720	2860	2410	1930	1100
	1500	4570	3720	2860	2410	1930	1100
	2000	4560	3710	2860	2410	1930	1100
	2500	4550	3700	2850	2400	1920	1100
	3000	4530	3690	2840	2390	1920	1090
	3500	4490	3660	2820	2380	1900	1090
	4000	4430	3610	2790	2350	1880	1070
	4500	4340	3540	2740	2310	1850	1060
	5000	4220	3450	2670	2250	1810	1030
	5500	4070	3330	2580	2180	1760	1000
	6000	3880	3190	2480	2100	1690	962
	6500	3680	3030	2360	2000	1620	918
	7000	3450	2850	2220	1890	1530	868
	7500	3220	2660	2080	1770	1440	816
	8000	2990	2480	1940	1650	1350	763
	8500	2760	2300	1800	1530	1250	710
	9000	2550	2120	1670	1420	1160	659
	9500	2350	1960	1540	1320	1080	610
	10000	2170	1810	1430	1220	999	565
	10500	2000	1670	1320	1120	925	523
	11000	1850	1540	1220	1040	857	484
	11500	1710	1430	1130	964	794	449
	12000	1580	1320	1050	895	737	416
	12500	1470	1230	974	831	685	387
	13000	1360	1140	906	774	638	360
	14000	1190	995	789	674	556	314
	15000	1040	872	692	591	488	276
	16000	918	770	611	522	431	243
	17000	815	684	543	464	383	216
	18000	729	611	485	415	343	194
PROPERTIES AND DESIGN DATA							
$\begin{aligned} & \text { Area }\left(\mathrm{mm}^{2}\right) \\ & r(\mathrm{~mm}) \\ & M_{r}(\mathrm{kN} \cdot \mathrm{~m}) \\ & \left(\mathrm{b}_{\mathrm{el}} / \mathrm{t}\right) \sqrt{350} \end{aligned}$		14500	11800	9090	7650	6190	4710
		96.1	97.6	99.1	99.9	101	101
		400	334	260	221	155	96.6
		224	299	424	524	673	919
IMPERIAL SIZE AND WEIGHT							
Weight (lb./ft.)		76.4	62.5	47.9	40.4	32.6	24.8
Thickness (in.)		0.625	0.500	0.375	0.313	0.250	0.188
Size (in.)		10×10					

\# C, calculated according to S16-14 Clause 13.3.5(b)

SQUARE HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

G40.21 350W CLASS H
$\phi=0.90$

Section ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)		HSS 203×203					
		16	13	9.5	7.9	6.4	$\ddagger 4.8$
Mass (kg/m)		88.3	72.7	56.1	47.4	38.4	29.3
	0	3530	2920	2250	1900	1540	1100
	500	3530	2920	2250	1900	1540	1100
	1000	3530	2920	2250	1900	1540	1100
	1500	3520	2910	2250	1900	1540	1100
	2000	3510	2910	2240	1900	1540	1090
	2500	3490	2890	2230	1890	1530	1090
	3000	3440	2850	2200	1860	1510	1080
	3500	3360	2790	2160	1830	1490	1060
	4000	3240	2700	2090	1770	1440	1030
	4500	3080	2570	2000	1700	1380	989
	5000	2880	2420	1890	1610	1310	938
¢	5500	2660	2240	1760	1500	1230	878
	6000	2430	2060	1620	1380	1130	813
	6500	2200	1870	1480	1270	1040	747
	7000	1990	1700	1350	1150	946	681
	7500	1790	1530	1220	1050	859	620
5	8000	1620	1380	1100	947	779	562
	8500	1460	1250	999	858	706	510
	9000	1320	1130	906	779	641	464
	9500	1200	1030	823	708	584	422
	10000	1090	938	750	646	532	385
$\stackrel{\bar{E}}{E}$	10500	996	857	686	590	487	352
㐫	11000	912	785	628	541	446	323
言	11500	838	721	578	498	410	297
	12000	772	664	533	459	378	274
	12500	713	614	492	424	350	254
$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{y y}{0} \\ & \frac{W}{4} \\ & \hline \end{aligned}$	13000	661	569	456	393	324	235
	14000	571	492	395	340	281	204
	15000	499	430	345	297	245	178
	16000						157
	17000						
	18000						
PROPERTIES AND DESIGN DATA							
Area (mm^{2}) r (mm) $\mathrm{M}_{\mathrm{r}}(\mathrm{kN}-\mathrm{m})$ $\left(\mathrm{b}_{\mathrm{ei}} / t\right) \sqrt{350}$		11200	9260	7150	6040	4900	3730
		75.3	76.9	78.4	79.2	79.9	80.7
		244	205	162	138	113	71.6
		165	224	324	404	524	720
IMPERIAL SIZE AND WEIGHT							
Weight (lb./ft.)		59.3	48.9	37.7	31.9	25.8	19.7
Thickness (in.)		0.625	0.500	0.375	0.313	0.250	0.188
Size (in.)		8×8					

\ddagger Class 4

SQUARE HOLLOW SECTIONS
Factored Axial Compressive
Resistances, C_{r} (kN)

G40.21 350W CLASS H $\phi=0.90$

$\begin{gathered} \text { Section } \\ (\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}) \end{gathered}$		HSS 178×178						HSS 152×152				
		16	13	9.5	7.9	6.4	$\dagger 4.8$	13	9.5	7.9	6.4	4.8
Mass (kg/m)		75.6	62.6	48.5	41.1	33.4	25.5	52.4	40.9	34.7	28.3	21.7
	0	3040	2510	1950	1650	1340	1020	2100	1640	1400	1140	869
	500	3040	2510	1950	1650	1340	1020	2100	1640	1400	1140	869
	1000	3040	2510	1950	1650	1340	1020	2100	1640	1390	1140	869
	1500	3030	2510	1940	1640	1340	1020	2100	1630	1390	1130	867
	2000	3010	2490	1930	1640	1330	1020	2070	1620	1380	1120	859
	2500	2970	2460	1910	1620	1320	1010	2020	1580	1350	1100	843
	3000	2890	2400	1870	1590	1290	989	1930	1520	1290	1060	813
	3500	2770	2310	1810	1530	1250	959	1790	1420	1210	997	767
	4000	2600	2180	1710	1460	1190	914	1620	1290	1110	916	707
	4500	2400	2020	1590	1360	1110	857	1440	1160	997	824	638
	5000	2170	1840	1460	1250	1020	791	1260	1020	881	731	567
	5500	1940	1660	1320	1130	931	720	1100	891	773	642	499
	6000	1730	1480	1180	1020	838	649	955	777	676	563	438
	6500	1530	1320	1.050	908	751	582	833	680	592	494	385
	7000	1360	1170	940	811	671	521	730	597	520	434	339
	7500	1210	1040	839	724	600	466	643	526	459	384	300
\qquad	8000	1080	930	750	648	537	418	569	467	407	340	266
	8500	964	833	673	582	483	376	507	416	363	304	237
	-9000	866	750	606	524	435	339	454	373	326	272	213
	9500	782	677	548	474	393	307	409	336	293	245	192
	10000	709	614	497	430	357	278	370	304	265	222	174
	10500	645	559	453	392	325	254	336	276	241	202	158
	11000	589	511	414	358	298	232	307	252	220	184	144
	11500	540	469	379	329	273	213		231	202	169	132
	12000	497	431	349	302	251	196					
	12500	459	398	322	279	232	181					
	13000 14000 15000 16000 17000		368	298	258	215	$\begin{aligned} & 168 \\ & 145 \end{aligned}$					
	18000											
PROPERTIES AND DESIGN DATA												
$\begin{aligned} & \text { Area }\left(\mathrm{mm}^{2}\right) \\ & r(\mathrm{~mm}) \\ & M_{r}(\mathrm{kN} \cdot \mathrm{~m}) \\ & \left(\mathrm{b}_{\mathrm{el}} / \mathrm{t}\right) \sqrt{350} \end{aligned}$		9640	7970	6180	5230	4250	3250	6680	5210	4430	3610	2760
		64.9	66.5	68.0	68.8	69.6	70.3	56.1	57.6	58.4	59.2	59.9
		180	152	121	104	85.4	57.0	108	86.6	74.7	61.7	47.9
		135	187	274	344	449	621	150	224	284	374	522
IMPERIAL SIZE AND WEIGHT												
We	ht (lb./fi.)	50.8	42.1	32.6	27.6	22.4	17.1	35.2	27.5	23.3	19.0	14.6
Thic	ness (in.)	0.625	0.500	0.375	0.313	0.250	0.188	0.500	0.375	0.313	0.250	0.188
Size (in.)		7×7						6×6				

\dagger Class 3

SQUARE HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

Y

Section ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)				HSS			
		13	9.5	7.9	6.4	4.8	$\ddagger 3.2$ \#
Mass (kg/m)		42.3	33.3	28.4	23.2	17.9	12.2
	0	1700	1340	1140	932	718	485
	500	1700	1340	1140	932	718	485
	1000	1690	1330	1140	931	717	484
	1500	1680	1320	1130	925	713	482
	2000	1630	1290	1110	906	699	473
	2500	1540	1230	1050	866	670	455
	3000	1400	1120	969	800	622	424
	3500	1220	995	861	715	558	383
	4000	1040	857	745	622	488	336
	4500	879	729	636	532	420	290
	5000	741	618	540	454	359	249
$\begin{aligned} & \text { 0. } \\ & \text { c } \\ & \hline \end{aligned}$	5500	628	525	460	387	307	213
	6000	536	449	394	332	263	183
	6500	462	388	340	287	228	159
	7000	401	337	296	250	198	138
	7500	351	295	259	219	174	121
	8000	309	260	229	193	153	107
	8500	275	231	203	172	136	95
	9000	245	207	182	153	122	85
	9500			163	138	110	77
	10000						69
	10500						
	11000						
	11500						
	12000						
	13000						
	14000						
	15000						
	16000						
	17000						
	18000						
PROPERTIES AND DESIGN DATA							
$\begin{aligned} & \text { Area }\left(\mathrm{mm}^{2}\right) \\ & r(\mathrm{~mm}) \\ & M_{r}(\mathrm{kN} \cdot \mathrm{~m}) \\ & \left(\mathrm{b}_{\mathrm{el}} / \mathrm{t}\right) \sqrt{350} \end{aligned}$		5390	4240	3620	2960	2280	1550
		45.7	47.3	48.0	48.8	49.6	50.3
		70.9	57.6	50.1	41.6	32.4	19.4
		112	174	224	299	422	672
IMPERIAL SIZE AND WEIGHT							
Weight (lb./ft.)		28.4	22.4	19.1	15.6	12.0	8.17
Thickness (in.)		0.500	0.375	0.313	0.250	0.188	0.125
Size (in.)		5×5					

\ddagger Class 4
\# C. calculated according to S16-14 Clause 13.3.5(b)

SQUARE HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

G40.21 350W CLASS H $\phi=0.90$

SQUARE HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

Y

G40.21 350W CLASS H $\phi=0.90$

$\begin{gathered} \text { Section } \\ (\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}) \end{gathered}$				S $76 \times$				S $64 \times$			$551 \times$	
		9.5	7.9	6.4	4.8	3.2	6.4	4.8	3.2	6.4	4.8	3.2
Mass (kg/m)		18.1	15.7	13.1	10.3	7.09	10.6	8.35	5.82	8.05	6.45	4.55
	0	728	633	526	413	284	425	334	233	324	259	183
	500	727	633	526	412	284	424	333	233	323	257	182
	1000	713	622	518	407	281	409	323	227	290	235	169
	1500	651	574	481	381	265	349	281	200	206	174	129
	2000	531	476	405	325	229	260	214	156	133	114	87
	2500	402	365	314	256	183	185	154	114	88	77	59
	3000	300	274	238	195	141	134	112	83	62	54	42
	3500	227	209	182	150	109	100	84	62	46	40	31
	4000	177	163	142	117	85	77	65	48			
	4500	141	130	113	94	68	61	51	38			
	5000	114	106	92	76	56						
	5500			76	63	46						
	6000											
	6500											
	7000											
	7500											
	8000											
	8500											
	9000											
	9500											
	10000											
	10500											
	11000											
	11500											
	12000											
	12500											
	$\begin{aligned} & 13000 \\ & 14000 \end{aligned}$											
	15000											
	16000											
	17000											
	18000											
PROPERTIES AND DESIGN DATA												
$\begin{aligned} & \text { Area }\left(\mathrm{mm}^{2}\right) \\ & r(\mathrm{~mm}) \\ & \mathrm{M}_{\mathrm{r}}(\mathrm{kN} \cdot \mathrm{~m}) \\ & \left(\mathrm{b}_{\mathrm{el}} / \mathrm{t}\right) \sqrt{350} \end{aligned}$		2310	2010	1670	1310	903	1350	1060	741	1030	821	580
		26.5	27.3	28.0	28.8	29.6	22.8	23.6	24.4	17.6	18.4	19.2
		17.5	15.7	13.5	10.8	7.72	8.85	7.25	5.23	5.17	4.35	3.21
		74.8	105	150	223	373	112	174	299	74.8	124	224
IMPERIAL SIZE AND WEIGHT												
Weight (lb./ft.)		12.2	10.6	8.81	6.89	4.76	7.11	5,61	3.91	5.41	4.33	3.06
Thickness (in.)		0.375	0.313	0.250	0.188	0.125	0.250	0.188	0.125	0.250	0.188	0.125
Size (in.)		3×3					$21 / 2 \times 21 / 2$			2×2		

RECTANGULAR HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

G40.21 350W CLASS H
$\phi=0.90$

Section ($m m \times m m \times m m$)		HSS 305×203					HSS 305×152				
		16	13	9.5	†7.9	$\ddagger 6.4$	16	13	9.5	$\dagger 7.9$	$\ddagger 6.4$
Mass (kg/m)		114	93.0	71.3	60.1	48.6	101	82.8	63.7	53.7	43.5
	0	4570	3720	2860	2410	1740	4060	3340	2560	2160	1540
	500	4570	3720	2860	2410	1740	4060	3340	2560	2160	1540
	1000	4570	3720	2860	2410	1740	4060	3340	2560	2160	1540
	1500	4560	3710	2860	2410	1740	4050	3330	2550	2150	1530
	2000	4550	3710	2860	2400	1740	4020	3300	2530	2140	1520
	2500	4530	3690	2840	2390	1730	3940	3250	2490	2110	1500
	3000	4480	3650	2820	2370	1710	3800	3140	2420	2050	1460
	3500	4400	3590	2770	2330	1690	3590	2980	2310	1960	1400
	4000	4270	3490	2700	2280	1650	3310	2770	2150	1830	1310
	4500	4100	3360	2600	2200	1590	2990	2510	1970	1680	1210
	5000	3880	3190	2480	2100	1520	2660	2250	1770	1510	1090
	5500	3620	2990	2330	1980	1440	2350	1990	1570	1350	974
	6000	3350	2770	2170	1840	1340	2060	1750	1390	1190	865
	6500	3070	2550	2000	1700	1240	1810	1540	1230	1060	766
	7000	2790	2330	1840	1560	1140	1590	1360	1090	935	679
	7500	2540	2120	1670	1430	1040	1410	1210	962	830	603
	8000	2300	1920	1520	1300	951	1250	1070	857	739	537
	8500	2090	1750	1390	1180	866	1120	958	766	661	481
	9000	1890	1590	1260	1080	789	1.000	860	688	594	432
	9500	1720	1450	1150	982	720	903	776	620	536	390
	10000	1570	1320	1050	898	659	818	702	562	486	354
	10500	1440	1210	962	822	603	743	639	511	442	322
	11000	1320	1110	883	755	554	679	583	467	404	294
	11500	1210	1020	813	695	510	622	535	428	370	269
	12000	1120	940	750	641	471	572	492	394	340	248
	12500	1030	869	694	593	436			363	314	229
	13000	957	806	643	550	404					
	14000	829	698	557	477	350					
	15000	724	610	487	416	306					
	16000		537	429	367	270					
PROPERTIES AND DESIGN DATA											
Area (mm^{2})		14500	11800	9090	7650	6190	12900	10600	8120	6850	5540
$\mathrm{r}_{\mathrm{x}}(\mathrm{mm})$		110	111	113	114	115	105	106	108	109	110
$\mathrm{r}_{y}(\mathrm{~mm})$		79.8	81.2	82.7	83.4	84.1	60.1	61.5	62.9	63.7	64.4
$\mathrm{r}_{\mathrm{x}} / \mathrm{r}_{\mathrm{y}}$		1.38	1,37	1.37	1.37	1.37	1.75	1.72	1.72	1.71	1.71
$M_{r x}(\mathrm{kN} \cdot \mathrm{m})$		450	375	292	248	${ }^{\wedge} 202$	375	315	247	210	^ 171
$\mathrm{Mr}_{\mathrm{ry}}(\mathrm{kN} \cdot \mathrm{m})$		340	283	221	165	116	230	193	152	115	80.5
$\left(\mathrm{b}_{\text {el }} / \mathrm{t}\right) \sqrt{350}$		284	374	524	643	823	284	374	524	643	823
IMPERIAL SIZE AND WEIGHT											
Weight (lb./ft.)		76.4	62.5	47.9	40.4	32.6	67.8	55.7	42.8	36.1	29,2
Thickness (in.)		0.625	0.500	0,375	0.313	0.250	0.625	0.500	0.375	0.313	0.250
Size (in.)		12×8					12×6				

\dagger Class 3 in bending about $Y-Y$ axis $\quad \wedge M_{p x}$ decreases for C, values above the number in bold. Check the class of section. \ddagger Class 4

Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

Section ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)		HSS 254×203					HSS 254×152					
		16	13	9.5	7.9	$\ddagger 6.4$	16	13	9.5	7.9	$\ddagger 6.4$	$\ddagger 4.8$
Mass (kg/m)		101	82.8	63.7	53.7	43.5	88.3	72.7	56.1	47.4	38.4	29.3
Effective length (KL) in millimetres with respect to the least radius of gyration	0	4060	3340	2560	2160	1740	3530	2920	2250	1900	1540	983
	500	4060	3340	2560	2160	1740	3530	2920	2250	1900	1540	983
	1000	4060	3340	2560	2160	1740	3530	2920	2250	1900	1540	983
	1500	4060	3340	2560	2160	1740	3520	2910	2250	1900	1530	981
	2000	4050	3330	2550	2150	1740	3480	2880	2230	1880	1520	975
	2500	4020	3310	2540	2140	1730	3410	2830	2190	1850	1500	960
	3000	3980	3270	2510	2120	1710	3280	2730	2120	1800	1460	934
	3500	3890	3210	2470	2080	1680	3080	2580	2010	1710	1390	892
	4000	3770	3120	2400	2030	1640	2830	2380	1870	1590	1300	834
	4500	3600	2990	2310	1950	1580	2540	2150	1700	1450	1190	765
	5000	3400	2820	2190	1860	1500	2250	1920	1520	1300	1070	690
	5500	3160	2630	2050	1740	1410	1970	1690	1350	1160	949	615
	6000	2910	2430	1900	1620	1310	1730	1490	1190	1020	840	546
	6500	2650	2230	1740	1490	1210	1510	1310	1050	901	742	483
	7000	2410	2030	1590	1360	1110	1330	1150	924	796	656	427
	7500	2180	1840	1450	1240	1010	1180	1020	819	706	582	379
	8000	1970	1670	1310	1130	919	1040	904	728	628	518	338
	8500	1780	1510	1190	1020	836	930	807	650	561	463	302
	9000	1620	1370	1080	930	761	834	724	584	504	416	272
	9500	1470	1250	986	847	693	752	652	526	454	376	245
	10000	1340	1140	900	773	633	680	591	477	412	340	222
	10500	1220	1040	823	707	580	618	537	434	374	310	202
	11000	1120	952	755	649	532	564	490	396	342	283	185
	11500	1030	875	695	597	489	517	449	363	313	259	169
	12000	949	807	641	551	452		413	334	288	238	156
	12500	877	746	592	509	418					220	144
	13000	813	691	549	472	387						
	14000	703	598	476	409	335						
	15000	614	523	415	357	293						
	16000			366	315	258						
PROPERTIES AND DESIGN DATA												
Area (mm^{2})		12900	10600	8120	6850	5540	11200	9260	7150	6040	4900	3730
$r_{x}(\mathrm{~mm})$		92.8	94.4	96.0	96.8	97.6	88.3	90.1	91.9	92.8	93.6	94.5
$r_{y}(\mathrm{~mm})$		77.9	79.3	80.8	81.6	82.3	58.8	60.3	61.7	62.4	63,1	63,8
r_{x} / r_{y}		1.19	1.19	1.19	1.19	1.19	1.50	1.49	1.49	1.49	1.48	1.48
$\mathrm{Mrax}_{\text {(}}(\mathrm{kN} \cdot \mathrm{m})$		340	284	223	190	^ 155	280	235	186	158	$\wedge 129$	^ 99.9
$M_{r y}(\mathrm{kN} \cdot \mathrm{m})$		291	244	191	163	116	195	164	130	111	80.3	49.1
$\left(\mathrm{b}_{\text {e1 }} / \mathrm{t}\right) \sqrt{350}$		224	299	424	524	673	224	299	424	524	673	919
IMPERIAL SIZE AND WEIGHT												
Weight (lb./ft.)		67.8	55.7	42.8	36.1	29.2	59.3	48.9	37.7	31.9	25.8	19.7
Thickness (in.)		0.625	0.500	0.375	0.313	0.250	0.625	0.500	0.375	0.313	0.250	0.188
Size (in.)		10×8					10×6					

\ddagger Class 4
${ }^{\wedge} \mathrm{M}_{\mathrm{rc}}$ decreases for C , values above the number in bold. Check the class of section.

Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

Section$(\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm})$		HSS 203×152						HSS 203×102				
		16	13	9.5	7.9	6.4	$\ddagger 4.8$	13	9.5	7.9	6.4	$\ddagger 4.8$
	(kg/m)	75.6	62.6	48.5	41.1	33.4	25.5	52.4	40.9	34.7	28.3	21.7
	0	3040	2510	1950	1650	1340	985	2100	1640	1400	1140	831
	500	3040	2510	1950	1650	1340	985	2100	1640	1400	1140	830
	1000	3030	2510	1950	1650	1340	984	2100	1640	1390	1130	829
	1500	3020	2500	1940	1640	1330	982	2060	1610	1370	1120	819
	2000	2990	2480	1920	1630	1320	975	1960	1540	1320	1080	789
	2500	2920	2430	1890	1600	1300	959	1760	1410	1210	994	732
	3000	2800	2330	1820	1550	1260	930	1510	1220	1060	875	648
	3500	2610	2190	1720	1460	1200	884	1250	1020	893	743	554
	4000	2380	2010	1580	1350	1110	822	1030	846	741	619	464
	4500	2120	1800	1430	1230	1010	749	842	698	614	514	386
	5000	1860	1590	1270	1090	901	672	698	580	511	429	323
	5500	1630	1400	1120	967	798	596	584	487	429	361	272
	6000	1420	1220	984	850	703	526	495	413	365	307	231
	6500	1240	1070	864	748	619	464	424	354	313	263	198
	7000	1090	941	761	659	546	410	367	307	271	228	172
	7500	958	831	673	583	484	363	320	268	237	199	150
	8000	850	737	598	518	430	323		236	208	176	132
	8500	757	658	533	463	384	289					118
	9000	679	590	478	415	345	259					
	9500	611	531	431	374	311	234					
	10000	553	481	390	339	282	212					
	10500	502	437	355	308	256	193					
	11000	458	399	324	281	234	176					
	11500		365	297	258	214	161					
	$\begin{aligned} & 12000 \\ & 12500 \end{aligned}$			273	237	197	148					
	$\begin{aligned} & 13000 \\ & 14000 \\ & 15000 \\ & 16000 \end{aligned}$											
PROPERTIES AND DESIGN DATA												
Area (mm^{2})		9640	7970	6180	5230	4250	3250	6680	5210	4430	3610	2760
$\mathrm{r}_{\mathrm{x}}(\mathrm{mm})$		71.7	73.4	75.1	75.9	76.7	77.5	88.4	70.3	71.2	72.2	73.1
$\mathrm{r}_{y}(\mathrm{~mm})$		57.1	58.6	60.0	60.8	61.5	62.2	39.1	40.5	41.3	42.0	42.7
r_{x} / r_{y}		1.26	1.25	1.25	1.25	1.25	1.25	1.75	1.74	1,72	1.72	1.71
$\mathrm{M}_{\mathrm{rx}}(\mathrm{kN} \cdot \mathrm{m})$		196	166	132	113	92.9	^ 71.8	128	103	88.5	73.1	$\wedge 56.7$
$\mathrm{M}_{\text {ry }}(\mathrm{kN} \cdot \mathrm{m}$)		160	136	108	92.9	76.5	49.3	77.5	62.7	54.2	45.0	29.4
$\left(\mathrm{b}_{\text {el }} / 1\right) \sqrt{350}$		165	224	324	404	524	720	224	324	404	524	720
IMPERIAL SIZE AND WEIGHT												
Weight (lb./ft.)		50.8	42.1	32.6	27.6	22.4	17.1	35.2	27.5	23.3	19.0	14.6
Thickness (in.)		0.625	0,500	0.375	0.313	0.250	0.188	0.500	0.375	0.313	0.250	0.188
Size (in.)		8×6						8×4				

\ddagger Class 4

[^21]RECTANGULAR HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

G40.21 350W CLASS H
$\phi=0.90$

\dagger Class 3 in bending about $Y-Y$ axis $\quad{ }^{\wedge} M_{r x}$ decreases for C, values above the number in bold. Check the class of section. \ddagger Class 4

RECTANGULAR HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

G40.21 350W CLASS H
$\phi=0.90$

Section ($m \mathrm{~m} \times \mathrm{mm} \times \mathrm{mm}$)		HSS 152×76					
		13	9.5	7.9	6.4	4.8	$\ddagger 3.2$
Mass (kg/m)		37.3	29.5	25.2	20.7	16.0	10.9
	0	1500	1180	1010	832	643	386
	500 1000 1500 2000 2500	$\begin{array}{r} 1500 \\ 1470 \\ 1370 \\ 1150 \\ 894 \end{array}$	$\begin{array}{r} 1180 \\ 1170 \\ 1100 \\ 949 \\ 755 \end{array}$	$\begin{array}{r} 1010 \\ 1000 \\ 950 \\ 827 \\ 665 \end{array}$	$\begin{aligned} & 831 \\ & 823 \\ & 783 \\ & 690 \\ & 561 \end{aligned}$	$\begin{aligned} & 642 \\ & 637 \\ & 609 \\ & 541 \\ & 445 \end{aligned}$	$\begin{aligned} & 386 \\ & 383 \\ & 367 \\ & 329 \\ & 274 \end{aligned}$
	3000 3500 4000 4500 5000	677 517 404 322 262	580 447 350 280 228	$\begin{aligned} & 516 \\ & 399 \\ & 313 \\ & 251 \\ & 205 \end{aligned}$	$\begin{aligned} & 438 \\ & 340 \\ & 268 \\ & 215 \\ & 176 \end{aligned}$	$\begin{aligned} & 350 \\ & 273 \\ & 216 \\ & 173 \\ & 142 \end{aligned}$	$\begin{array}{r} 217 \\ 171 \\ 135 \\ 109 \\ 89 \end{array}$
	$\begin{aligned} & 5500 \\ & 6000 \\ & 6500 \\ & 7000 \\ & 7500 \end{aligned}$	217	189	$\begin{aligned} & 170 \\ & 143 \end{aligned}$	$\begin{aligned} & 146 \\ & 123 \end{aligned}$	$\begin{array}{r} 118 \\ 99 \end{array}$	$\begin{aligned} & 74 \\ & 62 \end{aligned}$
	$\begin{array}{r} 8000 \\ 8500 \\ 9000 \\ 9500 \\ 10000 \end{array}$						
	$\begin{aligned} & 10500 \\ & 11000 \\ & 11500 \\ & 12000 \\ & 12500 \end{aligned}$						
	$\begin{aligned} & 13000 \\ & 14000 \\ & 15000 \\ & 16000 \end{aligned}$						
PROPERTIES AND DESIGN DATA							
Area $\left(\mathrm{mm}^{2}\right)$ $r_{x}(\mathrm{~mm})$ $r_{y}(\mathrm{~mm})$ r_{x} / r_{y} $M_{t x}(\mathrm{kN} \cdot \mathrm{m})$ $M_{r}(\mathrm{kN} \cdot \mathrm{m})$ $\left(\mathrm{b}_{\mathrm{el}} / \mathrm{t}\right) \sqrt{350}$		4750	3760	3220	2640	2040	1390
		49.3	51.3	52.3	53.2	54.1	55.0
		28.0	29.4	30.1	30.8	31.5	32.2
		1.76	1.74	1.74	1.73	1.72	1.71
		65.2	53.9	46.9	39.4	30.9	$\wedge 21.5$
		39.1	32.8	28.7	24.1	19.1	10.1
		150	224	284	374	522	822
IMPERIAL SIZE AND WEIGHT							
Weight (lb./ft.)		25.0	19.8	17.0	13.9	10.7	7.32
Thickness (in.)		0.500	0.375	0.313	0.250	0.188	0.125
Size (in.)		6×3					

\ddagger Class 4
${ }^{\wedge} M_{r x}$ decreases for C_{r} values above the number in bold. Check the class of section.

RECTANGULAR HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

G40.21 350W

\ddagger Class 4
${ }^{\wedge} M_{r x}$ decreases for C_{r} values above the number in bold. Check the class of section.

RECTANGULAR HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

G40.21 350W
$\phi=0.90$

Section ($m m \times m m \times m m$)				$102 \times$					$102 \times$		
		9.5	7.9	6.4	4.8	3.2	9.5	7.9	6.4	4.8	3.2
Mass (kg/m)		21.9	18.9	15.6	12.2	8.35	18.1	15.7	13.1	10.3	7.09
	0	879	759	627	488	334	728	633	526	413	284
	500	878	759	626	488	334	724	631	524	411	284
	1000	865	748	619	483	330	659	582	489	388	269
	1500	802	699	582	457	314	482	438	379	308	219
	2000	672	593	501	397	276	315	292	258	214	155
	2500	520	464	398	319	224	211	197	175	147	107
	3000	393	354	305	247	175	149	140	124	104	77
	3500	300	271	235	191	136	110	103	92	77	57
	4000	234	212	184	150	107				60	44
	4500	187	169	147	120	86					
	5000	152	138	120	98	70					
	5500	126	114	100	81	58					
	6000				68	49					
	6500										
	7000										
	8000										
	8500										
	9000										
	10500										
	11000										
	11500										
	12000										
	13.000										
	14000										
	15000										
	16000										
PROPERTIES AND DESIGN DATA											
Area (mm^{2})		2790	2410	1990	1550	1060	2310	2010	1670	1310	903
$r_{\text {c }}(\mathrm{mm})$		35.0	35.9	36.7	37.5	38.4	32.2	33.2	34.2	35.1	36.1
$r_{y}(\mathrm{~mm})$		27.8	28.5	29.3	30.0	30.7	18.2	18.9	19.6	20.3	21.0
r_{x} / r_{y}		1.26	1.26	1.25	1.25	1.25	1.77	1.76	1.74	1.73	1.72
$\mathrm{Mrx}_{\text {c }}(\mathrm{kN} \cdot \mathrm{m})$		27.7	24.5	20.8	16.6	11.7	20.7	18.6	16.0	12.9	9.14
$\mathrm{Mry}_{\text {r }}(\mathrm{kN} \cdot \mathrm{m})$		22.6	20.0	17.0	13.6	9.58	12.3	11.2	9.70	7.88	5.64
$\left(\mathrm{b}_{\text {el }} / \mathrm{t}\right) \sqrt{350}$		125	165	224	323	523	125	165	224	323	523
IMPERIAL SIZE AND WEIGHT											
Weight (lb./ft.)		14.7	12.7	10.5	8.17	5.61	12.2	10.6	8.81	6,89	4,76
Thickness (in.)		0.375	0.313	0.250	0.188	0,125	0,375	0.313	0.250	0,188	0.125
Size (in.)		4×3					4×2				

RECTANGULAR HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

RECTANGULAR HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

G40.21 350W CLASS H
$\phi=0.90$

ROUND HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

G40.21 350W CLASS H $\phi=0.90$

$\begin{aligned} & \text { Section } \\ & (\mathrm{mm} \times \mathrm{mm}) \end{aligned}$		HSS 406				HSS 356			HSS 324		
		16	13	9.5	$\dagger 6.4$	13	9.5	†6.4	13	9.5	6.4
Mass (kg/m)		153	123	93.3	62.6	107	81.3	54.7	97.5	73.9	49.7
	0	6140	4950	3750	2510	4320	3280	2200	3910	2960	1990
	500	6140	4950	3750	2510	4320	3280	2200	3910	2960	1990
	1000	6140	4950	3750	2510	4320	3280	2200	3910	2960	1990
	1500	6140	4950	3750	2510	4310	3280	2200	3910	2960	1990
	2000	6140	4940	3750	2510	4310	3270	2190	3900	2960	1990
	2500	6140	4940	3750	2510	4310	3270	2190	3900	2960	1990
	3000	6130	4940	3740	2510	4300	3270	2190	3890	2950	1990
	3500	6120	4930	3740	2510	4290	3260	2180	3870	2940	1980
	4000	6100	4920	3730	2500	4270	3240	2170	3840	2920	1960
	4500	6080	4900	3710	2490	4240	3220	2160	3800	2880	1940
	5000	6040	4870	3690	2480	4190	3180	2140	3740	2840	1910
	5500	5990	4830	3660	2460	4130	3140	2110	3650	2780	1870
	6000	5920	4770	3620	2430	4050	3080	2070	3550	2700	1820
	6500	5830	4700	3570	2400	3940	3000	2020	3430	2610	1760
	7000	5720	4620	3510	2360	3820	2910	1960	3280	2510	1690
	7500	5590	4510	3430	2310	3690	2810	1890	3120	2390	1620
	8000	5440	4390	3340	2250	3530	2700	1820	2960	2260	1530
	B 500	5270	4260	3240	2180	3370	2580	1740	2780	2130	1450
	9000	5080	4110	3130	2110	3200	2450	1650	2610	2000	1360
	9500	4880	3950	3010	2030	3020	2320	1570	2440	1870	1270
	10000	4660	3780	2880	1950	2850	2180	1480	2280	1750	1190
	10500	4450	3610	2750	1860	2680	2060	1390	2120	1630	1110
	11000	4230	3430	2620	1770	2510	1930	1310	1970	1520	1040
	11500	4010	3260	2490	1690	2360	1810	1230	1840	1420	967
	12000	3800	3090	2360	1600	2210	1700	1150	1710	1320	902
	12500	3600	2930	2240	1520	2070	1590	1080	1600	1230	842
	13000	3400	2770	2120	1440	1940	1500	1020	1490	1150	787
	14000	3040	2470	1900	1290	1710	1320	896	1310	1010	689
	15000	2710	2210	1700	1150	1510	1170	793	1150	887	607
	16000	2430	1980	1520	1030	1350	1040	706	1020	786	538
	17000	2180	1780	1370	927	1200	926	630	907	700	479
	18000	1960	1600	1230	836	1080	831	566	812	627	429
PROPERTIES AND DESIGN DATA											
$\begin{aligned} & \text { Area }\left(\mathrm{mm}^{2}\right) \\ & \mathrm{r}(\mathrm{~mm}) \\ & \mathrm{M}_{1}(\mathrm{kN} \cdot \mathrm{~m}) \\ & \text { (D/t) } 350 \end{aligned}$		19500	15700	11900	7980	13700	10400	6970	12400	9410	6330
		138	139	140	141	121	122	123	110	111	112
		762	621	473	248	469	359	188	387	297	202
		8960	11200	14900	22400	9800	13100	19600	8930	11900	17900
IMPERIAL SIZE AND WEIGHT											
Weight (lb./ft.)		103	82.9	62.7	42.1	72.2	54.7	36.8	65.5	49.6	33.4
Thickness (in.)		0.625	0.500	0.375	0.250	0.500	0,375	0.250	0.500	0.375	0.250
Size (in.)		16 OD				14 OD			12.75 OD		

\dagger Class 3

Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

Section ($\mathrm{mm} \times \mathrm{mm}$)		HSS 273					HSS 245	
		13	9.5	7.9	6.4	†4.8	9.5	6.4
Mass (kg/m)		81.6	61.9	51.9	41.8	31.6	55.2	37.3
凹	0	3280	2490	2080	1680	1270	2210	1500
	500	3280	2490	2080	1680	1270	2210	1500
	1000	3280	2490	2080	1680	1270	2210	1500
	1500	3270	2480	2080	1680	1270	2210	1500
	2000	3270	2480	2080	1670	1270	2210	1490
	2500	3260	2470	2070	1670	1260	2200	1490
	3000	3240	2460	2060	1660	1260	2180	1470
	3500	3210	2440	2040	1640	1250	2140	1450
	4000	3160	2400	2010	1620	1230	2090	1420
	4500	3080	2350	1970	1590	1200	2020	1370
	5000	2980	2270	1910	1540	1170	1920	1310
$\stackrel{\text { ¢ }}{\text { ¢ }}$	5500	2860	2180	1830	1480	1120	1810	1240
	6000	2710	2070	1740	1410	1070	1690	1150
	6500	2550	1950	1640	1330	1010	1560	1070
	7000	2380	1820	1540	1240	948	1430	981
	7500	2200	1690	1430	1160	883	1300	897
	8000	2030	1560	1320	1070	818	1190	818
	B 500	1870	1440	1220	988	755	1080	745
	9000	1720	1330	1120	910	696	984	679
	9500	1580	1220	1030	838	641	897	620
	10000	1450	1120	950	771	590	820	567
	10500	1340	1030	875	710	544	751	519
	11000	1230	952	807	655	502	689	477
	11500	1140	879	745	606	464	634	439
	12000	1050	814	690	561	430	585	405
	12500	975	755	640	520	399	541	375
	13000	906	701	595	483	371	502	348
	14000	787	609	517	420	322	435	301
	15000	689	533	452	368	282	380	263
	16000	607	470	399	325	249	335	232
	17000	539	418	354	288	221		
	18000	482	373	317	258	198		
PROPERTIES AND DESIGN DATA								
Area $\left(\mathrm{mm}^{2}\right)$ $r(\mathrm{~mm})$ $M_{r}(\mathrm{kN} \cdot \mathrm{m})$ (D/t) 350		10400	7890	6610	5320	4030	7030	4750
		92.2	93.2	93.8	94.3	94.9	83.1	84.2
		272	209	176	142	83.8	166	113
		7530	10000	12000	15100	20000	8980	13500
IMPERIAL SIZE AND WEIGHT								
Weight (lb./ft.)		54.8	41.6	34.9	28.1	21.3	37.1	25.1
Thickness (in.)		0.500	0.375	0.313	0.250	0.188	0.375	0.250
Size (in.)		10.75 OD					9.625 OD	

\dagger Class 3

ROUND HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

$\begin{aligned} & \text { Section } \\ & (\mathrm{mm} \times \mathrm{mm}) \end{aligned}$		HSS 219				HSS 178		HSS 168			
		13	9.5	6.4	4.8	13	9.5	13	9.5	6.4	4.8
Mass (kg/m)		64,6	49.3	33.3	25.3	51.7	39.5	48.7	37.3	25.4	19.3
	0	2590	1980	1340	1010	2080	1590	1960	1500	1020	775
	500	2590	1.980	1340	1010	2080	1590	1960	1500	1020	775
	1000	2590	1970	1340	1010	2070	1590	1950	1500	1020	774
	1500	2590	1970	1330	1010	2070	1580	1950	1490	1010	772
	2000	2580	1970	1330	1010	2050	1570	1920	1470	1000	764
	2500	2560	1950	1320	1000	2010	1540	1870	1440	980	747
	3000	2520	1920	1300	990	1930	1480	1780	1370	938	717
	3500	2450	1870	1270	967	1810	1400	1650	1270	877	671
	4000	2350	1800	1230	933	1660	1290	1490	1150	798	613
	4500	2220	1710	1160	887	1490	1160	1310	1030	712	548
	5000	2070	1590	1090	832	1310	1030	1150	898	627	483
$\begin{aligned} & \text { ̈ㅣ } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	5500	1900	1470	1010	769	1150	906	995	782	548	423
	6000	1730	1340	920	704	1010	794	864	681	478	369
	6500	1560	1210	835	639	883	697	752	594	418	323
	7000	1400	1090	754	578	776	613	659	520	367	284
	7500	1260	982	680	521	685	542	580	459	323	250
長	8000	1130	884	613	470	608	481	513	406	287	222
¢	8500	1020	797	553	425	542	430	457	362	255	198
	9000	921	721	500	384	486	385	409	324	229	177
雩	9500	834	653	454	349	438	347	368	292	206	160
	10000	759	594	413	318	396	314	333	264	187	144
.	10500	692	542	377	290	360	286	303	240	170	131
	11000	633	496	345	266	329	261	276	219	155	120
5	11500	581	456	317	244	301	239				110
	12000	535	420	292	225						
$\stackrel{\text { ¢ }}{ }$	12500	495	388	270	208						
	13000	458	359	250	192						
	14000	396	311	216	166						
	15000			189	145						
	$\begin{aligned} & 16000 \\ & 17000 \end{aligned}$										
	18000										
PROPERTIES AND DESIGN DATA											
Area (mm^{2})		8230	6270	4240	3220	6590	5040	6210	4750	3230	2460
r (mm)		73.1	74.2	75.3	75.8	58.5	59.6	55.2	56.2	57.3	57.8
$\mathrm{M}_{\mathrm{c}}(\mathrm{kN} \cdot \mathrm{m})$		171	132	90.7	69.3	109	85.1	97.0	75.9	52.6	40.3
(D/t) 350		6040	8050	12100	16000	4900	6530	4640	6180	9280	12300
IMPERIAL SIZE AND WEIGHT											
Weight (lb./ft.)		43.4	33.1	22.4	17.0	34.7	26.6	32.7	25.1	17.0	13.0
Thickness (in.)		0,500	0.375	0.250	0.188	0.500	0.375	0.500	0,375	0.250	0.188
Size (in.)		8.62500				7 OD		6,625 OD			

ROUND HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

G40.21 350W CLASS H
$\phi=0.90$

$\begin{aligned} & \text { Section } \\ & (m m \times m m) \end{aligned}$			SS 141			
		13	9.5	6.4	9.5	6.4
Mass (kg/m)		40.3	31.0	21.1	27.6	18.9
	0	1620	1240	847	1110	759
	500	1620	1240	847	1110	759
	1000	1610	1240	846	1110	757
	1500	1600	1230	840	1090	748
	2000	1560	1200	821	1050	722
	2500	1470	1140	782	965	669
	3000	1330	1040	718	848	593
	3500	1160	915	637	718	506
	4000	992	785	551	598	424
	4500	837	666	470	496	353
	5000	706	563	399	413	295
¢	5500	598	478	339	347	248
	6000	510	409	291	295	211
	6500	439	352	251	253	181
	7000	382	306	218	219	157
	7500	334	268	191	192	137
	8000	294	237	169	169	121
	8500	261	210	150		107
	9000	234	188	134		
	9500			120		
	10000					
	10500					
	11000					
	11500					
	12000					
	12500					
	13000					
	14000					
	15000					
	16000					
	17000					
	18000					
PROPERTIES AND DESIGN DATA						
Area $\left(\mathrm{mm}^{2}\right)$ $r(\mathrm{~mm})$ $\mathrm{M}_{\mathrm{r}}(\mathrm{kN} \cdot \mathrm{m})$ (D/t) 350		5130	3950	2690	3520	2410
		45.7	46.7	47.8	41.7	42.7
		66.5	52.3	36.5	41.6	29.1
		3890	5190	7790	4660	7000
IMPERIAL SIZE AND WEIGHT						
Weight (lb,/ft.)		27.1	20.8	14.2	18.6	12.7
Thickness (in.)		0.500	0.375	0.250	0.375	0.250
Size (in.)		5.563 OD			5 OD	

Factored Axial Compressive CLASS H
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$
$\phi=0.90$

$\begin{aligned} & \text { Section } \\ & (\mathrm{mm} \times \mathrm{mm}) \end{aligned}$			HSS 89			HSS 76			HSS 73	
		6.4	4.8	3.2	6.4	4.8	3.2	6.4	4.8	3.2
Mass (kg/m)		12.9	9.92	6.72	10.9	8.42	5.73	10.4	8.04	5.48
	0	520	397	270	438	337	230	419	321	220
	500	519	397	270	437	337	229	418	321	220
	1000	513	392	267	426	329	225	406	312	214
	1500	483	371	253	379	295	203	353	274	190
	2000	415	321	221	298	234	163	270	212	149
	2500	330	257	178	219	174	122	194	154	109
	3000	253	199	138	161	128	90	142	113	80
	3500	195	153	107	121	97	68	106	85	60
	4000	153	120	84	94	75	53	82	65	47
	4500	122	96	68	74	60	42	65	52	37
	5000	100	79	55		48	34			
Effective length (KL) in millimetres with respect to the	5500	83	65	46						
	6000			39						
	6500									
	7000									
	7500									
	11000									
	11500									
	12000									
	12500									
	13000									
	14000									
	15000									
	16000									
	17000									
	18000									
PROPERTIES AND DESIGN DATA										
$\begin{aligned} & \text { Area }\left(\mathrm{mm}^{2}\right) \\ & r(\mathrm{~mm}) \\ & M_{t}(\mathrm{kN} \cdot \mathrm{~m}) \\ & \text { (D/tt) } 350 \end{aligned}$		1650	1260	856	1390	1070	729	1330	1020	698
		29.3	29.8	30.3	24.8	25.3	25.8	23.7	24.2	24.7
		13.7	10.7	7.37	9.80	7.69	5.36	8.91	7.02	4.88
		4900	6510	9780	4200	5580	8390	4020	5350	8030
IMPERIAL SIZE AND WEIGHT										
Weight (lb./ft.)		8.69	6.66	4.52	7.35	5.66	3.85	7.01	5.40	3.68
Thickness (in.)		0.250	0.188	0.125	0.250	0.188	0.125	0.250	0.188	0.125
Size (in.)		3.50 D			300			2.87500		

ROUND HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

$\begin{aligned} & \text { Section } \\ & (\mathrm{mm} \times \mathrm{mm}) \end{aligned}$			HSS 64			HSS 60			
		6.4	4.8	3.2	6.4	4.8	3.2	4.8	3.2
Mass (kg/m)		8.95	6.92	4.73	8.45	6.54	4.48	5.13	3.54
	0	359	278	190	340	263	180	206	142
	500	358	277	189	339	262	179	204	141
	1000	337	262	181	314	245	169	172	121
	1500	268	212	149	240	190	133	110	79
	2000	186	149	106	161	130	92	67	49
	2500	128	103	74	109	88	63	44	32
	3000	91	74	53	77	63	45	31	23
	3500	67	55	40	57	47	33		
	4000	52	42	30			26		
	4500								
	5000								
告	5500								
응	6000								
$\begin{aligned} & \text { ت} \\ & \text { On } \end{aligned}$	6500								
	7000								
	7500								
$\frac{5}{3}$	8000								
$\stackrel{4}{4}$	8500								
¢	9000								
	9500								
E	10000								
5	10500								
它	11000								
듣	11500								
	12000								
	12500								
	13000								
	14000								
	15000								
	16000								
	17000								
	18000								
PROPERTIES AND DESIGN DATA									
Area (mm^{2})		1140	882	603	1080	834	571	654	451
r (mm)		20.3	20.8	21.4	19.2	19.7	20.2	15.5	16.0
$\mathrm{M}_{\mathrm{i}}(\mathrm{kN} \cdot \mathrm{m})$		6.55	5.20	3.65	5.86	4.66	3.28	2.86	2.04
(D / t) 350		3500	4650	6990	3320	4420	6640	3540	5320
IMPERIAL SIZE AND WEIGHT									
Weight (lb./ft.)		6.01	4.65	3.18	5.68	4.40	3.01	3.45	2.38
Thickness (in.)		0.250	0.188	0.125	0.250	0.188	0.125	0.188	0.125
Size (in.)		2.5 OD			2.375 OD			1.9 OD	

SQUARE HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN}) \phi=0.90$

ASTM A500 Grade C $\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$

Y

Section ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)		HSS 406×406		HSS 356×356			HSS 305×305			
		16^{*}	+ 13^{*}	16^{*}	13^{*}	$\ddagger 9.5^{*}$	16	13	$\dagger 9.5$	± 7.9
Mass (kg/m)		190	154	164	133	102	139	113	86.5	72.7
	0	6800	5500	5900	4780	3510	5000	4070	3100	2440
	500	6800	5500	5900	4780	3510	5000	4070	3100	2440
	1000	6790	5490	5890	4780	3500	4990	4060	3090	2430
	1500	6780	5480	5880	4760	3490	4970	4040	3080	2430
	2000	6760	5460	5850	4740	3480	4930	4010	3060	2410
	2500	6730	5440	5810	4710	3450	4880	3970	3030	2380
	3000	6680	5400	5750	4660	3420	4810	3910	2980	2350
	3500	6620	5350	5670	4610	3380	4720	3840	2930	2310
	4000	6550	5290	5580	4530	3330	4600	3750	2860	2260
	4500	6460	5220	5480	4450	3270	4480	3650	2790	2200
	5000	6350	5140	5350	4350	3200	4330	3540	2700	2130
	5500	6240	5050	5220	4250	3120	4170	3410	2610	2060
	6000	6110	4940	5070	4130	3030	4010	3270	2510	1980
	6500	5960	4830	4900	4000	2940	3830	3130	2400	1900
	7000	5810	4710	4730	3870	2850	3660	2990	2290	1810
	7500	5650	4580	4560	3730	2740	3480	2850	2180	1730
	8000	5480	4440	4380	3580	2640	3300	2700	2070	1640
	8500	5310	4300	4200	3440	2540	3120	2560	1970	1560
	9000	5130	4160	4020	3300	2430	2960	2430	1860	1480
	9500	4950	4020	3840	3150	2330	2790	2290	1760	1400
	10000	4770	3870	3670	3010	2220	2640	2170	1670	1320
	10500	4590	3730	3500	2870	2120	2490	2050	1570	1250
	11000	4410	3580	3330	2740	2030	2350	1930	1490	1180
	11500	4230	3440	3170	2610	1930	2220	1820	1410	1120
	12000	4060	3300	3020	2490	1840	2090	1720	1330	1060
	12500	3900	3170	2870	2370	1750	1980	1630	1260	1000
	13000		3040		2260	1670	1870	1540	1190	946
	14000	3430	2790	2480	2050	1520	1670	1380	1060	847
	15000	3150	2560	2250	1860	1380	1500	1240	955	762
	16000	2890	2350	2040	1690	1250	1350	1110	860	687
	17000	2650	2160	1860	1540	1140	1220	1010	778	621
	18000	2440	1990	1700	1410	1040	1110	913	706	563
PROPERTIES AND DESIGN DATA										
$\begin{aligned} & \text { Area }\left(\mathrm{mm}^{2}\right) \\ & r(\mathrm{~mm}) \\ & M_{\mathrm{r}}(\mathrm{kN} \cdot \mathrm{~m}) \\ & \left(\mathrm{b}_{\mathrm{gl}} / \mathrm{t}\right) \sqrt{345} \\ & { }^{5}\left(\mathrm{~b}_{\mathrm{el}} / \mathrm{t}\right) \sqrt{350} \end{aligned}$		21900	17700	19000	15400	11700	16100	13100	9980	8380
		159	160	138	140	141	118	119	120	121
		990	699	748	612	396	537	444	294	239
		454	586	388	504	696	322	421	586	718
		457	590	391	507	701	324	424	590	723
IMPERIAL SIZE AND WEIGHT										
Weight (lb./ft.)		127	103	110	89.7	68.4	93.4	76.1	58.1	48.9
Design Thick.(in.)		0.563	0.450	0.563	0.450	0.338	0.563	0.450	0.338	0.281
Size (in.)		16×16		14×14			12×12			

[^22]* Imporled section \ddagger Class 4
\dagger Class 3

Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN}) \phi=0.90$

Section ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)		HSS 254×254					HSS 203×203				
		16	13	9.5	$\dagger 7.9$	$\ddagger 6.4$	16	13	9.5	7.9	$\dagger 6.4$
	(kg/m)	114	93.0	71.3	60.1	48.6	88.3	72.7	56.1	47.4	38.4
	0	4100	3350	2560	2150	1560	3200	2620	2020	1700	1380
	500	4100	3350	2550	2150	1560	3190	2610	2010	1700	1370
	1000	4080	3340	2550	2140	1560	3180	2600	2000	1690	1370
	1500	4060	3320	2530	2130	1550	3130	2570	1980	1670	1350
	2000	4010	3280	2500	2110	1530	3060	2510	1940	1640	1330
	2500	3930	3220	2460	2070	1510	2960	2430	1880	1590	1290
	3000	3840	3150	2400	2030	1470	2840	2330	1810	1530	1240
	3500	3720	3050	2340	1970	1430	2690	2210	1720	1450	1180
	4000	3580	2940	2250	1900	1380	2520	2080	1620	1370	1110
	4500	3430	2820	2160	1820	1330	2340	1940	1510	1280	1040
	5000	3260	2690	2060	1740	1270	2170	1800	1400	1190	971
	5500	3080	2550	1960	1650	1210	1990	1660	1300	1100	899
	6000	2900	2400	1850	1560	1140	1830	1520	1190	1020	829
	6500	2730	2260	1740	1470	1080	1670	1400	1100	935	763
	7000	2550	2120	1630	1380	1010	1530	1280	1010	858	701
	7500	2380	1980	1530	1290	949	1400	1170	924	788	644
	8000	2220	1850	1430	1210	888	1280	1070	847	723	591
	8500	2070	1730	1340	1130	831	1170	985	778	664	544
	9000	1930	1610	1250	1060	777	1070	904	715	611	500
	9500	1800	1500	1170	987	726	987	832	659	563	461
	10000	1680	1400	1090	922	679	909	767.	607	519	426
	10500	1570	1310	1020	862	635	839	708	561	480	393
	11000	1460	1220	952	806	594	776	655	520	444	364
	11500	1370	1140	891	754	556	719	607	482	412	338
	12000	1280	1070	834	707	521	668	564	448	383	315
	12500	1200	1000	782	663	489	621	525	417	357	293
	13000	1120	942	735	623	459	579	490	389	333	273
	14000	993	833	650	551	407	506	428	341	292	240
	15000	882	740	578	490	362	446	377	300	257	211
	16000	787	661	516	438	324					187
	17000	706	593	463	393	291					
	18000	636	534	418	354	262					
PROPERTIES AND DESIGN DATA											
	$\left(\mathrm{mm}^{2}\right)$	13200	10800	8230	6930	5600	10300	8430	6490	5480	4430
		96.8	98.2	99.6	100	101	76.1	77.5	78.9	79.5	80.2
	$\mathrm{N} \cdot \mathrm{m}$)	363	301	233	170	129	222	186	146	124	87.3
	$\sqrt{345}$	256	338	476	586	751	190	256	366	454	586
${ }^{5}$ (b	$\sqrt{350}$	258	341	479	590	756	191	258	368	457	590
IMPERIAL SIZE AND WEIGHT											
	t (lb./ft.)	76.4	62.5	47.9	40.4	32.6	59.3	48.9	37.7	31.9	25.8
Desi	Thick.(in.)	0.563	0.450	0.338	0.281	0.225	0.563	0.450	0.338	0.281	0.225
	(in.)	10×10					8×8				

[^23]\dagger Class 3

SQUARE HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN}) \phi=0.90$

γ

ASTM A500 Grade C $\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$

$\begin{gathered} \text { Section } \\ (\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}) \end{gathered}$		HSS 178×178					HSS 152×152				
		16	13	9.5	7.9	6.4	13	9.5	7.9	6.4	†4.8
	$(\mathrm{kg} / \mathrm{m})$	75.6	62.6	48.5	41.1	33.4	52.4	40.9	34.7	28.3	21.7
	0	2740	2260	1750	1470	1200	1900	1470	1250	1020	776
	500	2730	2250	1740	1470	1190	1890	1470	1250	1010	775
	1000	2710	2240	1730	1460	1190	1870	1450	1230	1000	766
	1500	2660	2200	1700	1440	1170	1820	1420	1200	977	748
	2000	2570	2130	1650	1400	1130	1730	1350	1150	937	718
	2500	2450	2030	1580	1340	1090	1620	1270	1080	882	677
	3000	2310	1920	1490	1270	1030	1490	1170	999	817	629
	3500	2140	1790	1400	1190	966	1350	1070	910	747	575
	4000	1970	1640	1290	1100	895	1210	960	821	675	521
	4500	1790	1500	1180	1010	823	1080	858	735	605	468
	5000	1620	1370	1080	919	752	955	764	656	541	419
	5500	1470	1240	978	835	684	847	680	584	482	374
	6000	1320	1120	886	758	621	751	605	520	430	334
	6500	1190	1010	802	686	564	668	539	464	384	299
	7000	1070	912	726	622	511	596	481	415	344	268
	7500	971	826	658	564	464	534	432	372	309	240
	8000	879	749	598	513	422	479	388	335	278	217
	8500	799	681	544	467	385	432	351	303	251	196
	9000	727	621	496	426	351	391	318	274	228	178
	9500	664	567	454	390	322	356	289	250	207	162
	10000	608	520	416	358	295	324	263	228	189	148
	10500	558	478	383	329	272	297	241	209	173	135
	11000	514	440	353	304	250	272	221	192	159	124
	11500	475	406	326	281	231					115
	12000	439	376	302	260	215					106
	12500	407	349	280	241	199					
	$\begin{aligned} & 13000 \\ & 14000 \\ & 15000 \\ & 16000 \\ & 17000 \end{aligned}$	379	325	261	225	185					
	18000										
PROPERTIES AND DESIGN DATA											
	$\left(\mathrm{mm}^{2}\right)$	8820	7270	5620	4750	3850	6110	4750	4020	3270	2500
		65.7	67.1	68.5	69.2	69.9	56.7	58.1	58.8	59.5	60.2
	$\mathrm{N} \cdot \mathrm{m}$)	164	138	109	93.5	76.7	98.4	78.2	67.4	55.3	36.9
	$\text { 1) } \sqrt{345}$	157	215	311	388	503	173	256	322	421	584
${ }^{5}$ (b) $\sqrt{350}$	158	216	313	390	507	175	257	324	424	588
IMPERIAL SIZE AND WEIGHT											
	ht (ib./ft.)	50.8	42.1	32.6	27.6	22.4	35.2	27.5	23.3	19.0	14.6
Desi	Thick.(in.)	0.563	0.450	0.338	0.281	0.225	0.450	0.338	0.281	0.225	0.169
	(in.)	7×7					6×6				

[^24]SQUARE HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN}) \phi=0.90$

ASTM A500
Grade C
$F_{y}=345 \mathrm{MPa}$

[^25]SQUARE HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN}) \phi=0.90$

[^26]SQUARE HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN}) \phi=0.90$

Grade C
$F_{y}=345 \mathrm{MPa}$

	ction	HSS 64×64			HSS 51×51			HSS 38×38	
(mm	m \times mm)	6.4	4.8	3.2	6.4	4.8	3.2	4.8	3.2
Mass (kg/m)		10.6	8.35	5.82	8.05	6.45	4.55	4.54	3.28
	0	385	301	209	294	233	164	166	119
	500	375	295	204	280	223	157	150	108
	1000	332	262	184	224	182	130	101	76
	1500	264	212	150	158	131	95	61	47
	2000	199	161	115	109	91	67	39	30
	2500	149	121	88	76	65	48	26	20
	3000	112	92	67	56	47	35		
	3500	87	72	52	42	36	27		
	4000	69	57	41					
	4500	55	46	33					
	5000								
	5500								
	6000								
	6500								
	7000								
	7500								
	8000								
	8500								
	9000								
	9500								
	10000								
	10500								
	11000								
	11500								
	12000								
	$\begin{aligned} & 13000 \\ & 14000 \end{aligned}$								
	15000								
	16000								
	17000								
	18000								
PROPERTIES AND DESIGN DATA									
$\begin{aligned} & \text { Area }\left(\mathrm{mm}^{2}\right) \\ & \mathrm{r}(\mathrm{~mm}) \\ & \mathrm{M}_{\mathrm{r}}(\mathrm{kN} \cdot \mathrm{~m}) \\ & \left(\mathrm{b}_{\mathrm{el}} / \mathrm{t}\right) \sqrt{345} \\ & { }^{5}\left(\mathrm{~b}_{\mathrm{el}} / \mathrm{t}\right) \sqrt{350} \end{aligned}$		1240	971	673	947	752	527	534	382
		23.2	23.9	24.6	18.0	18.7	19.4	13.5	14.2
		8.14	6.58	4.69	4.81	3.97	2.90	2.03	1.54
		132	200	338	90.7	145	256	90.3	173
		133	201	341	91.3	146	257	90.9	174
IMPERIAL SIZE AND WEIGHT									
Weight (lb./ft.)		7.11	5.61	3.91	5.41	4.33	3.06	3.05	2.21
Design Thick.(in.)		0.225	0.169	0.113	0.225	0.169	0.113	0.169	0.113
Size (in.)		$21 / 2 \times 21 / 2$			2×2			$11 / 2 \times 11 / 2$	

[^27]RECTANGULAR HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN}) \phi=0.90$

Section ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)		HSS 305×203				HSS 305×152			
		16	13	+9.5	$\ddagger 7.9$	16	13	$\dagger 9.5$	$\ddagger 7.9$
	$(\mathrm{kg} / \mathrm{m})$	114	93.0	71.3	60.1	101	82.8	63.7	53.7
	0	4100	3350	2560	2070	3630	2980	2290	1840
	500	4090	3350	2550	2070	3630	2970	2280	1840
	1000	4070	3330	2540	2060	3590	2940	2260	1820
	1500	4030	3300	2520	2040	3500	2880	2210	1790
	2000	3950	3240	2470	2000	3370	2770	2130	1720
	2500	3840	3150	2410	1950	3180	2620	2030	1640
	3000	3690	3030	2320	1880	2960	2450	1900	1540
	3500	3520	2900	2220	1800	2710	2250	1750	1420
	4000	3320	2740	2100	1710	2460	2050	1600	1300
	4500	3110	2570	1980	1610	2210	1850	1450	1180
	5000	2900	2400	1850	1510	1980	1660	1310	1060
	5500	2690	2230	1720	1400	1770	1490	1170	957
	6000	2480	2060	1590	1300	1580	1340	1050	860
	6500	2280	1900	1470	1200	1420	1200	946	774
	7000	2100	1750	1360	1110	1270	1080	851	696
	7500	1930	1610	1250	1020	1140	968	767	628
	8000	1770	1480	1150	944	1030	874	694	568
	8500	1630	1360	1060	870	932	792	629	515
	9000	1500	1260	979	803	846	719	572	469
	9500	1380	1160	904	742	771	655	521	427
	10000	1280	1.070	836	686	704	599	477	391
	10500	1180	990	774	636	645	549	437	359
	11000	1090	918	718	590	593	505	402	330
	11500	1010	853	667	548	546	466	371	305
	12000	943	793	621	510	505	431	343	282
	12500	879	739	579	476			318	261
	13000	820	690	541	445				
	14000	718	605	474	390				
	15000	634	534	419	344				
	16000	562	474	372	306				
PROPERTIES AND DESIGN DATA									
Area (mm^{2})		13200	10800	8230	6930	11700	9590	7360	6200
$\mathrm{r}_{\mathrm{x}}(\mathrm{mm})$		111	112	114	114	105	107	109	110
$r_{y}(\mathrm{~mm})$		80.5	81.8	83.1	83.8	60.8	62.1	63.4	64.0
r_{x} / r_{y}		1.38	1.37	1.37	1.36	1.73	1.72	1.72	1.72
$\mathrm{M}_{\mathrm{n}}(\mathrm{kN} \cdot \mathrm{m})$		407	338	262	${ }^{\wedge} 222$	342	284	222	* 188
$\mathrm{Mry}_{\text {ry }}(\mathrm{kN} \cdot \mathrm{m})$		307	255	174	141	209	175	120	97.9
$\left(\mathrm{b}_{\text {el }} / \mathrm{t}\right) \sqrt{345}$		322	421	586	718	322	421	586	718
${ }^{9}\left(\mathrm{~b}_{\text {ei }} / \mathrm{t}\right) \sqrt{350}$		324	424	590	723	324	424	590	723
IMPERIAL SIZE AND WEIGHT									
Weight ((b./ft.)		76.4	62.5	47.9	40.4	67.8	55.7	42.8	36.1
Design Thick.(in.)		0.563	0.450	0.338	0.281	0.563	0.450	0.338	0.281
Size (in.)		12×8				12×6			

${ }^{5}$ See S16-14 Clause 27,1.7 for seismic applications
\dagger Class 3 in bending about $Y-Y$ axis
${ }^{\wedge} M_{r x}$ decreases for C_{r} values above the number in bold. Check the class of section.
\ddagger Class 4

RECTANGULAR HOLLOW SECTIONS
Factored Axial Compressive
Resistances， $\mathrm{C}_{\mathrm{r}}(\mathrm{kN}) \phi=0.90$

Section （ $\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$ ）	HSS 254×203					HSS 254×152				
	16	13	9.5	$\dagger 7.9$	$\ddagger 6.4$	16	13	9.5	$\dagger 7.9$	$\ddagger 6.4$
Mass（kg／m）	101	82.8	63.7	53.7	43.5	88.3	72.7	56.1	47.4	38.4
0	3630	2980	2290	1930	1470	3200	2620	2020	1700	1290
ᄃ 500	3630	2970	2280	1920	1470	3190	2610	2010	1700	1290
응 1000	3610	2960	2270	1910	1460	3160	2590	1990	1680	1270
$\text { 元 } \quad 1500$	3570	2930	2250	1890	1450	3080	2520	1950	1650	1250
2000	3490	2870	2200	1860	1420	2950	2430	1870	1590	1200
$\begin{array}{ll} \hline \text { io } & 2500 \end{array}$	3390	2780	2140	1810	1380	2780	2290	1780	1500	1140
3000	3250	2680	2060	1740	1330	2580	2130	1660	1410	1070
3500	3090	2550	1970	1660	1270	2350	1950	1520	1300	986
4000	2910	2410	1860	1570	1210	2130	1770	1390	1180	900
$\because \quad 4500$	2720	2250	1750	1480	1140	1910	1590	1250	1070	816
$\begin{array}{ll} \cong & 5000 \\ \leftrightarrows \end{array}$	2520	2100	1630	1380	1060	1710	1430	1130	962	735
5500	2330	1940	1510	1280	985	1520	1280	1010	864	661
$\begin{array}{ll} \Psi \\ \mathbb{O} & 6000 \end{array}$	2150	1790	1400	1180	912	1360	1140	904	775	593
6500	1970	1640	1290	1090	842	1210	1020	811	695	533
7000	1810	1510	1180	1010	776	1090	916	728	625	480
产 7500	1660	1390	1090	925	714	975	824	655	563	432
\％ 8000	1520	1270	1000	851	658	878	743	592	509	391
능 8500	1390	1170	921	784	606	794	672	536	461	354
9000	1280	1080	848	722	559	720	610	487	419	322
9500	1180	992	782	666	516	655	555	443	382	294
$\begin{array}{ll} E & 10000 \\ \triangle \end{array}$	1090	916	722	616	477	598	507	405	349	269
10500	1010	847	668	570	441	548	465	372	320	246
11000	931	784	619	528	409	503	427	342	294	227
등 11500	863	728	575	490	380	464	394	315	272	209
$\text { 稛 } \quad 12000$	802	677	535	456	354		364	291	251	193
$$	747	630	499	425	330				233	179
등 13000	697	588	465	397	308					
兹 14000	610	515	408	348	270					
－ 15000	537	454	360	307	238					
16000			319	273	212					
PROPERTIES AND DESIGN DATA										
Area（ mm^{2} ）	11700	9590	7360	6200	5020	10300	8430	6490	5480	4430
$\mathrm{r}_{\mathrm{x}}(\mathrm{mm})$	93.6	95.1	96.5	97.2	97.9	89.2	90.8	92.4	93.2	94.0
$\mathrm{r}_{\mathrm{y}}(\mathrm{mm})$	78.6	79.9	81.3	81.9	82.6	59.6	60.8	62.1	62.8	63.4
$\mathrm{rax}_{\mathrm{x}} / \mathrm{r}_{\mathrm{y}}$	1.19	1.19	1.19	1.19	1.19	1.50	1.49	1.49	1.48	1.48
$M_{r c}(\mathrm{kN} \cdot \mathrm{m})$	309	257	200	170	＾ 118	255	213	167	142	＾ 116
$\mathrm{Mry}^{\text {（ }}$（ $\mathrm{kN} \cdot \mathrm{m}$ ）	265	220	172	127	96.1	178	149	117	87.9	66.3
$\left(\mathrm{b}_{\text {el }} / \mathrm{t}\right) \sqrt{345}$	256	338	476	586	751	256	338	476	586	751
${ }^{5}\left(\mathrm{~b}_{\text {el }} / \mathrm{t}\right) \sqrt{350}$	258	341	479	590	756	258	341	479	590	756
IMPERIAL SIZE AND WEIGHT										
Weight（lb．／ft．）	67.8	55.7	42.8	36.1	29.2	59.3	48.9	37.7	31.9	25.8
Design Thick．（in．）	0.563	0.450	0.338	0.281	0.225	0.563	0.450	0.338	0.281	0.225
Size（in．）	10×8					10×6				

[^28]\dagger Class 3 in bending about $Y-Y$ axis

RECTANGULAR HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN}) \phi=0.90$

ASTM A500
Grade C
$\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$

Section ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)		HSS 203×152					HSS 203×102			
		16	13	9.5	7.9	+6.4	13	9.5	7.9	$\dagger 6.4$
Mass (kg/m)		75.6	62.6	48.5	41.1	33.4	52.4	40.9	34.7	28.3
	0	2740	2260	1750	1470	1200	1900	1470	1250	1020
	500	2730	2250	1740	1470	1190	1890	1470	1240	1010
	1000	2700	2230	1720	1460	1180	1830	1420	1210	983
	1500	2630	2170	1680	1420	1150	1700	1340	1130	926
	2000	2510	2080	1620	1370	1110	1530	1210	1030	842
	2500	2360	1960	1530	1290	1050	1330	1060	904	743
	3000	2170	1810	1420	1200	980	1130	908	779	642
	3500	1970	1650	1300	1100	901	955	772	664	549
	4000	1780	1490	1180	1000	819	805	653	564	467
	4500	1590	1340	1060	903	740	680	554	479	398
	5000	1410	1190	947	809	664	578	472	409	340
	5500	1250	1060	846	724	595	494	405	351	293
	6000	1110	947	756	648	533	426	350	304	253
	6500	993	846	676	580	478	371	305	265	221
	7000	887	757	606	520	429	324	267	232	194
	7500	795	679	545	468	386	286	236	205	171
	8000	715	611	491	422	348		209	182	152
	8500	645	552	444	382	315				
	9000	584	501	403	346	286				
	9500	531	455	367	316	261				
	10000	485	416	335	288	238				
	10500	444	381	307	264	219				
	11000	407	350	282	243	201				
	11500	375	322	260	224	185				
	12000			240	207	171				
	12500									
	$\begin{aligned} & 13000 \\ & 14000 \\ & 15000 \\ & 16000 \end{aligned}$									
PROPERTIES AND DESIGN DATA										
Area (mm^{2})		8820	7270	5620	4750	3850	6110	4750	4020	3270
$r_{x}(\mathrm{~mm})$		72.6	74.1	75.6	76.3	77.1	69.2	70.9	71.7	72.5
$r_{y}(\mathrm{~mm})$		57.8	59.1	60.5	61.1	61.8	39.7	41.0	41.6	42.2
r_{x} / r_{y}		1.26	1.25	1.25	1.25	1.25	1.74	1.73	1.72	1.72
$M_{\text {rx }}(\mathrm{kN} \cdot \mathrm{m})$		179	151	119	102	83.5	116	92.8	79.8	65.5
$M_{\text {ry }}(\mathrm{kN} \cdot \mathrm{m})$		147	124	97.8	83.5	59.9	70.8	56.8	49.1	35.7
$\left(\mathrm{b}_{\mathrm{et}} / \mathrm{t}\right) \sqrt{345}$		190	256	366	454	586	256	366	454	586
${ }^{5}\left(\mathrm{~b}_{\mathrm{el}} / \mathrm{t}\right) \sqrt{350}$		191	258	368	457	590	258	368	457	590
IMPERIAL SIZE AND WEIGHT										
Weight ($\mathrm{lb} . / \mathrm{ft}$.		50.8	42.1	32.6	27.6	22.4	35.2	27.5	23.3	19.0
Design Thick.(in.)		0.563	0.450	0.338	0.281	0.225	0.450	0.338	0.281	0.225
Size (in.)		8×6					8×4			

${ }^{5}$ See S16-14 Clause 27,1,7 for seismic applications
\dagger Class 3 in bending about $Y-Y$ axis

RECTANGULAR HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathbf{C}_{\mathrm{r}}(\mathrm{kN}) \phi=0.90$

ASTM A500
Grade C $\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$

Section ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)	HSS 178×127					HSS 152×102				
	13	9.5	7.9	6.4	$\ddagger 4.8$	13	9.5	7.9	6.4	$\dagger 4.8$
Mass (kg/m)	52.4	40.9	34.7	28.3	21.7	42.3	33.3	28.4	23.2	17.9
	1900	1470	1250	1020	762	1540	1200	1020	835	640
	1890	1470	1240	1010	759	1530	1190	1020	831	636
	1860	1440	1220	996	747	1470	1160	988	806	618
	1780	1390	1180	960	721	1370	1080	923	756	581
	1660	1300	1110	904	680	1210	967	831	683	527
	1510	1190	1020	832	627	1050	840	726	598	463
	1350	1070	914	751	567	884	715	621	513	399
	1190	946	811	667	506	741	603	525	436	340
	1040	830	713	588	446	620	508	444	369	289
	902	724	623	516	392	522	429	375	313	245
	784	632	545	451	344	442	364	319	267	210
	683	552	477	396	302	377	312	274	229	180
	598	485	419	348	266	324	269	236	198	156
	526	427	369	307	235	282	234	206	172	136
	465	378	327	272	208	246	205	180	151	119
	413	336	291	242	185	217	180	159	133	105
	368	300	260	217	166			141	118	93
	330	269	234	195	149					
	298	243	211	176	135					
	270	220	191	159	122					
		200	174	145	111					
PROPERTIES AND DESIGN DATA										
Area (mm^{2})	6110	4750	4020	3270	2500	4950	3870	3300	2690	2060
$\mathrm{r}_{\mathrm{x}}(\mathrm{mm})$	63.6	65.1	65.8	66.6	67.3	52.9	54.5	55.3	56.0	56.8
$\mathrm{r}_{\mathrm{y}}(\mathrm{mm})$	48.7	50.0	50.7	51.4	52.0	38.3	39.6	40.3	40.9	41.6
$\mathrm{rax}_{\mathrm{x}} / \mathrm{r}_{\mathrm{y}}$	1.31	1.30	1.30	1.30	1.29	1.38	1.38	1.37	1.37	1.37
$\mathrm{Mra}_{\mathrm{ra}}(\mathrm{kN} \cdot \mathrm{m})$	109	86.6	74.2	61.2	$\wedge 47.2$	73.0	59.0	50.9	42.2	32.9
$\mathrm{Mry}^{\text {(}}$ (kN $\cdot \mathrm{m}$)	85.7	68.6	59.0	48.4	32.2	54.6	44.4	38.5	32.0	21.8
$\left(\mathrm{b}_{\text {el }} / \mathrm{t}\right) \sqrt{345}$	215	311	388	503	694	173	256	322	421	584
${ }^{5}\left(\mathrm{~b}_{\text {el }} / \mathrm{t}\right) \sqrt{350}$	216	313	390	507	699	175	257	324	424	588
IMPERIAL SIZE AND WEIGHT										
Weight (lb./ft.)	35.2	27.5	23.3	19.0	14.6	28.4	22.4	19.1	15.6	12.0
Design Thick.(in.)	0.450	0.338	0.281	0.225	0.169	0.450	0.338	0.281	0.225	0.169
Size (in.)	7×5					6×4				

[^29]RECTANGULAR HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN}) \phi=0.90$

ASTM A500
Grade C
$\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$

[^30]\dagger Class 3 in bending about $Y-Y$ axis

RECTANGULAR HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN}) \phi=0.90$

ASTM A500
Grade C $\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$

Section ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)		HSS 102×76					HSS 102×51				
		9.5	7.9	6.4	4.8	$\dagger 3.2$	9.5	7.9	6.4	4.8	$\dagger 3.2$
Mass (kg/m)		21.9	18.9	15.6	12.2	8.35	18.1	15.7	13.1	10.3	7.09
Effective length (KL) in millimetres with respect to the least radius of gyration	0	798	686	565	438	299	661	571	475	369	254
	500	786	677	558	432	295	632	548	457	357	246
	1000	728	629	521	405	278	514	452	383	302	211
	1500	624	544	454	355	245	369	330	284	228	161
	2000	506	445	374	295	205	256	231	202	164	117
	2500	399	353	299	237	166	181	165	145	118	85
	3000	314	279	238	189	133	133	121	107	88	63
	3500	249	222	190	152	107	100	92	82	67	48
	4000	200	179	153	123	87				52	38
	4500	163	146	126	101	72					
	5000	135	121	104	84	60					
	5500	113	102	88	71	50					
	6000				60	43					
	6500										
	$\begin{aligned} & 7000 \\ & 7500 \end{aligned}$										
	$\begin{array}{r} 8000 \\ 8500 \\ 9000 \\ 9500 \\ 10000 \end{array}$										
	$\begin{aligned} & 10500 \\ & 11000 \\ & 11500 \\ & 12000 \\ & 12500 \end{aligned}$										
	$\begin{aligned} & 13000 \\ & 14000 \\ & 15000 \\ & 16000 \end{aligned}$										
PROPERTIES AND DESIGN DATA											
Area (mm^{2})		2570	2210	1820	1410	963	2130	1840	1530	1190	818
$\mathrm{r}_{\mathrm{x}}(\mathrm{mm})$		35.5	36.3	37.0	37.8	38.5	32.8	33.7	34.6	35.4	36.3
$r_{y}(\mathrm{~mm})$		28.2	28.9	29.6	30.2	30.9	18.6	19.2	19.9	20.5	21.1
$\mathrm{rax}_{\mathrm{x}} / \mathrm{r}_{\mathrm{y}}$		1.26	1.26	1.25	1.25	1.25	1.76	1.76	1.74	1.73	1.72
$M_{\text {re }}(\mathrm{kN} \cdot \mathrm{m})$		25.5	22.4	18.9	14.9	10.4	19.2	17.1	14.6	11.6	8.20
$\mathrm{Mry}_{\text {r }}(\mathrm{kN} \cdot \mathrm{m})$		20.8	18.3	15.5	12.3	7.48	11.5	10.3	8.88	7.14	4.47
$\left(\mathrm{b}_{\text {el }} / \mathrm{t}\right) \sqrt{345}$		146	190	256	365	586	146	190	256	365	586
${ }^{5}\left(\mathrm{~b}_{\text {ei }} / \mathrm{t}\right) \sqrt{350}$		147	191	257	367	590	147	191	257	367	590
IMPERIAL SIZE AND WEIGHT											
Weight (lb./ft.)		14.7	12.7	10.5	8.17	5.61	12.2	10.6	8.81	6.89	4.76
Design Thick.(in.)		0.338	0.281	0.225	0.169	0.113	0.338	0.281	0.225	0.169	0.113
Size (in.)		4×3					4×2				

${ }^{5}$ See S16-14 Clause 27.1.7 for seismic applications
\dagger Class 3 in bending about $Y-Y$ axis

RECTANGULAR HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN}) \phi=0.90$

Y

Y

ASTM A500
Grade C
$\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$

${ }^{5}$ See S16-14 Clause 27.1.7 for seismic applications

RECTANGULAR HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN}) \phi=0.90$

Section ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)			S $76 \times$			$564 \times$		HSS	25
		6.4	4.8	3.2	6.4	4.8	3.2	4.8	3.2
Mass (kg/m)		9.31	7.40	5.18	8.05	6.45	4.55	4.54	3.28
	0	338	267	186	294	233	164	166	119
	$\begin{array}{r} 500 \\ 1000 \\ 1500 \\ 2000 \\ 2500 \\ 3000 \\ 3500 \\ 4000 \\ 4500 \\ 5000 \\ 5500 \\ 6000 \\ 6500 \\ 7000 \\ 7500 \\ 8000 \\ 8500 \\ 9000 \\ 9500 \\ 10000 \\ 10500 \\ 11000 \\ 11500 \\ 12000 \\ 12500 \\ 13000 \end{array}$	$\begin{array}{r} 310 \\ 217 \\ 136 \\ 87 \\ 59 \end{array}$	$\begin{array}{r} 247 \\ 178 \\ 114 \\ 73 \\ 50 \end{array}$	$\begin{array}{r} 173 \\ 128 \\ 83 \\ 55 \\ 37 \\ 27 \end{array}$	$\begin{array}{r} 267 \\ 184 \\ 113 \\ 72 \\ 48 \end{array}$	$\begin{array}{r} 215 \\ 153 \\ 96 \\ 62 \\ 42 \end{array}$	$\begin{array}{r} 152 \\ 111 \\ 71 \\ 46 \\ 32 \\ 23 \end{array}$	$\begin{array}{r} 129 \\ 64 \\ 33 \end{array}$	$\begin{aligned} & 96 \\ & 50 \\ & 27 \end{aligned}$
PROPERTIES AND DESIGN DATA									
$\begin{aligned} & \text { Area }\left(\mathrm{mm}^{2}\right) \\ & \mathrm{r}_{\mathrm{x}}(\mathrm{~mm}) \\ & \mathrm{r}_{\mathrm{y}}(\mathrm{~mm}) \\ & \mathrm{r}_{\mathrm{x}} / \mathrm{r}_{\mathrm{y}} \end{aligned}$		1090	861	600	947	752	527	534	382
		25.1	25.9	26.8	21.1	21.9	22.7	16.4	17.3
		14.3	14.9	15.5	13.9	14.6	15.2	9.29	9.93
		1.76	1.74	1.73	1.52	1.50	1.49	1.77	1.74
$\begin{aligned} & M_{r x}(k N \cdot m) \\ & M_{r y}(k N \cdot m) \\ & \left(b_{\text {el }} / t\right) \sqrt{345} \\ & { }^{5}\left(b_{\text {el }} / t\right) \sqrt{350} \end{aligned}$		7.51	6.15	4.44	5.53	4.56	3.32	2.40	1.82
		4.53	3.76	2.73	3.82	3.17	2.33	1.44	1.11
		173	255	421	132	200	338	145	256
		174	257	424	133	201	341	146	257
IMPERIAL SIZE AND WEIGHT									
Weight (lb./ft.)		6.26	4.97	3.48	5.41	4.33	3.06	3.05	2.21
Design Thick.(in.)		0.225	0.169	0.113	0.225	0.169	0.113	0.169	0.113
Size (in.)		$3 \times 11 / 2$			$21 / 2 \times 11 / 2$			2×1	

[^31]ROUND HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN}) \phi=0.90$

$\begin{aligned} & \text { Section } \\ & (\mathrm{mm} \times \mathrm{mm}) \end{aligned}$		HSS 508		HSS 457		HSS 406			
		$13 *$	+9.5*	13*	$9.5{ }^{*}$	16	13	9.5	$\dagger 6.4$
Mass (kg/m)		155	117	139	105	153	123	93.3	62.6
	0	5080	3850	4560	3450	5020	4050	3050	2050
	500	5080	3850	4560	3450	5020	4050	3050	2050
	1000	5080	3850	4560	3450	5020	4050	3050	2050
	1500	5070	3840	4550	3440	5000	4040	3040	2050
	2000	5060	3840	4540	3430	4980	4020	3030	2040
	2500	5040	3820	4520	3420	4950	4000	3010	2030
	3000	5020	3810	4490	3400	4910	3960	2990	2010
	3500	4990	3780	4450	3370	4850	3920	2950	1990
	4000	4950	3750	4410	3340	4780	3860	2910	1960
	4500	4900	3720	4350	3300	4700	3800	2870	1930
	5000	4850	3680	4290	3250	4610	3720	2810	1890
	5500	4780	3630	4220	3190	4500	3640	2750	1850
	6000	4710	3580	4140	3130	4390	3550	2680	1810
	6500	4630	3520	4050	3070	4260	3450	2600	1760
	7000	4550	3450	3950	3000	4130	3340	2530	1710
	7500	4460	3380	3850	2920	3990	3230	2440	1650
	8000	4360	3310	3740	2840	3850	3120	2360	1590
	8500	4250	3230	3630	2760	3700	3000	2270	1540
	9000	4150	3150	3520	2670	3550	2880	2180	1480
	9500	4030	3070	3400	2580	3410	2770	2100	1420
	10000	3920	2980	3290	2500	3260	2650	2010	1360
	10500	3800	2900	3170	2410	3120	2540	1920	1300
	11000	3690	2810	3050	2320	2980	2430	1840	1250
	11500	3570	2720	2940	2230	2850	2320	1760	1190
	12000	3450	2630	2820	2150	2720	2210	1680	1140
	12500	3340	2540	2710	2070	2600	2110	1610	1090
	13000	3220	2460	2610	1980	2480	2020	1530	1040
	14000	3000	2290	2400	1830	2260	1840	1400	949
	15000	2790	2130	2210	1690	2050	1670	1270	865
	16000	2590	1980	2040	1550	1870	1530	1160	790
	17000	2410	1840	1870	1430	1710	1390	1060	722
	18000	2230	1710	1730	1320	1560	1280	973	662
PROPERTIES AND DESIGN DATA									
Area (mm^{2})		17800	13500	16000	12100	17600	14200	10700	7200
$\mathrm{r}(\mathrm{mm})$		176	177	158	159	139	140	141	142
$\mathrm{M}_{\mathrm{t}}(\mathrm{kN} \cdot \mathrm{m})$		805	471	648	494	628	508	388	203
(D/t) 317		14100	18800	12700	16900	9020	11300	15000	22500
${ }^{5}(\mathrm{D} / \mathrm{t}) 350$		15600	20700	14000	18700	9950	12400	16600	24900
IMPERIAL SIZE AND WEIGHT									
Weight (lb./ft.)		104	78.7	93.6	70.7	103	82.9	62,7	42.1
Design Thick. (in.)		0.450	0.338	0.450	0.338	0.563	0.450	0.338	0.225
Size (in.)		20 OD		18 OD		16 OD			

${ }^{5}$ See S16-14 Clause 27,1.7 for seismic applications

ROUND HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathbf{C}_{\mathrm{r}}(\mathrm{kN}) \phi=0.90$

ASTM A500
Grade C
$\mathrm{F}_{\mathrm{y}}=317 \mathrm{MPa}$

Section ($\mathrm{mm} \times \mathrm{mm}$)		HSS 356			HSS 324		
		13	9.5	$\dagger 6.4$	13	9.5	6.4
Mass (kg/m)		107	81.3	54.7	97.5	73.9	49.7
	0	3540	2670	1790	3200	2430	1630
	500	3540	2670	1790	3190	2420	1630
	1000	3530	2660	1790	3190	2420	1630
	1500	3520	2650	1790	3170	2410	1620
	2000	3500	2640	1780	3150	2390	1610
	2500	3470	2620	1760	3110	2370	1590
	3000	3430	2590	1740	3070	2330	1570
	3500	3370	2550	1710	3010	2280	1540
	4000	3310	2500	1680	2930	2230	1500
	4500	3230	2440	1640	2850	2170	1460
	5000	3140	2370	1600	2750	2090	1410
	5500	3040	2300	1550	2650	2020	1360
	6000	2940	2220	1500	2540	1930	1310
	6500	2830	2140	1450	2420	1850	1250
	7000	2720	2060	1390	2310	1760	1190
	7500	2600	1970	1330	2190	1670	1130
	8000	2480	1880	1270	2070	1590	1080
	8500	2360	1790	1220	1960	1500	1020
	9000	2250	1710	1160	1850	1420	964
	9500	2140	1620	1100	1750	1340	911
	10000	2030	1540	1050	1650	1260	860
	10500	1920	1460	994	1550	1190	812
	11000	1820	1390	943	1470	1130	766
	11500	1730	1320	895	1380	1060	723
	12000	1640	1250	849	1300	1000	682
	12500	1550	1180	805	1230	946	645
	13000	1470	1120	764	1160	893	609
	14000	1330	1010	688	1040	798	545
	15000	1190	912	621	930	716	489
	16000	1080	825	562	836	644	440
	17000	979	748	510	755	582	397
	18000	890	681	464	684	527	360
PROPERTIES AND DESIGN DATA							
$\begin{aligned} & \text { Area }\left(\mathrm{mm}^{2}\right) \\ & r(\mathrm{~mm}) \\ & M_{r}(\mathrm{kN} \cdot \mathrm{~m}) \\ & (\mathrm{D} / \mathrm{t}) 317 \\ & { }^{5}(\mathrm{D} / \mathrm{t}) 350 \end{aligned}$		12400	9350	6290	11200	8500	5720
		122	123	124	111	112	113
		385	294	154	320	243	165
		9860	13100	19700	8980	12000	18000
		10900	14500	21800	9920	13200	19800
IMPERIAL SIZE AND WEIGHT							
Weight (lb./ft.)		72.2	54.7	36.8	65.5	49.6	33.4
Design Thick. (in.)		0.450	0.338	0.225	0.450	0.338	0.225
Size (in.)		14 OD			12.75 OD		

${ }^{5}$ See S16-14 Clause 27.1.7 for seismic applications
\dagger Class 3

ROUND HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN}) \phi=0.90$

$\begin{aligned} & \text { Section } \\ & (\mathrm{mm} \times \mathrm{mm}) \end{aligned}$		HSS 273					HSS 245	
		13	9.5	7.9	6.4	$\dagger 4.8$	9.5	6.4
Mass (kg/m)		81.6	61.9	51.9	41.8	31.6	55.2	37.3
	0	2680	2030	1700	1370	1040	1810	1220
	500	2680	2030	1700	1370	1040	1810	1220
	1000	2670	2030	1700	1360	1030	1810	1220
	1500	2650	2010	1690	1360	1030	1790	1210
	2000	2620	1990	1670	1340	1010	1760	1190
	2500	2570	1950	1640	1320	997	1720	1160
	3000	2510	1910	1600	1290	974	1670	1130
	3500	2430	1850	1550	1250	945	1600	1080
	4000	2340	1780	1500	1200	912	1520	1030
	4500	2240	1710	1430	1150	874	1440	979
	5000	2130	1620	1360	1100	833	1360	921
	5500	2010	1540	1290	1040	791	1270	862
	6000	1900	1450	1220	984	747	1180	804
	6500	1780	1360	1150	926	702	1100	747
	7000	1670	1280	1070	868	659	1020	693
	7500	1560	1190	1010	813	617	940	642
	8000	1450	1110	939	759	577	869	594
	8500	1350	1040	876	709	539	804	550
	9000	1260	970	817	662	503	743	509
	9500	1180	904	763	617	470	688	471
	10000	1100	844	712	576	438	638	437
	10500	1020	787	664	538	410	592	406
	11000	954	736	621	503	383	550	377
	11500	892	688	581	471	358	512	351
	12000	835	644	544	441	336	477	328
	12500	782	603	510	413	315	446	306
	13000	733	566	478	388	295	417	286
	14000	648	500	423	343	261	366	252
	15000	575	444	376	305	232	324	223
	16000	513	397	335	272	207	288	198
	17000	460	356	301	244	186		
	18000	415	321	271	220	168		
PROPERTIES AND DESIGN DATA								
Area $\left(\mathrm{mm}^{2}\right)$ r (mm) $\mathrm{M}_{\mathrm{r}}(\mathrm{kN} \cdot \mathrm{m})$ (D/t) 317 ${ }^{6}$ (D/t) 350		9400	7130	5970	4800	3630	6360	4290
		92.6	93.6	94.1	94.6	95.0	83.5	84.4
		223	171	144	117	68.5	136	93.0
		7570	10100	12100	15100	20100	9030	13600
		8360	11100	13400	16700	22200	9970	15000
IMPERIAL SIZE AND WEIGHT								
Weight (lb./ft.)		54.8	41.6	34.9	28.1	21.3	37.1	25.1
Design Thick. (in.)		0.450	0.338	0.281	0.225	0.169	0.338	0.225
Size (in.)		10.75 OD					9.625 OD	

[^32]+ Class 3

ROUND HOLLOW SECTIONS
Factored Axial Compressive
Resistances， $\mathrm{C}_{\mathrm{r}}(\mathrm{kN}) \phi=0.90$

ASTM A500
Grade C
$F_{y}=317 \mathrm{MPa}$

Section （ $\mathrm{mm} \times \mathrm{mm}$ ）		HSS 219				HSS 178		HSS 168			
		13	9.5	6.4	4.8	13	9.5	13	9.5	6.4	4.8
	（kg／m）	64.6	49.3	33.3	25.3	51.7	39.5	48.7	37.3	25.4	19.3
	0	2130	1620	1090	827	1700	1300	1610	1230	833	633
	500	2130	1620	1090	827	1700	1300	1600	1230	831	632
	1000	2110	1610	1090	822	1680	1290	1580	1210	822	625
	1500	2090	1590	1070	813	1640	1260	1540	1180	802	611
	2000	2040	1550	1050	796	1580	1210	1470	1130	770	586
	2500	1980	1510	1020	773	1500	1150	1380	1070	726	554
	3000	1890	1440	979	742	1390	1070	1280	986	673	514
	3500	1790	1370	930	706	1280	987	1160	900	616	471
	4000	1680	1290	876	666	1160	900	1040	812	557	427
	4500	1570	1200	819	623	1050	813	933	728	501	384
	5000	1450	1110	761	579	942	732	831	649	448	344
UOOX¢	5500	1340	1030	703	535	844	656	739	578	400	307
	6000	1230	945	647	493	755	589	657	515	357	274
	6500	1120	866	594	453	677	528	585	460	319	246
	7000	1030	794	545	416	607	474	523	412	286	220
	7500	939	727	500	382	546	427	469	369	257	198
蒻	8000	860	666	458	350	493	386	422	333	231	178
	8500	788	611	421	322	446	350	381	300	209	161
	9000	723	561	387	296	405	318	345	272	190	146
	9500	665	516	356	272	369	289	314	248	173	133
	10000	613	476	328	251	337	265	286	226	158	122
$\frac{.5}{\frac{1}{x}}$	10500	565	440	303	232	309	243	262	207	144	111
	11000	523	407	281	215	284	223	240	190	133	102
衰	11500	485	377	261	200	262	206			122	94
	12000	450	350	242	185						
	12500	419	326	226	173						
0音U离	13000	391	304	210	161						
	14000	342	266	184	141						
	15000			162	124						
	$\begin{aligned} & 16000 \\ & 17000 \end{aligned}$										
	18000										
PROPERTIES AND DESIGN DATA											
Area（ mm^{2} ）		7460	5670	3830	2900	5970	4560	5630	4310	2920	2220
r（mm）		73.5	74.5	75.5	76.0	59.0	59.9	55.6	56.6	57.5	58.0
$\mathrm{M}_{5}(\mathrm{kN} \cdot \mathrm{m})$		141	108	74.2	56.5	90.4	70.2	80.5	62.5	43.1	33.1
（D／t）317		6080	8090	12100	16200	4930	6570	4670	6220	9330	12400
${ }^{5}(\mathrm{D} / \mathrm{t}) 350$		6710	8940	13400	17800	5440	7250	5150	6870	10300	13700
IMPERIAL SIZE AND WEIGHT											
Weight（lb．／ft．）		43.4	33.1	22.4	17.0	34.7	26.6	32.7	25.1	17.0	13.0
Design Thick．（in．）		0.450	0.338	0.225	0.169	0.450	0.338	0.450	0.338	0.225	0.169
Size（in．）		8.625 OD				7 OD		6.625 OD			

${ }^{5}$ See S16－14 Clause 27．1．7 for seismic applications

ROUND HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN}) \phi=0.90$

ASTM A500
Grade C
$\mathrm{F}_{\mathrm{y}}=317 \mathrm{MPa}$

[^33]ROUND HOLLOW SECTIONS
Factored Axial Compressive
Resistances, $\mathbf{C}_{r}(\mathrm{kN}) \phi=0.90$

ASTM A500 Grade C $\mathrm{F}_{\mathrm{y}}=317 \mathrm{MPa}$

$\begin{aligned} & \text { Section } \\ & (\mathrm{mm} \times \mathrm{mm}) \end{aligned}$			HSS 89			HSS 76			HSS 73	
		6.4	4.8	3.2	6.4	4.8	3.2	6.4	4.8	3.2
Mass (kg/m)		12.9	9.92	6.72	10.9	8.42	5.73	10.4	8.04	5.48
	0	425	325	221	362	277	188	345	265	180
	500	420	321	218	356	272	185	338	259	176
	1000	395	303	206	324	249	170	305	235	160
	1500	348	268	183	270	209	143	250	194	133
	2000	290	225	154	213	166	115	194	151	105
	2500	235	183	126	164	129	89	147	116	81
	3000	188	147	102	127	100	69	113	89	62
	3500	152	118	82	100	79	55	88	69	49
	4000	123	96	67	79	63	44	70	55	39
	4500	101	79	55	64	51	36	57	45	32
	5000	84	66	46	53	42	29			
	5500	71	56	39						
	6000			33						
	6500									
	7000									
	7500									
	8000									
	8500									
	9000									
	9500									
	10000									
	10500									
	11000									
	11500									
	12000									
	12500									
	13000									
	14000									
	15000									
	16000									
	17000									
	18000									
PROPERTIES AND DESIGN DATA										
Area (mm^{2})		1490	1140	773	1270	971	659	1210	928	630
r (mm)		29.5	29.9	30.4	25.0	25.5	25.9	23.9	24.3	24.8
$\mathrm{Mr}_{\mathrm{r}}(\mathrm{kN} \cdot \mathrm{m})$		11.3	8.79	6.05	8.13	6.36	4.39	7.42	5.79	4.02
(D/t) 317		4930	6550	9850	4220	5620	8450	4050	5380	8090
${ }^{5}(\mathrm{D} / \mathrm{t}) 350$		5440	7240	10900	4660	6200	9330	4470	5940	8930
IMPERIAL SIZE AND WEIGHT										
Weight (lb./ft.)		8.69	6.66	4.52	7.35	5.66	3.85	7.01	5.40	3.68
Design Thick. (in.)		0.225	0.169	0.113	0.225	0.169	0.113	0.225	0.169	0.113
Size (in.)		3.5 OD			3 OD			2.875 OD		

[^34]Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN}) \phi=0.90$

Section ($\mathrm{mm} \times \mathrm{mm}$)			HSS 64			HSS 60			
		6.4	4.8	3.2	6.4	4.8	3.2	4.8	3.2
Mass (kg/m)		8.95	6.92	4.73	8.45	6.54	4.48	5.13	3.54
	0	297	228	155	280	216	147	169	116
	500	288	222	151	270	208	143	159	110
	1000	247	192	132	228	178	122	121	85
	1500	190	149	104	170	134	93	81	58
	2000	139	110	77	122	97	68	54	39
	2500	101	81	57	88	70	50	37	27
	3000	76	61	43	65	52	37	27	19
	3500	58	47	33	50	40	28		
	4000	46	37	26			22		
	4500								
	5000								
	5500								
	6000								
	6500								
	7000								
	7500								
	8000								
	8500								
	9000								
	9500								
	10000								
	10500								
	11000								
	11500								
	12000								
	12500								
	$\begin{aligned} & 13000 \\ & 14000 \end{aligned}$								
	15000								
	16000								
	17000								
	18000								
PROPERTIES AND DESIGN DATA									
Area (mm^{2})		1040	800	545	981	756	516	594	408
r (mm)		20.5	21.0	21.5	19.4	19.9	20.3	15.6	16.1
$\mathrm{M}_{\mathrm{f}}(\mathrm{kN} \cdot \mathrm{m})$		5.48	4.31	3.00	4,88	3.85	2.69	2.38	1.69
(D/t) 317		3520	4680	7040	3340	4450	6680	3560	5350
${ }^{5}(\mathrm{D} / \mathrm{t}) 350$		3890	5170	7770	3690	4910	7380	3930	5910
IMPERIAL SIZE AND WEIGHT									
Weight (lb./ft.)		6.01	4.65	3.18	5.68	4.40	3.01	3.45	2.38
Design Thick. (in.)		0.225	0.169	0.113	0.225	0.169	0.113	0.169	0.113
Size (in.)		2.500			2.375 OD			1.9 OD	

[^35]
BEAM-COLUMNS

Table 4-6 on the next page provides the essence of CSA S16-14 Clause 11 and lists the width-to-thickness ratios for Class I, 2 and 3 sections for various elements in flexural compression. All sections not meeting these requirements are Class 4 . The class for webs in combined flexural and axial compression is a function of the ratio of the factored axial load to the axial compressive load at yield stress $C_{f} /\left(\phi C_{y}\right)$, in accordance with Clause 11.2.

Values of $C_{f} /\left(\phi C_{y}\right)$ at which the webs change class are tabulated in Table 4-7. The tables may be used for W-shapes produced to ASTM A992, A572 Grade 50 and A913 Grade 50. Some members with webs that are always Class 1 are controlled by flanges that are not Class 1 . Therefore, these members and their flange classification are also included in the tables.

Table 4-8 lists values of the equivalent uniform bending coefficients, ω_{1} for various ratios $M_{f_{1}} / M_{f 2}$ of factored end bending moments applied to beam-columns. The values of ω_{1} are computed in accordance with the requirements of Clause 13.8.5, SI6-14.

Table 4-9 has been prepared to facilitate the design of beam-columns in accordance with the requirements of Clause 13.8, S16-14, which incorporates the variable U in the factor U_{1}. Values of the amplification factor U corresponding to various values of C_{f} / C_{e} are listed.

The tables on subsequent pages list the factored moment resistance for pure bending about the major axis, $M_{r x}$, for cases where the unsupported length of compression flange, L, is less than L_{u}, and the factored moment resistance, $M_{r x,}^{\prime}$, where L is greater than $L_{i v}$. The first table includes W-shapes normally used as columns and produced to ASTM A992 and A572 Grade 50 , while the second includes W-shapes produced to ASTM A913 Grade 65 . Tabulated values for A992 and A572 Grade 50 may also be used for W-shape columns produced to CSA G40.21350W. Sections are ordered as in Part 6 of this Handbook, with all of the sections of the same nominal dimensions listed together.

The $M_{r x}$ and $M_{r x}^{\prime}$ values are based on the class of section in bending about the X-X axis, without axial load. However, the class of a section used as a beam-column is a function of the ratio $C_{f} /\left(\phi C_{y}\right)$ as mentioned above. For example, a W410x39 of ASTM A992 steel becomes a Class 3 section when $C_{f} /\left(\phi C_{y}\right)$ exceeds 0.572 , based on the Class 2 limit for h / w of:

$$
\frac{1700}{\sqrt{F_{y}}}\left(1-0.61 \frac{C_{f}}{\phi C_{y}}\right)
$$

Thus, sections whose loading causes a change from Class 2 to Class 3 need to have their tabulated values of $M_{r x}$ and $M_{r x}^{\prime}$ adjusted. A conservative method is to multiply the listed values by the factor S_{x} / Z_{x}.

Elements in Flexural Compression ${ }^{1}$

1. See CSA S16-14 Clause 11.
2. If $\frac{M_{\mathrm{fy}}}{S_{y}} \leq \frac{0.9 \mathrm{M}_{\mathrm{fx}}}{S_{x}}$, the limits for webs of I-sections subject to combined axial compression and bending about the major axis shall apply.

CLASS OF SECTIONS
Combined Axial Compression
and Major-Axis Bending
ASTM A992, A572 Gr. 50, A913 Gr. 50

Designation	Web			Flange	Designation	Web			Flange
	$\begin{gathered} 1 \\ \mathrm{C}_{1} / \phi \mathrm{C}_{y} \leq \end{gathered}$	$\begin{gathered} 2 \\ \mathrm{C}_{1} / \phi \mathrm{C}_{y} \leq \end{gathered}$	$\begin{gathered} 3 \\ \mathrm{C}_{1} / \phi \mathrm{C}_{\mathrm{y}} \leq \\ \hline \end{gathered}$			$\begin{gathered} 1 \\ C_{1} / \phi C_{y} \leq \end{gathered}$	$\begin{gathered} 2 \\ \mathrm{C}_{1} / \phi \mathrm{C}_{\mathrm{y}} \leq \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ C_{1} / \phi C_{y} \leq \end{gathered}$	
$\begin{gathered} \text { W1100 } \times 499 \\ \times 433 \\ \times 390 \\ \times 343 \end{gathered}$	0.852	0.931	0.944	1	W840x576	1.0	-	-	1
	0.541	0.802	0.836	1	$\times 527$	1.0	-	-	1
	0.339	0.719	0.765	1	$\times 473$	1.0	-	-	1
	0.091	0.616	0,680	1	$\times 433$	1.0	-	-	1
					$\times 392$	1.0	-	-	1
W1000x976	1.0	-	-	1	$\times 359$	0.929	0.963	0.971	1
$\begin{aligned} & \times 883 \\ & \times 748 \end{aligned}$	1.0	-	-	1	$\times 329$	0.812	0.915	0.930	1
	1.0	-	-	1	$\times 299$	0.669	0.855	0.880	1
$\begin{array}{r} \times 748 \\ \times 642 \end{array}$	1.0	-	-	1					
$\times 591$	1.0	-	-	1	W840x251	0.534	0.800	0.833	1
$\times 554$	1.0	-	-	1	$\times 226$	0.420	0.752	0.794	1
$\times 539$	1.0	-	-	1	$\times 210$	0.323	0.712	0.760	1
$\times 483$	0.982	0.985	0.989	1	$\times 193$	0.218	0.669	0.723	1
$\times 443$	0.861	0.935	0.947	1	$\times 176$	0.098	0.619	0.682	1
$\times 412$	0.660	0.852	0.877	1					
$\times 371$	0.450	0.765	0.804	1	W760x582	1.0	-	-	1
$\times 321$	0.129	0.632	0.693	1	$\times 531$	1.0	-	-	1
$\times 296$	0.130	0.632	0.693	1	$\times 484$	1.0	-	-	1
					$\times 434$	1.0	-	-	1
W1000×584	1.0	-	-	1	$\times 389$	1.0	-	-	1
$\times 494$	1.0	-	-	1	$\times 350$	1.0	-	-	1
$\times 486$	1.0	-	-	1	$\times 314$	0.983	0.985	0.989	1
$\times 438$	1.0	-	-	1	$\times 284$	0.835	0.924	0.938	1
$\times 415$	1.0	-	-	1	$\times 257$	0.689	0.864	0.887	1
x393	0.917	0.958	0.966	1					
$\times 350$	0.660	0.852	0.877	1	W760x220	0.677	0.859	0.883	1
$\times 314$	0.460	0.769	0.808	1	$\times 196$	0.568	0.814	0.845	1
$\times 272$	0.129	0.632	0.693	1	$\times 185$	0.475	0.775	0.813	1
$\times 249$	0.129	0.632	0.693	1	$\times 173$	0.403	0.745	0.788	1
$\times 222$	0.053	0.601	0.666	1	$\times 161$	0.307	0.706	0.754	1
					$\times 147$	0.206	0.664	0.719	1
W920×1377	1.0	-	-	1	$\times 134$	-	0.557	0,630	2
$\times 1269$	1.0	-	-	1					
$\times 1194$	1.0	-	-	1	W690×802	1.0	-	-	1
$\times 1077$	1.0	-	-	1	$\times 548$	1.0	-	-	1
$\times 970$	1.0	-	-	1	$\times 500$	1.0	-	-	1
$\times 787$	1.0	-	-	1	$\times 457$	1.0	-	-	1
$\times 725$	1.0	-	-	1	$\times 419$	1.0	-	-	1
$\times 656$	1.0	-	-	1	$\times 384$	1.0	-	-	1
$\times 588$	1.0	-	-	1	$\times 350$	1.0	-	-	1
$\times 537$	1.0	-	-	1	$\times 323$	1.0	-	-	1
$\times 491$	1.0	-	-	1	$\times 289$	1.0	-	-	1
$\times 449$	1.0	-	-	1	$\times 265$	1.0	-	-	1
$\times 420$	0.903	0.952	0.961	1	$\times 240$	0.899	0.950	0.960	1
$\times 390$	0.810	0.914	0.929	1	$\times 217$	0.750	0.889	0.908	1
$\begin{array}{r} \times 368 \\ \times 344 \end{array}$	0.725	0.878	0.900	1					
	0.628	0.838	0.866	1	W690x192	0.759	0.893	0.911	1
					$\times 170$	0.636	0.842	0.869	1
W920×381	1.0	-	-	1	$\times 152$	0.430	0.756	0.797	1
$\times 345$	0.873	0.940	0.951	1	$\times 140$	0.308	0.706	0.755	1
$\times 313$	0.793	0.907	0.923	1	$\times 125$	0.176	0.651	0.709	1
$\times 289$	0.638	0.843	0,869	1					
+271	0.533	0.799	0.833	1					
$\times 253$	0.404	0.746	0.788	1					
$\times 238$	0.299	0.702	0.752	1					
$\times 223$	0.214	0.667	0.722	1					
$\times 201$	0.106	0.623	0.685	1					
- Indicates web is never that class. For seismic applications, see S16-14 Clause 27,1.7.									

CLASS OF SECTIONS
Combined Axial Compression
$\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$
and Major-Axis Bending
ASTM A992, A572 Gr. 50, A913 Gr. 50

Designation	Web			Flange	Designation	Web			Flange
	$\begin{gathered} 1 \\ C_{1} / \phi C_{y} \leq \end{gathered}$	$\begin{gathered} 2 \\ C_{1} / \phi C_{y} \leq \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ C_{1} / \phi C_{y} \leq \\ \hline \end{gathered}$			$\begin{gathered} 1 \\ \mathrm{C}_{r} / \phi \mathrm{C}_{y} \leq \end{gathered}$	$\begin{gathered} 2 \\ C_{1} / \phi C_{y} \leq \end{gathered}$	$\begin{gathered} 3 \\ C_{1} / \phi C_{y} \leq \end{gathered}$	
W610x551	1.0	-	-	1	W460x464	1.0	-	-	1
$\times 498$	1.0	-	-	1	$\times 421$	1.0	-	-	1
$\times 455$	1.0	三	-	1	$\times 384$	1.0	-	-	1
$\times 415$	1.0			1	$\times 349$	1.01.0			1
$\times 372$	1.0	-	-		$\times 315$		-	-	
$\times 341$	1.0	-	-	1	$\times 286$$\times 260$	1.0 1.0	-	-	1
$\times 307$	1.0		-	1		1.0 1.0	-	-	1
$\times 285$	1.0	-	-	1	$\times 235$	1.0	-	-	1
$\times 262$	1.0	-	-	1	$\times 213$	1.0		-	1
$\times 241$	1.0		-	1	$\times 193$$\times 177$	$\begin{array}{r}1.0 \\ -1.0 \\ \hline 1.0\end{array}$	-	-	1
$\times 217$	1.0	-		1			-	-	1
$\times 195$	0.953	0.973	0.979	1	$\times 177$ $\times 158$	1.0 1.0	-	三-	1
$\times 174$	0.793	0.907	0.923	1	$\times 144$	1.0	-		
$\times 155$	0.611	0.831	0.860	2	$\begin{array}{r} \times 128 \\ \times 113 \end{array}$	$\begin{gathered} 1.0 \\ 0.847 \end{gathered}$	$0 . \overline{929}$	$0 . \overline{942}$	1
W610×153	0.791	0.906	0.923	1	W460×106	1.0			
×140	0.672	0.856	$\begin{aligned} & 0.881 \\ & 0.815 \end{aligned}$	1				- -97	1
$\times 125$	0.480	0.7770.722			$\begin{array}{r} \times 97 \\ \times 89 \end{array}$	$\begin{gathered} 1.0 \\ 0.939 \end{gathered}$	$0 . \overline{967}$		1
$\times 113$	0,347		$\begin{aligned} & 0.768 \\ & 0.717 \end{aligned}$	1 1		$\begin{aligned} & 0.939 \\ & 0.801 \end{aligned}$	$\begin{aligned} & 0.967 \\ & 0.910 \end{aligned}$	0.926	
$\times 101$	0.201	0.662		11	$\times 89$$\times 82$$\times 74$	0.692	0.865	0.888	1
$\begin{gathered} W 610 \times 92 \\ \times 82 \end{gathered}$						0.505	0.788	0.823	
	0.288	$\begin{aligned} & 0.698 \\ & 0.612 \end{aligned}$	$\begin{aligned} & 0.748 \\ & 0.676 \end{aligned}$	1	$\times 74$				
	0.081			1	$\begin{gathered} \text { W460x68 } \\ \times 60 \\ \times 52 \end{gathered}$	0.527	0.797	0.831	1
						0.246	0.680	0.733	1
W530x409	1.0	-	-	1		0.124	0.630	0.691	1
x369	1.0			1 1	W410x149				
$\times 332$	1.0	-	-	1		$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	-	-	
$\times 300$	1.0		-	1	$\times 132$		-	-	1111
$\times 272$	1.0	-	-	1	x100$\times 100$	$\begin{gathered} 1.0 \\ 0.914 \end{gathered}$	-		
$\times 248$	1.0	-					0.957	0.965	
$\times 219$	1.0	-	-	1					
$\times 196$	1.0	-	-	1	W410x85	1.0	-	-	1
$\times 182$	1.0	-	-	1	$\times 74$	0.863	0.936	0.948	1
$\times 165$	1.0	-	-	1	$\times 67$	0.689	0.863	0.887	1
$\times 150$	0.851	0.931	0.944	1	$\times 60$	0.420	0.752	0.794	1
					$\times 54$	0.363	0.729	0.774	2
W530 $\times 123$ $\times 128$	1.0 0.906	0.954	0.	1					
$\times 123$	0.906	0.954	0.963	1	W410×46	0.210	0.665	0.721	1
$\times 109$	0.693	0.865	0.888	1	$\times 39$	-	0.572	0.642	2
$\times 101$	0.569	0.814	0.846	1					
$\times 92$	0.434	0.758	0.799	1	W360x1086	1.0	-	-	1
$\times 82$	0.279	0.694	0.745	2	$\times 990$	1.0	-	-	1
$\times 72$	0.148	0.640	0.699	3	$\times 900$	1.0	-	-	1
					$\times 818$	1.0	-	-	1
W530x85	0.454	0.766	0.805	1	$\times 744$	1.0	-	-	1
$\times 74$	0.324	0,713	0.760	1	$\times 677$	1.0	-	-	1
x66	0.121	0.629	0.690	1	$\times 634$	1.0	-	-	1
					$\times 592$	1.0	-	-	1
					$\times 551$	1.0	-	-	1
					$\times 509$	1.0	-	-	1
					$\times 463$	1.0	-	-	1
					$\times 421$	1.0	-	-	1
					$\times 382$	1.0	-	-	1
					$\times 347$	1.0	-	-	1
					$\times 314$	1.0	-	-	1
					$\times 287$	1.0	-	-	1
					$\times 262$	1.0	-	-	1
					$\times 237$	1.0	-	-	1
For seismic	ates web ications,	never that ee S16-14	class. Clause 27.		$\times 216$	1.0	-	-	\dagger

Combined Axial Compression
and Major-Axis Bending
ASTM A992, A572 Gr. 50, A913 Gr. 50

Designation	Web			Flange	Designation	Web			Flange
	$\begin{gathered} 1 \\ C_{t} / \phi C_{y} \leq \end{gathered}$	$\begin{gathered} 2 \\ C_{1} / \phi C_{y} \leq \end{gathered}$	$\begin{gathered} 3 \\ C_{1} / \phi C_{y} \leq \end{gathered}$			$\begin{gathered} 1 \\ C_{1} / \phi C_{y} \leq \end{gathered}$	$\begin{gathered} 2 \\ C_{1} / \phi C_{y} \leq \end{gathered}$	$\begin{gathered} 3 \\ C_{f} / \phi C_{y} \leq \end{gathered}$	
$\begin{gathered} \text { W360×196 } \\ \times 179 \\ \times 162 \\ \times 147 \\ \times 134 \end{gathered}$	1.0	-	-	1	W250x167	1.0	-	-	1
	1.0	-	-	1	$\times 149$	1.0	-	-	1
	1.0	-	-	2	$\times 131$	1.0	-	-	1
	1.0	-	-	3	$\times 115$	1.0	-	-	1
	1.0	-	-	3	$\times 101$	1.0	-	-	1
					$\times 89$	1.0	-	-	1
$\begin{gathered} \text { W } 360 \times 122 \\ \times 110 \\ \times 101 \\ \times 91 \end{gathered}$	1.0	-	-	1	$\times 80$	1.0	-	-	2
	1.0	-	-	1	$\times 73$	1.0	-	-	2
	1.0	-	-	1					
	1.0	-	-	1	W250x67	1.0	-	-	1
					$\times 58$	1.0	-	-	1
$\begin{gathered} \text { W } 360 \times 79 \\ \times 72 \\ \times 64 \end{gathered}$	1.0	-	-	1	$\times 49$	1.0	-	-	3
	0.954	0.973	0.979	1					
	0.765	0.895	0.913	1	W250x45	1.0	-	-	1
					$\times 39$	1.0	-	-	1
$\begin{gathered} \text { W } 360 \times 57 \\ \times 51 \\ \times 45 \end{gathered}$	0.746	0.887	0.907	1	$\times 33$	0.862	0.935	0.947	2
	0.569	0.814	0.845	1					
	0.478	0.776	0.814	2	W250x28	0.940	0.968	0.974	1
					$\times 25$	0.859	0.934	0.946	1
$\begin{gathered} \text { W } 360 \times 39 \\ \times 33 \end{gathered}$	0.355	0.726	0.771	1	$\times 22$	0.771	0.898	0.916	1
	0.086	0.614	0.678	1	$\times 18$	0.396	0.742	0.785	3
$\begin{gathered} \text { W310×500 } \\ \times 454 \end{gathered}$	1.0	-	-	1	W200x 100	1.0	-	-	1
	1.0	-	-	1	$\times 86$	1.0	-	-	1
$\times 415$	1.0	-	-	1	$\times 71$	1.0	-	-	1
$\times 375$$\times 342$	1.0	-	-	1	$\times 59$	1.0	-	-	1
	1.0	-	-	1	$\times 52$	1.0	-	-	2
$\times 342$ $\times 313$	1.0	-	-	1	$\times 46$	1.0	-	-	3
$\times 283$	1.0	-	-	1					
$\times 253$	1.0	-	-	1	W200x42	1.0	-	-	1
+226	1.0	-	-	1	$\times 36$	1.0	-	-	2
$\times 202$	1.0	-	-	1					
$\times 179$	1.0	-	-	1	W200x31	1.0	-	-	1
$\times 158$	1.0	-	-	1	$\times 27$	1.0	-	-	2
$\times 143$	1.0	-	-	1					
$\times 129$	1.0	-	-	1	W200×22	1.0	-	-	1
$\times 118$	1.0	-	-	2	$\times 19$	1.0	$\overline{-}$	$\overline{-}$	2
$\times 107$	1.0	-	-	2	$\times 15$	0.655	0.850	0.875	3
$\times 97$	1.0	-	-	3					
					W150×37	1.0	-	-	1
W310x86	1.0	-	-	1	$\times 30$	1.0	-	-	2
$\times 79$	1.0	-	-	2	$\times 22$	1.0	-	-	4
W310x74	1.0	-	-	1	W150x24	1.0	-	-	1
	1.0	-	-	1	$\times 18$	1.0	-	-	1
$\times 60$	0.966	0.978	0.983	1	$\times 14$	1.0	-	-	2
					$\times 13$	1.0	-	-	3
W310x52$\times 45$	0.909	0.954	0.963	1					
	0.658	0.851	0.876	1	W130x28	1.0	-	-	1
$\times 39$	0.395	0.742	0.785	2	$\times 24$	1.0	-	-	1
W310x33	0.652 0.463	0.849 0.770	0.874 0.809	1	W100×19	1.0	-	-	1
$\times 24$	0.310	0.707	0.755	1					
$\times 21$	0.089	0.615	0.679	2					
- Indicates web is never that class. For seismic applications, see S16-14 Clause 27.1.7.									

Single Curvature				Double Curvature			
$\frac{M_{f 1}}{M_{f 2}}$	ω_{1}	$\frac{M_{11}}{M_{12}}$	ω_{1}	$\frac{M_{11}}{M_{12}}$	ω_{1}	$\frac{M_{11}}{M_{12}}$	ω_{1}
1.00	1.00	0.50	0.80	0.00	0.60	0.55	0.40
0.95	0.98	0.45	0.78	0.05	0.58	0.60	0.40
0.90	0.96	0.40	0.76	0.10	0.56	0.65	0.40
0.85	0.94	0.35	0.74	0.15	0.54	0.70	0.40
0.80	0.92	0.30	0.72	0.20	0.52	0.75	0.40
0.75	0.90	0.25	0.70	0.25	0.50	0.80	0.40
0.70	0.88	0.20	0.68	0.30	0.48	0.85	0.40
0.65	0.86	0.15	0.66	0.35	0.46	0.90	0.40
0.60	0.84	0.10	0.64	0.40	0.44	0.95	0.40
0.55	0.82	0.05	0.62	0.45	0.42	1.00	0.40
		0.00	0.60	0.50	0.40		

* See Clause 13.8.5, CSA S16-14

The value of ω_{1} is used to modify the bending term in the beam-column interaction expression to account for various end moment and transverse bending loading conditions of the columns.

For columns of a frame not subject to transverse loads between supports, use the values of ω_{1} shown in Table 4-8.

For members subjected to distributed loads or a series of point loads between supports, $\omega_{1}=1.0$, and for members subjected to a concentrated load or moment between supports, $\omega_{1}=0.85$.

The values of ω_{1} given in Table 4-8 are derived from:

$$
\omega_{1}=0.6-0.4 \kappa \geq 0.4
$$

where:
$\kappa=M_{f l} / M_{j 2}$ for moments at opposite ends of the unbraced column length, positive for double curvature, and negative for single curvature in which,
$M_{f}=$ the smaller factored end moment, and
$M_{f 2}=$ the larger factored end moment.

$$
U=\frac{1}{1-\frac{C_{f}}{C_{e}}}
$$

$\frac{C_{1}}{C_{e}}$	U	$\frac{C_{1}}{C_{e}}$	U	$\frac{C_{i}}{C_{e}}$	U	$\frac{C_{1}}{C_{0}}$	U
0.01	1.01	0.26	1.35	0.51	2.04	0.76	4.17
0.02	1.02	0.27	1.37	0.52	2.08	0.77	4.35
0.03	1.03	0.28	1.39	0.53	2.13	0.78	4.55
0.04	1.04	0.29	1.41	0.54	2.17	0.79	4.76
0.05	1.05	0.30	1.43	0.55	2.22	0.80	5.00
0.06	1.06	0.31	1.45	0.56	2.27	0.81	5.26
0.07	1.08	0.32	1.47	0.57	2.33	0.82	5.56
0.08	1.09	0.33	1.49	0.58	2.38	0.83	5.88
0.09	1.10	0.34	1.52	0.59	2.44	0.84	6.25
0.10	1.11	0.35	1.54	0.60	2.50	0.85	6.67
0.11	1.12	0.36	1.56	0.61	2.56	0.86	7.14
0.12	1.14	0.37	1.59	0.62	2.63	0.87	7.69
0.13	1.15	0.38	1.61	0.63	2.70	0.88	8.33
0.14	1.16	0.39	1.64	0.64	2.78	0.89	9.09
0.15	1.18	0.40	1.67	0.65	2.86	0.90	10.0
0.16	1.19	0.41	1.69	0.66	2.94	0.91	11.1
0.17	1.20	0.42	1.72	0.67	3.03	0.92	12.5
0.18	1.22	0.43	1.75	0.68	3.13	0.93	14.3
0.19	1.23	0.44	1.79	0.69	3.23	0.94	16.7
0.20	1.25	0.45	1.82	0.70	3.33	0.95	20.0
0.21	1.27	0.46	1.85	0.71	3.45	0.96	25.0
0.22	1.28	0.47	1.89	0.72	3.57	0.97	33.3
0.23	1.30	0.48	1.92	0.73	3.70	0.98	50.0
0.24	1.32	0.49	1.96	0.74	3.85	0.99	100.0
0.25	1.33	0.50	2.00	0.75	4.00		

* See Clause 13.8.4 in CSA S16-14.

Designation	$\mathrm{Mrax}_{\text {r }}$	$\mathrm{M}^{*}{ }^{\text {c }}$ for the following unsupported lengths in millimetres									
		6000	8000	10000	12000	14000	16000	18000	20000	24000	28000
W360x1086	8450	-	-	-	-	-	-	-	-	8270	8030
W360×990	7550	-	-	-	-	-	-	-	7520	7290	7060
W360x900	6710	-	-	-	-	-	-	-	6610	6390	6170
W 360×818	5990	-	-	-	-	-	-	5930	5830	5610	5400
W360×744	5340	-	-	-	-	-	5320	5220	5120	4910	4700
W360x677	4750	-				-	4680	4580	4480	4280	4080
W360x634	4410	-	-	-	-	4400	4310	4210	4110	3920	3720
W360×592	4070	-	-	-	-	4030	3930	3840	3740	3550	3360
W360x551	3760	-	-	-		3680	3580	3490	3390	3200	3010
W360x509	3420	-	-	-	3400	3310	3220	3120	3030	2850	2670
W360x463	3070	-	-	-	3010	2920	2830	2740	2650	2470	2290
W360x421	2760	-	-	-	2670	2580	2500	2410	2320	2140	1970
W360×382	2470	-	-	2450	2360	2270	2180	2100	2010	1840	1670
W360×347	2220	-	-	2170	2080	1990	1910	1820	1740	1570	1380
W360×314	1980			1900	1820	1730	1650	1570	1480	1320	1130
W360×287	1800	-	1800	1710	1630	1550	1460	1380	1300	1120	953
W360×262	1630	-	1610	1530	1440	1360	1280	1190	1110	927	790
W360×237	1460	-	1420	1340	1250	1170	1090	1010	916	755	43
W360×216	1320	-	1280	1190	1110	1030	951	867	773	637	542
W360x196	1190	-	1130	1040	960	879	799	702	626	516	439
W360x179	1080	-	1010	924	843	762	671	588	524	430	366
W360×162	975	974	895	814	733	653	558	488	434	356	02
+W360×147	798	-	740	675	609	544	467	407	361	295	250
+W360×134	723	-	663	598	532	461	392	341	302	246	208
W310x500	3070	-	-	-	-	2990	2910	2840	2760	2600	2450
W310x454	2740	-	-	-	2710	2630	2550	2480	2400	2250	2100
W310×415	2450	-	-	-	2390	2320	2250	2170	2100	1960	1810
W310x375	2170	-	-	2160	2090	2020	1950	1880	1810	1670	1530
W310×342	1970	-	-	1930	1860	1790	1720	1650	1580	1450	1310
W310x313	1780	-	-	1720	1650	1580	1510	1450	1380	1240	1090
W310x283	1580	-	1580	1510	1440	1370	1310	1240	1180	1040	890
W310x253	1390	-	1370	1300	1240	1170	1110	1040	978	831	711
W310x226	1230	-	1190	1120	1060	997	934	871	803	667	570
W310x202	1090	-	1030	967	904	841	778	712	639	530	453
W310x179	947	941	877	814	752	691	629	555	497	412	352
W310×158	829	813	750	687	626	565	494	436	390	323	275
W310x143	751	729	666	604	543	476	411	363	324	268	229
W310x 129	671	643	581	520	460	390	336	296	264	218	186
W310x118	605	574	513	452	388	324	279	245	219	180	154
W310x107	546	512	453	392	325	271	233	204	182	150	127
+W310x97	447	423	375	326	272	226	193	169	150	123	105

Note: Moment resistances are based on class of section for $X-X$ axis of bending only, $\omega_{2}=1.0$.
† Class 3

FACTORED MOMENT RESISTANCES OF COLUMNS, $M_{r x}$ and $M_{r x}(k N \cdot m)$ $\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$

W Shapes
ASTM A992
A572 Grade 50

Designation	M_{rx}	$\mathrm{M}_{\text {rx }}$ for the following unsupported lengths in millimetres									
		4000	5000	6000	7000	8000	9000	10000	12000	14000	16000
W250x167	755	-	-	752	730	708	687	665	622	580	537
W250x149	661	-	-	650	628	607	586	565	523	481	439
W250x131	574	-	-	555	533	512	492	471	430	389	341
W250x115	497	-	491	470	449	429	408	388	348	301	262
W250x101	435	-	424	403	382	362	342	322	279	236	205
W250x89	382	-	367	346	326	306	285	265	220	186	161
W250x80	338	-	321	302	282	262	242	221	179	151	130
W250x73	306	-	287	268	248	228	209	185	149	126	108
W200×100	357	-	349	335	321	307	294	280	253	222	194
W200x86	305	-	292	279	265	252	238	225	197	168	147
W200x71	249	246	232	219	205	192	179	166	137	116	101
W200x59	203	195	182	169	155	142	128	114	93.2	79.1	68.8
W200x52	177	168	155	142	129	116	101	89.5	73.3	62.1	53.9
\dagger W200x46	139	133	122	112	101	90.2	78.4	69.5	56.6	47.9	41.5
W150x37	96.3	85.4	77.6	69.8	61.5	53.2	46.9	42.0	34.7	29.6	25.8
W150x30	75.8	63.9	56.3	48.1	40.2	34,6	30.4	27.2	22.4	19.1	16.6
\ddagger W150x22	46.2	38.5	33.2	27.2	22.5	19.2	16.8	14.9	12.2	10.4	9.00

Note: Moment resistances are based on class of section for X-X axis of bending only, $\omega_{2}=1.0$.
\dagger Class 3
\ddagger Class 4

FACTORED MOMENT RESISTANCES
OF COLUMNS, $M_{r x}$ and $M_{r x}^{*}(k N \cdot m)$ $\mathrm{F}_{\mathrm{y}}=450 \mathrm{MPa}$

Designation	M_{rx}	$\mathrm{M}^{\text {rx }}$ for the following unsupported lengths in millimetres									
		6000	8000	10000	12000	14000	16000	18000	20000	24000	28000
W360x1299	13.400	-	-	-	-	-	-	-	13300	12900	12500
W360x1202	12200	-	-	-	-	-	-	12100	11900	11500	11100
W360x1086	11000	-	-	-	-	-	-	10800	10600	10200	9810
W360x990	9840	-	-	-	-	-	9750	9550	9360	8960	8560
W360x900	8750	-	-	-	-	-	8570	8380	8190	7810	7430
W360x818	7820	-	-	-	-	7730	7550	7360	7180	6810	6440
W360x744	6970	-	-	-	-	6800	6620	6440	6270	5910	5560
W360x677	6200	-	-	-	6140	5970	5800	5630	5460	5120	4780
W360x634	5750	-	-	-	5650	5480	5310	5150	4980	4650	4320
W360x592	5310	-	-	-	5160	5000	4830	4670	4510	4180	3860
W360x551	4900	-	-	4870	4710	4540	4380	4220	4060	3740	3410
W360x509	4460	-	-	4390	4230	4070	3910	3750	3600	3290	2980
W360x463	4000	-	-	3880	3730	3570	3420	3260	3110	2810	2450
W360×421	3600	-	-	3440	3290	3140	2990	2840	2690	2390	2040
W360x382	3220	-	3190	3030	2880	2730	2590	2440	2290	1960	1680
W 360×347	2890	-	2820	2670	2530	2380	2240	2090	1950	1620	1380
W360×314	2580	-	2480	2340	2190	2050	1900	1760	1590	1320	1130
W360×287	2350	-	2240	2090	1950	1810	1670	1510	1350	1120	953
W360x262	2130	-	2000	1850	1710	1570	1430	1260	1120	927	790
W360x237	1900	1890	1750	1610	1470	1330	1170	1030	916	755	643
W360x216	1730	1710	1570	1430	1290	1150	988	867	773	637	542
W360×196	1560	1510	1370	1230	1090	931	800	702	626	516	439
W360×179	1410	1360	1220	1080	941	783	671	588	524	430	366
+W360x162	1150	1110	1010	893	781	653	558	488	434	356	302
+W360×147	1040	1000	896	784	664	548	467	407	361	295	250

Note: Moment resistances are based on class of section for $X-X$ axis of bending only, $\omega_{2}=1.0$.
† Class 3

DESIGN OF BEAM-COLUMNS

Examples

1. Given:

Design a steel column in a braced frame for the factored loads shown. The moments cause bending about the $\mathrm{X}-\mathrm{X}$ axis of the column. The $P-\Delta$ effects have been included in the analysis. The steel grade is ASTM A992 $\left(F_{y}=345 \mathrm{MPa}\right)$.

Solution:

$\begin{array}{ll}L=3700 \mathrm{~mm} & M_{f 1}=200 \mathrm{kN} \cdot \mathrm{m} \\ C_{f}=2000 \mathrm{kN} & M_{f 2}=300 \mathrm{kN} \cdot \mathrm{m}\end{array}$
Try a W310x118 column.
Although Table 5-1, Class of Sections in Bending, lists the W310x118 as Class 2, the addition of axial load might change that class (according to Table 2 of S16-14 Clause 11.2). However, an examination of Table 4-7, Class of Sections - Combined Axial Compression and Major-Axis Bending, shows that the W310x118 is always a Class 2 section, and Clause 13.8.2 applies:

$$
\frac{C_{f}}{C_{r}}+\frac{0.85 U_{1 x} M_{\text {天 }}}{M_{r x}}+\frac{\beta U_{1 y} M_{f y}}{M_{r y}} \leq 1.0
$$

i) Cross-sectional strength

$$
\begin{aligned}
& C_{f}=2000 \mathrm{kN} \\
& M_{f f}=300 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

From the tables of Factored Axial Compressive Resistances in Part 4,

$$
C_{r}=C_{r o}=4650 \mathrm{kN} \text {, and } M_{r x}=605 \mathrm{kN} \cdot \mathrm{~m}
$$

$$
M_{f 1} / M_{f 2}=200 / 300=0,67 \text { (double curvature) }
$$

From Table 4-8, Values of $\omega_{1}, \omega_{1 x}=0.40$

$$
K L_{x} / r_{x}=1.0(3700 / 136)=27.2
$$

From Table 4-5, Euler Buckling Load, $C_{e} / A=2670 \mathrm{MPa}$ (by interpolation)

$$
C_{e}=2670 \times 15000 \mathrm{~mm}^{2}=40100 \mathrm{kN}, C_{f} / C_{e}=2000 / 40100=0.0500
$$

From Table 4-9, Amplification factor, $U=1.05$

$$
U_{l x}=\omega_{f x} U=0.40 \times 1.05=0.42<1.0 \quad \text { Therefore, } U_{l x}=1.0
$$

$$
\frac{2000}{4650}+\frac{0.85 \times 1.0 \times 300}{605}=0.430+0.421=0.851<1.0
$$

ii) Overall member strength

$$
\begin{aligned}
& K L_{x} / r_{x}=27.2 \text { From Table 4-3, Unit Factored Compressive Resistances, } \\
& C_{r} / A=297 \mathrm{MPa} \text {, for } F_{y}=345 \mathrm{MPa} \\
& C_{r}=C_{r x}=297 \times 15000 / 10^{3}=4460 \mathrm{kN} \text { (uniaxial bending about axis X-X) }
\end{aligned}
$$

$U_{l x}=0.4 \times 1.05=0.42$ (for braced frames)
$\frac{2000}{4460}+\frac{0.85 \times 0.42 \times 300}{605}=0.448+0.177=0.625<1.0$
iii) Lateral-torsional buckling strength
$C_{r}=C_{r y}=C_{r L}=3840 \mathrm{kN}$
(by interpolation, from the tables of Factored Axial Compressive resistances)
$L=3700 \mathrm{~mm}<L_{u}=4920 \mathrm{~mm}, M_{r x}=605 \mathrm{kN} \cdot \mathrm{m}$
$U_{l, x}=1.0$
$\frac{2000}{3840}+\frac{0.85 \times 1.0 \times 300}{605}=0.521+0.421=0.942<1.0$
The W 310×118 column section is adequate.

Comments:

1. C_{r} could be more accurately determined by computing the $K L / r$ values and entering the tables of Unit Factored Compressive Resistances (Table 4-3) for the larger KL/r and multiplying that value by the area of the column.
2. When $L>L_{u}$ the tables of Factored Moment Resistances of Columns on the preceding pages will be more useful. (Caution: if a column section changes from Class 2 to Class 3 on account of high axial loads, $M_{r x}$ or $M_{r x}^{\prime}$ values need to be adjusted.)

2. Given:

Same as Example 1, except that the column is part of an unbraced (sway) frame. Additional moments of $50 \mathrm{kN} \cdot \mathrm{m}$ at each end of the column cause bending about the $\mathrm{Y}-\mathrm{Y}$ axis, such that double curvature is induced in the column.

Solution:

$$
\begin{array}{lll}
L=3700 \mathrm{~mm} & M_{f x 1}=200 \mathrm{kN} \cdot \mathrm{~m} & M_{f j^{\prime} 1}=50 \mathrm{kN} \cdot \mathrm{~m} \\
C_{f}=2000 \mathrm{kN} & M_{f x 2}=300 \mathrm{kN} \cdot \mathrm{~m} & M_{f j^{2}}=50 \mathrm{kN} \cdot \mathrm{~m}
\end{array}
$$

Try a W310×129 column.
This section is a heavier one of the same series as the W310x118 used in Example 1, but is a Class 1 section. S16-14 Clause 13.8.2 applies.

i) Cross-sectional strength

For members in unbraced frames, the cross-sectional strength check does not govern.
ii) Overall member strength
$C_{f}=2000 \mathrm{kN}, M_{f x}=300 \mathrm{kN} \cdot \mathrm{m}, M_{f^{\prime}}=50 \mathrm{kN} \cdot \mathrm{m}$
$K L_{x} / r_{x}=1.0(3700 / 137)=27.0, K L_{y} / r_{y}=1.0(3700 / 78.0)=47.4$
From Table 4-3, Unit Factored Compressive Resistances,

$$
\begin{aligned}
& C_{r} / A=257 \mathrm{MPa} \text { (for } K L / r=47.4, \text { by interpolation) } \\
& C_{r}=257 \times 16500 / 10^{3}=4240 \mathrm{kN}
\end{aligned}
$$

From the tables of Factored Axial Compressive Resistances in Part 4, $M_{r x}=671 \mathrm{kN} \cdot \mathrm{m}$ and $M_{r^{\prime}}=308 \mathrm{kN} \cdot \mathrm{m}$
$U_{l x}=1.0$ and $U_{t y}=1.0$ (unbraced frame)
$\lambda_{y}=\frac{K L_{y}}{r_{y}} \sqrt{\frac{F_{y}}{\pi^{2} E}}=47.4 \sqrt{\frac{345}{\pi^{2} 200000}}=0.627$
$\beta=0.6+0.4 \lambda_{y}=0.6+0.4 \times 0.627=0.851>0.85$, Therefore, $\beta=0.85$

$$
\frac{2000}{4240}+\frac{0.85 \times 1.0 \times 300}{671}+\frac{0.85 \times 1.0 \times 50}{308}=0.472+0.380+0.138=0.990<1.0
$$

iii) Lateral-torsional buckling
$C_{r}=C_{r^{\prime}}=C_{r L}=4240 \mathrm{kN}$ (previously calculated)
$L=3700 \mathrm{~mm}<L_{u}=5080 \mathrm{~mm}, M_{r x}=671 \mathrm{kN} \cdot \mathrm{m}$
$U_{l x}=1.0$ and $U_{l y}=1.0$
$\beta=0,85$ (previously calculated)

$$
\frac{2000}{4240}+\frac{0.85 \times 1.0 \times 300}{671}+\frac{0.85 \times 1.0 \times 50}{308}=0.472+0.380+0.138=0.990<1.0
$$

The W310×129 column section is adequate.
iv) Biaxial bending interaction

$$
\frac{M_{f x}}{M_{r x}}+\frac{M_{f y}}{M_{r y}}=\frac{300}{671}+\frac{50}{308}=0.447+0.162=0.609<1.0
$$

Shear

Where beams with large end moments are connected to columns with thin webs, a check for shear capacity in the column web will be necessary.

Note

For further design examples of beam-columns, see "Limit States Design in Structural Steel", G.L. Kulak and G.Y. Grondin, CISC.

NOTES

FACTORED AXIAL COMPRESSIVE RESISTANCES

Angle Struts

Single-Angle Struts

The tables of factored axial compressive resistances for single-angle struts on the following pages are based on the provisions of CSA S16-14 Clause 13.3.3 for angles connected through one leg and meeting the requirements of Clause 13.3.3.1. For unequal-leg angles, tables are provided for both the long-leg connected and short-leg connected cases. Members that do not satisfy these conditions must be designed for combined compression and bending by taking into account the effects of eccentricity in accordance with Clauses 13.3.2 and 13.3.3.4 or by using a more rigorous procedure.

The design tables are intended for angles of CSA G40.21-350W grade steel that are individual members or members of planar trusses, and members of box or space trusses. The tables are to be used with hot-rolled angles and are not intended for diagonal members of braced frames.

For Class 4 angles, the resistances have been calculated in accordance with Clause 13,3.5 on the basis of effective area.

The value r_{x} appearing at the bottom of the tables is the radius of gyration about the axis parallel to the connected leg, while r_{y} is the radius of gyration about the perpendicular axis. r_{y}^{\prime} is the radius of gyration about the minor principal axis. Consult the solved design example at the end of this section for more information.

Double-Angle Struts

The tables of factored axial compressive resistances for double-angle struts are based on the requirements of Clause 13.3.1, CSA S16-14 with $n=1.34$ for axis X-X and Clause 13.3.2 for axis Y-Y. For Class 4 angles, the resistances are computed based on the requirements of Clause 13,3.5 using the effective area method.

Factored axial compressive resistances with respect to various effective lengths relative to both the $\mathrm{X}-\mathrm{X}$ and $\mathrm{Y}-\mathrm{Y}$ axes, and the $\mathrm{U}-\mathrm{U}$ and $\mathrm{V}-\mathrm{V}$ axes for starred angles, are listed for angles made from CSA G40.21-350W. The yield stress F_{y} for G 40.21350 W steel angles is 350 MPa for all thicknesses listed.

The resistances listed in the tables for axis $\mathrm{Y}-\mathrm{Y}$ are based on closely spaced interconnectors. The resistances for struts that lack the closely spaced interconnectors should be determined by taking into account the additional slenderness of the component angles between interconnectors. The actual number of interconnectors and method of interconnection should therefore be taken into account in accordance with Clause 19.2.4, SI6-14. Consult the design example in Part 4. For starred angles, these requirements may be waived, provided that interconnectors are spaced no further than at the one-third points, in accordance with Clause 19.2.5.

The factored axial compressive resistances pertaining to effective lengths based on the Y-Y axis have been computed for angles spaced 10 mm back-to-back. Consult the design example to obtain factored compressive resistances for different spacings.

The value r_{z} appearing with the properties of double-angle struts is the minimum radius of gyration of a single angle about its minor principal axis. Values for r_{r} and r_{y} are those for a double-angle strut. See Part 6 for a more comprehensive list of angle properties.

SINGLE-ANGLE STRUTS
in Compliance with S16-14 Clause 13.3.3.1
Factored Compressive Resistances, $\mathrm{C}_{r}(\mathrm{kN})$

CSA G40.21-350W

Equal-Leg Angles

INDIVIDUAL MEMBERS AND PLANAR TRUSSES

$\begin{array}{\|c\|} \hline \text { Designation } \\ (\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}) \end{array}$		L 152×152				L 127×127				
		19	16	13	$\ddagger 9.5$	19	16	13	9.5	$\ddagger 7.9$
Mass (kg/m)		42.7	36.0	29.2	22.2	35.1	29.8	24.1	18.3	15.3
	0	1060	896	724	457	874	741	600	456	317
	500	951	805	651	412	766	651	527	401	280
	1000	851	721	584	370	670	570	462	352	246
	1500	761	646	523	332	586	499	405	309	216
	2000	682	579	469	298	513	438	356	272	190
	2500	612	520	422	268	451	385	314	240	168
	3000	550	468	380	241	399	340	278	213	149
	3500	496	422	343	218	330	284	233	180	126
	4000	432	369	301	193	275	236	194	150	105
	4500	369	316	258	165	231	199	164	126	88.9
	5000	318	272	222	143	197	170	140	108	75.9
	5500	276	236	193	124					
	6000	242	207	170	109					
BOX AND SPACE TRUSSES										
Length of member (L) in millimetres	0	1230	1040	841	531	1020	861	697	530	369
	500	1110	937	757	479	891	757	614	467	326
	1000	988	837	677	429	776	660	535	408	285
	1500	878	745	604	383	672	573	465	355	248
	2000	780	662	537	341	583	497	405	309	216
	2500	693	589	478	304	506	432	352	270	189
	3000	617	525	426	271	438	375	307	236	165
	3500	550	469	381	243	372	319	261	201	141
	4000	479	409	334	213	318	273	224	172	121
	4500	420	359	293	187	275	236	194	149	105
	5000	371	317	259	165	239	206	169	130	91.5
	5500	329	281	230	147	210	181	148	114	80.4
	6000	293	251	205	131			131	101	71.2
	6500	263	225	184	118					
	7000	237	203	166	106					

PROPERTIES OF SINGLE ANGLES

Area (mm^{2})	5450	4590	3710	2810	4480	3780	3070	2330	1960
$r_{x}=r_{y}(\mathrm{~mm})$	46.3	46.7	47.1	47.6	38.3	38.7	39.1	39.5	39.8
$r^{\prime} y(m m)$	29.7	29.8	30.0	30.2	24.8	24.8	25.0	25.1	25.2
IMPERIAL SIZE AND WEIGHT									
Weight (lb/ft)	28.7	24.2	19.6	14.9	23.6	20.0	16,2	12.3	10.3
Thickness (in)	$3 / 4$	5/8	1/2	3/8	$3 / 4$	5/8	1/2	3/8	5/18
Size (in)	6×6				5×5				

This table is not intended for diagonal braces in braced frames.

SINGLE-ANGLE STRUTS

in Compliance with S16-14 Clause 13.3.3.1
Factored Compressive Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

CSA G40.21-350W

INDIVIDUAL MEMBERS AND PLANAR TRUSSES

Designation ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)				L 102	$\times 102$				L 89	$\times 89$	
		19	13	11	9.5	7.9	$\ddagger 6.4$	13	9.5	7.9	$\ddagger 6.4$
Mass (kg/m)		27.5	19.0	16.8	14.6	12.2	9.8	16.5	12.6	10.7	8.6
Length of member (L) in millimetres	0	688	475	419	363	305	203	410	314	264	203
	500	582	404	357	309	260	173	340	261	220	169
	1000	491	342	302	262	221	147	281	216	182	140
	1500	415	291	257	223	188	126	233	179	151	117
	2000	353	248	219	191	161	108	194	150	127	98.1
	2500	297	212	188	164	138	92.5	152	118	101	78.1
	3000	233	167	149	130	110	73.9	117	91.7	77.9	60.6
	3500	187	134	119	104	88.4	59.4	93.0	72.7	61.9	48.1
	4000	152	110	97.6	85.3	72.4	48.7				
	4500										
	5000										
	5500										
	6000										
BOX AND SPACE TRUSSES											
	0	799	552	487	421	354	236	477	365	307	236
	500	677	470	415	359	302	202	395	303	255	197
	1000	566	395	349	303	255	170	323	248	209	162
	1500	472	331	293	254	214	143	263	203	172	133
	2000	395	278	246	214	181	121	216	167	141	109
	2500	327	232	206	179	152	102	171	133	113	87.6
	3000	267	190	169	147	125	83.6	138	107	91.2	70.8
	3500	221	158	140	122	104	69.6	113	88.1	74.8	58.1
	4000	186	133	118	103	87.3	58.7	93.8	73.3	62.3	48.4
	4500	158	113	100	87.7	74.4	50.0				
	5000										
	5500										
	6000										
	6500										
	7000										
PROPERTIES OF SINGLE ANGLES											
Area (mm^{2})		3510	2420	2140	1850	1550	1250	2100	1600	1350	1090
$\mathrm{r}_{\mathrm{x}}=\mathrm{r}_{\mathrm{y}}(\mathrm{mm})$		30.3	31.1	31.3	31.5	31.7	31.9	26.9	27.3	27.5	27.7
$r^{\prime}{ }_{y}(\mathrm{~mm})$		19.8	19.9	20.0	20.1	20.2	20.3	17.3	17.4	17.5	17.6
IMPERIAL SIZE AND WEIGHT											
Weight (lb/ft)		18.5	12.8	11.3	9.8	8.2	6.6	11.1	8.5	7.2	5.8
Thickness (in)		$3 / 4$	$1 / 2$	7/16	3/8	5/16	$1 / 4$	1/2	3/8	5/16	$1 / 4$
Size (in)		6×6						$31 / 2 \times 31 / 2$			

This table is not intended for diagonal braces in braced frames.

SINGLE-ANGLE STRUTS

in Compliance with S16-14 Clause 13.3.3.1
Factored Compressive Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

CSA G40.21-350W
INDIVIDUAL MEMBERS AND PLANAR TRUSSES

Designation ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)				76×76					64×64		
		13	9.5	7.9	6.4	$\ddagger 4.8$	13	9.5	7.9	6.4	4.8
Mass (kg/m)		14.0	10.7	9.1	7.3	5.5	11.4	8.7	7.4	6.1	4.6
	0	347	266	224	181	114	284	219	185	150	114
	500	278	214	181	146	92.3	217	168	142	115	88.1
	1000	222	172	145	118	74.4	165	129	109	88.9	68.0
	1500	178	138	117	95.3	60.4	128	99.7	84.9	69.3	53.2
	2000	139	109	92.7	75.8	48.4	87.0	68.6	58.8	48.4	37.5
	2500	102	80.1	68.3	55.9	35.8	62.2	49.2	42.2	34.8	27.0
	3000	77.3	61.0	52.0	42.6	27.3					
	3500										
	4000										
	4500										
	5000										
	5500 6000										
BOX AND SPACE TRUSSES											
$\xrightarrow{\square}$	0	403	310	261	211	133	330	255	215	174	132
	500	322	248	210	170	107	251	194	165	134	102
	1000	254	196	166	135	85.2	187	146	124	101	77.3
	1500	200	155	132	107	67.9	140	109	93.4	76.5	59.0
	2000	155	121	103	83.8	53.4	101	79.6	68.0	55.8	43.2
	2500	119	93.4	79.6	65.0	41.5	75.9	59.8	51.2	42.1	32.6
	3000	94.1	73.9	63.0	51.5	32.9				32.6	25.3
	3500	75.8	59.7	50.9	41.6	26.7					
	4000										
	4500										
	5000										
	5500										
	6000										
	6500										
	7000										
PROPERTIES OF SINGLE ANGLES											
Area (mm ${ }^{2}$)		1770	1360	1150	929	703	1450	1120	942	768	581
$\mathrm{r}_{\mathrm{x}}=\mathrm{r}_{\mathrm{y}}(\mathrm{mm})$		22.8	23.2	23.4	23.6	23.9	18.8	19.1	19.3	19.5	19.8
$\mathrm{r}^{\prime}{ }_{y}(\mathrm{~mm})$		14.8	14.9	15.0	15.0	15.1	12.4	12.4	12.4	12.5	12.6

IMPERIAL SIZE AND WEIGHT

Weight (lb/ft)	9.4	7.2	6.1	4.9	3.7	7.7	5.9	5.0	4.1	3.1
Thickness (in)	1/2	3/8	5/16	$1 / 4$	3/16	1/2	3/8	5/16	$1 / 4$	$3 / 16$
Size (in)	3×3					$21 / 2 \times 21 / 2$				

This table is not intended for diagonal braces in braced frames.

SINGLE-ANGLE STRUTS
in Compliance with S16-14 Clause 13.3.3.1
Factored Compressive Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

CSA G40.21-350W

Equal-Leg Angles

INDIVIDUAL MEMBERS AND PLANAR TRUSSES

Designation ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)				51×5				44×44			38×3	
		9.5	7.9	6.4	4.8	$\ddagger 3.2$	6.4	4.8	$\ddagger 3.2$	6.4	4.8	3.2
Mass (kg/m)		7.0	5.8	4.7	3.6	2.4	4.1	3.1	2.1	3.4	2.7	1.8
Length of member (L) in millimetres	0	172	145	118	90.2	50.9	103	78.4	50.9	86.8	66.5	45.4
	500	122	104	85.2	65.2	36.9	70.2	54.1	35.3	55.5	42.9	29.5
	1000	87.9	75.1	61.6	47.3	26.9	48.5	37.6	24.7	34.7	27.2	19.0
	1500	57.9	50.0	41.4	32.1	18.4	29.2	23.0	15.3	19.3	15.2	10.7
	2000	37.8	32.7	27.2	21.1	12.2						
	2500											
	3000											
	3500											
	4000											
	4500											
	5000											
	5500 6000											
BOX AND SPACE TRUSSES												
	0	199	169	138	105	59.1	119	91.2	59.1	101	77.3	52.8
	500	141	120	98.2	75.2	42.6	80.6	62.2	40.6	63.4	49.0	33.7
	1000	98.4	84.2	69.1	53.1	30.2	53.9	41.9	27.5	38.6	30.2	21.0
	1500	66.4	57.1	47.2	36.5	20.9	34.4	27.0	17.8	23.5	18.5	12.9
	2000	46.1	39.8	32.9	25.5	14.7	23.4	18.4	12.2			
	2500											
	3000											
	3500											
	4000											
	4500											
	5000											
	5500											
	6000											
	6500											
	7000											
PROPERTIES OF SINGLE ANGLES												
Area (mm^{2})		877	742	605	461	312	525	401	272	444	340	232
$\mathrm{r}_{\mathrm{x}}=\mathrm{r}_{\mathrm{y}}(\mathrm{mm})$		15.1	15.3	15.5	15.7	15.9	13.4	13.7	13.9	11.4	11.6	11.8
$\mathrm{r}^{\prime}{ }^{\prime}(\mathrm{mm})$		9.89	9.90	9.93	10.0	10.1	8.68	8.73	8.82	7.42	7.45	7.52
IMPERIAL SIZE AND WEIGHT												
Weight (lb/ft)		4.7	3.9	3.2	2.4	1.7	2.8	2.1	1.4	2.3	1.8	1.2
Thickness (in)		3/8	$5 / 16$	$1 / 4$	3/16	1/8	$1 / 4$	$3 / 16$	1/8	$1 / 4$	3/16	1/8
Size (in)		3×3					$13 / 4 \times 13 / 4$			$1 \frac{1}{2} \times 1 \frac{1}{2}$		

This table is not intended for diagonal braces in braced frames.
\ddagger Class 4

SINGLE-ANGLE STRUTS

Unequal-Leg Angles
In Compliance with
S16-14 Clause 13.3.3.1
Factored Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$
CSA G40.21-350W

Long Leg Connected

INDIVIDUAL MEMBERS AND PLANAR TRUSSES

Designation ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)		L 152×102					L 127×89			L 127×76			
		19	16	13	$\ddagger 9.5$	$\ddagger 7.9$	9.5	$\ddagger 7.9$	$\ddagger 6.4$	13	9.5	$\ddagger 7.9$	$\ddagger 6.4$
Mass (kg/m)		35.0	29.6	24.0	18.2	15.3	15.4	12.9	10.4	19.0	14.5	12.1	9.8
	0	874	741	600	410	311	385	291	203	473	361	271	192
	500	732	622	505	346	263	317	240	168	372	285	214	152
	1000	611	520	423	291	221	260	197	138	292	225	169	121
	1500	512	437	356	245	187	214	162	114	231	179	135	96.3
	2000	431	368	301	208	158	178	135	94.8	170	133	101	72.8
	2500	350	301	248	173	133	136	104	73.2	124	97.1	73.8	53.1
	3000	273	235	194	136	104	105	79.9	56.5				
	3500	218	187	155	109	83.2		63.2	44.7				
	4000				88.5	67.8							
	4500												
BOX AND SPACE TRUSSES													
	0	1020	861	697	476	361	447	338	236	550	420	315	223
	500	851	723	587	402	306	368	278	195	431	331	249	177
	1000	704	599	488	335	255	298	226	158	333	256	193	138
	1500	581	496	404	279	212	242	183	129	258	199	151	108
	2000	482	412	337	233	177	196	149	105	193	151	114	81.8
	2500	390	335	275	191	146	155	118	83.0	147	115	87.4	62.7
	3000	317	272	224	156	119	124	94.5	66.6	115	90.3	68.6	49.3
	3500	261	224	185	129	98.7	101	77.2	54.4				
	4000	218	187	155	108	82.8	83.8	64.0	45.2				
	$\begin{aligned} & 4500 \\ & 5000 \end{aligned}$			131	91.7	70.2							

PROPERTIES OF SINGLE ANGLES

Area (mm^{2})	4480	3780	3060	2330	1950	1970	1650	1330	2420	1850	1550	1250
$r_{\text {c }}(\mathrm{mm})$	28.6	28.9	29.3	29.8	30.0	26.0	26.2	26.4	21.1	21,5	21.7	21.9
$r_{y}(\mathrm{~mm})$	47.6	48.0	48.5	48.9	49.2	40.6	40.8	41.0	40.3	40.8	41.0	41.2
$\mathrm{r}^{\prime}{ }_{y}(\mathrm{~mm})$	21.9	22.0	22.2	22.4	22.5	19.3	19.4	19.6	16.5	16.6	16.7	16.8
IMPERIAL SIZE AND WEIGHT												
Weight (lb/ft)	23.6	20.0	16.2	12.3	10.3	10.4	8.7	7.0	12.8	9.8	8.2	6.6
Thickness (in)	$3 / 4$	5/8	1/2	3/8	5/16	3/8	5/16	1/4	1/2	3/8	5/16	$1 / 4$
Size (in)	6×4					$5 \times 31 / 2$			5×3			

This table is not intended for diagonal braces in braced frames.

SINGLE-ANGLE STRUTS

In Compliance with
S16-14 Clause 13.3.3.1
Factored Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$
CSA G40.21-350W

Unequal-Leg Angles

Long Leg Connected

INDIVIDUAL MEMBERS AND PLANAR TRUSSES												
Designation ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)		L 102×89			L 102×76				L 89×76			
		9.5	7.9	$\ddagger 6.4$	13	9.5	7.9	$\ddagger 6.4$	13	9.5	7.9	$\ddagger 6.4$
Mass (kg/m)		13.5	11.4	9.2	16.4	12.6	10.7	8.6	15.1	11.7	9.8	8.0
	0	338	284	203	411	314	264	192	379	290	244	192
	500	280	236	169	326	251	211	154	302	232	196	154
	1000	231	195	140	258	199	168	123	240	185	157	124
	1500	191	162	116	206	159	135	98.5	192	149	126	99.9
	2000	160	135	97.1	156	122	104	76.3	148	116	98.6	78.5
	2500	124	106	76.6	114	89.3	76.1	56.0	108	85.0	72.5	57.8
	3000	96.2	82.2	59.3			57.7	42.5	82.0	64.6	55.1	44.0
	$\begin{aligned} & 3500 \\ & 4000 \end{aligned}$	76.2	65.2	47.1								
	4500											
BOX AND SPACE TRUSSES												
	0	393	330	236	478	365	307	223	440	337	284	223
	500	325	274	196	378	291	245	178	350	269	227	179
	1000	266	224	161	295	227	192	140	274	212	179	142
	1500	216	183	131	230	178	151	110	215	167	142	112
	2000	178	151	108	175	137	116	85.1	165	129	110	87.2
	2500	141	120	86.2	134	105	89.3	65.6	127	99.6	84.7	67.4
	3000	113	96.4	69.5	105	82.7	70.4	51.8	100	78.6	67.0	53.3
	3500	92.6	79.0	57.0				41.7		63.4	54.0	43.1
	4000	76.9	65.7	47.4								
	$\begin{aligned} & 4500 \\ & 5000 \end{aligned}$											
PROPERTIES OF SINGLE ANGLES												
Area $\left(\mathrm{mm}^{2}\right)$ $r_{x}(\mathrm{~mm})$ $r_{y}(\mathrm{~mm})$ $r_{y}^{\prime}(\mathrm{mm})$		1720	1450	1170	2100	1600	1350	1090	1940	1480	1250	1010
		26.8	27.1	27.3	21.9	22.3	22.5	22.7	22.4	22.8	23.0	23.2
		31.9	32.1	32.3	31.8	32.2	32.4	32.7	27.3	27.7	27.9	28.1
		18.5	18.6	18.7	16.2	16.4	16.5	16.6	15.8	15.9	15.9	16.0
IMPERIAL SIZE AND WEIGHT												
Weight (lb/ft)		9.1	7.7	6.2	11.1	8.5	7.2	5.8	10.2	7.9	6.6	5.4
Thickness (in)		3/8	5/16	$1 / 4$	1/2	3/8	5/16	$1 / 4$	1/2	3/8	5/16	$1 / 4$
Size (in)		$4 \times 31 / 2$			4×3				$31 / 2 \times 3$			

This table is not intended for diagonal braces in braced frames.
\ddagger Class 4

SINGLE-ANGLE STRUTS
In Compliance with
S16-14 Clause 13.3.3.1
Factored Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$
CSA G40.21-350W

INDIVIDUAL MEMBERS AND PLANAR TRUSSES

Designation ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)		L 89×64				L 76×64		L 76×51				
		13	9.5	7.9	$\ddagger 6.4$	9.5	7.9	13	9.5	7.9	6.4	± 4.8
Mass (kg/m)		13.9	10.7	9.0	7.3	9.8	8.3	11.5	8.8	7.4	6.1	4.6
Length of member (L) in mm	0	347	266	224	176	243	205	284	219	185	150	102
	500	261	202	170	134	185	156	197	153	130	106	72.3
	1000	197	153	129	102	141	119	138	108	91.8	75.1	51.6
	1500	147	116	99.1	79.0	109	92.5	85.2	67.8	58.4	48.2	33.5
	2000	99.0	78.5	67.2	53.6	73.8	63,2					
	2500				38.3	52.7	45.2					
	3000											
	3500											
	4000 4500											

BOX AND SPACE TRUSSES

	0	403	310	261	205	282	238	330	255	215	174	119
	500	302	233	197	156	214	181	226	176	149	122	83.4
	1000	222	173	147	116	160	135	153	120	103	83.9	57.7
	1500	162	127	109	86.3	119	101	99.4	78.7	67.6	55.7	38.6
	2000	116	91.8	78.4	62.5	85.9	73.4	68.0	54.1	46.5	38.4	26.7
	$\begin{aligned} & 2500 \\ & 3000 \\ & 3500 \\ & 4000 \end{aligned}$	86.7	68.6	58.7	46.8	64.4	55.1					
	$\begin{aligned} & 4500 \\ & 5000 \end{aligned}$											
PROPERTIES OF SINGLE ANGLES												
$\begin{aligned} & \text { Area }\left(\mathrm{mm}^{2}\right) \\ & \mathrm{r}_{x} \text { (mm) } \\ & \mathrm{r}_{y}(\mathrm{~mm}) \\ & \mathrm{r}_{y}^{\prime}(\mathrm{mm}) \end{aligned}$		1770	1360	1150	929	1240	1050	1450	1120	942	768	582
		17.9	18.3	18.5	18.7	18.7	18.9	13.9	14.2	14.4	14.6	14.8
		27.6	28.0	28.2	28.4	23.6	23.8	23.5	23.9	24.1	24.3	24.5
		13.6	13.6	13.7	13.8	13.3	13.3	10.9	10.9	11.0	11.0	11.1
IMPERIAL SIZE AND WEIGHT												
Weight (lb/ti)		9.4	7.2	6.1	4.9	6.6	5.6	7.7	5.9	5.0	4.1	3.1
Thickness (in)		$1 / 2$	3/8	5/16	$1 / 4$	3/8	5/16	1/2	3/8	$5 / 16$	$1 / 4$	3/16
Size (in)		$31 / 2 \times 2 \frac{1}{2}$				$3 \times 2 \frac{1}{2}$		3×2				

This table is not intended for diagonal braces in braced frames.
\ddagger Class 4

SINGLE-ANGLE STRUTS
In Compliance with
S16-14 Clause 13.3.3.1
Factored Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$
CSA G40.21-350W

Unequal-Leg Angles
Long Leg Connected

This table is not intended for diagonal braces in braced frames.
\ddagger Class 4

SINGLE-ANGLE STRUTS
In Compliance with S16-14 Clause 13.3.3.1
Factored Compressive Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$
CSA G40.21-350W

Unequal-Leg Angles Short Leg Connected

INDIVIDUAL MEMBERS AND PLANAR TRUSSES													
Designation ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)		L 152×102					L127 $\times 89$			L127 $\times 76$			
		19	16	13	$\ddagger 9.5$	$\ddagger 7.9$	9.5	$\ddagger 7.9$	$\ddagger 6.4$	13	9.5	$\ddagger 7.9$	$\ddagger 6.4$
Mass (kg/m)		35.0	29.6	24.0	18.2	15,3	15.4	12.9	10.4	19.0	14.5	12.1	9,8
	0	819	694	562	384	291	364	275	192	430	328	246	175
	500	736	624	506	346	263	321	243	170	379	290	217	154
	1000	660	561	455	312	237	283	214	150	334	255	192	136
	1500	593	504	409	280	213	249	189	132	294	225	169	120
	2000	533	453	368	253	192	220	167	117	260	199	150	107
	2500	480	408	332	228	174	193	147	104	184	142	107	77.0
	3000	402	343	282	195	149	143	109	77.5	134	103	78.1	56.0
	3500	310	265	218	151	116		83.1	59.1			58.9	42.2
	4000	244	209	172	119	91.3		65.1					
	4500	197	168	139	96.3	73.7							
BOX AND SPACE TRUSSES													
	0	928	787	637	435	330	414	313	219	482	367	276	196
	500	831	706	572	391	297	364	275	192	422	322	242	172
	1000	742	630	511	350	266	319	241	169	368	282	212	150
	1500	661	562	457	313	238	278	211	147	321	246	185	132
	2000	589	501	408	280	213	243	184	129	281	216	162	115
	2500	526	448	365	250	191	213	162	113	234	181	137	97.9
	3000	471	401	327	225	171	183	139	98.9	173	133	101	72.5
	3500	397	339	279	193	148	141	108	76.6	132	102	77.1	55.3
	4000	317	271	223	155	118	112	85,2	60.6	103	79,6	60.4	43.3
	4500	258	220	181	126	96.3	90.1	68.7	48.9				
	5000	213	182	150	104	79.6							
PROPERTIES OF SINGLE ANGLES													
$\begin{aligned} & \text { Area }\left(\mathrm{mm}^{2}\right) \\ & r_{x}(\mathrm{~mm}) \\ & r_{y}(\mathrm{~mm}) \\ & r_{y}^{\prime}(\mathrm{mm}) \end{aligned}$		4480	3780	3060	2330	1950	1970	1650	1330	2420	1850	1550	1250
		47.6	48.0	48.5	48.9	49.2	40.6	40.8	41.0	40.3	40.8	41.0	41.2
		28.6	28.9	29.3	29.8	30.0	26.0	26.2	26.4	21.1	21.5	21.7	21.9
		21.9	22.0	22.2	22.4	22.5	19.3	19.4	19.6	16.5	16.6	16.7	16.8
IMPERIAL SIZE AND WEIGHT													
Weight (lb/ft)		23.6	20.0	16.2	12.3	10.3	10.4	8.7	7.0	12.8	9.8	8.2	6.6
Thickness (in)		$3 / 4$	5/8	$1 / 2$	3/8	$5 / 16$	3/8	$5 / 46$	$1 / 4$	$1 / 2$	3/8	5/16	$1 / 4$
Size (in)		6×4					$5 \times 31 / 2$			5×3			

This table is not inlended for diagonal braces in braced frames.

SINGLE-ANGLE STRUTS
In Compliance with
S16-14 Clause 13.3.3.1
Factored Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$

CSA G40.21-350W

INDIVIDUAL MEMBERS AND PLANAR TRUSSES

Designation ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)		L 102×89			L 102×76				L 89×76			
		9.5	7.9	$\ddagger 6.4$	13	9.5	7.9	$\ddagger 6.4$	13	9.5	7.9	$\ddagger 6.4$
Mass (kg/m)		13.5	11.4	9.2	16.4	12.6	10.7	8.6	15.1	11.7	9.8	8.0
	0	333	280	200	394	302	254	184	372	285	240	189
	500	284	239	171	336	257	217	158	308	237	200	157
	1000	241	203	145	286	219	185	135	255	197	166	131
	1500	206	173	124	244	187	158	115	212	164	139	109
	2000	176	149	107	209	161	136	99.2	178	138	116	92.1
	2500	152	128	91.9	155	121	103	75.5	137	106	89.0	70.9
	3000	117	99.2	71.5	112	87.7	74.6	54.8	98.7	76.5	64.4	51.3
	$\begin{aligned} & 3500 \\ & 4000 \end{aligned}$	88.7	75.3	54.3								
	4500											
BOX AND SPACE TRUSSES												
	0	384	323	231	451	345	290	211	429	328	276	218
	500	327	275	197	383	294	247	180	355	273	230	181
	1000	276	233	167	323	248	209	152	291	224	189	149
	1500	233	196	140	272	209	176	129	238	184	155	123
	2000	196	166	119	229	177	149	109	196	152	128	102
	2500	165	140	100	193	150	127	92.8	157	122	103	82.0
	3000	136	115	82.9	146	114	96.8	71.1	127	98.7	83.8	66.5
	3500	114	96.2	69.2	111	86.6	73.7	54.1	97.5	75.5	63.6	50.6
	4000	91.0	77.2	55.7		67.8	57.6	42.4				
	$\begin{aligned} & 4500 \\ & 5000 \end{aligned}$	73.2	62.2	44.8								
PROPERTIES OF SINGLE ANGLES												
$\begin{aligned} & \text { Area }\left(\mathrm{mm}^{2}\right) \\ & \mathrm{r}_{\mathrm{x}}(\mathrm{~mm}) \\ & \mathrm{r}_{\mathrm{y}}(\mathrm{~mm}) \\ & \mathrm{r}_{\mathrm{y}}(\mathrm{~mm}) \end{aligned}$		1720	1450	1170	2100	1600	1350	1090	1940	1480	1250	1010
		31.9	32.1	32.3	31.8	32.2	32.4	32.7	27.3	27.7	27.9	28.1
		26.8	27.1	27.3	21.9	22.3	22.5	22.7	22.4	22.8	23.0	23.2
		18.5	18.6	18.7	16.2	16.4	16.5	16.6	15.8	15.9	15.9	16.0
IMPERIAL SIZE AND WEIGHT												
Weight (lb/ft)		9.1	7.7	6.2	11.1	8.5	7.2	5.8	10.2	7.9	6.6	5.4
Thickness (in)		3/8	5/16	$1 / 4$	1/2	3/8	5/16	$1 / 4$	$1 / 2$	3/8	5/16	$1 / 4$
Size (in)		$4 \times 31 / 2$			4×3				$3 \frac{1}{2} \times 3$			

This table is not intended for diagonal braces in braced frames.

SINGLE-ANGLE STRUTS
In Compliance with
S16-14 Clause 13.3.3.1
Factored Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$
CSA G40.21-350W

Unequal-Leg Angles

Short Leg Connected

INDIVIDUAL MEMBERS AND PLANAR TRUSSES

Designation ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)		L 89×64				L. 76×64		L76×51				
		13	9,5	7.9	$\ddagger 6.4$	9.5	7.9	13	9.5	7.9	6.4	$\ddagger 4.8$
Mass (kg/m)		13.9	10.7	9.0	7.3	9.8	8,3	11.5	8.8	7.4	6.1	4.6
	0	330	253	213	168	237	200	266	205	173	140	95.5
	500	274	211	178	140	191	161	214	165	140	114	77.5
	1000	228	176	148	117	154	130	172	134	113	92.0	62.9
	1500	190	147	124	97.9	125	106	130	99.9	85.6	69.4	48.0
	2000	142	109	92.9	73.9	95.5	80.6	78.8	60.8	52.2	42.3	29.3
	$\begin{aligned} & 2500 \\ & 3000 \\ & 3500 \\ & 4000 \end{aligned}$	96.0	73.7	62.9	50.1	64.4	54.4					
	4500											
BOX AND SPACE TRUSSES												
	0	376	289	243	191	273	230	301	232	196	159	108
	500	311	239	202	159	219	185	240	186	157	128	87.1
	1000	255	197	166	131	174	147	190	148	125	102	69.6
	1500	209	162	137	108	138	117	151	118	100	81.6	55.9
	2000	173	134	114	89.8	108	92.3	102	78.9	67.7	54.8	37.9
	2500 3000	125	95.6	81.6 59.0	65.0	83.8	70.7	68.6	52.9	45.4	36.8	25.5
	3500 3500	90.0	69.1	59.0	47.0	60.4						
	4000											
	$\begin{aligned} & 4500 \\ & 5000 \end{aligned}$											
PROPERTIES OF SINGLE ANGLES												
Area (mm^{2})		1770	1360	1150	929	1240	1050	1450	1120	942	768	582
$r_{x}(\mathrm{~mm})$		27.6	28.0	28.2	28.4	23.6	23.8	23.5	23.9	24.1	24.3	24.5
$r_{y}(\mathrm{~mm})$		17.9	18.3	18.5	18.7	18.7	18.9	13.9	14.2	14,4	14.6	14.8
$r^{\prime}{ }_{y}(\mathrm{~mm})$		13.6	13.6	13.7	13.8	13.3	13.3	10.9	10.9	11.0	11.0	11.1

IMPERIAL SIZE AND WEIGHT

Weight (Ib/t)	9.4	7.2	6.1	4.9	6.6	5.6	7.7	5.9	5.0	4.1	3.1
Thickness (in)	1/2	$3 / 8$	5/16	$1 / 4$	3/8	5/16	1/2	$3 / 8$	5/16	$1 / 4$	3/18
Size (in)	$31 / 2 \times 2 \frac{1 / 2}{}$				$3 \times 2 \frac{1 / 2}{}$		3×2				

This table is not intended for diagonal braces in braced frames.

SINGLE-ANGLE STRUTS

Unequal-Leg Angles
In Compliance with
S16-14 Clause 13.3.3.1
Factored Compressive
Resistances, $\mathrm{C}_{\mathrm{r}}(\mathrm{kN})$
CSA G40.21-350W

Short Leg Connected

INDIVIDUAL MEMBERS AND PLANAR TRUSSES

This table is not intended for diagonal braces in braced frames.

DOUBLE ANGLE STRUTS
Equal-Leg Angles
Factored Axial Compressive Resistances (kN)
Legs 10 mm Back-to-Back

CSA G40.21
350W
$\phi=0.90$

Designation ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)				L 15	152				127×1		
			19	16	13	$\ddagger 9.5$	19	16	13	9.5	$\ddagger 7.9$
Mass (kg/m)			85.4	72.0	58.4	44.4	70.2	59.6	48.2	36.6	30.6
	$\begin{aligned} & \frac{y y}{x} \\ & \stackrel{y}{x} \\ & \underset{x}{x} \end{aligned}$	0	3410	2890	2330	1470	2810	2390	1930	1470	1020
		1000	3320	2810	2270	1440	2700	2290	1850	1410	983
		2000	2930	2480	2010	1280	2210	1890	1540	1170	821
		3000	2320	1980	1610	1020	1610	1380	1130	865	607
		4000	1740	1490	1220	778	1120	967	794	612	431
		5000	1300	1110	910	583	799	689	567	438	309
		6000	981	841	689	442	586	506	417	323	228
		7000	757	650	533	342	445	384	317	245	173
		8000	597	513	421	271					
		9000	481	414	339	219					
		10000									
		$\begin{aligned} & 11000 \\ & 12000 \end{aligned}$									
	$\begin{aligned} & \frac{n}{x} \\ & \underset{x}{x} \\ & \underset{x}{x} \end{aligned}$	0	3410	2890	2330	1470	2810	2390	1930	1470	1020
		1000	2980	2350	1670	811	2570	2070	1530	952	553
		2000	2910	2300	1620	787	2460	2000	1480	925	537
		3000	2730	2190	1570	767	2170	1790	1360	879	517
		4000	2400	1950	1450	734	1780	1480	1150	785	480
		5000	2010	1680	1260	679	1420	1180	926	656	420
		6000	1660	1370	1060	601	1130	935	737	532	351
		7000	1370	1130	883	515	899	746	589	429	287
		8000	1130	934	733	436	726	602	476	349	236
		9000	937	778	612	368	594	493	390	287	195
		10000	787	654	515	312	493	409	324	239	163
		11000	667	555	438	267	415	344	273	202	138
		12000	572	475	376	230					
PROPERTIES OF 2 ANGLES - 10 mm BACK-TO-BACK											
Area (mm^{2})			10900	9180	7420	5620	8960	7560	6140	4660	3920
$r_{n}(\mathrm{~mm})$			46.3	46.7	47.1	47.6	38.3	38.7	39.1	39.5	39.8
$r_{y}(\mathrm{~mm})$			68.1	67.6	67.1	66.6	58.1	57.5	57.0	56.4	56.2
$\mathrm{r}_{2}(\mathrm{~mm})$			29.7	29.8	30.0	30.2	24.8	24.8	25.0	25.1	25.2
IMPERIAL SIZE AND WEIGHT											
Weight (lb/ft)			57.4	48.4	39.2	29.8	47.2	40.0	32.4	24.6	20.6
Thickness (in)			$3 / 4$	5/8	1/2	3/6	$3 / 4$	5/8	$1 / 2$	3/8	$5 / 16$
Size (in)			6×6				5×5				

Interconnectors are assumed to be closely spaced.
\ddagger Factored axial compressive resistances calculated according to S16-14 Clause 13.3.5,

DOUBLE ANGLE STRUTS
Equal-Leg Angles
Factored Axial Compressive Resistances (kN)
Legs 10 mm Back-to-Back

CSA G40.21

Designation ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)			L 102×102						L 89×89			
			19	13	11	9.5	7.9	$\ddagger 6.4$	13	9.5	7.9	$\ddagger 6.4$
Mass (kg/m)			55.0	38.0	33.6	29.2	24.4	19.6	33.0	25.2	21.4	17.2
	$\begin{aligned} & \stackrel{n}{x} \\ & \stackrel{x}{x} \\ & \times x \end{aligned}$	0	2210	1530	1350	1170	981	654	1320	1010	850	654
		500	2190	1510	1330	1150	970	646	1300	993	836	643
		1000	2050	1420	1260	1090	915	610	1190	913	769	592
		1500	1790	1250	1110	963	811	542	1000	772	653	504
		2000	1490	1050	929	808	682	457	795	617	523	405
		2500	1190	850	754	657	556	373	618	481	408	317
		3000	952	682	606	529	448	301	480	375	319	248
		3500	763	548	488	426	361	243	377	296	251	196
		4000	618	445	397	347	294	198	302	237	201	157
		4500	507	366	326	285	242	163	245	192	164	128
		5000	421	305	272	238	202	136	202	159	136	106
		5500	354	257	229	201	170	115			114	88.6
		6000	302	219	195	171	145	98.0				
	$\frac{\frac{n}{x}}{\frac{1}{x}}$	0	2210	1530	1350	1170	981	654	1320	1010	850	654
		1000	2080	1320	1100	878	646	346	1180	813	616	395
		2000	1890	1230	1040	837	621	334	1050	748	578	377
		3000	1530	1010	872	724	559	313	802	589	473	329
		4000	1170	774	670	565	452	271	583	430	351	256
		5000	884	582	505	429	348	218	425	314	258	191
		6000	673	443	384	327	268	171	316	234	193	144
		7000	522	343	298	254	209	135	242	179	148	111
		8000	414	272	236	202	166	108	190	141	116	87.5
		9000	334	220	191	163	135	87.5				
		10000										
		$\begin{aligned} & 11000 \\ & 12000 \end{aligned}$										
PROPERTIES OF 2 ANGLES - 10 mm BACK-TO-BACK												
Area (mm^{2})												
			7020	4840	4280	3700	3100	2500	4200	3200	2700	2180
$\mathrm{r}_{\mathrm{x}}(\mathrm{mm})$			30.3	31.1	31.3	31.5	31.7	31.9	26.9	27.3	27.5	27.7
$\mathrm{r}_{\mathrm{y}}(\mathrm{mm})$			48.1	46.9	46.6	46.4	46.1	45.8	41.7	41.1	40.8	40.5
$\mathrm{r}_{\mathrm{z}}(\mathrm{mm})$			19.8	19.9	20.0	20.1	20.2	20.3	17.3	17.4	17.5	17.6
IMPERIAL SIZE AND WEIGHT												
Weight (lb/ft)			37.0	25.6	22.6	19.6	16.4	13.2	22.2	17.0	14.4	11.6
Thickness (in)			$3 / 4$	1/2	7/16	3/8	5/16	$1 / 4$	$1 / 2$	3/8	5/16	$1 / 4$
Size (in)			4×4						$31 / 2 \times 31 / 2$			

Interconnectors are assumed to be closely spaced.
\ddagger Factored axial compressive resistances calculated according to S16-14 Clause 13.3.5.

DOUBLE ANGLE STRUTS
Equal-Leg Angles
Factored Axial Compressive Resistances (kN)
Legs 10 mm Back-to-Back

CSA G40.21

Designation ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)			L 76×76					L 64×64				
			13	9.5	7.9	6.4	$\ddagger 4.8$	13	9.5	7.9	6.4	4.8
Mass (kg/m)			28.0	21.4	18.2	14.6	11.0	22.8	17.4	14.8	12.2	9.2
		0	1120	858	723	584	367	915	705	596	483	367
		500	1090	836	705	570	359	874	676	571	463	352
		1000	954	737	623	505	319	713	554	471	384	294
		1500	752	585	496	404	256	512	402	343	281	217
		2000	561	440	374	306	195	356	281	241	198	153
		2500	416	328	279	229	146	252	199	171	141	110
		3000	313	247	211	173	111	185	146	126	104	81.0
		3500	241	191	163	134	86.1	140	111	95.5	78.9	61.6
		4000	190	151	129	106	68.1					
		4500	153	122	104	85.4	55.0					
		5000										
		$\begin{aligned} & 5500 \\ & 6000 \end{aligned}$										
	$\begin{aligned} & \frac{n}{x} \\ & \vdots \\ & i \\ & i \end{aligned}$	0	1120	858	723	584	367	915	705	596	483	367
		500	1040	743	580	408	195	870	639	511	375	230
		1000	1020	728	568	398	189	837	620	498	366	224
		1500	952	694	547	387	185	745	559	458	344	216
		2000	841	622	501	365	179	628	471	389	300	199
		2500	716	532	434	327	169	512	383	317	247	173
		3000	599	445	365	281	154	413	308	255	200	143
		3500	498	370	304	236	135	334	249	206	161	117
		4000	414	308	253	198	116	272	202	167	132	96.5
		4500	347	257	212	167	99.3	224	167	138	108	79.9
		5000	293	217	179	141	84.9	187	139	115	90.4	66.9
		5500	249	185	153	120	73.0	158	117	96.9	76.3	56.6
		6000	214	159	131	104	63.1	134	99.9	82.6	65.1	48.4

PROPERTIES OF 2 ANGLES - 10 mm BACK-TO-BACK

Area $\left(\mathrm{mm}^{2}\right)$	3540	2720	2300	1860	1410	2900	2240	1880	1540	1160
$r_{x}(\mathrm{~mm})$	22.8	23.2	23.4	23.6	23.9	18.8	19.1	19.3	19.5	19.8
$r_{y}(\mathrm{~mm})$	36.6	36.0	35.7	35.4	35.2	31.6	31.0	30.7	30.3	30.1
$r_{z}(\mathrm{~mm})$	14.8	14.9	15.0	15.0	15.1	12.4	12.4	12.4	12.5	12.6

IMPERIAL SIZE AND WEIGHT

Weight (lb/ft)	18.8	14.4	12.2	9.80	7.42	15.4	11.8	10.0	8.20	6.14
Thickness (in)	$1 / 2$	$3 / 8$	5/16	$1 / 4$	3/16	1/2	3/8	$5 / 18$	$1 / 4$	3/16
Size (in)	3×3					$21 / 2 \times 2 \frac{1}{2}$				

Interconnectors are assumed to be closely spaced.
\ddagger Factored axial compressive resistances calculated according to S16-14 Clause 13.3.5.

DOUBLE ANGLE STRUTS
Equal-Leg Angles
Factored Axial Compressive Resistances (kN)
Legs 10 mm Back-to-Back

CSA G40.21
$\phi=0.90$

Interconnectors are assumed to be closely spaced.
\ddagger Factored axial compressive resistances calculated according to S16-14 Clause 13.3.5.

DOUBLE ANGLE STRUTS
Unequal-Leg Angles
Factored Axial Compressive Resistances (kN)
Long Legs 10 mm Back-to-Back

Interconnectors are assumed to be closely spaced.
\ddagger Factored axial compressive resistances calculated according to S16-14 Clause 13.3.5.

DOUBLE ANGLE STRUTS
Unequal-Leg Angles
Factored Axial Compressive Resistances (kN)
Long Legs 10 mm Back-to-Back

Designation$(\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm})$				127×8					
			9.5	$\ddagger 7.9$	$\ddagger 6.4$	13	9.5	$\ddagger 7.9$	$\ddagger 6.4$
Mass (kg/m)			30.8	25.8	20.8	38.0	29.0	24.2	19.6
	$\begin{aligned} & \frac{n}{x} \\ & \underset{x}{x} \\ & \times \end{aligned}$	$\begin{array}{r} \\ \\ 1000 \\ 2000 \\ 3000 \\ 4000 \\ 5000 \\ 6000 \\ 7000 \\ 8000 \\ 9000 \\ 10000 \\ 11000 \\ 12000 \end{array}$	$\begin{array}{r} 1240 \\ 1190 \\ 1010 \\ 751 \\ 536 \\ 386 \\ 286 \\ 218 \\ 170 \end{array}$	936 902 761 570 408 294 218 166 130	654 631 533 400 287 207 153 117 91.6	$\begin{array}{r} 1520 \\ 1470 \\ 1230 \\ 917 \\ 653 \\ 470 \\ 347 \\ 264 \\ 207 \end{array}$	$\begin{array}{r} 1160 \\ 1120 \\ 946 \\ 708 \\ 507 \\ 365 \\ 271 \\ 206 \\ 161 \end{array}$	872 842 711 533 383 276 205 156 122	619 597 506 380 273 198 146 112 87.5
	$\begin{aligned} & \frac{2 n}{x} \\ & \frac{1}{x} \\ & \underset{x}{2} \end{aligned}$	0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000	$\begin{array}{r} 1240 \\ 911 \\ 873 \\ 836 \\ 777 \\ 696 \\ 605 \\ 518 \\ 440 \\ 374 \\ 320 \\ 275 \\ 238 \end{array}$	$\begin{aligned} & 936 \\ & 597 \\ & 568 \\ & 546 \\ & 515 \\ & 472 \\ & 419 \\ & 364 \\ & 314 \\ & 269 \\ & 231 \\ & 200 \\ & 173 \end{aligned}$	$\begin{aligned} & 654 \\ & 330 \\ & 312 \\ & 301 \\ & 288 \\ & 271 \\ & 249 \\ & 223 \\ & 197 \\ & 172 \\ & 150 \\ & 131 \\ & 115 \end{aligned}$	1520 1310 1240 1130 977 813 666 544 447 371 311 264 226	$\begin{array}{r} 1160 \\ 866 \\ 819 \\ 759 \\ 670 \\ 568 \\ 471 \\ 388 \\ 321 \\ 267 \\ 225 \\ 191 \\ 164 \end{array}$	$\begin{aligned} & 872 \\ & 566 \\ & 533 \\ & 499 \\ & 450 \\ & 390 \\ & 329 \\ & 275 \\ & 229 \\ & 192 \\ & 162 \\ & 138 \\ & 119 \end{aligned}$	619 320 300 284 263 236 206 176 150 127 108 93.1 80.5
PROPERTIES OF 2 ANGLES - 10 mm BACK-TO-BACK									
$\begin{aligned} & \hline \text { Area }\left(\mathrm{mm}^{2}\right) \\ & r_{x}(\mathrm{~mm}) \\ & r_{y}(\mathrm{~mm}) \\ & r_{z}(\mathrm{~mm}) \\ & \hline \end{aligned}$			$\begin{array}{r} 3940 \\ 40.6 \\ 37.4 \\ 19.3 \end{array}$	$\begin{array}{r} 3300 \\ 40.8 \\ 37.1 \\ 19.4 \end{array}$	$\begin{array}{r} 2660 \\ 41.0 \\ 36.8 \\ 19.6 \end{array}$	$\begin{array}{r} 4840 \\ 40.3 \\ 32.0 \\ 16.5 \end{array}$	$\begin{array}{r} 3700 \\ 40.8 \\ 31.4 \\ 16.6 \end{array}$	$\begin{array}{r} 3100 \\ 41.0 \\ 31.1 \\ 16.7 \end{array}$	$\begin{array}{r} 2500 \\ 41.2 \\ 30.8 \\ 16.8 \end{array}$
IMPERIAL SIZE AND WEIGHT									
Weight (lb/ft)			20.8	17.4	14.0	25.6	19.6	16.4	13.2
Thickness (in)			3/8	5/16	$1 / 4$	$1 / 2$	3/8	5/16	$1 / 4$
Size (in)			$5 \times 31 / 2$			5×3			

Interconnectors are assumed to be closely spaced.
\ddagger Factored axial compressive resistances calculated according to S16-14 Clause 13.3.5.

DOUBLE ANGLE STRUTS

Unequal-Leg Angles

Factored Axial Compressive Resistances (kN) Long Legs 10 mm Back-to-Back

CSA G40.21
$\phi=0.90$

Designation ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)				102×89					
			9.5	7.9	$\ddagger 6.4$	13	9.5	7.9	$\ddagger 6.4$
Mass (kg/m)			27.0	22.8	18.4	32.8	25.2	21.4	17.2
	$\begin{aligned} & \frac{n}{x} \\ & \stackrel{n}{x} \\ & \times \\ & \times x \end{aligned}$	$\begin{array}{r} 0 \\ 500 \\ 1000 \\ 1500 \\ 2000 \\ 2500 \\ 3000 \\ 3500 \\ 4000 \\ 4500 \\ 5000 \\ 5500 \\ 6000 \end{array}$	1090 1080 1020 903 761 621 501 405 330 272 227 191 163	915 905 856 761 643 526 425 344 280 231 193 163 139	654 647 612 545 461 378 306 248 202 167 139 117 100	$\begin{array}{r} 1320 \\ 1310 \\ 1240 \\ 1100 \\ 923 \\ 753 \\ 607 \\ 490 \\ 399 \\ 329 \\ 274 \\ 231 \\ 197 \end{array}$	1010 1000 947 843 713 584 472 382 312 257 214 181 155	$\begin{aligned} & 852 \\ & 843 \\ & 797 \\ & 711 \\ & 602 \\ & 494 \\ & 400 \\ & 324 \\ & 265 \\ & 218 \\ & 182 \\ & 154 \\ & 131 \end{aligned}$	$\begin{aligned} & 619 \\ & 612 \\ & 580 \\ & 519 \\ & 441 \\ & 362 \\ & 294 \\ & 239 \\ & 195 \\ & 161 \\ & 135 \\ & 114 \\ & 97.1 \end{aligned}$
	$\begin{aligned} & \frac{n}{x} \\ & \frac{x}{x} \\ & \frac{1}{x} \end{aligned}$	0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000	$\begin{array}{r} 1090 \\ 867 \\ 845 \\ 818 \\ 767 \\ 689 \\ 599 \\ 513 \\ 436 \\ 371 \\ 317 \\ 273 \\ 236 \end{array}$	$\begin{aligned} & 915 \\ & 651 \\ & 631 \\ & 613 \\ & 584 \\ & 536 \\ & 475 \\ & 412 \\ & 353 \\ & 302 \\ & 259 \\ & 223 \\ & 193 \end{aligned}$	$\begin{aligned} & 654 \\ & 383 \\ & 369 \\ & 360 \\ & 347 \\ & 328 \\ & 301 \\ & 268 \\ & 235 \\ & 203 \\ & 176 \\ & 153 \\ & 133 \end{aligned}$	$\begin{array}{r} 1320 \\ 1190 \\ 1150 \\ 1060 \\ 924 \\ 775 \\ 640 \\ 526 \\ 434 \\ 361 \\ 304 \\ 258 \\ 221 \end{array}$	$\begin{array}{r} 1010 \\ 824 \\ 795 \\ 744 \\ 660 \\ 559 \\ 464 \\ 383 \\ 317 \\ 264 \\ 222 \\ 189 \\ 162 \end{array}$	852 625 601 569 514 444 373 310 258 215 182 155 133	619 379 363 347 322 288 248 210 177 149 127 108 93.2
PROPERTIES OF 2 ANGLES - 10 mm BACK-TO-BACK									
$\begin{aligned} & \text { Area }\left(\mathrm{mm}^{2}\right) \\ & \mathrm{r}_{\mathrm{x}}(\mathrm{~mm}) \\ & \mathrm{r}_{y}(\mathrm{~mm}) \\ & \mathrm{r}_{\mathrm{z}}(\mathrm{~mm}) \\ & \hline \end{aligned}$			$\begin{array}{r} 3440 \\ 31.9 \\ 39.7 \\ 18.5 \end{array}$	$\begin{array}{r} 2900 \\ 32.1 \\ 39.4 \\ 18.6 \end{array}$	$\begin{array}{r} 2340 \\ 32.3 \\ 39.1 \\ 18.7 \end{array}$	$\begin{array}{r} 4200 \\ 31.8 \\ 34.0 \\ 16.2 \end{array}$	$\begin{array}{r} 3200 \\ 32.2 \\ 33.4 \\ 16.4 \end{array}$	$\begin{array}{r} 2700 \\ 32.4 \\ 33.1 \\ 16.5 \end{array}$	$\begin{array}{r} 2180 \\ 32.7 \\ 32.8 \\ 16.6 \end{array}$
IMPERIAL SIZE AND WEIGHT									
Weight (lb/ft)			18.2	15.4	12.4	22.2	17.0	14.4	11.6
Thickness (in)			3/8	5/16	$1 / 4$	$1 / 2$	3/8	5/15	$1 / 4$
Size (in)			$4 \times 31 / 2$			4×3			

Interconnectors are assumed to be closely spaced.
\ddagger Factored axial compressive resistances calculated according to S16-14 Clause 13.3.5.

Unequal-Leg Angles
Factored Axial Compressive Resistances (kN)
Long Legs 10 mm Back-to-Back

CSA G40.21 350W
$\phi=0.90$

Interconnectors are assumed to be closely spaced.
\ddagger Factored axial compressive resistances calculated according to S16-14 Clause 13.3.5.

DOUBLE ANGLE STRUTS

Unequal-Leg Angles

Factored Axial Compressive Resistances (kN)
Long Legs 10 mm Back-to-Back

-1 - 10 mm

CSA G40.21
$\phi=0.90$

Designation ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)			L 76×64		L 76×51				
			9.5	7.9	13	9.5	7.9	6.4	$\ddagger 4.8$
Mass (kg/m)			19.6	16.6	23.0	17.6	14.8	12.2	9.2
	$\begin{aligned} & \frac{y}{x} \\ & \stackrel{y}{x} \\ & x \\ & x \end{aligned}$	$\begin{array}{r} 0 \\ 500 \\ 1000 \\ 1500 \\ 2000 \\ 2500 \\ 3000 \\ 3500 \\ 4000 \\ 4500 \\ 5000 \\ 5500 \\ 6000 \end{array}$	$\begin{aligned} & 782 \\ & 762 \\ & 676 \\ & 540 \\ & 409 \\ & 306 \\ & 232 \\ & 179 \\ & 142 \\ & 114 \end{aligned}$	$\begin{gathered} 659 \\ 643 \\ 571 \\ 459 \\ 348 \\ 261 \\ 198 \\ 153 \\ 121 \\ 97.9 \end{gathered}$	915 892 789 630 476 356 269 208 165 133	$\begin{aligned} & 705 \\ & 689 \\ & 612 \\ & 492 \\ & 374 \\ & 281 \\ & 213 \\ & 165 \\ & 131 \\ & 106 \end{aligned}$	596 582 519 418 319 240 183 142 112 90.5	483 472 421 341 261 197 150 116 92.2 74.5	$\begin{gathered} 329 \\ 322 \\ 288 \\ 234 \\ 179 \\ 136 \\ 103 \\ 80.4 \\ 63.7 \\ 51.5 \end{gathered}$
	$\begin{aligned} & \frac{n n}{x} \\ & \underset{y}{<} \\ & \hline 1 \end{aligned}$	0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000	782 692 664 593 494 398 318 255 207 170 141 119	$\begin{gathered} 659 \\ 547 \\ 527 \\ 478 \\ 403 \\ 326 \\ 261 \\ 210 \\ 170 \\ 140 \\ 116 \\ 97.9 \end{gathered}$	915 859 775 629 483 366 279 217 172 139	$\begin{aligned} & 705 \\ & 629 \\ & 571 \\ & 464 \\ & 354 \\ & 267 \\ & 204 \\ & 158 \\ & 125 \\ & 101 \end{aligned}$	$\begin{gathered} 596 \\ 502 \\ 459 \\ 376 \\ 288 \\ 217 \\ 166 \\ 129 \\ 102 \\ 82.5 \end{gathered}$	$\begin{gathered} 483 \\ 366 \\ 338 \\ 284 \\ 221 \\ 168 \\ 129 \\ 100 \\ 79.9 \\ 64.7 \end{gathered}$	329 200 187 165 135 106 82.3 64.8 51,8 42.2
PROPERTIES OF 2 ANGLES - 10 mm BACK-TO-BACK									
$\begin{aligned} & \text { Area }\left(\mathrm{mm}^{2}\right) \\ & r_{x}(\mathrm{~mm}) \\ & r_{y}(\mathrm{~mm}) \\ & r_{z}(\mathrm{~mm}) \\ & \hline \end{aligned}$			$\begin{array}{r} 2480 \\ 23.6 \\ 29.6 \\ 13.3 \end{array}$	$\begin{array}{r} 2100 \\ 23.8 \\ 29.3 \\ 13.3 \end{array}$	$\begin{array}{r} 2900 \\ 23.5 \\ 24.2 \\ 10.9 \end{array}$	$\begin{array}{r} 2240 \\ 23.9 \\ 23.5 \\ 10.9 \end{array}$	$\begin{array}{r} 1880 \\ 24.1 \\ 23.1 \\ 11.0 \end{array}$	$\begin{array}{r} 1540 \\ 24.3 \\ 22.8 \\ 11.0 \end{array}$	$\begin{array}{r} 1160 \\ 24.5 \\ 22.5 \\ 11.1 \end{array}$

IMPERIAL SIZE AND WEIGHT

Weight (lb/ft)	13.2	11.2	15.4	11.8	10.0	8.20	6.14					
Thickness (in)	$3 / 8$	$5 / 16$	$1 / 2$	$3 / 8$	$5 / 16$	$1 / 4$	$3 / 16$					
Size (in)	$3 \times 21 / 2$											

Interconnectors are assumed to be closely spaced.
\ddagger Factored axial compressive resistances calculated according to S16-14 Clause 13.3.5.

DOUBLE ANGLE STRUTS
Unequal-Leg Angles
Factored Axial Compressive Resistances (kN)
Long Legs 10 mm Back-to-Back

CSA G40.21
350W
$\phi=0.90$

Designation ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)			L 64×51				L 51×38		
			9.5	7.9	6.4	4.8	6.4	4.8	$\ddagger 3.2$
Mass (kg/m)			15.8	13.4	10.8	8.4	8.4	6.2	4.2
Effective length (KL) in millimetres with respect to indicated axis	$\begin{aligned} & \frac{n}{x} \\ & \frac{x}{x} \\ & \times x \end{aligned}$	$\begin{array}{r} 0 \\ 500 \\ 1000 \\ 1500 \\ 2000 \\ 2500 \\ 3000 \\ 3500 \\ 4000 \\ 4500 \\ 5000 \\ 5500 \\ 6000 \end{array}$	629 604 500 366 258 184 135 103	$\begin{gathered} 532 \\ 511 \\ 425 \\ 313 \\ 221 \\ 158 \\ 117 \\ 88.6 \end{gathered}$	432 415 347 256 182 131 96.3 73.2	328 316 265 197 140 101 74.5 56.7 44.4	$\begin{gathered} 330 \\ 308 \\ 229 \\ 150 \\ 98.6 \\ 67.7 \\ 48.7 \end{gathered}$	$\begin{gathered} 252 \\ 236 \\ 177 \\ 117 \\ 76.9 \\ 52.8 \\ 38.1 \end{gathered}$	$\begin{gathered} 155 \\ 145 \\ 110 \\ 73.4 \\ 48.7 \\ 33.6 \\ 24.2 \end{gathered}$
	$\frac{\frac{n}{x}}{\frac{1}{x}}$	$\begin{array}{r} 0 \\ 500 \\ 1000 \\ 1500 \\ 2000 \\ 2500 \\ 3000 \\ 3500 \\ 4000 \\ 4500 \\ 5000 \\ 5500 \\ 6000 \end{array}$	629 578 531 436 338 257 197 153 122 98.6	532 468 434 360 278 212 162 126 100 81.3	432 350 328 278 217 165 127 98.9 78.6 63.7	328 223 211 188 152 119 91.9 72.1 57.6 46.8	$\begin{gathered} 330 \\ 287 \\ 245 \\ 180 \\ 127 \\ 91.0 \\ 67.0 \\ 50.9 \end{gathered}$	$\begin{gathered} 252 \\ 196 \\ 172 \\ 130 \\ 92.1 \\ 66.1 \\ 48.8 \\ 37.1 \end{gathered}$	$\begin{array}{r} 155 \\ 88.2 \\ 81.5 \\ 67.7 \\ 51.0 \\ 37.6 \\ 28.2 \\ 21.6 \end{array}$
PROPERTIES OF 2 ANGLES -10 mm BACK-TO-BACK									
	Area r_{x} (m $r_{y}(m$ r_{z} (m		$\begin{array}{r} 2000 \\ 19.5 \\ 24.6 \\ 10.7 \end{array}$	$\begin{array}{r} 1690 \\ 19.7 \\ 24.3 \\ 10.7 \end{array}$	$\begin{array}{r} 1370 \\ 19.9 \\ 23.9 \\ 10.8 \end{array}$	$\begin{array}{r} 1040 \\ 20.1 \\ 23.6 \\ 10.9 \end{array}$	$\begin{array}{r} 1050 \\ 15.8 \\ 19.0 \\ 8.12 \end{array}$	$\begin{array}{r} 802 \\ 16.0 \\ 18.6 \\ 8.18 \end{array}$	$\begin{array}{r} 544 \\ 16.3 \\ 18.3 \\ 8.27 \end{array}$
IMPERIAL SIZE AND WEIGHT									
	Weigh	(lb/ft)	10.6	9.00	7.24	5.50	5.54	4.24	2.88
	ickn	(in)	3/8	5/16	1/4	$3 / 16$	$1 / 4$	$3 / 16$	1/8
Size (in)			$21 / 2 \times 2$				$2 \times 1 \frac{1}{2}$		

Interconnectors are assumed to be closely spaced.
\ddagger Factored axial compressive resistances calculated according to S16-14 Clause 13.3.5.

Unequal-Leg Angles
Factored Axial Compressive Resistances (kN)
Short Legs 10 mm Back-to-Back

CSA G40.21
350W
$\phi=0.90$

Designation ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)			L178	$\times 102$			152×1				152×8	
			$\ddagger 13$	$\ddagger 9.5$	19	16	13	$\ddagger 9.5$	$\ddagger 7.9$	13	$\ddagger 9.5$	$\ddagger 7.9$
Mass (kg/m)			53.0	40.4	70.0	59.2	48.0	36.4	30.6	45.4	34.6	29.0
Effective length (KL) in millimetres with respect to indicated axis	$\begin{aligned} & \frac{y}{x} \\ & \stackrel{y}{x} \\ & \underset{x}{x} \end{aligned}$	0	2070	1320	2810	2390	1930	1320	1000	1830	1240	936
		500	2040	1300	2770	2350	1900	1300	988	1790	1220	917
		1000	1890	1210	2570	2180	1770	1220	924	1600	1090	828
		1500	1620	1040	2210	1880	1540	1060	807	1310	898	681
		2000	1320	850	1790	1540	1260	873	666	1010	696	529
		2500	1040	674	1420	1220	1000	699	534	762	529	404
		3000	819	532	1120	961	793	555	425	582	406	310
		3500	649	423	886	764	632	443	340	453	316	241
		4000	522	340	713	615	509	358	275	359	251	192
		4500	426	278	582	503	417	293	225	290	203	155
		5000	353	231	482	417	346	244	187		167	128
		5500	296	194	405	350	291	205	157			
		6000							134			
	$\begin{aligned} & \frac{n}{x} \\ & \vdots \\ & \vdots \\ & > \end{aligned}$	0	2070	1320	2810	2390	1930	1320	1000	1830	1240	936
		1000	1440	698	2530	2030	1470	805	502	1400	764	473
		2000	1420	683	2510	2010	1450	792	492	1380	753	465
		3000	1410	678	2410	1960	1430	784	488	1370	748	462
		4000	1400	675	2160	1800	1370	770	482	1330	739	459
		5000	1370	669	1850	1550	1210	735	471	1190	716	452
		6000	1280	658	1550	1300	1030	660	447	1010	651	436
		7000	1130	633	1290	1080	859	564	402	846	557	397
		8000	973	581	1080	902	717	475	347	708	470	344
		9000	836	512	904	756	601	400	296	595	396	292
		10000	720	445	764	638	508	339	252	504	336	249
		11000	622	387	651	544	433	289	216	430	287	213
		12000	541	337	560	467	372	249	186	370	247	184
PROPERTIES OF 2 ANGLES - 10 mm BACK-TO-BACK												
Area (mm^{2})			6780	5140	8960	7560	6120	4660	3900	5800	4420	3700
$\mathrm{r}_{\mathrm{x}}(\mathrm{mm})$			28.5	28.9	28.6	28.9	29.3	29.8	30.0	24.7	25.1	25,3
$r_{y}(\mathrm{~mm})$			87.7	87.1	74.7	74.1	73.5	72.9	72.6	75.5	74.9	74.6
$\mathrm{r}_{2}(\mathrm{~mm})$			22.2	22.4	21.9	22.0	22.2	22.4	22.5	19.3	19.5	19.6
IMPERIAL SIZE AND WEIGHT												
Weight (lb/ft)			35.8	27.2	47.2	40.0	32.4	24.6	20.6	30.6	23.4	19.6
Thickness (in)			$1 / 2$	3/8	$3 / 4$	5/8	1/2	3/8	5/16	$1 / 2$	3/8	5/16
Size (in)			7×4		6×4					$6 \times 31 / 2$		

Inlerconnectors are assumed to be closely spaced.
\ddagger Factored axial compressive resistances calculated according to S16-14 Clause 13.3.5.

Unequal-Leg Angles
Factored Axial Compressive Resistances (kN)

Designation ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)				127×89					
			9.5	$\ddagger 7.9$	$\ddagger 6.4$	13	9.5	$\ddagger 7.9$	$\ddagger 6.4$
Mass (kg/m)			30.8	25.8	20.8	38.0	29.0	24.2	19.6
	$\begin{aligned} & \stackrel{n}{x} \\ & \stackrel{x}{x} \\ & \underset{x}{x} \end{aligned}$	$\begin{array}{r} 0 \\ 500 \\ 1000 \\ 1500 \\ 2000 \\ 2500 \\ 3000 \\ 3500 \\ 4000 \\ 4500 \\ 5000 \\ 5500 \\ 6000 \end{array}$	$\begin{array}{r} 1240 \\ 1220 \\ 1100 \\ 919 \\ 721 \\ 554 \\ 428 \\ 335 \\ 267 \\ 216 \\ 178 \end{array}$	936 918 836 697 549 423 327 256 204 166 137	654 642 585 489 386 298 231 181 144 117 96.8	$\begin{array}{r} 1520 \\ 1470 \\ 1260 \\ 958 \\ 695 \\ 505 \\ 376 \\ 287 \\ 225 \end{array}$	1160 1130 969 743 543 397 296 227 178	$\begin{aligned} & 872 \\ & 846 \\ & 730 \\ & 562 \\ & 412 \\ & 302 \\ & 225 \\ & 173 \\ & 136 \end{aligned}$	619 601 520 402 296 217 162 125 98.0
	$\begin{aligned} & \frac{n}{x} \\ & \stackrel{y}{x} \\ & \vdots \end{aligned}$	$\begin{array}{r} 0 \\ 1000 \\ 2000 \\ 3000 \\ 4000 \\ 5000 \\ 6000 \\ 7000 \\ 8000 \\ 9000 \\ 10000 \\ 11000 \\ 12000 \end{array}$	$\begin{array}{r} 1240 \\ 866 \\ 854 \\ 835 \\ 771 \\ 649 \\ 527 \\ 426 \\ 347 \\ 286 \\ 238 \\ 201 \\ 171 \end{array}$	936 559 551 542 520 464 386 315 257 212 177 150 128	$\begin{gathered} 654 \\ 303 \\ 298 \\ 295 \\ 289 \\ 275 \\ 247 \\ 209 \\ 174 \\ 145 \\ 121 \\ 103 \\ 87.8 \end{gathered}$	$\begin{array}{r} 1520 \\ 1270 \\ 1260 \\ 1210 \\ 1050 \\ 861 \\ 697 \\ 564 \\ 460 \\ 379 \\ 317 \\ 267 \\ 228 \end{array}$	$\begin{array}{r} 1160 \\ 821 \\ 812 \\ 801 \\ 754 \\ 638 \\ 520 \\ 421 \\ 344 \\ 284 \\ 237 \\ 200 \\ 171 \end{array}$	$\begin{aligned} & 872 \\ & 527 \\ & 521 \\ & 515 \\ & 502 \\ & 456 \\ & 381 \\ & 311 \\ & 254 \\ & 210 \\ & 176 \\ & 148 \\ & 127 \end{aligned}$	619 291 287 285 282 273 250 212 176 146 122 104 88.6
PROPERTIES OF 2 ANGLES - 10 mm BACK-TO-BACK									
	Area r_{x} (m $r_{y}(m$ r_{z} (m		$\begin{array}{r} 3940 \\ 26.0 \\ 61.3 \\ 19.3 \end{array}$	$\begin{array}{r} 3300 \\ 26.2 \\ 61.0 \\ 19.4 \end{array}$	$\begin{array}{r} 2660 \\ 26.4 \\ 60.7 \\ 19.6 \end{array}$	$\begin{array}{r} 4840 \\ 21.1 \\ 63.8 \\ 16.5 \end{array}$	$\begin{array}{r} 3700 \\ 21.5 \\ 63.2 \\ 16.6 \end{array}$	$\begin{array}{r} 3100 \\ 21.7 \\ 62.9 \\ 16.7 \end{array}$	$\begin{array}{r} 2500 \\ 21.9 \\ 62.6 \\ 16.8 \end{array}$
IMPERIAL SIZE AND WEIGHT									
	Weigh	($\mathrm{lb} / \mathrm{ft}$)	20.8	17.4	14.0	25.6	19.6	16.4	13.2
	hickn	s (in)	3/8	$5 / 16$	$1 / 4$	$1 / 2$	3/8	5/16	$1 / 4$
Size (in)			$5 \times 31 / 2$			5×3			

Interconnectors are assumed to be closely spaced.
\ddagger Factored axial compressive resistances calculated according to S16-14 Clause 13.3.5.

DOUBLE ANGLE STRUTS
Unequal-Leg Angles
Factored Axial Compressive Resistances (kN)
Short Legs 10 mm Back-to-Back

CSA G40.21
350W
$\phi=0.90$

$\begin{aligned} & \text { Designation } \\ & (\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}) \end{aligned}$				102×8					
			9.5	7.9	$\ddagger 6.4$	13	9.5	7.9	$\ddagger 6.4$
Mass (kg/m)			27.0	22.8	18.4	32.8	25.2	21.4	17.2
	$\begin{aligned} & \frac{2 n}{x} \\ & \stackrel{y}{x} \\ & \underset{x}{x} \end{aligned}$	$\begin{array}{r} 0 \\ 500 \\ 1000 \\ 1500 \\ 2000 \\ 2500 \\ 3000 \\ 3500 \\ 4000 \\ 4500 \\ 5000 \\ 5500 \\ 6000 \end{array}$	$\begin{array}{r} 1090 \\ 1070 \\ 979 \\ 823 \\ 653 \\ 507 \\ 393 \\ 309 \\ 247 \\ 201 \\ 166 \end{array}$	915 900 825 697 555 432 336 265 212 172 142	654 643 590 500 399 311 243 191 153 125 103	$\begin{array}{r} 1320 \\ 1280 \\ 1110 \\ 861 \\ 633 \\ 464 \\ 347 \\ 267 \\ 210 \end{array}$	$\begin{array}{r} 1010 \\ 984 \\ 857 \\ 669 \\ 495 \\ 365 \\ 274 \\ 210 \\ 166 \end{array}$	$\begin{aligned} & 852 \\ & 828 \\ & 723 \\ & 567 \\ & 421 \\ & 311 \\ & 234 \\ & 180 \\ & 142 \\ & 114 \end{aligned}$	$\begin{gathered} 619 \\ 602 \\ 527 \\ 415 \\ 309 \\ 229 \\ 172 \\ 133 \\ 105 \\ 84.2 \end{gathered}$
	$\begin{aligned} & \frac{y y}{x} \\ & \frac{y}{x} \\ & i \end{aligned}$	0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000	$\begin{array}{r} 1090 \\ 845 \\ 816 \\ 712 \\ 557 \\ 424 \\ 324 \\ 252 \\ 200 \\ 162 \end{array}$	$\begin{aligned} & 915 \\ & 628 \\ & 610 \\ & 556 \\ & 451 \\ & 347 \\ & 267 \\ & 208 \\ & 166 \\ & 134 \end{aligned}$	$\begin{gathered} 654 \\ 365 \\ 356 \\ 337 \\ 295 \\ 236 \\ 185 \\ 145 \\ 116 \\ 94.2 \end{gathered}$	1320 1170 1130 943 734 560 430 336 267 216 178	$\begin{array}{r} 1010 \\ 800 \\ 781 \\ 693 \\ 546 \\ 418 \\ 321 \\ 250 \\ 199 \\ 161 \end{array}$	$\begin{aligned} & 852 \\ & 600 \\ & 588 \\ & 547 \\ & 447 \\ & 344 \\ & 265 \\ & 207 \\ & 165 \\ & 134 \end{aligned}$	$\begin{gathered} 619 \\ 359 \\ 352 \\ 339 \\ 301 \\ 241 \\ 188 \\ 147 \\ 118 \\ 95.5 \end{gathered}$
PROPERTIES OF 2 ANGLES + 10 mm BACK-TO-BACK									
Area ($\mathrm{mm}{ }^{2}$) $r_{x}(\mathrm{~mm})$ $r_{y}(\mathrm{~mm})$ $r_{z}(\mathrm{~mm})$			$\begin{array}{r} 3440 \\ 26.8 \\ 47.9 \\ 18.5 \end{array}$	$\begin{array}{r} 2900 \\ 27.1 \\ 47.6 \\ 18.6 \end{array}$	$\begin{array}{r} 2340 \\ 27.3 \\ 47.4 \\ 18.7 \end{array}$	$\begin{array}{r} 4200 \\ 21.9 \\ 50.2 \\ 16.2 \end{array}$	$\begin{array}{r} 3200 \\ 22.3 \\ 49.6 \\ 16.4 \end{array}$	$\begin{array}{r} 2700 \\ 22.5 \\ 49.3 \\ 16.5 \end{array}$	$\begin{array}{r} 2180 \\ 22.7 \\ 49.0 \\ 16.6 \end{array}$
IMPERIAL SIZE AND WEIGHT									
Weight (lb/ft)			18.2	15.4	12.4	22.2	17.0	14.4	11.6
, Thickness (in)			3/6	5/16	$1 / 4$	$1 / 2$	3/8	$5 / 16$	$1 / 4$
Size (in)			$4 \times 31 / 2$			4×3			

Interconnectors are assumed to be closely spaced.
\ddagger Factored axial compressive resistances calculated according to S16-14 Clause 13.3.5.

DOUBLE ANGLE STRUTS
Unequal-Leg Angles
Factored Axial Compressive Resistances (kN)
Short Legs 10 mm Back-to-Back

Designation ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)										
			13	9.5	7.9	$\ddagger 6.4$	13	9.5	7.9	$\ddagger 6.4$
Mass (kg/m)			30.2	23.4	19.6	16.0	27.8	21.4	18.0	14.6
	$\begin{aligned} & \frac{n}{x} \\ & \frac{2}{x} \\ & \times \underset{x}{x} \end{aligned}$	$\begin{array}{r} 0 \\ 500 \\ 1000 \\ 1500 \\ 2000 \\ 2500 \\ 3000 \\ 3500 \\ 4000 \\ 4500 \\ 5000 \\ 5500 \\ 6000 \end{array}$	$\begin{array}{r} 1220 \\ 1190 \\ 1030 \\ 808 \\ 599 \\ 442 \\ 332 \\ 255 \\ 201 \end{array}$	934 909 797 628 469 348 262 202 159 128	$\begin{aligned} & 786 \\ & 766 \\ & 673 \\ & 533 \\ & 399 \\ & 296 \\ & 224 \\ & 172 \\ & 136 \\ & 110 \end{aligned}$	619 603 532 422 317 236 179 138 109 87.7	$\begin{array}{r} 1120 \\ 1060 \\ 846 \\ 592 \\ 405 \\ 284 \\ 207 \\ 156 \end{array}$	$\begin{aligned} & 858 \\ & 818 \\ & 658 \\ & 466 \\ & 321 \\ & 226 \\ & 165 \\ & 125 \end{aligned}$	$\begin{aligned} & 723 \\ & 690 \\ & 558 \\ & 397 \\ & 275 \\ & 194 \\ & 142 \\ & 107 \end{aligned}$	$\begin{gathered} 568 \\ 543 \\ 441 \\ 316 \\ 219 \\ 155 \\ 114 \\ 86.0 \end{gathered}$
	$\begin{aligned} & \frac{n}{x} \\ & \frac{1}{2} \\ & i \end{aligned}$	$\begin{array}{r} \quad 0 \\ 1000 \\ 2000 \\ 3000 \\ 4000 \\ 5000 \\ 6000 \\ 7000 \\ 8000 \\ 9000 \\ 10000 \\ 11000 \\ 12000 \end{array}$	1220 1100 995 772 567 416 311 238 188	934 772 723 573 422 309 231 178 140	$\begin{aligned} & 786 \\ & 591 \\ & 564 \\ & 467 \\ & 347 \\ & 256 \\ & 191 \\ & 147 \\ & 116 \end{aligned}$	619 393 380 338 263 196 148 114 89.7	$\begin{array}{r} 1120 \\ 1020 \\ 936 \\ 738 \\ 549 \\ 406 \\ 306 \\ 235 \\ 185 \\ 149 \end{array}$	$\begin{aligned} & 858 \\ & 720 \\ & 688 \\ & 553 \\ & 412 \\ & 304 \\ & 229 \\ & 176 \\ & 139 \end{aligned}$	723 555 539 455 341 253 190 146 115	568 372 364 333 260 194 147 113 89.1
PROPERTIES OF 2 ANGLES - 10 mm BACK-TO-BACK										
Area (mm $r_{x}(\mathrm{~mm})$ $r_{y}(\mathrm{~mm})$ $\mathrm{r}_{\mathrm{z}}(\mathrm{mm})$			$\begin{array}{r} 3880 \\ 22.4 \\ 43.2 \\ 15.8 \end{array}$	$\begin{array}{r} 2960 \\ 22.8 \\ 42.6 \\ 15.9 \end{array}$	$\begin{array}{r} 2500 \\ 23.0 \\ 42.3 \\ 15.9 \end{array}$	$\begin{array}{r} 2020 \\ 23.2 \\ 42.1 \\ 16.0 \end{array}$	$\begin{array}{r} 3540 \\ 17.9 \\ 45.0 \\ 13.6 \end{array}$	$\begin{array}{r} 2720 \\ 18.3 \\ 44.4 \\ 13.6 \end{array}$	$\begin{array}{r} 2300 \\ 18.5 \\ 44.1 \\ 13.7 \end{array}$	$\begin{array}{r} 1860 \\ 18.7 \\ 43.8 \\ 13.8 \end{array}$
IMPERIAL SIZE AND WEIGHT										
Weight (lb/ft)			20.4	15.8	13.2	10.8	18.8	14.4	12.2	9.80
Thickness (in)			1/2	3/8	5/16	$1 / 4$	$1 / 2$	3/8	5/16	$1 / 4$
Size (in)			$3 \frac{1}{2} \times 3$				$31 / 2 \times 21 / 2$			

Interconnectors are assumed to be closely spaced.
\ddagger Factored axial compressive resistances calculated according to S16-14 Clause 13.3.5.

DOUBLE ANGLE STRUTS
Unequal-Leg Angles
Factored Axial Compressive Resistances (kN)
Short Legs 10 mm Back-to-Back

Designation ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)							76×5		
			9.5	7.9	13	9.5	7.9	6.4	$\ddagger 4.8$
Mass (kg/m)			19.6	16.6	23.0	17.6	14.8	12.2	9.2
	$\begin{aligned} & \frac{n}{x} \\ & x \\ & x \\ & x \end{aligned}$	$\begin{array}{r} 0 \\ 500 \\ 1000 \\ 1500 \\ 2000 \\ 2500 \\ 3000 \\ 3500 \\ 4000 \\ 4500 \\ 5000 \\ 5500 \\ 6000 \end{array}$	$\begin{aligned} & 782 \\ & 747 \\ & 607 \\ & 435 \\ & 302 \\ & 213 \\ & 156 \\ & 118 \end{aligned}$	$\begin{aligned} & 659 \\ & 631 \\ & 515 \\ & 371 \\ & 258 \\ & 183 \\ & 134 \\ & 102 \end{aligned}$	$\begin{aligned} & 915 \\ & 830 \\ & 568 \\ & 349 \\ & 221 \\ & 149 \end{aligned}$	705 643 447 277 177 119	$\begin{aligned} & 596 \\ & 545 \\ & 382 \\ & 239 \\ & 153 \\ & 103 \end{aligned}$	483 443 314 197 127 85.9	$\begin{gathered} 329 \\ 303 \\ 216 \\ 137 \\ 88.2 \\ 60.0 \end{gathered}$
	$\begin{aligned} & \frac{n}{x} \\ & \frac{1}{x} \\ & \frac{\lambda}{\lambda} \end{aligned}$	$\begin{array}{r} 0 \\ 500 \\ 1000 \\ 1500 \\ 2000 \\ 2500 \\ 3000 \\ 3500 \\ 4000 \\ 4500 \\ 5000 \\ 5500 \\ 6000 \end{array}$	$\begin{aligned} & 782 \\ & 689 \\ & 680 \\ & 656 \\ & 592 \\ & 510 \\ & 430 \\ & 360 \\ & 301 \\ & 253 \\ & 214 \\ & 182 \\ & 157 \end{aligned}$	659 543 535 522 483 421 356 298 249 209 177 151 130	$\begin{aligned} & 915 \\ & 862 \\ & 856 \\ & 815 \\ & 734 \\ & 639 \\ & 545 \\ & 461 \\ & 388 \\ & 328 \\ & 279 \\ & 239 \\ & 206 \end{aligned}$	$\begin{aligned} & 705 \\ & 627 \\ & 622 \\ & 609 \\ & 555 \\ & 483 \\ & 411 \\ & 347 \\ & 292 \\ & 246 \\ & 209 \\ & 179 \\ & 154 \end{aligned}$	596 497 492 486 458 402 343 289 243 205 174 149 128	$\begin{aligned} & 483 \\ & 358 \\ & 353 \\ & 350 \\ & 341 \\ & 313 \\ & 271 \\ & 229 \\ & 193 \\ & 163 \\ & 139 \\ & 119 \\ & 102 \end{aligned}$	$\begin{gathered} 329 \\ 192 \\ 189 \\ 187 \\ 185 \\ 180 \\ 168 \\ 148 \\ 127 \\ 108 \\ 92.1 \\ 79.0 \\ 68.2 \end{gathered}$
PROPERTIES OF 2 ANGLES - 10 mm BACK-TO-BACK									
$\begin{aligned} & \hline \text { Area }\left(\mathrm{mm}^{2}\right) \\ & \mathrm{r}_{\mathrm{x}}(\mathrm{~mm}) \\ & \mathrm{r}_{\mathrm{y}}(\mathrm{~mm}) \\ & \mathrm{r}_{\mathrm{z}}(\mathrm{~mm}) \end{aligned}$			$\begin{array}{r} 2480 \\ 18.7 \\ 37.6 \\ 13.3 \end{array}$	$\begin{array}{r} 2100 \\ 18.9 \\ 37,3 \\ 13.3 \end{array}$	$\begin{array}{r} 2900 \\ 13.9 \\ 40.1 \\ 10.9 \end{array}$	$\begin{array}{r} 2240 \\ 14.2 \\ 39.4 \\ 10.9 \end{array}$	$\begin{array}{r} 1880 \\ 14.4 \\ 39.1 \\ 11.0 \end{array}$	$\begin{array}{r} 1540 \\ 14.6 \\ 38.8 \\ 11.0 \end{array}$	$\begin{array}{r} 1160 \\ 14.8 \\ 38.5 \\ 11.1 \end{array}$
IMPERIAL SIZE AND WEIGHT									
Weight ($1 \mathrm{~b} / \mathrm{ft}$)			13.2	11.2	15.4	11.8	10.0	8.20	6.14
Thickness (in)			3/8	5/16	1/2	3/8	5/16	1/4	3/18
Size (in)			$3 \times 21 / 2$		3×2				

Interconnectors are assumed to be closely spaced.
\ddagger Factored axial compressive resistances calculated according to S16-14 Clause 13.3.5.

DOUBLE ANGLE STRUTS
Unequal-Leg Angles
Factored Axial Compressive Resistances (kN)
Short Legs 10 mm Back-to-Back

Designation ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)			L 64×51				L 51×38		
			9.5	7.9	6.4	4.8	6.4	4.8	$\ddagger 3.2$
Mass (kg/m)			15.8	13.4	10.8	8.4	8.4	6.2	4.2
	$\begin{aligned} & \frac{n}{x} \\ & \stackrel{x}{x} \\ & \times \end{aligned}$	$\begin{array}{r} 0 \\ 500 \\ 1000 \\ 1500 \\ 2000 \\ 2500 \\ 3000 \\ 3500 \\ 4000 \\ 4500 \\ 5000 \\ 5500 \\ 6000 \end{array}$	$\begin{aligned} & 629 \\ & 577 \\ & 409 \\ & 257 \\ & 165 \\ & 112 \end{aligned}$	$\begin{gathered} 532 \\ 490 \\ 350 \\ 222 \\ 143 \\ 97.0 \end{gathered}$	432 399 287 183 118 80.7 57.8	328 304 221 142 92.1 62.8 45.1	$\begin{gathered} 330 \\ 278 \\ 159 \\ 87.3 \\ 52.7 \end{gathered}$	$\begin{gathered} 252 \\ 214 \\ 124 \\ 68.7 \\ 41.6 \end{gathered}$	$\begin{array}{r} 155 \\ 132 \\ 77.9 \\ 43.5 \\ 26.4 \end{array}$
	$\begin{aligned} & \frac{n}{x} \\ & \frac{1}{x} \\ & \frac{1}{x} \end{aligned}$	0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000	629 578 568 518 442 364 296 240 196 162 136 115 97.9	532 467 460 429 368 303 246 200 163 135 113 95.2 81.3	$\begin{gathered} 432 \\ 346 \\ 341 \\ 328 \\ 289 \\ 240 \\ 196 \\ 159 \\ 130 \\ 107 \\ 89.7 \\ 75.8 \\ 64.8 \end{gathered}$	328 218 215 210 197 172 142 116 95.6 79.1 66.2 56.0 47.9	$\begin{gathered} 330 \\ 288 \\ 281 \\ 246 \\ 197 \\ 154 \\ 120 \\ 94.4 \\ 75.5 \\ 61.5 \\ 50.8 \end{gathered}$	$\begin{gathered} 252 \\ 193 \\ 190 \\ 177 \\ 146 \\ 114 \\ 88.8 \\ 70.0 \\ 56.0 \\ 45.6 \\ 37.7 \end{gathered}$	$\begin{gathered} 155 \\ 85.0 \\ 83.8 \\ 81.8 \\ 76.5 \\ 64.9 \\ 51.9 \\ 41.4 \\ 33.3 \\ 27.2 \\ 22.5 \end{gathered}$
PROPERTIES OF 2 ANGLES - 10 mm BACK-TO-BACK									
	Area r_{x} (m $r_{y}(m$ r_{z} (m		$\begin{array}{r} 2000 \\ 14.6 \\ 32.6 \\ 10.7 \end{array}$	$\begin{array}{r} 1690 \\ 14.8 \\ 32.3 \\ 10.7 \end{array}$	$\begin{array}{r} 1370 \\ 15.0 \\ 32.0 \\ 10.8 \end{array}$	$\begin{array}{r} 1040 \\ 15.2 \\ 31.6 \\ 10.9 \end{array}$	$\begin{array}{r} 1050 \\ 11.0 \\ 27.0 \\ 8.12 \end{array}$	$\begin{array}{r} 802 \\ 11.2 \\ 26.6 \\ 8.18 \end{array}$	$\begin{gathered} 544 \\ 11.4 \\ 26.3 \\ 8.27 \end{gathered}$
IMPERIAL SIZE AND WEIGHT									
	Weigh	(b/ft)	10.6	9.00	7.24	5.50	5.54	4.24	2.88
	hickn	s (in)	3/8	5/16	1/4	$3 / 16$	$1 / 4$	$3 / 16$	1/8
Size (in)			$21 / 2 \times 2$				$2 \times 1 \frac{1}{2}$		

Interconnectors are assumed to be closely spaced.
\ddagger Factored axial compressive resistances calculated according to S16-14 Clause 13.3.5.

DOUBLE ANGLE STRUTS
Star-Shaped
Factored Axial Compressive Resistances (kN)

Interconnectors are assumed to be closely spaced.
See CSA S16-14 Clauses 19.2.4 and 19.2.5 for interconnecting requirements.

DOUBLE ANGLE STRUTS
Star-Shaped
Factored Axial Compressive Resistances (kN)

Interconnectors are assumed to be closely spaced.
See CSA S16-14 Clauses 19.2.4 and 19.2.5 for interconnecting requirements.

DOUBLE ANGLE STRUTS
Star-Shaped
Factored Axial Compressive Resistances (kN)

Designation ($\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$)									L64x64		
			13	9.5	7.9	6.4	13	9.5	7.9	6.4	4.8
Mass (kg/m)			28.0	21.4	18.2	14,6	22.8	17.4	14.8	12.2	9.2
Spacing, s			8 mm				8 mm				
	$\begin{aligned} & \frac{n}{x} \\ & \frac{2}{2} \\ & j \end{aligned}$	0	1120	858	723	584	915	705	596	483	367
		10002000	1020	721694	556	386	860	625	496	358	216
			920		555	385	704	529	441	352	215
		3000	697	516	428	339	500	368	303	239	176
		4000	504	368	304	239	345	251	204	160	117
		$\begin{aligned} & 5000 \\ & 6000 \\ & 7000 \\ & 8000 \end{aligned}$	$\begin{aligned} & 366 \\ & 272 \\ & 208 \\ & 163 \end{aligned}$	$\begin{aligned} & 265 \\ & 196 \\ & 149 \\ & 117 \end{aligned}$	$\begin{aligned} & 218 \\ & 160 \\ & 122 \end{aligned}$	$\begin{gathered} 170 \\ 125 \\ 95.1 \end{gathered}$	$\begin{aligned} & 243 \\ & 178 \\ & 134 \end{aligned}$	$\begin{gathered} 175 \\ 127 \\ 96.1 \end{gathered}$	$\begin{aligned} & 142 \\ & 103 \end{aligned}$	$\begin{aligned} & 111 \\ & 80.4 \end{aligned}$	$\begin{aligned} & 81.2 \\ & 58.6 \end{aligned}$
	$\begin{aligned} & \frac{n}{x} \\ & \frac{1}{x} \\ & \ggg \end{aligned}$	0	1120	858	723	584	915	705	596	483	367
		$\begin{array}{r} 500 \\ 1000 \end{array}$	1030	726	561	391	861	627	499	361	218
			1020	721	556	386	789	614	496	358	216
		1500	878	$\begin{aligned} & 681 \\ & 558 \end{aligned}$	$\begin{aligned} & 555 \\ & 474 \end{aligned}$	$\begin{aligned} & 385 \\ & 385 \end{aligned}$	630	496	422	345	215
		2000	713				476	378	324	266	
		$\begin{aligned} & 2500 \\ & 3000 \\ & 3500 \\ & 4000 \\ & 4500 \\ & 5000 \end{aligned}$	$\begin{aligned} & 564 \\ & 444 \\ & 352 \\ & 283 \\ & 231 \\ & 192 \end{aligned}$	443 351 279 225 184 153	$\begin{aligned} & 378 \\ & 300 \\ & 239 \\ & 193 \\ & 158 \\ & 131 \end{aligned}$	$\begin{aligned} & 309 \\ & 246 \\ & 196 \\ & 159 \\ & 130 \\ & 108 \end{aligned}$	$\begin{aligned} & 356 \\ & 269 \\ & 208 \\ & 165 \\ & 133 \end{aligned}$	$\begin{aligned} & 284 \\ & 216 \\ & 168 \\ & 133 \\ & 107 \end{aligned}$	$\begin{gathered} 244 \\ 186 \\ 145 \\ 115 \\ 92.6 \end{gathered}$	$\begin{gathered} 201 \\ 154 \\ 120 \\ 94.9 \\ 76.7 \end{gathered}$	$\begin{gathered} 156 \\ 119 \\ 92.7 \\ 73.6 \\ 59.6 \\ 49.1 \end{gathered}$
PROPERTIES OF 2 STARRED ANGLES											
Area (mm^{2})			3540	2720	2300	1860	2900	2240	1880	1540	1160
$\mathrm{r}_{\mathrm{u}}(\mathrm{mm})$			41.9	40.3	39.7	38.9	36.8	35.3	34.5	33.8	33.0
$r_{\text {v }}(\mathrm{mm})$			$\begin{aligned} & 28.6 \\ & 14.8 \end{aligned}$	$\begin{aligned} & 29.2 \\ & 14.9 \end{aligned}$	$\begin{aligned} & 29.5 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 29.8 \\ & 15.0 \end{aligned}$	$\begin{aligned} & 23.5 \\ & 12.4 \end{aligned}$	$\begin{aligned} & 24.1 \\ & 12.4 \end{aligned}$	$\begin{aligned} & 24.4 \\ & 12.4 \end{aligned}$	$\begin{aligned} & 24.7 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 25.0 \\ & 12.6 \end{aligned}$
$\mathrm{r}_{2}(\mathrm{~mm})$											
IMPERIAL SIZE AND WEIGHT											
Weight (lb/ft)			18.8	14.4	12.2	9.80	15.4	11.8	10.0	8.20	6.14
Thickness (in)			$1 / 2$	3/8	5/16	$1 / 4$	1/2	3/8	5/16	$1 / 4$	3/16
Size (in)			3×3				$21 / 2 \times 21 / 2$				

Interconnectors are assumed to be closely spaced.
See CSA S16-14 Clauses 19.2.4 and 19.2.5 for interconnecting requirements.

DOUBLE ANGLE STRUTS
Star-Shaped
Factored Axial Compressive Resistances (kN)

Interconnectors are assumed to be closely spaced.
See CSA S16-14 Clauses 19.2.4 and 19.2.5 for interconnecting requirements.

Single-Angle Strut - Design Example

General

Two design methods are available for eccentrically loaded single-angle members in compression:
(1) The factored compressive resistance may be calculated by neglecting the effects of eccentricity in accordance with CSA S16-14 Clause 13.3.3 for single angles satisfying the following conditions:

- The ratio of long leg width to short leg width is less than 1.7
- The angles are web members of planar, box or space trusses with adjacent web members attached to the same side of a gusset plate or chord.
- The members are loaded at the ends in compression through the same one leg.
- The members are attached by welding or by minimum two-bolt connections.
- There are no intermediate transverse loads.

This design method is not intended for single angles used as diagonal braces in a braced frame
(2) Members which do not satisfy the above conditions are designed for combined compression and bending by taking into account the effects of eccentricity in accordance with Clauses 13.3.2 and 13.3.3.4.

For single angles subject to elastic local buckling, Clause 13.3 .5 is used.

Design Example

The following example illustrates the design of a single-angle web member in a planar truss according to S16-14 Clause 13.3.3.2. Also see the tables of Factored Compressive Resistances for single-angle struts in Part 4.

Given

Find the factored compressive resistance of a L102×76×6.4 unequal-leg angle connected through the shorter leg. The steel grade is CSA G40.21-350W ($F_{y}=350 \mathrm{MPa}$), and $L=2000 \mathrm{~mm}$.

> Long leg: $b_{l}=d=102 \mathrm{~mm}$
> Short leg: $b_{s}=b=76.2 \mathrm{~mm}$
> $b_{l} / b_{s}=102 / 76.2=1.34<1.7$
$r_{x}=$ radius of gyration about geometric axis parallel to the connected (i.e. shorter) leg
$=32.7 \mathrm{~mm}$
Note: When the longer leg is connected, the axis parallel to the connected leg is defined as the X-axis, as opposed to the Y-axis as defined in the tables of Properties and Dimensions in Part 6.
$r_{y}^{\prime}=$ radius of gyration about minor principal axis $=16.6 \mathrm{~mm}$

Solution

A. Width-to-Thickness Ratios

$$
\frac{d}{t}=\frac{102}{6.35}=16.1>\frac{250}{\sqrt{F_{y}}}=13.4, \frac{b}{t}=\frac{76.2}{6.35}=12.0<\frac{250}{\sqrt{F_{y}}}=13.4
$$

The angle section exceeds the width-to-thickness ratio in S16-14 Table 1 and is therefore a Class 4 section. The resistance will be calculated according to Clause 13.3.5(a) using the effective area $\left(A_{e}\right)$.
B. Effective Area

Calculate the effective area according to Clause 13.3.5(a).
$A_{e}=A-\left(\frac{d}{t}-\frac{250}{\sqrt{F_{y}}}\right) t^{2}=1090-(16.1-13.4) 6.35^{2}=981 \mathrm{~mm}^{2}$

C. Equivalent slenderness

$$
\frac{L}{r_{x}}=\frac{2000}{32.7}=61.2<80
$$

For individual members and planar trusses, and for the shorter leg connected, the equivalent slendemess is:

$$
\begin{aligned}
\frac{K L}{r} & =72+0.75 \frac{L}{r_{x}}+4\left[\left(\frac{b_{l}}{b_{s}}\right)^{2}-1\right]=72+0.75 \times 61.2+4\left[1.34^{2}-1\right] \\
& =121>0.95 \frac{L}{r_{y}^{\prime}}=\frac{0.95 \times 2000}{16.6}=115
\end{aligned}
$$

$\frac{K L}{r}=121<200$ according to Clause 10.4.2.1.
D. Factored Compressive Resistance

$$
\begin{aligned}
& F_{e}=\frac{\pi^{2} E}{\left(\frac{K L}{r}\right)^{2}}=\frac{\pi^{2} \times 200000}{121^{2}}=135 \mathrm{MPa} \\
& \lambda=\sqrt{\frac{F_{y}}{F_{e}}}=\sqrt{\frac{350}{135}}=1.61 \\
& C_{r}=\frac{\phi A_{e} F_{y}}{\left(1+\lambda^{2 n}\right)^{\frac{1}{n}}}=\frac{0.9 \times 981 \times 350}{\left(1+1.61^{2 \times 1.34}\right)^{\frac{1}{1.34}}}=99.2 \mathrm{kN}
\end{aligned}
$$

Double-Angle Strut - Design Example

General

The following example illustrates the design of a double-angle strut in accordance with S16-14 Clauses 13.3 and 19.2. Also see General Information and the tables of Factored Axial Compressive Resistances for double-angle struts in Part 4.

Given:

Find the factored axial compressive resistance of a $2 \mathrm{~L} 102 \times 89 \times 6.4$ double-angle strut, with long legs 10 mm back-to-back. The steel grade is G 40.21350 W ($F_{y}=350 \mathrm{MPa}$), $L=2000 \mathrm{~mm}$, and there are two welded intermediate connectors at the one-third points.

Solution:

A. Class of Section

Width-to-thickness ratios, S16-14 Clause 11.2

$$
\begin{aligned}
& \frac{d}{t}=\frac{102}{6.35}=16.1>\frac{250}{\sqrt{F_{y}}}=13.4 \\
& \frac{b}{t}=\frac{88.9}{6.35}=14.0>\frac{250}{\sqrt{F_{y}}}=13.4
\end{aligned}
$$

The angle is therefore a Class 4 section in axial compression.

B. Effective Area

Effective area according to Clause 13.3.5(a)

$$
\begin{aligned}
A_{e} & =A-2\left(\frac{d}{t}+\frac{b}{t}-2 \times \frac{250}{\sqrt{F_{y}}}\right) t^{2} \\
& =2340-2(16.1+14.0-2 \times 13.4) 6.35^{2} \approx 2070 \mathrm{~mm}^{2}
\end{aligned}
$$

C. Compressive Resistance About Axis X-X, Flexural Mode

Slenderness parameter, Clause 13.3.1

$$
\begin{aligned}
& \lambda=\left(\frac{K L}{r}\right)_{x} \sqrt{\frac{F_{y}}{\pi^{2} E}}=\frac{2000}{32.3} \sqrt{\frac{350}{\pi^{2} \times 200 \times 10^{3}}}=0.825 \\
& C_{r x}=\phi A_{e} F_{y}\left(1+\lambda^{2 n}\right)^{-1 / n} \\
& \quad=0.90 \times 2070 \times 350\left(1+0.825^{2 \times 1.34}\right)^{-1 / 1.34}=460 \mathrm{kN}
\end{aligned}
$$

By comparison, the tables of Factored Axial Compressive Resistances of double-angle struts, long legs back-to-back in Part 4 indicate a compressive resistance of 461 kN .

D. Compressive Resistance About Axis Y-Y, Torsional-Flexural Mode (Detailed Calculation)

Shear centre location, Clause 13.3.2

$$
x_{o}=0 \quad y_{o}=y-\frac{t}{2}=29.6-\frac{6.35}{2}=26.4 \mathrm{~mm}
$$

Torsional-flexural section properties

$$
\begin{aligned}
& \bar{r}_{o}^{2}=x_{o}^{2}+y_{o}^{2}+r_{x}^{2}+r_{y}^{2}=0^{2}+26.4^{2}+32.3^{2}+39.1^{2}=3270 \mathrm{~mm}^{2} \\
& \Omega=1-\left(\frac{x_{o}^{2}+y_{o}^{2}}{\bar{r}_{o}^{2}}\right)=1-\left(\frac{0^{2}+26.4^{2}}{3270}\right)=0.787
\end{aligned}
$$

Slenderness ratio of the built-up member, Clause 19.2.4(b)

$$
\rho_{o}=\left(\frac{K L}{r}\right)_{y}=\frac{2000}{39.1}=51.2
$$

Slenderness ratio of a component angle, with two welded intermediate connectors spaced at $L / 3=2000 / 3=667 \mathrm{~mm}$ and $K=0.65$

$$
\rho_{i}=\left(\frac{K L}{r}\right)_{z}=\frac{0.65 \times 667}{18.7}=23.2
$$

Equivalent slenderness ratio

$$
\begin{aligned}
\rho_{e} & =\sqrt{\rho_{o}^{2}+\rho_{i}^{2}}=\sqrt{51.2^{2}+23.2^{2}}=56.2 \\
F_{e y} & =\frac{\pi^{2} E}{\rho_{e}^{2}}=\frac{\pi^{2} \times 200 \times 10^{3}}{56.2^{2}}=625 \mathrm{MPa} \\
F_{e z} & =\left(\frac{\pi^{2} E C_{w}}{\left(K_{z} L_{z}\right)^{2}}+G J\right) \frac{1}{A \bar{r}_{o}^{2}} \\
& =\left(\frac{\pi^{2} \times 200 \times 10^{3} \times 22.7 \times 10^{6}}{2000^{2}}+77 \times 10^{3} \times 31.5 \times 10^{3}\right) \frac{1}{2340 \times 3270}=318 \mathrm{MPa} \\
F_{e} & =F_{e y z}=\frac{F_{e y}+F_{e z}}{2 \Omega}\left(1-\sqrt{1-\frac{4 F_{e y} F_{e z} \Omega}{\left(F_{e y}+F_{e z}\right)^{2}}}\right) \\
& =\frac{625+318}{2 \times 0.787}\left(1-\sqrt{1-\frac{4 \times 625 \times 318 \times 0.787}{(625+318)^{2}}}\right)=273 \mathrm{MPa}
\end{aligned}
$$

Slenderness parameter

$$
\lambda=\sqrt{\frac{F_{y}}{F_{e}}}=\sqrt{\frac{350}{273}}=1.13
$$

Compressive resistance

$$
\begin{aligned}
C_{r^{y}} & =\phi A_{e} F_{y}\left(1+\lambda^{2 n}\right)^{-1 / n} \\
& =0.90 \times 2070 \times 350\left(1+1.13^{2 \times 1.34}\right)^{-1 / 1.34}=341 \mathrm{kN}
\end{aligned}
$$

E. Resistance About Axis $Y-Y$ Using the Tables of Factored Axial Compressive Resistances of Double-Angle Struts, Long Legs Back-to-Back in Part 4

The actual length $L=2000 \mathrm{~mm}$ is replaced by an equivalent length L_{e} that accounts for the slenderness of the component angles between the connectors.
$L_{e}=r_{y} \sqrt{\left(\frac{K L}{r}\right)_{y}^{2}+\left(\frac{K L}{r}\right)_{z}^{2}}=39.1 \sqrt{\left(\frac{2000}{39.1}\right)^{2}+\left(\frac{0.65 \times 667}{18.7}\right)^{2}}=2200 \mathrm{~mm}$
The table indicates $C_{r}=347 \mathrm{kN}$ for $L=2000 \mathrm{~mm}$ and $C_{r}=328 \mathrm{kN}$ for $L=2500 \mathrm{~mm}$, for closely spaced interconnectors. The compressive resistance for interconnectors spaced at the one-third points is obtained by linear interpolation:

$$
C_{r}=340 \mathrm{kN}
$$

By comparison, the compressive resistance obtained previously by detailed calculation was 341 kN .
F. Approximate Compressive Resistance of Struts with Back-to-Back Spacings Other Than 10 mm

The actual length is replaced by an equivalent length based on the radius of gyration of the built-up section r_{y}^{\prime} and the slendemess ratio of the component angles. Consider a double-angle strut with long legs spaced 16 mm back-to-back ($r_{y}^{\prime}=41.3 \mathrm{~mm}$).

$$
L_{e}=r_{y} \sqrt{\left(\frac{K L}{r^{\prime}}\right)_{y}^{2}+\left(\frac{K L}{r}\right)_{z}^{2}}=39.1 \sqrt{\left(\frac{2000}{41.3}\right)^{2}+\left(\frac{0.65 \times 667}{18.7}\right)^{2}}=2100 \mathrm{~mm}
$$

By interpolation:

$$
C_{r}=343 \mathrm{kN}
$$

COLUMN BASE PLATES

When steel columns bear on concrete footings, steel base plates are required to distribute the column load to the footing without exceeding the bearing resistance of the concrete. In general, the ends of columns are saw-cut or milled to a plane surface so as to bear evenly on the base plate. Connection of the column to the base plate and then to the footing depends on the loading conditions. For columns carrying vertical gravity loads only, this connection is required only to hold the parts in line. However, for erection safety, four non-collinear anchor rods are required (CSA SI6-14 Clause 25.2),

For base plates subjected to vertical gravity loads only, the following assumptions and design method are recommended:

1. The factored gravity load is assumed uniformly distributed over the base plate within a rectangle of $0.95 d \times 0.80 b$ (see diagram).
2. The base plate exerts a uniform pressure over the footing.
3. The base plate projecting beyond the area of $0.95 d \times 0.80 b$ acts as a cantilever subject to the uniform bearing pressure.
$C_{f}=$ total factored column load (N)
$A=B \times C=$ area of plate $\left(\mathrm{mm}^{2}\right)$
$t_{p}=$ plate thickness (mm)
$F_{y}=$ specified minimum yield strength of base plate steel (MPa)
$f^{\prime}{ }_{c}=$ specified 28 -day strength of concrete (MPa)
$\phi=0.90$ for steel

4. Determine the required area $A=C_{f} / B_{r}$ where B_{r} is the factored bearing resistance per unit of bearing area. For concrete, B_{r} is assumed to be $0.85 \phi_{c} f_{c}^{\prime} c$ where $\phi_{c}=0.65$ in bearing. (Clause 10.8 of CSA A23.3-14 states when a smaller area is acceptable.)
5. Determine B and C so that the dimensions m and n (the projections of the plate beyond the area, $0.95 d \times 0.80 b$) are approximately equal.
6. Determine m and n and solve for t_{p}, where

$$
t_{p}=\sqrt{\frac{2 C_{f} m^{2}}{B C \phi F_{y}}} \text { or } \sqrt{\frac{2 C_{f} n^{2}}{B C \phi F_{y}}} \text {, whichever is greater. }
$$

These formulas were derived by equating the factored moment acting on the portion of the plate taken as a cantilever to the factored moment resistance of the plate ($M_{r}=\phi Z F_{y}$) and solving for the plate thickness t_{p}. To minimize deflection of the base plate, the thickness should be generally not less than about $1 / 5$ of the overhang, m or n,

The examples below illustrate the proportioning of base plates to limit bearing pressure on the concrete, and to resist plate bending and limit plate deflection. In addition, these base plates must be dimensioned to accommodate the anchor rods with ample clearances, taking into account the size of holes required for erection tolerances (see Anchor Rods in next section) and the presence of welds.

Examples

1. Given:

A W310x118 column subjected to a factored axial load of 2500 kN is supported by a concrete foundation whose 28 -day specified strength is 20 MPa . Design the base plate assuming 300 MPa steel.

Solution:

For W310x118, $b=307 \mathrm{~mm}, d=314 \mathrm{~mm}$.
Area of plate required $=\frac{2500 \times 10^{3}}{0.85 \times 0.65 \times 20}=226000 \mathrm{~mm}^{2}$
Try $B=C=480 \mathrm{~mm} ; A=230000 \mathrm{~mm}^{2}$
Determine m and n

$$
\begin{array}{ll}
0.95 d=0.95 \times 314=298 \mathrm{~mm} & \text { Therefore, } m=(480-298) / 2=91 \mathrm{~mm} \\
0.80 b=0.80 \times 307=246 \mathrm{~mm} & \text { Therefore, } n=(480-246) / 2=117 \mathrm{~mm}
\end{array}
$$

Use n for design
Plate thickness required $=\sqrt{\frac{2 \times 2500 \times 10^{3} \times 117^{2}}{480 \times 480 \times 0.9 \times 300}}=33.2 \mathrm{~mm}$

$$
\frac{n}{5}=\frac{117}{5}=23.4 \mathrm{~mm}<33.2 \mathrm{~mm} \mathrm{OK} \quad \text { Use } 35 \mathrm{~mm}
$$

Since the plate thickness of 35 mm is less than $65 \mathrm{~mm}, F_{y}=300 \mathrm{MPa}$ for G40.21 Grade 300 W steel. For plates greater than 65 mm in thickness, $F_{y}=280 \mathrm{MPa}$ for 300 W steel (see Table 6-3). Therefore, use PL $35 \times 480 \times 480$ for the base plate.

2. Given:

An HSS 203x203x9.5 column supports a factored axial load of 1550 kN .
Select a base plate assuming $f_{c}^{\prime}=20 \mathrm{MPa}$ and $F_{y}=300 \mathrm{MPa}$.

Solution:

Area required is $\frac{1550 \times 10^{3}}{0.85 \times 0.65 \times 20}=140000 \mathrm{~mm}^{2}$

$$
\begin{aligned}
& B=C=\sqrt{A}=\sqrt{140 \times 10^{3}}=374 \mathrm{~mm} . \text { Use } 380 \mathrm{~mm} \\
& n=\frac{380-(203-9.5)}{2}=93.3
\end{aligned}
$$

Therefore, $t_{p}=\sqrt{\frac{2 \times 1550 \times 10^{3} \times 93.3^{2}}{380 \times 380 \times 0.9 \times 300}}=26.3 \mathrm{~mm}$

Use 30 mm .
Therefore, use PL $30 \times 380 \times 380$ for the base plate.

Design Chart

As an alternative to computing the plate thickness, Figure 4-1 provides a means of selecting t_{p} knowing the length of cantilever m or n and the unit factored bearing resistance.

Length of Cantilever, m or $n, m m$

Unit Factored Bearing Resistance, B_{r}, MPa

Example

Given:

Same as example 1.

Solution:

Unit factored bearing resistance is $0.85 \times 0.65 \times 20=11.1 \mathrm{MPa}$
From Figure $4-1$ for 11.1 MPa and $n=117$, select $t_{p}=35 \mathrm{~mm}$.
Base plate assemblies (including anchor rods) that are subjected to applied bending moments, uplift tension, and shear forces must be designed to resist all such forces.

Lightly Loaded Base Plates

For lightly loaded base plates where the required bearing area is less than or about equal to the area bounded by the column dimensions b and d, the above method does not give realistic results for the base plate thickness, and other methods have been proposed in the literature. Fling (1970) uses a yield line theory to derive an equation for the plate thickness. When modified for limit states design, the equation becomes:

$$
t_{p}=0.43 b \beta \sqrt{\frac{B_{r}}{\phi F_{y}\left(1-\beta^{2}\right)}}
$$

where

$$
\begin{aligned}
B_{r} & =0.85 \phi_{\mathrm{c}} f^{\prime} \mathrm{e} \\
\beta & =\sqrt{0.75+\frac{1}{4 \lambda^{2}}}-\frac{1}{2 \lambda} \\
\lambda & =2 d / b \\
b & =\text { column width }(\mathrm{mm}) \\
d & =\text { column depth }(\mathrm{mm})
\end{aligned}
$$

Stockwell (1975) assumes an effective bearing area where only an H-shaped pattern under a W-shape column is loaded, and the remainder of the base plate is unloaded. The assumed width of flange strips can be derived from the required bearing area, and the plate thickness can be determined by the expression:

$$
t_{p}=\sqrt{\frac{2 C_{f} m^{2}}{A \phi F_{y}}}
$$

where
$A=$ effective bearing area
$m=$ half the width of the bearing strips

References

FLING, R.S. 1970. Design of steel bearing plates. Engineering Journal, American Institute of Steel Construction, 7(2), April.
STOCKWELL, F.J.Jr. 1975. Preliminary base plate selection. Engineering Journal, American Institute of Steel Construction, 12(3), Third Quarter.

ANCHOR RODS

The vast majority of anchor rods are used at the bases of gravity columns. Theoretically, neither end moments, uplift forces, nor horizontal forces are present at the base of a concentrically loaded column carrying gravity loads only. These anchor rods serve to position, level and secure the base plate, and to resist nominal end moments and horizontal forces which may occur. As a measure for erection safety, CSA S16-14 Clause 25.2 requires that each column base be fitted with at least four non-collinear anchor rods to ensure an adequate resistance against overturning (in any direction) during erection, unless otherwise accounted for. Note: the expression "anchor rod" has replaced "anchor bolt" in order to avoid confusion with bolts produced to ASTM A325 and A490.

Fabricators traditionally supply anchor rods manufactured from round bar stock. The bars are threaded at one end to receive a washer and nut and may be bent at the other end to form a hook, or both ends may be threaded. The material used for most common applications is usually produced to CSA G40.21 Grade 300W ($F_{y}=300 \mathrm{MPa}$) or to ASTM A36 ($F y=248$ $\mathrm{MPa})$. However, ASTM A36 round bar stock is generally more readily available. Since the introduction of ASTM F1554 Standard Specification for Anchor Bolts, Steel, 36, 55 and 105ksi Yield Strength, Grade 36 anchor rods fill this role.

The diameter of anchor rod holes in base plates should provide for possible horizontal adjustments for alignment purposes. The following table, adopted from the reference below, can be used as a guide for maximum hole sizes (diameters), although actual sizes used by fabricators may vary depending on shop and field practices. When holes smaller than the tabulated maximum sizes are desired, they may be sized to accommodate anchor rod placement tolerances as a minimum. The CISC Code of Standard Practice indicates a tolerance of 6 mm for an entire anchor rod group, and a further 3 mm (1.5 mm on either side) for an individual anchor rod within a group. Therefore, the combined tolerance is $6+1.5$, or 7.5 mm and thus the minimum hole size allowance may be 8 mm . e.g. $27-\mathrm{mm}$ holes for $3 / 4$ inch rods. For the larger rod sizes, a $10-\mathrm{mm}$ or $12-\mathrm{mm}$ minimum hole size allowance is suggested.

SUGGESTED MAXIMUM ANCHOR ROD HOLE SIZES AND MINIMUM WASHER SIZES FOR GRAVITY COLUMNS

Anchor Rod Diameter in.	Maximum Hole Diameter mm	Minimum Washer Size ${ }^{4}$ mm	Minimum Washer Thickness mm
$3 / 4$	33	51	6.4
$7 / 1$	40	64	7.9
1	46	76	9.5
$11 / 4$	52	76	12.7
$11 / 2$	59	89	12.7
$13 / 4$	70	102	15.9
2	83	127	19.1
$21 / 2$	95	140	22.2

Notes:

1. Circular (diameter) or square washers (sides) meeting the washer size are acceptable.
2. Anchor rod holes should be located with ample clearance to accommodate the rod position in the hole with respect to the column, welds and other interferences.
3. For $1 / 4$ inch anchor rods, 27 mm dlameter holes may be used with ASTM F844 washers in place of fabricated plate washers.

CSA S16-14 Clause 25 covers design requirements for column bases in situations where anchor rods transfer end moments, uplift and horizontal forces due to lateral loads, etc. If such requirements are necessary, they should be clearly identified in the contract documents.

Important mechanical properties for F1554 products are summarized in the table below. When specified in the purchased order as a "supplementary requirement", Grades 55 and 105 rods are supplied to meet specific Charpy notch-toughness with test values. Grade 36 is inherently weldable, while weldable Grade 55 rods are also available when specified as a "supplementary requirement". In addition, F1554 includes provisions for stress area, minimum body diameter, recommended nuts for each rod grade and size range, minimum cross-sectional area at the bend for hooked rods, zinc coating requirements when specified, etc.

MECHANICAL PROPERTIES FOR ASTM F1554 ANCHOR RODS

Grade	36	55	105
Tensile Strength, MPa	400-552	517-655	862-1034
Yield Strength, min, MPa (0.2 \% offset)	248	380	724
Elongation in $200 \mathrm{~mm}, \mathrm{~min}, \%^{1}$	20	18	12
Elongation in $50 \mathrm{~mm}, \mathrm{~min}, \%^{\text {t }}$	23	21	15
Reduction of Area, min, \%			
6.35 to 50.8 mm (1/4 to 2 in .), incl.	40	30	45
over 50.8 to 63.5 mm (2 to $21 / 2 \mathrm{in}$.), incl.	40	22	45
over 63.5 to $76.2 \mathrm{~mm}(21 / 2$ to 3 in .), incl.	40	20	45
over 76.2 to 102 mm (3 to 4 in .), incl.	40	18	-..
Supplementary Requirements			
Min. Average Charpy V-Notch Energy, J			
S4: at $+5^{\circ} \mathrm{C}$ Test Temperature	N.A.	20	20
S5: at $-29^{\circ} \mathrm{C}$ Test Temperature	N.A.	N.A.	20

Notes:

1. Elongation in 200 mm applies to bars. Elongation in 50 mm applies to tests on machined specimens.
2. The round bars from which anchor rods are made shall conform to the tensile properties lisled above, except when heat-treated after bending or threading.

For specialized applications, fastener suppliers or fabricators should be consulted.

References

AISC. 2011. Steel construction manual. $14^{\text {th }}$ Edition. American Institute of Steel Construction, Chicago, IL.

BRACING ASSEMBLIES

General

The following example illustrates the design of a bracing assembly in accordance with CSA S16-14 Clause 9.2.6.2.

Figure 4-2

Example

A W200x42 column is braced about its weak axis by channels located at the one-third points, as shown on Fig. 4-2. Given a factored axial load of 425 kN acting on the $12-\mathrm{m}$ column, select channel sections with flexural strength and stiffness to provide adequate weakaxis bracing at the one-third points of the column.

Solution

The design objective consists in sizing the channel braces with sufficient strength and stiffness to force the column into a buckling mode between bracing points.

A. Initial Imperfections

For the assumed imperfect shape shown on Fig. 4-3, the initial imperfection is taken to be:

$$
\Delta_{o}=0.001 L_{b}=0.001 \times 4000=4.0 \mathrm{~mm}
$$

B. Strength Requirement

The required flexural strength of the channel braces is calculated using the "Direct Method" in Clause 9.2.6.2. For two equally spaced braces, $\beta=3$. The brace point displacement is assumed to be equal to the initial imperfection:

$$
\Delta_{\mathrm{b}}=\Delta_{\mathrm{o}}=4.0 \mathrm{~mm}
$$

The factored bracing force is given by:

$$
P_{b}=\frac{\beta\left(\Delta_{o}+\Delta_{b}\right) C_{f}}{L_{b}}=\frac{3(4.0+4.0) 425}{4000}=2.55 \mathrm{kN}
$$

Factored moment acting on a channel: $M_{f}=P_{b} L / 4=2.55 \times 6.0 / 4=3.83 \mathrm{kN} \cdot \mathrm{m}$
Try C200x21 channels. The factored moment resistance of a C200x21 channel with unbraced length $L / 2=3000 \mathrm{~mm}$ and $F_{y}=350$ MPa may be determined using the Beam Selection Table in Part 5.

$$
M_{r}^{\prime}=28.0 \mathrm{kN} \cdot \mathrm{~m}>3.83 \mathrm{kN} \cdot \mathrm{~m}
$$

C. Stiffness Requirement

For channels of length $L=6000 \mathrm{~mm}$ and strong-axis moment of inertia $I_{x}=14.9 \times 10^{6}$ mm^{4}, the brace point displacement is given by:

$$
\Delta_{b}=\frac{P_{b} L^{3}}{48 E I_{x}}=\frac{2.55 \times 10^{3} \times 6000^{3}}{48 \times 200 \times 10^{3} \times 14.9 \times 10^{6}}=3.85 \mathrm{~mm}<\Delta_{o}=4.0 \mathrm{~mm}
$$

The selected channel section is adequate.
Note: a wind column is usually oriented with the channel girts running parallel to its strong axis instead.

NOTES

PART FIVE
 FLEXURAL MEMBERS

General Information 5-3
Class of Sections in Bending. 5-5
Table 5-1 - W Shapes - ASTM A992, A572 Grade 50 5-6
Factored Resistance of Beams 5-9
Beam Selection Tables
W Shapes - ASTM A992, A572 Grade 50 5-14
S Shapes - ASTM A992, A572 Grade 50 5-26
C Shapes - CSA G40.21-350W 5-28
Beam Load Tables
W Shapes - ASTM A992, A572 Grade 50 5-30
Beams with Web Holes 5-51
Table 5-2 - Values of C_{1} and C_{2} 5-61
Table 5-3 - Values of C_{3} 5-62
Table 5-4 - Values of C_{4} and C_{5} 5-63
Factored Shear Resistance of Girder Webs 5-66
Design Example for Stiffened Girder Webs 5-68
Beam Bearing Plates 5-71
Figure 5-1 - Beam Bearing Plate Thickness 5-73
Composite Beams 5-74
Factored Resistance of Shear Studs
Table 5-5 - Solid Slabs and Deck-Slabs with Ribs Parallel to Beam 5-77
Table 5-6a - Deck-Slabs with Ribs Perp. to Beam, 3/4-in. Diameter Studs 5-78
Table 5-6b - Deck-Slabs with Ribs Perp. to Beam, $5 / 8-\mathrm{in}$. Diameter Studs 5-79
Table 5-7a - Pull-Out Area, Studs Placed On-Centre in Ribs 5-80
Table 5-7b - Pull-Out Area, Studs Placed Off-Centre in Ribs 5-81
Trial Selection Tables
75 mm Deck with 65 mm Slab, $25 \mathrm{MPa}, 2350 \mathrm{~kg} / \mathrm{m}^{3}$ Concrete 5-86
75 mm Deck with 75 mm Slab, $25 \mathrm{MPa}, 2350 \mathrm{~kg} / \mathrm{m}^{3}$ Concrete 5-96
75 mm Deck with 90 mm Slab, $25 \mathrm{MPa}, 2350 \mathrm{~kg} / \mathrm{m}^{3}$ Concrete 5-106
75 mm Deck with 85 mm Slab, $25 \mathrm{MPa}, 1850 \mathrm{~kg} / \mathrm{m}^{3}$ Concrete 5-116
Deflection of Flexural Members 5-126
Figure 5-2 - Deflection Constant, C_{d} 5-128
Table 5-8 - Values of B_{d} for Various Loadings and Support Conditions 5-129
Beam Diagrams and Formulas 5-130
Moments, Reactions 5-143

GENERAL INFORMATION

Part 5 covers flexural members, and its contents are informally grouped in this order: steel members, composite members and general aids for the analysis of beams in common applications. The contents for steel members include design aids for unstiffened-web members and stiffened plate girders.

While most C-shapes (channels) are produced in Canada, imported sections are identified as such in the Beam Selection Tables. Since all W-shapes and S-shapes are imported, they need not be identified. W-shapes that are readily available are highlighted in yellow.

Class of Sections in Bending

See page 5-5.

Factored Resistance of Beams

The Beam Selection Tables, which list the factored moment resistance of beams under various conditions of lateral support, are provided on pages 5-14 to 5-29 to facilitate the design of flexural members. See page 5-9 for the explanatory text.

The Beam Load Tables, which list total uniformly distributed factored loads for laterally supported beams of various spans, are provided on pages 5-30 to 5-50. For the explanatory text, see page 5-10.

Beams with Web Holes

See page 5-51 for design information, design tables and an illustrative example.

Factored Shear Resistance of Girder Webs

The tables on pages 5-66 to 5-67 list the factored shear resistance ϕF_{s} in a girder web, computed in accordance with the requirements of Clause 13.4.1.1 of CSA S16-14, and the required gross area of pairs of intermediate stiffeners, computed in accordance with the requirements of Clause 14.5.3. Values are provided for minimum specified yield strength levels F_{y} of 300 and 350 MPa , for aspect ratios (a / h) from 0.50 to 3.00 , and for web slenderness ratios (h / w) varying between 50 and 260 for $F_{y}=300$, and between 50 and 220 for $F_{y}=350$. The required gross area of stiffeners is provided as a percentage of the web area ($h w$) and is shown in italics.

Design Example for Stiffened Girder Webs

For design information on the web shear resistance and an illustrative example, see page 5-68.

Beam Bearing Plates

See page 5-71 for design information, a design chart and an illustrative example.

Composite Beams

Tables for the Factored Shear Resistance of Shear Studs in solid slabs and in deck-slabs are given on pages 5-77 to 5-79. Formulas for calculating the area of the concrete pull-out pyramid and an illustrative example are given on pages 5-80 to 5-82. The calculation of the factored resistance of a shear stud is illustrated on page 5-83. Trial Selection Tables for composite beams with various combinations of cover slab and steel deck (hollow composite construction) are given on pages 5-86 to 5-125. See page 5-74 for the explanatory text. A composite beam design example is given on page 5-84.

Deflection of Flexural Members

See page 5-126 for a design chart, table and illustrative examples.

Beam Diagrams and Formulas

Pages 5-130 to 5-148 contain diagrams and formulas to facilitate the design of flexural members in accordance with elastic theory.

CLASS OF SECTIONS IN BENDING

Table 5-1 lists the class of section in bending of W-shapes for grades of steel including ASTM A992 and A572 grade $50\left(F_{y}=345 \mathrm{MPa}\right)$. Listed are the W-shape sizes provided in Part 6 of this Handbook. For these steel grades, all S-shapes are Class 1, and all C and MC-shapes are Class 3.

Table 5-1 also lists for each section size the ratios $b_{e l} / t$ and h / w, where $b_{e l}=$ one-half the flange width, $t=$ flange thickness, $h=$ clear distance between flanges and $w=$ web thickness. See also Limits on Width-to-Thickness Ratios in Part 4.

ASTM A992, A572 grade 50

Designation	Class	$\mathrm{b}_{\text {ei }} / \mathrm{t}$	h/w	Designation	Class	$\mathrm{b}_{\mathrm{el}} / \mathrm{t}$	h/w
W1100×499	1	4.50	39.5	W840x576	1	3.55	24.9
$\times 433$	1	5.03	46.7	$\times 527$	1	3.85	27.0
$\times 390$	1	5.56	51.4	$\times 473$	1	4.23	30.2
$\times 343$	1	6.45	57.1	$\times 433$	1	4.60	32.7
				$\times 392$	1	5.03	36.1
W1000x976	1	2.38	18.6	$\times 359$	1	5.66	37.8
$\times 883$	1	2.59	20.4	$\times 329$	1	6.19	40.5
$\times 748$	1	2.98	23.8	$\times 299$	1	6.85	43.8
$\times 642$	1	3.43	27.3				
$\times 591$	1	3.66	29.9	W840x251	1	4.71	46.9
$\times 554$	1	3.92	31.5	$\times 226$	1	5.49	49.5
$\times 539$	1	3.98	32.7	$\times 210$	1	6.00	51.8
$\times 483$	1	4.39	36.5	$\times 193$	1	6.73	54.2
$\times 443$	1	4.80	39.3	$\times 176$	1	7.77	57.0
$\times 412$	1	5.03	44.0				
$\times 371$	1	5.54	48.8	W760x582	1	3.19	20.8
$\times 321$	1	6.45	56.2	$\times 531$	1	3.45	22.8
$\times 296$	1	7.38	56.2	$\times 484$	1	3.74	24.8
				$\times 434$	1	4.12	27.8
W1000×584	1	2.45	25.8	$\times 389$	1	4.59	30.5
$\times 494$	1	2.86	29.9	$\times 350$	1	5.01	34.1
$\times 486$	1	2.85	30.9	$\times 314$	1	5.75	36.5
$\times 438$	1	3.11	34.5	$\times 284$	1	6.35	39.9
$\times 415$	1	3.30	35.7	x257	1	7.03	43.3
$\times 393$	1	3.45	38.0				
$\times 350$	1	3.78	44.0	W760x220	1	4.43	43.6
$\times 314$	1	4.18	48.6	$\times 196$	1	5.28	46.1
$\times 272$	1	4.84	56.2	$\times 185$	1	5.66	48.2
$\times 249$	1	5.77	56.2	$\times 173$	1	6.18	49.9
$\times 222$	1	7.11	58.0	$\times 161$	1	6.89	52.1
				$\times 147$	1	7.79	54.5
		2.05		$\times 134$	2	8.52	60.4
$\times 1269$	1	2.00	13.5				
$\times 1194$	1	2.10	14.3	W690x802	1	2.15	12.9
$\times 1077$	1	2.28	15.7	$\times 548$	1	2.95	18.4
$\times 970$	1	2.48	17.3	$\times 500$	1	3.19	20.2
$\times 787$	1	2.96	21.1	$\times 457$	1	3.46	21.9
$\times 725$	1	3.19	22.6	$\times 419$	1	3.71	24.0
$\times 656$	1	3.48	25.0	$\times 384$	1	4.02	25.9
$\times 588$	1	3.82	27.8	$\times 350$	1	4.40	28.0
$\times 537$	1	4.16	30.4	$\times 323$	1	4.71	30.6
$\times 491$	1	4.49	33.3	$\times 289$	1	5.24	34.0
$\times 449$	1	4.95	35.9	$\times 265$	1	5.93	35.1
$\times 420$	1	5.29	38.4	$\times 240$	1	6.50	38.5
$\times 390$	1	5.74	40.5	$\times 217$	1	7.16	41.9
$\times 368$	1	6.11	42.5				
$\times 344$	1	6.53	44.7	W690x192	1	4.55	41.7
				$\times 170$	1	5.42	44.5
W920×381	1	3.53	35.4	+152	1	6.02	49.3
$\times 345$	1	3.86	39.1	$\times 140$	1	6.72	52.1
$\times 313$	1	4.48	40.9	×125	1	7.76	55.2
$\times 289$	1	4.81	44.5				
$\times 271$	1	5.12	46.9				
$\times 253$	1	5.48	49.9				
$\times 238$		5.89	52.3				
$\times 223$$\times 201$	1	7.56	56.8		Class	$\begin{aligned} & \mathrm{b}_{\mathrm{ele}} / \mathrm{t} \\ & \text { limit } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { h/w } \\ & \text { limit } \end{aligned}$
					1	7.81	59.2
					2	9.15	91.5
					3	10.77	102.3

This table applles to major-axis bending. For seismic applications, see CSA S16-14 Clause 27.1.7. $\quad \mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$

ASTM A992, A572 grade 50

Designation	Class	$b_{\text {el }} / \mathrm{t}$	h/w	Designation	Class	$b_{\text {el }} / 1$	h/w
W610x551$\times 498$$\times 455$$\times 415$$\times 372$$\times 341$$\times 307$$\times 285$$\times 262$$\times 241$$\times 217$$\times 195$$\times 174$$\times 155$	1	2.51	14.8	W460×484	1	2.19	11.1
	1	2.72	16.3	X421	1	2.38	12.0
	1	2.94	17.9	x 384	1	2.56	13.2
	1	3.18	19.4	$\times 349$	1	2.76	14.5
	1	3.49	21.7	$\times 315$	1	3.02	15.9
	1	3.79	23.5	$\times 286$	1	3.28	17.5
	1	4.14	25.9	x260	1	3.58	18.9
	1	4.43	27.8	$\times 235$	1	3.92	20,8
	1	4.81	30.2	$\times 213$	1	4.25	23.1
	1	5.31	32.0	$\times 193$	1	4.64	25.2
	1	5.92	34.7	$\times 177$	1	5.32	25.8
	1	6.70	37.2	$\times 158$	1	5.94	28.5
	1	7.52	40.9	$\times 144$	1	6.40	31.5
	2	8.53	45.1	$\times 128$	1	7.19	35,1
				$\times 113$	2	8.09	39,7
W610x153	1	4.60	40.9				
$\times 140$$\times 125$	1	5.18	43.7	W460x106	1	4.71	34.0
	1	5.84	48.1	$\times 97$	1	5.08	37.5
$\times 113$	1	6.59	51.2	$\times 89$	1	5.42	40.7
$\times 101$	1	7.65	54,6	$\times 82$	1	5.97	43.2
				$\times 74$	1	6.55	47.6
$\begin{gathered} \text { W610x92 } \\ \times 82 \end{gathered}$	1						
	1	6.95	57.3	W 460×68	1	5.00	47.1
				$\times 60$	1	5.75	53.6
W530×409	1	2.94	16.2	$\times 52$	1	7.04	56.4
x369	1	3.21	18.0				
$\times 332$	1	3.54	19.8	W410×149	1	5.30	25.6
$\times 300$	1	3.85	21.7	$\times 132$	1	5.92	28.6
+272	1	4.22	23.8	$\times 114$	1	6.76	32.9
$\times 248$	1	4.57	26.4	$\times 100$	1	7.69	38.1
$\times 219$	1	5.45	27.4				
$\times 196$	1	6.01	30.4	W410x85		4.97	34.9
$\times 182$	1	6.45	33.0	$\times 74$	1	5.63	39.3
$\times 165$$\times 150$	1	7.05	35.8	$\times 67$	1	6.22	43.3
	1	7.68	39.6	$\times 60$	1	6.95	49.5
				$\times 54$	2	8.12	50.8
W530×138							
$\times 123$$\times 109$	1	5.00	38.3	W410x46	1	6.25	54.4
	1	5.61	43.2	$\times 39$	2	7.95	59.6
$\times 101$	1	6.03	46.1				
$\times 92$	1	6.70	49.2	W360x1299	1	1.70	3.20
$\begin{aligned} & x 82 \\ & \times 72 \end{aligned}$	2	7.86	52.8	$\times 1202$	1	1.81	3.37
	3	9.50	55.8	$\times 1086$	1	1.82	4.09
				$\times 990$	1	1.95	4.45
W530x85	1	5.03	48.7	$\times 900$	1	2.08	4.84
$\times 74$	1	6.10	51.7	$\times 818$	1	2.25	5.29
$\times 86$	1	7.24	56.4	$\times 744$	1	2.43	5.76
				$\times 677$	1	2.63	6.25
				$\times 634$	1	2.75	6.72
				$\times 592$	1	2.91	7.12
				$\times 551$	1	3.09	7.61
				$\times 509$	1	3.32	8.20
				$\times 463$	1	3.59	8.94
				$\times 421$	1	3.89	9.75
				$\times 382$	1	4.23	10.7
	Class	limet ${ }_{\text {belt }}$	$\begin{aligned} & \mathrm{h} / \mathrm{w} \\ & \text { limit } \end{aligned}$	$\times 347$ $\times 314$	1	4.62 5.06	11.8 12.8
				x $\times 287$ $\times 24$	1	5.06 5.45	14.2
	1	7.81	59.2	$\times 262$	1	5.98	15.2
	2	9.15	91.5	$\times 237$	1	6.54	16.9
	3	10.77	102.3	$\times 216$	1	7,11	18.5

[^36]CLASS OF SECTIONS IN BENDING
ASTM A992, A572 grade 50

Designation	Class	$\mathrm{b}_{\text {el }} / \mathrm{t}$	h/w	Designation	Class	$\mathrm{b}_{\text {el }} / \mathrm{t}$	h/w
W360×196	1	7,14	19.5	W250x167	1	4.17	11.7
-179	1	7.80	21.3	$\times 149$	1	4.63	13.0
$\times 162$	2	8.51	24.1	$\times 131$	1	5.20	14.6
$\times 147$	3	9.34	26.0	$\times 115$	1	5.86	16.7
$\times 134$	3	10.3	28.6	$\times 101$	1	6.56	18,9
				$\times 89$	1	7.40	21.1
W360×122	1	5.92	24.6	$\times 80$	2	8.17	23.9
$\times 110$	1	6.43	28.1	$\times 73$	2	8.94	26.1
$\times 101$	1	6.97	30.5				
$\times 91$	1	7.74	33.7	W250x67	1	6.50	25.3
				$\times 58$	1	7.52	28.1
W360x79	1	6.10	34.1	$\times 49$	3	9.18	30.4
$\times 72$	1	6.75	37.2				
$\times 64$	1	7.52	41.6	W250x45	1	5.69	31.6
				$\times 39$	1	6.56	36.3
W360×57	1	6.56	42.0	$\times 33$	2	8.02	39.3
$\times 51$	1	7.37	46.1				
$\times 45$	2	8.72	48.2	W250x28	1	5.10	37.5
				$\times 25$	1	6.07	39.4
W360×39	1	5.98	51.0	$\times 22$	1	7.39	41.4
$\times 33$	1	7.47	57.2	$\times 18$	3	9.53	50.1
W310x500	1	2.26	6.14	W200x100	1	4.43	12.5
$\times 454$	1	2.45	6.72	$\times 86$	1	5.07	13.9
$\times 415$	1	2.66	7.14	$\times 71$	1	5.92	17.8
$\times 375$	1	2.88	7.81	$\times 59$	1	7.22	20.0
$\times 342$	1	3.12	8.49	$\times 52$	2	8.10	22.9
$\times 313$	1	3.36	9.25	$\times 46$	3	9.23	25.1
$\times 283$	1	3.65	10.3				
$\times 253$	1	4.03	11.3	W200x42	1	7.03	25.2
$\times 226$	1	4.45	12.5	$\times 36$	2	8.09	29.1
$\times 202$	1	4.95	13.8				
$\times 179$	1	5.57	15.4	W200x31	1	6.57	29.6
$\times 158$	1	6.18	17.9	$\times 27$	2	7.92	32.8
$\times 143$	1	6.75	19.8				
$\times 129$	1	7.48	21.1	W200x22	1	6,38	
$\times 118$	2	8.21	23.2	$\times 19$	2	785	32.8
$\times 107$	2	9.00	25.4	$\times 15$	3	9.62	44.1
$\times 97$	3	9.90	28.0				
				W150x37	1	6.64	17.1
W310x86	1	7.79	30.5	$\times 30$	2	8.23	21.0
$\times 79$	2	8.70	31.5	$\times 22$	4	11.5	23.9
W310x74	1	6.29	29.5	W150×24	1	4.95	21.1
$\times 67$	1	6.99	32.6	$\times 18$	1	7.18	23.9
$\times 60$	1	7.75	36.9	$\times 14$	2	9.09	32.3
				$\times 13$	3	10.2	32.1
		6.33	38.2				
$\times 45$	1	7.41	44.0	W130×28	1	5.87	15.8
$\times 39$	2	8.51	50.1	$\times 24$	1	6.98	17.8
$\begin{gathered} \text { W310×33 } \\ \times 28 \\ \times 24 \\ \times 21 \end{gathered}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 4.72 \\ & 5.73 \\ & 7.54 \\ & 8.86 \end{aligned}$	$\begin{aligned} & 44.2 \\ & 48.5 \\ & 52.1 \\ & 57.2 \end{aligned}$	W100x19	1	5.85	12.5
					Class	$\begin{aligned} & \mathrm{b}_{\mathrm{el} / \mathrm{t}} \\ & \text { limit } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{h} / \mathrm{w} \\ & \text { limit } \\ & \hline \end{aligned}$
					1	7.81	59.2
					2	9,15	91.5
					3	10.77	102.3

This table applies to major-axis bending. For seismic applications, see CSA S16-14 Clause 27,1,7. $\quad F_{y}=345 \mathrm{MPa}$

FACTORED RESISTANCE OF BEAMS

General

The following pages contain the Beam Selection Tables, which can be used to select flexural members, and the Beam Load Tables for estimating maximum beam reactions. The Beam Selection Tables facilitate the proportioning of flexural members subject to forces and moments determined by elastic analysis. The Beam Load Tables list total uniformly distributed factored loads for laterally supported beams. W-shape sections that are commonly used and readily available at the time of preparation of this Handbook are highlighted in yellow.

When using these tables, factored moments or forces must be equal to or less than the appropriate factored resistances, V_{r}, M_{r} or M_{r}^{\prime} given in the tables. V_{r} values for uncoped beams are tabulated. A general discussion on coped beams is provided under Supported Beams with Copes in the section on Double-Angle Beam Connections in Part 3.

Beam Selection Tables

Tables
The Beam Selection Tables list beam sizes in descending order of their factored moment resistance M_{r} (shown in bold) based on full lateral support (CSA S16-14 Clause 13,5). Listed beams include W-shapes and S-shapes normally used as beams, and all C-shapes (channels) produced in Canada. Tables for W -shapes and S-shapes are based on $F_{y}=345 \mathrm{MPa}$, corresponding to ASTM A992 and A572 grade 50, while those for C-shapes are based on G40.21350 W with $F_{y}=350 \mathrm{MPa}$. Data for welded wide-flange (WWF) beams is no longer provided in this Handbook.

Shapes are grouped, and those shown in bold type are the lightest in each group (i.e. with the largest ratio of moment resistance to mass). Other shapes listed below a bold-type section are heavier sections, but may be more suitable sections when depth limitations dictate a shallower beam, or when the shear resistance of a coped beam influences the beam selection.

For each beam size, the tables list the maximum unsupported length $L_{u 1}$ for which the factored moment resistance M_{r} is applicable. In addition, the tables list the factored moment resistance M_{r}^{\prime} for laterally unsupported beams (Clause 13.6) for selected values of the unbraced beam length greater than L_{u}. For other values of unbraced length greater than L_{u}, $M_{r}{ }^{\prime}$ can be interpolated.

In place of a more accurate analysis, the destabilizing effect of beams supporting gravity loads acting above the shear centre can be taken into account by increasing the effective unbraced length by a factor of 1.2 or 1.4 (depending on the end conditions), as specified in Clause 13.6.

The following items are included in the table:

```
\(V_{r}=\) factored shear resistance \((\mathrm{kN})=\phi A_{w} F_{s}\) (Clause 13.4.1.1)
\(I_{x}=\) moment of inertia about X-X axis \(\left(10^{6} \mathrm{~mm}^{4}\right)\)
\(b=\) flange width (mm)
\(L_{u}=\) maximum unsupported beam length for which \(M_{r}\) is applicable (mm)
\(M_{r}=\) factored moment resistance for laterally supported members ( \(\mathrm{kN} \cdot \mathrm{m}\) )
    \(=\phi Z_{x} F_{y}\) for Class 1 and Class 2 sections
```

$=\phi S_{x} F_{y}$ for Class 3 sections, Clause 13.5
$=\phi S_{e} F_{y}$ for Class 4 sections, Clause 13.5(c)(iii)
$M_{r^{\prime}}{ }^{\prime}=$ factored moment resistance for tabulated unbraced beam length when greater than L_{u}, and computed according to Clause 13.6 using $\omega_{2}=1.0$ in the expression for $M_{u}(\mathrm{kN} \cdot \mathrm{m})$

Least Mass Design - Elastically Analyzed Structures

Compute the maximum bending moment in the beam under factored loads M_{f} and the required moment of inertia $I_{\text {reqd }}$ to meet the deflection limit using the specified loads. (For $I_{\text {reqd }}$, see Deflection of Flexural Members in Part 5).

For a laterally supported beam, proceed up the M_{r} column until a value of $M_{r}>M_{f}$ is obtained. Any beam above will satisfy the factored moment requirement. Check to ensure that $V_{r}>V_{f}$, the maximum factored beam shear, that $I_{x}>I_{\text {reqd }}$, and that L_{u} is greater than the maximum unsupported beam length.

For a laterally unsupported beam, proceed up the M_{r} column until a value of $M_{r}>M_{f}$ is reached. Then move to the right across the table to the column headed by the unsupported length (or the first listed unsupported length greater than that required) to obtain a value of M_{r}^{\prime}. Proceed up this column comparing a few beams that have an $M_{r}{ }^{\prime}>M_{f}$ and choose the appropriate section. Check $V_{r}>V_{f}$ and $I_{s}>I_{\text {reqd }}$ if a deflection check is necessary.

Plastically Analyzed Structures

For beams analyzed plastically (S16-14 Clause 8.3.2), the Beam Selection Tables may be used to facilitate the selection of a beam size as follows:

Proceed up the M_{r} column until a value of $M_{r}>M_{f}$ is obtained.
Any beam above will satisfy the factored moment requirement, provided the beam is a Class 1 section. (See Table 5-1 for the Class of Sections in Bending for various steel grades.)

Check to ensure that $0.8 V_{r}>V_{f}$, the maximum factored beam shear (Clause 13.4.2).
Provide suitable lateral bracing (Clause 13.7), etc.

Beam Load Tables - W-Shapes

Loads

The Beam Load Tables list total uniformly distributed factored loads for simply supported W-shape beams with the top flange fully supported (i.e. the unsupported length of beam is less than or equal to L_{k}). Tables are based on $F_{y}=345 \mathrm{MPa}$ for steel grades ASTM A992 and A572 grade 50. Tabulated values may also be used for beams produced to CSA G40.21-350W, although grade 350W does not appear in the table headings. To obtain the net supported load (factored), the beam factored dead load should be deducted from the total tabulated load.

For laterally supported beams, the Beam Load Tables may also be used to estimate loads for other loading conditions by dividing the tabulated values by the coefficient of the "Equivalent Tabular Load" value for the particular loading condition. (See Beam Diagrams and Formulas in Part 5.) Thus, for a simple beam, laterally supported and carrying equal concentrated loads at the third points (loading condition 9), each factored concentrated load is
$3 / 8$ of the tabulated uniformly distributed factored load, and the total load is $3 / 4$ of the tabulated load for the same span.

For steel grades with a value of F_{y} less than that used in the table, reduce the tabulated values by the ratio of the yield-stress values.

The Beam Load Tables (sometimes referred to as "book loads") are frequently used to estimate the maximum reactions for the design of connections, when beam reactions are not provided on the structural design drawings. Since compositely designed beams possess a greater flexural capacity, these tables should not be used for composite beams.

Vertical Deflection

The column headed "Approximate Deflection" lists the approximate theoretical mid-span deflection, at an assumed bending stress level of 240 MPa for ASTM A992 and A572 grade 50 steels, for beams of various spans designed to support the tabulated factored loads,

The listed deflections are based on the nominal depth of the beam, and are calculated using the formula:

$$
\Delta=\frac{5}{384} \frac{W L^{3}}{E I}
$$

For $E=200000 \mathrm{MPa}$ and an assumed bending unit stress of 240 MPa this formula reduces to:

$$
\begin{aligned}
& \Delta=\frac{250 \times 10^{-6} \times L^{2}}{d} \text { where: } \\
& \Delta=\text { deflection (mm) } \\
& W=\text { total uniform load including the dead load of the beam }(\mathrm{kN}) \\
& L=\text { beam span }(\mathrm{mm}) \\
& E=\text { modulus of elasticity }(\mathrm{MPa}) \\
& I=\text { moment of inertia of beam }\left(\mathrm{mm}^{4}\right) \\
& d=\text { depth of beam }(\mathrm{mm})
\end{aligned}
$$

More accurate deflections can be determined by multiplying the approximate deflection values listed by the ratio of actual bending stress to the assumed unit bending stress of 240 MPa for ASTM A992 and A572 grade 50 steels. (See also Deflection of Flexural Members in Part 5)

Web Shear

For beams with very short spans, high end shear and coped flanges at the supports, the loads for beams may be limited by the shear capacity of the web rather than by the bending capacity of the section. The designer should consider the effect of copes on the load-carrying capacity of beams when selecting appropriate member sizes.

Both the depth and length of copes can vary considerably depending on the relative size and elevation of intersecting beams. The Beam Load Tables list the factored shear resistance V_{r} for uncoped W-shape beams (S16-14 Clause 13.4.1.1). The factored shear resistance of singly and doubly coped beams should be adjusted for the depth and length of the copes, to
account for possible non-uniform shear distribution across the effective web depth (including Clauses 13.4.3 and 13.11) and to account for local web buckling.

Web Crippling and Yielding

Bearing stiffeners are required when the factored compressive resistance (S16-14 Clause 14.3.2) of the web is exceeded. For common light beam sizes, the unstiffened bearing resistance is usually governed by web crippling, except for very short bearing lengths when web yielding may govern.

The Beam Load Tables list values of $R(\mathrm{kN})$, the maximum factored end reaction for 100 mm of bearing based on web yielding according to Clause 14.3.2(b)(i), and values of the increment in bearing resistance, $G(\mathrm{kN})$, per 10 millimetres of bearing length. For steels with a minimum specified yield stress other than $F_{y}=345 \mathrm{MPa}$, values of R and G can be computed by multiplying the values listed by the ratio $F_{y} / 345$. Also listed is the value of $B_{r}{ }^{\prime}$ (kN), the factored bearing resistance based on web crippling (Clause 14.3.2(b)(iii)).

Proper lateral support must be provided for the top flanges of beams at the reaction point to ensure that the web crippling strength is not decreased.

Properties and Dimensions

The properties and dimensions listed in the Beam Load Tables for rolled shapes include the beam depth d, the flange width b, the flange thickness t, and the web thickness w (all in millimetres). Dimensions t and w are required for calculating the compressive resistance of the web (yielding or crippling) according to Clause 14.3.2.

Examples

1. Given:

Design a simply-supported beam spanning 8 m to carry a uniformly distributed load of 15 kN / m specified live load and $7 \mathrm{kN} / \mathrm{m}$ specified dead load. The dead load includes an assumed beam dead load of $0.7 \mathrm{kN} / \mathrm{m}$. Live load deflection is limited to $L / 300$. The beam frames into supporting members, and the beam is laterally supported and uncoped. Use ASTM A992 steel.

Solution:

(a) Using the Beam Selection Tables - Elastic Analysis:

Factored load $=\alpha_{D} D+\alpha_{L} L=(1.25 \times 7)+(1.50 \times 15)=31.3 \mathrm{kN} / \mathrm{m}$
M_{f} (factored load moment) $=w L^{2} / 8=31.3 \times 8^{2} / 8=250 \mathrm{kN} \cdot \mathrm{m}$
$V_{f}($ factored end shear $)=w L / 2=31.3 \times 8 / 2=125 \mathrm{kN}$
Compute $I_{\text {reqd }}$ to meet the deflection limit (see Deflection of Flexural Members)
For UDL, $B_{d}=1.0$; from Figure 5-2, for $L / \Delta=300, C_{d}=1.25 \times 10^{6}$
$I_{\text {reqd }}=W C_{d} B_{d}=15 \times 8 \times 1.25 \times 10^{6} \times 1.0=150 \times 10^{6} \mathrm{~mm}^{4}$
From the Beam Selection Table, select a W410x46 beam.
$M_{r}=274 \mathrm{kN} \cdot \mathrm{m}>250 \mathrm{kN} \cdot \mathrm{m} \quad V_{\mathrm{r}}=578 \mathrm{kN}>125 \mathrm{kN}$
$I_{s}=156 \times 10^{6} \mathrm{~mm}^{4}>150 \times 10^{6} \mathrm{~mm}^{4}$. The W410x46 beam is adequate.
(b) Using the Beam Load Tables:

Total factored load, $W_{f}=31.3 \times 8=250 \mathrm{kN}$
End reaction is $V_{f}=250 / 2=125 \mathrm{kN}$
From the Beam Load Tables, select a W410x46 beam.
$W_{r}(8000)=274 \mathrm{kN}>250 \mathrm{kN}, V_{r}=578 \mathrm{kN}>125 \mathrm{kN}$ (uncoped)
(When the beam is bearing on supports rather than framing into supporting members, it is necessary to check that the factored bearing resistance is greater than or equal to the factored end reaction.)

Approximate deflection listed at an assumed stress of $240 \mathrm{MPa}=39 \mathrm{~mm}$
Stress at specified live load $=\frac{M_{\text {Live }}}{S_{x}}=\frac{15}{31.3} \times \frac{250 \times 10^{6}}{772 \times 10^{3}}=155 \mathrm{MPa}$
Live load deflection $=39 \times 155 / 240=25.2 \mathrm{~mm}$
$L / 300=8000 / 300=26.7 \mathrm{~mm}>25.2 \mathrm{~mm}$. The W 410×46 beam is adequate.

2. Given:

Same as in Example (1), except that the beam is laterally supported at mid-span and at the ends of the beam only. In this case, the uniformly distributed gravity loading is applied on the top flange but the manner of load transfer does not provide lateral support (not a common situation).

Solution:

The point of application of the loading is located above the shear centre. In the absence of a more accurate analysis, the effective length is taken equal to 1.2 times the unbraced length (assuming pin-ended segments between the bracing points) in accordance with S16-14 Clause 13.6:

Effective unbraced length $=1.2(8000 / 2)=4800 \mathrm{~mm}$.
As in Example (1), consider a W410x46 beam on the basis of M_{r} and check $M_{r}{ }^{\prime}$ for an unbraced length of $4800 \mathrm{~mm} \approx 5000 \mathrm{~mm}$. Using the Beam Selection Table:

$$
M_{r}^{\prime}(5000)=99.9 \mathrm{kN} \cdot \mathrm{~m}<250 \mathrm{kN} \cdot \mathrm{~m}
$$

The W410x46 is not adequate. Check further up the table for the lightest section with $M_{r}{ }^{\prime}>250 \mathrm{kN} \cdot \mathrm{m}$ for an unbraced length of 5000 mm .

For a W360x64 beam, $M_{r}^{\prime}(5000)=273 \mathrm{kN} \cdot \mathrm{m}$
A more accurate value could be obtained by linear interpolation between 4500 and 5000 mm , if desired:

$$
\begin{aligned}
& M_{r}^{\prime}(4800)=281 \mathrm{kN} \cdot \mathrm{~m}>250 \mathrm{kN} \cdot \mathrm{~m} \\
& V_{r}=548 \mathrm{kN}>125 \mathrm{kN} \text { (uncoped) } \\
& I_{x}=178 \times 10^{6} \mathrm{~mm}^{4}>150 \times 10^{6} \quad \text { The W } 360 \times 64 \text { beam is adequate. }
\end{aligned}
$$

BEAM SELECTION TABLE
W Shapes

ASTM A992, A572 Grade 50
$\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$

Designation	V_{r}	I_{x}	b	L_{u}	$\mathrm{M}_{\text {r }}$	Factored moment resistance $\mathrm{Mr}_{\mathrm{r}}{ }^{\prime}(\mathrm{kN} \cdot \mathrm{m})$					
					Unbraced length (mm)						
	kN	$10^{6} \mathrm{~mm}^{4}$	mm	mm	$\leq L_{u}$	4500	5000	5500	6000	6500	7000
\# W920x1377	17200	30300	473	9570	21000	-	-	-	-	-	-
\# W920x1269	14300	29000	461	9170	19800	-	-	-	-	-	-
\# W920x1194	13400	26900	457	8800	18600	-	-	-	-	-	-
\# W920x1077	12000	23800	451	8260	16600	-	-	-	-	-	-
\# W1000x976	11400	23500	428	7190	15600	-	-	-	-	-	-
\# W920x970	10700	21000	446	7790	14800	-	-	-	-	-	-
\# W1000x883	10200	21000	424	6850	14100	-	-	-	-	-	14000
W920×787	8470	16500	437	7050	11800	-	-	-	-	-	-
\# W1000×748	8540	17300	417	6390	11800	-	-	-	-	11700	11500
W920×725	7800	14900	434	6830	10800	-	-	-	-	-	10700
W1000×642	7300	14500	412	6060	9970	-	-	-	-	9790	9580
W920x656	6980	13400	431	6590	9720	-	-	-	-	-	9570
\# W690x802	8460	10600	387	7980	9590	-	-	-	-	-	-
W1000x591	6610	13300	409	5920	9160	-	-	-	9130	8930	8730
\# W1000x584	7790	12500	314	4530	8690	-	8480	8240	8000	7760	7520
W920×588	6190	11800	427	6370	8630	-	-	-	-	8590	8420
W1000×554	6240	12300	408	5810	8540	-	-	-	8470	8280	8080
W1000×539	5990	12000	407	5790	8320	-	-	-	8240	8050	7860
W1100×499	5960	12900	405	5490	8260	-	-	8250	8050	7830	7600
W840x576	5990	10100	411	6320	7950	-	-	-	-	7900	7750
W920×537	5620	10700	425	6210	7860	-	-	-	-	7760	7600
W1000×483	5310	10700	404	5650	7420	-	-	-	7300	7120	6930
W760x582	5960	8620	396	6460	7390	-	5	72	-	7380	7260
\# W1000×494	6580	10300	309	4280	7270	7170	6950	6720	6480	6250	6010
W840x527	5460	9150	409	6150	7230	-	-	-	-	7140	6990
W1100×433	5000	11300	402	5400	7200	-	-	7170	6970	6770	6560
W1000×486	6370	10200	308	4270	7200	7100	6880	6660	6420	6190	5950
W920×491	5080	9660	422	6070	7140	-			-	7010	6850
W1000×443	4890	9670	402	5530	6770	-	-	-	6610	6440	6250
W760x531	5380	7770	393	6230	6710	-	-	-	-	6640	6520
W920×449	4660	8750	423	6000	6490	-	-	-	-	6350	6200

\# May be produced to ASTM A913 Grade 50, for which this table also applies.

Nominal mass	Factored moment resistance $\mathrm{M}_{\mathrm{r}}{ }^{\prime}(\mathrm{kN} \cdot \mathrm{m})$									Imperial designation
	Unbraced length (mm)									
kg/m	8000	9000	10000	11000	12000	14000	16000	18000	20000	
1377	-	-	20800	20400	20100	19300	18500	17800	17000	W36x925
1269	-	-	19500	19100	18700	18000	17200	16500	15700	W36x853
1194	-	18500	18100	17700	17300	16600	15800	15100	14300	W36x802
1077	-	16300	15900	15500	15100	14400	13600	12900	12200	W36x723
976	15300	14800	14300	13900	13500	12600	11700	10800	9830	W40x655
970	14700	14300	14000	13600	13200	12500	11700	11000	10200	W36x652
883	13600	13100	12700	12200	11800	10900	10000	9070	8080	W40x593
787	11400	11100	10700	10300	9950	9210	8480	7710	6860	W36x529
748	11100	10600	10200	9760	9320	8450	7490	6550	5830	W40x503
725	10300	9980	9610	9240	8880	8150	7420	6570	5840	W 36×487
642	9160	8730	8300	7860	7420	6520	5550	4830	4280	W40x431
656	9220	8850	8490	8120	7750	7020	6230	5430	4820	W36x441
802		9380	9160	8950	8740	8330	7920	7510	7100	W27x539
591	8320	7900	7470	7040	6610	5650	4790	4160	3680	W40x397
584	7030	6540	6050	5500	4960	4150	3580	3150	2810	W40x392
588	8070	7720	7360	7000	6640	5920	5070	4410	3900	W36x395
554	7670	7250	6830	6400	5970	4980	4220	3660	3230	W40x372
539	7460	7040	6620	6200	5770	4790	4050	3510	3100	W40x362
499	7120	6620	6100	5570	4920	3960	3310	2840	2490	W44x335
576	7440	7130	6820	6510	6210	5590	4890	4270	3790	W 33×387
537	7260	6910	6560	6200	5840	5070	4290	3710	3280	W36x361
483	6540	6140	5730	5310	4860	3940	3320	2860	2520	W40x324
582	7000	6750	6500	6250	6000	5500	5010	4420	3940	W30x391
494	5520	5040	4470	3970	3570	2970	2550	2240	1990	W40x331
527	6690	6390	6080	5780	5470	4860	4140	3610	3200	W 33×354
433	6110	5640	5140	4580	4010 3510	3190 2930	2650	2260	1970	W44×290
486	5460 6520	4980 6180	4410 5840	3910 5480	3510 5130	2930 4320	2510 3640	2200 3140	1960 2770	W 40×327 $W 36 \times 330$
443	5880	5480	5070	4660	4160	3360	2810	2420	2130	W40x297
531	6270	6020	5770	5520	5270	4780	4230	3700	3300	W30x357
449	5880	5550	5220	4870	4520	3720	3120	2680	2360	W36x302

Note: For unbraced beam segments loaded above the shear centre, see CSA S16-14 Clause 13.6.

Designation	V	I_{x}	b	L_{u}	M_{t}	Factored moment resistance $\mathrm{M}_{\mathrm{r}}{ }^{\prime}(\mathrm{kN} \cdot \mathrm{m})$					
					Unbraced length (mm)						
	kN	$10^{6} \mathrm{~mm}^{4}$	mm	mm	$\leq L_{u}$	4000	4500	5000	5500	6000	7000
W1100×390	4510	10100	400	5310	6460	-	-	-	6390	6210	5820
W840×473	4830	8130	406	5980	6460	-	-	-		6450	6170
W1000×438	5660	9090	305	4160	6430	-	6290	6080	5860	5630	5170
W1000×412	4360	9100	402	5530	6370	-	-	-	-	6220	5880
W690x548	5550	6730	372	6400	6330	-	-	-	-	-	6210
W1000×415	5430	8530	304	4080	6090	-	5920	5710	5490	5260	4800
W920x420	4350	8130	422	5920	6050	-	-	-	-	6030	5750
W760×484	4890	6990	390	6040	6050	-	-	-	-	030	5830
W840x433	4430	7360	404	5850	5870	-	-	-	-	5830	5560
W610x551	5620	5570	347	6620	5780	-	-	-	-	5830	5710
W1000x393	5080	8080	303	4050	5740	-	5570	5370	5160	4940	4480
W690x500	5000	6060	369	6140	5740	-	,	,			5570
W1000×371	3890	8140	400	5440	5710	-	-	-	5700	5550	5220
W1100×343	3850	8670	400	5230	5620	-	-	-	5530	5370	5010
W920x390	4090	7420	420	5810	5560	-	-	-	-	5510	5230
W760x434	4320	6190	387	5830	5400	-	-	-	-	5360	5130
W920x381	4760	6960	310	4250	5280	-	5190	5020	4840	4660	4280
W840x392	3970	6600	401	5720	5280	-	-	-	-	5210	4950
W920×368	3870	6920	419	5750	5220	-	-	-	-	5150	4880
W690x457	4550	5470	367	5920	5220	-	-	-	-	5200	5000
W610x498	5030	4950	343	6230	5190	-	-	-	-	-	5060
W1000x350	4360	7230	302	4010	5150	-	4980	4780	4580	4370	3940
W1000x321	3250	6960	400	5360	4910	-	-	-	4870	4730	4440
W920×344	3670	6450	418	5680	4870	-	-	-	-	4800	4540
W760x389	3880	5450	385	5640	4810	-	-	-	-	4730	4510
W840x359	3750	5920	403	5630	4780	-	-	-	-	4700	4450
W920×345	4270	6250	308	4170	4750	-	4650	4480	4310	4130	3760
W690×419	4100	4950	364	5730	4750	-		-	-	4700	4510
W610x455	4520	4440	340	5940	4690	-	-	-	-	4680	4520
W1000×314	3910	6440	300	3910	4630	4600	4430	4240	4050	3850	3420
W1000×296	3230	6200	400	5230	4440	-	-	-	4370	4240	3960
W840×329	3480	5360	401	5530	4350	-	-	-	,	4240	4010
W690x384	3760	4490	362	5550	4350	-	-	-	-	4260	4070
W760x350	3440	4870	382	5510	4320	-	-	-	-	4220	4000
W610x415	4100	4000	338	5700	4250	-	-	-	-	4210	4050
W920x313	4030	5480	309	4060	4220	-	4090	3940	3770	3600	3240
W1000x272	3250	5540	300	3870	3970	3940	3780	3620	3440	3260	2860
W840x299	3190	4800	400	5430	3940	-	-	- 620	3930	3820	3600
W690x 350	3450	4030	360	5410	3910	-	-	-	3900	3810	3620
W920x289	3690	5040	308	4030	3880	-	3750	3600	3440	3280	2930
W460x464	4490	2900	305	7060	3850	-	-	-	-	-	-
W760x314	3170	4290	384	5420	3820	-	-	-	3800	3710	3500
W610x372	3620	3530	335	5450	3790	-	-	-	3780	3700	3550
W530x409	3890	3170	327	6030	3760	-	-	-	-	-	3640
W920x271	3480	4710	307	3970	3660	-	3520	3380	3220	3060	2710
W690x 323	3120	3710	359	5300	3630	-	-	-	3600	3510	3330

Nominal masskg / m	Factored moment resistance $\mathrm{M}_{t}^{\prime}(\mathrm{kN} \cdot \mathrm{m})$									Imperial designation
	Unbraced length (mm)									
	8000	9000	10000	11000	12000	14000	16000	18000	20000	
390	5400	4950	4470	3890	3390	2690	2220	1880	1640	W44x262
473	5890	5590	5290	4990	4680	4010	3400	2950	2610	W 33×318
438	4700	4190	3640	3220	2890	2400	2050	1790	1600	W40x294
412	5510	5130	4730	4330	3830	3080	2570	2200	1930	W40x277
548	6010	5800	5600	5400	5200	4810	4410	3960	3540	W 27×368
415	4320	3780	3280	2890	2590	2140	1830	1600	1420	W40x278
420	5440	5120	4790	4440	4100	3310	2760	2370	2080	W36x282
484	5580	5340	5090	4850	4600	4110	3540	3100	2760	W30x326
433	5280	4990	4690	4400	4100	3410	2880	2490	2200	W33x291
551	5550	5390	5230	5070	4910	4590	4280	3970	3600	W24×370
393	4020	3470	3000	2650	2370	1950	1670	1450	1290	W40x264
500	5370	5170	4970	4770	4570	4180	3770	3310	2960	W27x336
371	4880	4510	4120	3700	3240	2590	2150	1840	1600	W40×249
343	4610	4190	3730	3180	2760	2160	1770	1490	1290	W44x230
390	4940	4620	4290	3960	3590	2870	2380	2040	1780	W 36×262
434	4890	4650	4410	4160	3920	3380	2880	2520	2230	W30×292
381	3880	3470	3000	2640	2360	1950	1660	1450	1290	W36x256
392	4680	4400	4110	3820	3520	2850	2400	2070	1820	W 33×263
368	4590	4290	3970	3630	3240	2580	2140	1820	1590	W36x247
457	4800	4610	4410	4210	4010	3620	3170	2790	2490	W27x307
498	4900	4740	4580	4420	4260	3950	3640	3280	2940	W 24×335
350	3490	2950	2540	2230	1980	1630	1380	1200	1070	W40×235
321	4120	3780	3420	2980	2600	2050	1690	1430	1240	W40x215
344	4260	3960	3640	3320	2920	2310	1910	1620	1410	W 36×231
389	4270	4040	3790	3550	3300	2740	2330	2030	1790	W30×261
359	4190	3910	3630	3340	3000	2420	2020	1740	1520	W33x241
345	3380	2930	2530	2220	1980	1630	1380	1200	1070	W36x232
419	4310	4110	3910	3720	3520	3120	2680	2350	2090	W 27×281
455	4360	4200	4040	3880	3730	3420	3100	2740	2450	W24x306
314	2940	2460	2110	1840	1640	1340	1130	979	865	W40x211
296	3650	3320	2960	2530	2190	1720	1410	1190	1030	W40x199
329	3760	3490	3210	2930	2580	2060	1720	1470	1290	W33x221
384	3880	3680	3480	3290	3090	2650	2270	1990	1770	W27x258
350	3770	3540	3300	3060	2800	2290	1930	1680	1480	W30x235
415	3890	3730	3570	3420	3260	2960	2600	2290	2050	W 24×279
313	2860	2400	2060	1800	1600	1310	1100	958	847	W36x210
272	2390	1990	1690	1470	1300	1050	883	761	670	W40x183
299	3350	3090	2820	2520	2200	1750	1450	1240	1080	W33x201
350	3430	3240	3040	2850	2660	2210	1890	1650	1470	W 27×235
289	2550	2130	1820	1580	1400	1140	960	831	732	W36x194
464	3760	3670	3580	3490	3400	3230	3050	2870	2690	W18x311
314	3290	3060	2830	2600	2310	1870	1570	1360	1190	W30x211
372	3390	3230	3080	2920	2770	2440	2110	1860	1660	W24×250
409	3520	3400	3280	3160	3050	2810	2580	2310	2070	W 21×275
271	2310	1920	1640	1420	1260	1020	857	739	651	W 36×182
323	3140	2940	2750	2560	2340	1930	1650	1430	1270	W27x217

Note: For unbraced beam segments loaded above the shear centre, see CSA S16-14 Clause 13.6.

Designation	V_{r}	I_{x}	b	L_{u}	$\mathrm{Mr}_{\text {r }}$	Factored moment resistance $\mathrm{M}_{\mathrm{t}}{ }^{\prime}(\mathrm{kN} \cdot \mathrm{m})$					
					Unbraced length (mm)						
	kN	$10^{6} \mathrm{~mm}^{4}$	mm	mm	$\leq L_{u}$	3500	4000	4500	5000	5500	6000
W1000x249	3220	4810	300	3740	3510	-	3440	3290	3130	2960	2780
W760x284	2870	3830	382	5300	3450	-	-	-	-	3410	3320
W610x341	3310	3180	333	5250	3450	-	-	-	-	3410	3330
W460x421	4050	2570	302	6600	3450	-	-	-	-	-	-
W920x253	3260	4370	306	3950	3380	-	3370	3240	3110	2960	2800
W530x369	3450	2810	324	5720	3350	-	\%	-	-	,	3320
W840x251	2990	3860	292	3890	3200	-	3170	3050	2920	2790	2650
W690x289	2780	3260	356	5160	3200	-	-	-	-	3140	3060
W920x238	3090	4060	305	3890	3170	-	3140	3020	2880	2740	2590
W460x384	3630	2290	299.	6190	3110	-	,	,		270	-
W760x257	2630	3430	381	5230	3100	-	-	-	-	3050	2960
W610x307	2960	2840	330	5080	3080	-	-	-	-	3020	2950
W1000x222	3000	4080	300	3590	3040	-	2940	2800	2650	2480	2310
W530x332	3090	2480	322	5430	3000	-	-	-	-	2990	2930
W920x223	2970	3760	304	3830	2960	-	2920	2800	2670	2530	2380
W690x265	2660	2920	358	5060	2900	-	-	-	-	2830	2750
W610x285	2730	2610	329	4980	2850	-	-	-	2840	2770	2700
W840x226	2810	3400	294	3830	2840	-	2810	2700	2570	2450	2310
W460x349	3230	2040	296	5840	2800	-	-	-	-	-	2780
W530x300	2770	2210	319	5210	2690	-	-	-	-	2660	2600
W840x210	2670	3110	293	3770	2620	-	2570	2460	2350	2220	2090
W690x240	2410	2630	356	4960	2620	-	-	-	2610	2540	2460
W610x262	2500	2360	327	4850	2590	-	-	-	2570	2500	2430
W920×201	2710	3250	304	3720	2590	-	2530	2420	2300	2170	2030
W760x220	2630	2780	266	3570	2540	-	2460	2350	2230	2120	1990
W460x315	2890	1800	293	5480	2490	-	-	-	-	-	2440
W530x272	2490	1970	317	5020	2420	-	-	-	-	2370	2310
W610x241	2330	2150	329	4790	2380	-	-	-	2350	2290	2220
W840x193	2530	2780	292	3690	2370	-	2310	2200	2090	1970	1850
W690x217	2190	2360	355	4890	2360	-	-	-	2350	2280	2210
W460x286	2590	1610	291	5220	2250	-	-	-	-	2220	2180
W760×196	2460	2400	268	3500	2230	-	2130	2030	1920	1810	1690
W530×248	2220	1770	315	4880	2190	-	-	-	2180	2120	2070
W610x217	2120	1910	328	4680	2130	-	-	-	2090	2030	1960
W840x176	2300	2460	292	3610	2110	-	2050	1950	1840	1730	1610
W760×185	2340	2230	267	3450	2080	2070	1980	1880	1780	1670	1550
W460×260	2360	1440	289	4980	2030	-	-	-	-	1980	1940
W690×192	2230	1980	254	3440	2010	2000	1910	1830	1730	1640	1540
W760x173	2250	2060	267	3410	1930	1910	1830	1730	1630	1520	1410
W530x219	2100	1510	318	4720	1900			,	1870	1820	1760
W610x195	1960	1680	327	4570	1880	-	-	-	1840	1780	1710
W460x235	2120	1270	287	4770	1810	-	-	-	1790	1750	1710

Sections highlighted in yellow are commonly used sizes and are generally readily available.

Nominal mass kg/m	Factored moment resistance $\mathrm{M}_{\mathrm{r}}{ }^{\prime}(\mathrm{kN} \cdot \mathrm{m})$									Imperial designation
	Unbraced length (mm)									
	7000	8000	9000	10000	11000	12000	14000	16000	18000	
249	2400	1940	1600	1360	1170	1030	831	694	596	W40x167
284	3120	2910	2690	2460	2210	1940	1560	1310	1120	W30×191
341	3180	3020	2870	2710	2560	2400	2050	1760	1550	W24×229
421	3410	3320	3230	3140	3050	2970	2790	2620	2450	W18x283
253	2470	2080	1720	1460	1270	1120	902	756	650	W 36×170
369	3200	3080	2960	2850	2730	2620	2390	2130	1880	W21x248
251	2350	2010	1680	1440	1260	1120	911	770	668	W33x169
289	2880	2700	2510	2320	2130	1900	1560	1320	1150	W 27×194
238	2270	1870	1550	1310	1130	996	800	668	573	W36x160
384	3030	2940	2860	2770	2680	2600	2420	2250	2080	W18x258
257	2780	2580	2360	2140	1880	1650	1320	1100	938	W30x173
307	2800	2640	2490	2340	2180	2020	1690	1450	1270	W24x207
222	1910	1520	1250	1050	906	794	634	527	451	W40×149
332	2810	2700	2580	2460	2340	2230	2000	1730	1530	W21×223
223	2060	1680	1380	1170	1000	881	705	587	502	W 36×150
265	2580	2400	2220	2030	1810	1600	1310	1100	957	W 27×178
285	2550	2400	2250	2100	1940	1760	1470	1260	1100	W 24×192
226	2020	1680	1400	1190	1030	914	741	623	537	W 33×152
349	2700	2610	2520	2440	2350	2270	2100	1930	1730	W18x234
300	2480	2370	2250	2130	2020	1900	1650	1420	1250	W21x201
210	1810	1470	1220	1040	899	792	639	535	461	W33×141
240	2300	2120	1940	1760	1530	1360	1100	924	797	W 27×161
262	2290	2140	1990	1830	1670	1490	1240	1060	924	W 24×176
201	1720	1360	1120	940	807	705	560	463	394	W36x135
220	1740	1430	1210	1050	922	823	679	579	504	W30×148
315	2360	2270	2190	2100	2020	1930	1770	1580	1400	W18x211
272	2190	2080	1960	1850	1730	1620	1360	1170	1030	W 21×182
241	2080	1930	1780	1630	1450	1300	1070	911	795	W 24×162
193	1580	1260	1040	877	758	666	534	445	382	W 33×130
217	2050	1880	1710	1510	1310	1150	930	778	669	W 27×146
286	2090	2010	1920	1840	1760	1670	1510	1310	1160	W18×192
196	1430	1160	973	835	731	650	532	451	391	W30x132
248	1960	1840	1730	1610	1500	1360	1140	979	859	W21x166
217	1820	1680	1530	1370	1200	1070	878	745	647	W24×146
176	1330	1060	868	731	629	- 551	439	364	311	W33×118
185	1280	1040	867	743	649	576	470	397	344	W30×124
260	1850	1770	1690	1600	1520	1440	1250	1080	958	W18×175
192	1330	1090	924	802	708	634	525	449	392	W 27×129
173	1150	924	770	657	572	506	411	346	299	W30×116
219	1650	1540	1430	1310	1180	1060	880	754	659	W21×147
195	1580	1440	1300	1120	981	870	709	598	518	W 24×131
235	1630	1540	1460	1380	1290	1210	1020	887	783	W18×158

Note: For unbraced beam segments loaded above the shear centre, see CSA S16-14 Clause 13.6.

Designation	V_{r}	I_{x}	b	L_{u}	M_{r}	Factored moment resistance $\mathrm{M}_{\mathrm{r}}{ }^{\prime}(\mathrm{kN} \cdot \mathrm{m})$					
					Unbraced length (mm)						
	kN	$10^{6} \mathrm{~mm}^{4}$	mm	mm	$\leq \mathrm{L}_{\mathrm{u}}$	2500	3000	3500	4000	4500	5000
W760x161	2140	1860	266	3330	1760	-	-	1730	1650	1560	1460
W690x 170	2060	1700	256	3380	1750	-	-	1730	1650	1570	1480
W530×196	1870	1340	316	4600	1700	-	-	-	-	,	1660
W610x174	1770	1470	325	4480	1660	-	-	-	-	-	1610
W460x213	1880	1140	285	4590	1640	-	-	-	-	-	1600
W760×147	2040	1660	265	3260	1580	-	-	1550	1470	1380	1290
W530×182	1720	1240	315	4530	1560	-	-	1550		1380	1520
W690x152	1850	1510	254	3320	1550	-	-	1530	1460	1380	1290
W460×193	1700	1020	283	4440	1470	-	-	,	,	-	1430
W610x155	1590	1290	324	4400	1470	-	-	-	-	1460	1410
W760×134	1650	1500	264	3230	1440	-	-	1400	1330	1250	1160
W610x153	1790	1250	229	3110	1430	-	-	1380	1310	1240	1160
W690x140	1740	1360	254	3270	1410	-	-	1380	1320	1240	1160
W530x165	1570	1110	313	4440	1410	-	-	-	-	-	1360
W460×177	1640	910	286	4330	1330	-	-	-	-	1320	1280
W610x140	1660	1120	230	3070	1290	-	-	1240	1170	1100	1030
W530×150	1410	1010	312	4380	1290	-	-	-	-	1280	1240
W690x 125	1610	1180	253	3190	1250	-	-	1210	1140	1070	999
W460×158	1460	796	284	4200	1170	-	-	-	-	1150	1110
W610x125	1490	985	229	3020	1140	-	-	1090	1020	959	889
W530×138	1650	861	214	2930	1120	-	1110	1060	1000	945	884
W 460×144	1320	726	283	4130	1070	-	-			1050	1010
W610x113	1400	875	228	2950	1020	-	-	964	906	843	775
W410×149	1320	618	265	4080	1010	-	-	-	-	983	952
W530×123	1460	761	212	2860	997	-	984	933	879	822	762
W360×162	992	515	371	5980	975	-	-	-	-	-	-
W460×128	1170	637	282	4040	947	-	-	-	-	917	884
W610x101	1300	764	228	2890	900	-	891	842	787	728	664
W 410×132	1160	538	263	3940	885	-	-	-	882	853	823
W530×109	1280	667	211	2810	879	-	862	815	764	709	652
W460×113	1020	556	280	3950	829	-	-	-	826	796	765
W530×101	1200	617	210	2770	814	-	794	749	699	647	591
+W360×147	907	463	370	6190	798	-	-	-	-	-	-
W610x92	1350	646	179	2180	779	744	683	614	540	448	376
W410x114	998	461	261	3810	764	-	-	-	754	726	698
W 460×106	1210	488	194	2690	742	-	719	679	637	594	549
W530x92	1110	552	209	2720	733	-	711	668	621	570	516
+W360×134	817	415	369	6030	723	-	,	-	-	-	-
W360x122	967	365	257	4040	705	-	-	-	-	686	664

Sections highlighted in yellow are commonly used sizes and are generally readily available.
\dagger Class 3

ASTM A992, A572 Grade 50
$\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$

Note: For unbraced beam segments loaded above the shear centre, see CSA S16-14 Clause 13.6.

Designation	V_{r}	I_{x}	b	L_{u}	M_{r}	Factored moment resistance $\mathrm{M}_{\mathrm{r}}{ }^{\prime}(\mathrm{kN} \cdot \mathrm{m})$					
					Unbraced length (mm)						
	kN	$10^{6} \mathrm{~mm}^{4}$	mm	mm	$\leq L_{u}$	2000	2500	3000	3500	4000	5000
W610x82	1170	560	178	2110	683	-	644	587	522	448	304
W460x97	1090	445	193	2650	677	-	-	652	614	574	488
W310x129	854	308	308	5080	671	-	-	-	-	-	-
W410x100	850	398	260	3730	661	-	-	-	-	648	596
W530×85	1130	485	166	2110	652	-	616	564	507	446	316
W530x82	1030	477	209	2660	640	-	-	616	576	531	433
W360x110	841	331	256	3940	640	-	-	-	-	637	596
W460x89	996	409	192	2620	624	-	-	598	562	523	439
W310x118	766	275	307	4920	605	-	-	-	-	-	603
W360x101	768	301	255	3860	584	-	-	-	-	578	538
W460x82	933	370	191	2560	568	-	-	540	505	466	384
W530x74	1050	411	166	2040	562	-	523	474	420	357	247
W310x107	695	248	306	4800	546	-	-	-	-	-	541
W410x85	931	315	181	2530	534	-	-	507	475	443	375
W360x91	687	267	254	3760	522	-	-	-	-	513	475
W460x74	843	332	190	2530	512	-	-	484	450	414	332
W530x66	927	351	165	1980	484	483	444	398	347	284	195
+W530x72	947	401	207	2750	475	-	-	462	434	402	331
W410x74	821	275	180	2470	469	-	467	440	410	379	312
W460x68	856	297	154	2010	463	-	429	390	348	301	213
+W310x97	625	222	305	4970	447	-	-	-	-	-	446
W360x79	682	226	205	3010	444	-	-	-	425	404	361
W310x86	578	198	254	3900	441	-	-	-	-	438	409
W250x101	644	164	257	4470	435	-	-	-	-	-	424
W410x67	739	245	179	2420	422	-	418	392	364	333	264
W460x60	746	255	153	1970	397	396	364	329	289	242	169
W360x72	617	201	204	2940	397	-	-	395	377	357	315
W310x79	552	177	254	3810	397	-	-	-	-	392	364
W250x89	570	143	256	4260	382	-	-	-	-	-	367
W410x60	642	216	178	2390	369	-	365	341	314	286	218
W310x74	597	164	205	3100	366	-	-	-	354	339	307
W200×100	680	113	210	4460	357	-	-	-	-	-	349
W360x64	548	178	203	2870	354	-	-	350	332	313	273
W460x52	680	212	152	1890	338	333	303	269	231	185	128
W250x80	493	126	255	4130	338	.	-	-	-	-	321
W410x54	619	186	177	2310	326	-	318	295	269	241	176
W310x67	533	144	204	3020	326	-	-	-	312	297	266
W360x57	580	160	172	2360	314	-	309	289	267	244	192
W250x73	446	113	254	4010	306	-	-	-	-	-	287
W200x86	591	94.7	209	4110	305	-	-	-	$\bar{\square}$	-	292
W310x60	466	128	203	2960	290	-	-	289	275	261	231
W250x67	469	104	204	3260	280	-	-	-	275	265	244
W360×51	524	141	171	2320	277	-	271	252	232	210	159
W410x46	578	156	140	1790	274	265	239	210	177	142	99.9
W310x52	494	118	167	2380	260		256	240	223	206	167
W200x 71	452	76.6	206	3730	249	-	-	-	-	246	232

Sections highlighted in yellow are commonly used sizes and are generally readily available.
\dagger Class 3

ASTM A992, A572 Grade 50

Nominal mass kg / m	Factored moment resistance $\mathrm{M}_{\mathrm{t}}{ }^{\prime}(\mathrm{kN} \cdot \mathrm{m})$									Imperial designation
	Unbraced length (mm)									
	6000	7000	8000	9000	10000	11000	12000	14000	16000	
82	225	177	145	123	106	93.4	83.4	68.9	58.7	W 24×55
97	389	314	264	227	200	178	161	135	117	W18x65
129	643	612	581	551	520	490	460	390	336	W12x87
100	539	479	411	348	302	266	238	197	168	W16x67
85	240	193	162	139	122	108	97.8	81.9	70.6	W21x57
82	320	249	203	170	147	129	115	94.0	79.8	W21×55
110	553	510	467	423	372	332	300	252	217	W14x74
89	343	276	231	198	174	155	140	117	101	W18x60
118	574	543	513	482	452	422	388	324	279	W12x79
101	497	454	411	363	318	283	255	214	184	W14x68
82	292	234	195	166	146	129	116	97.3	83.6	W18x55
74	186	148	123	105	91.7	81.4	73.2	61.0	52.4	W21x50
107	512	483	453	423	392	362	325	271	233	W12x72
85	297	242	205	177	157	140	127	107	92.8	W16x57
91	434	392	350	299	261	232	209	174	150	W14x61
74	249	198	164	140	122	108	96.8	80.6	69.1	W18x50
66	145	115	94.9	80.6	70.0	61.9	55.5	46.0	39.4	W21x44
72	246	191	154	129	110	96.3	85.4	69.6	58.8	W21x48
74	239	194	163	140	123	110	99.7	83.8	72.3	W16x50
68	164	133	112	96.7	85.2	76.1	68.9	57.9	50.1	W18×46
97	423	400	375	351	326	302	272	226	193	W12x65
79	317	267	225	194	171	153	139	117	101	W14x53
86	379	347	316	282	248	221	199	167	144	W12x58
101	403	382	362	342	322	302	279	236	205	W10x68
67	201	161	135	116	102	90.4	81.6	68.3	58.9	W16x45
60	129	104	86.6	74.3	65.2	58.1	52.4	43.9	37.8	W18×40
72	272	222	186	160	141	126	114	95.6	82.5	W14×48
79	334	304	273	237	207	184	166	139	119	W12x53
89	346	326	306	285	265	242	220	186	161	W10x60
60	165	131	109	93.1	81.3	72.1	64.9	54.1	46.4	W16x40
74	274	240	204	177	156	140	127	107	93.0	W12x50
100	335	321	307	294	280	266	253	222	194	W8x67
64	228	183	153	131	115	102	92.2	77.2	66.5	W14×43
52	96.2	76.7	63.6	54.3	47.4	42.0	37.8	31.5	27.0	W18x35
80	302	282	262	242	221	197	179	151	130	W10x54
54	132	104	86.0	73.1	63.5	56.2	50.4	41.8	35.8	W16x36
67	234	198	167	144	127	114	103	86.8	75.1	W12x45
57	147	119	99.7	85.9	75.6	67.5	61.0	51.2	44.2	W14×38
73	268	248	228	209	185	165	149	126	108	W10x49
86	279	265	252	238	225	212	197	168	147	W8x58
60	199	163	137	118	104	92.5	83.6	70.2	60.5	W12x40
67	223	202	180	157	139	125	114	96.5	83.8	W10x45
51	121	96.9	80.9	69.4	60.8	54.1	48.8	40.8	35.2	W14x34
46	76.4	61.7	51.8	44.6	39.2	35.0	31.6	26.5	22.9	W16x31
52	130	106	89.4	77.4	68.4	61.3	55.5	46.8	40.5	W12×35
71	219	205	192	179	166	150	137	116	101	W8×48

[^37]W Shapes
$F_{y}=345 \mathrm{MPa}$

Designation	V_{r}	I_{x}	b	L_{u}	Mr_{r}	Factored moment resistance $\mathrm{M}_{\mathrm{r}}{ }^{\prime}(\mathrm{kN} \cdot \mathrm{m})$					
					Unbraced length (mm)						
	kN	$10^{6} \mathrm{~mm}^{4}$	mm	mm	$\leq L_{u}$	1500	2000	2500	3000	3500	4000
W360×45	498	122	171	2260	242	-	-	234	217	197	176
W250x58	413	87.3	203	3130	239	-	-	-	-	232	222
W410x39	480	126	140	1730	227	-	216	193	166	132	105
W310x45	423	99.2	166	2310	220	-	-	215	200	184	167
W360x39	470	102	128	1660	206	-	193	172	148	120	97.0
W200x59	392	61.1	205	3430	203	-	-	-	-	202	195
W310x39	368	85.1	165	2260	189	-	-	184	170	155	139
W250x45	414	71.1	148	2170	187	-	-	179	167	155	142
+W250x49	375	70.6	202	3160	178	-	-	-	,	173	165
W200x52	334	52.7	204	3300	177	-	-	-	-	174	168
W360x33	396	82.6	127	1600	168	-	155	135	113	87.5	70.2
W250x39	354	60.1	147	2110	159	-		151	140	128	115
W310x33	423	65.0	102	1330	149	143	125	104	80.5	64.2	53.3
+W200x46	300	45.4	203	3370	139	-	-	-	-	138	133
W200x42	302	40.9	166	2610	138	-	-	-	133	126	120
W250x33	323	48.9	146	2020	132	-	-	122	112	100	88.4
W310x28	380	54.3	102	1290	126	120	103	83.1	61.9	48.8	40.2
W200x36	255	34.4	165	2510	118	-	-	-	112	105	99.0
W250x28	341	40.0	102	1370	110	107	94.5	81.0	65.4	52.6	44.0
W200x31	275	31.4	134	1980	104	-	-	96.7	89.3	81.7	74.0
W310x24	350	42.7	101	1210	102	94.2	78.3	58.1	42.8	33.5	27.3
W150x37	269	22.2	154	2630	96.3	-	-	-	93.3	89.4	85.4
W250x25	321	34.2	102	1330	95.3	91.7	80.0	66.9	51.6	41.2	34.2
W310x21	303	37.0	101	1190	89.1	81.5	66.7	47.9	35.0	27.2	22.0
W200x27	246	25.8	133	1890	86.6	-	85.3	78.7	71.5	64.1	56.0
W250x22	302	28.9	102	1280	81.7	77.6	66.6	53.9	40.3	31.9	26.3
W150x30	212	17.1	153	2440	75.8	-	-	75.3	71.6	67.8	63.9
W200x22	262	20.0	102	1390	68.9	67.4	60.1	52.1	43.2	35.0	29.4
W150x24	216	13.4	102	1630	59.3	,	56.2	51.9	47.7	43.4	39.1
W200x19	241	16.6	102	1340	58.1	56.0	49.2	41.5	32.7	26.2	21.9
+W250x18	247	22.4	101	1330	55.6	53.4	46.1	37.5	27.8	21.7	17.7
$\ddagger W 150 \times 22$	181	12.0	152	2480	46.2	-	-	46.1	43.7	41.1	38.5
W150x18	182	9.15	102	1480	42.2	42.1	38.2	34.2	30.1	25.4	21.5
+W200×15	176	12.7	100	1380	39.4	38.5	33.8	28.5	22.1	17.4	14.4
W150x14	132	6.85	100	1400	31.7	31.0	27.6	23.8	19.6	15.7	13.1
+W150x13	130	6.13	100	1460	25.7	25.5	22.9	20.0	16.9	13.6	11.3

Sections highlighted in yellow are commonly used sizes and are generally readily available.
\dagger Class 3
\ddagger Class 4

Nominal mass	Factored moment resistance $\mathrm{M}_{\mathrm{r}}{ }^{\prime}(\mathrm{kN} \cdot \mathrm{m})$									Imperial designation
	Unbraced length (mm)									
kg/m	4500	5000	6000	7000	8000	9000	10000	12000	14000	
45	152	128	96.0	76.4	63.3	54.0	47.1	37.5	31.3	W14×30
58	212	202	181	161	137	119	105	85.7	72.4	W10x39
39	86.5	73.0	55.1	44.0	36.5	31.2	27.3	21.8	18.2	W16x26
45	150	128	98.2	79.3	66.5	57.3	50.4	40.6	34.1	W12x30
39	81.2	69.7	54.1	44.2	37.4	32.5	28.7	23.3	19.7	W14×26
59	189	182	169	155	142	128	114	93.2	79.1	W8x40
39	121	103	77.7	62.2	51.8	44.3	38.8	31.1	25.9	W 12×26
45	129	114	90.6	75.2	64,4	56.3	50.1	41.1	34.9	W10x30
49	157	149	133	115	97.2	84.0	74.1	60.0	50.5	W10x33
52	161	155	142	129	116	101	89.5	73.3	62.1	W8x35
33	58.3	49.6	38.0	30.8	25.8	22.3	19.6	15.8	13.3	W14x22
39	102	88.0	69.2	57.0	48.6	42.3	37.6	30.7	26.0	W10x26
33	45.5	39.7	31.7	26.4	22.7	19.9	17.7	14.6	12.4	W12x22
46	128	122	112	101	90.2	78.4	69.5	56.6	47.9	W 8×31
42	113	106	92.9	77.5	66.5	58.3	51.9	42.7	36.3	W8x28
33	74.1	63.6	49.4	40.3	34.1	29.6	26.1	21.2	17.9	W10x22
28	34.1	29.5	23.4	19.4	16.5	14.5	12.8	10.5	8.93	W12×19
36	92.5	85.9	71.3	59.0	50.4	44.0	39.1	32.1	27.2	W8x24
28	37.8	33.1	26.6	22.3	19.2	16.9	15.1	12.4	10.6	W10x19
31	65.2	57.0	45.6	38.0	32.7	28.7	25.6	21.0	17.9	W8x21
24	23.0	19.8	15.5	12.8	10.9	9.45	8.37	6.83	5.78	W12x16
37	81.5	77.6	69.8	61.5	53.2	46.9	42.0	34.7	29.6	W6x25
25	29.2	25.5	20.4	17.0	14.6	12.8	11.4	9.40	7.99	W10×17
21	18.4	15.8	12.3	10.0	8.49	7.36	6.50	5.29	4.46	W12x14
27	47.5	41.2	32.6	27.1	23.1	20.2	18.0	14.7	12.5	W8x18
22	22.4	19.5	15.4	12.8	11.0	9,60	8.54	7.01	5.95	W10x15
30	60.1	56.3	48.1	40.2	34.6	30.4	27.2	22.4	19.1	W6x20
22	25.3	22.3	18.0	15.1	13.0	11.5	10.3	8.47	7.22	W 8×15
24	34.2	30.4	25.0	21.2	18.4	16.3	14.6	12.1	10.4	W6x16
19	18.7	16.4	13.2	11.0	9.48	8.33	7.44	6.13	5.22	W8×13
18	14.9	12.8	10.0	8.24	7.00	6.09	5.40	4.40	3.73	W10x12
22	35.9	33.2	27.2	22.5	19.2	16.8	14.9	12.2	10.4	W6x15
18	18.6	16.5	13.4	11.3	9.80	8.64	7.74	6.41	5.47	W6x12
15	12.2	10.6	8.35	6.92	5.91	5.17	4.59	3.76	3.19	W8x10
14	11.3	9.91	7.97	6.67	5.75	5.06	4.51	3.72	3.17	W6x9
13	9.70	8.49	6.81	5.70	4.90	4.31	3.84	3.17	2.70	W6x8.5

Note: For unbraced beam segments loaded above the shear centre, see CSA S16-14 Clause 13.6.
beam selection table S Shapes

ASTM A992, A572 Grade 50
$\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$

Designation	V	I_{x}	b	L_{μ}	M_{r}	Factored moment resistance $\mathrm{M}_{\mathrm{r}}{ }^{\prime}(\mathrm{kN} \cdot \mathrm{m})$					
					Unbraced length (mm)						
	kN	$10^{6} \mathrm{~mm}^{4}$	mm	mm	$\leq \mathrm{L}_{\mathrm{u}}$	1500	2000	2500	3000	3500	4000
S610×180	2590	1310	204	2540	1560	-	-	-	1480	1400	1310
S610×158	2000	1220	200	2530	1420	-	-	-	1350	1270	1190
S610x149	2360	996	184	2130	1220	-	-	1160	1080	987	895
S610×134	1990	939	181	2120	1130	-	-	1080	995	908	818
S610x119	1590	879	178	2130	1040	-	-	992	915	833	747
S510×143	2150	700	183	2290	1010	-	-	986	929	870	810
S510×128	1780	658	179	2250	935	-	-	908	852	794	735
S510×112	1680	532	162	1940	776	-	770	715	656	595	533
S510x98.2	1330	497	159	1940	711	-	705	652	596	537	477
S460x104	1700	387	159	1880	637	-	626	581	534	485	437
S460×81.4	1100	335	152	1840	531	-	518	476	431	384	331
S380×74	1090	203	143	1740	394	-	379	348	316	284	248
S380×64	812	187	140	1730	354	-	339	310	279	248	211
S310x74	1090	127	139	1930	311	-	308	291	273	256	239
S310x60.7	731	113	133	1820	270	-	263	245	227	209	191
S310x52	681	95.8	129	1640	229	-	216	197	178	158	136
S310x47	556	91.0	127	1630	214	-	201	183	164	145	123
S250x52	786	61.5	126	1690	181	-	174	162	150	138	127
S250x38	411	51.4	118	1560	144	-	134	122	109	97.0	82.5
S200x 34	466	27.0	106	1460	98.1	97.5	90.0	82,5	75.1	67.8	59.3
S200x27	287	24.0	102	1390	84.1	82.6	75.1	67.5	59.9	51.3	44.0
S150x26	368	10.9	91	1400	53.7	52.9	49.2	45,6	42.0	38.4	34.5
S150×19	184	9.16	85	1230	42.8	40.7	36.7	32.7	28.8	24.3	21.0
S130×15	141	5.11	76	1150	28.8	26.9	24.2	21.6	18.9	16.0	13.9
S100x14.1	173	2.85	71	1220	20.6	19.8	18.3	16.8	15.3	13.9	12.1
S100×11	102	2.56	68	1100	18.0	16.7	15.1	13.5	11.9	10.1	8.8
S75×11	139	1.22	64	1380	12.0	11.9	11.1	10.5	9.8	9.1	8.4
S75*8	67.0	1.04	59	1090	9.9	9.2	8.4	7.6	6.8	5.9	5.2

ASTM A992, A572 Grade 50
BEAM SELECTION TABLE
$\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$
S Shapes

Nominal mass	Factored moment resistance $\mathrm{M}_{t}{ }^{\prime}(\mathrm{kN} \cdot \mathrm{m})$									Imperial designation
	Unbraced length (mm)									
kg/m	5000	6000	7000	8000	9000	10000	12000	14000	16000	
180	1130	930	766	652	569	504	412	349	303	S24×121
158	1010	818	671	569	495	438	357	301	261	S24×106
149	689	542	447	381	332	295	241	204	177	S24×100
134	617	482	396	336	293	259	211	179	155	S24x90
119	555	431	352	298	258	228	185	156	135	S24×80
143	691	557	465	399	350	312	256	218	190	S20x96
128	612	486	404	346	303	269	221	188	163	S20x86
112	401	319	266	228	200	178	146	124	108	S20×75
98.2	351	278	230	197	172	153	125	106	92.5	S20x66
104	334	268	225	194	171	152	126	107	93.2	S18x70
81,4	245	194	161	138	121	108	88.3	74.9	65.2	S18x54.7
74	188	152	128	110	96.9	86.6	71.5	61.0	53.2	S15×50
64	158	127	106	91.3	80.2	71.6	59.0	50.2	43.7	S15 $\times 42.9$
74	204	167	142	123	109	97.6	81.0	69.2	60.5	S12x50
60.7	152	124	104	90.6	80.0	71.7	59.4	50.7	44.3	S12x40.8
52	104	84.5	71.2	61.6	54.4	48.7	40.3	34.4	30.0	S12x35
47	93.4	75.6	63.6	55.0	48.4	43.3	35.8	30.5	26.6	S12x31.8
52	101	83.1	70.6	61.5	54.4	48.8	40.6	34.7	30.3	S10x35
38	63.4	51.7	43.7	37.9	33.5	30.0	24.8	21.2	18.5	S10x25.4
34	46.6	38.4	32.7	28.5	25.2	22.7	18.8	16.1	14.1	S8×23
27	34.3	28.1	23.9	20.8	18.4	16.5	13.7	11.7	10.2	S8×18.4
26	27.4	22.7	19.4	16.9	15.0	13.5	11.3	9.64	8.43	S6×17.25
19	16.5	13.7	11.6	10.2	9.00	8.09	6.73	5.76	5.03	S6x12.5
15	11,0	9,09	7.77	6,78	6.02	5.41	4.50	3.86	3.37	S5×10
14.1	9.7	8.03	6.87	6.01	5.34	4.80	4.00	3.43	3.00	S4x9,5
11	7.0	5.82	4.97	4.35	3.86	3.47	2.89	2.48	2.17	S4×7.7
11	6.8	5.68	4.86	4.25	3.78	3.40	2.83	2.43	2.12	S3x7.5
8	4.1	3.43	2.93	2.57	2.28	2.05	1.71	1.46	1.28	S3x5.7

Designation	V_{t}	I_{x}	b	L_{u}	M ${ }_{\text {r }}$	Factored moment resistance $\mathrm{M}_{\mathrm{r}}{ }^{\prime}(\mathrm{kN} \cdot \mathrm{m})$					
					Unbraced length (mm)						
	kN	$10^{6} \mathrm{~mm}^{4}$	mm	mm	$\leq L_{u}$	1500	2000	2500	3000	3500	4000
¢C380x $74 *$	1440	168	94	1830	278	-	272	255	238	221	204
†C380x60*	1050	145	89	1690	239	-	228	210	191	172	152
\dagger ¢ $380 \times 50^{*}$	808	131	86	1620	216	-	203	184	165	145	122
\dagger ¢ 310×45	824	67.3	80	1530	139	-	129	118	107	95.9	83.2
\dagger ¢310x 37	621	59.9	77	1440	124	123	111	99.5	87.6	74.0	62.8
\dagger ¢ 310×31	457	53.5	74	1380	111	108	96.6	84.5	71.6	58.4	49.3
†C250x45	903	42.8	76	1630	106	-	102	95.5	89.5	83.5	77.6
†C250x37	708	37.9	73	1460	94.2	93.7	86.7	79.8	73.0	66.2	58.5
+C250x30	507	32.7	69	1330	81.0	78.4	70.7	63.0	55.2	46.4	39.8
\dagger C230×30*	543	25.5	67	1340	69.9	68.2	62.4	56.7	51.1	45.2	39.0
tC250x23	322	27.8	65	1220	69.0	64.8	56.7	48.3	38.8	32.0	27.3
\dagger ¢230×22	343	21.3	63	1210	58.6	55.0	48.6	42.1	34.9	29.0	24.9
\dagger C200×28	523	18.2	64	1370	56.7	55.6	51.5	47.5	43.5	39.5	35.0
†C230x20	281	19.8	61	1160	54.5	50.3	43.8	37.1	29.7	24.7	21,1
+C200x21	325	14.9	59	1160	46.3	43.1	38.2	33.4	28.0	23.5	20.3
+C200×17	236	13.5	57	1100	41.9	38.0	32.9	27.7	22.2	18.5	15.9
†C180×22*	392	11.3	58	1260	40.0	38.4	35.3	32.2	29.1	25.9	22.5
+C180×18	296	10.0	55	1120	35.6	32.9	29.4	25.9	22.1	18.7	16.2
†C180×15	196	8.86	53	1040	31.4	28.0	24.2	20.2	16.4	13.7	11.9
+C150x19	351	7.11	54	1290	29.5	28.6	26.6	24.5	22.5	20.5	18.3
†C150×16	253	6.21	51	1100	25.8	23.8	21.5	19.1	16.7	14.1	12.3
+C150×12	161	5.36	48	976	22.2	19.4	16.8	14.0	11.4	9.62	8.34
\dagger C130x13	219	3.66	47	1110	18.1	17.0	15.5	14.0	12.5	10.9	9.46
+C130×10	127	3.09	44	936	15.3	13.3	11.6	9.77	8.03	6.82	5.93
tC100×11	174	1.91	43	1160	11.8	11.2	10.3	9.49	8.65	7.80	6.81
†C100x9	134	1.68	42	1000	10.4	9.43	8.48	7.55	6.52	5.56	4.85
+C100x8	99.7	1.61	40	924	9.95	8.75	7.73	6.73	5.59	4.76	4.15
+C100x7	67.9	1.53	40	877	9.45	8.08	7.01	5.85	4,83	4.11	3.58
\dagger ¢75x9	142	0.847	40	1440	7.02	6.98	6.60	6.22	5.84	5,47	5.09
†C75 ${ }^{\text {7 }}$	104	0.749	37	1130	6.21	5.88	5.44	5.00	4.57	4.13	3.61
†C75x6	67.8	0.670	35	939	5.54	4.97	4.47	3.98	3.43	2.93	2.56
\dagger ¢ 75×5	53.7	0.651	35	897	5.39	4.75	4.23	3.72	3.13	2.67	2.33

[^38]\dagger Class 3

G40.21-350W
BEAM SELECTION TABLE
$F_{y}=350 \mathrm{MPa}$
C Shapes

Nominal mass	Factored moment resistance $\mathrm{M}_{\mathrm{r}}{ }^{\prime}(\mathrm{kN} \cdot \mathrm{m})$									Imperial designation
	Unbraced length (mm)									
kg/m	4500	5000	6000	7000	8000	9000	10000	11000	12000	
74	187	167	137	116	101	89.3	80.1	72.7	66.5	C15x50
60	132	116	94.5	79.8	69.1	61.0	54.6	49.5	45.2	C15×40
50	106	93.0	75.3	63.3	54.7	48.2	43.1	39.0	35.6	C15×33.9
45	72.7	64.7	53.1	45.0	39.2	34.7	31.1	28.2	25.8	C12×30
37	54.7	48.4	39.5	33.4	29.0	25.6	22.9	20.8	19.0	C12x25
31	42.8	37.8	30.7	25.9	22.4	19.7	17.7	16.0	14.6	C12x20.7
45	71.7	64.6	53.5	45.7	39.9	35.4	31.8	28.9	26.5	C10×30
37	51.5	46.1	38.0	32.4	28.2	25.0	22.5	20.4	18.7	C10x25
30	34.8	31.0	25.5	21.7	18.8	16.7	15.0	13.6	12.4	C10x20
30	34.4	30.7	25.4	21.6	18.9	16.7	15.0	13.6	12.5	C9x20
23	23.8	21.1	17.3	14.6	12.7	11.2	10.1	9.12	8.34	C10x15.3
22	21.8	19.4	16.0	13.6	11.8	10.4	9.38	8.51	7.79	C9x15
28	30.9	27.7	23.0	19.6	17.1	15.2	13.7	12.4	11.4	C8×18.75
20	18.5	16.5	13.5	11.5	9.98	8.83	7.93	7.19	6.58	C9x13.4
21	17.8	15.9	13.1	11.2	9.76	8.65	7.77	7.06	6.46	C8×13.75
17	14.0	12.5	10.3	8.75	7.62	6.75	6.06	5.50	5.03	C8x11.5
22	19.9	17.8	14.8	12.6	11.0	9.79	8.81	8.00	7.33	C7x14.75
18	14.3	12.8	10.6	9.04	7.89	7.00	6.29	5.71	5.23	C7x12.25
15	10.5	9.35	7.72	6.58	5.74	5.09	4.57	4.15	3.80	C7x9.8
19	16.2	14.5	12.1	10.3	9.03	8.02	7.21	6.55	6.00	C6x13
16	10.9	9.75	8.09	6.91	6.04	5.36	4.82	4.38	4.01	C6x10.5
12	7.37	6.60	5.47	4.67	4.08	3.62	3.25	2.95	2.71	C6x8.2
13	8.39	7.54	6.26	5.36	4.69	4.16	3.74	3.40	3.12	C5x9
10	5.25	4.71	3.91	3.34	2.92	2.59	2.33	2.12	1.94	C5x6.7
11	6.04	5.43	4.52	3.87	3.38	3.01	2.71	2.46	2.25	C4x7. 25
9	4.30	3.87	3.21	2.75	2.41	2.14	1.92	1.75	1.60	C4x6.25
8	3.68	3.31	2.75	2.36	2.06	1.83	1.65	1.50	1.37	C4×5.4
7	3.18	2.85	2.37	2.03	1.77	1.57	1.42	1.29	1.18	C4×4.5
9	4.72	4.25	3.54	3.03	2.65	2.36	2.12	1.93	1.77	C3x6
7	3.21	2.88	2.40	2.06	1.80	1.60	1.44	1.31	1.20	C3x5
6	2.27	2.04	1.70	1.46	1.27	1.13	1.02	0.926	0.849	C3x4.1
5	2.07	1.86	1.55	1.33	1.16	1.03	0.929	0.844	0.774	C3x 3.5

BEAM LOAD TABLES
W Shapes

ASTM A992, A572 grade 50
$\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$

Total Uniformly Distributed Factored Loads for Laterally Supported Beams (kN)

	gnation	W1100				Approx. Deflect. (mm)	W1000						Approx. Deflect. (mm)
Ma	(kg/m)	499	433	390	343		642	591	554	539	483	443	
	5000					6	14600		12500				6
	5500	11900	10000	9020	7700	7	14500	13200	12400	12000	10600	9780	8
	6000	11000	9600	8610	7490	8	13300	12200	11400	11100	9890	9030	9
	6500	10200	8870	7950	6920	10	12300	11300	10500	10200	9130	8330	11
	7000	9440	8230	7380	6420	11	11400	10500	9760	9510	8480	7740	12
	7500	8810	7680	6890	5990	13	10600	9770	9110	8880	7920	7220	14
	8000	8260	7200	6460	5620	15	9970	9160	8540	8320	7420	6770	16
	8500	7770	6780	6080	5290	16	9380	8620	8040	7830	6980	6370	18
	9000	7340	6400	5740	5000	18	8860	8140	7590	7400	6600	6020	20
	9500	6960	6070	5440	4730	21	8390	7710	7190	7010	6250	5700	23
	10000	6610	5760	5170	4500	23	7970	7330	6830	6660	5940	5420	25
	10500	6290	5490	4920	4280	25	7590	6980	6510	6340	5650	5160	28
	11000	6010	5240	4700	4090	28	7250	6660	6210	6050	5400	4920	30
	11500	5750	5010	4490	3910	30	6930	6370	5940	5790	5160	4710	33
	12000	5510	4800	4310	3750	33.	6640	6110	5690	5550	4950	4510	36
	12500	5290	4610	4130	3600	36	6380	5860	5460	5330	4750	4330	39
	13000	5080	4430	3970	3460	38	6130	5640	5250	5120	4570	4170	42
	13500	4890	4270	3830	3330	41	5910	5430	5060	4930	4400	4010	46
	14000	4720	4120	3690	3210	45	5700	5230	4880	4760	4240	3870	49
	14500	4560	3970	3560	3100	48	5500	5050	4710	4590	4090	3730	53
	15000	4400	3840	3440	3000	51	5320	4890	4550	4440	3960	3610	56
	15500	4260	3720	3330	2900	55	5140	4730	4410	4290	3830	3490	60
	16000	4130	3600	3230	2810	58	4980	4580	4270	4160	3710	3380	64
	16500	4000	3490	3130	2720	62	4830	4440	4140	4030	3600	3280	68
	17000	3890	3390	3040	2640	66	4690	4310	4020	3920	3490	3190	72
	17500	3780	3290	2950	2570	70	4560	4190	3900	3800	3390	3090	77
	18000	3670	3200	2870	2500	74	4430	4070	3800	3700	3300	3010	81
	18500	3570	3120	2790	2430	78	4310	3960	3690	3600	3210	2930	86
	19000	3480	3030	2720	2370	82	4200	3860	3600	3500	3120	2850	90
	19500	3390	2960	2650	2310	86	4090	3760	3500	3410	3040	2780	95
	20000	3300	2880	2580	2250	91	3990	3660	3420	3330	2970	2710	100
	20500	3220	2810	2520	2190	96	3890	3570	3330	3250	2900	2640	105
	21000	3150	2740	2460	2140	100	3800	3490	3250	3170	2830	2580	110
	21500	3070	2680	2400	2090	105	3710	3410	3180	3100	2760	2520	116
	22000	3000	2620	2350	2040	110	3620	3330	3110	3030	2700	2460	121
PROPERTIES AND DESIGN DATA													
		5960	5000	4510	3850		7300	6610	6240	5990	5310	4890	
	kN)	1880	1480	1260	1040		2990	2600	2350	2240	1870	1630	
	(kN)	67.3	56.9	51.8	46.6		88.0	80.2	76,3	73.5	65.7	61.1	
	(kN)	2530	1810	1500	1210		4320	3590	3250	3010	2410	2080	
	(mm)	5490	5400	5310	5230		6060	5920	5810	5790	5650	5530	
	m)	1118	1108	1100	1090		1048	1040	1032	1030	1020	1012	
	(mm)	405	402	400	400		412	409	408	407	404	402	
	mm)	45.0	40.0	36.0	31.0		60.0	55.9	52.0	51.1	46.0	41.9	
	mm)	26.0	22.0	20.0	18.0		34.0	31.0	29.5	28.4	25.4	23.6	
IMPERIAL SIZE AND WEIGHT													
Wei	hht (lb/ft)	335	290	262	230		431	397	372	362	324	297	
	minal th (in.)	44					40						

Total Uniformly Distributed Factored Loads for Laterally Supported Beams (kN)

Designation	W1000											Approx. Deflect. (mm)
Mass (kg/m)	412	371	321	296	486	438	415	393	350	314	272	
4000							10900					4
4500					12700	11300	10800	10200	8720	7820	6500	5
5000					11500	10300	9740	9190	8250	7400	6360	6
5500	8720	7780		6460	10500	9350	8850	8360	7500	6730	5780	8
6000	8490	7620	6500	5920	9600	8570	8110	7660	6870	6170	5300	9
6500	7830	7030	6040	5460	8870	7910	7490	7070	6340	5690	4890	11
7000	7270	6530	5610	5070	8230	7350	6960	6560	5890	5290	4540	12
7500	6790	6090	5230	4740	7680	6860	6490	6130	5500	4930	4240	14
8000	6370	5710	4910	4440	7200	6430	6090	5740	5150	4630	3970	16
8500	5990	5380	4620	4180	6780	6050	5730	5410	4850	4350	3740	18
9000	5660	5080	4360	3950	6400	5710	5410	5110	4580	4110	3530	20
9500	5360	4810	4130	3740	6070	5410	5120	4840	4340	3900	3350	23
10000	5090	4570	3920	3550	5760	5140	4870	4600	4120	3700	3180	25
10500	4850	4350	3740	3380	5490	4900	4640	4380	3930	3520	3030	28
\& 11000	4630	4160	3570	3230	5240	4670	4430	4180	3750	3360	2890	30
$\text { 忘 } 11500$	4430	3970	3410	3090	5010	4470	4230	4000	3590	3220	2760	33
$\text { 틀 } 12000$	4240	3810	3270	2960	4800	4280	4060	3830	3440	3080	2650	36
$\overline{\bar{\Sigma}} \quad 12500$	4070	3660	3140	2840	4610	4110	3890	3680	3300	2960	2540	39
. 513000	3920	3520	3020	2730	4430	3960	3750	3530	3170	2850	2450	42
$\underset{\sim}{\underset{\sim}{c}} \quad 13500$	3770	3390	2910	2630	4270	3810	3610	3400	3050	2740	2360	46
के 14000	3640	3260	2800	2540	4120	3670	3480	3280	2950	2640	2270	49
い 14500	3510	3150	2710	2450	3970	3550	3360	3170	2840	2550	2190	53
15000	3390	3050	2620	2370	3840	3430	3250	3060	2750	2470	2120	56
15500	3290	2950	2530	2290	3720	3320	3140	2960	2660	2390	2050	60
16000	3180	2860	2450	2220	3600	3210	3040	2870	2580	2310	1990	64
16500	3090	2770	2380	2150	3490	3120	2950	2790	2500	2240	1930	68
17000	3000	2690	2310	2090	3390	3020	2860	2700	2430	2180	1870	72
17500	2910	2610	2240	2030	3290	2940	2780	2630	2360	2110	1820	77
18000	2830	2540	2180	1970	3200	2860	2700	2550	2290	2060	1770	81
18500	2750	2470	2120	1920	3120	2780	2630	2480	2230	2000	1720	86
19000	2680	2410	2070	1870	3030	2710	2560	2420	2170	1950	1670	90
19500	2610	2340	2010	1820	2960	2640	2500	2360	2110	1900	1630	95
20000	2550	2290	1960	1780	2880	2570	2430	2300	2060	1850	1590	100
20500	2480	2230	1910	1730	2810	2510	2370	2240	2010	1810	1550	105
21000	2420	2180	1870	1690	2740	2450	2320	2190	1960	1760	1510	110
PROPERTIES AND DESIGN DATA												
$\mathrm{V}_{\mathrm{r}}(\mathrm{kN})$	4360	3890	3250	3230	6370	5660	5430	5080	4360	3910	3250	
$\mathrm{R}(\mathrm{kN})$	1420	1200	956	890	2460	2060	1910	1740	1420	1200	956	
$\mathrm{G}(\mathrm{kN})$	54.6	49.2	42.7	42.7	77.6	69.6	67.3	63.1	54.6	49.4	42.7	
$\mathrm{Br}^{\prime}(\mathrm{kN})$	1660	1350	1020	1020	3360	2700	2530	2230	1660	1360	1020	
Lu (mm)	5530	5440	5360	5230	4270	4160	4080	4050	4010	3910	3870	
d (mm)	1008	1000	990	982	1036	1026	1020	1016	1008	1000	990	
$\mathrm{b}(\mathrm{mm})$	402	400	400	400	308	305	304	303	302	300	300	
t (mm)	40.0	36.1	31.0	27.1	54.1	49.0	46.0	43.9	40.0	35.9	31.0	
w (mm)	21.1	19.0	16.5	16.5	30.0	26.9	26.0	24.4	21.1	19.1	16.5	
IMPERIAL SIZE AND WEIGHT												
Weight (lb/ft)	277	249	215	199	327	294	278	264	235	211	183	
Nominal Depth (in.)						40						

Total Uniformly Distributed Factored Loads for Laterally Supported Beams (kN)

$\begin{aligned} & \text { Designation } \\ & \hline \text { Mass }(\mathrm{kg} / \mathrm{m}) \end{aligned}$		W1000		Approx Deflect. (mm)	W920							Approx Deffect, (mm)
		249	222		656	588	537	491	449	420	390	
	4000	6440	6000	4								4
	4500	6240	5410	5								6
	5000	5610	4870	6							8180	7
	5500	5100	4430	8	14000	12400	11200	10200	9320	8700	8080	8
	6000	4680	4060	9	13000	11500	10500	9520	8650	8070	7410	10
	6500	4320	3750	11	12000	10600	9670	8790	7990	7450	6 840	11
	7000	4010	3480	12	11100	9870	8980	8160	7420	6920	6350	13
	7500	3740	3250	14	10400	9210	8380	7620	6920	6460	5930	15
	8000	3510	3040	16	9720	8630	7860	7140	6490	6050	5560	17
	8500	3300	2860	18	9150	8120	7390	6720	6110	5700	5230	20
	9000	3120	2700	20	8640	7670	6980	6350	5770	5380	4940	22
	9500	2950	2560	23	8180	7270	6620	6010	5460	5100	4680	25
	10000	2810	2430	25	7770	6910	6280	5710	5190	4840	4450	27
	10500	2670	2320	28	7400	6580	5990	5440	4940	4610	4230	30
	11000	2550	2210	30	7070	6280	5710	5190	4720	4400	4040	33
	11500	2440	2120	33	6760	6000	5460	4970	4510	4210	3870	36
	12000	2340	2030	36	6480	5750	5240	4760	4330	4040	3710	39
	12500	2250	1950	39	6220	5520	5030	4570	4150	3880	3560	42
	13000	2160	1870	42	5980	5310	4830	4390	3990	3730	3420	48
	13500	2080	1800	46	5760	5120	4660	4230	3850	3590	3290	50
	14000	2000	1740	49	5550	4930	4490	4080	3710	3460	3180	53
	14500	1940	1680	53	5360	4780	4330	3940	3580	3340	3070	57
	15000	1870	1620	56	5180	4600	4190	3810	3460	3230	2960	61
	15500	1810	1570	60	5020	4460	4050	3690	3350	3130	2870	65
	16000	1750	1520	64	4860	4320	3930	3570	3240	3030	2780	70
	16500	1700	1480	68	4710	4190	3810	3460	3150	2940	2690	74
	17000	1650	1430	72	4570	4060	3700	3360	3050	2850	2620	79
	17500	1600	1390	77	4440	3950	3590	3260	2970	2770	2540	83
	18000	1560	1350	81	4320	3840	3490	3170	2880	2690	2470	88
	18500	1520	1320	86	4200	3730	3400	3090	2810	2620	2400	93
	19000	1480	1280	90	4090	3630	3310	3010	2730	2550	2340	98
	19500	1440	1250	95	3990	3540	3220	2930	2660	2480	2280	103
	20000	1400	1220	100	3890	3450	3140	2860	2600	2420	2220	109
	20500	1370	1190	105	3790	3370	3070	2790	2530	2360	2170	114
	21000	1340	1160	110	3700	3290	2990	2720	2470	2310	2120	120
PROPERTIES AND DESIGN DATA												
	(kN)	3220	3000		6980	6190	5620	5080	4660	4350	4090	
	(kN)	871	763		3110	2600	2240	1930	1680	1510	1360	
	(kN)	42.7	41.4		89.3	80.2	73.5	67.0	62.1	58.2	55.1	
	(kN)	1020	957		4450	3590	3010	2510	2150	1890	1700	
	(mm)	3740	3590		6590	6370	6210	6070	6000	5920	5810	
	mm)	980	970		987	975	965	957	948	943	936	
	mm)	300	300		431	427	425	422	423	422	420	
	mm)	26,0	21.1		62.0	55.9	51.1	47.0	42.7	39.9	36.6	
	(mm)	16.5	16.0		34.5	31.0	28.4	25.9	24.0	22.5	21.3	
IMPERIAL SIZE AND WEIGHT												
Wei	ght (lb/ft)	167	149		441	395	361	330	302	282	262	
	ominal oth (in.)	40			36							

BEAM LOAD TABLES W Shapes

ASTM A992, A572 grade 50
$\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$

Total Uniformly Distributed Factored Loads for Laterally Supported Beams (kN)

	nation	W920											Approx. Deflect. (mm)
Mass (kg/m)		368	344	381	345	313	289	271	253	238	223	201	
	3000												2
	3500										5940	5420	3
	4000			9520	8540	8060	7380	6960	6520	6180	5910	5180	4
	4500			9380	8450	7510	6900	6510	6020	5630	5260	4600	6
	5000	7740	7340	8450	7600	6760	6210	5860	5420	5070	4730	4140	7
	5500	7590	7090	7680	6910	6140	5650	5330	4920	4610	4300	3770	8
	6000	6960	6500	7040	6330	5630	5180	4890	4510	4220	3940	3450	10
	6500	6420	6000	6500	5850	5200	4780	4510	4170	3900	3640	3190	11
	7000	5960	5570	6030	5430	4830	4440	4190	3870	3620	3380	2960	13
	7500	5560	5200	5630	5070	4500	4140	3910	3610	3380	3150	2760	15
	8000	5220	4870	5280	4750	4220	3880	3660	3380	3170	2960	2590	17
	8500	4910	4590	4970	4470	3970	3650	3450	3190	2980	2780	2440	20
	9000	4640	4330	4690	4220	3750	3450	3260	3010	2820	2630	2300	22
	9500	4390	4110	4450	4000	3560	3270	3090	2850	2670	2490	2180	25
	10000	4170	3900	4220	3800	3380	3110	2930	2710	2530	2360	2070	27
	10500	3970	3710	4020	3620	3220	2960	2790	2580	2410	2250	1970	30
	11000	3790	3550	3840	3460	3070	2820	2660	2460	2300	2150	1880	33
	11500	3630	3390	3670	3300	2940	2700	2550	2350	2200	2060	1800	36
	12000	3480	3250	3520	3170	2820	2590	2440	2260	2110	1970	1730	39
	12500	3340	3120	3380	3040	2700	2480	2340	2170	2030	1890	1660	42
	13000	3210	3000	3250	2920	2600	2390	2250	2080	1950	1820	1590	46
	13500	3090	2890	3130	2820	2500	2300	2170	2010	1880	1750	1530	50
	14000	2980	2790	3020	2710	2410	2220	2090	1930	1810	1690	1480	53
	14500	2880	2690	2910	2620	2330	2140	2020	1870	1750	1630	1430	57
	15000	2780	2600	2820	2530	2250	2070	1950	1810	1690	1580	1380	61
	15500	2690	2520	2720	2450	2180	2000	1890	1750	1630	1530	1340	65
	16000	2610	2440	2640	2380	2110	1940	1830	1690	1580	1480	1290	70
	16500	2530	2360	2560	2300	2050	1880	1780	1640	1540	1430	1260	74
	17000	2450	2290	2480	2240	1990	1830	1720	1590	1490	1390	1220	79
	17500	2380	2230	2410	2170	1930	1770	1670	1550	1450	1350	1180	83
	18000	2320	2170	2350	2110	1880	1730	1630	1500	1410	1310	1150	88
	18500	2260	2110	2280	2050	1830	1680	1580	1460	1370	1280	1120	93
	19000	2200	2050	2220	2000	1780	1630	1540	1430	1330	1240	1090	98
	19500	2140	2000	2170	1950	1730	1590	1500	1390	1300	1210	1060	103
	20000	2090	1950	2110	1900	1690	1550	1470	1350	1270	1180	1040	109
PROPERTIES AND DESIGN DATA													
$\mathrm{V}_{\mathrm{i}}(\mathrm{kN})$		3870	3670	4760	4270	4030	3690	3480	3260	3090	2970	2710	
$\mathrm{R}(\mathrm{kN})$		1250	1140	1740	1480	1300	1140	1050	947	869	805	710	
$\mathrm{G}(\mathrm{kN})$		52.5	49.9	63.1	57.2	54.6	50.2	47.6	44.8	42.7	41.1	39.3	
$\mathrm{Br}^{\prime}(\mathrm{kN})$		1540	1390	2230	1830	1660	1410	1270	1120	1020	945	864	
$\mathrm{Lu}(\mathrm{mm})$		5750	5680	4250	4170	4060	4030	3970	3950	3890	3830	3720	
$\mathrm{d}(\mathrm{mm})$		931	927	951	943	932	927	923	919	915	911	903	
$\mathrm{b}(\mathrm{mm})$		419	418	310	308	309	308	307	306	305	304	304	
t (mm)		34.3	32.0	43.9	39.9	34.5	32.0	30.0	27.9	25.9	23.9	20.1	
w (mm)		20.3	19.3	24.4	22.1	21.1	19.4	18.4	17.3	16.5	15.9	15.2	
IMPERIAL SIZE AND WEIGHT													
Weight (lb/ft)		247	231	256	232	210	194	182	170	160	150	135	
Nominal Depth (in.)		36											

Sections highlighted in yellow are commonly used sizes and are generally readily available.

BEAM LOAD TABLES
ASTM A992, A572 grade 50
W Shapes
Total Uniformly Distributed Factored Loads for Laterally Supported Beams (kN)

Des	signation	W840								Approx. Deflect. (mm)
Mass (kg/m)		576	527	473	433	392	359	329	299	
	4000									5
	4500								6380	6
	5000	12000	10900	9660	8860	7940	7500	6960	6310	7
	5500	11600	10500	9390	8540	7680	6960	6320	5740	9
	6000	10600	9650	8610	7820	7040	6380	5800	5260	11
	6500	9780	8900	7950	7220	6500	5890	5350	4850	13
	7000	9080	8270	7380	6710	6030	5460	4970	4510	15
	7500	8480	7720	6890	6260	5630	5100	4640	4210	17
	8000	7950	7230	6460	5870	5280	4780	4350	3940	19
	8500	7480	6810	6080	5520	4970	4500	4090	3710	22
	9000	7070	6430	5740	5220	4690	4250	3860	3510	24
	9500	6690	6090	5440	4940	4450	4030	3660	3320	27
	10000	6360	5790	5170	4690	4220	3830	3480	3150	30
	10500	6060	5510	4920	4470	4020	3640	3310	3000	33
	11000	5780	5260	4700	4270	3840	3480	3160	2870	36
	11500	5530	5030	4490	4080	3670	3330	3020	2740	39
	12000	5300	4820	4310	3910	3520	3190	2900	2630	43
	12500	5090	4630	4130	3760	3380	3060	2780	2520	47
	13000	4890	4450	3970	3610	3250	2940	2680	2430	50
	13500	4710	4290	3830	3480	3130	2830	2580	2340	54
	14000	4540	4130	3690	3350	3020	2730	2480	2250	58
	14500	4390	3990	3560	3240	2910	2640	2400	2180	63
	15000	4240	3860	3440	3130	2820	2550	2320	2100	67
	15500	4100	3730	3330	3030	2720	2470	2240	2040	72
	16000	3970	3620	3230	2930	2640	2390	2170	1970	76
	16500	3850	3510	3130	2850	2560	2320	2110	1910	81
	17000	3740	3400	3040	2760	2480	2250	2050	1860	86
	17500	3630	3310	2950	2680	2410	2190	1990	1800	91
	18000	3530	3220	2870	2610	2350	2130	1930	1750	96
	18500	3440	3130	2790	2540	2280	2070	1880	1710	102
	19000	3350	3050	2720	2470	2220	2010	1830	1660	107
	19500	3260	2970	2650	2410	2170	1960	1780	1620	113
	20000	3180	2890	2580	2350	2110	1910	1740	1580	119
	20500	3100	2820	2520	2290	2060	1870	1700	1540	125
	21000	3030	2760	2460	2240	2010	1820	1660	1500	131
PROPERTIES AND DESIGN DATA										
$\mathrm{Vr}(\mathrm{kN})$		5990	5460	4830	4430	3970	3750	3480	3190	
R (kN)		2750	2380	1990	1740	1480	1320	1170	1020	
$G(\mathrm{kN})$		82.8	76.3	68.3	63.1	57.2	54.6	51.0	47.1	
$\mathrm{Br}^{\prime}(\mathrm{kN})$		3830	3250	2610	2230	1830	1660	1450	1240	
Lu (mm)		6320	6150	5980	5850	5720	5630	5530	5430	
d (mm)		913	903	893	885	877	868	862	855	
b (mm)		411	409	406	404	401	403	401	400	
t (mm)		57.9	53.1	48.0	43.9	39.9	35.6	32.4	29.2	
w (mm)		32.0	29.5	26.4	24.4	22.1	21.1	19.7	18.2	
IMPERIAL SIZE AND WEIGHT										
Weight ($\mathrm{lb} / \mathrm{ft}$)		387	354	318	291	263	241	221	201	
Nominal Depth (in.)		33								

Total Uniformly Distributed Factored Loads for Laterally Supported Beams (kN)

	gnation	W840					Approx Deflect. (mm)	W760					Approx Deflect (mm)
Mass (kg/m)		251	226	210	193	176		582	531	484	434	389	
	3000						3						3
	3500			5340	5060	4600	4						4
	4000	5980	5620	5240	4730	4230	5						5
	4500	5690	5060	4650	4210	3760	6	11900	10800	9780		7760	7
	5000	5120	4550	4190	3790	3380	7	11800	10700	9690	8640	7700	8
	5500	4650	4140	3810	3440	3080	9	10700	9760	8810	7860	7000	10
	6000	4260	3790	3490	3150	2820	11	9850	8940	8070	7200	6420	12
	6500	3940	3500	3220	2910	2600	13	9100	8250	7450	6650	5920	14
	7000	3660	3250	2990	2700	2420	15	8450	7660	6920	6170	5500	16
	7500	3410	3030	2790	2520	2260	17	7880	7150	6460	5760	5130	19
	8000	3200	2840	2620	2370	2110	19	7390	6710	6050	5400	4810	21
	8500	3010	2680	2460	2230	1990	22	6960	6310	5700	5080	4530	24
	9000	2840	2530	2330	2100	1880	24	6570	5960	5380	4800	4280	27
	9500	2690	2400	2200	1990	1780	27	6220	5650	5100	4550	4050	30
	10000	2560	2280	2090	1890	1690	30	5910	5370	4840	4320	3850	33
	10500	2440	2170	1990	1800	1610	33	5630	5110	4610	4120	3670	36
	11000	2330	2070	1900	1720	1540	36	5370	4880	4400	3930	3500	40
	11500	2220	1980	1820	1650	1470	39	5140	4670	4210	3760	3350	44
	12000	2130	1900	1750	1580	1410	43	4930	4470	4040	3600	3210	47
	12500	2050	1820	1680	1510	1350	47	4730	4290	3880	3460	3080	51
	13000	1970	1750	1610	1460	1300	50	4550	4130	3730	3320	2960	56
	13500	1900	1690	1550	1400	1250	54	4380	3970	3590	3200	2850	60
	14000	1830	1630	1500	1350	1210	58	4220	3830	3460	3090	2750	64
	14500	1760	1570	1440	1310	1170	63	4080	3700	3340	2980	2660	69
	15000	1710	1520	1400	1260	1130	67	3940	3580	3230	2880	2570	74
	15500	1650	1470	1350	1220	1090	72	3810	3460	3130	2790	2480	79
	16000	1600	1420	1310	1180	1060	76	3690	3350	3030	2700	2410	84
	16500	1550	1380	1270	1150	1030	81	3580	3250	2940	2620	2330	90
	17000	1510	1340	1230	1110	995	86	3480	3160	2850	2540	2260	95
	17500	1460	1300	1200	1080	967	91	3380	3070	2770	2470	2200	101
	18000	1420	1260	1160	1050	940	96	3280	2980	2690	2400	2140	107
	18500	1380	1230	1130	1020	914	102	3200	2900	2620	2340	2080	113
	19000	1350	1200	1100	996	890	107	3110	2820	2550	2270	2030	119
	19500	1310	1170	1070	971	867	113	3030	2750	2480	2220	1970	125
	20000	1280	1140	1050	946	846	119	2960	2680	2420	2160	1930	132
PROPERTIES AND DESIGN DATA													
$\mathrm{V}_{\mathrm{t}}(\mathrm{kN})$		2990	2810	2670	2530	2300		5960	5380	4890	4320	3880	
$\mathrm{R}(\mathrm{kN})$		985	863	787	711	635		3110	2670	2310	1930	1630	
$\mathrm{G}(\mathrm{kN})$		44.0	41.7	39.8	38.0	36.2		89.3	81.5	75.0	67.0	61.1	
$\mathrm{Br}^{\prime}(\mathrm{kN})$		1080	969	886	808	733		4450	3710	3140	2510	2080	
Lu (mm)		3890	3830	3770	3690	3610		6460	6230	6040	5830	5640	
d (mm)		859	851	846	840	835		843	833	823	813	803	
b (mm)		292	294	293	292	292		396	393	390	387	385	
$t(\mathrm{~mm})$		31.0	26.8	24.4	21.7	18.8		62.0	56.9	52.1	47.0	41.9	
w (mm)		17.0	16.1	15.4	14.7	14.0		34.5	31.5	29.0	25.9	23.6	
IMPERIAL SIZE AND WEIGHT													
Weight (lb/ft)		169	152	141	130	118		391	357	326	292	261	
Nominal Depth (in.)		33								30			

Sections highlighted in yellow are commonly used sizes and are generally readily available.

Total Uniformly Distributed Factored Loads for Laterally Supported Beams (kN)

	gnation	W760											Approx. Deflect. (mm)
Mass (kg/m)		350	314	284	257	220	196	185	173	161	147	134	
	3000								4500	4280	4080	3300	3
	3500					5260	4920	4680	4410	4020	3620	3290	4
	4000					5090	4450	4150	3860	3510	3170	2880	5
	4500		6340	5740	5260	4520	3960	3690	3430	3120	2820	2560	7
	5000	6880	6110	5510	4950	4070	3560	3320	3090	2810	2530	2300	8
	5500	6280	5560	5010	4500	3700	3240	3020	2800	2560	2300	2090	10
	6000	5750	5090	4600	4130	3390	2970	2770	2570	2340	2110	1920	12
	6500	5310	4700	4240	3810	3130	2740	2560	2370	2160	1950	1770	14
	7000	4930	4360	3940	3540	2910	2540	2370	2200	2010	1810	1640	16
	7500	4600	4070	3680	3300	2710	2370	2220	2060	1870	1690	1530	19
	8000	4320	3820	3450	3100	2540	2230	2080	1930	1760	1580	1440	21
	8500	4060	3590	3240	2910	2390	2100	1960	1810	1650	1490	1350	24
	9000	3840	3390	3060	2750	2260	1980	1850	1710	1560	1410	1280	27
	9500	3630	3220	2900	2610	2140	1870	1750	1620	1480	1330	1210	30
	10000	3450	3060	2760	2480	2030	1780	1660	1540	1410	1270	1150	33
	10500	3290	2910	2630	2360	1940	1700	1580	1470	1340	1210	1100	36
	11000	3140	2780	2510	2250	1850	1620	1510	1400	1280	1150	1050	40
	11500	3000	2660	2400	2150	1770	1550	1450	1340	1220	1100	1000	44
	12000	2880	2550	2300	2060	1700	1480	1380	1290	1170	1060	958	47
	12500	2760	2440	2210	1980	1630	1420	1330	1230	1120	1010	920	51
	13000	2660	2350	2120	1910	1560	1370	1280	1190	1080	974	885	56
	13500	2560	2260	2040	1830	1510	1320	1230	1140	1040	938	852	60
	14000	2470	2180	1970	1770	1450	1270	1190	1100	1000	905	821	64
	14500	2380	2110	1900	1710	1400	1230	1150	1060	970	874	793	69
	15000	2300	2040	1840	1650	1360	1190	1110	1030	937	845	767	74
	15500	2230	1970	1780	1600	1310	1150	1070	995	907	817	742	79
	16000	2160	1910	1720	1550	1270	1110	1040	964	879	792	719	84
	16500	2090	1850	1670	1500	1230	1080	1010	935	852	768	697	90
	17000	2030	1800	1620	1460	1200	1050	978	907	827	745	677	95
	17500	1970	1750	1580	1420	1160	1020	950	881	803	724	657	101
	18000	1920	1700	1530	1380	1130	989	923	857	781	704	639	107
	18500	1870	1650	1490	1340	1100	963	898	834	760	685	622	113
	19000	1820	1610	1450	1300	1070	937	875	812	740	667	605	119
	19500	1770	1570	1410	1270	1040	913	852	791	721	650	590	125
	20000	1730	1530	1380	1240	1020	891	831	771	703	633	575	132
PROPERTIES AND DESIGN DATA													
$\mathrm{Vr}(\mathrm{kN})$		3440	3170	2870	2630	2630	2460	2340	2250	2140	2040	1650	
$\mathrm{R}(\mathrm{kN})$		1380	1190	1030	895	939	814	749	695	633	574	499	
$\mathrm{G}(\mathrm{kN})$		54.6	51.0	46.6	43.0	42.7	40.4	38.6	37.3	35.7	34.2	30.8	
$\mathrm{Br}^{\prime}(\mathrm{kN})$		1660	1450	1210	1030	1020	910	830	775	712	651	529	
$\mathrm{Lu}(\mathrm{mm})$		5510	5420	5300	5230	3570	3500	3450	3410	3330	3260	3230	
d (mm)		795	786	779	773	779	770	766	762	758	753	750	
b (mm)		382	384	382	381	266	268	267	267	266	265	264	
t (mm)$\mathrm{w}(\mathrm{mm})$		38.1	33.4	30.1	27.1	30.0	25.4	23.6	21.6	19.3	17.0	15.5	
		21.1	19.7	18.0	16.6	16.5	15.6	14.9	14.4	13.8	13.2	11.9	
IMPERIAL SIZE AND WEIGHT													
Weight (lb/ft)		235	211	191	173	148	132	124	116	108	99	90	
Nominal Depth (in.)		30											

Sections highlighted in yellow are commonly used sizes and are generally readily available.

BEAM LOAD TABLES
W Shapes
Total Uniformly Distributed Factored Loads for Laterally Supported Beams (kN)

	nation	W690											Approx. Deflect. (mm)
Mass (kg/m)		548	500	457	419	384	350	323	289	265	240	217	
	4000									5320	4820	4380	6
	4500	11100	10000	9100	8200	7520	6900	6240	5560	5150	4650	4200	7
	5000	10100	9190	8350	7600	6960	6260	5810	5120	4640	4190	3780	9
	5500	9210	8360	7590	6910	6320	5690	5280	4650	4210	3810	3440	11
	6000	8450	7660	6960	6330	5800	5220	4840	4260	3860	3490	3150	13
	6500	7800	7070	6420	5850	5350	4820	4470	3940	3570	3220	2910	15
	7000	7240	6560	5960	5430	4970	4470	4150	3660	3310	2990	2700	18
	7500	6760	6130	5560	5070	4640	4170	3880	3410	3090	2790	2520	20
	8000	6330	5740	5220	4750	4350	3910	3630	3200	2900	2620	2360	23
	8500	5960	5410	4910	4470	4090	3680	3420	3010	2730	2460	2220	26
	9000	5630	5110	4640	4220	3860	3480	3230	2840	2580	2330	2100	29
	9500	5330	4840	4390	4000	3660	3290	3060	2690	2440	2200	1990	33
	10000	5070	4600	4170	3800	3480	3130	2910	2560	2320	2090	1890	36
	10500	4830	4380	3970	3620	3310	2980	2770	2440	2210	1990	1800	40
	11000	4610	4180	3790	3460	3160	2850	2640	2330	2110	1900	1720	44
	11500	4410	4000	3630	3300	3020	2720	2530	2220	2020	1820	1640	48
	12000	4220	3830	3480	3170	2900	2610	2420	2130	1930	1750	1580	52
	12500	4050	3680	3340	3040	2780	2500	2330	2050	1850	1680	1510	57
	13000	3900	3530	3210	2920	2680	2410	2240	1970	1780	1610	1450	61
	13500	3750	3400	3090	2820	2580	2320	2150	1900	1720	1550	1400	66
	14000	3620	3280	2980	2710	2480	2240	2080	1830	1660	1500	1350	71
	14500	3490	3170	2880	2620	2400	2160	2000	1760	1600	1440	1300	76
	15000	3380	3060	2780	2530	2320	2090	1940	1710	1550	1400	1260	82
	15500	3270	2960	2690	2450	2240	2020	1880	1650	1500	1350	1220	87
	16000	3170	2870	2610	2380	2170	1960	1820	1600	1450	1310	1180	93
	16500	3070	2790	2530	2300	2110	1900	1760	1550	1400	1270	1150	99
	17000	2980	2700	2450	2240	2050	1840	1710	1510	1360	1230	1110	105
	17500	2900	2630	2380	2170	1990	1790	1660	1460	1320	1200	1080	111
	18000	2820	2550	2320	2110	1930	1740	1610	1420	1290	1160	1050	117
	18500	2740	2480	2260	2050	1880	1690	1570	1380	1250	1130	1020	124
	19000	2670	2420	2200	2000	1830	1650	1530	1350	1220	1100	995	131
	19500	2600	2360	2140	1950	1780	1610	1490	1310	1190	1070	969	138
	20000	2530	2300	2090	1900	1740	1560	1450	1280	1160	1050	945	145
	20500	2470	2240	2040	1850	1700	1530	1420	1250	1130	1020	922	152
	21000	2410	2190	1990	1810	1660	1490	1380	1220	1100	997	900	160
PROPERTIES AND DESIGN DATA													
Vr (kN)		5550	5000	4550	4100	3760	3450	3120	2780	2660	2410	2190	
$\mathrm{R}(\mathrm{kN})$		3200	2750	2380	2060	1800	1580	1380	1160	1050	911	794	
$\mathrm{G}(\mathrm{kN})$		90.8	82.8	76.3	69.6	64.4	59.8	54.6	49.2	47.6	43.5	39.8	
$\mathrm{Br}^{\prime}(\mathrm{kN})$		4610	3830	3250	2700	2320	1990	1660	1350	1270	1060	886	
$\mathrm{Lu}(\mathrm{mm})$		6400	6140	5920	5730	5550	5410	5300	5160	5060	4960	4890	
d (mm)		772	762	752	744	736	728	722	714	706	701	695	
$\mathrm{b}(\mathrm{mm})$		372	369	367	364	362	360	359	356	358	356	355	
$t(\mathrm{~mm})$		63.0	57.9	53.1	49.0	45.0	40.9	38.1	34.0	30.2	27.4	24.8	
w (mm)		35.1	32.0	29.5	26.9	24.9	23.1	21.1	19.0	18.4	16.8	15.4	
IMPERIAL SIZE AND WEIGHT													
Weight (lb/ft)		368	336	307	281	258	235	217	194	178	161	146	
Nominal Depth (in.)		27											

Total Uniformly Distributed Factored Loads for Laterally Supported Beams (kN)

Des	nation	W690					Approx. Deflect. (mm)	W610					Approx Deflect (mm)
Mass (kg/m)		192	170	152	140	125		551	498	455	415	372	
	3000		4120	3700	3480	3220	3						4
	3500	4460	3990	3550	3230	2850	4						5
	4000	4010	3490	3110	2830	2490	6	11200	10100	9040	8200	7240	7
	4500	3570	3100	2760	2510	2210	7	10300	9220	8340	7560	6730	8
	5000	3210	2790	2480	2260	1990	9	9240	8300	7500	6810	6060	10
	5500	2920	2540	2260	2050	1810	11	8400	7540	6820	6190	5510	12
	6000	2670	2330	2070	1880	1660	13	7700	6910	6250	5670	5050	15
	6500	2470	2150	1910	1740	1530	15	7110	6380	5770	5240	4660	17
	7000	2290	1990	1770	1610	1420	18	6600	5930	5360	4860	4330	20
	7500	2140	1860	1660	1510	1330	20	6160	5530	5000	4540	4040	23
	8000	2010	1750	1550	1410	1250	23	5780	5190	4690	4250	3790	26
	8500	1890	1640	1460	1330	1170	26	5440	4880	4410	4000	3570	30
	9000	1780	1550	1380	1260	1110	29	5130	4610	4170	3780	3370	33
	9500	1690	1470	1310	1190	1050	33	4860	4370	3950	3580	3190	37
	10000	1600	1400	1240	1130	996	36	4620	4150	3750	3400	3030	41
	10500	1530	1330	1180	1080	949	40	4400	3950	3570	3240	2890	45
	11000	1460	1270	1130	1030	906	44	4200	3770	3410	3090	2750	50
	11500	1400	1210	1080	983	866	48	4020	3610	3260	2960	2640	54
	12000	1340	1160	1040	942	830	52	3850	3460	3130	2840	2530	59
	12500	1280	1120	994	904	797	57	3700	3320	3000	2720	2420	64
	13000	1230	1070	955	869	766	61	3550	3190	2890	2620	2330	69
	13500	1190	1030	920	837	738	66	3420	3070	2780	2520	2240	75
	14000	1150	997	887	807	711	71	3300	2960	2680	2430	2160	80
	14500	1110	963	857	779	687	76	3190	2860	2590	2350	2090	86
	15000	1070	931	828	753	664	82	3080	2770	2500	2270	2020	92
	15500	1040	901	801	729	643	87	2980	2680	2420	2200	1960	98
	16000	1000	873	776	706	623	93	2890	2590	2340	2130	1890	105
	16500	973	846	753	685	604	99	2800	2510	2270	2060	1840	112
	17000	944	821	731	665	586	105	2720	2440	2210	2000	1780	118
	17500	917	798	710	646	569	111	2640	2370	2140	1940	1730	126
	18000	891	776	690	628	553	117	2570	2300	2080	1890	1680	133
	18500	867	755	671	611	538	124	2500	2240	2030	1840	1640	140
	19000	845	735	654	595	524	131	2430	2180	1970	1790	1590	148
	19500	823	716	637	580	511	138	2370	2130	1920	1750	1550	156
	20000	802	698	621	565	498	145	2310	2070	1880	1700	1520	164
PROPERTIES AND DESIGN DATA													
$\mathrm{Vr}(\mathrm{kN})$		2230	2060	1850	1740	1610		5620	5030	4520	4100	3620	
$\mathrm{R}(\mathrm{kN})$		849	729	625	563	500		3760	3200	2750	2380	1990	
$\mathrm{G}(\mathrm{kN})$		40.1	37.5	33.9	32.1	30.3		99.9	90.8	82.8	76.3	68.3	
$\mathrm{Br}^{\prime}(\mathrm{kN})$		898	786	641	575	512		5570	4610	3830	3250	2610	
Lu (mm)		3440	3380	3320	3270	3190		6620	6230	5940	5700	5450	
d (mm)		702	693	688	684	678		711	699	689	679	669	
b (mm)		254	256	254	254	253		347	343	340	338	335	
$t(\mathrm{~mm})$		27.9	23.6	21.1	18.9	16.3		69.1	63.0	57.9	53.1	48.0	
w (mm)		15.5	14.5	13.1	12.4	11.7		38.6	35.1	32.0	29.5	26.4	
IMPERIAL SIZE AND WEIGHT													
Weight ($\mathrm{lb} / \mathrm{ft}$)		129	114	102	94	84		370	335	306	279	250	
Nominal Depth (in.)		27						24					

Sections highlighted in yellow are commonly used sizes and are generally readily available.

Total Uniformly Distributed Factored Loads for Laterally Supported Beams (kN)

Designation		W610									Approx Defiect (mm)
Mass (kg/m)		341	307	285	262	241	217	195	174	155	
	3000										4
	3500							3920	3540	3180	5
	4000	6620	5920	5460	5000	4660	4240	3770	3330	2940	7
	4500	6130	5480	5060	4610	4230	3780	3350	2960	2610	8
	5000	5510	4930	4560	4150	3810	3400	3020	2660	2350	10
	5500	5010	4480	4140	3770	3460	3090	2740	2420	2140	12
	6000	4600	4110	3800	3460	3180	2840	2510	2220	1960	15
	6500	4240	3790	3500	3190	2930	2620	2320	2050	1810	17
	7000	3940	3520	3250	2960	2720	2430	2150	1900	1680	20
	7500	3680	3290	3040	2770	2540	2270	2010	1780	1570	23
	8000	3450	3080	2850	2590	2380	2130	1880	1660	1470	26
	8500	3240	2900	2680	2440	2240	2000	1770	1570	1380	30
	9000	3060	2740	2530	2300	2120	1890	1680	1480	1310	33
	9500	2900	2600	2400	2180	2010	1790	1590	1400	1240	37
	10000	2760	2470	2280	2070	1910	1700	1510	1330	1170	41
	10500	2630	2350	2170	1980	1810	1620	1440	1270	1120	45
	11000	2510	2240	2070	1890	1730	1550	1370	1210	1070	50
	11500	2400	2140	1980	1800	1660	1480	1310	1160	1020	54
	12000	2300	2060	1900	1730	1590	1420	1260	1110	979	59
	12500	2210	1970	1820	1660	1520	1360	1210	1070	940	64
	13000	2120	1900	1750	1600	1470	1310	1160	1020	904	69
	13500	2040	1830	1690	1540	1410	1260	1120	986	870	75
	14000	1970	1760	1630	1480	1360	1220	1080	951	839	80
	14500	1900	1700	1570	1430	1310	1170	1040	918	810	86
	15000	1840	1640	1520	1380	1270	1130	1010	888	783	92
	15500	1780	1590	1470	1340	1230	1100	973	859	758	98
	16000	1720	1540	1420	1300	1190	1060	942	832	734	105
	16500	1670	1490	1380	1260	1150	1030	914	807	712	112
	17000	1620	1450	1340	1220	1120	1000	887	783	691	118
	17500	1580	1410	1300	1190	1090	972	862	761	671	126
	18000	1530	1370	1270	1150	1060	945	838	740	653	133
	18500	1490	1330	1230	1120	1030	920	815	720	635	140
	19000	1450	1300	1200	1090	1000	896	794	701	618	148
PROPERTIES AND DESIGN DATA											
$\mathrm{Vr}(\mathrm{kN})$		3310	2960	2730	2500	2330	2120	1960	1770	1590	
$\mathrm{R}(\mathrm{kN})$		1740	1480	1320	1160	1040	900	787	675	578	
$G(\mathrm{kN})$		63.1	57.2	53.3	49.2	46.3	42.7	39.8	36.2	32.9	
Br^{\prime} (kN)		2230	1830	1590	1350	1200	1020	886	733	603	
Lu (mm)		5250	5080	4980	4850	4790	4680	4570	4480	4400	
d (mm)		661	653	647	641	635	628	622	616	611	
$\mathrm{b}(\mathrm{mm})$		333	330	329	327	329	328	327	325	324	
t (mm)		43.9	39.9	37.1	34.0	31.0	27.7	24.4	21.6	19.0	
w (mm)		24.4	22.1	20.6	19.0	17.9	16.5	15.4	14.0	12.7	
					ERIAL	E AND	EIGHT				
Wei	ht (ib/ft)	229	207	192	176	162	146	131	117	104	
	minal th (in.)					24					

Sections highlighted in yellow are commonly used sizes and are generally readily available,

BEAM LOAD TABLES W Shapes

ASTM A992, A572 grade 50
$\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$

Total Uniformly Distributed Factored Loads for Laterally Supported Beams (kN)

Des	nation	W610							Approx. Deflect. (mm)	W530			Approx Deflect (mm)
Mass (kg/m)		153	140	125	113	101	92	82		409	369	332	
	2000						2700	2340	2				2
	2500				2800	2600	2490	2190	3				3
	3000	3580	3320	2980	2720	2400	2080	1820	4				4
	3500	3260	2950	2600	2330	2060	1780	1560	5	7780	6900	6180	6
	4000	2860	2580	2280	2040	1800	1560	1370	7	7510	6710	6000	8
	4500	2540	2290	2030	1820	1600	1390	1210	8	6680	5960	5330	10
	5000	2290	2060	1820	1630	1440	1250	1090	10	6010	5370	4800	12
	5500	2080	1870	1660	1490	1310	1130	994	12	5460	4880	4360	14
	6000	1900	1720	1520	1360	1200	1040	911	15	5010	4470	4000	17
	6500	1760	1590	1400	1260	1110	959	841	17	4620	4130	3690	20
	7000	1630	1470	1300	1170	1030	891	781	20	4290	3830	3430	23
	7500	1520	1370	1220	1090	960	831	729	23	4010	3580	3200	27
	8000	1430	1290	1140	1020	900	779	683	26	3760	3350	3000	30
	8500	1340	1210	1070	961	847	734	643	30	3540	3160	2820	34
	9000	1270	1150	1010	908	800	693	607	33	3340	2980	2670	38
	9500	1200	1090	960	860	758	656	575	37	3160	2820	2530	43
	10000	1140	1030	912	817	720	623	546	41	3010	2680	2400	47
	10500	1090	982	868	778	686	594	520	45	2860	2550	2290	52
	11000	1040	937	829	743	655	567	497	50	2730	2440	2180	57
	11500	994	896	793	711	626	542	475	54	2610	2330	2090	62
	12000	952	859	760	681	600	520	455	59	2500	2240	2000	68
	12500	914	825	729	654	576	499	437	64	2400	2150	1920	74
	13000	879	793	701	629	554	480	420	69	2310	2060	1850	80
	13500	846	764	675	605	534	462	405	75	2230	1990	1780	86
	14000	816	736	651	584	515	445	390	80	2150	1920	1710	92
	14500	788	711	629	564	497	430	377	86	2070	1850	1650	99
	15000	762	687	608	545	480	416	364	92	2000	1790	1600	106
	15500	737	665	588	527	465	402	353	98	1940	1730	1550	113
	16000	714	644	570	511	450	390	342	105	1880	1680	1500	121
	16500	693	625	553	495	437	378	331	112	1820	1630	1450	128
	17000	672	606	536	481	424	367	321	118	1770	1580	1410	136
	17500	653	589	521	467	412	356	312	126	1720	1530	1370	144
	18000	635	573	506	454	400	346	304	133	1670	1490	1330	153
	18500	618	557	493	442	389	337	295	140	1620	1450	1300	161
	19000	601	543	480	430	379	328	288	148	1580	1410	1260	170
PROPERTIES AND DESIGN DATA													
$\mathrm{V}_{\mathrm{r}}(\mathrm{kN})$		1790	1660	1490	1400	1300	1350	1170		3890	3450	3090	
$\mathrm{R}(\mathrm{kN})$		723	640	549	490	434	451	391		2590	2180	1850	
$\mathrm{G}(\mathrm{kN})$		36.2	33.9	30.8	29.0	27.2	28.2	25.9		80.2	72.2	65.7	
$\mathrm{Br}^{\prime}(\mathrm{kN})$		733	641	529	469	412	444	374		3590	2910	2410	
$\mathrm{Lu}(\mathrm{mm})$		3110	3070	3020	2950	2890	2180	2110		6030	5720	5430	
$\mathrm{d}(\mathrm{mm})$		623	617	612	608	603	603	599		613	603	593	
b (mm)		229	230	229	228	228	179	178		327	324	322	
$t(\mathrm{~mm})$		24.9	22.2	19.6	17.3	14.9	15.0	12.8		55.6	50.5	45.5	
w (mm)		14.0	13.1	11.9	11.2	10.5	10.9	10.0		31.0	27.9	25.4	
IMPERIAL SIZE AND WEIGHT													
Weight (lb/ft)		103	94	84	76	68	62	55		275	248	223	
Nominal Depth (in.)		24									21		

Sections highlighted in yellow are commonly used sizes and are generally readily available.

BEAM LOAD TABLES
W Shapes

Total Uniformly Distributed Factored Loads for Laterally Supported Beams (kN)

Des	gnation	W530								Approx. Deflect. (mm)
Mass (kg/m)		300	272	248	219	196	182	165	150	
	3000									4
	3500	5540	4980	4440	4200	3740	3440	3140	2820	6
	4000	5380	4840	4380	3790	3390	3130	2830	2580	8
	4500	4790	4300	3900	3370	3010	2780	2510	2290	10
	5000	4310	3870	3510	3040	2710	2500	2260	2060	12
	5500	3920	3520	3190	2760	2470	2280	2050	1870	14
	6000	3590	3230	2920	2530	2260	2090	1880	1720	17
	6500	3310	2980	2700	2330	2090	1930	1740	1590	20
	7000	3080	2760	2510	2170	$\dagger 940$	1790	1610	1470	23
	7500	2870	2580	2340	2020	1810	1670	1510	1370	27
	8000	2690	2420	2190	1900	1700	1560	1410	1290	30
	8500	2530	2280	2060	1790	1600	1470	1330	1210	34
	9000	2390	2150	1950	1690	1510	1390	1260	1150	38
	9500	2270	2040	1850	1600	1430	1320	1190	1090	43
	10000	2150	1940	1750	1520	1360	1250	1130	1030	47
	10500	2050	1840	1670	1450	1290	1190	1080	982	52
	11000	1960	1760	1590	1380	1230	1140	1030	937	57
	11500	1870	1680	1520	1320	1180	1090	983	896	62
	12000	1790	1610	1460	1260	1130	1040	942	859	68
	12500	1720	1550	1400	1210	1090	1000	904	825	74
	13000	1660	1490	1350	1170	1040	963	869	793	80
	13500	1600	1430	1300	1120	1000	927	837	764	86
	14000	1540	1380	1250	1080	969	894	807	736	92
	14500	1490	1330	1210	1050	935	863	779	711	99
	15000	1440	1290	1170	1010	904	835	753	687	106
	$\begin{aligned} & 15500 \\ & 16000 \end{aligned}$	$\begin{aligned} & 1390 \\ & 1350 \end{aligned}$	$\begin{aligned} & 1250 \\ & 1210 \end{aligned}$	$\begin{aligned} & 1130 \\ & 1100 \end{aligned}$	$\begin{aligned} & 979 \\ & 949 \end{aligned}$	$\begin{aligned} & 875 \\ & 848 \end{aligned}$	$\begin{aligned} & 808 \\ & 782 \end{aligned}$	$\begin{aligned} & 729 \\ & 706 \end{aligned}$	$\begin{aligned} & 665 \\ & 644 \end{aligned}$	$\begin{aligned} & 113 \\ & 121 \end{aligned}$
PROPERTIES AND DESIGN DATA										
$\mathrm{V}_{7}(\mathrm{kN})$		2770	2490	2220	2100	1870	1720	1570	1410	
R (kN)		1590	1370	1170	1030	876	777	684	595	
G (kN)		59.8	54.6	49.2	47,4	42.7	39.3	36.2	32.9	
$\mathrm{Br}^{\prime}(\mathrm{kN})$		1990	1660	1350	1250	1020	864	733	603	
Lu (mm)		5210	5020	4880	4720	4600	4530	4440	4380	
d (mm)		585	577	571	560	554	551	546	543	
$\mathrm{b}(\mathrm{mm})$		319	317	315	318	316	315	313	312	
t (mm)		41,4	37.6	34.5	29.2	26.3	24.4	22.2	20.3	
w (mm)		23.1	21.1	19.0	18.3	16.5	15.2	14.0	12.7	
IMPERIAL SIZE AND WEIGHT										
Weight (lb/ti)		201	182	166	147	132	122	111	101	
Nominal Depth (in.)		21								

BEAM LOAD TABLES W Shapes

Total Uniformly Distributed Factored Loads for Laterally Supported Beams (kN)

Sections highlighted in yellow are commonly used sizes and are generally readily available.

Total Uniformly Distributed Factored Loads for Laterally Supported Beams (kN)

Sections highlighted in yellow are commonly used sizes and are generally readily available.

BEAM LOAD TABLES
W Shapes

Total Uniformly Distributed Factored Loads for Laterally Supported Beams (kN)

Sections highlighted in yellow are commonly used sizes and are generally readily available.

Total Uniformly Distributed Factored Loads for Laterally Supported Beams (kN)

Sections highlighted in yellow are commonly used sizes and are generally readily available.

Total Uniformly Distributed Factored Loads for Laterally Supported Beams (kN)

Sections highlighted in yellow are commonly used sizes and are generally readily available.

Total Uniformly Distributed Factored Loads for Laterally Supported Beams (kN)

Des	gnation	W360					Approx Deflect (mm)	W310					Approx. Deflect. (mm)
Mass (kg/m)		57	51	45	39	33		86	79	74	67	60	
	1000						1						1
	1500			996	940	792	2						2
	2000	1160	1050	966	822	672	3			1190	1070	932	3
	2500	1000	887	773	658	538	4		1100	1170	1040	927	5
	3000	836	739	644	548	448	6	1160	1060	977	869	773	7
	3500	717	634	552	470	384	9	1010	908	837	745	662	10
	4000	627	555	483	411	336	11	882	795	733	652	579	13
	4500	558	493	429	365	299	14	784	707	651	580	515	16
	5000	502	444	387	329	269	17	705	636	586	522	464	20
	5500	456	403	351	299	244	21	641	578	533	474	421	24
	6000	418	370	322	274	224	25	588	530	489	435	386	29
	6500	386	341	297	253	207	29	543	489	451	401	357	34
	7000	358	317	276	235	192	34	504	454	419	373	331	40
	7500	335	296	258	219	179	39	470	424	391	348	309	45
	8000	314	277	242	206	168	44	441	397	366	326	290	52
	8500	295	261	227	193	158	50	415	374	345	307	273	58
	9000	279	246	215	183	149	56	392	353	326	290	258	65
	9500	264	233	203	173	141	63	371	335	309	275	244	73
	10000	251	222	193	164	134	69	353	318	293	261	232	81
	10500	239	211	184	157	128	77	336	303	279	248	221	89
	11000	228	202	176	149	122	84	321	289	266	237	211	98
PROPERTIES AND DESIGN DATA													
	(kN)	580	524	498	470	396		578	552	597	533	466	
	kN)	312	273	249	240	201		389	361	402	348	296	
	kN)	20.4	18.6	17.9	16.8	15.0		23.5	22.8	24.3	22.0	19.4	
	(kN)	233	194	178	158	126		310	289	330	270	210	
	(mm)	2360	2320	2260	1660	1600		3900	3810	3100	3020	2960	
	mm)	358	355	352	353	349		310	306	310	306	303	
	(mm)	172	171	171	128	127		254	254	205	204	203	
	mm)	13.1	11.6	9.8	10.7	8.5		16.3	14.6	16.3	14.6	13.1	
	(mm)	7.9	7.2	6.9	6.5	5.8		9.1	8.8	9.4	8.5	7.5	
IMPERIAL SIZE AND WEIGHT													
Wei	hht (lb/ft)	38	34	30	26	22		58	53	50	45	40	
	ominal th (in.)	14						12					

Sections highlighted in yellow are commonly used sizes and are generally readily available.

BEAM LOAD TABLES
W Shapes
Total Uniformly Distributed Factored Loads for Laterally Supported Beams (kN)

Sections highlighted in yellow are commonly used sizes and are generally readily available.
\dagger Class 3

Total Uniformly Distributed Factored Loads for Laterally Supported Beams (kN)

Sections highlighted in yellow are commonly used sizes and are generally readily available.
\dagger Class 3

Total Uniformly Distributed Factored Loads for Laterally Supported Beams (kN)

Sections highlighted in yellow are commonly used sizes and are generally readily available.
\dagger Class 3

BEAMS WITH WEB HOLES

General

Structures may support a variety of pipes, ducts, conduits and other services, and efforts to reduce floor heights have led to these items being placed in the same plane as the structural floor members. Structural systems using stub girders, trusses and open-web steel joists provide openings for structural/mechanical integration; however, when beams with solid webs are used it may be necessary to cut openings through the webs. This section, based on research summarized by Redwood and Shrivastava (1980), describes a method to account for web holes during design of the member.

Special precautions may be required if it becomes necessary to cut holes in beam webs after construction is complete.

Design

The formulas are applicable for beams of Class 1 and Class 2 sections with openings between 0.3 and 0.7 times the depth of the beam, and hole lengths up to three times the hole height. The steel should meet the requirements of Clause 8.3.2(a) of CSA S16-14 and exhibit the characteristics necessary to achieve moment redistribution, such as ASTM A992.

The hole corner should have a radius at least equal to the larger of 16 mm or twice the web thickness. Fatigue loading considerations have not been accounted for in the formulas of this section and if holes are necessary in a member subjected to fatigue, some guidance is available from Frost and Leffler (1971).

Special design considerations are required if concentrated loads are to be located within the hole length or within one beam depth from either end of a hole,

The width-to-thickness ratio of outstanding reinforcing plates should meet Class 1 requirements.

Nomenclature
$A_{\rho} \quad=$ area of one flange $(b t)$
$A_{r} \quad=$ area of reinforcement along top or bottom edge of the hole
$A_{w} \quad=$ area of web $(d w)$
$e \quad=$ eccentricity of centreline of the hole above or below beam centreline (always positive)
$M_{f} \quad=$ bending moment due to factored loads at centreline of hole
$M_{r} \quad=$ factored moment resistance of an unperforated beam
$M_{o}, M_{l}=$ values of moment resistance defined in web hole formulas
$R \quad=$ radius of a circular hole
$s \quad=$ length of web between adjacent holes
$V_{f} \quad=$ shear force at centreline of hole due to factored loads
$V_{r}^{\prime}=$ factored shear resistance based on plastic analysis of an unperforated beam
$=0.8 \phi A_{w} F_{s}$ (S16-14 Clause 13.4.2)
$V_{o}, V_{l}=$ values of shear resistance defined in web hole formulas

Web Stability

This section of the Handbook is valid for the following range of values:

For Class 1 Sections	For Class 2 Sections
$V_{f} \leq 0.67 V_{r}^{\prime}$	$V_{f} \leq 0.45 V_{r}^{\prime}$
and in addition, for rectangular holes	and in addition, for rectangular holes
$a / H \leq 3.0$	$a / H \leq 2.2$
$(a / H)+6(2 H / d) \leq 5.6$	$(a / H)+6(2 H / d) \leq 5.6$

If these values are exceeded, refer to Redwood and Shrivastava (1980).

Deflections

One or two small circular holes normally result in negligible additional deflections; however, deflections of beams with large holes will increase because of local deformations caused by:
(a) effect of rotation produced by change in length of the tee sections above and below the hole
(b) local bending over the length of the hole
(c) shear deformations.

Multiple Holes

To avoid effects of interaction between two adjacent holes which may occur with high shear, the length of the web between the holes should satisfy the following, where $s=$ clear length of solid web between the holes:

Rectangular holes

$$
s \geq 2 H, \quad s \geq 2 a\left[\frac{V_{f} / V_{r}^{\prime}}{1-\left(V_{f} / V_{r}^{\prime}\right)}\right]
$$

Circular holes

$$
s \geq 3 R_{r}, \quad s \geq 2 R\left[\frac{V_{f} / V_{r}^{\prime}}{1-\left(V_{f} / V_{r}^{\prime}\right)}\right]
$$

where in each case the length, height or radius refers to that of the larger of the two holes.

Lateral Stability

The presence of a web hole has only a minor effect on the lateral stability of a beam, when the strength of the beam is governed by the resistance of a section remote from the hole. For members that may be susceptible to lateral buckling, refer to the paper by Redwood and Shrivastava (1980).

Unreinforced Holes

According to Clause 14.3.3.2 of S16-14 (see Part Two), unreinforced circular openings may be used under stipulated conditions. Round holes that are not covered by Clause 14.3.3.2 may be checked using the unreinforced hole formulas below by equating a and H to bole radius R as follows:

$$
2 a=0.9 R \text { and } 2 H=1.8 R
$$

Beam Resistance - Unreinforced Holes

Web stability must always be confirmed (see previous page), and compression zone stability of the tee section must be checked when $2 a>4 d_{1}$.

The factored shear force V_{f} and factored moment M_{f} applied at the web hole centreline must satisfy:

$$
\begin{align*}
& V_{f} \leq V_{l} \tag{1}\\
& M_{f} \leq M_{o}-\left(M_{o}-M_{l}\right) V_{f} / V_{l} \tag{2}
\end{align*}
$$

in which

$$
\begin{align*}
& \frac{M_{a}}{M_{r}}=1-\frac{\frac{A_{w}}{4 A_{f}}\left[\left(\frac{2 H}{d}\right)^{2}+\left(\frac{4 e}{d}\right)\left(\frac{2 H}{d}\right)\right]}{1+\frac{A_{w}}{4 A_{f}}} \tag{3}\\
& \frac{M_{1}}{M_{r}}=\frac{1-\frac{2}{\sqrt{3}}\left(\frac{A_{w}}{A_{f}}\right)\left(\frac{a}{d}\right) \sqrt{\frac{\alpha_{2}}{1+\alpha_{2}}}}{1+\frac{A_{w}}{4 A_{f}}} \tag{4}\\
& \frac{V_{1}}{V_{r}^{\prime}}=\frac{2}{\sqrt{3}}\left(\frac{a}{d}\right)\left(\frac{\alpha_{1}}{\sqrt{1+\alpha_{1}}}+\frac{\alpha_{2}}{\sqrt{1+\alpha_{2}}}\right) \tag{5}
\end{align*}
$$

where

$$
\begin{align*}
& \alpha_{1}=\frac{3}{16}\left(\frac{d}{a}\right)^{2}\left(1-\frac{2 H}{d}-\frac{2 e}{d}\right)^{2} \tag{6}\\
& \alpha_{2}=\frac{3}{16}\left(\frac{d}{a}\right)^{2}\left(1-\frac{2 H}{d}+\frac{2 e}{d}\right)^{2} \tag{7}
\end{align*}
$$

Tables 5-2 and 5-3 provide means of evaluating equations [1] and [2]. For further explanation of these tables, see Design Tables.

Reinforced Holes

Horizontal Bars Only

Equal areas of reinforcement should be placed above and below the opening, with the reinforcement as close as possible to the edges of the hole. Welds attaching the reinforcement to the beam web should be continuous and may be placed on only one side of the reinforcing bar (with a short weld at each end on the opposite side of the bar to maintain alignment). Within the length of the hole, the welds should develop twice the factored tensile resistance of the reinforcement except that the weld capacity need not exceed $1.15 a w F_{y}$. The reinforcement should extend past the hole far enough for the weld to develop the factored tensile resistance of the reinforcement but not less than a distance of $a / 2$.

Reinforcement may be placed on only one side of the web of Class 1 sections (for economy) providing the following conditions are satisfied:

$$
\begin{array}{ll}
A_{r} \leq 0.333 A_{f}, & M_{f} \leq 20 V_{f} d \text { (at the hole centreline) } \\
\text { a/ } H \leq 2.5, & d_{f} / w \leq 370 / \sqrt{F_{y}}
\end{array}
$$

Round holes may be checked using the reinforced hole formulas by relating a and H to R as follows:

$$
2 a=0.9 R \text { and } 2 H=2 R
$$

Once it is established that hole reinforcement is required, Table 5-4 provides a means of checking the resistance of a beam with a reinforced hole for an assumed area of reinforcement.

Vertical Bars

The compression zone stability of the reinforced tee should be checked by treating it as an axially loaded column with effective length equal to $2 a$.

If it is determined that web instability could be a problem, vertical reinforcing at the ends of the hole will be required. Attachment of both vertical and horizontal bars is generally more economical when the horizontal bars are placed on one side of the web with the vertical bars on the other side.

Beam Resistance - Holes with Horizontal Reinforcing Bars

Web stability and compression zone stability must be checked in addition to the following strength criteria. The factored shear force V_{f} and factored moment M_{f} at the web hole centreline must satisfy the following, where A_{r} is less than A_{f} :

$$
\begin{align*}
& V_{f} \leq V_{l} \tag{8a}\\
& V_{f} / V_{r}^{\prime} \leq 1-\frac{2 H}{d} \tag{8b}\\
& M_{f} \leq M_{o}-\left(M_{o}-M_{l}\right) V_{f} \mid V_{l} \tag{9a}\\
& M_{f} \leq M_{r} \tag{9b}
\end{align*}
$$

in which

$$
\begin{align*}
\left(\frac{M_{o}}{M_{r}}\right)_{a} & =1+\frac{\frac{A_{r}}{A_{f}}\left(\frac{2 H}{d}\right)-\frac{A_{w}}{4 A_{f}}\left[\left(\frac{2 H}{d}\right)^{2}+4\left(\frac{2 H}{d}\right)\left(\frac{e}{d}\right)-4\left(\frac{e}{d}\right)^{2}\right]}{1+\frac{A_{w}}{4 A_{f}}} \text { for } \frac{e}{d} \leq \frac{A_{r}}{A_{w}} \\
\text { or }\left(\frac{M_{o}}{M_{r}}\right)_{b} & =\left(\frac{M_{o}}{M_{r}}\right)_{a}-\frac{\frac{A_{w}}{A_{f}}\left(\frac{e}{d}-\frac{A_{r}}{A_{w}}\right)^{2}}{1+\frac{A_{w}}{4 A_{f}}} \text { for } \frac{e}{d}>\frac{A_{r}}{A_{w}} \tag{10b}\\
\left(\frac{M_{l}}{M_{r}}\right) & =\frac{1-\frac{A_{r}}{A_{f}}}{1+\frac{A_{w}}{4 A_{f}}} \tag{11}\\
\frac{V_{l}}{V_{r}^{\prime}} & =\sqrt{3}\left(\frac{d}{a}\right) \frac{A_{r}}{A_{w}}\left(1-\frac{2 H}{d}\right) \tag{12}
\end{align*}
$$

Flow Chart

The flowchart on the next page is provided as a guide in developing computer programs. The logic provided determines the minimum reinforcement, A_{r}, which will satisfy equation [9a].

References

Frost, R.W., and Leffler, R.E. 1971. Fatigue tests of beams with rectangular web holes. Journal of the Structural Division, ASCE, 97(ST2): 509-527.
PART Two of this Handbook.
REDWOOD, R.G. 1974. The influence of web holes on the design of steel beams. Proceedings, Canadian Structural Engineering Conference, Canadian Steel Construction Council, Willowdale, Ontario.

REDWOOD, R.G. 1971. Simplified plastic analysis for reinforced web holes. Engineering Journal, AISC, 8(3): 128-131.
ReDWOOD, R.G., and Shrivastava, S.C. 1980. Design recommendations for steel beams with web holes. Canadian Journal of Civil Engineering, 7(4), December.
REDWOOD, R.G., and WONG, P. 1982. Web holes in composite beams with steel deck. Proceedings, Canadian Structural Engineering Conference, Canadian Steel Construction Council, Willowdale, Ontario.

REINFORCED HOLE PROGRAM FLOWCHART

Design Tables

(a) Unreinforced Holes

Table 5-2 gives the values of constants C_{1} and C_{2} for unreinforced holes where

$$
C_{1}=\frac{M_{o}}{M_{r}} \text { and } C_{2}=\frac{M_{o} / M_{r}-M_{l} / M_{r}}{V_{l} / V_{r}^{\prime}}
$$

where M_{o}, M_{l} and V_{l} are defined in equations [3] to [5].
Table 5-3 gives the value of constant C_{3} taken as $V_{1} / V_{\mathrm{r}}^{\prime}$.
A_{w} / A_{f} varies from 0.5 to $2.25,2 H / d$ from 0.3 to $0.6, a / H$ from 0.50 to 2.2 , and $e / d=0$,
Written in terms of the constants C_{1} and C_{2}, [2] becomes

$$
\begin{equation*}
\frac{M_{f}}{M_{r}} \leq C_{1}-C_{2}\left(\frac{V_{f}}{V_{r}^{\prime}}\right) \tag{13}
\end{equation*}
$$

and [1] becomes

$$
\begin{equation*}
\frac{V_{f}}{V_{r}^{\prime}} \leq C_{3} \tag{14}
\end{equation*}
$$

Use
For concentric $(e / d=0)$ unreinforced holes, compute $A_{w} / A_{f}, 2 H / d$ and a / H. Determine C_{1}, C_{2} and C_{3} with the aid of Tables 5-2 and 5-3 for use in equations [13] and [14].
(b) Reinforced Holes

Table 5-4 gives the values of the constants C_{4} and C_{5} for reinforced holes where
$C_{4}=\frac{M_{o}}{M_{r}}$ and $C_{5}=\frac{M_{o} / M_{r}-M_{1} / M_{r}}{V_{l} / V_{r}^{\prime}}$
where M_{o}, M_{l} and V_{l} are defined in equations [10] to [12] for concentric holes $(e / d=0)$.
A_{w} / A_{f} varies from 0.5 to $2.25,2 \mathrm{H} / d$ from 0.3 to 0.6 , and a / H from 0.45 to 2.2 , for the three values of $A_{r} / A_{f}, 0.333,0.667$ and 1.0.

Written in terms of the constants C_{4} and C_{5}, [9a] becomes

$$
\begin{equation*}
\frac{M_{f}}{M_{r}} \leq C_{4}-C_{5}\left(\frac{V_{f}}{V_{r}^{\prime}}\right) \tag{15}
\end{equation*}
$$

Use
For concentric $(e / d=0)$ reinforced holes, compute $A_{w} / A_{f}, 2 H / d$ and a / H. Determine C_{4} and C_{5}, for one of the assumed values of A_{r} / A_{f}, for use in [15].

Calculate V_{l} from [12] for use in [8a].
Then check equations [8b] and [9b].

Example

Given:

A simple-span W610x101 beam of ASTM A992 grade steel ($F_{y}=345 \mathrm{MPa}$) spanning 12 m supports a factored total uniformly distributed load of $480 \mathrm{kN}(40 \mathrm{kN} / \mathrm{m})$. Check the adequacy of the section for two rectangular holes located as shown. Lateral support to the compression flange is provided.

Solution for Hole 'A':

Class of beam: from Table 5-1, W610x101 is a Class I
From the Beam Selection Table, $M_{r}=900 \mathrm{kN} \cdot \mathrm{m}$

$$
V_{r}^{\prime}=0.8 \phi A_{w} F_{s}=0.8 \times 0.9 \times(603 \times 10.5) \times 0.66 \times 345=1040 \mathrm{kN}
$$

At centreline of hole
$M_{f}=40 \mathrm{kN} / \mathrm{m} \times 4.6 \mathrm{~m} \times(12-4.6) / 2=681 \mathrm{kN} \cdot \mathrm{m}$
$V_{f}=40 \mathrm{kN} / \mathrm{m} \times((12 / 2)-4.6)=56.0 \mathrm{kN}$
$\frac{M_{f}}{M_{r}}=\frac{681}{900}=0.757$ and $\frac{V_{f}}{V_{r}{ }^{\prime}}=\frac{56.0}{1040}=0.0538$
Check stability of web (see Web Stability)
$\frac{V_{f}}{V_{r}^{\prime}}=0.0538<0.67$
a/ $H=1.33<3.0$ (limit for Class 1 beam)
$a / H+6(2 \mathrm{H} / \mathrm{d})=200 / 150+6(300 / 603)=1.33+6(0.498)=4.32<5.6$
Check compression zone stability
OK, if $2 a \leq 4 d_{t}=4((603 / 2)-150)=606 \mathrm{~mm}$
$2 a=400 \mathrm{~mm}<606 \mathrm{~mm}$

Check for unreinforced hole
$\frac{A_{w}}{A_{f}}=\frac{10.5 \times 603}{228 \times 14.9}=1.86$ and $\frac{2 H}{d}=0.50$
$C_{I}=0.92$, from Table 5-2
For $a / H=1.33 \quad$ Use 1.4
$C_{2}=1.9$, from Table 5-2
$C_{3}=0.263$, from Table 5-3

$$
\begin{align*}
\frac{M_{f}}{M_{r}} & \leq C_{1}-C_{2}\left(\frac{V_{f}}{V_{r}^{\prime}}\right) \quad \text { 113] } \tag{13}\\
& \leq 0.92-1.9(0.0538)=0.818 \\
& M_{f} / M_{r}=0.757<0.818 \\
\frac{V_{f}}{V_{r}^{\prime}} & \leq C_{3} \quad[14] \tag{14}\\
& 0.0538<0.263 \quad \text { OK }
\end{align*}
$$

Therefore, reinforcement is not required.

Solution for Hole 'B'

At centreline of hole

$$
\begin{aligned}
& M_{f}=40 \mathrm{kN} / \mathrm{m} \times 2.7 \mathrm{~m} \times(12-2.7) / 2=502 \mathrm{kN} \cdot \mathrm{~m} \\
& V_{f}=40 \mathrm{kN} / \mathrm{m} \times((12 / 2)-2.7)=132 \mathrm{kN} \\
& \frac{M_{f}}{M_{r}}=\frac{502}{900}=0.558 \text { and } \frac{V_{f}}{V_{r}{ }^{\prime}}=\frac{132}{1040}=0.127
\end{aligned}
$$

Check spacing between holes

Use $2 H$ of larger hole.

$$
\begin{aligned}
& \text { OK, if } s \geq 2 H=350 \text { and } s \geq 2 a\left[\frac{V_{f} / V_{r}^{\prime}}{1-\left(V_{f} / V_{r}^{\prime}\right)}\right]=600\left[\frac{0.127}{1-0.127}\right]=87.3 \mathrm{~mm} \\
& s=12000-(2700+4600)=4700 \mathrm{~mm}>350 \mathrm{~mm}
\end{aligned}
$$

Check stability of web (see Web Stability)

$$
\frac{V_{f}}{V_{r}^{\prime}}=0.127<0.67
$$

a) $H=1.71<3.0$ (limit for Class 1 beam)
$a / H+6(2 H / d)=300 / 175+6(350 / 603)=1.71+6(0.580)=5.19<5.6$

Check compression zone stability

OK, if $2 a \leq 4 d_{1}$ (unreinforced tee)

$$
\leq 4((603 / 2)-175)=506 \mathrm{~mm}
$$

$$
2 a=600 \mathrm{~mm}>506 \mathrm{~mm} \text { (not adequate) }
$$

Check for unreinforced hole
From Table 5-2, for $A_{w} / A_{f}=1.86 \quad$ (use 2.0)

$$
\text { and } 2 H / d=0.58 \quad \text { (use } 0.60 \text {), } \quad C_{1}=0.88
$$

For $a / H=1.71 \quad$ (use 1.8),$\quad C_{2}=3.83$

$$
\begin{aligned}
\frac{M_{f}}{M_{r}} & \leq C_{1}-C_{2}\left(\frac{V_{f}}{V_{r}^{\prime}}\right) \quad[13] \\
& \leq 0.88-3.83(0.127)=0.394
\end{aligned}
$$

$M_{J} / M_{r}=0.558>0.394$ (reinforcement required)

Reinforcement

Assume $A_{r} / A_{f}=0.333$ (maximum permitted for one-sided reinforcement)
Reinforcing plate either CSA G40.21 350W or ASTM A572 grade 50 ksi steel.
From Table 5-4,

$$
\begin{aligned}
& \text { for } \frac{A_{r}}{A_{f}}=0.333, \frac{A_{w}}{A_{f}}=2.0, \frac{2 H}{d}=0.60 \\
& C_{4}=1.013
\end{aligned}
$$

For $a / H=1.71, C_{S}=2.53$ (by interpolation)

$$
\begin{aligned}
\frac{M_{f}}{M_{r}} & \leq C_{4}-C_{5}\left(\frac{V_{f}}{V_{r}^{\prime}}\right) \quad[15] \\
& \leq 1.013-2.53(0.127)=0.692
\end{aligned}
$$

Section through beam at hole ' B '
$M_{f} / M_{r}=0.558<0.692$
Further refinement of A_{r} / A_{f} can be accomplished by using the expressions previously given.

Check one-sided reinforcement

$$
\begin{aligned}
M_{f} & \leq 20 V_{f} d \text { at hole centreline (see Reinforced Holes) } \\
& \leq 20 \times 132 \times 603=1590 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

$$
M_{f}=502 \mathrm{kN} \cdot \mathrm{~m}<1590 \mathrm{kN} \cdot \mathrm{~m}
$$

$$
a / H=1.71<2.5
$$

For Unreinforced Concentric Holes in Beam Webs

$\frac{A_{w}}{A_{1}}$	$\frac{2 \mathrm{H}}{\mathrm{~d}}$	C_{1}	C_{2}							
			For following a/ H values							
			0.50	1.0	1.2	1.4	1.6	1.8	2.0	2.2
0.50	0.30	0.990	0.204	0.271	0.300	0.330	0.360	0,391	0.423	0.455
	0.35	0.986	0.226	0.315	0.353	0.392	0.433	0.474	0.516	0.558
	0.40	0.982	0.252	0.367	0.417	0.468	0.520	0.574	0.628	0.682
	0.45	0.978	0.283	0.432	0.495	0.561	0.628	0.696	0.764	0.833
	0.50	0.972	0.321	0.511	0.593	0.676	0,761	0.846	0,933	1.020
	0.55	0.966	0.368	0.612	0.715	0.820	0.927	1.035	1.143	1.252
	0.60	0,960	0.428	0.740	0.872	1.005	1.140	1.275	1.411	
0.75	0.30	0.986	0.290	0.385	0.426	0.468	0.512	0.556	0.601	0.647
	0.35	0.981	0,321	0.447	0.502	0.557	0.615	0.673	0.733	0.793
	0.40	0.975	0.358	0.522	0.593	0.665	0.740	0.815	0.892	0.970
	0.45	0.968	0.402	0.613	0.704	0.797	0.892	0.989	1.086	1.184
	0.50	0.961	0.456	0.726	0.842	0.961	1.081	1.203	1.325	1.449
	0.55	0.952	0.522	0.869	1.016	1.166	1.317	1.470	1.624	1.779
	0.60	0.943	0.608	1.052	1.239	1.428	1.619	1.812	2.005	
1.00	0.30	0.982	0.367	0.488	0.540	0.593	0.648	0.705	0.762	0.820
	0.35	0.976	0.407	0.567	0.635	0.706	0.779	0.853	0.928	1.005
	0.40	0.968	0.454	0.661	0.751	0.843	0.937	1.033	1.130	1.228
	0.45	0.960	0.510	0.777	0.892	1.010	1.130	1.252	1.376	1.500
	0.50	0.950	0.577	0.920	1.067	1.217	1.369	1.523	1.679	1.835
	0.55	0.940	0.662	1.101	1.287	1.477	1.669	1.862	2.057	2.253
	0.60	0.928	0.770	1.333	1.569	1.809	2.051	2.295	2.539	.
1.25	0.30	0.979	0.437	0.581	0.643	0.706	0.772	0.839	0.907	0.976
	0.35	0.971	0.485	0.675	0.756	0.841	0.927	1.015	1.105	1.196
	0.40	0.962	0.540	0.787	0.894	1.003	1.115	1.229	1.345	1.462
	0.45	0.952	0.607	0.925	1.062	1.202	1.346	1.491	1.638	1.786
	0.50	0.940	0.687	1.095	1.270	1,449	1.630	1.813	1.999	2.185
	0.55	0.928	0.788	1.310	1.532	1.758	1.987	2.217	2.449	2.682
	0.60	0.914	0.916	1.587	1.868	2.154	2.442	2.732	3.023	
1.50	0.30	0.975	0.500	0.666	0.736	0.809	0.884	0.961	1.039	1.118
	0.35	0.967	0.555	0.773	0.866	0.963	1.062	1.163	1.266	1.370
	0.40	0.956	0.619	0.902	1.024	1.149	1.278	1.408	1.541	1.675
	0.45	0.945	0.695	1.059	1.216	1.377	1.541	1.708	1.876	2.046
	0.50	0.932	0.787	1.255	1.455	1.659	1.867	2.077	2.289	2.502
	0.55	0.918	0.902	1.501	1.755	2.014	2.276	2.540	2.805	3.072
	0.60	0.902	1.050	1.817	2.140	2.467	2.797	3.129	3.463	.
1.75	0.30	0.973	0.558	0.743	0.822	0.903	0.987	1.072	1.159	1.248
	0.35	0.963	0.619	0.862	0.967	1.075	1.185	1.298	1.413	1.529
	0.40	0.951	0.691	1.006	1.142	1.282	1.426	1.572	1.719	1.869
	0.45	0.938	0.776	1.182	1.357	1.537	1.720	1.906	2.094	2.283
	0.50	0.924	0.879	1.400	1.624	1.852	2.084	2.318	2.555	2.793
	0.55	0.908	1.007	1.675	1.959	2.247	2.539	2.834	3.131	3.429
	0.60	0.890	1.171	2.028	2.388	2.753	3.122	3.492	3.864	*
2.00	0.30	0.970	0.611	0.813	0.900	0.989	1.081	1.174	1.270	1.366
	0.35	0.959	0.678	0.944	1.059	1.177	1.298	1.421	1.547	1.674
	0.40	0.947	0.757	1.102	1.251	1.405	1.561	1.721	1.883	2.047
	0.45	0.933	0.849	1.295	1.486	1.683	1.884	2.087	2.293	2.500
	0.50	0.917	0.962	1.534	1.778	2.028	2.282	2.539	2.798	3.059
	0.55	0.899	1.103	1.835	2.145	2.461	2.781	3.104	3.429	3.755
	0.60	0.880	1.283	2.221	2.616	3.016	3.419	3.825	4.232	.
2.25	0,30	0.968	0.660	0.878	0.972	1.068	1.167	1.268	1.371	1.476
	0.35	0.956	0.733	1.020	1.144	1.271	1.402	1.535	1.671	1.808
	0.40	0.942	0.817	1.190	1,351	1.517	1.686	1.859	2.034	2.211
	0.45	0.927	0.917	1.398	1.605	1.818	2.034	2.254	2.476	2.700
	0.50	0.910	1.039	1.656	1.920	2.190	2.465	2.742	3.022	3.303
	0.55	0.891	1.191	1.981	2.317	2.658	3.004	3.352	3.703	4.056
	0.60	0.870	1.386	2.399	2.825	3.257	3.692	4.131	4.571	.

* a / H plus $6(2 \mathrm{H} / \mathrm{d})$ exceeds 5.6 .

$$
\frac{d_{t}}{w}=\frac{(603 / 2)-175}{10.5}=12.0 \leq \frac{370}{\sqrt{F_{y}}}=19.9
$$

Therefore, one-sided reinforcement is adequate.

$$
A_{r}=0.33 \times A_{f}=0.33(228 \times 14.9)=1120 \mathrm{~mm}^{2}
$$

Check shear

$$
\begin{aligned}
V_{l}=\sqrt{3} & \left(\frac{d}{a}\right)\left(\frac{A_{r}}{A_{w}}\right)\left(1-\frac{2 H}{d}\right) V_{r}^{\prime} \quad[12] \\
& =\sqrt{3}\left(\frac{603}{300}\right)\left(\frac{1120}{10.5 \times 603}\right)(1-0.58) 1040=269
\end{aligned}
$$

$$
V_{f} \leq V_{l} \quad[8 \mathrm{a}]
$$

$$
132<269
$$

$$
V_{f} / V_{r}^{\prime} \leq 1-2 H / d
$$

$$
\leq 1-0.58=0.42
$$

$$
V_{f} / V_{r}^{\prime}=0.127<0.42
$$

Try 16×70 reinforcement

$$
\begin{aligned}
\frac{b}{t} & \leq \frac{145}{\sqrt{F_{y}}} \quad(\text { for Class } 1) \\
& \leq 7.81 \\
b / t & =70 / 16=4.38<7.81
\end{aligned}
$$

Therefore, use 16×70 one-sided reinforcement.

VALUES OF C ${ }_{3}$

Table 5-3

For Unreinforced Concentric Holes in Beam Webs

$2 \mathrm{H} / \mathrm{d}$	a / H							
	0.5	1.0	1.2	1.4	1.6	1.8	2.0	2.2
0.30	0.680	0.627	0.602	0.575	0.549	0.523	0.498	0.474
0.35	0.621	0.552	0.521	0.490	0.461	0.433	0.407	0.384
0.40	0.560	0.475	0.441	0.408	0.378	0.351	0.327	0.305
0.45	0.497	0.400	0.364	0.332	0.303	0.279	0.257	0.238
0.50	0.433	0.327	0.293	0.263	0.238	0.217	0.199	0.183
0.55	0.368	0.260	0.229	0.203	0.182	0.165	0.150	0.138
0.60	0.302	0.200	0.173	0.152	0.136	0.122	0.111	0.102

VALUES OF C_{4} AND C C_{5}
For Reinforced Concentric Holes in Beam Webs

$\frac{A_{w}}{A_{r}}$	$\frac{2 \mathrm{H}}{\mathrm{~d}}$	C_{4}	C_{5}							
			For following a/H values							
			0.45	1.0	1.2	1.4	1.6	1.8	2.0	2.2
0.50	0.30	1.079	0.041	0.090	0.108	0.126	0.144	0.162	0.181	0.199
	0.35	1.090	0.052	0.116	0.139	0.162	0.186	0.209	0.232	0.255
	0.40	1.101	0.066	0.147	0.176	0.205	0.235	0.264	0.293	0.323
	0.45	1.111	0.083	0.184	0.220	0.257	0.294	0.331	0.367	0.404
	0.50	1.120	0.103	0.229	0.274	0.320	0.366	0.411	0.457	0.503
	0.55	1.129	0.128	0.284	0.341	0.398	0.455	0.511	0.568	0.625
	0.60	1.138	0.159	0.354	0.425	0.496	0.567	0.637	0.708	.
0.75	0.30	1.070	0.064	0.142	0.170	0.198	0.227	0.255	0.283	0.312
	0,35	1.079	0.081	0.181	0.217	0.253	0.290	0.326	0.362	0.398
	0.40	1.087	0.102	0.228	0.273	0.319	0.364	0.410	0.455	0.501
	0.45	1.094	0.127	0.283	0.340	0.397	0.453	0.510	0.567	0.623
	0.50	1.101	0.158	0.350	0.421	0.491	0.561	0.631	0.701	0.771
	0.55	1.106	0.195	0.433	0.519	0.606	0.693	0.779	0.866	0.952
	0.60	1.111	0.241	0.536	0.643	0.751	0.858	0.965	1.072	-
1.00	0,30	1.062	0.088	0.196	0.236	0.275	0.314	0.353	0.393	0.432
	0.35	1.069	0.112	0.250	0.300	0.350	0.400	0.450	0.500	0.550
	0.40	1.075	0.141	0.313	0.375	0.438	0.500	0.563	0.625	0.688
	0,45	1.079	0.174	0.387	0.465	0.542	0.619	0.697	0.774	0.852
	0.50	1.083	0.214	0.476	0.572	0.667	0.762	0.858	0.953	1.048
	0.55	1.086	0.263	0.585	0.702	0.819	0.936	1.054	1.171	1.288
	0.60	1.088	0.324	0.721	0.865	1.009	1.153	1.297	1.441	
1.25	0.30	1.055	0.114	0.254	0.305	0.355	0.406	0.457	0.508	0.558
	0.35	1.060	0.145	0.322	0.386	0.450	0.515	0.579	0.644	0.708
	0.40	1.063	0.180	0,401	0.481	0,562	0.642	0.722	0.802	0.882
	0.45	1.066	0.223	0.495	0.593	0.692	0.791	0.890	0.989	1.088
	0.50	1.067	0.273	0.606	0.727	0.848	0.969	1.091	1.212	1.333
	0,55	1.068	0.333	0.741	0.889	1.037	1.185	1.333	1.482	1.630
	0.60	1.067	0.408	0.908	1.089	1.271	1.452	1.634	1.815	
1.50	0.30	1.048	0.141	0.314	0.377	0.439	0.502	0.565	0.628	0.690
	0,35	1.051	0.178	0,396	0.476	0.555	0.634	0.714	0.793	0.872
	0.40	1.053	0.222	0.493	0.591	0.690	0.788	0.887	0.985	1.084
	0.45	1,054	0.272	0.605	0.726	0.847	0.968	1.089	1.210	1.331
	0.50	1.053	0.332	0.738	0.886	1.034	1.181	1.329	1.477	1.624
	0.55	1.051	0.405	0.899	1.079	1.258	1.438	1.618	1.798	1.978
	0.60	1.047	0.493	1.096	1.316	1.535	1.754	1.973	2.193	.
1.75	0.30	1.042	0.169	0.376	0.451	0.526	0.601	0.677	0.752	0.827
	0.35	1.044	0.213	0.474	0.568	0.663	0.758	0.853	0.947	1.042
	0.40	1.044	0.264	0.587	0.704	0.821	0.938	1.056	1.173	1.290
	0.45	1.043	0.323	0.718	0.862	1.005	1.149	1.293	1.436	1.580
	0.50	1.040	0.393	0.873	1.048	1.223	1.397	1.572	1.747	1.922
	0.55	1.035	0.477	1.059	1.271	1.483	1.695	1.907	2.119	2.331
	0.60	1.029	0.579	1.287	1.544	1.801	2.059	2.316	2.573	,
2.00	0.30	1.037	0.198	0.440	0.528	0.616	0.704	0.792	0.880	0.968
	0.35	1.037	0.249	0.553	0.663	0.774	0.885	0.995	1.106	1.216
	0.40	1.035	0.307	0.683	0.819	0.956	1.093	1.229	1.366	1.502
	0.45	1.032	0.375	0.834	1.000	1.167	1.334	'1.501	1.667	1.834
	0.50	1.028	0.455	1.011	1.213	1.415	1.617	1.819	2.022	2.224
	0.55	1.021	0.550	1.222	1.466	1.711	1.955	2.199	2.444	2.688
	0.60	1.013	0.665	1.479	1.774	2.070	2.366	2.661	2.957	.
2.25	0.30	1.032	0.227	0.505	0.607	0.708	0.809	0.910	1.011	1.112
	0.35	1.030	0.285	0.634	0.761	0.888	1.014	1.141	1.268	1.395
	0.40	1.028	0.352	0.781	0.937	1.094	1.250	1.406	1.562	1.719
	0.45	1.023	0.428	0.951	1.142	1.332	1.522	1.712	1.903	2.093
	0.50	1.017	0.518	1.150	1.380	1.610	1.840	2.070	2.300	2.530
	0.55	1.008	0.624	1.386	1.663	1.941	2.218	2.495	2.772	3.049
	0.60	0.998	0.752	1.672	2.006	2.340	2.675	3.009	3.344	*

For Reinforced Concentric Holes in Beam Webs

$\frac{A_{w}}{A_{f}}$	$\frac{2 H}{d}$	C_{4}	C_{5}							
			For following a / H values							
			0.45	1.0	1.2	1.4	1.6	1.8	2.0	2,2
0,50	0.30	1,168	0,036	0.081	0,097	0.113	0.129	0.146	0.162	0.178
	0.35	1.194	0.047	0.105	0.126	0.146	0.167	0.188	0.209	0.230
	0.40	1.219	0.060	0.133	0.160	0.186	0.213	0.240	0.266	0.293
	0.45	1.244	0.076	0.168	0,201	0.235	0.269	0.302	0.336	0.369
	0.50	1.269	0.095	0.210	0.253	0.295	0.337	0.379	0.421	0.463
	0.55	1.292	0.119	0.264	0.316	0,369	0.422	0.474	0.527	0.580
	0.60	1.316	0.149	0.331	0,397	0.463	0.530	0.596	0.662	.
0.75	0.30	1.154	0.055	0.122	0.146	0.170	0.195	0.219	0.243	0.267
	0.35	1.177	0.071	0.157	0.188	0.219	0.251	0.282	0.314	0.345
	0.40	1.199	0.089	0.199	0.239	0.278	0.318	0.358	0.398	0.438
	0.45	1.221	0.112	0.250	0.300	0.350	0.400	0,450	0.499	0.549
	0.50	1.241	0.140	0.312	0.374	0.437	0.499	0.561	0.624	0.686
	0.55	1.261	0.175	0.389	0.467	0.545	0.623	0.700	0.778	0.856
	0.60	1.280	0.219	0.487	0.584	0.681	0.779	0.876	0.974	.
1.00	0.30	1.142	0.073	0.162	0,195	0.227	0.260	0.292	0.325	0.357
	0.35	1.162	0.094	0.209	0.251	0.292	0.334	0.376	0.418	0.459
	0.40	1.181	0.119	0.284	0.317	0.370	0.422	0.475	0.528	0.581
	0.45	1.200	0.149	0.330	0,397	0.463	0.529	0.595	0.661	0.727
	0.50	1.217	0.185	0.411	0.494	0.576	0.658	0.740	0.823	0.905
	0.55	1.233	0.230	0.511	0.614	0.716	0.818	0.920	1.023	1.125
	0.60	1.248	0,287	0.637	0.765	0.892	1.020	1.147	1.275	.
1.25	0.30	1.131	0.092	0.203	0.244	0.285	0.325	0.366	0.407	0.448
	0.35	1.149	0.117	0.261	0,313	0.365	0.417	0.469	0,521	0.574
	0.40	1.165	0.148	0.329	0.394	0.460	0.526	0.592	0.657	0.723
	0.45	1.180	0.185	0.410	0.492	0.574	0.656	0.738	0.820	0.902
	0.50	1.195	0.229	0.509	0.611	0.713	0.814	0.916	1,018	1.120
	0.55	1.207	0.284	0.631	0.757	0.883	1.009	1.135	1.261	1.387
	0.60	1.219	0.353	0.783	0.940	1.097	1.254	1.410	1.567	.
1.50	0.30	1.121	0.110	0.245	0.293	0.342	0.391	0.440	0.489	0.538
	0.35	1.136	0.141	0.313	0.375	0.438	0.500	0.563	0.625	0.688
	0.40	1.150	0.177	0.393	0.472	0.550	0.629	0.708	0.786	0.865
	0.45	1.163	0.220	0,489	0.587	0.685	0.783	0.880	0.978	1.076
	0.50	1.174	0.272	0.605	0.726	0.847	0.968	1.089	1.210	1.331
	0.55	1.184	0.336	0.748	0.897	1.047	1.196	1,346	1.495	1.645
	0.60	1.193	0.417	0.926	1.111	1.296	1.481	1.666	1.852	.
1.75	0.30	1.112	0.129	0.286	0.343	0.400	0.457	0.514	0.571	0.629
	0.35	1.125	0.164	0.364	0.437	0.510	0.583	0.656	0.729	0.802
	0.40	1,137	0.206	0.457	0.549	0.640	0.731	0.823	0.914	1.006
	0.45	1.147	0.255	0.567	0.681	0.794	0.908	1.021	1.135	1.248
	0.50	1.156	0.315	0.700	0.840	0.980	1.120	1.260	1.400	1.540
	0.55	1,163	0.388	0.862	1.035	1.207	1.380	1.552	1.725	1.897
	0.60	1.169	0.479	1.065	1.278	1.491	1.704	1.917	2.129	.
2.00	0.30	1.103	0.147	0.327	0.392	0.458	0.523	0.589	0.654	0.719
	0.35	1.115	0.187	0.416	0.499	0.583	0.666	0.749	0.832	0.915
	0.40	1.125	0.234	0.521	0.625	0.729	0.833	0,937	1.042	1.146
	0.45	1.133	0.290	0.645	0.774	0.903	1.032	1.161	1.290	1.419
	0.50	1.139	0.357	0.794	0.952	1.111	1.270	1.429	1.587	1.746
	0.55	1.144	0.439	0.975	1.170	1.365	1.560	1.755	1.950	2.145
	0.60	1.147	0.540	1.201	1.441	1.681	1.921	2.161	2.402	. 14
2.25	0.30	1.096	0.166	0.368	0.442	0.516	0.589	0.663	0.737	0.810
	0.35	1.105	0.211	0.468	0.561	0.655	0.749	0,842	0.936	1.029
	0.40	1.113	0.263	0.584	0.701	0.818	0.935	1.052	1.169	1.285
	0.45	1.119	0.325	0.722	0.866	1.011	1.155	1.299	1.444	1.588
	0.50	1.123	0.399	0.886	1.064	1.241	1.418	1.596	1.773	1.950
	0.55	1.126	0.489	1.086	1.304	1.521	1.738	1.955	2.173	2.390
	0.60	1.127	0.600	1.334	1.601	1.868	2.135	2.402	2.668	

[^39]For Reinforced Concentric Holes in Beam Webs

$\frac{A_{w}}{A_{1}}$	$\frac{2 H}{d}$	C_{4}	C_{5}							
			For following a/H values							
			0.45	1.0	1.2	1.4	1.6	1.8	2.0	2,2
0.50	0.30	1.257	0.035	0.078	0,093	0.109	0.124	0.140	0.155	0.171
	0.35	1.298	0.045	0,101	0.121	0.141	0.161	0.182	0.202	0.222
	0.40	1.338	0.058	0.129	0.154	0.180	0.206	0.232	0.257	0.283
	0.45	1.378	0.073	0.163	0.195	0.228	0.260	0.293	0.325	0.358
	0.50	1.417	0.092	0.204	0.245	0.286	0.327	0.368	0.409	0.450
	0.55	1.455	0.116	0.257	0.308	0.359	0.411	0.462	0.513	0.565
	0.60	1.493	0.145	0.323	0.388	0.453	0.517	0.582	0.647	.
0.75	0.30	1.238	0.052	0.115	0.138	0.161	0.184	0.207	0.230	0.253
	0.35	1.275	0.067	0.149	0.178	0.208	0.238	0,268	0.297	0.327
	0.40	1.312	0.085	0.189	0,227	0.265	0.303	0.341	0.379	0.416
	0.45	1.347	0.107	0.239	0.286	0.334	0.382	0.429	0.477	0.525
	0.50	1.382	0.135	0.299	0.359	0.419	0.479	0.538	0.598	0.658
	0.55	1.415	0.169	0.375	0.449	0.524	0.599	0.674	0.749	0.824
	0.60	1.448	0.212	0.470	0,564	0,659	0.753	0.847	0.941	.
1.00	0.30	1.222	0.068	0.151	0.181	0.212	0.242	0.272	0.302	0.333
	0.35	1.256	0.088	0.195	0.234	0.273	0.312	0.351	0.390	0.429
	0.40	1.288	0.112	0,248	0.297	0,347	0.397	0.446	0.496	0,545
	0.45	1.320	0.140	0.312	0.374	0.436	0.499	0.561	0.623	0.686
	0.50	1.350	0.175	0.390	0.468	0.546	0.624	0.701	0.779	0.857
	0.55	1.380	0.219	0.487	0.584	0.681	0.779	0.876	0.973	1.071
	0.60	1.408	0.274	0.610	0.732	0.854	0.975	1.097	1.219	
1.25	0.30	1,207	0.084	0.187	0.224	0,261	0.299	0.336	0.373	0.411
	0.35	1.238	0.108	0.240	0.289	0.337	0.385	0.433	0.481	0.529
	0.40	1.267	0.137	0.305	0.366	0.427	0.488	0,548	0.609	0.670
	0.45	1.295	0.172	0.382	0.459	0.535	0.612	0.688	0.764	0.841
	0.50	1.321	0.215	0.477	0.572	0,668	0.763	0.858	0.954	1.049
	0.55	1.347	0.267	0.594	0.713	0.832	0.951	1.069	1.188	1.307
	0.60	1.371	0,334	0.742	0.891	1.039	1.188	1.336	1.485	1.307
1,50	0.30	1.194	0.100	0.222	0.266	0.310	0.354	0.399	0.443	0.487
	0.35	1.221	0.128	0.285	0.342	0,399	0.456	0.512	0.569	0.626
	0.40	1.247	0.162	0.360	0.432	0.504	0.576	0.648	0.720	0,792
	0.45	1,272	0.203	0.451	0.541	0.631	0.721	0.811	0.901	0.991
	0.50	1.295	0.252	0.561	0.673	0,785	0.898	1.010	1.122	1.234
	0.55	1,318	0.314	0.697	0.837	0.976	1.116	1.255	1.395	1.534
	0.60	1.338	0.391	0.869	1.043	1.217	1.391	1.565	1.738	.
1.75	0.30	1.181	0.115	0.256	0.307	0,358	0.409	0.460	0.512	0.563
	0.35	1.206	0.148	0.328	0.394	0.459	0.525	0.591	0.656	0.722
	0.40	1.230	0.186	0.414	0.497	0.580	0.663	0.745	0.828	0.911
	0.45	1.251	0.233	0.517	0,621	0,724	0.828	0.931	1.034	1,138
	0.50	1.272	0.289	0.642	0.771	0.899	1.028	1.156	1.285	1.413
	0.55	1.291	0.359	0.797	0.956	1.116	1.275	1.434	1.594	1.753
	0.60	1.308	0.446	0.991	1.189	1.387	1.586	1.784	1.982	-
2.00	0.30	1,170	0.130	0.289	0.347	0.405	0.463	0.521	0.579	0.637
	0.35	1.193	0.167	0.371	0.445	0.519	0.593	0.667	0.741	0.816
	0.40	1.213	0.210	0.467	0.560	0.654	0.747	0.841	0.934	1.027
	0.45	1.233	0.262	0.582	0.699	0.815	0.932	1.048	1.164	1.281
	0.50	1.250	0.325	0.722	0.866	1.010	1.155	1.299	1.443	1.588
	0.55	1.266	0.402	0.893	1.072	1.251	1.429	1.608	1.786	1.965
	0.60	1.280	0.499	1.109	1.330	1.552	1.774	1.995	2.217	1.96
2.25	0.30	1.160	0.145	0.323	0.387	0.452	0.516	0.581	0.646	0.710
	0.35	1.180	0.186	0.413	0.495	0.578	0.660	0.743	0,825	0.908
	0.40	1.198	0.234	0.519	0.623	0.726	0.830	0.934	1.038	1.142
	0.45	1.215	0.291	0.646	0.775	0.904	1.033	1.162	1.291	1.421
	0.50	1.230	0.360	0.799	0.959	4.118	1.278	1.438	1.598	1.758
	0.55	1.243	0.444	0.987	1.184	1.382	1.579	1.776	1.974	2.171
	0.60	1.254	0.550	1.222	1.467	1.711	1.955	2.200	2.444	.

* a / H plus $6(2 \mathrm{H} / \mathrm{d})$ exceeds 5.6.

Factored Shear Resistance of Girder Webs
Top number $=$ Factored shear ștress, $\phi \mathrm{F}_{\mathrm{s}}(\mathrm{MPa})$
Bottom number $=$ Required Gross Area of Pairs of Intermediate Stiffeners, Percent of Web Area, h \times w

Notes:

- For shear resistance and stiffener area, see S16-14 Clauses 13.4.1.1 and 14.5.3, respectively,
- For maximum web slenderness and stiffener spacing, see S16-14 Clauses 14.3.1 and 14.5.2, respectively.
- For single stiffeners on one side of web only, multiply percentages shown by 1.8 for angle stiffeners and by 2.4 for plate stiffeners.
- When the stiffener F_{y} is not the same as the web F_{y}, multiply gross area by the ratio ($F_{y \text { web }} / F_{y \text { sififener }}$).

Factored Shear Resistance of Girder Webs

$$
F_{y}=350 \mathrm{MPa}
$$

Top number $=$ Factored shear stress, $\phi \mathrm{F}_{\mathrm{s}}$ (MPa)

$$
\phi=0.90
$$

Bottom number $=$ Required Gross Area of Pairs of Intermediate Stiffeners,
Percent of Web Area, h x w

Web h/w Ratio	Panel Aspect Ratio: $\mathbf{a} / \mathbf{h}=$ Stiffener Spacing / Web Depth										No Intermediate Stiffeners
	0.50	0,67	0.75	1.00	1.25	1.50	1.75	2.00	2.50	3.00	
50										$\begin{aligned} & 208 \\ & 0.77 \end{aligned}$	208
60							$\begin{aligned} & 208 \\ & 1.15 \end{aligned}$	$\begin{aligned} & 205 \\ & 1.06 \end{aligned}$	$\begin{aligned} & 199 \\ & 0.89 \end{aligned}$	$\begin{aligned} & 196 \\ & 0.77 \end{aligned}$	188
70				$\begin{aligned} & 208 \\ & 1.46 \end{aligned}$	$\begin{aligned} & 196 \\ & 1.37 \end{aligned}$	$\begin{aligned} & 186 \\ & 1.26 \end{aligned}$	$\begin{aligned} & 181 \\ & 1.15 \end{aligned}$	$\begin{aligned} & 178 \\ & 1.06 \end{aligned}$	$\begin{aligned} & 174 \\ & 0.89 \end{aligned}$	$\begin{aligned} & 172 \\ & 0.77 \end{aligned}$	161
80			$\begin{aligned} & 208 \\ & 1.50 \end{aligned}$	$\begin{aligned} & 187 \\ & 1.46 \end{aligned}$	$\begin{aligned} & 177 \\ & 1.37 \end{aligned}$	$\begin{aligned} & 172 \\ & 1.26 \end{aligned}$	$\begin{aligned} & 168 \\ & 1.15 \end{aligned}$	$\begin{aligned} & 165 \\ & 1.29 \end{aligned}$	$\begin{aligned} & 160 \\ & 1.54 \end{aligned}$	$\begin{aligned} & 156 \\ & 1.54 \end{aligned}$	135
90		$\begin{aligned} & 208 \\ & 1.49 \end{aligned}$	$\begin{aligned} & 199 \\ & 1.50 \end{aligned}$	$\begin{aligned} & 176 \\ & 1.46 \end{aligned}$	$\begin{aligned} & 168 \\ & 1.86 \end{aligned}$	$\begin{aligned} & 161 \\ & 2.79 \end{aligned}$	$\begin{aligned} & 154 \\ & 3.15 \end{aligned}$	$\begin{aligned} & 148 \\ & 3.24 \end{aligned}$	$\begin{aligned} & 140 \\ & 3.09 \end{aligned}$	$\begin{aligned} & 134 \\ & 2.83 \end{aligned}$	107
100	$\begin{aligned} & 208 \\ & 1,38 \end{aligned}$	$\begin{aligned} & 195 \\ & 1.49 \end{aligned}$	$\begin{aligned} & 181 \\ & 1.50 \end{aligned}$	$\begin{aligned} & 169 \\ & 2.53 \end{aligned}$	$\begin{aligned} & 157 \\ & 4.11 \end{aligned}$	$\begin{aligned} & 147 \\ & 4.66 \end{aligned}$	$\begin{aligned} & 140 \\ & 4.74 \end{aligned}$	$\begin{aligned} & 133 \\ & 4.63 \end{aligned}$	$\begin{aligned} & 124 \\ & 4.21 \end{aligned}$	$\begin{aligned} & 118 \\ & 3.75 \end{aligned}$	86.5
110	$\begin{aligned} & 208 \\ & 1.38 \end{aligned}$	$\begin{aligned} & 180 \\ & 1.49 \end{aligned}$	$\begin{aligned} & 176 \\ & 1.50 \end{aligned}$	$\begin{aligned} & 160 \\ & 4.63 \end{aligned}$	$\begin{aligned} & 147 \\ & 5.78 \end{aligned}$	$\begin{gathered} 137 \\ 6.03 \end{gathered}$	$\begin{aligned} & 129 \\ & 5.92 \end{aligned}$	$\begin{aligned} & 122 \\ & 5.66 \end{aligned}$	$\begin{aligned} & 113 \\ & 5.03 \end{aligned}$	$\begin{aligned} & 106 \\ & 4.44 \end{aligned}$	71.5
120	$\begin{aligned} & 205 \\ & 138 \end{aligned}$	$\begin{aligned} & 176 \\ & 1.49 \end{aligned}$	$\begin{aligned} & 172 \\ & 2.55 \end{aligned}$	$\begin{gathered} 152 \\ 6.23 \end{gathered}$	$\begin{aligned} & 139 \\ & 7.04 \end{aligned}$	$\begin{aligned} & 129 \\ & 7.08 \end{aligned}$	$\begin{aligned} & 121 \\ & 6.82 \end{aligned}$	$\begin{aligned} & 114 \\ & 6.44 \end{aligned}$	$\begin{aligned} & 104 \\ & 5.65 \end{aligned}$	$\begin{aligned} & 97.1 \\ & 4.96 \end{aligned}$	60.1
130	$\begin{aligned} & 189 \\ & 1.38 \end{aligned}$	$\begin{aligned} & 173 \\ & 2.48 \end{aligned}$	$\begin{aligned} & 166 \\ & 4.39 \end{aligned}$	$\begin{aligned} & 146 \\ & 7.48 \end{aligned}$	$\begin{aligned} & 133 \\ & 8.03 \end{aligned}$	$\begin{aligned} & 123 \\ & 7.90 \end{aligned}$	$\begin{aligned} & 114 \\ & 7.51 \end{aligned}$	$\begin{aligned} & 108 \\ & 7.05 \end{aligned}$	$\begin{aligned} & 97.4 \\ & 6.14 \end{aligned}$	$\begin{aligned} & 90.1 \\ & 5.36 \end{aligned}$	51.2
140	$\begin{aligned} & 180 \\ & 1.38 \end{aligned}$	$\begin{aligned} & 168 \\ & 4.18 \end{aligned}$	$\begin{aligned} & 160 \\ & 5.85 \end{aligned}$	$\begin{aligned} & 141 \\ & 8.46 \end{aligned}$	$\begin{gathered} 128 \\ 8.81 \end{gathered}$	$\begin{aligned} & 118 \\ & 8.54 \end{aligned}$	$\begin{aligned} & 109 \\ & 8.07 \end{aligned}$	$\begin{aligned} & 103 \\ & 7.53 \end{aligned}$	$\begin{aligned} & 92.0 \\ & 6.52 \end{aligned}$	$\begin{aligned} & 84.5 \\ & 5.69 \end{aligned}$	44.1
150	$\begin{aligned} & 178 \\ & 1.38 \end{aligned}$	$\begin{gathered} 163 \\ 5.56 \end{gathered}$	$\begin{aligned} & 156 \\ & 7.03 \end{aligned}$	$\begin{aligned} & 137 \\ & 9.26 \end{aligned}$	$\begin{aligned} & 124 \\ & 9.44 \end{aligned}$	$\begin{aligned} & 114 \\ & 9.07 \end{aligned}$	$\begin{aligned} & 105 \\ & 8.51 \end{aligned}$	$\begin{aligned} & 98.4 \\ & 7.92 \end{aligned}$	$\begin{aligned} & 87.7 \\ & 6.84 \end{aligned}$	$\begin{aligned} & 80.0 \\ & 5.94 \end{aligned}$	38.4
160	$\begin{aligned} & 176 \\ & 1.69 \end{aligned}$	$\begin{gathered} 159 \\ 6.68 \end{gathered}$	$\begin{aligned} & 152 \\ & 8.00 \end{aligned}$	$\begin{aligned} & 134 \\ & 9.91 \end{aligned}$	$\begin{aligned} & 121 \\ & 9.95 \end{aligned}$	$\begin{aligned} & 111 \\ & 9.49 \end{aligned}$	$\begin{gathered} 102 \\ 8.88 \end{gathered}$	$\begin{aligned} & 95.0 \\ & 8.24 \end{aligned}$	$\begin{aligned} & 84.2 \\ & 7.09 \end{aligned}$		33.8
170	$\begin{aligned} & 173 \\ & 3.08 \end{aligned}$	$\begin{aligned} & 156 \\ & 7.62 \end{aligned}$	$\begin{aligned} & 149 \\ & 8.80 \end{aligned}$	$\begin{aligned} & 132 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 119 \\ & 10.4 \end{aligned}$	$\begin{aligned} & 108 \\ & 9.85 \end{aligned}$	$\begin{aligned} & 99.4 \\ & 9.18 \end{aligned}$	$\begin{aligned} & 92.2 \\ & 8.51 \end{aligned}$			29.9
180	$\begin{aligned} & 169 \\ & 4.24 \end{aligned}$	$\begin{aligned} & 153 \\ & 8.40 \end{aligned}$	$\begin{aligned} & 147 \\ & 9.47 \end{aligned}$	$\begin{aligned} & 129 \\ & 10.9 \end{aligned}$	$\begin{aligned} & 117 \\ & 10.7 \end{aligned}$	$\begin{gathered} 106 \\ 10.1 \end{gathered}$	$\begin{aligned} & 97.1 \\ & 9.43 \end{aligned}$	$\begin{aligned} & 89.9 \\ & 8.73 \end{aligned}$			26.7
190	$\begin{aligned} & 167 \\ & 5.22 \end{aligned}$	$\begin{aligned} & 151 \\ & 9.06 \end{aligned}$	$\begin{aligned} & 145 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 128 \\ & 11.3 \end{aligned}$	$\begin{aligned} & 115 \\ & 11.0 \end{aligned}$	$\begin{gathered} 104 \\ 10.4 \end{gathered}$	$\begin{aligned} & 95,2 \\ & 9.65 \end{aligned}$				24.0
200	$\begin{gathered} 164 \\ 6.06 \end{gathered}$	$\begin{aligned} & 149 \\ & 9.63 \end{aligned}$	$\begin{aligned} & 143 \\ & 10.5 \end{aligned}$	$\begin{gathered} 126 \\ 11.6 \end{gathered}$	$\begin{aligned} & 113 \\ & 11.3 \end{aligned}$	$\begin{aligned} & 102 \\ & 10.6 \end{aligned}$		Not P	rmit		21.6
220	$\begin{aligned} & 160 \\ & 7.41 \end{aligned}$	$\begin{aligned} & 146 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 140 \\ & 11.3 \end{aligned}$	$\begin{gathered} 123 \\ 12.1 \end{gathered}$	$\begin{aligned} & 111 \\ & 11.7 \end{aligned}$						17.9

Notes:

- For shear resistance and stiffener area, see S16-14 Clauses 13.4.1.1 and 14.5.3, respectively.
- For maximum web slenderness and stiffener spacing, see S16-14 Clauses 14.3.1 and 14.5.2, respectively.
- For single stiffeners on one side of web only, multiply percentages shown by 1.8 for angle stiffeners and by 2.4 for plate stiffeners.
- When the stiffener F_{y} is not the same as the web F_{y}, multiply gross area by the ratio ($F_{y \text { web }}$ / $F_{y \text { sutilener }}$).

DESIGN EXAMPLE FOR STIFFENED GIRDER WEBS

Design Example - Web Shear Resistance

Given:

Find the shear resistance of a simply supported welded plate girder spanning 22 m and loaded as shown. The grade of steel is G40.21-350W

Girder cross-sectional dimensions:
$d=1800 \mathrm{~mm}, b=500 \mathrm{~mm}, t=30 \mathrm{~mm}, w=10 \mathrm{~mm}, h=d-2 t=1740 \mathrm{~mm}$

Total Factored Loading

Solution:

a) Shear resistance of end panels

Factored ultimate shear force in girder web: $V_{f}=1335 \mathrm{kN}$
Maximum h / w permitted $=83000 / F_{y}=83000 / 350=237$ (S16-14 Clause 14.3.1)
Web slenderness ratio: $h / w=1740 / 10=174<237$
Maximum a / h permitted $=67500 /(h / w)^{2}$

$$
=67500 / 174^{2}=2.23 \text { for } h / w>150 \text { (Clause 14.5.2) }
$$

Size the end panel without the tension-field action, in accordance with Clause 14.5.1.
Find the maximum stiffener spacing:
Assuming that Clause 13.4.1.1(b)(iv) applies, for $h / w=174$ and $F_{s}=F_{\text {cre }}$

$$
V_{r}=\phi A_{w v} \frac{180000 k_{v}}{(h / w)^{2}}=0.9 \times 17400 \times \frac{180000 k_{v}}{174^{2}}=93100 k_{v}
$$

Equating V_{r} to $V_{f}=1335 \mathrm{kN}$ gives $k_{v}=14.34$

$$
k_{v}=4+\frac{5.34}{(a / h)^{2}}=14.34, \quad \frac{a}{h}=\sqrt{\frac{5.34}{14.34-4}}=0.719
$$

Therefore, the maximum end panel length is $0.719 \times 1740=1250 \mathrm{~mm}$.
Try $a=1000 \mathrm{~mm}$. The panel aspect ratio is $a / h=1000 / 1740=0.575$
$k_{v}=4+\frac{5.34}{(a / h)^{2}}=4+\frac{5.34}{0.575^{2}}=20.2$
$\frac{h}{w}=174>621 \sqrt{\frac{k_{v}}{F_{y}}}=621 \sqrt{\frac{20.2}{350}}=149$
This confirms that Clause 13.4.1.1(b)(iv) applies, as assumed above.

b) Shear resistance between end panel and concentrated load

Using an end panel length of $a=1000 \mathrm{~mm}$ and two equal panels between the end stiffener and the stiffener at the interior concentrated load gives an intermediate stiffener spacing of: $(6500-1000) / 2=2750 \mathrm{~mm}$

Factored shear force at the first intermediate stiffener, by linear interpolation:

$$
V_{f}=1335-(1335-783)(1000 / 6500)=1250 \mathrm{kN}
$$

From the table for Factored Shear Resistance of Girder Webs $\left(F_{y}=350 \mathrm{MPa}\right)$ for h / w $=174$ and $a / h=2750 / 1740=1.58$

$$
\phi F_{s}=104 \mathrm{MPa} \text { (by interpolation) }
$$

Factored shear resistance: $V_{r}=A_{w}\left(\phi F_{s}\right)=17400 \times 104=1810 \mathrm{kN}>V_{f}=1250 \mathrm{kN}$
c) Intermediate Stiffener Size

For $h / w=174$ and $a / h=1.58$, by interpolation from the tabulated values:
The required total area of a pair of intermediate stiffeners is 9.74% of the web area.

$$
A_{s}=0.0974 \times 17400=1690 \mathrm{~mm}^{2}
$$

Required $I_{s}=(h / 50)^{4}=(1740 / 50)^{4}=1.47 \times 10^{6} \mathrm{~mm}^{4} \quad$ (Clause 14.5.3)
Maximum $\frac{b}{t}=\frac{200}{\sqrt{F_{y}}}=10.7$ Use two 10×100 stiffeners
$A_{s}=2 \times 10 \times 100=2000>1690 \mathrm{~mm}^{2} I_{s}=10 \times 210^{3} / 12=7.72 \times 10^{6}>1.47 \times 10^{6} \mathrm{~mm}^{4}$
$b / t=100 / 10=10.0<10.7$
d) Shear resistance between concentrated loads

Factored ultimate shear force in girder web: $V_{f}=383 \mathrm{kN}$ Try an unstiffened web.
For $h / w=174: \phi F_{s}=28.6 \mathrm{MPa}$ (by interpolation from the tabulated values)
Factored shear resistance: $V_{r}=A_{w v}\left(\phi F_{s}\right)=17400 \times 28.6=498 \mathrm{kN}>383 \mathrm{kN}$
Therefore, stiffeners are not required between the two concentrated loads (but are required at the concentrated load locations). Design checks for bearing at concentrated loads, moment, and combined shear and moment are not shown. See "Limit States Design in Structural Steel", Kulak and Grondin, CISC, for examples.

NOTES

BEAM BEARING PLATES

General

When a flexural member is supported by a masonry wall or pier, the beam reaction must be distributed over sufficient area to avoid exceeding the bearing capacity of the masonry or concrete. Steel bearing plates may be used for this purpose.

Bearing plates are usually set in place and grouted level at the required elevation before positioning the beam. Thus, even though the beam flange may be able to distribute the reaction to supporting masonry or concrete, a bearing plate can be useful to facilitate erection. Some form of anchorage is required to ensure that the beam is connected to the pier or wall either longitudinally or for uplift forces.

Design Chart

Figure 5-1 provides a graph to determine the thickness of bearing plates using CSA G40.21-300W steel, for beams without bearing stiffeners, based on the following assumptions:

- The beam reaction P_{f} is uniformly distributed to the bearing plate over an effective area of width $2 k$ and length C.
- The bearing pressure between the effective area of the bearing plate and the concrete or masonry support is uniform over the area of the plate.
- The bearing pressure under the portion of plate projecting beyond the k-distance from the centre line of the beam is ignored, since in practice the flange may be slightly "curled",

Equating the factored moment acting on the portion of the bearing plate, taken as a cantilever, to the factored moment resistance of the plate, $\left(M_{r}=\phi Z F_{y}\right)$, the bearing plate thickness is calculated as:

$$
t_{p}=\sqrt{\frac{2 P_{f} n^{2}}{A \phi F_{y}}}
$$

where:
$P_{f}=$ factored end reaction
$F_{y}=$ specified minimum yield strength of the bearing plate steel (MPa)
$A=B \times C=$ area of plate $\left(\mathrm{mm}^{2}\right)$
$t_{p}=$ required thickness of bearing plate (mm)
$k=$ beam k-distance $=$ distance from web toe of fillet to outer face of flange (mm)

$n=B / 2-k,(m m)$
$b=$ width of beam flange (mm)
To minimize deflection of the bearing plate, the thickness generally should not be less than about one fifth of the overhang, i.e., $t_{p} \geq(B-b) / 10$.

Use of chart

1. Required area, $A=$ beam reaction due to factored loads divided by the unit factored concrete bearing resistance, $\left(0.85 \phi_{c} f_{c}^{\prime}\right)$, where $\phi_{c}=0.65$
2. Determine C and solve for B. (C, the length of bearing, is usually governed by the available wall thickness or other structural considerations.)
3. Determine n and enter Figure $5-1$ to determine t_{p}.

Example

Given:

A W610x140 of ASTM A992 steel beam has a factored end reaction of 600 kN and is supported on a concrete pier with 28 -day compressive strength of 20 MPa . Design the bearing plate assuming G40.21-300W steel and a concrete bearing length of 200 mm .

Solution:

Unit factored bearing resistance of concrete is:
$0.85 \times 0.65 \times 20=11.1 \mathrm{MPa}$
Area required is $\left(600 \times 10^{3}\right) / 11.1=54100 \mathrm{~mm}^{2}$
Therefore, required B is: $54100 / 200=271 \mathrm{~mm}$
For W610x140, $b=230 \mathrm{~mm}, t=22.2 \mathrm{~mm}, w=13.1 \mathrm{~mm}, k=54 \mathrm{~mm}$
Select $B=280 \mathrm{~mm}$ (greater than flange width, $b=230 \mathrm{~mm}$)
$n=(B / 2)-k=(280 / 2)-54=86 \mathrm{~mm}$
From Figure $5-1$, for unit factored bearing resistance of 11.1 MPa and n of 86 mm ,
minimum $t_{p} \approx 24 \mathrm{~mm}$ Select $t_{p}=25 \mathrm{~mm}$
Use plate $25 \times 200 \times 280$

Check for web crippling and web yielding
(Clause 14.3.2(b), S16-14)
Web crippling:

$$
B_{r}=0.60 \phi_{b e} w^{2}\left(F_{y} E\right)^{0.5}=0.60 \times 0.75 \times 13.1^{2}\left(345 \times 2 \times 10^{5}\right)^{0.5}=641 \mathrm{kN}
$$

Web yielding:

$$
B_{r}=\phi_{b e} w(N+4 t) F_{y}=0.75 \times 13.1(200+4 \times 22.2) 345=979 \mathrm{kN}
$$

Therefore web crippling, Clause 14.3.2(b)(ii), governs and $B_{r}=641 \mathrm{kN}>600 \mathrm{kN}$.
FIGURE 5－1
BEAM BEARING PLATE THICKNESS， \boldsymbol{t}_{p}
M00を－Lで0ヤつ
MOOEーレー

300

COMPOSITE BEAMS

General

A composite beam, in general, consists of a steel beam and a concrete slab so interconnected that the steel beam and the slab jointly resist bending through composite action. Several combinations which effectively act as composite beams occur in practice. These include a steel beam or girder with a concrete slab interconnected with mechanical shear connectors, a steel beam or girder with a ribbed concrete slab formed by steel deck interconnected by mechanical shear connectors, and a steel beam or girder fully encased by the concrete in such a way that the encased beam and the concrete slab behave monolithically. Clause 17 of CSA S16-14 contains requirements for composite beams.

Some advantages of composite construction are:

- Reduced weight of steel members
- Reduced depth of steel members
- Reduced deflections under superimposed load
- Simplified changes to electrical services when steel deck is used

Composite construction is most advantageous when heavy loads and long spans are involved. For this reason composite construction is widely used for bridges. For building construction, composite beams consisting of steel beams with steel deck and concrete cover slab utilizing steel stud shear connectors welded to the beam top flange are most frequently used. Other types of composite construction used in buildings include composite trusses and joists, and stub-girders.

Tables

The Composite Beam Trial Selection Tables on the following pages are based on ASTM A992 and A572 grade $50\left(F_{y}=345 \mathrm{MPa}\right)$. The tabulated values may also be used for W-shapes produced to CSA G40.21-350W, although grade 350 W does not appear in the table headings. The tables list composite members for the practical range of rolled W-shapes from 200 mm to 1000 mm nominal depth. Tables are provided for the following combinations of deck-slab concrete strength and concrete density:

- 75 mm steel deck with 65 mm cover slab with $f_{c}^{\prime \prime}$ of $25 \mathrm{MPa}, 2350 \mathrm{~kg} / \mathrm{m}^{3}$ concrete
- 75 mm steel deck with 75 mm cover slab with f_{c}^{\prime} of $25 \mathrm{MPa}, 2350 \mathrm{~kg} / \mathrm{m}^{3}$ concrete
- 75 mm steel deck with 90 mm cover slab with f_{c}^{\prime} of $25 \mathrm{MPa}, 2350 \mathrm{~kg} / \mathrm{m}^{3}$ concrete
- 75 mm steel deck with 85 mm cover slab with f_{c}^{\prime} of $25 \mathrm{MPa}, 1850 \mathrm{~kg} / \mathrm{m}^{3}$ concrete

The tables show steel shapes listed in descending order of nominal depth and mass, and include the following properties, design data and resistances:
$b=$ flange width of steel shape (mm)
$t=$ flange thickness of steel shape (mm)
$d=$ overall depth of steel shape (mm)
$b_{r}=$ effective width of slab used in computing values of $M_{r c}, Q_{r}, I_{r}, S_{r}$ and $I_{t s}(\mathrm{~mm})$. (Refer to Clause 17.4 of S16-14 for appropriate design effective width.)

$M_{r o}$	factored moment resistance of composite beam for percentage of full shear connection equal to $100 \%, 70 \%$ and $40 \%(\mathrm{kN} \cdot \mathrm{m})$
Q r	required sum of factored shear resistances between adjacent points of maximum and zero moment for 100% shear connection, $(\mathrm{kN}) . Q_{r}=$ lesser of $\phi A_{s} F_{y}$ or $\phi_{c} \alpha_{l} b_{1} t_{c} f_{c}^{\prime}$, where $t_{c}=$ effective slab thickness or effective cover slab thickness
1,	moment of inertia of the composite section, transformed into steel properties, computed using mass density as shown on each table ($10^{6} \mathrm{~mm}^{4}$)
S,	section modulus of the composite section related to the extreme fibre of the bottom flange of the steel beam based on the value of $I_{t}\left(10^{3} \mathrm{~mm}^{3}\right)$
$t_{t s}$	transformed moment of inertia for calculating shrinkage deflections, based on the modular ratio n_{s}. (See S16-14 Annex H for further information,)
M	fa
V_{r}	factored shear resistance of the bare steel beam; also taken to be the factored shear resistance of the composite section (kN)
L	maximum unsupported length of compression flange of the steel beam alone for which no reduction in M_{r} is required (mm)
I_{x}	moment of
S_{x}	section modulus of the bare steel beam ($10^{3} \mathrm{~mm}^{3}$)
$M_{r}{ }^{\prime}$	$=$ factored moment resistance of the bare steel beam for an unsupported length L^{\prime} ($\mathrm{kN} \cdot \mathrm{m}$).

Since the concrete slab and/or the steel deck prevent movement of the top flange, lateral buckling is not a consideration at composite action. During construction, however, the unsupported length of the compression flange may be greater than L_{u}, and the moment resistance for the non-composite shape for the appropriate unsupported length of compression flange must be used.

The tabulated factored shear resistance V_{r} is computed according to Clause 13.4.1.1 of S16-14 for the appropriate h / w ratio.

Shear Connectors

Clauses 17.9 .5 and 17.9 .6 stipulate the amount of total factored horizontal shear force that must be resisted by shear connectors.

For full (i.e. 100%) shear connection, the total factored horizontal shear force V_{h} to be transferred between the point of maximum positive moment and adjacent points of zero moment is either:

* $\phi A_{s} F_{y}$ when the plastic neutral axis is in the slab, or
- $\phi_{c} \alpha_{1} b_{1} t_{c} f_{c}^{\prime}$ when the plastic neutral axis is in the steel section.

For partial shear connection the total factored horizontal shear force V_{h} is the sum of the factored resistances of all the shear connectors between the point of maximum positive moment and each adjacent point of zero moment. S16-14 Clause 17.9.4 limits the minimum amount of partial shear connection to 40% of either $\phi A_{s} F_{y}$ or $\phi_{c} \alpha_{1} b_{1} t_{c} f_{c}^{\prime}$, whichever is the lesser, when computing flexural strength.

Generally, shear connectors may be uniformly spaced in regions of positive or negative bending. However, when a concentrated load occurs within a region of positive bending, the number of shear connectors and the shear connector spacing is determined by Clause 17.9.8.

Tables 5-5 and 5-6 provide values of the factored shear resistance q_{r} for the most common sizes of end-welded shear studs according to the requirements of Clause 17.7 when the stud height is at least four stud diameters, and when the stud projection in a ribbed slab is at least two stud diameters above the top surface of the steel deck.

Table 5-5 gives values of q_{r} for stud diameters of $3 / 4$ inch (19 mm), $5 / 8$ inch (15.9 mm), and $1 / 2$ inch (12.7 mm) in solid slabs, or in deck-slabs with ribs parallel to the beam, based on three concrete strength levels f_{c}^{\prime} of $20 \mathrm{MPa}, 25 \mathrm{MPa}$, and 30 MPa for both normal density (2350 $\mathrm{kg} / \mathrm{m}^{3}$) and semi-low density ($1850 \mathrm{~kg} / \mathrm{m}^{3}$) concrete. Values are calculated according to Clause 17.7.2.2 and Clause 17.7.2.3.

Tables 5-6a and 5-6b give values of $q_{r r}$ for $3 / 4$ inch (19 mm) and $5 / 8$ inch $(15.9 \mathrm{~mm})$ diameter studs, respectively, in ribbed slabs for 75 mm or 38 mm deck, with ribs perpendicular to the beam, calculated according to Clause 17.7.2.4. Values are given for three concrete strength levels f_{c}^{\prime} of $20 \mathrm{MPa}, 25 \mathrm{MPa}$, and 30 MPa for both normal density $\left(2350 \mathrm{~kg} / \mathrm{m}^{3}\right)$ and semi-low density ($1850 \mathrm{~kg} / \mathrm{m}^{3}$) concrete.

Deflections

Composite beams are stiffer than similar non-composite beams, and deflections are reduced when composite construction is used. Due to creep of the concrete slab over time, maximum deflections may increase, especially if the full load is sustained. Annex H of CSA S16-14 provides guidance for estimating deflections caused by shrinkage of the concrete slab. Beam deflection during construction, due to loads supported prior to hardening of the concrete while the steel beam alone supports the loads, should be checked. Cambering or the use of temporary shores will reduce the total final deflection.

For steel beams unshored during construction, S16-14 Clause 17.11 limits the stress (caused by the total of the specified loads applied before the concrete strength reaches $0.75 f_{c}^{\prime}$ and, at the same location, the remaining specified loads acting on the composite section) in the tension flange to F_{y}.

Other Composite Members

Other composite members suitable for floor construction include composite trusses, composite open-web steel joists, and stub-girders. Optimum spans for performance and economy depend on overall building considerations such as storey height restrictions and integration of building services.

For composite trusses and joists, Clause 17.9.2 of S16-14 stipulates that the area of the top chord shall be neglected in determining the properties of the composite section, and that the factored moment resistance of the composite truss or joist shall be computed on the basis of full shear connection with the plastic neutral axis in the slab.

Composite stub-girders use wide-flange column shapes with short W -shape stubs shop-welded to the top of the girders and interconnected with the deck-slab by shear connectors to provide Vierendeel girder action. Deck-slabs usually consist of a 75 mm composite steel deck with 75 mm or 85 mm cover slabs.

Availability

Beam sizes that are commonly used and readily available are highlighted in yellow.

References

PART Two of this Handbook. See CISC Commentary on Clause 17.
Chien, E.Y.L., Ritchie, J.K., 1984. Design and Construction of Composite Floor Systems. Canadian Institute of Steel Construction, Willowdale, Ontario.
KULAK, G.L., Grondin, G.Y. 2014. Limit States Design in Structural Steel, $9^{\text {th }}$ Edition. Canadian Institute of Steel Construction, Markham, Ontario,
Beaulieu, D., Picard, A., Tremblay, R., Grondin, G., Massicotte, B. 2010. Calcul des charpentes d'acier - Tome II. Institut canadien de la construction en acier, Markham, Ontario.

Factored Shear Resistance of Shear Studs
Table 5-5
in Solid Slabs and in Deck-Slabs with Ribs Parallel to Beam ($3.0>w_{d} / h_{d} \geq 1.5$)

Stud in a Solid Slab, $\mathrm{qrs}_{\text {(}}(\mathrm{kN})$							
Stud Diameter		$\mathrm{f}_{\mathrm{c}}\left(\gamma_{\mathrm{c}}=2350 \mathrm{~kg} / \mathrm{m}^{3}\right)$			$\mathrm{f}_{\mathrm{c}}\left(\gamma_{\mathrm{c}}=1850 \mathrm{~kg} / \mathrm{m}^{3}\right)$		
		20 MPa	25 MPa	30 MPa	20 MPa	25 MPa	30 MPa
$3 / 4$ in. (19		75.9	88.2	99.8	63.4	73.7	83.4
$5 / 8 \mathrm{in}$. (15.		53.1	61.7	69.9	44.4	51.6	58.4
1/2 in. (12.)		33.9	39.4	44.6	28.3	32.9	37.3
Stud in a Deck-Slab with Ribs Parallel to Beam, $\mathrm{q}_{\text {rr }}(\mathrm{kN})$							
Stud Diameter	$w_{\text {d }} / \mathrm{h}_{\text {d }}$	f^{\prime} ($\left(\gamma_{\mathrm{c}}=2350 \mathrm{~kg} / \mathrm{m}^{3}\right)$			$\mathrm{f}_{\mathrm{c}}\left(\gamma_{\mathrm{c}}=1850 \mathrm{~kg} / \mathrm{m}^{3}\right)$		
		20 MPa	25 MPa	30 MPa	20 MPa	25 MPa	30 MPa
$3 / 4 \mathrm{in}$. $(19 \mathrm{~mm})$	2.5	69.6	80.8	91.5	58.1	67.6	76.5
	2.4	68.3	79.4	89.8	57.1	66.3	75.1
	2.0	63.2	73.5	83.2	52.8	61.4	69.5
5/8in. (15.9 mm)	2.5	48.7	56.6	64.1	40.7	47.3	53.5
	2.4	47.8	55.6	62.9	40.0	46.5	52.6
	2.0	44.3	51.5	58.2	37.0	43.0	48.7
1/2 in. (12.7 mm)	2.5	31.1	36.1	40.9	26.0	30.2	34.2
	2.4	30.5	35.5	40.1	25.5	29.6	33.5
	2.0	28.2	32.8	37.2	23.6	27.4	31.0

Factored Resistance of Shear Studs
Ribs Perpendicular to Beam
$3 / 4 \mathrm{in}$. (19 mm) Diameter Studs, $\mathrm{F}_{\mathrm{u}}=450 \mathrm{MPa}$ 75 mm or 38 mm -Deep Steel Deck

Deck		Stud connector(s)				Pull-out area Ap	Factored shear resistance of stud(s), $q_{\pi r}(\mathrm{kN})$					
h_{d}	$\frac{w_{d}}{h_{d}}$	Dia.	Length	n	Edge distance		$\mathrm{f}_{\mathrm{c}} \quad\left(\gamma_{\mathrm{c}}\right.$	$=2350$	$\mathrm{kg} / \mathrm{m}^{3}$)	$\mathrm{f}_{\mathrm{c}}{ }^{\prime} \quad\left(\gamma_{\mathrm{c}}\right.$	$=1850$	$\mathrm{kg} / \mathrm{m}^{3}$)
mm		mm	mm		mm	$10^{3} \mathrm{~mm}^{2}$	20 MPa	25 MPa	30 MPa	20 MPa	25 MPa	30 MPa
75	2.4	$3 / 4 \mathrm{in}$. (19)	115	1	Int.	52.0	65.2	72.9	79.8	55.4	61.9	67.8
				1	65	40.7	51.0	57.0	62.5	43.4	48.5	53.1
				1	35	33.9	42.5	47.5	52.1	36.1	40.4	44.2
				2	Int.	69.2	86.7	96.9	106	73.7	82.4	90.3
			150	1	Int.	82.7	75,9	88.2	99.8	63.4	73.7	83.4
				1	65	60.7	75.9	84.9	93.0	63.4	72.2	79.1
				1	35	51.8	64.8	72.5	79.4	55.1	61.6	67.5
				2	Int.	105	132	147	161	112	125	137
75	2.0	$3 / 4 \mathrm{in}$. (19)	115	1	Int.	49.1	61.4	68.7	75.3	52.2	58.4	64.0
				1	65	38.5	48.2	53.9	59.0	40.9	45.8	50.1
				1	35	32.1	40.2	44.9	49.2	34.2	38.2	41.8
				2	Int.	65.5	82.0	91.6	100	69.7	77.9	85.3
			150	1	Int.	71.6	75.9	88.2	99.8	63.4	73.7	83.4
				1	65	53.0	66,4	74.2	81.3	56.4	63.1	69.1
				1	35	45.1	56.4	63.1	69.1	48.0	53.6	58.8
				2	Int.	91.7	115	128	141	97.7	109	120
38	2.5	$3 / 4 \mathrm{in}$. (19)	75	1	Int.	20.2	44.0	49.2	53.9	37.4	41.8	45.8
				1	65	18.8	41.0	45.9	50.3	34.9	39.0	42.7
				1	35	14.8	32.3	36.1	39.5	27.4	30.7	33.6
				2	Int.	30.4	66.3	74.1	81.2	56.3	63.0	69.0
			100	1	Int.	32.0	69.7	78.0	85.4	59.3	66.3	72.6
				1	65	27.3	59.5	66.5	72.8	50.6	56,5	61.9
				1	35	22.1	48.3	54.0	59.1	41.0	45.9	50.2
				2	Int.	45.3	98.8	110	121	84.0	93.9	103
38	1.4	$3 / 4 \mathrm{in}$. (19)	75	1			29.4	32.8	36.0	25.0	27.9	30.6
				1	65	12.7	27.7	31.0	34.0	23.6	26.4	28.9
				1	35	10.4	22.7	25.4	27.8	19.3	21.6	23.6
				2	Int.	21.4	46.7	52.3	57.2	39.7	44.4	48.7
			100	1	Int.	27.5	59.9	67.0	73.4	50.9	57.0	62.4
				1	65	24.8	54.2	60.6	66.4	46.1	51.5	56.4
				1	35	19.9	43.4	48.5	53.1	36.9	41.2	45.1
				2	Int.	40.8	89.0	99.5	109	75.7	84.6	92.7

Factored shear resistances are calculated in accordance with CSA S16-14 Clause 17.7.2.4.
Notes:

1. $n=$ number of studs per rib, $\gamma_{c}=$ density of concrete
2. Stud length listed is the length after welding.

Minimum length prior to welding $=$ stud length listed +10 mm fusion allowance.
3. Double studs transversely spaced at minimum 4 stud diameters.
4. Int. = interior condition
5. Studs placed off-centre in ribs of 75 mm deck and on-centre in ribs of 38 mm deck.

Factored Resistance of Shear Studs
Ribs Perpendicular to Beam
s / in. (15.9 mm) Diameter Studs, $\mathrm{F}_{\mathrm{u}}=450 \mathrm{MPa}$
75 mm or 38 mm -Deep Steel Deck

Deck		Stud connector(s)				Pull-out area Ap	Factored shear resistance of stud(s), $\mathrm{q}_{\pi}(\mathrm{kN})$					
$h_{\text {d }}$	$\frac{w_{d}}{h_{d}}$	Dia,	Length	n	Edge distance		$\mathrm{f}_{\mathrm{c}} \quad\left(\gamma_{\mathrm{c}}=2350 \mathrm{~kg} / \mathrm{m}^{3}\right)$			$\mathrm{f}_{\mathrm{c}}^{\prime} \quad\left(\gamma_{\mathrm{c}}=1850 \mathrm{~kg} / \mathrm{m}^{3}\right)$		
mm		mm	mm		mm	$10^{3} \mathrm{~mm}^{2}$	20 MPa	25 MPa	30 MPa	20 MPa	25 MPa	30 MPa
75	2.4	$\begin{aligned} & 5 / 8 \mathrm{in} . \\ & (15.9) \end{aligned}$	115	1	int.	52.0	. 53.1	61.7	69.9	44.4	51.6	58.4
				1	65	40.7	51.0	57.0	62.5	43.4	48.5	53.1
				1	35	33.9	42.5	47.5	52.1	36.1	40.4	44.2
				2	Int.	66.4	83.2	93.0	102	70.7	79.1	86.6
			150	1	Int.	82.7	53.1	61.7	69.9	44.4	51.6	58.4
				1	65	60.7	53.1	61.7	69.9	44.4	51.6	58.4
				1	35	51.8	53.1	61.7	69.9	44.4	51.6	58.4
				2	Int.	102	106	123	140	88.8	103	117
75	2.0	$\begin{aligned} & 3 / 8 \mathrm{in} . \\ & (15.9) \end{aligned}$	115	1	int.	49.1	53.1	61.7	69.9	44.4	51.6	58.4
				1	65	38.5	48.2	53.9	59.0	40.9	45.8	50.1
				1	35	32.1	40.2	44.9	49.2	34.2	38.2	41.8
				2	Int.	62.8	78.6	87.9	96.3	66.8	74.7	81.9
			150	1	Int.	71.6	53.1	61.7	69.9	44.4	51.6	58.4
				1	65	53.0	53.1	61.7	69.9	44.4	51.6	58.4
				1	35	45.1	53.1	61.7	69.1	44.4	51.6	58,4
				2	Int.	88.5	106	123	136	88.8	103	115
38	2.5	$\begin{aligned} & 3 / 8 \mathrm{in} . \\ & (15.9) \end{aligned}$	75	1	Int.	20.2	44.0	49.2	53.9	37.4	41.8	45.8
				1	65	18.8	41.0	45.9	50.3	34.9	39.0	42.7
				1	35	14.8	32.3	36.1	39.5	27.4	30.7	33.6
				2	Int.	28.7	62.6	70.0	76.7	53.2	59.5	65.2
			100	1	Int.	32.0	53.1	61.7	69.9	44.4	51.6	58.4
				1	65	27.3	53.1	61.7	69.9	44.4	51.6	58.4
				1	35	22.1	48.3	54.0	59.1	41.0	45.9	50.2
				2	Int.	43.1	94.1	105	115	80.0	89.4	97.9
38	1.4	$\begin{aligned} & \text { 5/8 in. } \\ & \text { (15.9) } \end{aligned}$	75	1	Int.	13.5	29.4	32.8	36.0	25.0	27.9	30.6
				1	65	12.7	27.7	31.0	34.0	23.6	26.4	28.9
				1	35	10.4	22.7	25.4	27.8	19.3	21.6	23.6
				2	int.	20.1	43.9	49.1	53.8	37.3	41.7	45.7
			100	1	Int.	27.5	53.1	61.7	69.9	44.4	51.6	58.4
				1	65	24.8	53.1	60.6	66.4	44.4	51.5	56.4
				1	35	19.9	43.4	48.5	53.1	36.9	41.2	45.1
				2	Int.	38.6	84.3	94.2	103	71.6	80.1	87.7

Factored shear resistances are calculated in accordance with CSA S16-14 Clause 17.7.2.4.
Notes:

1. $n=$ number of studs per rib, $\gamma_{c}=$ density of concrete
2. Stud length listed is the length after welding.

Minimum length prior to welding \approx stud length listed +10 mm fusion allowance.
3. Double studs transversely spaced at minimum 4 stud diameters.
4. Int. = interior condition
5. Studs placed off-centre in ribs of 75 mm deck and on-centre in ribs of 38 mm deck.

$n=2, s \geq 4$ dia.

Spandrel beam

Stud length, L	A_{p}	If double studs (n=2), add:	If spandrel beam and $e<L$, subtract:		
a) $L \leq w_{d} / 2$	$4 \sqrt{2} L^{2}$	$2 \sqrt{2} s L$	$2 \sqrt{2} L(L-e)$		
b) $w_{d} / 2<L \leq w_{d} / 2+h_{d}$	$2 \sqrt{2} L w_{d}$	$\sqrt{2} s w_{d}$		$\sqrt{2} w_{d}(L-e)$	
$L>w_{d} / 2+h_{d}$	$2 \sqrt{2}\left[2\left(L-h_{d}\right)^{2}+h_{d} w_{d}\right]$	$2 \sqrt{2} s\left(L-h_{d}\right)$	i) $e \geq L-h_{d}$	$\sqrt{2} w_{d}(L-e)$	
			ii) $e<L-h_{d}$	$\sqrt{2}\left[2\left(L-h_{d}\right)^{2}+w_{d} h_{d}-2 e\left(L-h_{d}\right)\right]$	

See CSA S16-14 Clause 17.7.2.4.

Stud length, L	A_{p}	If double studs ($\mathrm{n}=2$), add:		If spandrel beam and $\mathrm{e}<\mathrm{L}$, subtract:
a) $\mathrm{L} \leq \mathrm{w}_{\mathrm{d}} / 4$	$4 \sqrt{2} \mathrm{~L}^{2}$	$2 \sqrt{2} \mathrm{sL}$		$2 \sqrt{2} \mathrm{~L}$ (L-e)
b) $\mathrm{w}_{\mathrm{d}} / 4<\mathrm{L} \leq 3 \mathrm{w}_{\mathrm{d}} / 4$ and $L \leq w_{d} / 4+h_{d}$	$\sqrt{2} \mathrm{~L}\left(2 \mathrm{~L}+\mathrm{w}_{\mathrm{d}} / 2\right)$	$\sqrt{2} s\left(L+w_{d} / 4\right)$		$\sqrt{2}\left(\mathrm{w}_{\mathrm{d}} / 4+\mathrm{L}\right)(\mathrm{L}-\mathrm{e})$
c) $3 w_{d} / 4<L \leq w_{d} / 4+h_{d}$	$2 \sqrt{2} \mathrm{~L} \mathrm{w}_{\mathrm{c}}$	$\sqrt{2} \mathrm{sw}$		$\sqrt{2} \mathrm{w}_{\mathrm{d}}(\mathrm{L}-\mathrm{e})$
d) $w_{d} / 4+h_{d}<L \leq 3 w_{d} / 4$	$\begin{gathered} \sqrt{2}\left(4 L^{2}-4 L h_{d}+2 h_{d}^{2}\right. \\ \left.+h_{d} W_{d} / 2\right) \end{gathered}$	$\sqrt{2} \mathrm{~S}\left(2 \mathrm{~L}-\mathrm{h}_{\mathrm{d}}\right)$	i) $e \geq L-h_{d}$	$\sqrt{2}\left(\mathrm{w}_{\mathrm{d}} / 4+\mathrm{L}\right)(\mathrm{L}-\mathrm{e})$
			ii) $e<L-h_{d}$	$\begin{gathered} \sqrt{2}\left[\left(w_{d} / 4+L\right)(L-e)\right. \\ \left.+\left(L-h_{d}-e\right)\left(L-h_{d}-w_{d} / 4\right)\right] \end{gathered}$
e) $L>w_{d} / 4+h_{d}$ and $3 w_{d} / 4<L \leq 3 w_{d} / 4+h_{d}$	$\begin{gathered} \sqrt{2}\left[2\left(L-h_{d}\right)^{2}\right. \\ \left.+h_{d} w_{d} / 2+3 L w_{d} / 2\right] \end{gathered}$	$\sqrt{2} s\left(L-h_{d}+3 w_{d} / 4\right)$	i) $e \geq L-h_{d}$	$\sqrt{2} W_{d}(\mathrm{~L}-\mathrm{e})$
			ii) $e<L-h_{d}$	$\sqrt{2}\left[w_{d}(L-e)+\left(L-h_{d}-e\right)\left(L-h_{d}-w_{d} / 4\right)\right]$
f) $L>3 w_{d} / 4+h_{d}$	$\sqrt{2}\left[4\left(L-h_{d}\right)^{2}+2 h_{d} W_{d}\right]$	$2 \sqrt{2} \mathrm{~s}\left(\mathrm{~L}-\mathrm{h}_{\mathrm{d}}\right)$	i) $e \geq L-h_{d}$	$\sqrt{2} \mathrm{w}_{\mathrm{d}}(\mathrm{L}-\mathrm{e})$
			ii) $e<L-h_{d}$	$\sqrt{2}\left[2\left(L-h_{d}\right)^{2}+w_{d} h_{d}-2 e\left(L-h_{d}\right)\right]$

See CSA S16-14 Clause 17.7.2.4.

Design Example: Area of Concrete Pull-Out Pyramid, A_{p}

Idealized geometry: vertical rib walls

Find the area of the concrete pull-out pyramid for a single stud placed off-centre in a rib, in accordance with CSA S16-14 Clause 17.7.2.4, for the following configuration:
$L>\frac{w_{d}}{4}+h_{d}$ and $\frac{3}{4} w_{d}<L \leq \frac{3}{4} w_{d}+h_{d}$
For simplicity, rib walls are assumed to be vertical, with $w_{d}=$ average rib width. For other deck and stud configurations, see the previous pages.

Surface

Area

$a b c+a c d+a d e+a e b$	$4 \sqrt{2}\left(L-h_{d}\right)^{2}$
cfgd	$\frac{\sqrt{2}}{2}\left[\frac{3}{2} w_{d}+2\left(L-h_{d}\right)\right]\left(h_{d}-L+\frac{3}{4} w_{d}\right)$
$2 \times$ hikc	$2 \sqrt{2} h_{d}\left(L-h_{d}+\frac{w_{d}}{4}\right)$
$2 \times$ cjf	$\sqrt{2}\left(h_{d}-L+\frac{3}{4} w_{d}\right)^{2}$
$2 \times j k l f$	$2 \sqrt{2}\left(h_{d}-L+\frac{3}{4} w_{d}\right)\left(L-\frac{3}{4} w_{d}\right)$

Total area;
$A_{p}=\sqrt{2}\left[2\left(L-h_{d}\right)^{2}+\frac{1}{2} h_{d} w_{d}+\frac{3}{2} L w_{d}\right]$

Design Example: Factored Resistance of a Shear Stud

Given

Find the factored resistance of a shear stud placed off-centre in ribs perpendicular to the beam, for the following configuration:

Steel deck: $h_{d}=75 \mathrm{~mm}, w_{d}=180 \mathrm{~mm}$ (average rib width)
Steel stud: diameter $=19 \mathrm{~mm}, L=150 \mathrm{~mm}, F_{u}=450 \mathrm{MPa}, \phi_{s c}=0.80$
Concrete slab: $f_{c}^{\prime}=25 \mathrm{MPa}, \gamma_{c}=2350 \mathrm{~kg} / \mathrm{m}^{3}, \rho=1.0$ (normal-density concrete)

Assume a spandrel beam condition with edge distance, $e=65 \mathrm{~mm}$.

Solution

Area of concrete pull-out pyramid, S16-14 Clause 17.7.2.4:
$L=150>w_{d} / 4+h_{d}=120 \mathrm{~mm}, 3 w_{d} / 4=135<L=150<3 w_{d} / 4+h_{d}=210 \mathrm{~mm}$.
See Table 5-7b, case (e).
$A_{p}=\sqrt{2}\left[2\left(L-h_{d}\right)^{2}+h_{d} w_{d} / 2+3 L w_{d} / 2\right]=82700 \mathrm{~mm}^{2}$ (for an interior condition)
Edge distance, $e=65<L-h_{d}=75 \mathrm{~mm}$, case (e) (ii)
Subtract: $\sqrt{2}\left[w_{d}(L-e)+\left(L-h_{d}-e\right)\left(L-h_{d}-w_{d} / 4\right)\right]=22100 \mathrm{~mm}^{2}$
$A_{p}=82700-22 \cdot 100=60600 \mathrm{~mm}^{2}\left(\approx 60700 \mathrm{~mm}^{2}\right.$, from Table 5-6a)
$A_{s c}=\pi(19 / 2)^{2}=283.5 \mathrm{~mm}^{2}$
$E_{\mathrm{c}}=\left(3300 \sqrt{f_{c}^{\prime}}+6900\right)\left(\gamma_{c} / 2300\right)^{1.5}=24200 \mathrm{MPa}$, S16-14 Clause 3.1
Clause 17.7.2.2, $q_{r s}=0.50 \phi_{s c} A_{s c} \sqrt{f_{c}^{\prime} E_{c}}=88.2 \mathrm{kN}<\phi_{s c} A_{s c} F_{u}=102 \mathrm{kN}$
Clause 17.7.2.4(a), $q_{r r}=0.35 \phi_{s c} \rho A_{p} \sqrt{f_{c}^{\prime}}=84.8 \mathrm{kN}<q_{r s}=88.2 \mathrm{kN}$

Factored shear resistance: $q_{r t}=84.8 \mathrm{kN}(\approx 84.9 \mathrm{kN}$, from Table 5-6a)

Design Example: Composite Beam

Given:

Select a simply-supported composite beam to span 12 m and carry a uniformly distributed specified live load of $18 \mathrm{kN} / \mathrm{m}$ and a dead load of $12 \mathrm{kN} / \mathrm{m}$. Beams are spaced at 3 m on centre and support a 75 mm steel deck (ribs perpendicular to the beam) with a 65 mm cover slab of 25 MPa normal density concrete. Calculations are based on $F_{y}=345 \mathrm{MPa}$ for ASTM A992 and A572 Grade 50 steels. Live load deflections are limited to $L / 300$.

Solution:

Total factored load $=(1.25 \times 12)+(1.50 \times 18)=42.0 \mathrm{kN} / \mathrm{m}$
Therefore $M_{f}=42,0 \times 12^{2} / 8=756 \mathrm{kN} \cdot \mathrm{m}$ and $V_{f}=42.0 \times 12 / 2=252 \mathrm{kN}$
Compute minimum $I_{\text {reqd }}$ for deflection limit $L / 300$ using Figure 5-2 and Table 5-8.
Total specified live load, $W=18 \times 12=216 \mathrm{kN}$
$B_{d}=1.0$ simple span UDL
$C_{d}=2.8 \times 10^{6} \mathrm{~mm}^{4} / \mathrm{kN}$ for 12 m span and $L / \Delta=300$

$$
\begin{aligned}
I_{\text {reqd }} & =W \times C_{d} \times B_{d} \\
& =\left(216 \times 2.8 \times 10^{6} \times 1.0\right) 1.15=696 \times 10^{6} \mathrm{~mm}^{4} \text { (with } 15 \% \text { allowance for creep) }
\end{aligned}
$$

Effective Width

a) $0.25 \mathrm{~L}=0.25 \times 12000 \mathrm{~mm}=3000 \mathrm{~mm}$
b) beam spacing $=3 \mathrm{~m}=3000 \mathrm{~mm}$

Therefore, effective width $=3000 \mathrm{~mm}$

Beam Selection

From the Composite Beams - Trial Selection Tables for 75 mm steel deck with 65 mm cover slab and $b_{l}=3000 \mathrm{~mm}$, a suitable shape is a W 460×74 with $M_{r c}$ for 40% shear connection $=783 \mathrm{kN} \cdot \mathrm{m}>756 \mathrm{kN} \cdot \mathrm{m}$
$V_{r}=843 \mathrm{kN}>252 \mathrm{kN}$
$I_{t}=1100 \times 10^{6} \mathrm{~mm}^{4}$
For 40% shear connection, $I_{e}=I_{s}+0.85 p^{0.25}\left(I_{t}-I_{s}\right)$
(Clause 17.3.1(a))

$$
\begin{aligned}
& =332+0.85(0.4)^{0.25}(1100-332)=851 \times 10^{6} \mathrm{~mm}^{4}>696 \times 10^{6} \mathrm{~mm}^{4} \\
Q_{r} & =2570 \mathrm{kN} ; S_{t}=2350 \times 10^{3} \mathrm{~mm}^{3} ; M_{r}=512 \mathrm{kN} \cdot \mathrm{~m} ; L_{u}=2530 \mathrm{~mm}
\end{aligned}
$$

Clause 17.12 requires that the steel section alone must be capable of supporting all factored loads applied before concrete hardens. In this case the steel deck will provide lateral support to the compression flange of the beam.

Thus $M_{r}=512 \mathrm{kN} \cdot \mathrm{m}$ applies.
Assuming dead load due to deck-slab and steel beam as $8 \mathrm{kN} / \mathrm{m}$ and construction live load as $2.5 \mathrm{kN} / \mathrm{m}$, the total factored load applied before the concrete hardens is

$$
\begin{aligned}
& (1.25 \times 8)+(1.5 \times 2.5)=13.8 \mathrm{kN} / \mathrm{m} \\
& M_{f}=13.8 \times 12^{2} / 8=248 \mathrm{kN} \cdot \mathrm{~m}<512 \mathrm{kN} \cdot \mathrm{~m}
\end{aligned}
$$

Check Unshored Beam Tension Flange

(Clause 17.11)
Assume that the load applied before concrete strength reaches $0.75 f_{c}^{*}$ is the specified dead load ($8 \mathrm{kN} / \mathrm{m}$), and that the remaining dead load ($12-8=4 \mathrm{kN} / \mathrm{m}$) and the specified live load acts on the composite section.

Stress in tension flange due to specified load acting on steel beam alone:

$$
\begin{aligned}
& S_{x} \text { of steel beam }=1460 \times 10^{3} \mathrm{~mm}^{3} \\
& f_{\mathrm{t}}=\frac{M_{1}}{S_{x}}=\frac{8 \times 12000^{2}}{8 \times 1460 \times 10^{3}}=98.6 \mathrm{MPa}
\end{aligned}
$$

Stress in tension flange due to specified live and superimposed dead loads acting on composite section:

$$
\begin{aligned}
& f_{2}=\frac{M_{2}}{S_{1}}=\frac{(18+4) \times 12000^{2}}{8 \times 2350 \times 10^{3}}=169 \mathrm{MPa} \\
& f_{1}+f_{2}=98.6+169=268 \mathrm{MPa}<345 \mathrm{MPa}
\end{aligned}
$$

Shear Connectors

$Q_{r}(100 \%$ connection $)=2570 \mathrm{kN}$
Assume $3 / 4$ inch (19 mm) diameter studs, length $L=115 \mathrm{~mm}$.
Minimum flange thickness $=19 / 2.5=7.6 \mathrm{~mm}<14.5 \mathrm{~mm}$
(Clause 17.6.5)
From Table 5-6a, for $3 / 4$-inch diameter studs, $h_{d}=75 \mathrm{~mm}, w_{d} / h_{d}=2.0, f_{c}^{\prime}=25 \mathrm{MPa}$, $\gamma_{c}=2350 \mathrm{~kg} / \mathrm{m}^{3}$, factored shear resistance per stud, $q_{r r}=68.7 \mathrm{kN}$

Number of studs required:

$$
=\frac{2 \times Q_{r} \times(\% \text { shear connection } / 100)}{q_{r r}}=\frac{2 \times 2570 \times(40 / 100)}{68.7}=29.9 \quad \text { Use } 30 \text { studs. }
$$

Since there are no concentrated loads, the studs can be spaced uniformly along the full length of the beam as permitted by the deck flutes.

COMPOSITE BEAMS
Trial Selection Table
75 mm Deck with 65 mm Slab
$\phi=0.90, \phi_{\mathrm{c}}=0.65$

ASTM A992
A572 Grade 50 $\mathrm{f}^{\prime}{ }_{\mathrm{c}}=\mathbf{2 5} \mathrm{MPa}$ $\gamma_{\mathrm{c}}=2350 \mathrm{~kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite					
		$\mathrm{M}_{\mathrm{rc}}(\mathrm{kN} \cdot \mathrm{~m})$ for \% shear connection			$\begin{array}{\|c\|} \hline Q_{r} \\ (k N) \\ \hline 100 \% \\ \hline \end{array}$	$\begin{gathered} \mathrm{I}_{\mathrm{t}} \\ 10^{6} \\ \hline \mathrm{~mm}^{4} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{t}} \\ 10^{3} \\ \mathrm{~mm}^{3} \end{gathered}$	$\begin{gathered} I_{\text {ts }} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	40\%						mm	$\mathrm{kN} \cdot \mathrm{m}$	mm	$\mathrm{kN} \cdot \mathrm{m}$	
W1000×249	7000	5430	5200	4670		6010	12000	13800	8990	M ${ }_{\text {t }} 3510$	4000	3440	14000	831
W40x167	5000	5180	4860	4370	4290	11100	13500	8140	$\mathrm{V}_{\mathrm{t}} 3220$	6000	2780	16000	694	
$\mathrm{b}=300$	3000	4690	4390	4020	2570	9640	12900	7080	$L_{u} \quad 3740$	8000	1940	18000	596	
	1000	3910	3770	3620	858	7060	11600	5680	$\mathrm{I}_{\mathrm{x}} 4810$	10000	1360	20000	523	
$\mathrm{d}=980$									$\mathrm{S}_{\mathrm{x}} 9820$	12000	1030	22000	466	
W1000x222	7000	4880	4680	4170	6010	10700	12200	8010	M 3040	4000	2940	14000	634	
W40x149	5000	4650	4360	3870	4290	9870	11900	7250	V, 3000	6000	2310	16000	527	
$\mathrm{b}=300$	3000	4190	3900	3530	2570	8600	11400	6260	$L_{u} 3590$	8000	1520	18000	451	
$\mathrm{t}=21.1$	1000	3420	3290	3140	858	6240	10200	4930	Ix 4080	10000	1050	20000	394	
$\mathrm{d}=970$									$\mathrm{S}_{\mathrm{x}} 8410$	12000	794	22000	350	
W920×238	7000	4920	4720	4280	6010	10300	12600	7730	M, 3170	4000	3140	14000	800	
W 36×160	5000	4700	4450	4010	4290	9540	12300	7000	V, 3090	6000	2590	16000	668	
$\mathrm{b}=305$	3000	4290	4030	3690	2570	8300	11800	6070	$L_{0} 3890$	8000	1870	18000	573	
$\mathrm{t}=25.9$	1000	3590	3470	3330	858	6050	10600	4840	$\mathrm{I}_{\mathrm{x}} 4060$	10000	1310	20000	502	
$\mathrm{d}=915$									$\mathrm{S}_{\mathrm{x}} 8870$	12000	996	22000	447	
W920x223	7000	4660	4470	4050	6010	9730	11800	7320	M, 2960	4500	2800	12000	881	
W 36×150	5000	4440	4210	3790	4290	9010	11500	6630	V, 2970	5000	2670	14000	705	
$\mathrm{b}=304$	3000	4060	3800	3480	2570	7860	11100	5730	$L_{u} 3830$	6000	2380	16000	587	
$\mathrm{t}=23.9$	1000	3370	3250	3120	858	5710	9900	4530	$\mathrm{I}_{\mathrm{x}} 3760$	8000	1680	18000	502	
$\mathrm{d}=911$									$\mathrm{S}_{\mathrm{x}} 8260$	10000	1170	20000	439	
W920x201	7000	4230	4050	3660	6010	8730	10500	6610	M, 2590	4500	2420	12000	705	
W 36×135	5000	4020	3810	3410	4290	8110	10300	5980	V, 2710	5000	2300	14000	560	
$b=304$	3000	3660	3420	3100	2570	7090	9860	5150	$L_{u} 3720$	6000	2030	16000	463	
$\mathrm{t}=20.1$	1000	3000	2880	2750	858	5130	8810	4000	$\mathrm{I}_{\mathrm{x}} 3250$	8000	1360	18000	394	
$\mathrm{d}=903$									$\mathrm{S}_{\mathrm{x}} 7190$	10000	940	20000	343	
W840x210	7000	4160	3970	3620	6010	8210	10500	6200	Ms 2620	4500	2460	12000	792	
W 33×141	5000	3940	3760	3390	4290	7610	10300	5610	V, 2670	5000	2350	14000	639	
$\mathrm{b}=293$	3000	3630	3400	3100	2570	6650	9910	4840	$L_{u} 3770$	6000	2090	16000	535	
$\mathrm{t}=24.4$	1000	3010	2890	2770	858	4820	8880	3790	$\mathrm{I}_{\mathrm{x}} 3110$	8000	1470	18000	461	
$\mathrm{d}=846$									$\mathrm{S}_{\mathrm{x}} 7340$	10000	1040	20000	404	
W840x193	7000	3850	3680	3350	6010	7540	9610	5730	M, 2370	4500	2200	12000	666	
W 33×130	5000	3650	3480	3130	4290	7010	9420	5180	V 2530	5000	2090	14000	534	
$\mathrm{b}=292$	3000	3350	3140	2850	2570	6140	9060	4450	$L_{0} 3690$	6000	1850	16000	445	
$\mathrm{t}=21.7$	1000	2750	2640	2520	858	4440	8110	3450	$\mathrm{I}_{\mathrm{x}} \quad 2780$	8000	1260	18000	382	
$\mathrm{d}=840$									$\mathrm{S}_{\mathrm{x}} 6630$	10000	877	20000	334	
W840x176	7000	3550	3380	3080	6010	6870	8690	5260	Mt 2110	4500	1950	12000	551	
W 33×118	5000	3350	3200	2860	4290	6410	8520	4760	V, 2300	5000	1840	14000	439	
$\mathrm{b}=292$	3000	3080	2880	2590	2570	5630	8210	4080	$L_{u} 3610$	6000	1610	16000	364	
$t=18.8$	1000	2500	2390	2270	858	4070	7340	3110	$\mathrm{I}_{\mathrm{x}} 2460$	8000	1060	18000	311	
$\mathrm{d}=835$									$\mathrm{S}_{\mathrm{x}} 5900$	10000	731	20000	271	

Units: $M_{t}-k N \cdot m, V_{r}-k N, L_{u}-m m, I_{x}-10^{6} m^{4}, S_{x}-10^{3} m m^{3}, b-m m, t-m m, d-m m$
Sections highlighted in yellow are commonly used sizes and are generally readily available.

COMPOSITE BEAMS
Trial Selection Table
75 mm Deck with 65 mm Slab
$\phi=0.90, \phi_{\mathrm{c}}=0.65$

ASTM A992 A572 Grade 50 $f^{\prime}{ }_{\mathrm{c}}=\mathbf{2 5} \mathrm{MPa}$ $\gamma_{\mathrm{c}}=2350 \mathrm{~kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite					
		$\mathrm{M}_{\mathrm{rc}}(\mathrm{kN} \cdot \mathrm{~m})$ for \% shear connection			$\begin{gathered} Q_{r} \\ (\mathrm{kN}) \\ \hline 100 \% \end{gathered}$	$\begin{gathered} I_{t} \\ 10^{6} \\ \hline \mathrm{~mm}^{4} \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{t}} \\ 10^{3} \\ \mathrm{~mm}^{3} \end{gathered}$	$\begin{gathered} I_{\text {ts }} \\ 10^{6} \\ \mathrm{~mm}^{4} \\ \hline \end{gathered}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	40\%						n			$\mathrm{kN} \cdot \mathrm{m}$	
W	5	3230	3090	27		4290		8			00	80	12000	
W30×124	40	3120	2960	26	3430	5	8	3990	Vr 2340	5000	1780	14000	470	
267	3000	2970	2790	2530	2570	5070	8	3660	$L_{u} 3450$	6000	1550	16000	397	
23.6	2000	2750	2580	2380	1720	4500	7	3270	$\mathrm{I}_{\times} 2230$	8000	1040	18000	344	
$\mathrm{d}=766$	1000	2440	2340	2220	858	3650	7220	2800	S 5820	10000	743	20000	304	
W760×173	5000	3060	2920	2	4290	5	7860	0	Mr 1930	4000	1830	0	506	
W30x116	4000	2950	2800	2510	3430	5170	7740	3770	V, 2250	5000	1630	14000	411	
67	3000	2810	2630	2380	2570	4790	7570	3460	$L_{u} 3410$	6000	1410	16000	346	
. 6	2000	2590	2430	2230	1720	4260	7290	3080	$\mathrm{I}_{\times} 2060$	8000	924	18000	299	
$\mathrm{d}=762$	1000	2290	2190	2070	858	3450	6770	2620	$\mathrm{S}_{\times} 5400$	10000	657	20000	264	
V/i60x1	5	2			4		7230		M, 1760	0	50	12000	析	
W30x108	4000	2750	2610	2330	3430	4800	7130	3510	Vr 2140	5000	1460	14000	347	
266	3000	2620	2450	2200	2570	4460	6970	3210	$L_{u} 3330$	6000	1250	16000	291	
. 3	2000	2410	2250	2060	1720	3970	6720	2860	$\mathrm{I}_{\mathrm{x}} 1860$	8000	793	18000	251	
58	1000	2110	2010	1900	858	3210	6240	2410	S 4900	10000	560	20000	220	
W	5000	2	2520	2260	4	4650	6600	3480	$M_{t} 1580$	0	0	12000	358	
W30x99	4000	2540	2410	2150	3430	4420	6500	3250	V 2040	5000	1290	14000	288	
265	3000	2420	2270	2020	2570	4110	6370	2970	$L_{u} 3260$	6000	1090	16000	241	
	2000	2230	2070	1880	1720	3670	6140	2630	$\mathrm{I}_{\mathrm{x}} 1660$	8000	671	18000	207	
$d=753$	1000	1940	1840	1	858	2	5700	2200	S 4410	10000	470	20000	181	
W760x13	5	2430	2	2	429	4270	6000	3230	Mr 1440	00	1330	0	308	
W30x90	4000	2340	2230	1990	3430	4080	5920	3020	$V_{r} 1650$	5000	1160	14000	246	
$\mathrm{b}=264$	3000	2230	2100	1870	2570	3810	5810	2760	$L_{u} 3230$	6000	967	16000	205	
. 5	2000	2060	1920	1730	1720	3400	5610	2440	$\mathrm{I}_{\mathrm{x}} 1500$	8000	587	18000	175	
$\mathrm{d}=750$	1000	1780	1690	1	858	2	5220	2030	S 4010	10000	408	20000	153	
W690x192	50	3080	2	2	4290	5	8130	3	M 2010	000	1910	12000	634	
W27x129	4000	2970	2830	2550	3430	4880	8010	3530	Vr 2230	5000	1730	14000	525	
$\mathrm{b}=254$	3000	2840	2670	2430	2570	4510	7820	3240	$L_{u} 3440$	6000	1540	16000	449	
$\mathrm{t}=27.9$	2000	2630	2480	2290	1720	3990	7530	2900	$\mathrm{I}_{\mathrm{x}} 1980$	8000	1090	18000	392	
$\mathrm{d}=702$	1000	2350	2250	2150	858	3230	6980	2480	S 5640	10000	802	20000	349	
W690x170	5000	2770	2640	2	4290	4590	7180	3400	$\mathrm{M}_{\mathrm{t}} 1750$	000	1650	12000	497	
W 27×114	40	2660	2530	2280	3430	4350	7070	3170	V 2060	5000	1480	000	408	
$b=256$	30	2540	2390	2160	2570	4030	6920	2900	$L_{u} 3380$	6000	1290	16000	347	
$\mathrm{t}=23.6$	2000	2350	2210	2030	1720	3580	6660	2580	$\mathrm{I}_{\mathrm{x}} \quad 1700$	8000	875	18000	302	
$\mathrm{d}=693$	1000	2080	1990	1880	858	2890	6180	2190	$\mathrm{S}_{\mathrm{x}} 4900$	10000	634	20000	268	
W690x152	5000	2520	2390	2170	4290	4170	6450	3120	$\mathrm{M}_{\mathrm{t}} 1550$	000	1460	12000	406	
W27x102	4000	2420	2300	2070	3430	3960	6360	2910	V, 1850	5000	1290	14000	332	
$\mathrm{b}=254$	3000	2310	2180	1960	2570	3690	6230	2660	$L_{u} 3320$	6000	1110	16000	281	
$\mathrm{t}=21.1$	2000	2140	2010	1830	1720	3280	6010	2360	$\mathrm{I}_{\mathrm{x}} 1510$	8000	728	18000	244	
$\mathrm{d}=688$	1000	1880	1790	1690	858	2650	5590	1990	$\mathrm{S}_{\mathrm{x}} 4380$	10000	523	20000	216	

Units: $\mathrm{M}_{\mathrm{r}}-\mathrm{kN} \cdot \mathrm{m}, \mathrm{V}_{\mathrm{r}}-\mathrm{kN}, \mathrm{L}_{\mathrm{u}}-\mathrm{mm}, \mathrm{I}_{\mathrm{x}}-10^{6} \mathrm{~mm}^{4}, \mathrm{~S}_{\mathrm{x}}-10^{3} \mathrm{~mm}^{3}, \mathrm{~b}-\mathrm{mm}, \mathrm{t}-\mathrm{mm}, \mathrm{d}-\mathrm{mm}$
Sections highlighted in yellow are commonly used sizes and are generally readily available.

COMPOSITE BEAMS Trial Selection Table
75 mm Deck with 65 mm Slab
$\phi=0.90, \phi_{\mathrm{c}}=0.65$

ASTM A992
A572 Grade 50
$\mathrm{f}^{\prime}{ }_{\mathrm{c}}=\mathbf{2 5} \mathrm{MPa}$
$\gamma_{\mathrm{c}}=2350 \mathrm{~kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite					
		$\mathrm{M}_{\mathrm{rc}}(\mathrm{kN} \cdot \mathrm{~m})$ for \% shear connection			$\begin{gathered} Q_{r} \\ (\mathrm{kN}) \\ \hline 100 \% \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{t}} \\ 10^{6} \\ \hline \mathrm{~mm}^{4} \end{gathered}$	$\begin{gathered} \mathrm{S}_{1} \\ 10^{3} \\ \mathrm{~mm}^{3} \end{gathered}$	$\begin{gathered} I_{\text {ts }} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	40\%						mm			m	
W	5000	2350	2220	2020		4290	3850	5910	2900	M	0	1320	10000	
W27x94	4000	2250	2140	1930	3430	3670	5	2700	$V_{r} 1740$	5000	1160	12000	345	
254	3000	2140	2020	1820	2570	3420	5710	2470	$L_{u} 3270$	6000	987	14000	280	
18.9	2	1990	1860	1690	1720	3050	5520	2190	$\mathrm{I}_{\mathrm{x}} 1360$	7000	778	16000	236	
$d=684$	0	1740	1650	1550	858	2460	5140	1830	$\mathrm{S}_{\mathrm{x}} 3980$	8000	628	18000	204	
W690x125	5000	2140	2020	1840	4290	3460	5270	2630	M ${ }_{\text {t }} 1250$	0	1140	10000	2	
W27x84	4000	2040	1940	1750	3430	3300	5200	2450	$\mathrm{V}_{r} 1610$	5000	999	12000	277	
253	3000	1940	1840	1640	2570	3090	5100	2240	$L_{u} 3190$	6000	834	14000	223	
16.3	2000	1800	1680	1520	1720	2770	4940	1970	$\mathrm{I}_{\mathrm{x}} \quad 1180$	7000	640	16000	187	
	1000	1560	1480	1380	858	2230	4590	1630	S $\times 3500$	8000	513	18000	161	
W610x174	5000	2570	2440	2240	4290	3930	6860	2900	M, 1660	0	1660	000	,	
W 24×117	4000	2460	2350	2150	3430	3730	6760	2710	V 1770	5000	1610	12000	709	
325	3000	2350	2240	2040	2570	3450	6610	2480	$L_{u} 4480$	6000	1490	14000	574	
21.6	2000	2200	2090	1930	1720	3060	6380	2210	$\mathrm{I}_{\mathrm{x}} 1470$	7000	1370	16000	482	
$\mathrm{d}=616$	1000	1970	1890	1800	858	2	5940	1880	$\mathrm{S}_{\mathrm{x}} 4780$	8000	1230	18000	415	
W610x15	5000	2320	2200	2020	4290	3	6	2	M $\mathrm{r}_{\mathrm{r}} 1470$	0	60	0	762	
W24×104	4000	2220	2120	1940	3430	3370	6020	2470	$V_{T} 1590$	5000	1410	12000	579	
324	3000	2120	2020	1840	2570	3130	5900	2260	$L_{u} 4400$	6000	1300	14000	465	
	2000	1990	1880	1730	1720	2790	5700	2000	$\mathrm{I}_{\mathrm{x}} 1290$	7000	1180	16000	388	
$\mathrm{d}=611$	1	1770	1690	1600	858	22	5320	1690	$\mathrm{S}_{\mathrm{x}} 4220$	8000	1050	18000	333	
W610x1	5000	2170	2040	1850	4	3	5	2440	$M_{t} 1290$	0	1170	10000	422	
W24x94	4000	2060	1960	1770	3430	3100	5400	2270	V, 1660	5000	1030	12000	334	
$\mathrm{b}=230$	3000	1960	1850	1670	2570	2890	5290	2070	$L_{0} 3070$	6000	874	14000	277	
$\mathrm{t}=22.2$	2000	1820	1710	1550	1720	2570	5110	1830	$\mathrm{I}_{\mathrm{x}} 1120$	7000	695	16000	237	
$\mathrm{d}=617$	1000	1590	1510	1420	858	2	4740	1520	$\mathrm{S}_{\mathrm{x}} 3630$	8000	573	18000	207	
W610x12	5000	1970	1850	1680	4290	2	4890	2220	$M_{\text {r }} 1140$	00	1020	10000	2	
W24x84	4000	1870	1770	1600	3430	2800	4830	2080	V, 1490	5000	889	12000	269	
$\mathrm{b}=229$	3000	1770	1680	1510	2570	2620	4740	1890	$L_{u} 3020$	6000	733	14000	222	
$\mathrm{t}=19.6$	2000	1650	1550	1400	1720	2340	4580	1670	$\mathrm{I}_{\mathrm{x}} \quad 985$	7000	575	16000	189	
$\mathrm{d}=612$	1000	1440	1360	1270	858	1890	4260	1370	S, 3220	8000	470	18000	165	
W610x113	5000	1830	1710	1550	4290	2	4430	2050	M 1020	4000	906	10000	282	
W24x76	4000	1730	1630	1470	3430	2560	4370	1910	$V_{\text {r }} 1400$	5000	775	12000	220	
$\mathrm{b}=228$	3000	1630	1550	1380	2570	2400	4290	1740	$L_{0} 2950$	6000	617	14000	180	
$t=17.3$	2000	1510	1420	1280	1720	215	4160	1530	$\mathrm{I}_{\mathrm{x}} \quad 875$	7000	481	16000	153	
$d=608$	1000	1310	1240	1150	858	1740	3870	1250	S, 2880	8000	391	18000	133	
W610x101	5000	1650	1540	1390	4020	2410	3950	1860	M $\mathrm{F}_{5} 900$	4000	787	10000	228	
W24x68	4000	1580	1480	1340	3430	2310	3910	1740	V, 1300	5000	664	12000	176	
$b=228$	3000	1480	1410	1250	2570	2170	3840	1590	$L_{\nu} 2890$	6000	512	14000	144	
$t=14.9$	2000	1380	1290	1150	1720	1960	3720	1390	$\mathrm{I}_{\mathrm{x}} \quad 764$	7000	396	16000	121	
$d=603$	1000	1190	1120	1030	858	1580	3480	1130	Sk 2530	8000	320	18000	105	

Units: $\mathrm{M}_{\mathrm{r}}-\mathrm{kN} \cdot \mathrm{m}, \mathrm{V}_{\mathrm{r}}-\mathrm{kN}, \mathrm{L}_{\mathrm{u}}-\mathrm{mm}, \mathrm{I}_{\mathrm{x}}-10^{6} \mathrm{~mm}^{4}, \mathrm{~S}_{\mathrm{x}}-10^{3} \mathrm{~mm}^{3}, \mathrm{~b}-\mathrm{mm}, \mathrm{t}-\mathrm{mm}, \mathrm{d}-\mathrm{mm}$
Sections highlighted in yellow are commonly used sizes and are generally readily available.

COMPOSITE BEAMS Trial Selection Table
75 mm Deck with 65 mm Slab
$\phi=0.90, \phi_{c}=0.65$

ASTM A992
A572 Grade 50
$\mathbf{f}^{\prime}{ }_{\mathrm{c}}=\mathbf{2 5} \mathrm{MPa}$
$\gamma_{\mathrm{c}}=2350 \mathrm{~kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite				
		$\mathrm{M}_{\mathrm{rc}}(\mathrm{kN} \cdot \mathrm{~m})$ for \% shear connection			Q_{r}				Steel section data	Unbraced condition			
					(kN)	10^{6}	10^{3}	10^{6}					
	mm	100\%	70\%	40\%	100\%	mm^{4}	mm^{3}	mm ${ }^{4}$		m	$\mathrm{kN} \cdot \mathrm{m}$	mm	$\mathrm{kN} \cdot \mathrm{m}$
W6	4	1470	1380	1230	3430	2090	3480	1580	M $\mathrm{M}_{\text {r }} 779$	3000	83	8000	183
W24x62	3000	1370	1290	1140	2570	1970	3420	1440	$\mathrm{V}_{\mathrm{t}} 1350$	4000	540	10000	135
179	2000	1260	1170	1030	1720	1780	3320	1260	$L_{v} 2180$	5000	376	12000	107
$t=15$	1000	1070	997	908	858	1440	3090	1010	$\mathrm{I}_{\mathrm{x}} 646$	6000	281	14000	88.9
$\mathrm{d}=603$	500	933	889	840	429	1140	2820	845	S $\mathrm{S}^{2} 140$	7000	222	16000	76.1
W610x82	4000	1320	1230	1100	3240	1870	3090	1430	M, 683	3000	587	8000	145
W24x5	3000	1240	1170	1030	2570	1770	3040	1310	$\mathrm{V}_{t} 1170$	4000	448	10000	106
$\mathrm{b}=178$	2000	1140	1060	929	1720	1600	2950	1140	$L_{u} 2110$	5000	304	12000	83.4
$\mathrm{t}=12.8$	1000	966	895	809	858	1300	2750	910	$\mathrm{I}_{x} 560$	6000	225	14000	68.9
$\mathrm{d}=599$	500	833	790	742	429	1030	2520	755	S $\times 1870$	7000	177	16000	58.7
W530x13	400	1850	1750	1570	3430	2520	4850	1830	M, 1120	3000	1110	8000	515
W21×93	3000	1750	1650	1470	2570	2340	4750	1660	$V_{t} 1650$	4000	1000	10000	390
$\mathrm{b}=214$	2000	1610	1510	1360	1720	2080	4570	1460	$\mathrm{L}_{\mathrm{u}} 2930$	5000	884	12000	314
$t=23.6$	1000	1400	1330	1240	858	1660	4220	1200	$\mathrm{I}_{\times} 861$	6000	759	14000	263
$\mathrm{d}=549$	500	1270	1230	1180	429	1330	3870	1040	S ${ }_{\text {x }} 3140$	7000	616	16000	227
W530x12	40	1690	1580	1420	3430	2280	4340	1670	M ${ }_{\text {r }} 997$	3000	984	8000	421
W21x83	3000	1580	1500	1340	2570	2130	4250	1520	$V_{t} 1460$	4000	879	10000	316
$\mathrm{b}=212$	2000	1460	1370	1230	1720	1900	4110	1330	$L_{u} 2860$	5000	762	12000	253
$t=21.2$	1000	1270	1200	1120	858	1520	3810	1090	$\mathrm{I}_{\mathrm{x}} \quad 761$	6000	631	14000	211
$\mathrm{d}=544$	500	1140	1100	1050	429	1210	3490	937	$\mathrm{S}_{\mathrm{x}} 2800$	7000	505	16000	182
W530×109	4000	1530	1430	1290	3430	2050	3860	1520	M, 879	3000	862	8000	342
W21x73	3000	1430	1350	1210	2570	1920	3780	1390	V, 1280	4000	764	10000	254
$b=211$	2000	1320	1240	1110	1720	1720	3660	1210	$L_{u} 2810$	5000	652	12000	202
$t=18.8$	1000	1140	1080	997	858	1380	3410	984	$\mathrm{I}_{\mathrm{x}} \quad 667$	6000	520	14000	168
$d=539$	500	1020	979	934	429	1100	3130	839	$\mathrm{S}_{\mathrm{x}} 2480$	7000	413	16000	144
W530x101	4000	1440	1350	1220	3430	1920	3590	1440	M $\mathrm{M}_{1} 814$	3000	794	8000	301
W21x68	3000	1350	1270	1140	2570	1810	3530	1310	V, 1200	4000	699	10000	222
$\mathrm{b}=210$	2000	1240	1170	1040	1720	1620	3420	1150	$L_{u} 2770$	5000	591	12000	176
$t=17.4$	1000	1080	1010	932	858	1310	3190	928	$\mathrm{I}_{\mathrm{x}} \quad 617$	6000	462	14000	146
$d=537$	500	953	914	870	429	1040	2930	787	$\mathrm{S}_{\mathrm{x}} 2300$	7000	365	16000	125
W530x92	4000	1340	1250	1120	3430	1760	3270	1340	M ${ }^{\text {c }} 733$	3000	711	8000	253
W21x62	3000	1250	1170	1050	2570	1660	3220	1220	$V_{\text {V }} 1110$	4000	621	9000	214
$\mathrm{b}=209$	2000	1140	1080	961	1720	1500	3120	1060	$L_{u} 2720$	5000	516	10000	185
$t=15.6$	1000	992	929	851	858	1210	2920	855	$\mathrm{I}_{\mathrm{x}} \quad 552$	6000	393	12000	146
$d=533$	500	872	833	789	429	965	2680	719	S 2070	7000	309	14000	120
W530x82	4000	1210	1120	1000	3250	1570	2900	1210	M $\mathrm{m}^{\text {c }} 640$	3000	616	8000	203
W21x55	3000	1130	1060	950	2570	1490	2850	1100	V 1030	4000	531	9000	170
$\mathrm{b}=209$	2000	1030	974	863	1720	1350	2770	964	$L_{u} 2660$	5000	433	10000	147
$\mathrm{t}=13.3$	1000	892	832	756	858	1100	2600	769	$\mathrm{I}_{\mathrm{x}} \quad 477$	6000	320	12000	115
$\mathrm{d}=528$	500	776	739	695	429	872	2390	639	$\mathrm{S}_{\mathrm{x}} 1810$	7000	249	14000	94.0

Units: $M_{r}-k N \cdot m, V_{r}-k N, L_{u}-m m, I_{x}-10^{6} \mathrm{~mm}^{4}, S_{x}-10^{3} \mathrm{~mm}^{3}, b-m m, t-m m, d-m m$
$F_{y}=345 \mathrm{MPa}$
Sections highlighted in yellow are commonly used sizes and are generally readily available.

COMPOSITE BEAMS Trial Selection Table
75 mm Deck with 65 mm Slab
$\phi=0.90, \phi_{\mathrm{c}}=0.65$

ASTM A992
A572 Grade 50
$\mathrm{f}^{\prime}{ }_{\mathrm{c}}=25 \mathrm{MPa}$
$\gamma_{\mathrm{c}}=2350 \mathrm{~kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite					
		$\mathrm{M}_{\mathrm{rc}}(\mathrm{kN} \cdot \mathrm{~m})$ for \% shear connection			$\begin{array}{\|c\|} \hline Q_{r} \\ (k N) \\ \hline 100 \% \\ \hline \end{array}$	$\begin{gathered} \mathrm{I}_{\mathrm{t}} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{t}} \\ 10^{3} \\ \mathrm{~mm}^{3} \end{gathered}$	$\begin{gathered} \mathrm{I}_{\text {ts }} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	40\%						mm	$\mathrm{kN} \cdot \mathrm{m}$	n	$\mathrm{kN} \cdot \mathrm{m}$	
W530x74	4000	1110	1030	908		2960	1430	2610	1110	M ${ }^{\text {c }} 562$	3000	474	8000	123
W21x50	3000	1060	987	873	2570	1360	2560	1010	V 1050	4000	357	9000	105	
$\mathrm{b}=166$	2000	959	898	785	1720	1240	2490	883	$L_{u} 2040$	5000	247	10000	91.7	
$t=13.6$	1000	815	754	678	858	1010	2330	698	$\mathrm{I}_{\mathrm{x}} 411$	6000	186	12000	73.2	
$\mathrm{d}=529$	500	698	660	617	429	797	2140	572	S 1550	7000	148	14000	61.0	
W530x66	4000	982	903	793	2600	1270	2280	994	M ${ }_{\text {c }} 484$	3000	398	8000	94.9	
W21x44	3000	959	890	787	2570	1200	2250	911	V, 927	4000	284	9000	80.6	
$\mathrm{b}=165$	2000	863	809	704	1720	1100	2190	796	$L_{u} 1980$	5000	195	10000	70.0	
$\mathrm{t}=11.4$	1000	732	674	600	858	908	2060	627	$\mathrm{l}_{\mathrm{x}} \quad 351$	6000	145	12000	55.5	
$d=525$	500	619	582	540	429	718	1890	508	Sx 1340	7000	115	14000	46.0	
W460×158	4000	1830	1720	1570	3430	2270	5060	1630	M, 1170	4500	1150	9000	794	
W18x106	3000	1720	1640	1490	2570	2100	4940	1480	$V_{r} 1460$	5000	1110	10000	696	
$\mathrm{b}=284$	2000	1610	1520	1390	1720	1850	4760	1300	$\mathrm{L}_{\mathrm{u}} 4200$	6000	1040	11000	617	
$\mathrm{t}=23.9$	1000	1430	1360	1290	858	1470	4390	1080	$\mathrm{I}_{\times} 796$	7000	955	12000	555	
476	500	1310	1270	1230	429	1190	4040	945	S 3350	8000	875	14000	462	
W460x144	4000	1700	1600	1460	3430	2110	4660	1520	M, 1070	4500	1050	9000	693	
W18x97	3000	1600	1520	1380	2570	1950	4560	1380	V 1320	5000	1010	10000	602	
$b=283$	2000	1490	1410	1290	1720	1730	4390	1210	$L_{u} 4130$	6000	936	11000	533	
$\mathrm{t}=22.1$	1000	1320	1260	1190	858	1380	4070	1000	$l_{x} \quad 726$	7000	858	12000	478	
$\mathrm{d}=472$	500	1200	1170	1130	429	1110	3740	872	$\mathrm{S}_{\mathrm{x}} 3080$	8000	779	14000	396	
W460×128	4000	1550	1450	1320	3430	1900	4150	1390	M $\mathrm{M}^{\text {c }} 947$	4500	917	9000	566	
W18x86	3000	1440	1370	1250	2570	1770	4070	1260	$\mathrm{V}_{t} 1170$	5000	884	10000	489	
$\mathrm{b}=282$	2000	1340	1270	1160	1720	1570	3930	1100	$L_{u} 4040$	6000	812	11000	431	
$t=19.6$	1000	1190	1130	1060	858	1260	3650	903	$\mathrm{I}_{\mathrm{x}} 637$	7000	736	12000	385	
$\mathrm{d}=467$	500	1080	1040	1000	429	1010	3360	780	S 2730	8000	658	14000	318	
W460x113	4000	1400	1300	1180	3430	1700	3670	1260	M ${ }_{\text {r }} 829$	4500	796	9000	458	
W18x76	3000	1300	1230	1120	2570	1590	3600	1150	V, 1020	5000	765	10000	394	
$\mathrm{b}=280$	2000	1200	1140	1040	1720	1420	3490	1000	$L_{u} 3950$	6000	696	11000	345	
$\mathrm{t}=17.3$	1000	1060	1010	940	858	1140	3250	814	$\mathrm{I}_{\mathrm{x}} 556$	7000	623	12000	307	
$\mathrm{d}=463$	500	958	923	884	429	912	3000	696	S 2400	8000	545	14000	252	
W460x106	4000	1350	1250	1120	3430	1600	3380	1180	$M_{t} \quad 742$	3000	719	8000	308	
W18x71	3000	1250	1170	1040	2570	1500	3310	1070	V, 1210	4000	637	9000	266	
$\mathrm{b}=194$	2000	1140	1070	956	1720	1340	3200	934	$L_{u} 2690$	5000	549	10000	235	
$\mathrm{t}=20.6$	1000	985	926	853	858	1070	2970	747	$\mathrm{I}_{\mathrm{x}} 488$	6000	450	11000	210	
$\mathrm{d}=469$	500	872	836	796	429	845	2710	629	S 2080	7000	366	12000	190	
W460x97	4000	1260	1160	1040	3430	1480	3100	1110	$M_{\text {r }} 6677$	3000	652	8000	264	
W18x65	3000	1160	1080	971	2570	1390	3040	1010	V 1090	4000	574	9000	227	
$b=193$	2000	1060	994	887	1720	1250	2950	876	$L_{\text {u }} 2650$	5000	488	10000	200	
$\mathrm{t}=19$	1000	914	858	788	858	1000	2740	698	$\mathrm{l}_{\mathrm{x}} \quad 445$	6000	389	11000	178	
$\mathrm{d}=466$	500	806	771	731	429	792	2510	584	S 1910	7000	314	12000	161	

Units: $M_{r}-k N \cdot m, V_{r}-k N, L_{u}-m m, I_{x}-10^{6} \mathrm{~mm}^{4}, S_{x}-10^{3} \mathrm{~mm}^{3}, b-m m, t-m m, d-m m$
$\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$
Sections highlighted in yellow are commonly used sizes and are generally readily available.

COMPOSITE BEAMS
Trial Selection Table
75 mm Deck with 65 mm Slab
$\phi=0.90, \phi_{\mathrm{c}}=0.65$

ASTM A992
A572 Grade 50
$\mathrm{f}^{\prime}{ }_{\mathrm{c}}=\mathbf{2 5} \mathrm{MPa}$
$\gamma_{\mathrm{c}}=\mathbf{2 3 5 0} \mathrm{kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite					
		$\mathrm{M}_{\mathrm{rc}}(\mathrm{kN} \cdot \mathrm{~m})$ for \% shear connection			$\begin{array}{\|c} Q_{r} \\ (\mathrm{kN}) \\ \hline 100 \% \end{array}$	$\begin{gathered} I_{1} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{t}} \\ 10^{3} \\ \hline \mathrm{~mm}^{3} \\ \hline \end{gathered}$	$\begin{gathered} I_{\text {ts }} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	40\%						mm	$\mathrm{kN} \cdot \mathrm{m}$	mm	$\mathrm{kN} \cdot \mathrm{m}$	
W460x89	3000	1090	1020	911		2570	1300	2820	949	M ${ }_{\text {r }} \quad 624$	3000	598	8000	231
W18x60	2000	988	932	832	1720	1170	2740	826	V, 996	4000	523	9000	198	
$\mathrm{b}=192$	1500	933	875	785	1290	1080	2670	748	$L_{u} 2620$	5000	439	10000	174	
$\mathrm{t}=17.7$	1000	857	803	734	858	946	2560	656	$\mathrm{I}_{\mathrm{x}} \quad 409$	6000	343	11000	155	
$\mathrm{d}=463$	500	752	718	679	429	746	2340	546	$\mathrm{S}_{\mathrm{x}} 1770$	7000	276	12000	140	
W460x82	3000	1020	948	848	2570	1200	2590	886	$M_{r} \quad 568$	3000	540	8000	195	
W18x55	2000	920	867	772	1720	1090	2520	772	V, 933	4000	466	9000	166	
$\mathrm{b}=191$	1500	867	813	727	1290	1000	2460	699	$L_{u} 2560$	5000	384	10000	146	
$t=16$	1000	795	744	676	858	883	2360	611	Ix 370	6000	292	11000	129	
$d=460$	500	694	660	622	429	696	2160	504	$\mathrm{S}_{\mathrm{x}} 1610$	7000	234	12000	116	
W460x74	3000	947	876	783	2570	1100	2350	822	$\mathrm{M}_{\mathrm{t}} \quad 512$	3000	484	8000	164	
W18x50	2000	849	798	712	1720	1000	2290	717	V, 843	4000	414	9000	140	
$b=190$	1500	797	750	668	1290	928	2240	649	$L_{u} 2530$	5000	332	10000	122	
$t=14.5$	1000	733	685	620	858	819	2150	566	$\mathrm{I}_{\mathrm{x}} \quad 332$	6000	249	11000	108	
$\mathrm{d}=457$	500	636	604	566	429	647	1980	463	$\mathrm{S}_{\mathrm{x}} 1460$	7000	198	12000	96.8	
W460x68	3000	898	829	734	2570	1030	2160	772	M $\mathrm{T}^{\text {r }} 463$	3000	390	8000	112	
W18x46	2000	801	751	662	1720	940	2110	673	$\mathrm{V}_{\mathrm{r}} \quad 856$	4000	301	9000	96.7	
$\mathrm{b}=154$	1500	750	701	619	1290	870	2060	608	$L_{u} 2010$	5000	213	10000	85.2	
$\mathrm{t}=15.4$	1000	684	635	570	858	769	1980	528	Ix 297	6000	164	11000	76.1	
$\mathrm{d}=459$	500	586	554	516	429	606	1810	428	S 1290	7000	133	12000	68.9	
W460x60	3000	795	729	644	2350	907	1890	693	$M_{t} \quad 397$	3000	329	8000	86.6	
W18x40	2000	718	670	593	1720	834	1840	606	V, 746	4000	242	9000	74.3	
$\mathrm{b}=153$	1500	668	627	552	1290	777	1800	549	$L_{0} 1970$	5000	169	10000	65.2	
$t=13.3$	1000	611	567	505	858	691	1740	476	$\mathrm{I}_{\mathrm{x}} \quad 255$	6000	129	11000	58.1	
$d=455$	500	521	489	452	429	547	1600	382	S 11120	7000	104	12000	52.4	
W460x52	3000	697	636	557	2060	792	1630	614	$M_{r} \quad 338$	3000	269	8000	63.6	
W18×35	2000	647	600	528	1720	733	1600	539	V, 680	4000	185	9000	54.3	
$b=152$	1500	598	560	488	1290	685	1560	488	$L_{u} 1890$	5000	128	10000	47.4	
$t=10.8$	1000	544	503	442	858	612	1510	422	$\mathrm{I}_{\times} \quad 212$	6000	96.2	11000	42.0	
$\mathrm{d}=450$	500	458	427	390	429	486	1390	334	$\mathrm{S}_{\mathrm{x}} \quad 942$	7000	76.7	12000	37.8	
W410x149	3000	1520	1430	1300	2570	1720	4370	1200	M 1010	4500	983	8000	760	
W16x100	2000	1400	1330	1210	1720	1520	4210	1050	V 11320	5000	952	9000	696	
$\mathrm{b}=265$	1500	1330	1260	1170	1290	1380	4070	962	$\mathrm{L}_{u} 4080$	5500	921	10000	621	
$\mathrm{t}=25$	1000	1240	1190	1120	858	1200	3870	861	$\mathrm{I}_{\mathrm{x}} \quad 618$	6000	889	11000	554	
$\mathrm{d}=431$	500	1130	1100	1060	429	959	3540	747	$\mathrm{S}_{\times} 2870$	7000	825	12000	501	
W410x132	3000	1370	1290	1170	2570	1550	3890	1090	$M_{\text {T }} 885$	4500	853	8000	635	
W16x89	2000	1260	1190	1090	1720	1380	3750	952	$V_{t} 1160$	5000	823	9000	565	
$\mathrm{b}=263$	1500	1200	1130	1040	1290	1250	3640	868	$L_{u} 3940$	5500	792	10000	495	
$t=22.2$	1000	1110	1060	990	858	1090	3460	773	$\mathrm{I}_{\mathrm{x}} \quad 538$	6000	761	11000	440	
$\mathrm{d}=425$	500	1010	974	937	429	865	3170	664	S 2530	7000	698	12000	397	

Units: $\mathrm{M}_{\mathrm{t}}-\mathrm{kN} \cdot \mathrm{m}, \mathrm{V}_{\mathrm{t}}-\mathrm{kN}, \mathrm{L}_{\mathrm{u}}-\mathrm{mm}, \mathrm{I}_{\mathrm{x}}-10^{6} \mathrm{~mm}^{4}, \mathrm{~S}_{\mathrm{x}}-10^{3} \mathrm{~mm}^{3}, \mathrm{~b}-\mathrm{mm}, \mathrm{t}-\mathrm{mm}, \mathrm{d}-\mathrm{mm} \quad \mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$
Sections highlighted in yellow are commonly used sizes and are generally readily available.

COMPOSITE BEAMS Trial Selection Table

75 mm Deck with 65 mm Slab

 $\phi=0.90, \phi_{\mathrm{c}}=0.65$

ASTM A992
A572 Grade 50 $\mathbf{f}^{\prime}{ }_{\mathrm{c}}=\mathbf{2 5} \mathrm{MPa}$ $\gamma_{\mathrm{c}}=\mathbf{2 3 5 0} \mathrm{kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite					
		$\mathrm{M}_{\mathrm{rc}}(\mathrm{kN} \cdot \mathrm{~m})$ for \% shear connection			$\begin{array}{\|c\|} \hline Q_{r} \\ (\mathrm{kN}) \\ \hline 100 \% \end{array}$	$\begin{gathered} I_{t} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{t}} \\ 10^{3} \\ \mathrm{~mm}^{3} \end{gathered}$	$\begin{gathered} \mathrm{I}_{\text {ts }} \\ 10^{6} \\ \hline \mathrm{~mm}^{4} \end{gathered}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	40\%						mm	$\mathrm{kN} \cdot \mathrm{m}$	m	$\mathrm{N} \cdot \mathrm{m}$	
W410x11	3000	1220	1140	1030		2570	1380	3390	982	M ${ }_{\text {r }} 764$	4500	726	8000	513
W16x77	2000	1110	1060	959	1720	1230	3280	854	$\mathrm{V}_{\mathrm{r}} \quad 998$	5000	698	9000	438	
$\mathrm{b}=261$	1500	1060	1000	915	1290	1120	3190	777	$L_{u} 3810$	5500	668	10000	382	
$\mathrm{t}=19.3$	1000	982	931	866	858	978	3050	688	$\mathrm{I}_{\mathrm{x}} \quad 461$	6000	638	11000	338	
$d=420$	500	883	851	814	429	774	2790	584	S 2200	7000	576	12000	304	
W410x100	3000	1090	1010	919	2570	1220	2970	885	$M_{r} 661$	4500	623	8000	411	
W16x67	2000	987	935	851	1720	1100	2880	770	$V_{\text {r }} \quad 850$	5000	596	9000	348	
$\mathrm{b}=260$	1500	934	887	809	1290	1010	2810	699	$L_{u} 3730$	5500	568	10000	302	
$\mathrm{t}=16.9$	1000	871	824	763	858	882	2690	616	$\mathrm{I}_{\mathrm{x}} \quad 398$	6000	539	11000	266	
$\mathrm{d}=415$	500	778	747	712	429	697	2470	517	Sx 1920	7000	479	12000	238	
W410x85	3000	975	901	802	2570	1060	2500	775	$M_{\text {r }} \quad 534$	3000	507	8000	205	
W16x57	2000	873	820	729	1720	960	2430	672	$\mathrm{V}_{\mathrm{t}} \quad 931$	4000	443	9000	177	
$b=181$	1500	820	768	686	1290	882	2360	606	$L_{u} 2530$	5000	375	10000	157	
$\mathrm{t}=18.2$	1000	751	702	638	858	772	2260	528	$\mathrm{I}_{\mathrm{x}} \quad 315$	6000	297	11000	140	
$\mathrm{d}=$	500	654	623	587	429	604	2060	433	S 1510	7000	242	12000	127	
W410x74	3000	888	817	72	2570	953	2220	70	$M_{r} 469$	3000	440	8000	163	
W16x50	2000	789	739	657	1720	866	2150	612	$V_{\text {t }} \quad 821$	4000	379	9000	140	
$\mathrm{b}=180$	1500	738	693	616	1290	799	2100	553	$L_{u} 2470$	5000	312	10000	123	
$t=16$	1000	676	631	570	858	703	2020	480	$\mathrm{I}_{\times} \quad 275$	6000	239	11000	110	
$\mathrm{d}=413$	500	586	555	520	429	551	1850	390	S× 1330	7000	194	12000	99.7	
W410x67	3000	824	755	66	2570	868	2000	65	$M_{r} \quad 422$	3000	392	8000	135	
W16x45	2000	728	678	604	1720	793	1950	567	$\mathrm{V}_{\mathrm{t}} \quad 739$	4000	333	9000	116	
$\mathrm{b}=179$	1500	677	636	565	1290	734	1900	511	$L_{u} 2420$	5000	264	10000	102	
$t=14.4$	1000	621	579	521	858	649	1830	443	Is 245	6000	201	11000	90.4	
$\mathrm{d}=410$	500	535	506	471	429	510	1680	357	S 1200	7000	161	12000	81.6	
W410x60	3000	738	673	591	2350	779	1780	5	$M_{r} \quad 369$	3000	341	8000	109	
W16x40	2000	662	614	547	1720	716	1730	519	$V_{\text {V }} \quad 642$	4000	286	9000	93.1	
$\mathrm{b}=178$	1500	612	575	511	1290	666	1700	469	$L_{u} 2390$	5000	218	10000	81.3	
$t=12.8$	1000	560	524	469	858	592	1640	407	Is 216	6000	165	11000	72.1	
$d=407$	500	482	454	420	429	468	1510	325	S 1060	7000	131	12000	64.9	
W410x54	3000	665	603	527	2110	698	1580	538	Mr 326	3000	295	8000	86.0	
W16x36	2000	609	563	498	1720	645	1550	472	$\mathrm{V}_{T} \quad 619$	4000	241	9000	73.1	
$\mathrm{b}=177$	1500	561	525	463	1290	602	1510	427	Lu 2310	5000	176	10000	63.5	
$\mathrm{t}=10.9$	1000	510	476	421	858	537	1460	369	$\mathrm{I}_{\mathrm{x}} \quad 186$	6000	132	11000	56.2	
$\mathrm{d}=403$	500	435	407	374	429	425	1350	292	$\mathrm{S}_{\mathrm{x}} \quad 923$	7000	104	12000	50.4	
W410x46	3000	582	525	455	1830	614	1370	481	M, 274	2000	265	7000	61.7	
W16x31	2000	553	507	445	1720	570	1340	424	$\mathrm{V}_{\text {V }} \quad 578$	3000	210	8000	51.8	
$b=140$	1500	505	469	411	1290	535	1310	384	$L_{u} 1790$	4000	142	9000	44.6	
$\mathrm{t}=11.2$	1000	455	423	371	858	480	1270	331	$\mathrm{I}_{\mathrm{x}} \quad 156$	5000	99.9	10000	39.2	
$d=403$	500	383	357	323	429	382	1180	260	$\mathrm{S}_{\times} \quad 772$	6000	76.4	11000	35.0	

Units: $\mathrm{M}_{\mathrm{t}}-\mathrm{kN} \cdot \mathrm{m}, \mathrm{V}_{\mathrm{t}}-\mathrm{kN}, \mathrm{L}_{u}-\mathrm{mm}, \mathrm{I}_{\mathrm{x}}-10^{6} \mathrm{~mm}^{4}, \mathrm{~S}_{\mathrm{x}}-10^{3} \mathrm{~mm}^{3}, \mathrm{~b}-\mathrm{mm}, \mathrm{t}-\mathrm{mm}, \mathrm{d}-\mathrm{mm}$
Sections highlighted in yellow are commonly used sizes and are generally readily available.

COMPOSITE BEAMS Trial Selection Table
75 mm Deck with 65 mm Slab
$\phi=0.90, \phi_{\mathrm{c}}=0.65$

ASTM A992 A572 Grade 50 $\mathbf{f}^{\prime}{ }_{\mathrm{c}}=\mathbf{2 5} \mathrm{MPa}$ $\gamma_{\mathrm{c}}=2350 \mathrm{~kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite					
		$\mathrm{M}_{\mathrm{rc}}(\mathrm{kN} \cdot \mathrm{~m})$ for \% shear connection			$\begin{gathered} Q_{r} \\ (\mathrm{kN}) \\ \hline 100 \% \end{gathered}$	$\begin{gathered} I_{t} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{t}} \\ 10^{3} \\ \mathrm{~mm}^{3} \end{gathered}$	$\begin{gathered} I_{15} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	40\%						mm	$\mathrm{kN} \cdot \mathrm{m}$	m	m	
W410x39	3000	496	445	383		1550	522	1150	417	M. 227	2000	216	7000	44
W16x26	2000	481	437	380	1550	488	1130	370	$\mathrm{V}_{\mathrm{r}} \quad 480$	3000	166	8000	36.5	
$b=140$	1500	447	412	360	1290	461	1110	336	$\mathrm{L}_{\mathrm{u}} 1730$	4000	105	9000	31.2	
$\mathrm{t}=8.8$	1000	399	370	321	858	416	1080	290	$\mathrm{I}_{\mathrm{x}} \quad 126$	5000	73.0	10000	27.3	
$\mathrm{d}=399$	500	333	307	275	429	335	999	225	$\mathrm{S}_{\mathrm{x}} \quad 634$	6000	55.1	11000	24.2	
W360x79	3000	830	759	668	2570	806	2140	588	$M_{t} 444$	3500	425	7000	267	
W14x53	2000	731	681	611	1720	729	2080	509	V 688	4000	404	8000	225	
$\mathrm{b}=205$	1500	680	640	574	1290	670	2030	458	$L_{u} 3010$	4500	383	9000	194	
$t=16.8$	1000	625	587	533	858	586	1940	396	$\mathrm{I}_{\mathrm{x}} \quad 226$	5000	361	10000	171	
$\mathrm{d}=354$	500	546	519	487	429	456	1780	321	$\mathrm{S}_{\mathrm{x}} 1280$	6000	317	11000	153	
W360x72	3000	771	702	613	2570	733	1940	542	M $\mathrm{M}_{\mathrm{r}} 397$	3500	377	7000	22	
W14x48	2000	674	625	559	1720	667	1880	470	$\mathrm{V}_{t} 617$	4000	357	8000	186	
$b=204$	1500	624	586	525	1290	615	1840	423	$L_{u} 2940$	4500	336	9000	160	
$\mathrm{t}=15.1$	1000	571	537	485	858	540	1770	365	$\mathrm{I}_{\mathrm{x}} 201$	5000	315	10000	141	
$\mathrm{d}=350$	500	497	471	439	429	421	1620	294	$\mathrm{S}_{\mathrm{x}} 1150$	6000	272	11000	126	
W360x64	3000	712	644	558	2530	66	1	498	$M_{r} \quad 354$	3500	332	7000	183	
W14×43	2000	620	572	510	1720	607	1690	433	$\mathrm{V}_{\text {t }} \quad 548$	4000	313	8000	153	
$\mathrm{b}=203$	1500	571	534	478	1290	562	1660	390	$L_{u} 2870$	4500	293	9000	131	
$\mathrm{t}=13.5$	1000	520	489	440	858	496	1590	336	$\mathrm{I}_{\mathrm{x}} \quad 178$	5000	273	10000	115	
$\mathrm{d}=347$	500	451	426	395	429	389	1470	268	S $\times 1030$	6000	228	11000	102	
W360×57	3000	651	587	508	2240	622	1	47	M $\quad 314$	3000	289	7000	119	
W14×38	2000	584	537	475	1720	571	1520	412	$\mathrm{V}_{\mathrm{t}} \quad 580$	3500	267	8000	99.7	
$b=172$	1500	535	498	442	1290	531	1490	371	$L_{u} 2360$	4000	244	9000	85.9	
$t=13.1$	1000	484	453	404	858	471	1440	320	$\mathrm{I}_{\mathrm{x}} 160$	5000	192	10000	75.6	
$\mathrm{d}=358$	500	415	390	359	429	370	1320	252	$\mathrm{S}_{\mathrm{x}} 896$	6000	147	11000	67.5	
W360x51	3000	585	525	452	2000	560	1400	433	$M_{t} \quad 277$	3000	252	7000	96.9	
W14×34	2000	539	493	433	1720	518	1360	379	$\mathrm{V}_{1} \quad 524$	3500	232	8000	80.9	
$b=171$	1500	491	455	403	1290	483	1340	342	$L_{u} 2320$	4000	210	9000	69.4	
$\mathrm{t}=11.6$	1000	441	413	366	858	431	1290	294	$\mathrm{I}_{\mathrm{x}} \quad 141$	5000	159	10000	60.8	
$\mathrm{d}=355$	500	377	353	323	429	341	1190	231	$\mathrm{S}_{\mathrm{x}} 796$	6000	121	11000	54.1	
W360x45	3000	522	467	401	1780	501	1240	392	Mr 242	3000	217	7000	76.4	
W14x30	2000	498	452	394	1720	465	1210	345	$\mathrm{V}_{1} \quad 498$	3500	197	8000	63.3	
$b=171$	1500	450	415	365	1290	436	1190	312	$L_{u} 2260$	4000	176	9000	54.0	
$\mathrm{t}=9.8$	1000	401	375	330	858	391	1150	268	$\mathrm{I}_{\mathrm{x}} \quad 122$	5000	128	10000	47.1	
$\mathrm{d}=352$	500	340	317	287	429	311	1070	209	$\mathrm{S}_{\mathrm{x}} 691$	6000	96.0	11000	41.8	
W360x39	3000	459	408	349	1550	442	1080	352	M ${ }_{\text {r }} 206$	2000	193	6000	54.1	
W14×26	2000	444	401	346	1550	413	1050	311	$\mathrm{V}_{1} \quad 470$	2500	172	7000	44.2	
$\mathrm{b}=128$	1500	411	376	328	1290	388	1030	281	$L_{\sim} 1660$	3000	148	8000	37.4	
$\mathrm{t}=10.7$	1000	362	337	293	858	351	1000	242	$\mathrm{I}_{\mathrm{x}} \quad 102$	4000	97.0	9000	32.5	
$d=353$	500	303	280	251	429	280	930	187	Sx 580	5000	69.7	10000	28.7	

Units: $M_{r}-k N \cdot m, V_{t}-k N, L_{u}-m m, I_{x}-10^{6} m^{4}, S_{x}-10^{3} \mathrm{~mm}^{3}, b-m m, t-m m, d-m m$ $\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$

[^40]COMPOSITE BEAMS
Trial Selection Table
75 mm Deck with 65 mm Slab
$\phi=0.90, \phi_{\mathrm{c}}=0.65$

ASTM A992
A572 Grade 50
$\mathbf{f}^{\prime}{ }_{\mathrm{c}}=\mathbf{2 5} \mathrm{MPa}$
$\gamma_{\mathrm{c}}=2350 \mathrm{~kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite					
		$\mathrm{M}_{\mathrm{rc}}(\mathrm{kN} \cdot \mathrm{m})$ for \% shear connection			$\begin{gathered} Q_{r} \\ (\mathrm{kN}) \\ \hline 100 \% \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{t}} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	$\begin{gathered} S_{t} \\ 10^{3} \\ \mathrm{~mm}^{3} \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{ts}} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	40\%						mm	$\mathrm{kN} \cdot \mathrm{m}$	mm	$\mathrm{kN} \cdot \mathrm{m}$	
W360x33	2500	382	339	289		1290	363	892	288	M	2000	155	6000	8.0
W14×22	2000	376	336	288	1290	350	881	270	$\mathrm{V}_{\mathrm{t}} \quad 396$	2500	135	7000	30.8	
$\mathrm{b}=127$	1500	364	331	286	1290	332	867	246	$L_{\text {L }} 1600$	3000	113	8000	25.8	
$\mathrm{t}=8.5$	1000	317	293	253	858	302	842	212	$\mathrm{I}_{\mathrm{x}} 82.6$	4000	70.2	9000	22.3	
$d=349$	500	262	241	213	429	245	787	163	$\mathrm{S}_{\mathrm{x}} \quad 473$	5000	49.6	10000	19.6	
W310x74	2500	682	622	546	2150	610	1840	434	M ${ }_{\text {t }} \quad 366$	3500	354	6000	274	
W12x50	2000	633	583	519	1720	576	1800	399	$\mathrm{V}_{\mathrm{t}} \quad 597$	4000	339	7000	240	
$\mathrm{b}=205$	1500	582	543	487	1290	529	1760	358	Lu 3100	4500	323	8000	204	
$\mathrm{t}=16.3$	1000	529	498	450	858	462	1680	307	$\mathrm{I}_{\mathrm{x}} \quad 164$	5000	307	9000	177	
$\mathrm{d}=310$	500	461	437	408	429	356	1540	244	$\mathrm{S}_{\mathrm{x}} 1060$	5500	291	10000	156	
W310x67	2500	631	572	498	2150	552	1650	398	$\begin{array}{lll}M_{t} & 326\end{array}$	3500	312	6000	234	
W12×45	2000	583	534	473	1720	522	1620	367	$\mathrm{V}_{\mathrm{r}} \quad 533$	4000	297	7000	198	
$b=204$	1500	533	495	443	1290	482	1580	329	L 3020	4500	282	8000	167	
$\mathrm{t}=14.6$	1000	481	453	408	858	423	1520	282	$\mathrm{l}_{\mathrm{x}} \quad 144$	5000	266	9000	44	
= 306	500	418	395	367	429	327	1390	222	$\mathrm{S}_{\mathrm{x}} \quad 942$	5500	250	10000	127	
W310x60	2500	585	528	455	2150	500	1480	366	$\begin{array}{lll}\text { M } & 290\end{array}$	3500	275	6000	199	
W12×40	2000	537	490	431	1720	475	1450	338	$\mathrm{V}_{\mathrm{t}} 466$	4000	261	7000	163	
$\mathrm{b}=203$	1500	488	452	403	1290	440	1420	304	Lu 2960	4500	246	8000	137	
$\mathrm{t}=13.1$	1000	438	412	370	58	89	1370	260	$\mathrm{l}_{\mathrm{x}} \quad 128$	5000	231	9000	18	
$\mathrm{d}=303$	500	379	358	330	429	303	1260	204	$\mathrm{S}_{\mathrm{x}} \quad 842$	5500	215	10000	104	
W310x52	2500	553	497	426	2070	477	1340	355	$\begin{array}{lll}M & 260\end{array}$	3000	240	6000	130	
W12x35	2000	512	465	406	1720	455	1320	329	$\mathrm{V}_{\mathrm{t}} \quad 494$	3500	223	7000	106	
$\mathrm{b}=167$	1500	464	427	378	1290	423	1290	295	$L_{\text {L }} 2380$	4000	206	8000	89.4	
$\mathrm{t}=13.2$	1000	413	387	344	858	376	1240	253	$\mathrm{I}_{\mathrm{x}} \quad 118$	4500	187	9000	77.4	
$\mathrm{d}=317$	500	354	332	304	429	294	1140	197	$\mathrm{S}_{\mathrm{x}} \quad 747$	5000	167	10000	68.4	
W310x45	2500	476	425	362	1770	413	1140	315	M $\mathrm{V}_{\mathbf{t}} 220$	3000	200	6000	98.2	
W12x30	2000	461	416	358	1720	396	1130	292	$\mathrm{V}_{\mathrm{t}} \quad 423$	3500	184	7000	79.3	
$\mathrm{b}=166$	1500	414	378	333	1290	371	1110	263	$L_{\text {L }} 2310$	4000	167	8000	66.5	
$\mathrm{t}=11.2$	1000	365	340	302	858	332	1070	226	$\mathrm{I}_{\mathrm{x}} 99.2$	4500	150	9000	57.3	
$\mathrm{d}=313$	500	310	290	263	429	262	993	174	$\mathrm{S}_{\mathrm{x}} \quad 634$	5000	128	10000	50	
W310x39	2500	417	369	314	1530	364	997	282	M $\mathrm{M}_{\text {cter }} 189$	3000	170	6000	77.7	
W12x26	2000	408	365	312	1530	349	985	263	$\mathrm{V}_{\mathrm{t}} \quad 368$	3500	155	7000	62.2	
$\mathrm{b}=165$	1500	376	341	298	1290	329	968	238	L. 2260	4000	139	8000	51.8	
$\mathrm{t}=9.7$	1000	328	304	269	858	297	938	205	$\mathrm{l}_{\mathrm{x}} 85.1$	4500	121	9000	44.3	
$\mathrm{d}=310$	500	276	258	232	429	237	874	157	$\mathrm{S}_{\mathrm{x}} \quad 549$	5000	103	10000	38.8	
W250x67	2500	571	512	437	2150	443	1510	314	M $\mathrm{V}_{\boldsymbol{t}} \quad 280$	3500	275	6000	223	
W10x45	2000	522	474	413	1720	418	1490	288	$\mathrm{V}_{\mathrm{t}} \quad 469$	4000	265	6500	212	
$\mathrm{b}=204$	1500	472	435	387	1290	384	1450	256	L. 3260	4500	254	7000	202	
$\mathrm{t}=15.7$	1000	421	395	355	858	335	1390	217	Ix 104	5000	244	7500	192	
$\mathrm{d}=257$	500	363	343	317	429	255	1260	168	$\mathrm{S}_{\mathrm{x}} 806$	5500	233	8000	180	

Units: $M_{r}-k N \cdot m, V_{r}-k N, L_{u}-m m, I_{x}-10^{6} \mathrm{~mm}^{4}, S_{x}-10^{3} \mathrm{~mm}^{3}, b-m m, t-m m, d-m m$
$\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$
Sections highlighted in yellow are commonly used sizes and are generally readily available.

COMPOSITE BEAMS Trial Selection Table
75 mm Deck with 65 mm Slab $\phi=0.90, \phi_{\mathrm{c}}=0.65$

Steel section	b_{1}	Composite							Non-composite					
		$\mathrm{M}_{\mathrm{tc}}(\mathrm{kN} \cdot \mathrm{m})$ for \% shear connection			$\left.\begin{array}{\|c\|} \hline Q_{r} \\ (\mathrm{kN}) \end{array} \right\rvert\,$	$\begin{gathered} I_{1} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{t}} \\ 10^{3} \\ \mathrm{~mm}^{3} \end{gathered}$	$\begin{gathered} I_{t 5} \\ 10^{6} \\ \hline \mathrm{~mm}^{4} \end{gathered}$	Steel section data	Unbraced condition				
												$\mathrm{M}_{\mathrm{t}}{ }^{\prime}$		
	mm	100\%	70\%	40\%						mm	$\mathrm{kN} \cdot \mathrm{m}$	mm	$\mathrm{kN} \cdot \mathrm{m}$	
W250x58	2500	521	464	391		2150	388	1310	280	M, 239	3500	232	6000	181
W10x39	2000	473	426	367	1720	368	1290	257	$\mathrm{V}_{1} \quad 413$	4000	222	6500	171	
$\mathrm{b}=203$	1500	425	388	342	1290	340	1260	230	Lu 3130	4500	212	7000	161	
$\mathrm{t}=13.5$	1000	374	349	312	858	298	1210	195	$\mathrm{I}_{\mathrm{x}} 87.3$	5000	202	7500	148	
$\mathrm{d}=252$	500	320	301	276	429	229	1110	149	$\mathrm{S}_{\mathrm{x}} \quad 693$	5500	192	8000	137	
W250x45	2500	437	385	322	1780	334	1050	251	M, 187	3000	167	5500	101	
W10x30	2000	421	375	317	1720	319	1030	232	V, 414	3500	155	6000	90.6	
$\mathrm{b}=148$	1500	373	338	293	1290	298	1010	208	L. 2170	4000	142	6500	82.2	
$t=13$	1000	324	299	263	858	265	975	177	1x 71.1	4500	129	7000	75.2	
$\mathrm{d}=266$	500	270	252	227	429	207	897	134	$\mathrm{S}_{\mathrm{x}} \quad 534$	5000	114	7500	69.3	
W250x39	2500	379	332	276	1530	291	904	223	$\begin{array}{lll}M_{t} & 159\end{array}$	3000	140	5500	77.5	
W10×26	2000	370	327	274	1530	279	892	207	$\mathrm{V}_{\text {t }} \quad 354$	3500	128	6000	69.2	
$\mathrm{b}=147$	1500	338	304	260	1290	262	875	186	$L_{\text {L }} 2110$	4000	115	6500	62.5	
$\mathrm{t}=11.2$	1000	290	266	233	858	235	847	159	$\mathrm{I}_{\times} 60.1$	4500	102	7000	57.0	
$\mathrm{d}=262$	500	239	222	199	429	186	784	120	$\mathrm{S}_{\mathrm{x}} \quad 459$	5000	88.0	7500	52.4	
W250x33	2500	323	281	232	1290	248	766	194	Mr 132	3000	112	5500	55.6	
W10×22	2000	317	278	231	1290	239	756	181	V, 323	3500	100	6000	49.4	
$b=146$	1500	305	272	229	1290	225	742	164	$L_{\text {L }} 2020$	4000	88.4	6500	44.4	
$\mathrm{t}=9.1$	1000	258	235	204	858	204	720	140	$\mathrm{l}^{1} 48.9$	4500	74.1	7000	40.3	
$\mathrm{d}=258$	500	209	193	171	429	163	670	106	$\mathrm{S}_{x} \quad 379$	5000	63.6	7500	36.9	
W200x42	2500	359	309	250	1650	232	867	173	$\begin{array}{lll}M_{t} & 138\end{array}$	3000	133	5500	99.6	
W8x28	2000	348	304	248	1650	221	853	160	$\mathrm{V}_{\mathrm{r}} 302$	3500	126	6000	92.9	
$\mathrm{b}=166$	1500	307	272	228	1290	206	835	142	$\mathrm{L}_{\\|} 2610$	4000	120	6500	84.6	
$\mathrm{t}=11.8$	1000	258	234	203	858	183	805	120	Ix 40.9	4500	113	7000	77.5	
$\mathrm{d}=205$	500	208	194	173	429	142	740	88.0	$\mathrm{S}_{x} \quad 399$	5000	106	7500	71.6	
W200x36	2500	311	266	214	1420	202	749	154	M $\mathrm{M}_{\mathrm{t}} 118$	3000	112	5500	79.3	
W8x24	2000	303	262	213	1420	193	738	142	$\mathrm{V}_{\text {t }} \quad 255$	3500	105	6000	71.3	
$\mathrm{b}=165$	1500	281	247	204	1290	181	723	128	L. 2510	4000	99.0	6500	64.6	
$\mathrm{t}=10.2$	1000	233	210	180	858	162	699	108	$\mathrm{I}_{\mathrm{x}} \quad 34.4$	4500	92.5	7000	59.0	
$d=201$	500	184	171	152	429	127	647	79.2	$\mathrm{S}_{\mathrm{x}} \quad 342$	5000	85.9	7500	54.4	
W200x31	2500	281	240	193	1240	188	669	146	M $\mathrm{M}_{\text {t }} 104$	2000	104	4500	65.2	
W8x21	2000	275	237	192	1240	181	659	136	$\mathrm{V}_{\mathrm{t}} \quad 275$	2500	96.7	5000	57.0	
$\mathrm{b}=134$	1500	265	232	190	1240	170	646	123	Lu 1980	3000	89.3	5500	50.6	
$\mathrm{t}=10.2$	1000	222	198	169	858	154	626	104	$\mathrm{I}_{\times} \quad 31.4$	3500	81.7	6000	45.6	
$\mathrm{d}=210$	500	172	159	139	429	122	581	76.7	Sx 299	4000	74.0	6500	41.5	
W200x27	2500	239	203	163	1050	161	569	128	M $\mathrm{M}_{\mathrm{t}} 86.6$	2000	85.3	4500	47.5	
W8x18	2000	235	201	162	1050	155	561	120	$\mathrm{V}_{\mathrm{r}} \quad 246$	2500	78.7	5000	41.2	
$\mathrm{b}=133$	1500	228	198	161	1050	147	550	109	$L_{\text {L }} 1890$	3000	71.5	5500	36.4	
$\mathrm{t}=8.4$	1000	201	178	149	858	134	534	92.8	$l_{\text {x }} \quad 25.8$	3500	64.1	6000	32.6	
$\mathrm{d}=207$	500	153	140	121	429	108	499	68.6	$\mathrm{S}_{\mathrm{x}} \quad 249$	4000	56.0	6500	29.6	

Units: $M_{t}-k N \cdot m, V_{t}-k N, L_{u}-m m, I_{x}-10^{6} m m^{4}, S_{x}-10^{3} m m^{3}, b-m m, t-m m, d-m m$
$\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$
Sections highlighted in yellow are commonly used sizes and are generally readily available.

COMPOSITE BEAMS

ASTM A992 A572 Grade 50 $\mathrm{f}^{\prime}{ }_{\mathrm{c}}=25 \mathrm{MPa}$ $\gamma_{\mathrm{c}}=2350 \mathrm{~kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite				
		$\mathrm{M}_{\mathrm{rc}}(\mathrm{kN} \cdot \mathrm{~m})$ for \% shear connection			Q ${ }_{\text {r }}$	I_{t}			Steel section data	Unbraced condition			
					(kN)	10^{6}	10^{3}	10^{6}		mm	$\begin{gathered} M_{r}^{\prime} \\ \mathrm{kN} \cdot \mathrm{~m} \end{gathered}$	$\begin{aligned} & \mathrm{L}^{\prime} \\ & \mathrm{mm} \end{aligned}$	$\begin{aligned} & \mathrm{M}_{\mathrm{r}}^{\prime} \\ & \mathrm{kN} \cdot \mathrm{~m} \end{aligned}$
	mm	100\%	70\%	40\%	100\%	mm^{4}	mm^{3}	mm^{4}					
W1000x249	7000	5580	5350	4830	6930	12500	14000	9450	M 3510	4000	3440	14000	831
W40x167	5000	5310	5030	4500	4950	11600	13700	8550	$V_{r} 3220$	6000	2780	16000	694
$\mathrm{b}=300$	3000	4840	4520	4110	2970	10100	13200	7390	$L_{u} 3740$	8000	1940	18000	596
	1000	3980	3830	3660	990	7370	11800	5820	$\mathrm{I}_{\mathrm{x}} 4810$	10000	1360	20000	523
980									$\mathrm{S}_{\mathrm{x}} 9820$	12000	1030	22000	466
W1000x222	7000	5030	4820	4330	6930	11100	12300	8430	M, 3040	4000	2940	14000	634
W40×149	5000	4780	4520	4010	4950	10300	12100	7620	V, 3000	6000	2310	16000	527
$\mathrm{b}=300$	3000	4330	4030	3630	2970	9040	11600	6550	$L_{u} 3590$	8000	1520	18000	451
$\mathrm{t}=21.1$	1000	3500	3350	3180	990	6530	10400	5060	$\mathrm{I}_{\mathrm{x}} 4080$	10000	1050	20000	394
$\mathrm{d}=970$									$\mathrm{S}_{\mathrm{x}} 8410$	12000	794	22000	350
W920x238	7000	5070	4850	4430	6930	10800	12800	8140	M, 3170	4000	3140	14000	800
W36x160	5000	4810	4590	4130	4950	9980	12500	7360	V, 3090	6000	2590	16000	668
$\mathrm{b}=305$	3000	4420	4150	3780	2970	8730	12000	6350	$L_{u} 3890$	8000	1870	18000	573
$\mathrm{t}=25.9$	1000	3660	3520	3370	990	6330	10800	4960	$\mathrm{I}_{\mathrm{x}} 4060$	10000	1310	20000	502
d									$\mathrm{S}_{\mathrm{x}} 8870$	12000	996	22000	447
W920x223	7000	4800	4590	4190	6930	10100	12000	7710	M, 2960	4500	2800	12000	881
W36x150	5000	4550	4350	3910	4950	9430	11700	6970	V, 2970	5000	2670	14000	705
$\mathrm{b}=304$	3000	4190	3920	3560	2970	8260	11300	6000	$L_{u} 3830$	6000	2380	16000	587
$\mathrm{t}=23.9$	1000	3440	3300	3150	990	5980	10100	4650	$\mathrm{I}_{\mathrm{x}} \quad 3760$	8000	1680	18000	502
$\mathrm{d}=911$									$\mathrm{S}_{\mathrm{x}} 8260$	10000	1170	20000	439
W920x201	7000	4370	4160	3800	6930	9080	10600	6960	M $\mathrm{m}_{2} 2590$	4500	2420	12000	705
W36x135	5000	4120	3940	3520	4950	8480	10400	6300	V, 2710	5000	2300	14000	560
$\mathrm{b}=304$	3000	3790	3540	3190	2970	7460	10100	5400	$L_{u} 3720$	6000	2030	16000	463
$\mathrm{t}=20.1$	1000	3070	2930	2780	990	5380	8990	4120	$\mathrm{I}_{\mathrm{x}} 3250$	8000	1360	18000	394
$\mathrm{d}=903$									$\mathrm{S}_{\mathrm{x}} 7190$	10000	940	20000	343
W840x210	7000	4300	4090	3750	6930	8550	10700	6530	M, 2620	4500	2460	12000	792
W 33×141	5000	4050	3880	3500	4950	7970	10500	5910	V, 2670	5000	2350	14000	639
$\mathrm{b}=293$	3000	3740	3510	3180	2970	7000	10100	5070	$L_{u} 3770$	6000	2090	16000	535
$\mathrm{t}=24.4$	1000	3070	2940	2800	990	5060	9060	3900	$\mathrm{I}_{\mathrm{x}} 3110$	8000	1470	18000	461
$\mathrm{d}=846$									$\mathrm{S}_{\mathrm{x}} 7340$	10000	1040	20000	404
W840x193	7000	3990	3790	3480	6930	7840	9760	6030	Mt 2370	4500	2200	12000	666
W33x130	5000	3750	3590	3240	4950	7330	9580	5460	V, 2530	5000	2090	14000	534
$\mathrm{b}=292$	3000	3460	3250	2930	2970	6460	9240	4680	$L_{u} 3690$	6000	1850	16000	445
$\mathrm{t}=21.7$	1000	2820	2690	2550	990	4660	8280	3550	Ix 2780	8000	1260	18000	382
$\mathrm{d}=840$									$\mathrm{S}_{\mathrm{x}} 6630$	10000	877	20000	334
W840x176	7000	3690	3490	3200	6930	7140	8830	5540	Mt 2110	4500	1950	12000	551
W 33×118	5000	3450	3300	2970	4950	6690	8670	5020	V, 2300	5000	1840	14000	439
$\mathrm{b}=292$	3000	3180	2980	2670	2970	5920	8370	4290	$L_{u} 3610$	6000	1610	16000	364
$t=18.8$	1000	2560	2440	2300	990	4280	7500	3220	$\mathrm{I}_{\mathrm{x}} 2460$	8000	1060	18000	311
$d=835$									$\mathrm{S}_{\mathrm{x}} 5900$	10000	731	20000	271

Units: $M_{r}-k N \cdot m, V_{r}-k N, L_{u}-m m, I_{x}-10^{6} m^{4}, S_{x}-10^{3} m m^{3}, b-m m, t-m m, d-m m$
$F_{y}=345 \mathrm{MPa}$
Sections highlighted in yellow are commonly used sizes and are generally readily available.

COMPOSITE BEAMS Trial Selection Table
75 mm Deck with 75 mm Slab $\phi=0.90, \phi_{\mathrm{c}}=0.65$

ASTM A992
A572 Grade 50
$\mathrm{f}^{\prime}{ }_{\mathrm{c}}=\mathbf{2 5} \mathrm{MPa}$ $\gamma_{\mathrm{c}}=2350 \mathrm{~kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite					
		$\mathrm{M}_{\mathrm{rc}}(\mathrm{kN} \cdot \mathrm{~m})$ for \% shear connection			$\begin{array}{\|c\|} \hline Q_{r} \\ (\mathrm{kN}) \\ \hline 100 \% \\ \hline \end{array}$	$\begin{gathered} \mathrm{I}_{\mathrm{t}} \\ 10^{6} \\ \hline \mathrm{~mm}^{4} \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{t}} \\ 10^{3} \\ \mathrm{~mm}^{3} \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{I}_{\text {ts }} \\ \hline 10^{6} \\ \hline \mathrm{~mm}^{4} \end{array}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	40\%						mm			$\mathrm{kN} \cdot \mathrm{m}$	
W760x185	5000	3340	3	2880		4950	6060	8540	4510	M, 2080	4000	1980	12000	576
W30×124	400	3210	30	2750	3960	5	8420	4210	$\mathrm{V}_{\mathrm{t}} 2340$	5000	1780	14000	470	
67	3000	3070	28	2600	2970	5340	8240	3850	$L_{u} 3450$	6000	1550	16000	397	
$t=23.6$	2	2830	2	2430	1980	4750	7940	3420	$\mathrm{I}_{\mathrm{x}} 2230$	8000	1040	18000	344	
$\mathrm{d}=766$	1000	2500	2380	2250	990	3840	7380	2890	$\mathrm{S}_{\mathrm{x}} 5820$	10000	743	20000	304	
W760x17	5000	3160	3010	2720	4950	5700	8000	4270	M, 1930	4000	1830	12000	506	
W30×116	4000	3040	2900	2590	3960	5420	7890	3980	$\mathrm{V}, 2250$	5000	1630	14000	411	
267	3000	2900	2730	2450	2970	5040	7720	3640	$L_{u} 3410$	6000	1410	16000	346	
$t=21.6$	2000	2680	25	2280	1980	4490	7450	3230	$\mathrm{I}_{\mathrm{x}} 2060$	8000	924	18000	299	
$\mathrm{d}=762$		2340	2230	2100	990	3630	6920	2710	$\mathrm{S}_{\mathrm{x}} 5400$	10000	657	20000	264	
W760x161	5000	2960	2810	2540	4950	5280	7360	3980	M, 1760	4000	1650	12000	429	
W30×108	4000	2830	2700	2410	3960	5030	7260	3710	V, 2140	5000	1460	14000	347	
266	3000	2700	2540	2270	2970	4690	7110	3390	$L_{v} 3330$	6000	1250	16000	291	
	2000	2490	2330	2110	1980	4190	6870	3000	$\mathrm{I}_{\times} 1860$	8000	793	18000	251	
$\mathrm{d}=758$			2060	1930	990	3380	6380	2500	$\mathrm{S}_{\mathrm{x}} 4900$	10000	560	20000	220	
W760×14	5000	2	2	2350	4950	50	6710	3680	M, 1580	4000	1470	12000	358	
W30x99	4000	2630	2500	2230	3960	4630	6630	3430	V, 2040	5000	1290	14000	288	
$\mathrm{b}=265$	3000	2500	2350	2090	2970	4320	6490	3130	$L_{u} 3260$	6000	1090	16000	241	
t	2000	2310	2150	1930	1980	3870	6270	2760	$\mathrm{I}_{\mathrm{x}} 1660$	8000	671	18000	207	
$\mathrm{d}=753$	1000	1990	1880	1760	990	3120	5830	2290	$\mathrm{S}_{\mathrm{x}} 4410$	10000	470	2000	18	
W760x13	5	2		2170	495	0	6	3420	Mr 1440	000	1330	12000	308	
W30x90	4000	2420	2300	2060	3960	4260	6030	3190	$V_{r} 1650$	5000	1160	14000	246	
264	3000	2290	2180	1930	2970	4000	5920	2920	$L_{u} 3230$	6000	967	16000	205	
5.5	2000	2130	1990	1780	1980	3590	O	2570	$\mathrm{I}_{\mathrm{x}} 1500$	8000	587	18000	175	
$\mathrm{d}=750$	0	1840	1730	1610	990	2	5	2120	S 4010	10000	408	2000	153	
W690x192	5	3190	3	2760	4950	5	8290	4000	Mt 2010	4000	1910	12000	63	
W 27×129	4000	3060	2920	2630	3960	5130	8170	3730	$V{ }_{\text {V }} 2230$	5000	1730	14000	525	
254	3000	2920	2	2500	2970	4750	7990	3410	$L_{u} 3440$	6000	1540	16000	449	
27.9	2000	2710	2	2340	1980	4220	7700	3030	$\mathrm{I}_{\mathrm{x}} 1980$	8000	1090	18000	392	
$\mathrm{d}=702$	1000	2400	2290	2170	990	3400	7		$\mathrm{S}_{\mathrm{x}} 5640$	10000	802	2000	349	
W690x170	5000	2880	2	2470	4950	4810	7310	3590	Mr 1750	4000	1650	12000	497	
W27x114	4000	2750	2620	2360	3960	4570	7210	3350	V 2060	5000	1480	14000	408	
256	3000	2620	2480	2230	2970	4250	7060	3060	$L_{u} 3380$	6000	1290	16000	347	
$\mathrm{t}=23.6$	2000	2430	2280	2080	1980	3790	6810	2710	$\mathrm{I}_{\mathrm{x}} 1700$	8000	875	18000	302	
$\mathrm{d}=693$	1000	2130	2030	1910	990	3050	6330	2260	$\mathrm{S}_{\mathrm{x}} 4900$	10000	634	20000	268	
W690x152	5000	2620	2480	2260	4950	4360	6570	3300	M $\mathrm{m}_{\mathrm{t}} 1550$	4000	1460	12000	406	
W27x102	4000	2500	2380	2150	3960	4160	6480	3080	$V_{\text {r }} 1850$	5000	1290	14000	332	
$\mathrm{b}=254$	3000	2370	2260	2020	2970	3880	6350	2810	$L_{u} 3320$	6000	1110	16000	281	
$t=21.1$	2000	2210	2070	1880	1980	3470	6150	2480	$\mathrm{I}_{\mathrm{x}} 1510$	8000	728	18000	244	
$\mathrm{d}=688$	1000	1930	1830	1720	990	2800	5720	2060	$\mathrm{S}_{\mathrm{x}} 4380$	10000	523	20000	216	

Units: $M_{t}-k N \cdot m, V_{t}-k N, L_{u}-m m, I_{x}-10^{6} \mathrm{~mm}^{4}, S_{x}-10^{3} \mathrm{~mm}^{3}, b-m m, t-m m, d-m m$
$\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$
Sections highlighted in yellow are commonly used sizes and are generally readily available.

Steel section	b_{1}	Composite							Non-composite					
		$\mathrm{M}_{\mathrm{tc}}(\mathrm{kN} \cdot \mathrm{m})$ for \% shear connection			$\begin{array}{\|c} \hline Q_{r} \\ (\mathrm{kN}) \\ \hline 100 \% \\ \hline \end{array}$	$\begin{gathered} I_{t} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	$\begin{gathered} \mathrm{S}_{1} \\ 10^{3} \\ \mathrm{~mm}^{3} \end{gathered}$	$\begin{gathered} \mathrm{I}_{15} \\ 10^{6} \\ \hline \mathrm{~mm}^{4} \\ \hline \end{gathered}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	40\%						m	m	m	$\mathrm{kN} \cdot \mathrm{m}$	
W690x14	5000	2450	2310	2100		4950	4020	6020	3060	410	4000	1320	10000	447
W27×94	4000	2330	2210	2000	3960	3840	5940	2860	$\mathrm{V}_{\mathrm{r}} 1740$	5000	1160	12000	345	
$\mathrm{b}=254$	3000	2200	2100	1880	2970	3600	5830	2610	$L_{u} 3270$	6000	987	14000	80	
18.9	2000	2050	1920	1740	1980	3220	5640	2300	1) 1360	7000	778	16000	36	
684	1000	1790	1690	1570	990	2600	5260	1900	Sx 3980	8000	628	18000	204	
W690x125	5000	2240	2110	1910	4950	3610	5370	2780	M, 1250	4000	1140	10000	362	
W27x84	4000	2130	2010	1820	3960	3460	5300	2600	$V_{r} 1610$	5000	999	12000	277	
$=253$	3000	2000	1910	1700	2970	3250	5210	2370	Lu 3190	6000	834	14000	223	
16.3	2000	1870	1750	1560	1980	2920	5050	2080	1x 1180	7000	640	16000	187	
$d=678$	1000	1610	1520	1410	990	2360	4710	1700	Sx 3500	8000	513	18000	161	
W610x174	5000	2670	2520	2310	4950	4130	6990	3080	M, 1660	4500	1660	10000	924	
W24×117	4000	2550	2420	2220	3960	3920	6890	2870	V, 1770	5000	1610	12000	709	
$\mathrm{b}=325$	3000	2420	2310	2100	2970	3640	6750	2620	$L_{u} 4480$	6000	1490	14000	574	
$=21.6$	2000	2270	2150	1970	1980	3240	6520	2320	Ix 1470	7000	1370	16000	482	
$\mathrm{d}=616$	1000	2020	1930	1820	990	2610	6080	1950	Sx 4780	8000	1230	18000	415	
W610x155	5000	2420	2280	2090	4950	3710	6220	2800	M, 1470	4500	1460	10000	762	
W24×104	4000	2310	2190	2000	3960	3540	6140	2610	V, 1590	5000	1410	12000	579	
$\mathrm{b}=324$	3000	2180	2080	1900	2970	3300	6030	2390	$L_{u} 4400$	6000	1300	14000	465	
$t=19$	2000	2050	1940	1770	1980	2950	5830	2110	1x 1290	7000	1180	16000	88	
611	1000	1810	1730	1620	990	2380	5440	1750	$\mathrm{S}_{\mathrm{x}} 4220$	8000	1050	18000	333	
W610x140	5000	2270	2120	1920	4950	3410	5590	2580	Mt 1290	4000	1170	10000	422	
W24x94	4000	2150	2030	1830	3960	3260	5510	2410	V, 1660	5000	1030	12000	334	
$\mathrm{b}=230$	3000	2020	1920	1720	2970	3040	5410	2200	Lu 3070	6000	874	14000	277	
$\mathrm{t}=22.2$	2000	1880	1760	1590	1980	2720	5230	1930	Ix 1120	7000	695	16000	237	
17	1000	1640	1550	1440	990	2190	4860	1580	Sx 3630	8000	573	18000	207	
W610x125	5000	2070	1930	1750	4950	3070	4990	2360	$M_{t} 1140$	4000	1020	10000	342	
W24×84	4000	1960	1840	1670	3960	2940	4930	2200	$\mathrm{V}, 1490$	5000	889	12000	269	
$\mathrm{b}=229$	3000	1830	1740	1560	2970	2760	4840	2010	$L_{\text {L }} 3020$	6000	733	14000	222	
$\mathrm{t}=19.6$	2000	1700	1600	1440	1980	2480	4690	1760	1x 985	7000	575	16000	189	
612	1000	1480	1400	1290	990	2000	4370	1430	Sx 3220	8000	470	18000	16	
W610x113	5000	1880	1750	1580	4490	2800	4510	2170	Mr 1020	4000	906	10000	282	
W24x76	4000	1810	1700	1530	3960	2680	4460	2030	V , 1400	5000	77	12000	220	
$\mathrm{b}=228$	3000	1690	1600	1440	2970	2520	4380	1850	$L_{\text {Lu }} 2950$	6000	617	14000	180	
$\mathrm{t}=17.3$	2000	1560	1470	1320	1980	2280	4250	1620	$\mathrm{I}_{\mathrm{x}} 875$	7000	481	16000	153	
608	1000	1360	1280	1170	990	1850	3970	1310	Sx 2880	8000	391	18000	133	
W610x101	5000	1690	1570	1410	4020	2510	4030	1970	M $\mathrm{V}_{\text {t }} 900$	4000	787	10000	228	
W24x68	4000	1660	1550	1400	3960	2420	3980	1850	$\mathrm{V}, 1300$	5000	664	12000	176	
$\mathrm{b}=228$	3000	1540	1460	1310	2970	2280	3920	1690	$L_{u} 2890$	6000	512	14000	144	
$\mathrm{t}=14.9$	2000	1420	1340	1190	1980	2070	3810	1480	$\mathrm{I}_{\mathrm{x}} \quad 764$	7000	396	16000	121	
$\mathrm{d}=603$	1000	1230	1150	1050	990	1680	3560	1190	Sx 2530	8000	320	18000	105	

Units: $\mathrm{M}_{\mathrm{r}}-\mathrm{kN} \cdot \mathrm{m}, \mathrm{V}_{\mathrm{r}}-\mathrm{kN}, \mathrm{L}_{\mathrm{u}}-\mathrm{mm}, \mathrm{I}_{\mathrm{x}}-10^{6} \mathrm{~mm}^{4}, \mathrm{~S}_{\mathrm{x}}-10^{3} \mathrm{~mm}^{3}, \mathrm{~b}-\mathrm{mm}, \mathrm{t}-\mathrm{mm}, \mathrm{d}-\mathrm{mm}$

[^41]COMPOSITE BEAMS Trial Selection Table
75 mm Deck with 75 mm Slab $\phi=0.90, \phi_{\mathrm{c}}=0.65$

Steel section	b_{1}	Composite							Non-composite					
		$\mathrm{M}_{\mathrm{rc}}(\mathrm{kN} \cdot \mathrm{~m})$ for \% shear connection			$\begin{array}{\|c\|} \hline Q_{r} \\ (\mathrm{kN}) \\ \hline 100 \% \\ \hline \end{array}$	$\begin{gathered} I_{t} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{t}} \\ 10^{3} \\ \mathrm{~mm}^{3} \\ \hline \end{gathered}$	$\begin{gathered} I_{\text {ts }} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	40\%						mm	$\mathrm{kN} \cdot \mathrm{m}$	mm	$\mathrm{kN} \cdot \mathrm{m}$	
W6	4000	1520	1420	1260		3650	218	3560	1680	M M 779	3000	683	8000	183
W24x62	3000	1430	1350	1190	2970	207	3500	1530	V, 1350	4000	540	10000	135	
$\mathrm{b}=179$	2000	1310	1220	1070	1980	1880	3400	1340	$L_{v} 2180$	5000	376	12000	107	
$t=15$	1000	1110	1030	932	990	1530	3170	1060	$\mathrm{I}_{\mathrm{x}} \quad 646$	6000	281	14000	88.9	
603	500	958	909	853	495	1210	2900	878	$\mathrm{S}_{\mathrm{x}} 2140$	7000	222	16000	1	
W610x82	4000	1360	1260	1110	3240	1950	3150	1520	M $\mathrm{M}_{5} 683$	3000	587	8000	145	
W 24×55	3000	1300	1220	1080	2970	1850	3100	1390	V, 1170	4000	448	10000	106	
$\mathrm{b}=178$	2000	1190	1110	969	1980	1690	3020	1220	$L_{u} 2110$	5000	304	12000	83.4	
$\mathrm{t}=12.8$	1000	1010	929	832	990	1390	2830	962	$\mathrm{I}_{\mathrm{x}} \quad 560$	6000	225	14000	68.9	
$d=599$	500	857	809	754	495	1	2590	787	Sx 1870	7000	177	16000	58.7	
W530x138	4000	1940	1820	1630	3960	2650	4960	1950	M, 1120	3000	1110	8000	515	
W21x93	3000	1810	1710	1530	2970	2470	4860	1770	V, 1650	4000	1000	10000	390	
$b=214$	2000	1670	1560	1400	1980	2210	4690	1540	$L_{u} 2930$	5000	884	12000	314	
$t=23.6$	1000	1450	1360	1270	990	1760	4340	1250	$\mathrm{I}_{\times} 861$	6000	759	14000	263	
$\mathrm{d}=549$	500	1290	1240	1190	495		3970	1070	S 3140	7000	616	16000	227	
W530×123	4000	1770	1650	1480	3960	2400	4440	1780	M $\mathrm{M}^{\text {r }} 997$	3000	984	8000	421	
W21x83	3000	1650	1550	1390	2970	2250	4350	1620	$\mathrm{V}_{r} 1460$	4000	879	10000	316	
$\mathrm{b}=212$	2000	1520	1420	1270	1980	2010	4210	1410	$L_{u} 2860$	5000	762	12000	253	
$t=21.2$	1000	1310	1230	1140	990	1610	3910	1140	$\mathrm{I}_{\mathrm{x}} 761$	6000	631	14000	211	
$d=544$	500	1160	1120	1060	495	1280	3580	967	$\mathrm{S}_{\mathrm{x}} 2800$	7000	505	16000	182	
W530x109	4000	1610	1500	1340	3960	2150	3940	1	M $\mathrm{m}^{\text {c }} 879$	3000	862	8000	34	
W21x73	3000	1490	1400	1260	2970	2020	3870	1480	V, 1280	4000	764	10000	254	
$=211$	2000	1360	1290	1150	1980	1820	3750	1290	$L_{u} 2810$	5000	652	12000	202	
18.8	1000	1180	1110	1020	990	1470	3500	1030	$\mathrm{I}_{\mathrm{x}} \quad 667$	6000	520	14000	168	
$\mathrm{d}=539$	500	1040	997	946	495	1170	3210	868	$\mathrm{S}_{\mathrm{x}} 2480$	7000	413	16000	144	
W530x10	4000	1520	1410	1270	3960	2	3	1	$M_{+} 814$	000	4	8000	30	
W21x68	3000	1410	1320	1190	2970	1900	3610	1400	$V_{t} 1200$	4000	699	10000	222	
$\mathrm{b}=210$	2000	1280	1210	1080	1980	1720	3500	1220	$L_{u} 2770$	5000	591	12000	176	
$t=17.4$	1000	1110	1040	954	990	1390	3280	977	$\mathrm{I}_{\mathrm{x}} 617$	6000	462	14000	146	
$d=537$	500	976	932	881	495	1110	3010	816	$\mathrm{S}_{\mathrm{x}} 2300$	7000	365	16000	125	
W530x92	4000	1400	1290	1150	36	1	3	1420	$M_{r} \quad 733$	3000	1	8000	253	
W21×62	3000	1310	1220	1100	2970	1750	3290	1300	$\mathrm{V}_{\mathrm{t}} 1110$	4000	621	9000	214	
$b=209$	2000	1190	1120	997	1980	1590	3200	1130	$L_{u} 2720$	5000	516	10000	185	
$\mathrm{t}=15.6$	1000	1030	960	872	990	1290	3000	901	$\mathrm{I}_{\mathrm{x}} \quad 552$	6000	393	12000	146	
$d=533$	500	895	851	801	495	1020	2750	747	S 2070	7000	309	14000	120	
W530x82	4000	1240	1150	1020	3250	1640	296	1280	$M_{t} 640$	3000	616	8000	203	
W21x55	3000	1190	1110	993	2970	1560	2910	1170	V, 1030	4000	531	9000	170	
$\mathrm{b}=209$	2000	1070	1010	898	1980	1430	2840	1030	$L_{u} 2660$	5000	433	10000	147	
$\mathrm{t}=13.3$	1000	926	863	777	990	1170	2670	813	$\mathrm{I}_{\mathrm{x}} \quad 477$	6000	320	12000	115	
$d=528$	500	799	756	707	495	927	2450	666	$\mathrm{S}_{\times} 1810$	7000	249	14000	94.0	

Units: $M_{t}-k N \cdot m, V_{t}-k N, L_{u}-m m, I_{x}-10^{6} \mathrm{~mm}^{4}, S_{x}-10^{3} \mathrm{~mm}^{3}, \mathrm{~b}-\mathrm{mm}, \mathrm{t}-\mathrm{mm}, \mathrm{d}-\mathrm{mm}$
Sections highlighted in yellow are commonly used sizes and are generally readily available.

COMPOSITE BEAMS
Trial Selection Table
75 mm Deck with 75 mm Slab
$\phi=0.90, \phi_{\mathrm{c}}=0.65$

ASTM A992
A572 Grade 50
$\mathrm{f}^{\prime}{ }_{\mathrm{c}}=\mathbf{2 5} \mathrm{MPa}$
$\gamma_{\mathrm{c}}=2350 \mathrm{~kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite					
		$\mathrm{M}_{\mathrm{rc}}(\mathrm{kN} \cdot \mathrm{~m})$ for \% shear connection			$\begin{gathered} Q_{r} \\ (\mathrm{kN}) \\ \hline 100 \% \end{gathered}$	$\begin{gathered} I_{t} \\ 10^{6} \\ \hline \mathrm{~mm}^{4} \end{gathered}$	$\begin{gathered} \mathrm{S}_{1} \\ 10^{3} \\ \mathrm{~mm}^{3} \end{gathered}$	$\begin{gathered} \mathrm{Its}_{\text {ts }} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	40\%						mm	$\mathrm{kN} \cdot \mathrm{m}$	mm	m	
W	4000	1140	1050	920		2960	1500	2660	1180	$M_{r} \quad 562$	3000	74	8000	123
W21x50	3000	1120	1030	916	2960	1430	2620	1080	$V_{r} 1050$	4000	357	9000	105	
$=166$	2000	1000	939	821	1980	1310	2550	942	$L_{u} 2040$	5000	247	10000	91.7	
$t=13.6$	1000	850	785	699	990	1080	2400	741	$\mathrm{I}_{\mathrm{x}} \quad 411$	6000	186	12000	73.2	
$\mathrm{d}=529$	500	721	678	628	495	849	2200	599	$\mathrm{S}_{\mathrm{x}} 1550$	7000	148	14000	61.0	
W530x66	4000	1010	921	803	2600	1320	2330	1050	$M_{r} \quad 484$	3000	398	8000	94.9	
W21x44	3000	987	910	800	2600	1260	2300	970	$V_{r} \quad 927$	4000	284	9000	80.6	
$b=165$	2000	903	846	738	1980	1160	2240	850	$L_{u} 1980$	5000	195	10000	70.0	
$t=11.4$	1000	764	704	620	990	967	2110	667	$\mathrm{I}_{\mathrm{x}} \quad 351$	6000	145	12000	55.5	
$\mathrm{d}=525$	500	641	600	551	495	767	1940	533	Sx 1340	7000	115	14000	46.0	
W460×15	4	1920	1790	1630	3960	2400	5180	1730	M, 1170	00	1150	9000	794	
W18×106	3000	1790	1690	1540	2970	2230	5070	1570	$\mathrm{V}, 1460$	5000	1110	10000	696	
$\mathrm{b}=284$	2000	1660	1570	1430	1980	1970	4890	1370	$L_{u} 4200$	6000	1040	11000	617	
$\mathrm{t}=23.9$	1000	1460	1390	1310	990	1570	4520	1120	$\mathrm{I}_{\mathrm{x}} \quad 796$	7000	955	12000	555	
$\mathrm{d}=476$	500	1330	1290	1240	495	1250	4140	971	S 3350	8000	875	14000	462	
W460x1	4	1790	1	1510	3	2230	0	1620	M, 1070	500	1050	9000	693	
W18x97	3000	1660	1570	1430	2970	2070	4670	1470	$V_{r} 1320$	5000	1010	10000	602	
$\mathrm{b}=283$	2000	1530	1460	1330	1980	1840	4510	1290	$L_{u} 4130$	6000	936	11000	533	
$t=22.1$	1000	1360	1290	1210	990	1470	4180	1050	$\mathrm{I}_{\mathrm{x}} 726$	7000	858	12000	478	
$\mathrm{d}=472$	500	1230	1190	1140	495	1170	3840	898	S 3080	8000	779	14000	396	
W460×12	4	1630	15	1360	3960	2000	4250	1480	$M_{r} \quad 947$	500	917	9000	566	
W18x86	3000	1510	1420	1290	2970	1870	4170	1340	$V_{r} 1170$	5000	884	10000	489	
$\mathrm{b}=282$	2000	1380	1310	1190	1980	1670	4030	1170	$L_{\text {v }} 4040$	6000	812	11000	431	
$t=19.6$	1000	1220	1160	1080	990	1340	3750	946	$\mathrm{I}_{\mathrm{x}} \quad 637$	7000	736	12000	385	
$d=467$	500	1100	1060	1010	495	1060	3450	805	S 2730	8000	658	14000	318	
W460x113	4	1480	1370	1230	3960	1790	3750	1340	$M_{r} 829$	4500	796	9000	458	
W18x76	3000	1360	1280	1160	2970	1680	3690	1220	$V_{\text {t }} 1020$	5000	765	10000	394	
$\mathrm{b}=280$	2000	1240	1180	1070	1980	1510	3580	1070	$L_{u} 3950$	6000	696	11000	345	
$\mathrm{t}=17.3$	1000	1100	1040	959	990	1220	3340	855	$\mathrm{I}_{\mathrm{x}} 5556$	7000	623	12000	307	
$\mathrm{d}=463$	500	978	940	895	495	966	3080	720	$\mathrm{S}_{\mathrm{x}} 2400$	8000	545	14000	252	
W460x106	4000	1430	1320	1170	3960	1690	3460	1260	M $\mathrm{r}_{\mathrm{r}} 742$	3000	719	8000	308	
W18x71	3000	1310	1220	1090	2970	1590	3400	1150	$V_{\text {r }} 1210$	4000	637	9000	266	
$\mathrm{b}=194$	2000	1180	1110	991	1980	1430	3290	996	$L_{u} 2690$	5000	549	10000	235	
$\mathrm{t}=20.6$	1000	1020	955	873	990	1140	3060	789	$\mathrm{I}_{\mathrm{x}} 488$	6000	450	11000	210	
$\mathrm{d}=469$	500	893	853	807	495	898	2790	654	$\mathrm{S}_{\mathrm{x}} 2080$	7000	366	12000	190	
W460x97	4000	1320	1220	1070	3820	1560	3170	1180	Mr 677	3000	652	8000	264	
W18x65	3000	1220	1130	1010	2970	1470	3120	1080	V, 1090	4000	574	9000	227	
$b=193$	2000	1100	1040	921	1980	1330	3030	935	$L_{u} 2650$	5000	488	10000	200	
$t=19$	1000	948	887	807	990	1070	2820	738	$\mathrm{I}_{\mathrm{x}} \quad 445$	6000	389	11000	178	
$d=466$	500	827	787	742	495	842	2580	608	$\mathrm{S}_{\times} 1910$	7000	314	12000	161	

Units: $M_{r}-k N \cdot m, V_{r}-k N, L_{u}-m m, I_{x}-10^{6} \mathrm{~mm}^{4}, S_{x}-10^{3} \mathrm{~mm}^{3}, b-m m, t-m m, d-m m$
Sections highlighted in yellow are commonly used sizes and are generally readily available.

COMPOSITE BEAMS
Trial Selection Table
75 mm Deck with 75 mm Slab $\phi=0.90, \phi_{\mathrm{c}}=0.65$

ASTM A992
A572 Grade 50 $f^{\prime}{ }_{\mathrm{c}}=\mathbf{2 5} \mathrm{MPa}$ $\gamma_{\mathrm{c}}=2350 \mathrm{~kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite					
		$\mathrm{M}_{\mathrm{cc}}(\mathrm{kN} \cdot \mathrm{~m})$ for \% shear connection			$\begin{array}{\|c} \hline Q_{r} \\ (\mathrm{kN}) \\ \hline 100 \% \\ \hline \end{array}$	$\begin{gathered} I_{t} \\ 10^{6} \\ \hline \mathrm{~mm}^{4} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{t}} \\ 10^{3} \\ \hline \mathrm{~mm}^{3} \end{gathered}$	$\begin{gathered} I_{t 5} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	40\%						mm	$\mathrm{kN} \cdot \mathrm{m}$	mm	$\mathrm{kN} \cdot \mathrm{m}$	
W460x89	3000	1150	1070	951		2970	1370	2890	1010	$M_{t} \quad 624$	3000	598	8000	231
W18x60	2000	1030	970	864	1980	1240	2810	882	$\mathrm{V}_{1} \quad 996$	4000	523	9000	198	
$b=192$	1500	967	910	812	1490	1150	2740	797	$L_{u} 2620$	5000	439	10000	174	
$\mathrm{t}=17.7$	1000	888	831	754	990	1010	2630	695	$\mathrm{I}_{\times} \quad 409$	6000	343	11000	155	
463	500	772	734	689	495	795	2410	569	$\mathrm{S}_{\mathrm{x}} 1770$	7000	276	12000	140	
W460x82	3000	1080	997	886	2970	1270	2650	946	M, 568	3000	540	8000	195	
W18x55	2000	961	902	804	1980	1160	2580	824	V $\quad 933$	4000	466	9000	166	
$=191$	1500	899	846	753	1490	1070	2520	745	$\mathrm{L}_{\mathrm{u}} 2560$	5000	384	10000	146	
$\mathrm{t}=16$	1000	826	771	696	990	943	2420	648	$\mathrm{I}_{\mathrm{x}} \quad 370$	6000	292	11000	129	
$=460$	500	71	676	632	495	743	2230	527	$\mathrm{S}_{\mathrm{x}} 1610$	7000	234	12000	116	
W460×74	3000	1000	922	816	2930	1160	2410	877	M ${ }_{\text {t }} 512$	3000	484	8000	164	
W18x50	2000	889	832	742	1980	1060	2350	766	$\mathrm{V}_{\mathrm{r}} \quad 843$	4000	414	9000	140	
$=190$	1500	829	781	694	1490	987	2300	693	$L_{u} 2530$	5000	332	10000	122	
$=14.5$	1000	761	711	638	990	874	2210	602	$\mathrm{I}_{\mathrm{x}} \quad 332$	6000	249	11000	108	
457	500	656	619	576	495	690	2040	485	$S_{x} 1460$	7000	198	12000	96.8	
W460x68	3000	936	857	754	2710	1080	2220	824	M ${ }_{\text {r }} 463$	3000	390	8000	112	
W18×46	2000	842	784	693	1980	994	2160	720	$V_{r} \quad 856$	4000	301	9000	96.7	
$\mathrm{b}=154$	1500	781	733	644	1490	925	2110	650	$L_{u} 2010$	5000	213	10000	85.2	
$t=15.4$	1000	713	662	588	990	821	2030	563	$\mathrm{I}_{\mathrm{x}} \quad 297$	6000	164	11000	76.1	
$=459$	500	606	570	526	495	648	1870	450	$S_{x} 1290$	7000	133	12000	68.9	
W460x60	3000	819	46	653	2350	953	1930	739	M ${ }_{\text {t }} 397$	3000	329	8000	86.6	
W18x40	2000	758	702	621	1980	882	1890	649	$V_{t} \quad 746$	4000	242	9000	74.3	
$=153$	1500	699	655	576	1490	824	1850	587	$L_{u} 1970$	5000	169	10000	65.2	
$t=13.3$	1000	636	592	523	990	737	1780	508	$\mathrm{I}_{\mathrm{x}} \quad 255$	6000	129	11000	58.1	
45	500	539	504	462	495	585	1650	403	$\mathrm{S}_{\mathrm{x}} 1120$	7000	104	12000	52.4	
W460x52	3000	718	651	565	2060	832	1680	654	$\begin{array}{lll}M_{r} & 338\end{array}$	3000	269	8000	63.6	
W18x35	2000	686	632	555	1980	773	1640	577	$\mathrm{V}_{\mathrm{T}} \quad 680$	4000	185	9000	54.3	
$=152$	1500	628	586	512	1490	726	1610	522	$L_{u} 1890$	5000	128	10000	47.4	
$t=10.8$	1000	568	527	460	990	652	1550	451	$\mathrm{I}_{\mathrm{x}} \quad 212$	6000	96.2	11000	42.0	
$d=450$	500	476	442	400	495	521	1440	354	$\mathrm{S}_{\mathrm{x}} 942$	7000	76.7	12000	37.8	
W410×149	3000	1580	1490	1350	2970	1830	4490	1290	M, 1010	4500	983	8000	760	
W16x100	2000	1450	1370	1250	1980	1620	4330	1120	V, 1320	5000	952	9000	696	
$\mathrm{b}=265$	1500	1380	1300	1190	1490	1480	4190	1020	$L_{0} 4080$	5500	921	10000	621	
$\mathrm{t}=25$	1000	1280	1210	1130	990	1280	3990	902	$\mathrm{I}_{\mathrm{x}} \quad 618$	6000	889	11000	554	
$\mathrm{d}=431$	500	1150	1120	1070	495	1010	3640	771	$\mathrm{S}_{\mathrm{x}} 2870$	7000	825	12000	501	
W410x132	3000	1430	1340	1210	2970	1650	3990	1170	M $\mathrm{T}_{\text {c }} 885$	4500	853	8000	635	
W16x89	2000	1300	1230	1120	1980	1470	3850	1010	$V, 1160$	5000	823	9000	565	
$b=263$	1500	1230	1170	1070	1490	1340	3740	920	$L_{0} 3940$	5500	792	10000	495	
$\mathrm{t}=22.2$	1000	1150	1090	1010	990	1160	3570	812	$\mathrm{I}_{\mathrm{x}} \quad 538$	6000	761	11000	440	
$\mathrm{d}=425$	500	1030	990	947	495	917	3260	686	$\mathrm{S}_{\mathrm{x}} 2530$	7000	698	12000	397	

Units: $\mathrm{M}_{\mathrm{t}}-\mathrm{kN} \cdot \mathrm{m}, \mathrm{V}_{\mathrm{t}}-\mathrm{kN}, \mathrm{L}_{\mathrm{u}}-\mathrm{mm}, \mathrm{I}_{\mathrm{x}}-10^{6} \mathrm{~mm}^{4}, \mathrm{~S}_{\mathrm{x}}-10^{3} \mathrm{~mm}{ }^{3}, \mathrm{~b}-\mathrm{mm}, \mathrm{t}-\mathrm{mm}, \mathrm{d}-\mathrm{mm}$ $\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$
Sections highlighted in yellow are commonly used sizes and are generally readily available.

COMPOSITE BEAMS
Trial Selection Table

75 mm Deck with 75 mm Slab

$\phi=0.90, \phi_{\mathrm{c}}=0.65$

ASTM A992
A572 Grade 50
$\mathrm{f}^{\prime}{ }_{\mathrm{c}}=\mathbf{2 5} \mathrm{MPa}$
$\gamma_{\mathrm{c}}=2350 \mathrm{~kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite					
		$\mathrm{M}_{\mathrm{rc}}(\mathrm{kN} \cdot \mathrm{~m})$ for \% shear connection			$\begin{gathered} Q_{r} \\ (\mathrm{kN}) \\ \hline 100 \% \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{t}} \\ 10^{6} \\ \hline \mathrm{~mm}^{4} \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{t}} \\ 10^{3} \\ \hline \mathrm{~mm}^{3} \end{gathered}$	$\begin{gathered} \mathrm{I}_{\text {ts }} \\ 10^{6} \\ \hline \mathrm{~mm}^{4} \end{gathered}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	40\%						mm	$\mathrm{kN} \cdot \mathrm{m}$	m	m	
W410x11	3000	1280	1190	1070		2970	1460	3480	1050	64	4500	726	8000	513
W16x77	2000	1150	1090	990	1980	1310	3370	911	V, 998	5000	698	9000	438	
261	1500	1090	1030	940	1490	1200	3280	825	$L_{\sim} \quad 3810$	5500	668	10000	382	
19.3	1000	1010	958	885	990	1050	3140	725	$\mathrm{I}_{\mathrm{x}} 461$	6000	638	11000	338	
$\mathrm{d}=420$	500	902	866	824	495	823	2870	605	S 2200	7000	576	12000	304	
W410x100	3000	1150	1060	954	2970	1300	3050	947	$M_{t} 661$	4500	623	8000	411	
W16x67	2000	1030	969	880	1980	1170	2960	823	$\mathrm{V}_{\mathrm{t}} \quad 850$	5000	596	9000	348	
260	1500	966	918	834	1490	1080	2890	744	L 3730	5500	568	10000	302	
16.9	1000	898	850	781	990	944	2770	651	$\mathrm{I}_{\times} \quad 398$	6000	539	11000	266	
415	500	797	763	721	495	742	2540	538	S 1920	7000	479	12000	238	
W410x85	3000	1030	951	839	2970	1130	2570	830	$M_{r} \quad 534$	3000	507	8000	205	
W16x57	2000	915	855	759	1980	1020	2500	720	$\mathrm{V}_{\mathrm{t}} \quad 931$	4000	443	9000	177	
$b=181$	1500	852	800	711	1490	942	2430	649	L. 2530	5000	375	10000	157	
$\mathrm{t}=18.2$	1000	780	728	656	990	827	2330	562	$\mathrm{l}_{\mathrm{x}} \quad 315$	6000	297	11000	140	
417	500	673	638	596	495	646	2130	453	S 1510	7000	242	12000	127	
W410x74	3000	945	865	758	2960	1010	227	75	$M_{\text {r }} 469$	3000	44	8000	163	
W16x50	2000	830	772	686	1980	920	2210	657	$\mathrm{V}_{\mathrm{t}} \quad 821$	4000	379	9000	140	
$b=180$	1500	769	722	640	1490	852	2160	592	$L_{\text {L }} 2470$	5000	312	10000	123	
$t=16$	1000	703	656	588	990	752	2080	512	$\mathrm{l}_{\mathrm{x}} \quad 275$	6000	239	11000	110	
413	500	604	570	530	495	590	1910	410	S 1330	7000	194	12000	99.7	
W410x67	3000	858	780	681	2670	91	205	69	M $\mathrm{M}^{\text {d }} 422$	3000	392	8000	135	
W16x45	2000	768	711	632	1980	841	2000	608	V, 739	4000	333	9000	116	
$\mathrm{b}=179$	1500	708	664	588	1490	782	1960	548	$L_{\sim} 2420$	5000	264	10000	102	
$\mathrm{t}=14.4$	1000	645	603	538	990	694	1890	473	$\mathrm{I}_{\mathrm{x}} \quad 245$	6000	201	11000	90.4	
$\mathrm{d}=410$	500	553	520	481	495	546	1740	376	$\mathrm{S}_{\mathrm{x}} 1200$	7000	161	12000	81.6	
W410x60	3000	762	690	600	2350	82	1820	63	M, 369	3000	341	8000	109	
W16x40	2000	701	646	573	1980	758	1780	556	$\mathrm{V}_{\mathrm{t}} \quad 642$	4000	286	9000	93.1	
$\mathrm{b}=178$	1500	643	600	533	1490	708	1740	503	L. 2390	5000	218	10000	81.3	
$\mathrm{t}=12.8$	1000	582	546	486	990	632	1680	435	$\mathrm{I}_{\mathrm{x}} \quad 216$	6000	165	11000	72.1	
$\mathrm{d}=407$	500	499	469	430	495	501	1560	344	$\mathrm{S}_{\mathrm{x}} 1060$	7000	131	12000	64.9	
W410x54	3000	686	618	536	2110	735	1620	575	M, 326	3000	295	8000	86.0	
W16x36	2000	648	595	523	1980	682	1590	506	$\mathrm{V}_{\text {, }} \quad 619$	4000	241	9000	73.1	
$b=177$	1500	591	549	485	1490	639	1560	458	$L_{u} 2310$	5000	176	10000	63.5	
$\mathrm{t}=10.9$	1000	531	497	438	990	573	1510	395	$\mathrm{I}_{\mathrm{x}} \quad 186$	6000	132	11000	56.2	
$\mathrm{d}=403$	500	451	421	383	495	456	1400	310	$\mathrm{S}_{\mathrm{x}} 923$	7000	104	12000	50.4	
W410x46	3000	600	538	463	1830	646	1410	513	$M_{\text {t }} \quad 274$	2000	265	7000	61.7	
W16x31	2000	579	527	459	1830	603	1370	454	$\mathrm{V}_{\mathrm{t}} \quad 578$	3000	210	8000	51.8	
$b=140$	1500	535	493	432	1490	567	1350	412	$L_{u} 1790$	4000	142	9000	44.6	
$t=11.2$	1000	476	444	387	990	512	1310	356	$\mathrm{I}_{\mathrm{x}} \quad 156$	5000	99.9	10000	39.2	
$\mathrm{d}=403$	500	400	370	333	495	411	1210	276	$\mathrm{S}_{\mathrm{x}} 772$	6000	76.4	11000	35.0	

Units: $\mathrm{M}_{\mathrm{r}}-\mathrm{kN} \cdot \mathrm{m}, \mathrm{V}_{\mathrm{t}}-\mathrm{kN}, \mathrm{L}_{\mathrm{u}}-\mathrm{mm}, \mathrm{I}_{\mathrm{x}}-10^{6} \mathrm{~mm}^{4}, \mathrm{~S}_{\mathrm{x}}-10^{3} \mathrm{~mm}^{3}, \mathrm{~b}-\mathrm{mm}, \mathrm{t}-\mathrm{mm}, \mathrm{d}-\mathrm{mm}$
Sections highlighted in yellow are commonly used sizes and are generally readily available.

COMPOSITE BEAMS Trial Selection Table
75 mm Deck with 75 mm Slab
$\phi=0.90, \phi_{\mathrm{c}}=0.65$

Steel section	b_{1}	Composite							Non-composite					
		$\mathrm{M}_{\mathrm{rc}}(\mathrm{kN} \cdot \mathrm{~m})$ for \% shear connection			$\begin{gathered} Q_{r} \\ (\mathrm{kN}) \\ \hline 100 \% \end{gathered}$	$\begin{gathered} \mathrm{I}_{1} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{t}} \\ 10^{3} \\ \mathrm{~mm}^{3} \end{gathered}$	$\begin{gathered} I_{t 5} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	40\%						mm	$\mathrm{kN} \cdot \mathrm{m}$	mm	$\mathrm{kN} \cdot \mathrm{m}$	
W410x39	3000	511	456	389		1550	549	1190	445	M	2000	216	7000	44.0
W16x26	2000	496	448	387	1550	515	1160	396	V, 480	3000	166	8000	36.5	
$\mathrm{b}=140$	1500	476	436	380	1490	488	1140	361	$L_{u} 1730$	4000	105	9000	31.2	
$=8.8$	1000	419	390	337	990	444	1110	312	$\mathrm{I}_{\mathrm{x}} \quad 126$	5000	73.0	10000	27.3	
399	500	348	321	284	495	359	1030	240	$\mathrm{S}_{\times} 634$	6000	55.1	11000	24.2	
W360x79	3000	889	808	700	2970	856	2200	633	M ${ }_{\text {t }} 444$	3500	425	7000	267	
W14×53	2000	772	714	637	1980	778	2140	548	$V_{\text {r }} \quad 682$	4000	404	8000	225	
$\mathrm{b}=205$	1500	711	666	596	1490	718	2090	492	$L_{0} 3010$	4500	383	9000	194	
$t=16.8$	1000	648	610	549	990	630	2010	424	$\mathrm{l}_{\mathrm{x}} \quad 226$	5000	361	10000	171	
$\mathrm{d}=354$	500	563	533	496	495	490	1840	338	Sx 1280	6000	317	11000	153	
W360x72	3000	818	739	637	2830	777	1990	583	M, 397	3500	377	7000	222	
W14×48	2000	715	658	584	1980	710	1940	506	$\mathrm{V}_{\text {t }} \quad 617$	4000	357	8000	186	
$\mathrm{b}=204$	1500	655	611	546	1490	658	1900	455	$L_{v} 2940$	4500	336	9000	160	
$t=15.1$	1000	593	558	501	990	581	1820	391	$\mathrm{I}_{\mathrm{x}} 201$	5000	315	10000	141	
$\mathrm{d}=350$	500	513	484	448	495	453	1680	310	$\mathrm{S}_{\mathrm{x}} 1150$	6000	272	11000	126	
W360x64	3000	737	662	568	2530	703	1790	535	M $\mathrm{M}_{\mathrm{t}} \quad 354$	3500	332	7000	183	
W14×43	2000	660	605	533	1980	646	1740	466	$\mathrm{V}_{\mathrm{t}} \quad 548$	4000	313	8000	153	
$\mathrm{b}=203$	1500	601	558	498	1490	601	1700	420	$L_{u} 2870$	4500	293	9000	131	
$\mathrm{t}=13.5$	1000	540	509	455	990	533	1640	361	$\mathrm{l}_{\mathrm{x}} \quad 178$	5000	273	10000	115	
$\mathrm{d}=347$	500	467	439	404	495	418	1520	284	$\mathrm{S}_{\mathrm{x}} 1030$	6000	228	11000	102	
W360x57	3000	6	603	517	2240	65	1610	507	$M_{t} \quad 314$	3000	289	000	119	
W14x38	2000	623	569	498	1980	607	1570	444	$\mathrm{V}_{t} \quad 580$	3500	267	8000	99.7	
$b=172$	1500	565	523	463	1490	567	1530	400	$L_{u} 2360$	4000	244	9000	85.9	
$t=13.1$	1000	505	473	419	990	506	1480	344	$\mathrm{l}_{\mathrm{x}} \quad 160$	5000	192	10000	75.6	
$\mathrm{d}=358$	500	431	403	368	495	399	1370	268	$\mathrm{S}_{\times} 896$	6000	147	11000	67.5	
W360x51	3000	605	539	460	2000	592	1440	463	$M_{t} \quad 277$	3000	252	7000	96.9	
W14×34	2000	578	525	455	1980	549	1400	407	V, 524	3500	232	8000	80.9	
$b=171$	1500	521	479	423	1490	515	1380	368	$L_{u} 2320$	4000	210	9000	69.4	
$\mathrm{t}=11.6$	1000	462	432	382	990	462	1330	317	$\mathrm{I}_{\mathrm{x}} \quad 141$	5000	159	10000	60.8	
$d=355$	500	392	366	332	495	367	1230	245	$\mathrm{S}_{\mathrm{x}} \quad 796$	6000	121	11000	54.1	
W360x45	3000	540	479	408	1780	529	1280	420	M, 242	3000	217	7000	76.4	
W14x30	2000	520	469	405	1780	493	1250	371	V 1498	3500	197	8000	63.3	
$b=171$	1500	480	439	384	1490	464	1220	336	$\mathrm{L}_{u} 2260$	4000	176	9000	54.0	
$\mathrm{t}=9.8$	1000	422	393	344	990	418	1190	289	$\mathrm{l}_{\mathrm{x}} \quad 122$	5000	128	10000	47.1	
$\mathrm{d}=352$	500	354	329	295	495	335	1100	223	$\mathrm{S}_{\mathrm{x}} 691$	6000	96.0	11000	41.8	
W360x39	3000	475	419	355	1550	466	1110	376	M, 206	2000	193	6000	54.1	
W14x26	2000	460	412	352	1550	437	1080	334	$\mathrm{V}_{\mathrm{r}} \quad 470$	2500	172	7000	44.2	
$b=128$	1500	440	400	346	1490	413	1060	303	$L_{u} 1660$	3000	148	8000	37.4	
$\mathrm{t}=10.7$	1000	382	354	308	990	375	1030	261	$\mathrm{l}_{\times} \quad 102$	4000	97.0	9000	32.5	
$d=353$	500	317	292	259	495	302	962	200	S $\times 580$	5000	69.7	10000	28.7	

Units: $\mathrm{M}_{\mathrm{t}}-\mathrm{kN} \cdot \mathrm{m}, \mathrm{V}_{\mathrm{t}}-\mathrm{kN}, \mathrm{L}_{\mathrm{u}}-\mathrm{mm}, \mathrm{I}_{\mathrm{x}}-10^{6} \mathrm{~mm}^{4}, \mathrm{~S}_{\mathrm{x}}-10^{3} \mathrm{~mm}^{3}, \mathrm{~b}-\mathrm{mm}, \mathrm{t}-\mathrm{mm}, \mathrm{d}-\mathrm{mm}$

[^42]COMPOSITE BEAMS
Trial Selection Table
75 mm Deck with 75 mm Slab
$\phi=0.90, \phi_{\mathrm{c}}=0.65$

ASTM A992
A572 Grade 50
$\mathrm{f}^{\prime}{ }_{\mathrm{c}}=\mathbf{2 5} \mathrm{MPa}$
$\gamma_{\mathrm{c}}=2350 \mathrm{~kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite					
		$\mathrm{M}_{\mathrm{rc}}(\mathrm{kN} \cdot \mathrm{~m})$ for \% shear connection			$\begin{array}{\|c} \hline Q_{r} \\ (\mathrm{kN}) \\ \hline 100 \% \\ \hline \end{array}$	$\begin{gathered} I_{t} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{t}} \\ 10^{3} \\ \mathrm{~mm}^{3} \end{gathered}$	$\begin{gathered} \mathrm{I}_{\text {ts }} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	40\%						mm	$\mathrm{kN} \cdot \mathrm{m}$	mm	$\mathrm{kN} \cdot \mathrm{m}$	
W360x33	2500	395	349	294		1290	383	920	308	M ${ }_{\text {t }} 168$	2000	155	6000	38.0
W14×22	2000	388	345	293	1290	370	908	289	V. 396	2500	135	7000	30.8	
$\mathrm{b}=127$	1500	378	340	292	1290	352	893	264	$\mathrm{L}_{\mathrm{u}} 1600$	3000	113	8000	25.8	
$\mathrm{t}=8.5$	1000	337	309	267	990	322	868	229	$\mathrm{I}_{\times} 82.6$	4000	70.2	9000	22.3	
$\mathrm{d}=349$	500	275	253	221	495	264	814	175	$\mathrm{S}_{\mathrm{x}} \quad 473$	5000	49.6	10000	19.6	
W310x74	2500	731	663	573	2480	651	1890	469	$M_{r} \quad 366$	3500	354	6000	274	
W12x50	2000	673	616	543	1980	616	1860	432	$\mathrm{V}_{\mathrm{r}} \quad 597$	4000	339	7000	240	
$\mathrm{b}=205$	1500	613	568	507	1490	569	1820	387	$L_{u} 3100$	4500	323	8000	204	
$t=16.3$	1000	550	518	465	990	499	1740	330	$\mathrm{I}_{\mathrm{x}} \quad 164$	5000	307	9000	177	
$\mathrm{d}=310$	500	476	450	416	495	385	1590	259	S ${ }_{\text {x }} 1060$	5500	291	10000	156	
W310x67	2500	680	613	524	2480	588	1700	430	M ${ }_{\text {r }} 326$	3500	312	6000	234	
W12x45	2000	623	567	495	1980	559	1670	397	$V_{t} 533$	4000	297	7000	198	
$b=204$	1500	563	520	462	1490	518	1630	355	$L_{u} 3020$	4500	282	8000	167	
$\mathrm{t}=14.6$	1000	502	472	422	990	456	1570	303	$\mathrm{I}_{\mathrm{x}} \quad 144$	5000	266	9000	144	
$\mathrm{d}=306$	500	432	407	375	495	354	1440	236	$\mathrm{S}_{\mathrm{x}} 942$	5500	250	10000	127	
W310x60	2500	622	557	474	2340	533	1520	396	M ${ }_{\text {r }} 290$	3500	275	6000	199	
W12x40	2000	577	522	452	1980	507	1500	366	V, 466	4000	261	7000	163	
$b=203$	1500	519	476	422	1490	472	1470	329	$L_{u} 2960$	4500	246	8000	137	
$t=13.1$	1000	459	429	384	990	419	1420	281	$\mathrm{l}_{\mathrm{x}} \quad 128$	5000	231	9000	118	
$\mathrm{d}=303$	500	393	369	338	495	327	1310	217	$\mathrm{S}_{\mathrm{x}} 842$	5500	215	10000	104	
W310x52	2500	574	512	434	2070	507	1380	383	M ${ }_{\text {r }} 260$	3000	240	6000	130	
W12x35	2000	551	497	427	1980	484	1360	355	V, 494	3500	223	7000	106	
$b=167$	1500	494	452	397	1490	453	1330	319	$L_{u} 2380$	4000	206	8000	89.4	
$t=13.2$	1000	434	405	359	990	404	1290	273	$\mathrm{l}_{\mathrm{x}} \quad 118$	4500	187	9000	77.4	
$\mathrm{d}=317$	500	368	344	312	495	318	1190	210	$\mathrm{S}_{\mathrm{x}} 747$	5000	167	10000	68.4	
W310x45	2500	494	437	369	1770	439	1180	338	M ${ }_{\text {t }} 220$	3000	200	6000	98.2	
W12x30	2000	482	431	367	1770	421	1170	315	V 423	3500	184	7000	79.3	
$b=166$	1500	443	402	350	1490	396	1140	285	$\mathrm{L}_{\mathrm{v}} 2310$	4000	167	8000	66.5	
$t=11.2$	1000	385	357	315	990	356	1110	244	$\mathrm{I}_{\mathrm{x}} \quad 99.2$	4500	150	9000	57.3	
$d=313$	500	323	301	271	495	284	1030	187	$\mathrm{S}_{\mathrm{x}} 634$	5000	128	10000	50.4	
W310x39	2500	432	380	320	1530	386	1030	303	$\mathrm{Mr}_{\mathrm{r}} \quad 189$	3000	170	6000	77.7	
W12x26	2000	423	376	318	1530	371	1020	283	V $\mathrm{V}^{\text {c }} 368$	3500	155	7000	62.2	
$b=165$	1500	405	365	313	1490	351	998	257	$L_{\nu} 2260$	4000	139	8000	51.8	
$\mathrm{t}=9.7$	1000	348	320	282	990	318	969	221	$\mathrm{I}_{\mathrm{x}} \quad 85.1$	4500	121	9000	44.3	
$\mathrm{d}=310$	500	288	269	240	495	256	905	169	$\mathrm{S}_{\mathrm{x}} \quad 549$	5000	103	10000	38.8	
W250x67	2500	620	552	464	2480	475	1570	342	M ${ }_{\text {t }} \quad 280$	3500	275	6000	223	
W10x45	2000	562	506	434	1980	450	1540	314	V, 469	4000	265	6500	212	
$\mathrm{b}=204$	1500	503	460	404	1490	415	1500	279	$L_{0} \quad 3260$	4500	254	7000	202	
$\mathrm{t}=15.7$	1000	442	412	368	990	364	1440	236	$\mathrm{I}_{\mathrm{x}} \quad 104$	5000	244	7500	192	
$\mathrm{d}=257$	500	376	354	325	495	278	1310	180	$\mathrm{S}_{\mathrm{x}} 806$	5500	233	8000	180	

Units: $\mathrm{M}_{\mathrm{r}}-\mathrm{kN} \cdot \mathrm{m}, \mathrm{V}_{\mathrm{r}}-\mathrm{kN}, \mathrm{L}_{\mathrm{u}}-\mathrm{mm}, \mathrm{I}_{\mathrm{x}}-10^{6} \mathrm{~mm}^{4}, \mathrm{~S}_{\mathrm{x}}-10^{3} \mathrm{~mm}^{3}, \mathrm{~b}-\mathrm{mm}, \mathrm{t}-\mathrm{mm}, \mathrm{d}-\mathrm{mm}$
Sections highlighted in yellow are commonly used sizes and are generally readily available.

COMPOSITE BEAMS Trial Selection Table
75 mm Deck with 75 mm Slab
$\phi=0.90, \phi_{\mathrm{c}}=0.65$

ASTM A992
A572 Grade 50
$\mathrm{f}^{\prime}{ }_{\mathrm{c}}=25 \mathrm{MPa}$
$\gamma_{\mathrm{c}}=2350 \mathrm{~kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite					
		$\mathrm{M}_{\mathrm{rc}}(\mathrm{kN} \cdot \mathrm{~m})$ for \% shear connection			$\begin{array}{\|c\|} \hline Q_{r} \\ (k N) \\ \hline 100 \% \\ \hline \end{array}$	$\begin{gathered} 1_{1} \\ 10^{6} \\ \hline \mathrm{~mm}^{4} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{t}} \\ 10^{3} \\ \mathrm{~mm}^{3} \end{gathered}$	$\begin{gathered} i_{\text {ls }} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	40\%						mm	$\mathrm{kN} \cdot \mathrm{m}$	mm	$\mathrm{kN} \cdot \mathrm{m}$	
W250x58	2500	555	491	408		2300	41	1360	305	M, 239	3500	232	6000	181
W10x39	2000	513	458	388	1980	395	1340	281	$\mathrm{V}_{\mathrm{t}} \quad 413$	4000	222	6500	171	
$\mathrm{b}=203$	1500	455	413	359	1490	367	1310	250	$L_{4} 3130$	4500	212	7000	161	
$t=13.5$	1000	395	366	325	990	324	1260	212	$\mathrm{I}_{\mathrm{x}} \quad 87.3$	5000	202	7500	148	
$d=252$	500	332	312	284	495	249	1150	160	$\mathrm{S}_{\mathrm{x}} 693$	5500	192	8000	137	
W250x45	2500	455	398	329	1780	357	1090	272	$\mathrm{M}_{\mathrm{t}} 187$	3000	167	5500	101	
W10x30	2000	443	392	327	1780	342	1070	252	$\mathrm{V}_{\mathrm{t}} \quad 414$	3500	155	6000	90.6	
$b=148$	1500	403	362	309	1490	320	1050	226	$L_{0} 2170$	4000	142	6500	82.2	
$t=13$	1000	344	316	276	990	287	1010	192	$\mathrm{I}_{\mathrm{x}} \quad 71.1$	4500	129	7000	75.2	
$d=266$	500	282	262	235	495	226	934	144	$\mathrm{S}_{\mathrm{x}} \quad 534$	5000	114	7500	69.3	
W250x39	2500	394	342	282	1530	311	938	241	$\begin{array}{lll}M_{\text {t }} & 159\end{array}$	3000	140	5500	77.5	
W10x26	2000	385	338	280	1530	298	925	225	$\mathrm{V}_{\mathrm{t}} \quad 354$	3500	128	6000	69.2	
$b=147$	1500	367	328	276	1490	281	906	203	$L_{0} 2110$	4000	115	6500	62.5	
$=11.2$	1000	310	282	245	990	254	878	173	$\mathrm{I}_{\mathrm{x}} \quad 60.1$	4500	102	7000	57.0	
$\mathrm{d}=262$	500	250	233	206	495	202	816	130	$\mathrm{S}_{\mathrm{x}} 459$	5000	88.0	7500	52.4	
W250x33	2500	336	290	237	1290	265	796	210	M F^{132}	3000	112	5500	55.6	
W10x22	2000	329	287	236	1290	255	784	196	V, 323	3500	100	6000	49.4	
$b=146$	1500	319	281	235	1290	241	769	178	$\mathrm{L}_{4} 2020$	4000	88.4	6500	44.4	
$\mathrm{t}=9.1$	1000	278	251	215	990	220	746	153	$\mathrm{l}_{\mathrm{x}} \quad 48.9$	4500	74.1	7000	40.3	
$\mathrm{d}=258$	500	219	203	178	495	178	697	115	$\mathrm{S}_{\mathrm{x}} \quad 379$	5000	63.6	7500	36.9	
W200x42	2500	375	321	257	1650	250	905	189	$\begin{array}{ll}M_{t} & 138\end{array}$	3000	133	5500	99.6	
W8x28	2000	365	316	255	1650	239	890	175	V $\quad 302$	3500	126	6000	92.9	
$b=166$	1500	336	296	244	1490	224	870	157	$L_{u} 2610$	4000	120	6500	84.6	
$t=11.8$	1000	278	250	215	990	200	840	-132	$\mathrm{I}_{\mathrm{x}} \quad 40.9$	4500	113	7000	77.5	
$\mathrm{d}=205$	500	218	203	180	495	156	774	96.4	$\mathrm{S}_{\mathrm{x}} \quad 399$	5000	106	7500	71.6	
W200x36	2500	325	276	219	1420	218	783	168	$\begin{array}{lll}M_{r} & 118\end{array}$	3000	112	5500	79.3	
W8x24	2000	317	272	218	1420	209	771	156	$\mathrm{V}_{1} 255$	3500	105	6000	71.3	
$b=165$	1500	305	266	216	1420	196	754	140	$\mathrm{L}_{\mathrm{u}} 2510$	4000	99.0	6500	64.6	
$t=10.2$	1000	253	226	191	990	177	729	119	$\mathrm{I}_{\mathrm{x}} \quad 34.4$	4500	92.5	7000	59.0	
$\mathrm{d}=201$	500	194	180	158	495	140	677	87.0	$\begin{array}{ll}\mathrm{S}_{\mathrm{x}} & 342\end{array}$	5000	85.9	7500	54.4	
W200x31	2500	293	248	198	1240	203	699	159	M ${ }_{\text {r }} 104$	2000	104	4500	65.2	
W8x21	2000	287	245	197	1240	195	688	148	V. 275	2500	96.7	5000	57.0	
$b=134$	1500	278	241	195	1240	184	673	134	$L_{0} 1980$	3000	89.3	5500	50.6	
$t=10.2$	1000	241	214	179	990	167	652	115	$\mathrm{I}_{\mathrm{x}} \quad 31.4$	3500	81.7	6000	45.6	
$\mathrm{d}=210$	500	183	168	146	495	134	607	84.3	$\mathrm{S}_{\mathrm{x}} 299$	4000	74.0	6500	41.5	
W200x27	2500	250	210	167	1050	174	595	139	$\begin{array}{ll}M_{\mathrm{r}} & 86.6\end{array}$	2000	85.3	4500	47.5	
W8x18	2000	246	208	166	1050	167	586	130	$\mathrm{V}_{\mathrm{t}} 246$	2500	78.7	5000	41.2	
$b=133$	1500	239	205	165	1050	159	574	119	$\mathrm{L}_{4} 1890$	3000	71.5	5500	36.4	
$\mathrm{t}=8.4$	1000	220	194	160	990	145	556	102	$\mathrm{l}_{\mathrm{x}} \quad 25.8$	3500	64.1	6000	32.6	
$d=207$	500	163	149	128	495	118	521	75.6	$\mathrm{S}_{\mathrm{x}} \quad 249$	4000	56.0	6500	29.6	

Units: $\mathrm{M}_{\mathrm{r}}-\mathrm{kN} \cdot \mathrm{m}, \mathrm{V}_{\mathrm{r}}-\mathrm{kN}, \mathrm{L}_{\mathrm{u}}-\mathrm{mm}, \mathrm{I}_{\mathrm{x}}-10^{6} \mathrm{~mm}{ }^{4}, \mathrm{~S}_{\mathrm{x}}-10^{3} \mathrm{~mm}{ }^{3}, \mathrm{~b}-\mathrm{mm}, \mathrm{t}-\mathrm{mm}, \mathrm{d}-\mathrm{mm}$
$\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$
Sections highlighted in yellow are commonly used sizes and are generally readily available.

COMPOSITE BEAMS
Trial Selection Table
75 mm Deck with 90 mm Slab
$\phi=0.90, \phi_{\mathrm{c}}=0.65$

ASTM A992
A572 Grade 50 $\mathrm{f}^{\prime}{ }_{\mathrm{c}}=\mathbf{2 5} \mathrm{MPa}$ $\gamma_{\mathrm{c}}=2350 \mathrm{~kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite				
		$\mathrm{M}_{\mathrm{rc}}(\mathrm{kN} \cdot \mathrm{~m})$ for \% shear connection			Q_{r}				Steel section data	Unbraced condition			
					(kN)	10	10	10^{6}		mm	$\begin{gathered} \mathrm{M}_{\mathrm{r}}^{\prime} \\ \mathrm{kN} \cdot \mathrm{~m} \end{gathered}$	L' mm	$\begin{gathered} \mathrm{M}_{\mathrm{r}}{ }^{\prime} \\ \mathrm{kN} \cdot \mathrm{~m} \end{gathered}$
	mm	100\%	70\%	40\%	100\%	mm^{4}	mm^{3}	mm^{4}					
W1000×249	7000	5810	5550	5070	8320	13200	14300	10100	M, 3510	4000	3440	14000	831
W40x167	5000	5490	5260	4700	5940	12300	14000	9140	V, 3220	6000	2780	16000	694
$b=300$	3000	5050	4720	4250	3560	10800	13500	7850	$L_{u} 3740$	8000	1940	18000	596
	1000	4090	3920	3710	1190	7830	12100	6030	$\mathrm{I}_{\mathrm{x}} 4810$	10000	1360	20000	523
980									$\mathrm{S}_{\mathrm{x}} 9820$	12000	1030	22000	466
W1000×222	7000	5260	5010	4560	8320	11700	12600	9020	Mr 3040	4000	2940	14000	634
W40x149	5000	4950	4730	4210	5940	10900	12400	8160	$\mathrm{V}, 3000$	6000	2310	16000	527
$\mathrm{b}=300$	3000	4530	4220	3760	3560	9650	11900	6980	$L_{u} 3590$	8000	1520	18000	451
$t=21.1$	1000	3610	3430	3230	1190	6960	10700	5270	$\mathrm{I}_{\mathrm{x}} 4080$	10000	1050	20000	394
$\mathrm{d}=970$									$\mathrm{S}_{\mathrm{x}} 8410$	12000	794	22000	350
W920×238	7000	5300	5050	4630	8320	11300	13000	8710	Mt 3170	4000	3140	14000	800
W36x160	5000	4990	4780	4320	5940	10600	12800	7880	V 3090	6000	2590	16000	668
$\mathrm{b}=305$	3000	4600	4330	3910	3560	9320	12300	6760	$L_{u} 3890$	8000	1870	18000	573
$\mathrm{t}=25.9$	1000	3760	3600	3420	1190	6740	11000	5150	$\mathrm{I}_{\times} 4060$	10000	1310	20000	502
$\mathrm{d}=915$									Sx 8870	12000	996	22000	447
W920×223	7000	5030	4790	4390	8320	10700	12200	8250	M $\mathrm{m}_{\mathrm{t}} 2960$	4500	2800	12000	881
W36x150	5000	4730	4530	4090	5940	9990	12000	7470	V, 2970	5000	2670	14000	705
$\mathrm{b}=304$	3000	4360	4100	3690	3560	8820	11600	6390	$L_{u} 3830$	6000	2380	16000	587
$t=23.9$	1000	3540	3380	3200	1190	6380	10400	4840	$\mathrm{I}_{x} 3760$	8000	1680	18000	502
911									S 8260	10000	1170	20000	439
W920×201	7000	4560	4330	3950	7950	9560	10900	7450	M, 2590	4500	2420	12000	705
W36x135	5000	4290	4110	3700	5940	8970	10700	6750	V, 2710	5000	2300	14000	560
$\mathrm{b}=304$	3000	3950	3710	3310	3560	7960	10300	5770	$L_{u} 3720$	6000	2030	16000	463
$\mathrm{t}=20.1$	1000	3170	3010	2830	1190	5750	9250	4300	$\mathrm{I}_{\mathrm{x}} 3250$	8000	1360	18000	394
$\mathrm{d}=903$									$\mathrm{S}_{\times} 7190$	10000	940	20000	343
W840×210	7000	4520	4290	3930	8320	9010	10900	6990	M 2620	4500	2460	12000	792
W 33×141	5000	4220	4030	3660	5940	8450	10700	6330	V, 2670	5000	2350	14000	639
$\mathrm{b}=293$	3000	3890	3670	3300	3560	7470	10400	5420	$L_{\text {L }} \mathrm{L}_{1} 3770$	6000	2090	16000	535
$\mathrm{t}=24.4$	1000	3170	3020	2850	1190	5400	9320	4060	$\mathrm{I}_{\mathrm{x}} 3110$	8000	1470	18000	461
$\mathrm{d}=846$									$\mathrm{S}_{\times} 7340$	10000	1040	20000	404
W840x193	7000	4160	3930	3590	7660	8260	9980	6460	M, 2370	4500	2200	12000	666
W 33×130	5000	3920	3740	3390	5940	7760	9810	5860	V, 2530	5000	2090	14000	534
$\mathrm{b}=292$	3000	3600	3400	3040	3560	6900	9480	5000	$L_{\sim} \quad 3690$	6000	1850	16000	445
$\mathrm{t}=21.7$	1000	2910	2760	2600	1190	4990	8520	3710	$\mathrm{I}_{\mathrm{x}} 2780$	8000	1260	18000	382
$\mathrm{d}=840$									S, 6630	10000	877	20000	334
W840×176	7000	3790	3570	3240	6960	7510	9020	5930	M, 2110	4500	1950	12000	551
W 33×118	5000	3620	3440	3120	5940	7080	8870	5380	$V_{t} 2300$	5000	1840	14000	439
$\mathrm{b}=292$	3000	3300	3120	2780	3560	6320	8590	4600	$L_{0} 3610$	6000	1610	16000	364
$\mathrm{t}=18.8$	1000	2650	2510	2340	1190	4580	7730	3370	$\mathrm{I}_{\mathrm{x}} 2460$	8000	1060	18000	311
$\mathrm{d}=835$									Sx 5900	10000	731	20000	271

Units: $M_{r}-k N \cdot m, V_{r}-k N, L_{u}-m m, L_{x}-10^{6} m m^{4}, S_{x}-10^{3} m m^{3}, b-m m, t-m m, d-m m$
Sections highlighted in yellow are commonly used sizes and are generally readily available.

COMPOSITE BEAMS Trial Selection Table
75 mm Deck with 90 mm Slab
$\phi=0.90, \phi_{c}=0.65$

ASTM A992
A572 Grade 50 $\mathrm{f}^{\prime}{ }_{\mathrm{c}}=\mathbf{2 5} \mathrm{MPa}$ $\gamma_{\mathrm{c}}=2350 \mathrm{~kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite					
		$M_{r c}(\mathrm{kN} \cdot \mathrm{~m})$ for \% shear connection			$\begin{array}{\|c} Q_{r} \\ (\mathrm{kN}) \\ \hline 100 \% \\ \hline \end{array}$	$\begin{gathered} \mathrm{I}_{\mathrm{t}} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{t}} \\ 10^{3} \\ \mathrm{~mm}^{3} \end{gathered}$	$\begin{array}{\|c} \hline \mathrm{I}_{15} \\ 10^{6} \\ \hline \mathrm{~mm}^{4} \\ \hline \end{array}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	40\%						m		mm		
W760x18	5000	3510	3330	3020		5940	6420	8750	4850	080	4000	1980	12000	576
W30x124	4000	3350	3200	2880	4750	6120	8630	4520	V, 2340	5000	1780	14000	470	
$\mathrm{b}=267$	3000	3190	3020	2710	3560	5710	8460	4130	$L_{\text {L }} 3450$	6000	1550	1600	397	
23.6	2000	2960	2770	2510	2380	5110	8170	3650	$\mathrm{I}_{\mathrm{x}} 2230$	8000	1040	18000	44	
766	1000	2580	2450	2290	1190	4120	7600	3030	$\mathrm{S}_{\mathrm{x}} 5820$	10000	743	20000	304	
W760x173	5000	3330	3150	2860	5940	6040	8200	4590	Mt 1930	4000	1830	12000	50	
W30x116	4000	3170	3020	2720	4750	5770	8090	4280	V, 2250	5000	1630	14000	11	
$\mathrm{b}=267$	3000	3010	2860	2550	3560	5390	7930	3910	$L_{u} 3410$	6000	1410	16000	346	
21,6	2000	2800	2620	2360	2380	4830	7670	3450	$\mathrm{t}_{\mathrm{x}} 2060$	8000	924	18000	99	
$d=762$	1000	2430	2300	2150	1190	3900	7140	2850	$\mathrm{S}_{\mathrm{x}} 5400$	10000	657	20000	264	
W760x161	5000	3120	2940	2670	5940	5590	7540	4280	$\mathrm{M}_{\mathrm{t}} 1760$	4000	1650	12000	429	
W30×108	4000	2970	2820	2540	4750	5350	7450	3990	V, 2140	5000	1460	14000	47	
$\mathrm{b}=266$	3000	2810	2670	2380	3560	5010	7300	3650	$L_{u} 3330$	6000	1250	16000	291	
$\mathrm{t}=19.3$	2000	2610	2440	2190	2380	4500	7070	3210	$\mathrm{I}_{\mathrm{x}} 1860$	8000	793	18000	251	
758	1000	2250	2120	1970	1190	3630	6580	2640	Sx 4900	10000	560	20000	220	
W760x147	5000	2890	2730	470	5820	5130	6880	3950	$\mathrm{M}_{\mathrm{t}} 1580$	4000	1470	12000	358	
W30x99	4000	2760	2620	2350	4750	4920	6800	3700	V, 2040	5000	1290	14000	288	
$\mathrm{b}=265$	3000	2600	2470	2190	3560	4620	6670	3370	Lu 3260	6000	1090	16000	41	
$\mathrm{t}=17$	2000	2420	2250	2010	2380	4160	6460	2960	Ix 1660	8000	671	18000	207	
53	1000	2070	1950	1800	1190	3360	6020	2420	$\mathrm{S}_{\mathrm{x}} 4410$	10000	470	20000	181	
W760x134	5000	2640	2470	2240	5270	4710	6260	3670	$\mathrm{M}_{\mathrm{t}} 1440$	4000	1330	12000	308	
W30x90	4000	2550	2410	2180	4750	4520	6180	3440	V, 1650	5000	1160	14000	246	
$\mathrm{b}=264$	3000	2400	2280	2030	3560	4260	6080	3140	Lu 3230	6000	967	16000	205	
$\mathrm{t}=15.5$	2000	2230	2090	1850	2380	3850	5900	2760	1×1500	8000	587	18000	175	
50	1000	1910	1790	1650	1190	3130	5510	2240	Sx 4010	10000	408	20000	153	
W690x192	5000	3360	3180	2890	5940	5750	8510	4310	Mr 2010	4000	1910	12000	634	
W27x129	4000	3200	3040	2760	4750	5480	8390	4020	V, 2230	5000	1730	14000	525	
$\mathrm{b}=254$	3000	3030	2890	2600	3560	5100	8210	3670	Lu 3440	6000	1540	16000	44	
$\mathrm{t}=27.9$	2000	2830	2660	2420	2380	4540	7930	3230	Ix 1980	8000	1090	18000	392	
02	1000	2480	2360	2210	1190	3660	7370	2690	Sx 5640	10000	802	20000	349	
W690x170	5000	3040	2860	2600	5940	5110	7510	3870	$M_{t} 1750$	4000	1650	12000	497	
W27x114	4000	2890	2740	2480	4750	4870	7410	3610	V, 2060	5000	1480	14000	408	
$\mathrm{b}=256$	3000	2720	2590	2330	3560	4550	7260	3290	L. 3380	6000	1290	16000	347	
$\mathrm{t}=23.6$	2000	2540	2380	2150	2380	4080	7020	2900	$\mathrm{I}_{\mathrm{s}} 1700$	8000	875	18000	302	
693	1000	2210	2090	1950	1190	3280	6530	2380	Sx 4900	10000	634	20000	268	
W690x152	5000	2780	2610	2370	5940	4620	6740	3550	M, 1550	4000	1460	12000	406	
W27x102	4000	2630	2490	2260	4750	4430	6650	3320	V, 1850	5000	1290	14000	332	
$\mathrm{b}=254$	3000	2480	2360	2120	3560	4150	6530	3030	$L_{\sim}^{*} 3320$	6000	1110	16000	281	
$\mathrm{t}=21.1$	2000	2310	2170	1950	2380	3730	6330	2660	Ix 1510	8000	728	18000	244	
$\mathrm{d}=688$	1000	2010	1890	1760	1190	3020	5910	2180	Sx 4380	10000	523	20000	216	

Units: $M_{r}-k N \cdot m, V_{r}-k N, L_{u}-m m, I_{x}-10^{6} \mathrm{~mm}^{4}, S_{x}-10^{3} \mathrm{~mm}^{3}, b-m m, t-m m, d-m m$

[^43]Sections highlighted in yellow are commonly used sizes and are generally readily available.

COMPOSITE BEAMS Trial Selection Table
75 mm Deck with 90 mm Slab $\phi=0.90, \phi_{c}=0.65$

ASTM A992
A572 Grade 50 $\mathrm{f}^{\prime}{ }_{\mathrm{c}}=\mathbf{2 5} \mathrm{MPa}$ $\gamma_{\mathrm{c}}=2350 \mathrm{~kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite					
		$\mathrm{M}_{\mathrm{rc}}(\mathrm{kN} \cdot \mathrm{~m})$ for \% shear connection			$\begin{array}{\|c\|} \hline Q_{r} \\ (k N) \\ \hline 100 \% \\ \hline \end{array}$	$\begin{gathered} I_{t} \\ 10^{6} \\ \hline \mathrm{~mm}^{4} \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{t}} \\ 10^{3} \\ \hline \mathrm{~mm}^{3} \end{gathered}$	$\begin{gathered} \mathrm{I}_{\text {ts }} \\ 10^{6} \\ \hline \mathrm{~mm}^{4} \end{gathered}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	40\%						m	m	mm	$\mathrm{kN} \cdot \mathrm{m}$	
14	500	2570	2410	2180		5530	4260	6170	3300	$M_{t} 1410$	4000	1320	10000	
W27x94	4000	2460	2320	2100	4750	4090	6100	3080	$\mathrm{V}_{\mathrm{t}} 1740$	5000	1160	12000	345	
254	3000	2310	2190	1970	3560	3840	5990	2820	$L_{u} 3270$	6000	987	14000	280	
18.9	2000	2140	2020	1810	2380	3460	5810	2470	$\mathrm{I}_{\mathrm{x}} 1360$	7000	778	16000	236	
684	1000	1860	1750	1610	1190	2810	5430	2010	S $\times 3980$	8000	628	18000	204	
W690x125	5000	2320	2160	1940	4970	3820	5510	2990	M 1250	4000	1140	10000	362	
W27x84	4000	2250	2120	1920	4750	3670	5440	2800	$V_{r} 1610$	5000	999	12000	277	
$=253$	3000	2100	2000	1790	3560	3460	5350	2560	$L_{u} \quad 3190$	6000	834	14000	223	
16.3	2000	1950	1830	1630	2380	3140	5200	2240	$\mathrm{I}_{\mathrm{x}} 1180$	7000	640	16000	187	
$\mathrm{d}=678$	1000	1680	1580	1440	1190	2550	4860	1810	S 3500	8000	513	18000	161	
W610x174	5000	2830	2660	2420	5	4	7	3320	M $\mathrm{T}_{\mathrm{t}} 1660$	0	1660	10000	924	
W24×117	4000	2680	2540	2320	4750	4190	7090	3100	V, 1770	5000	1610	12000	9	
$=325$	3000	2520	2410	2190	3560	3910	6950	2820	$L_{u} 4480$	6000	1490	14000	574	
21.6	2000	2360	2240	2040	2380	3500	6730	2480	$\mathrm{I}_{\mathrm{x}} 1470$	7000	1370	16000	482	
$\mathrm{d}=616$	1000	2090	1980	1860	1190	2810	6270	2050	$\mathrm{S}_{\mathrm{x}} 4780$	8000	1230	18000	415	
W610x15	5	2580	2	2	5	3	6	3020	$M_{\text {r }} 1470$	0	1460	10000	2	
W24×104	4000	2440	2300	2100	4750	3780	6310	2820	V, 1590	5000	1410	12000	579	
324	3000	2280	2170	1980	3560	3540	6200	2570	$L_{u} 4400$	6000	1300	14000	465	
19	2000	2120	2020	1830	2380	3180	6010	2260	$\mathrm{I}_{\mathrm{x}} 1290$	7000	1180	16000	388	
$\mathrm{d}=611$	1000	1880	1780	1660	1190	2570	5620	1850	$\mathrm{S}_{\mathrm{x}} 4220$	8000	1050	18000	333	
W610x1	5	2390	2230	2000	55	3	5740	2790	M $\mathrm{t}_{\text {t }} 1290$	4000	1170	10000	422	
W24x94	4000	2280	2140	1930	4750	3470	5670	2610	V 1660	5000	1030	12000	334	
$=230$	3000	2120	2010	1810	3560	3260	5570	2380	$L_{u} 3070$	6000	874	14000	277	
$=22.2$	2000	1960	1850	1660	2380	2930	5400	2080	$\mathrm{I}_{\mathrm{x}} 1120$	7000	695	16000	237	
$\mathrm{d}=617$	1000	1700	1610	1480	1190	237	5030	1680	S 3630	8000	573	18000	207	
W610x12	5000	2140	1990	1780	4950	3260	5130	2540	$M_{t} 1140$	4000	1020	10000	342	
W24x84	4000	2080	1950	1760	4750	3130	5070	2380	V, 1490	5000	889	12000	269	
$=229$	3000	1930	1830	1650	3560	2950	4980	2170	$L_{u} 3020$	6000	733	14000	222	
19.6	2000	1780	1680	1500	2380	2670	4840	1900	$\mathrm{I}_{\mathrm{x}} \quad 985$	7000	575	16000	189	
$\mathrm{d}=612$	1000	1550	1450	1330	1190	2170	4520	1530	Sx 3220	8000	470	18000	165	
W610x113	5000	1950	1800	1610	4490	2960	4640	2340	M, 1020	4000	906	10000	282	
W24x76	4000	1910	1780	1600	4490	2850	4590	2190	V, 1400	5000	775	12000	220	
$b=228$	3000	1790	1680	1510	3560	2700	4510	2000	$L_{u} 2950$	6000	617	14000	180	
$t=17.3$	2000	1630	1550	1380	2380	2450	4390	1750	$\mathrm{I}_{\mathrm{x}} \quad 875$	7000	481	16000	153	
$\mathrm{d}=608$	1000	1420	1330	1210	1190	2000	4110	1400	$\mathrm{S}_{\mathrm{x}} 2880$	8000	391	18000	133	
W610x101	5000	1750	1610	1430	4020	2660	4140	2120	Mr 900	4000	787	10000	228	
W 24×68	4000	1720	1600	1430	4020	2570	4100	1990	V, 1300	5000	664	12000	176	
$\mathrm{b}=228$	3000	1640	1540	1380	3560	2430	4030	1830	$L_{u} 2890$	6000	512	14000	144	
$\mathrm{t}=14.9$	2000	1490	1410	1250	2380	2220	3930	1600	$\mathrm{I}_{\mathrm{x}} \quad 764$	7000	396	16000	121	
$d=603$	1000	1290	1200	1090	1190	1820	3690	1270	$\mathrm{S}_{\mathrm{x}} 2530$	8000	320	18000	105	

Units: $M_{t}-k N \cdot m, V_{r}-k N, L_{u}-m m, I_{x}-10^{6} \mathrm{~mm}^{4}, S_{x}-10^{3} \mathrm{~mm}^{3}, b-m m, t-m m, d-m m$
$F_{y}=345 \mathrm{MPa}$
Sections highlighted in yellow are commonly used sizes and are generally readily available.

COMPOSITE BEAMS
Trial Selection Table
75 mm Deck with 90 mm Slab
$\phi=0.90, \phi_{c}=0.65$

ASTM A992
A572 Grade 50
$\mathrm{f}^{\prime}{ }_{\mathrm{c}}=\mathbf{2 5} \mathrm{MPa}$
$\gamma_{\mathrm{c}}=2350 \mathrm{~kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite					
		$M_{\mathrm{rc}}(\mathrm{kN} \cdot \mathrm{~m})$ for \% shear connection			$\begin{array}{\|c\|} \hline Q_{r} \\ (\mathrm{kN}) \\ \hline 100 \% \\ \hline \end{array}$	$\begin{gathered} \mathrm{I}_{\mathrm{t}} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{t}} \\ 10^{3} \\ \mathrm{~mm}^{3} \end{gathered}$	$\begin{gathered} \mathrm{I}_{\text {ts }} \\ 10^{6} \\ \hline \mathrm{~mm}^{4} \\ \hline \end{gathered}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	40\%						m	m	m		
W610x92	4000	1580	1450	1280		3650	2320	3660	1810	M ${ }_{\text {t }} 779$	3000	83	8000	183
W24x62	3000	1530	1430	1270	3560	2200	3600	1660	V, 1350	4000	540	10000	135	
$\mathrm{b}=179$	2000	1380	1300	1130	2380	2020	3510	1450	Lus 2180	5000	76	12000	107	
=15	1000	1170	1080	967	1190	1660	3290	1140	$\mathrm{I}_{\times} 646$	6000	281	14000	8.9	
603	500	996	939	872	594	1310	3010	929	Sx 2140	7000	222	16000	76.1	
W610x82	4000	1400	1290	1130	3240	2070	3240	1640	M $\mathrm{V}_{\text {t }} 683$	3000	587	8000	145	
W24×55	3000	1370	1270	1120	3240	1970	3200	1510	$\mathrm{V}_{\mathrm{t}} 1170$	4000	448	10000	106	
$\mathrm{b}=178$	2000	1250	1180	1030	2380	1820	3110	1320	$L_{u} 2110$	5000	304	12000	83.4	
$\mathrm{t}=12.8$	1000	1060	980	867	1190	1500	2930	1040	$\mathrm{I}_{\times} 560$	6000	225	14000	8.9	
$d=599$	500	895	839	773	594	1190	2690	835	$\mathrm{S}_{\mathrm{x}} 1870$	7000	177	16000	58.7	
W530x138	4000	2070	1930	1720	4750	2840	5120	2120	$\mathrm{M}_{\mathrm{t}} 1120$	3000	1110	8000	515	
W21×93	3000	1920	1800	1610	3560	2660	5020	1920	$\mathrm{V}_{\mathrm{r}} 1650$	4000	1000	10000	390	
$\mathrm{b}=214$	2000	1750	1650	1470	2380	2390	4850	1670	Lu 2930	5000	884	12000	314	
$\mathrm{t}=23.6$	1000	1510	1420	1300	1190	1910	4500	1340	1×861	6000	759	14000	263	
$d=549$	500	1330	1270	1210	594	1510	4110	1120	Sx 3140	7000	616	16000	227	
W530x123	4000	1900	1760	1570	4750	2560	4580	1940	M ${ }_{t} 997$	3000	984	8000	421	
W21x83	3000	1750	1640	1470	3560	2410	4490	1760	$\mathrm{V}_{\mathrm{r}} 1460$	4000	879	10000	316	
$\mathrm{b}=212$	2000	1590	1500	1330	2380	2180	4360	1530	$L_{u} 2860$	5000	762	12000	253	
$\mathrm{t}=21.2$	1000	1370	1280	1170	1190	1760	4060	1220	$\mathrm{I}_{\mathrm{x}} 761$	6000	631	14000	211	
$d=544$	500	1200	1150	1080	594	1390	3720	1010	$\mathrm{S}_{\mathrm{x}} 2800$	7000	505	16000	182	
W530x109	4000	1700	1570	1390	4310	2290	4060	1760	M ${ }_{\text {c }} 879$	3000	862	8000	342	
W21x73	3000	1590	1480	1330	3560	2170	3990	1600	V, 1280	4000	764	10000	254	
$\mathrm{b}=211$	2000	1430	1360	1210	2380	1970	3880	1400	$L_{u} 2810$	5000	652	12000	202	
$\mathrm{t}=18.8$	1000	1240	1160	1050	1190	1600	3630	1110	Ix 667	6000	520	14000	168	
39	500	1080	1030	963	594	1260	3330	914	Sx 2480	7000	413	16000	144	
W530x101	4000	1590	1460	1290	4010	2150	3780	1660	M $\mathrm{V}_{\mathrm{t}} 814$	3000	794	8000	301	
W21x68	3000	1500	1400	1250	3560	2040	3720	1520	V, 1200	4000	699	10000	222	
$\mathrm{b}=210$	2000	1350	1280	1140	2380	1860	3620	1330	Lu 2770	5000	591	12000	176	
$\mathrm{t}=17.4$	1000	1170	1090	987	1190	1520	3400	1050	$\mathrm{l}_{\mathrm{x}} \quad 617$	6000	462	14000	146	
537	500	1010	960	899	594	1200	3120	860	Sx 2300	7000	365	16000	125	
W530x92	4000	1450	1330	1170	3660	1970	3440	1540	M $\quad 733$	3000	711	8000	253	
W21x62	3000	1400	1300	1160	3560	1870	3390	1410	$\mathrm{V}, 1110$	4000	62	9000	214	
$\mathrm{b}=209$	2000	1250	1180	1050	2380	1710	3300	1230	Lu 2720	5000	516	10000	185	
$\mathrm{t}=15.6$	1000	1080	1010	905	1190	1400	3110	972	Ix 552	6000	393	12000	146	
533	500	929	879	818	594	1110	2860	790	Sx 2070	7000	309	14000	120	
W530x82	4000	1290	1180	1040	3250	1750	3050	1390	Mr 640	3000	616	8000	203	
W21×55	3000	1260	1160	1030	3250	1670	3000	1270	V 1030	4000	531	9000	170	
$\mathrm{b}=209$	2000	1140	1070	951	2380	1530	2930	1120	$L_{u} 2660$	5000	433	10000	147	
$\mathrm{t}=13.3$	1000	975	908	809	1190	1270	2760	879	1) 477	6000	320	12000	115	
$\mathrm{d}=528$	500	832	783	724	594	1010	2550	708	$\mathrm{S}_{\mathrm{x}} 1810$	7000	249	14000	94.0	

Units: $\mathrm{M}_{\mathrm{r}}-\mathrm{kN} \cdot \mathrm{m}, \mathrm{V}_{\mathrm{r}}-\mathrm{kN}, \mathrm{L}_{\mathrm{u}}-\mathrm{mm}, \mathrm{I}_{\mathrm{x}}-10^{6} \mathrm{~mm}^{4}, \mathrm{~S}_{\mathrm{x}}-10^{3} \mathrm{~mm}^{3}, \mathrm{~b}-\mathrm{mm}, \mathrm{t}-\mathrm{mm}, \mathrm{d}-\mathrm{mm}$
$\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$
Sections highlighted in yellow are commonly used sizes and are generally readily available.

COMPOSITE BEAMS Trial Selection Table
75 mm Deck with 90 mm Slab
$\phi=0.90, \phi_{\mathrm{c}}=0.65$

ASTM A992
A572 Grade 50
$\mathrm{f}^{\prime}{ }_{\mathrm{c}}=\mathbf{2 5} \mathrm{MPa}$
$\gamma_{\mathrm{c}}=2350 \mathrm{~kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite					
		$\mathrm{M}_{\mathrm{rc}}(\mathrm{kN} \cdot \mathrm{~m})$ for \% shear connection			$\begin{array}{\|c\|} \hline Q_{r} \\ (\mathrm{kN}) \\ \hline 100 \% \\ \hline \end{array}$	$\begin{gathered} \mathrm{t}_{\mathrm{t}} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{t}} \\ 10^{3} \\ \hline \mathrm{~mm}^{3} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{ts}} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	40\%										
W	4000	190	1080	938		296	16	27	1270	62	000	474	00	
W21x50	3000	1160	1070	933	2960	1520	2710	1170	V, 1050	4000	357	9000	05	
$=166$	2000	1070	996	874	2380	1400	26	1030	$L_{u} 2040$	5000	247	10000	91	
13.6	1000	899	830	731	1190	117	2490	804	411	6000	186	12000	73	
$d=529$	500	75	705	646	594	926	2290	639	1550	7000	48	14000	61.	
W530x66	4000	1050	948	819	2600	1410	2410	1140	M, 484	3000	398	8000		
W21x44	3000	1030	938	815	2600	1350	2380	1050	V, 927	4000	284	9000	80.6	
16	200	967	900	789	2380	1250	2320	927	$L_{u} 1980$	5000	195	10000	70.	
11.4	1000	810	747	652	1190	1050	2190	726	351	6000	145	12000	55	
525	500	674	626	568	594	837	2030	572	1340	000	115	14000		
W460x15	4000	2050	1900	1710	4750	25	5	1890	M, 1170	4500	1150	900	794	
W18×106	300	1890	1780	1610	3560	24	5250	1710	V, 1460	5000	1110	10000	696	
$\mathrm{b}=284$	200	1730	1640	1490	2380	2150	5070	1490	$L_{u} 4200$	6000	1040	11000	617	
23.9	1000	1520	1440	1340	1190	1710	4690	1200	796	7000	955	12000	555	
$d=476$	500	1360	1310	1260	594	135	429	1010	$\mathrm{S}_{\mathrm{x}} 3350$	8000	875	14000	462	
W4	4000	1920	1780	1590	4750	2390	4930	1770	M, 1070	4500	1050	9000	693	
W18x97	30	1760	1650	1500	3560	2240	4830	1610	V, 1320	5000	1010	10000	602	
$\mathrm{b}=283$	2000	1600	1520	1380	2380	2000	4670	1390	$L_{4} 4130$	6000	936	11000	533	
$\mathrm{t}=22.1$	1000	1410	1340	1240	1190	1600	4350	1120	Ix 726	7000	858	12000	478	
$d=472$	500	1260	1210	1160	594	126	398	938	Sx 3080	8000	77	14000	396	
W460×128	4	1760	1620	1440	4750	21	4390	1610	M, 947	4500	917	9000	56	
W18x86	3000	1610	1500	1350	3560	2020	4310	1470	V, 1170	5000	884	10000	489	
$=282$	2000	1450	1370	1250	2380	1820	4180	1270	Lu 4040	6000	812	11000	43	
19.6	1000	1270	1200	1110	1190	1460	3900	1010	Ix 637	7000	736	1200	385	
	500	1130	1080	1030	594	1150	358	844	Sx 2730	8000	65	1400	31	
W460x11	4000	80	50	1280	4470	1920	3880	1460	M $\mathrm{V}_{\text {cter }} 829$	4500	796	9000	458	
W18x76	3000	1460	1360	1220	3560	1810	3810	1330	V 1020	5000	765	10000	94	
$\mathrm{b}=280$	2000	1310	1230	1120	2380	1640	3700	1160	$L_{u} 3950$	6000	696	11000	345	
$\mathrm{t}=17.3$	1000	1140	1080	989	1190	1330	3470	919	$\mathrm{l}_{1} 556$	7000	623	12000	307	
$d=463$	00	1010	965	911	594	1050	31	758	Sx 2400	8000	545	40	252	
W460x106	4000	1510	1380	1200	4180	1810	3580	1380	Mr 742	3000	719	8000	308	
W18x71	3000	1410	1300	1150	3560	1710	3520	1260	V, 1210	4000	637	9000	266	
$\mathrm{b}=194$	2000	1250	1180	1040	2380	1550	3410	1090	$L_{u} 2690$	5000	549	10000	235	
$t=20.6$	1000	1070	1000	904	1190	1250	3190	852	Ix 488	6000	450	11000	210	
$\mathrm{d}=469$	500	925	879	823	594	978	291	692	$\mathrm{S}_{\mathrm{x}} 2080$	7000	366	12000	190	
W460x97	4000	1380	1260	1100	3820	1670	3280	1290	M $\mathrm{V}_{\text {c }} 677$	3000	652	8000	26	
W18×65	3000	1320	1220	1070	3560	1580	3230	1180	V, 1090	4000	574	9000	227	
$\mathrm{b}=193$	2000	1170	1090	972	2380	1440	3140	1020	$L_{\text {L }} 2650$	5000	488	10000	200	
$\mathrm{t}=19$	1000	995	930	837	1190	1170	2940	799	Ix 445	6000	389	11000	178	
466	500	858	813	758	594	919	2690	645	Sx 1910	7000	314	12000	161	

Units: $M_{r}-k N \cdot m, V_{r}-k N, L_{u}-m m, I_{x}-10^{6} \mathrm{~mm}^{4}, S_{x}-10^{3} \mathrm{~mm}^{3}, b-m m, t-m m, d-m m$
Sections highlighted in yellow are commonly used sizes and are generally readily available.

COMPOSITE BEAMS
Trial Selection Table
75 mm Deck with 90 mm Slab
$\phi=0.90, \phi_{\mathrm{c}}=0.65$

ASTM A992
A572 Grade 50 $f^{\prime}{ }_{c}=25 \mathrm{MPa}$ $\gamma_{\mathrm{c}}=2350 \mathrm{~kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite					
		$\mathrm{M}_{\mathrm{rc}}(\mathrm{kN} \cdot \mathrm{~m})$ for \% shear connection			$\begin{array}{\|c\|} \hline Q_{r} \\ (\mathrm{kN}) \\ \hline 100 \% \\ \hline \end{array}$	$\begin{gathered} I_{1} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{t}} \\ 10^{3} \\ \mathrm{~mm}^{3} \end{gathered}$	$\begin{gathered} I_{\text {ts }} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	40\%						m	$\mathrm{kN} \cdot \mathrm{m}$	mm	$\mathrm{N} \cdot \mathrm{m}$	
W460x89	3000	1240	1140	1010		3530	1470	2990	1110	M $\mathrm{M}_{\text {r }} 624$	3000	598	8000	231
W18x60	2000	1100	1020	913	2380	1350	2910	964	$\mathrm{V}_{1} \quad 996$	4000	523	9000	198	
$\mathrm{b}=192$	1500	1020	960	853	1780	1250	2850	870	$L_{u} 2620$	5000	439	10000	174	
$\mathrm{t}=17.7$	1000	933	873	783	1190	1100	2740	754	$\mathrm{I}_{\mathrm{x}} \quad 409$	6000	343	11000	155	
$=463$	500	803	759	705	594	867	2510	605	$\mathrm{S}_{\mathrm{x}} 1770$	7000	276	12000	140	
W460x82	3000	1150	1050	922	3240	1360	2750	1030	$M_{\text {r }} \quad 568$	3000	540	8000	195	
W18x55	2000	1030	957	851	2380	1250	2680	902	$\mathrm{V}_{1} \quad 933$	4000	466	9000	166	
$b=191$	1500	950	894	793	1780	1160	2620	814	$L_{u} 2560$	5000	384	10000	146	
$t=16$	1000	868	812	725	1190	1030	2520	704	$\mathrm{I}_{\mathrm{x}} \quad 370$	6000	292	11000	129	
$\mathrm{d}=460$	500	744	701	648	594	812	2320	562	$\mathrm{S}_{\mathrm{x}} 1610$	7000	234	12000	116	
W460x74	3000	1050	953	833	2930	1240	2490	956	$M_{\text {t }} \quad 512$	3000	484	8000	164	
W18x50	2000	954	886	787	2380	1150	2430	838	$\mathrm{V}_{\mathrm{t}} \quad 843$	4000	414	9000	140	
$b=190$	1500	879	825	732	1780	1070	2380	757	$L_{u} 2530$	5000	332	10000	122	
$t=14.5$	1000	800	750	667	1190	953	2300	655	$\mathrm{I}_{\mathrm{x}} \quad 332$	6000	249	11000	108	
$\mathrm{d}=457$	500	685	644	592	594	755	2120	519	Sx 1460	7000	198	12000	96.8	
W460x68	3000	976	886	770	2710	1160	2300	898	$M_{r} 463$	3000	390	8000	112	
W18x46	2000	906	838	739	2380	1070	2240	788	$\mathrm{V}_{t} \quad 856$	4000	301	9000	96.7	
$=154$	1500	831	777	683	1780	1000	2190	712	$L_{u} 2010$	5000	213	10000	85.2	
$t=15.4$	1000	752	701	617	1190	896	2120	614	$\mathrm{I}_{\mathrm{x}} \quad 297$	6000	164	11000	76.1	
459	500	635	594	542	594	710	1950	483	$\mathrm{S}_{\mathrm{x}} 1290$	7000	133	12000	68.9	
W460x60	300	854	771	667	2350	1020	2000	804	$M_{t} \quad 397$	3000	329	8000	86.6	
W18x40	2000	819	754	662	2350	949	1960	710	$V_{1} \quad 746$	4000	242	9000	74.3	
$\mathrm{b}=153$	1500	748	696	613	1780	891	1920	643	$L_{u} 1970$	5000	169	10000	65.2	
$t=13.3$	1000	671	628	551	1190	802	1860	556	$\mathrm{I}_{\mathrm{x}} \quad 255$	6000	129	11000	58.1	
$d=455$	500	567	528	47	594	64	1720	43	$\mathrm{S}_{\mathrm{x}} 1120$	7000	104	12000	52.4	
W460x52	3000	749	672	577	2060	889	1740	711	$\begin{array}{lll}M_{r} & 338\end{array}$	3000	269	8000	63.6	
W18x35	2000	722	659	573	2060	831	1700	631	$\mathrm{V}_{1} \quad 680$	4000	185	9000	54.3	
$\mathrm{b}=152$	1500	676	626	547	1780	784	1670	573	$L_{u} 1890$	5000	128	10000	47.4	
$t=10.8$	1000	601	562	488	1190	709	1610	495	$\mathrm{I}_{\mathrm{x}} \quad 212$	6000	96.2	11000	42.0	
$\mathrm{d}=450$	500	503	465	416	594	571	1500	384	$\mathrm{S}_{\mathrm{x}} \quad 942$	7000	76.7	12000	37.8	
W410x149	3000	1680	1570	1410	3560	1990	4660	1410	M $\mathrm{m}_{1} 1010$	4500	983	8000	760	
W16x100	2000	1520	1440	1300	2380	1770	4500	1220	V, 1320	5000	952	9000	696	
$\mathrm{b}=265$	1500	1430	1360	1240	1780	1620	4370	1100	$L_{u} 4080$	5500	921	10000	621	
$\mathrm{t}=25$	1000	1330	1260	1160	1190	1400	4160	966	$\mathrm{I}_{\mathrm{x}} \quad 618$	6000	889	11000	554	
$\mathrm{d}=431$	500	1180	1140	1090	594	1100	3780	807	$\mathrm{S}_{\mathrm{x}} 2870$	7000	825	12000	501	
W410x132	3000	1530	1420	1270	3560	1790	4140	1280	$M_{\text {r }} \quad 885$	4500	853	8000	635	
W16x89	2000	1370	1290	1170	2380	1600	4000	1110	$\mathrm{V}_{t} 1160$	5000	823	9000	565	
$\mathrm{b}=263$	1500	1290	1220	1110	1780	1460	3890	999	$L_{u} 3940$	5500	792	10000	495	
$\mathrm{t}=22.2$	1000	1190	1130	1040	1190	1280	3720	873	$\mathrm{I}_{\mathrm{x}} \quad 538$	6000	761	11000	440	
$\mathrm{d}=425$	500	1060	1010	963	594	996	3390	722	Sx 2530	7000	698	12000	397	

Units: $\mathrm{M}_{\mathrm{t}}-\mathrm{kN} \cdot \mathrm{m}, \mathrm{V}_{\mathrm{t}}-\mathrm{kN}, \mathrm{L}_{\mathrm{u}}-\mathrm{mm}, \mathrm{I}_{\mathrm{x}}-10^{6} \mathrm{~mm}^{4}, \mathrm{~S}_{\mathrm{x}}-10^{3} \mathrm{~mm}^{3}, \mathrm{~b}-\mathrm{mm}, \mathrm{t}-\mathrm{mm}, \mathrm{d}-\mathrm{mm}$
$\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$
Sections highlighted in yellow are commonly used sizes and are generally readily available.

Trial Selection Table
75 mm Deck with 90 mm Slab $\phi=0.90, \phi_{\mathrm{c}}=0.65$

ASTM A992
A572 Grade 50
$\mathrm{f}^{\prime}{ }_{\mathrm{c}}=\mathbf{2 5} \mathrm{MPa}$
$\gamma_{\mathrm{c}}=2350 \mathrm{~kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite					
		$\mathrm{M}_{\mathrm{tc}}(\mathrm{kN} \cdot \mathrm{m})$ for \% shear connection			$\begin{array}{\|c\|} \hline Q_{r} \\ (\mathrm{kN}) \\ \hline 100 \% \\ \hline \end{array}$	$\begin{gathered} \mathrm{I}_{\mathrm{t}} \\ 10^{6} \\ \mathrm{~mm}^{4} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{t}} \\ 10^{3} \\ \mathrm{~mm}^{3} \end{gathered}$	$\begin{array}{\|c} \hline \mathrm{I}_{\mathrm{ts}} \\ 10^{6} \\ \hline \mathrm{~mm}^{4} \end{array}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	\%						mm	$\mathrm{kN} \cdot \mathrm{m}$	mm		
	3000	1380	1270	1		3560	1580	3610	1150		00		0	513
W16x77	2000	1220	11	1040	2380	1	3500	97	V, 998	5000	69	000	438	
261	15	1140	1080	980	1780	1310	3410	899	$L_{\\|} 3810$	5500	668	10000	382	
19.3	1000	1060	998	913	1190	1150	3270	782	$\mathrm{I}_{\times} \quad 461$	6000	638	11000	338	
420	500	931	890	839	594	896	2990	639	$\mathrm{S}_{\times} 2200$	70	576	12000	304	
10	3000	1240	1140	1010	3560	1	3160	1040	M $\mathrm{M}_{\text {cter }} 661$	500	623	00	411	
67	2000	1090	1020	924	2380	1	3070	901	$\mathrm{V}_{\mathrm{t}} \quad 850$	5000	59	000	348	
260	1500	1020	961	871	1780	117	3000	81	$L_{\nu} 3730$	5500	568	10000	302	
$\mathrm{t}=16.9$	1000	936	887	808	1190	1030	2880	705	$\mathrm{I}_{\times} 398$	6000	539	00	26	
d=415	500	825	786	737	594	810	265	571	$\mathrm{S}_{\mathrm{x}} 1920$	7000	47	1200	238	
W410x85	000	1110	1010	882	3360	1210	2670	911	M $\mathrm{M}_{\text {cter }} 534$	3000	50	3 000	205	
W16x57	2000	982	910	805	2380	11	2590	791	$\mathrm{V}_{\mathrm{t}} \quad 931$	4000	443	00	177	
181	1500	903	847	79	1780	1030	530	712	$\mathrm{L}_{\\|} 2530$	5000	375	000	57	
$\mathrm{t}=18.2$	10	821	767	685	1190	908	2430	613	$\mathrm{I}_{\mathrm{x}} \quad 315$	6000	29	0	40	
	500	702	662	12	594	709	223	485	$\mathrm{S}_{\mathrm{x}} 1510$	000	242	12000	127	
W410x74	3000	990	96	75	2960	1080	2360	827	M, 469	3000	440	8000	163	
W16x50	20	895	826	729	2380	997	230	722	$\mathrm{V}_{\mathrm{t}} \quad 821$	4000	379	9000	140	
$\mathrm{b}=180$	1500	819	765	677	78	228	2250	650	L. 2470	5000	312	000	123	
	10	740	693	616	119	824	2170	559	$\mathrm{I}_{\times} \quad 275$	6000	23	11000	110	
	500	632	93	545	594	648	99	440	$\mathrm{S}_{\mathrm{x}} 1330$	70	19	0	99.	
W410x67	3000	898	08	97	2670	986	213	762	M $\mathrm{M}_{\mathbf{t}} 422$	3000	392	8000	135	
W1	20	832	765	672	2380	910	08	668	V, 739	4000	333	000	116	
$\mathrm{b}=179$	1500	757	05	624	78	851	2040	603	$L^{2} 2420$	5000	26	000	102	
$\mathrm{t}=14.4$	10	680	638	565	1	759	1960	519	$\mathrm{I}_{\mathrm{x}} \quad 245$	000	20	000	0.4	
	500	580	53	495	594	600	81	406	$\mathrm{S}_{\mathrm{x}} 1200$	7000	16	120	81.	
W410x60	3000	797	14	14	2350	882	189	693	$\begin{array}{lll}\text { M } & 369\end{array}$	3000	341	8000	109	
W16x40	2	762	697	608	2350	819	185	611	V, 642	4000	28	000	93	
178	1	691	640	566	1780	769	18	553	$\mathrm{L}_{\sim} 2390$	5000	21	000		
2.8	1000	615	578	511	1190	691	1750	77	$\mathrm{I}_{\mathrm{x}} \quad 216$	00	165	000	2.	
$d=407$	500	524	490		594	551	63	372	$\mathrm{S}_{\mathrm{x}} 1060$		13	120		
W410x54	3000	718	640	548	2110	790	169	628	$\begin{array}{ll}M_{t} & 326\end{array}$	3000	295	000		
W16x36	2000	690	626	544	2110	736	1650	555	$\mathrm{V}_{\mathrm{r}} \quad 619$	4000	241	9000		
$\mathrm{b}=177$	1500	639	589	517	1780	693	1620	504	$\mathrm{L}_{\mathrm{u}} 2310$	5000	176	10000		
10.9	1000	564	529	464	1190	626	1570	434	$\mathrm{I}_{\mathrm{x}} \quad 186$	6000	132	11000	6.	
$d=403$	500	476		398	594	502	1460	336	$\mathrm{S}_{\mathrm{x}} \quad 923$	7000	104	120		
W410x46	3000	628	557	474	1830	693	1460	560	M $\quad 274$	2000	265	000	61.7	
W16x31	2000	607	547	470	1830	649	1430	498	$\mathrm{V}_{\mathrm{t}} \quad 578$	3000	210	8000	51.	
$=140$	1500	582	533	464	1780	614	1400	453	$L_{\text {L }} 1790$	4000	142	9000		
$\mathrm{t}=11.2$	1000	509	474	412	1190	558	1360	392	$\mathrm{I}_{\mathrm{x}} \quad 156$	5000	99.9	10000		
$d=403$	500	423	391	347	594	45	127	302	$\mathrm{S}_{\mathrm{x}} \quad 772$	600	76.4	110		

Units: $M_{r}-k N \cdot m, V_{t}-k N, L_{u}-m m, I_{x}-10^{6} m m^{4}, S_{x}-10^{3} \mathrm{~mm}^{3}, b-m m, t-m m, d-m m$
$\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$
Sections highlighted in yellow are commonly used sizes and are generally readily available.

COMPOSITE BEAMS
Trial Selection Table
75 mm Deck with 90 mm Slab
$\phi=0.90, \phi_{\mathrm{c}}=0.65$

$\frac{-w}{t-b-d^{\frac{1}{7}}}$

ASTM A992
A572 Grade 50
$\mathbf{f}^{\prime}{ }_{\mathrm{c}}=\mathbf{2 5} \mathrm{MPa}$
$\gamma_{\mathrm{c}}=2350 \mathrm{~kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite					
		$\mathrm{M}_{\mathrm{rc}}(\mathrm{kN} \cdot \mathrm{~m})$ for \% shear connection			$\begin{array}{\|c} \hline Q_{r} \\ (k N) \\ \hline 100 \% \end{array}$	$\begin{gathered} I_{t} \\ 10^{6} \\ \hline \mathrm{~mm}^{4} \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{t}} \\ 10^{3} \\ \mathrm{~mm}^{3} \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{ts}} \\ 10^{6} \\ \hline \mathrm{~mm}^{4} \end{gathered}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	40\%						mm	$\mathrm{kN} \cdot \mathrm{m}$	mm	$\mathrm{kN} \cdot \mathrm{m}$	
W410x39	3000	535	472	398		1550	590	1240	484	M ${ }_{\text {r }} 227$	2000	216	7000	44.0
W16x26	2000	519	465	396	1550	555	1210	434	$\mathrm{V}_{t} \quad 480$	3000	166	8000	36.5	
$\mathrm{b}=140$	1500	504	457	394	1550	527	1190	397	$L_{u} 1730$	4000	105	9000	31.2	
$\mathrm{t}=8.8$	1000	451	417	361	1190	483	1150	344	$\mathrm{I}_{\times} \quad 126$	5000	73.0	10000	27.3	
$d=399$	500	371	341	298	594	395	1080	264	$\mathrm{S}_{\mathrm{x}} 634$	6000	55.1	11000	24.2	
W360x79	3000	948	852	728	3130	928	2300	697	$M_{r} \quad 444$	3500	425	7000	267	
W14×53	2000	838	768	676	2380	849	2230	605	$\mathrm{V}_{r} \quad 682$	4000	404	8000	225	
$b=205$	1500	761	707	630	1780	787	2180	543	$L_{u} 3010$	4500	383	9000	194	
$t=16.8$	1000	682	643	575	1190	695	2100	465	$\mathrm{I}_{\times} \quad 226$	5000	361	10000	171	
$\mathrm{d}=354$	500	588	554	510	594	541	1930	364	S ${ }_{\text {c }} 1280$	6000	317	11000	153	
W360x72	3000	860	769	654	2830	842	2080	642	M ${ }_{\text {c }} 397$	3500	377	7000	222	
W14×48	2000	779	711	621	2380	774	2020	559	$\mathrm{V}_{1} \quad 617$	4000	357	8000	186	
$\mathrm{b}=204$	1500	704	651	578	1780	721	1980	503	$\mathrm{L}_{\mathrm{u}} 2940$	4500	336	9000	160	
$\mathrm{t}=15.1$	1000	627	589	525	1190	640	1910	431	$\mathrm{I}_{x} 201$	5000	315	10000	141	
$d=350$	500	537	505	462	594	501	1760	335	$\mathrm{S}_{\mathrm{x}} 1150$	6000	272	11000	126	
W360x64	3000	775	688	583	2530	761	1860	588	M ${ }_{\text {r }} \quad 354$	3500	332	7000	183	
W14×43	2000	724	658	568	2380	703	1820	515	$\mathrm{V}_{\mathrm{r}} \quad 548$	4000	313	8000	153	
$\mathrm{b}=203$	1500	650	598	529	1780	657	1780	464	$L_{u} 2870$	4500	293	9000	131	
$\mathrm{t}=13.5$	1000	574	538	479	1190	586	1720	398	$\mathrm{I}_{\mathrm{x}} \quad 178$	5000	273	10000	115	
$d=347$	500	490	459	418	594	462	1590	308	S 1030	6000	228	11000	102	
W360×57	3000	707	626	530	2240	710	1680	557	$M_{r} \quad 314$	3000	289	7000	119	
W14×38	2000	675	611	525	2240	659	1630	490	$\mathrm{V}_{\mathrm{t}} \quad 580$	3500	267	8000	99.7	
$b=172$	1500	614	563	493	1780	618	1600	442	$L_{u} 2360$	4000	244	9000	85.9	
$\mathrm{t}=13.1$	1000	538	503	443	1190	555	1550	380	$\mathrm{I}_{\mathrm{x}} \quad 160$	5000	192	10000	75.6	
$\mathrm{d}=358$	500	454	423	382	594	441	1430	292	$\mathrm{S}_{\mathrm{x}} 896$	6000	147	11000	67.5	
W 360×51	3000	635	560	472	2000	639	1500	508	$M_{r} \quad 277$	3000	252	7000	96.9	
W14×34	2000	609	547	468	2000	596	1460	449	$\mathrm{V}_{\mathrm{t}} \quad 524$	3500	232	8000	80.9	
$\mathrm{b}=171$	1500	569	519	452	1780	561	1430	407	$L_{\text {L }} 2320$	4000	210	9000	69.4	
$\mathrm{t}=11.6$	1000	495	460	405	1190	506	1390	350	$\mathrm{I}_{\mathrm{x}} \quad 141$	5000	159	10000	60.8	
$\mathrm{d}=355$	500	414	385	345	594	406	1290	268	$\mathrm{S}_{\mathrm{x}} \quad 796$	6000	121	11000	54.1	
W360×45	3000	567	498	419	1780	571	1340	459	$M_{\text {r }} \quad 242$	3000	217	7000	76.4	
W14x30	2000	547	488	416	1780	534	1300	409	$\mathrm{V}_{\mathrm{t}} \quad 498$	3500	197	8000	63.3	
$b=171$	1500	527	478	412	1780	505	1280	371	$L_{\text {L }} 2260$	4000	176	9000	54.0	
$\mathrm{t}=9.8$	1000	454	420	367	1190	458	1240	320	$\mathrm{I}_{\mathrm{x}} \quad 122$	5000	128	10000	47.1	
$\mathrm{d}=352$	500	376	348	309	594	370	1160	245	$\mathrm{S}_{\mathrm{x}} 691$	6000	96.0	11000	41.8	
W360x39	3000	498	435	364	1550	504	1160	411	$M_{r} \quad 206$	2000	193	6000	54.1	
W14x26	2000	483	428	362	1550	473	1130	368	$V_{r} \quad 470$	2500	172	7000	44.2	
$b=128$	1500	468	421	359	1550	448	1110	335	$L_{u} 1660$	3000	148	8000	37.4	
$\mathrm{t}=10.7$	1000	415	381	330	1190	410	1080	290	$\mathrm{I}_{\mathrm{x}} \quad 102$	4000	97.0	9000	32.5	
$\mathrm{d}=353$	500	337	311	272	594	334	1010	221	$\mathrm{S}_{\mathrm{x}} 580$	5000	69.7	10000	28.7	

Units: $\mathrm{M}_{\mathrm{r}}-\mathrm{kN} \cdot \mathrm{m}, \mathrm{V}_{\mathrm{r}}-\mathrm{kN}, \mathrm{L}_{\mathrm{u}}-\mathrm{mm}, \mathrm{I}_{\mathrm{x}}-10^{6} \mathrm{~mm}^{4}, \mathrm{~S}_{\mathrm{x}}-10^{3} \mathrm{~mm}^{3}, \mathrm{~b}-\mathrm{mm}, \mathrm{t}-\mathrm{mm}, \mathrm{d}-\mathrm{mm}$
$F_{y}=345 \mathrm{MPa}$
Sections highlighted in yellow are commonly used sizes and are generally readily available.

COMPOSITE BEAMS Trial Selection Table
75 mm Deck with 90 mm Slab

ASTM A992 A572 Grade 50
$\mathrm{f}^{\prime}{ }_{\mathrm{c}}=\mathbf{2 5} \mathrm{MPa}$
$\phi=0.90, \phi_{\mathrm{c}}=0.65$ $\gamma_{\mathrm{c}}=2350 \mathrm{~kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite					
		$\mathrm{M}_{\mathrm{rc}}(\mathrm{kN} \cdot \mathrm{~m})$ for \% shear connection			$\begin{gathered} Q_{r} \\ (\mathrm{kN}) \\ \hline 100 \% \end{gathered}$	$\begin{gathered} \mathrm{I}_{1} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{t}} \\ 10^{3} \\ \mathrm{~mm}^{3} \end{gathered}$	$\begin{gathered} \mathrm{I}_{\text {ts }} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	40\%						mm	$\mathrm{kN} \cdot \mathrm{m}$	mm	$\mathrm{kN} \cdot \mathrm{m}$	
W360x33	2500	414	362	302		1290	415	964	337	$\mathrm{M}_{\mathrm{t}} \quad 168$	2000	155	6000	38.0
W14×22	2000	408	359	301	1290	401	951	318	$\mathrm{V}_{\mathrm{t}} \quad 396$	2500	135	7000	30.8	
$b=127$	1500	397	354	299	1290	382	933	292	$L_{u} 1600$	3000	113	8000	25.8	
$\mathrm{t}=8.5$	1000	368	336	289	1190	351	907	254	$\mathrm{I}_{\mathrm{x}} \quad 82.6$	4000	70.2	9000	22.3	
$d=349$	500	294	271	234	594	291	853	194	$\mathrm{S}_{\mathrm{x}} 473$	5000	49.6	10000	19.6	
W310x74	2500	807	725	614	2930	712	1980	521	M, 366	3500	354	6000	274	
W12x50	2000	738	670	578	2380	676	1950	481	$V_{\text {t }} \quad 597$	4000	339	7000	240	
$\mathrm{b}=205$	1500	663	609	538	1780	627	1900	430	$L_{u} 3100$	4500	323	8000	204	
$t=16.3$	1000	585	548	488	1190	553	1830	366	$\mathrm{l}_{x} 164$	5000	307	9000	177	
$d=310$	500	498	469	429	594	428	1680	281	S 1060	5500	291	10000	156	
W310x67	2500	730	651	548	2620	643	1780	478	M ${ }_{\text {t }} \quad 326$	3500	312	6000	234	
W12x45	2000	686	620	530	2380	612	1750	441	$\mathrm{V}_{\mathrm{r}} \quad 533$	4000	297	7000	198	
$b=204$	1500	612	560	491	1780	570	1710	396	$L_{u} 3020$	4500	282	8000	167	
$t=14.6$	1000	536	500	445	1190	506	1650	337	Ix 144	5000	266	9000	144	
$d=306$	500	453	426	388	594	394	1520	257	$\mathrm{S}_{\mathrm{x}} 942$	5500	250	10000	127	
W310x60	2500	657	582	488	2340	581	1600	439	M $\mathrm{M}^{2} 290$	3500	275	6000	199	
W12x40	2000	637	572	484	2340	555	1570	407	V, 466	4000	261	7000	163	
$b=203$	1500	567	516	449	1780	519	1540	366	$L_{u} 2960$	4500	246	8000	137	
$t=13.1$	1000	492	456	406	1190	463	1490	312	$\mathrm{l}_{\mathrm{x}} \quad 128$	5000	231	9000	118	
$\mathrm{d}=303$	500	413	388	351	594	364	1370	238	$\mathrm{S}_{\mathrm{x}} 842$	5500	215	10000	104	
W310x52	2500	605	534	447	2070	552	1440	423	M ${ }_{\text {r }} 260$	3000	240	6000	130	
W12x35	2000	589	526	444	2070	528	1420	394	$\mathrm{V}_{\mathrm{r}} \quad 494$	3500	223	7000	106	
$b=167$	1500	542	491	424	1780	496	1390	355	$L_{u} 2380$	4000	206	8000	89.4	
$\mathrm{t}=13.2$	1000	467	432	381	1190	446	1350	304	$\mathrm{I}_{\mathrm{x}} \quad 118$	4500	187	9000	77.4	
$d=317$	500	388	362	325	594	354	1250	231	$\mathrm{S}_{\mathrm{x}} 747$	5000	167	10000	68.4	
W310x45	2500	520	456	380	1770	477	1240	373	$M_{t} \quad 220$	3000	200	6000	98.2	
W12x30	2000	509	450	378	1770	458	1220	349	$\mathrm{V}_{\mathrm{r}} \quad 423$	3500	184	7000	79.3	
$b=166$	1500	489	440	375	1770	433	1200	316	$L_{u} 2310$	4000	167	8000	66.5	
$\mathrm{t}=11.2$	1000	417	383	336	1190	392	1160	272	$\mathrm{l}_{\mathrm{x}} \quad 99.2$	4500	150	9000	57.3	
$\mathrm{d}=313$	500	341	319	284	594	315	1080	206	$\mathrm{S}_{\mathrm{x}} 634$	5000	128	10000	50.4	
W310x39	2500	455	396	329	1530	419	1080	334	$M_{\text {r }} 189$	3000	170	6000	77.7	
W12x26	2000	446	392	327	1530	404	1070	313	$\mathrm{V}_{\mathrm{t}} \quad 368$	3500	155	7000	62.2	
$b=165$	1500	431	384	325	1530	383	1050	285	$L_{u} 2260$	4000	139	8000	51.8	
$\mathrm{t}=9.7$	1000	380	346	301	1190	349	1010	247	$\mathrm{I}_{\times} \quad 85.1$	4500	121	9000	44.3	
$\mathrm{d}=310$	500	305	285	252	594	284	951	187	$\mathrm{S}_{\mathrm{x}} \quad 549$	5000	103	10000	38.8	
W250x67	2500	673	593	489	2660	524	1650	383	$M_{\text {r }} \quad 280$	3500	275	6000	223	
W10x45	2000	626	559	469	2380	498	1620	353	$\mathrm{V}_{\text {t }} \quad 469$	4000	265	6500	212	
$\mathrm{b}=204$	1500	552	500	431	1780	461	1580	314	$L_{u} 3260$	4500	254	7000	202	
$t=15.7$	1000	475	439	389	1190	407	1520	265	$\mathrm{I}_{\mathrm{x}} \quad 104$	5000	244	7500	192	
$\mathrm{d}=257$	500	395	372	337	594	313	1390	198	$\mathrm{S}_{\mathrm{x}} 806$	5500	233	8000	180	

Units: $\mathrm{M}_{\mathrm{r}}-\mathrm{kN} \cdot \mathrm{m}, \mathrm{V}_{\mathrm{r}}-\mathrm{kN}, \mathrm{L}_{\mathrm{u}}-\mathrm{mm}, \mathrm{I}_{\mathrm{x}}-10^{6} \mathrm{~mm}^{4}, \mathrm{~S}_{\mathrm{x}}-10^{3} \mathrm{~mm}^{3}, \mathrm{~b}-\mathrm{mm}, \mathrm{t}-\mathrm{mm}, \mathrm{d}-\mathrm{mm}$
$\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$
Sections highlighted in yellow are commonly used sizes and are generally readily available.

COMPOSITE BEAMS Trial Selection Table
75 mm Deck with 90 mm Slab $\phi=0.90, \phi_{\mathrm{c}}=0.65$

ASTM A992
A572 Grade 50
$\mathrm{f}^{\prime}{ }_{\mathrm{c}}=25 \mathrm{MPa}$
$\gamma_{\mathrm{c}}=2350 \mathrm{~kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite					
		$\mathrm{M}_{\mathrm{rc}}(\mathrm{kN} \cdot \mathrm{~m})$ for \% shear connection			$\begin{array}{\|c\|} \hline Q_{r} \\ (\mathrm{kN}) \\ \hline 100 \% \\ \hline \end{array}$	$\begin{gathered} \mathrm{I}_{1} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{t}} \\ 10^{3} \\ \hline \mathrm{~mm}^{3} \end{gathered}$	$\begin{gathered} \mathrm{I}_{\text {ts }} \\ 10^{6} \\ \hline \mathrm{~mm}^{4} \end{gathered}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	40\%						mm	$\mathrm{kN} \cdot \mathrm{m}$	mm	$\mathrm{kN} \cdot \mathrm{m}$	
W250x58	2500	590	515	422		2300	458	1440	341	M ${ }_{\text {t }} \quad 239$	3500	232	6000	181
W10x39	2000	570	505	419	2300	437	1410	315	$V_{1} \quad 413$	4000	222	6500	171	
$\mathrm{b}=203$	1500	503	452	385	1780	407	1380	282	$L_{v} 3130$	4500	212	7000	161	
$\mathrm{t}=13.5$	1000	428	393	345	1190	362	1330	238	$\mathrm{I}_{\mathrm{x}} \quad 87.3$	5000	202	7500	148	
$\mathrm{d}=252$	500	350	328	295	594	281	1220	177	$\mathrm{S}_{\mathrm{x}} 693$	5500	192	8000	137	
W250x45	2500	482	417	340	1780	392	1150	303	$M_{\text {M }} \quad 187$	3000	167	5500	101	
W10x30	2000	470	411	338	1780	376	1130	282	$\mathrm{V}_{\mathrm{t}} \quad 414$	3500	155	6000	90.6	
$b=148$	1500	450	401	335	1780	353	1100	254	$\mathrm{L}_{0} 2170$	4000	142	6500	82.2	
$t=13$	1000	377	342	296	1190	318	1070	216	$\mathrm{I}_{\mathrm{x}} \quad 71.1$	4500	129	7000	75.2	
$d=266$	500	300	279	246	594	253	988	161	$\mathrm{S}_{\mathrm{x}} 534$	5000	114	7500	69.3	
W 250×39	2500	417	358	291	1530	341	992	268	M ${ }_{\text {t }} 159$	3000	140	5500	77.5	
W10x26	2000	408	354	289	1530	328	976	251	$\mathrm{V}_{\text {t }} \quad 354$	3500	128	6000	69.2	
$b=147$	1500	394	347	287	1530	309	955	227	$\mathrm{L}_{0} 2110$	4000	115	6500	62.5	
$\mathrm{t}=11.2$	1000	342	309	264	1190	281	925	195	$\mathrm{I}_{\mathrm{x}} \quad 60.1$	4500	102	7000	57.0	
$\mathrm{d}=262$	500	267	248	218	594	227	862	145	$\mathrm{S}_{\mathrm{x}} \quad 459$	5000	88.0	7500	52.4	
W250x33	2500	355	303	245	1290	291	842	233	$M_{\text {r }} \quad 132$	3000	112	5500	55.6	
W10x22	2000	349	300	244	1290	281	830	219	$V_{1} \quad 323$	3500	100	6000	49.4	
$b=146$	1500	338	295	242	1290	266	812	200	$\mathrm{L}_{0} 2020$	4000	88.4	6500	44.4	
$\mathrm{t}=9.1$	1000	310	277	233	1190	243	787	172	$\mathrm{I}_{\mathrm{x}} \quad 48.9$	4500	74.1	7000	40.3	
$\mathrm{d}=258$	500	236	218	189	594	199	737	129	$\mathrm{S}_{\mathrm{x}} \quad 379$	5000	63.6	7500	36.9	
W200x42	2500	400	338	266	1650	27	966	213	Mr $\mathrm{M}_{\mathbf{t}} 138$	3000	133	5500	99.6	
W8x28	2000	390	333	265	1650	267	948	198	V, 302	3500	126	6000	92.9	
$b=166$	1500	372	325	262	1650	250	925	178	$L_{u} 2610$	4000	120	6500	84.6	
$\mathrm{t}=11.8$	1000	311	277	232	1190	225	892	151	$\mathrm{I}_{\mathrm{x}} \quad 40.9$	4500	113	7000	77.5	
$\mathrm{d}=205$	500	235	217	190	594	178	826	110	$\mathrm{S}_{\times} \quad 399$	5000	106	7500	71.6	
W200x36	2500	346	291	228	1420	243	836	189	$M_{\text {r }} 118$	3000	112	5500	79.3	
W8x24	2000	339	287	227	1420	233	823	176	V 255	3500	105	6000	71.3	
$\mathrm{b}=165$	1500	326	281	225	1420	219	803	159	$\mathrm{L}_{0} 2510$	4000	99.0	6500	64.6	
$\mathrm{t}=10.2$	1000	285	252	208	1190	198	775	136	$\mathrm{I}_{\mathrm{x}} \quad 34.4$	4500	92.5	7000	59.0	
$d=201$	500	211	193	168	594	159	721	99.2	$\mathrm{S}_{\mathrm{x}} \quad 342$	5000	85.9	7500	54.4	
W200x31	2500	312	261	205	1240	226	746	178	$M_{\text {F }} 104$	2000	104	4500	65.2	
W8x21	2000	306	259	204	1240	217	734	167	V $\quad 275$	2500	96.7	5000	57.0	
$b=134$	1500	296	254	203	1240	205	717	152	$L_{\text {L }} 1980$	3000	89.3	5500	50.6	
$t=10.2$	1000	273	240	197	1190	187	693	131	$\mathrm{I}_{\mathrm{x}} \quad 31.4$	3500	81.7	6000	45.6	
$\mathrm{d}=210$	500	199	182	156	594	152	646	96.2	$\mathrm{S}_{\mathrm{x}} \quad 299$	4000	74.0	6500	41.5	
W200x27	2500	266	222	173	1050	194	635	155	$\begin{array}{ll}M_{r} & 86.6\end{array}$	2000	85.3	4500	47.5	
W8x18	2000	261	219	173	1050	187	626	146	V, 246	2500	78.7	5000	41.2	
$\mathrm{b}=133$	1500	254	216	171	1050	177	613	134	$L_{u} 1890$	3000	71.5	5500	36.4	
$\mathrm{t}=8.4$	1000	240	209	169	1050	162	592	116	$\mathrm{I}_{\mathrm{x}} \quad 25.8$	3500	64.1	6000	32.6	
$\mathrm{d}=207$	500	179	162	138	594	134	554	86.4	$\mathrm{S}_{\mathrm{x}} \quad 249$	4000	56.0	6500	29.6	

Units: $\mathrm{M}_{\mathrm{r}}-\mathrm{kN} \cdot \mathrm{m}, \mathrm{V}_{\mathrm{r}}-\mathrm{kN}, \mathrm{L}_{u}-\mathrm{mm}, \mathrm{I}_{\mathrm{x}}-10^{6} \mathrm{~mm}^{4}, \mathrm{~S}_{\mathrm{x}}-10^{3} \mathrm{~mm}^{3}, \mathrm{~b}-\mathrm{mm}, \mathrm{t}-\mathrm{mm}, \mathrm{d}-\mathrm{mm}$
$\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$
Sections highlighted in yellow are commonly used sizes and are generally readily available.

COMPOSITE BEAMS
Trial Selection Table
75 mm Deck with 85 mm Slab
$\phi=0.90, \phi_{\mathrm{c}}=0.65$

ASTM A992
A572 Grade 50
$\mathrm{f}^{\prime}{ }_{\mathrm{c}}=\mathbf{2 5} \mathrm{MPa}$ $\gamma_{\mathrm{c}}=1850 \mathrm{~kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite					
		$\mathrm{M}_{\mathrm{rc}}(\mathrm{kN} \cdot \mathrm{m})$ for \% shear connection			$\begin{array}{\|c} \hline Q_{r} \\ (\mathrm{kN}) \\ \hline 100 \% \\ \hline \end{array}$	$\begin{gathered} I_{t} \\ 10^{6} \\ \hline \mathrm{~mm}^{4} \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{t}} \\ 10^{3} \\ \mathrm{~mm}^{3} \end{gathered}$	$\begin{gathered} I_{\text {ts }} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	40\%						mm	$\mathrm{kN} \cdot \mathrm{m}$	mm	$\mathrm{kN} \cdot \mathrm{m}$	
W1000×249	7000	5730	5490	4990		7860	12000	13900	8890	M, 3510	4000	3440	14000	1
W40x167	5000	5430	5190	4640	5610	11000	13600	8040	V, 3220	6000	2780	16000	694	
$\mathrm{b}=300$	3000	4980	4660	4210	3370	9550	13000	6990	$L_{u} 3740$	8000	1940	18000	596	
	1000	4060	3890	3700	1120	6970	11600	5640	$\mathrm{I}_{\mathrm{x}} 4810$	10000	1360	20000	523	
$\mathrm{d}=980$									$\mathrm{S}_{\mathrm{x}} 9820$	12000	1030	22000	466	
W1000x222	7000	5180	4950	4480	7860	10700	12300	7930	M, 3040	4000	2940	14000	634	
W40x149	5000	4890	4670	4140	5610	9840	12000	7160	V, 3000	6000	2310	16000	527	
$\mathrm{b}=300$	3000	4470	4160	3720	3370	8530	11400	6180	$L_{u} 3590$	8000	1520	18000	451	
$t=21.1$	1000	3570	3400	3210	1120	6160	10200	4890	$\mathrm{I}_{\mathrm{x}} 4080$	10000	1050	20000	394	
$\mathrm{d}=970$									$\mathrm{S}_{\mathrm{x}} 8410$	12000	794	22000	350	
W920x238	7000	5220	4980	4570	7860	10300	12700	7660	M, 3170	4000	3140	14000	800	
W36x160	5000	4930	4720	4260	5610	9510	12400	6920	V, 3090	6000	2590	16000	668	
$b=305$	3000	4550	4270	3870	3370	8230	11800	6000	$L_{u} 3890$	8000	1870	18000	573	
$t=25.9$	1000	3730	3570	3400	1120	5980	10500	4800	Ix 4060	10000	1310	20000	502	
$\mathrm{d}=915$									$\mathrm{S}_{\mathrm{x}} 8870$	12000	996	22000	447	
W920x223	7000	4960	4720	4330	7860	9760	11900	7260	Mr 2960	4500	2800	12000	881	
W36x150	5000	4670	4470	4030	5610	9000	11600	6550	$V_{+} 2970$	5000	2670	14000	705	
$\mathrm{b}=304$	3000	4300	4040	3650	3370	7800	11100	5660	$L_{u} 3880$	6000	2380	16000	587	
$\mathrm{t}=23.9$	1000	3510	3360	3180	1120	5650	9890	4490	$\mathrm{I}_{\mathrm{x}} 3760$	8000	1680	18000	502	
d									$\mathrm{S}_{\mathrm{x}} 8260$	10000	1170	20000	439	
W920x201	7	4510	4290	3930	7860	8770	10600	6560	M, 2590	4500	2420	12000	705	
W36x135	5000	4230	4060	3640	5610	8110	10300	5910	$V_{t} 2710$	5000	2300	14000	560	
$b=304$	3000	3900	3650	3270	3370	7050	9910	5080	$L_{u} 3720$	6000	2030	16000	463	
$\mathrm{t}=20.1$	1000	3130	2980	2810	1120	5070	8800	3970	Ix 3250	8000	1360	18000	394	
03									$\mathrm{S}_{\mathrm{x}} 7190$	10000	940	20000	343	
W840x210	7000	4450	4220	3870	7860	8250	10600	6150	M 2620	4500	2460	12000	792	
W33x141	5000	4170	3980	3610	5610	7620	10400	5550	V $\mathrm{V}^{2} 670$	5000	2350	14000	639	
$\mathrm{b}=293$	3000	3840	3620	3260	3370	6610	9970	4780	$L_{u} 3770$	6000	2090	16000	535	
$\mathrm{t}=24.4$	1000	3130	2990	2830	1120	4770	8880	3760	$\mathrm{I}_{\mathrm{x}} 3110$	8000	1470	18000	461	
$\mathrm{d}=846$									$\mathrm{S}_{\mathrm{x}} 7340$	10000	1040	20000	404	
W840x193	7000	4120	3900	3570	7660	7590	9720	5690	M, 2370	4500	2200	12000	666	
W33x130	5000	3860	3690	3340	5610	7020	9510	5130	$\mathrm{V}, 2530$	5000	2090	14000	534	
$\mathrm{b}=292$	3000	3550	3350	3010	3370	6110	9120	4400	$L_{0} 3690$	6000	1850	16000	445	
$\mathrm{t}=21.7$	1000	2880	2740	2580	1120	4390	8110	3420	$\mathrm{I}_{\mathrm{x}} 2780$	8000	1260	18000	382	
$d=840$									$\mathrm{S}_{\mathrm{x}} 6630$	10000	877	20000	334	
W840x176	7000	3760	3540	3230	6960	6930	8800	5230	Mt 2110	4500	1950	12000	551	
W33x118	5000	3560	3390	3070	5610	6430	8610	4710	$\mathrm{V}, 2300$	5000	1840	14000	439	
$\mathrm{b}=292$	3000	3260	3080	2750	3370	5620	8260	4030	$L_{u} 3610$	6000	1610	16000	364	
$\mathrm{t}=18.8$	1000	2620	2480	2330	1120	4020	7350	3090	$\mathrm{I}_{\mathrm{x}} 2460$	8000	1060	18000	311	
$\mathrm{d}=835$									$\mathrm{S}_{\mathrm{x}} 5900$	10000	731	20000	271	

Units: $\mathrm{M}_{\mathrm{r}}-\mathrm{kN} \cdot \mathrm{m}, \mathrm{V}_{\mathrm{t}}-\mathrm{kN}, \mathrm{L}_{u}-\mathrm{mm}, \mathrm{I}_{\mathrm{x}}-10^{6} \mathrm{~mm}^{4}, \mathrm{~S}_{\mathrm{x}}-10^{3} \mathrm{~mm}^{3}, \mathrm{~b}-\mathrm{mm}, \mathrm{t}-\mathrm{mm}, \mathrm{d}-\mathrm{mm}$

$$
\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}
$$

This table may also be used with a concrete density of $2000 \mathrm{~kg} / \mathrm{m}^{3}$. Readily available sizes are shown in yellow.

COMPOSITE BEAMS
Trial Selection Table
75 mm Deck with 85 mm Slab
$\phi=0.90, \phi_{\mathrm{c}}=0.65$

ASTM A992 A572 Grade 50 $\mathrm{f}^{\prime}{ }_{\mathrm{c}}=\mathbf{2 5} \mathrm{MPa}$ $\gamma_{\mathrm{c}}=1850 \mathrm{~kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite				
		$\mathrm{M}_{\mathrm{rc}}(\mathrm{kN} \cdot \mathrm{~m})$ for \% shear connection							Steel section data	Unbraced condition			
					(kN)	10^{6}	10^{3}	10^{6}		mm	$\begin{gathered} \mathrm{M}_{\mathrm{r}}{ }^{2} \\ \mathrm{kN} \cdot \mathrm{~m} \end{gathered}$	mm	$\begin{gathered} \mathrm{M}_{\mathrm{r}}^{\prime} \\ \mathrm{kN} \cdot \mathrm{~m} \end{gathered}$
	mm	100\%	70\%	40\%	100\%	mm^{4}	mm^{3}	mm^{4}					
W760x185	5000	3450	3280	2980	5610	5	8480	4240	M, 2080	4000	1980	12000	576
W30×124	4000	3300	3150	2830	4490	54	8340	3950	V, 2340	5000	1780	14000	0
267	3000	3150	2980	2670	3370	5060	8130	3620	$L_{u} 3450$	6000	1550	16000	397
$t=23.6$	2000	2920	2740	2490	2240	4470	7810	3240	$\mathrm{I}_{\times} 2230$	8000	1040	18000	344
$\mathrm{d}=766$	1000	2550	2430	2280	1120	3610	7230	2780	S 5820	10000	743	20000	304
760×17	5000	3270	3100	2820	5610	5480	7950	4010	M 1930	4000	1830	12000	506
W30×116	4000	3130	2980	2680	4490	5180	7820	3740	V, 2250	5000	1630	14000	411
$=267$	3000	2980	2820	2520	3370	4780	7630	3420	$L_{u} 3410$	6000	1410	16000	346
21.6	2000	2760	2580	2340	2240	4230	7330	3050	$\mathrm{I}_{\mathrm{x}} 2060$	8000	924	18000	299
$\mathrm{d}=762$	1000	2400	2280	2130	1120	3410	6780	2600	$\mathrm{S}_{\mathrm{x}} 5400$	10000	657	20000	264
W760×16	5000	3060	2900	2630	5610	5090	7320	3740	M, 1760	4000	1650	12000	429
W30×108	4000	2920	2780	2500	4490	4820	7200	3480	V, 2140	5000	1460	14000	347
$=266$	3000	2770	2630	2340	3370	4460	7030	3180	$L_{u} \quad 3330$	6000	1250	16000	291
$t=19.3$	2000	2570	2400	2160	2240	3950	6760	2830	$\mathrm{I}_{\mathrm{x}} 1860$	8000	793	18000	251
$\mathrm{d}=758$	1000	2220	2100	1960	1120	3170	6250	2390	S 4900	10000	560	20000	220
W760×147	5000	2850	2690	2440	5610	4680	6680	3460	$M_{r} 1580$	4000	1470	12000	358
W30x99	4000	2710	2580	2310	4490	4440	6580	3220	$V, 2040$	5000	1290	14000	288
$\mathrm{b}=265$	3000	2570	2440	2160	3370	4120	6430	2940	$L_{u} 3260$	6000	1090	16000	241
$\mathrm{t}=$	2000	2380	2220	1980	2240	3650	6180	2600	$\mathrm{I}_{\mathrm{x}} 1660$	8000	671	18000	207
$\mathrm{d}=753$	1000	2050	1930	1780	1120	2930	5710	2180	$\mathrm{S}_{\mathrm{x}} 4410$	10000	470	20000	18
W760x134	5000	2610	2460	2220	5270	4320	6090	3220	Mr 1440	4000	1330	12000	308
W30x90	4000	2500	2370	2140	4490	4100	6000	3000	V, 1650	5000	1160	14000	246
$\mathrm{b}=264$	3000	2360	2250	2000	3370	3810	5870	2740	$L_{0} 3230$	6000	967	16000	205
$\mathrm{t}=15.5$	2000	2200	2050	1830	2240	3390	5650	2410	$\mathrm{I}_{\mathrm{x}} 1500$	8000	587	18000	175
$\mathrm{d}=750$	1000	1890	1770	1630	1120	2730	5230	2010	$\mathrm{S}_{\mathrm{x}} 4010$	10000	408	20000	153
W690x192	5000	3300	3130	2850	5610	5190	8240	3760	M 2010	4000	1910	12000	634
W27x129	4000	3150	3000	2720	4490	4890	8090	3500	V 2230	5000	1730	14000	525
$\mathrm{b}=254$	3000	3000	2850	2560	3370	4500	7890	3210	$L_{u} 3440$	6000	1540	16000	449
$t=27.9$	2000	2790	2620	2390	2240	3970	7570	2870	$\mathrm{I}_{\mathrm{x}} \quad 1980$	8000	1090	18000	392
$\mathrm{d}=702$	1000	2450	2340	2200	1120	3200	7000	2460	$\mathrm{S}_{\mathrm{x}} 5640$	10000	802	20000	349
W690x170	5000	2980	2820	2560	5610	4630	7280	3380	M, 1750	4000	1650	12000	497
W27x114	4000	2840	2700	2440	4490	4370	7160	3140	V, 2060	5000	1480	14000	408
$b=256$	3000	2690	2560	2290	3370	4040	6980	2870	$L_{u} 3380$	6000	1290	16000	347
$\mathrm{t}=23.6$	2000	2500	2350	2130	2240	3570	6710	2550	$\mathrm{I}_{\times} 1700$	8000	875	18000	302
$\mathrm{d}=693$	1000	2180	2070	1940	1120	2860	6200	2170	$\mathrm{S}_{\mathrm{x}} 4900$	10000	634	20000	268
W690x152	5000	2730	2570	2330	5610	4210	6540	3100	M 1550	4000	1460	12000	406
W27x102	4000	2590	2450	2220	4490	3990	6440	2890	V, 1850	5000	1290	14000	332
$\mathrm{b}=254$	3000	2440	2330	2090	3370	3690	6290	2640	$L_{0} 3330$	6000	1110	16000	281
$\mathrm{t}=21.1$	2000	2280	2140	1930	2240	3270	6060	2340	$\mathrm{I}_{\mathrm{x}} 1510$	8000	728	18000	244
$\mathrm{d}=688$	1000	1980	1870	1740	1120	2630	5610	1970	$\mathrm{S}_{\mathrm{x}} 4380$	10000	523	20000	216

Units: $M_{r}-k N \cdot m, V_{r}-k N, L_{u}-m m, I_{x}-10^{6} \mathrm{~mm}^{4}, S_{x}-10^{3} \mathrm{~mm}^{3}, b-m m, t-m m, d-m m$
$\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$

[^44]COMPOSITE BEAMS Trial Selection Table

75 mm Deck with 85 mm Slab $\phi=0.90, \phi_{\mathrm{c}}=0.65$

ASTM A992
A572 Grade 50 $\mathbf{f}^{\prime}{ }_{c}=25 \mathrm{MPa}$ $\gamma_{\mathrm{c}}=1850 \mathrm{~kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite					
		$\mathrm{M}_{\mathrm{rc}}(\mathrm{kN} \cdot \mathrm{~m})$ for \% shear connection			$\begin{array}{\|c\|} \hline Q_{r} \\ (\mathrm{kN}) \\ \hline 100 \% \\ \hline \end{array}$	$\begin{gathered} I_{t} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{t}} \\ 10^{3} \\ \hline \mathrm{~mm}^{3} \end{gathered}$	$\begin{gathered} \mathrm{I}_{\text {ts }} \\ 10^{6} \\ \hline \mathrm{~mm}^{4} \end{gathered}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	40\%						mm	$\mathrm{kN} \cdot \mathrm{m}$	mm	$\mathrm{kN} \cdot \mathrm{m}$	
W690x1	5000	40	2390	2170		5530	3890	6000	2890	M, 1410	4000	1320	10000	447
W27x94	40	2420	2280	2070	4490	3700	5910	2690	$\mathrm{V}_{\mathrm{t}} 1740$	5000	1160	12000	345	
$=254$	3000	2270	2160	1940	3370	3430	5780	2450	$L_{\nu} \quad 3270$	6000	987	14000	280	
$t=18.9$	2000	2110	1990	1780	2240	3050	5570	2170	$\mathrm{I}_{\mathrm{x}} 1360$	7000	778	16000	236	
$=684$	1000	1840	1730	1600	1120	2440	5160	1810	Sx 3980	8000	628	18000	204	
W690x125	5000	2290	2140	1930	4970	3510	5360	2620	M, 1250	4000	1140	10000	362	
W27x84	4000	2210	2080	1880	4490	3340	5280	2440	$V_{r} 1610$	5000	999	12000	277	
253	3000	2070	1970	1760	3370	3100	5170	2220	$L_{u} 3190$	6000	834	14000	223	
16.3	2000	1920	1810	1610	2240	2760	4980	1960	$\mathrm{I}_{\mathrm{x}} \quad 1180$	7000	640	16000	187	
678	1000	1660	1560	1430	1120	2	4610	1620	Sx 3500	8000	513	18000	161	
W610x17	5000	2780	2610	2390	5610	3970	6960	2890	M, 1660	4500	1660	10000	924	
W 24×117	4000	2640	2500	2290	4490	3750	6850	2690	V, 1770	5000	1610	12000	709	
$=325$	3000	2490	2380	2160	3370	3460	6690	2460	$L_{\nu} 4480$	6000	1490	14000	574	
21.6	2000	2330	2210	2020	2240	3060	6430	2190	$\mathrm{I}_{\mathrm{x}} 1470$	7000	1370	16000	482	
$\mathrm{d}=616$	1000	2060	1960	1850	1120	2	5960	1870	$\mathrm{S}_{\mathrm{x}} 4780$	8000	1230	18000	415	
W610x155	5000	2530	2370	2150	5610	3590	6200	2640	M, 1470	4500	1460	10000	762	
W 24×104	4000	2390	2260	2070	4490	3400	6110	2460	$V_{t} 1590$	5000	1410	12000	579	
$=324$	3000	2250	2140	1950	3370	3140	5980	2240	$L_{u} 4400$	6000	1300	14000	465	
$=19$	2000	2100	1990	1810	2240	2780	5760	1990	$\mathrm{I}_{\mathrm{x}} 1290$	7000	1180	16000	388	
$\mathrm{d}=611$	1000	1860	1760	1650	1120	2240	5340	1680	$\mathrm{S}_{\mathrm{x}} 4220$	8000	1050	18000	333	
W610x140	5000	2360	2210	1990	5540	3300	5570	2430	M $\mathrm{F}_{\mathrm{t}} 1290$	4000	1170	10000	422	
W24x94	4000	2230	2100	1900	4490	3130	5490	2260	V, 1660	5000	1030	12000	334	
$=230$	30	2090	1980	1780	3370	2900	5360	2060	$L_{u} 3070$	6000	874	14000	277	
$\mathrm{t}=22.2$	2000	1930	1820	1640	2240	2570	5160	1810	$\mathrm{I}_{\mathrm{x}} 1120$	7000	695	16000	237	
$\mathrm{d}=617$	1000	1680	1590	1470	1120	2050	4770	1510	Sx 3630	8000	573	18000	207	
W610x125	5000	2120	1970	1770	4950	2990	4980	2220	M, 1140	4000	1020	10000	342	
W24x84	4000	2040	1910	1730	4490	2840	4910	2070	V, 1490	5000	889	12000	269	
$=229$	3000	1900	1800	1620	3370	2640	4810	1880	$L_{0} 3020$	6000	733	14000	222	
$\mathrm{t}=19.6$	2000	1750	1660	1480	2240	2350	4630	1650	$\mathrm{I}_{\times} \quad 985$	7000	575	16000	189	
$\mathrm{d}=612$	1000	1530	1430	1320	1120	1880	4290	1360	Sx 3220	8000	470	18000	165	
W610x113	5000	1930	1790	1600	4490	2	4510	2050	M, 1020	4000	906	10000	282	
W 24×76	4000	1890	1770	1590	4490	2600	4450	1910	$V_{\text {r }} 1400$	5000	775	12000	220	
$\mathrm{b}=228$	3000	1760	1650	1490	3370	2420	4360	1740	$L_{u} 2950$	6000	617	14000	180	
$\mathrm{t}=17.3$	2000	1610	1520	1360	2240	2160	4210	1520	$\mathrm{I}_{\times} \quad 875$	7000	481	16000	153	
$\mathrm{d}=608$	1000	1400	1310	1200	1120	1730	3900	1240	$\mathrm{S}_{\mathrm{x}} 2880$	8000	391	18000	133	
W610x101	5000	1730	1600	1420	4020	2460	4030	1870	M $\mathrm{r}^{\text {c }} 900$	4000	787	10000	228	
W24x68	4000	1700	1580	1420	4020	2350	3980	1740	$V_{r} 1300$	5000	664	12000	176	
$\mathrm{b}=228$	3000	1610	1510	1360	3370	2200	3900	1580	$L_{u} 2890$	6000	512	14000	144	
$\mathrm{t}=14.9$	2000	1470	1390	1230	2240	1970	3770	1380	$\mathrm{I}_{\mathrm{x}} \quad 764$	7000	396	16000	121	
$d=603$	1000	1270	1190	1080	1120	1580	3500	1120	Sx 2530	8000	320	18000	105	

Units: $\mathrm{M}_{\mathrm{r}}-\mathrm{kN} \cdot \mathrm{m}, \mathrm{V}_{\mathrm{r}}-\mathrm{kN}, \mathrm{L}_{\mathrm{u}}-\mathrm{mm}, \mathrm{I}_{\mathrm{x}}-10^{6} \mathrm{~mm}^{4}, \mathrm{~S}_{\mathrm{x}}-10^{3} \mathrm{~mm}^{3}, \mathrm{~b}-\mathrm{mm}, \mathrm{t}-\mathrm{mm}, \mathrm{d}-\mathrm{mm}$

COMPOSITE BEAMS
Trial Selection Table
75 mm Deck with 85 mm Slab
$\phi=0.90, \phi_{\mathrm{c}}=0.65$

ASTM A992 A572 Grade 50 $\mathrm{f}^{\prime}{ }_{\mathrm{c}}=\mathbf{2 5} \mathrm{MPa}$ $\gamma_{\mathrm{c}}=1850 \mathrm{~kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite					
		$\mathrm{M}_{\mathrm{rc}}(\mathrm{kN} \cdot \mathrm{~m})$ for \% shear connection			$\begin{array}{\|c\|} \hline Q_{r} \\ (\mathrm{kN}) \\ \hline 100 \% \\ \hline \end{array}$	$\begin{gathered} \mathrm{I}_{\mathrm{t}} \\ 10^{6} \\ \hline \mathrm{~mm}^{4} \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{t}} \\ 10^{3} \\ \mathrm{~mm}^{3} \end{gathered}$	$\begin{gathered} I_{\text {ts }} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	40\%						m	$\mathrm{kN} \cdot \mathrm{m}$	n	m	
W610x92	4000	1560	1440	1270		3650	2130	3550	1580	9	3000	683	8000	183
W24x62	3000	1500	1400	1240	3370	1990	3480	1440	V, 1350	4000	540	10000	135	
179	2000	1360	1270	1110	2240	1790	3360	1250	$L_{u} 2180$	5000	376	12000	107	
$\mathrm{t}=15$	1000	1150	1070	955	1120	1430	3110	999	$\mathrm{I}_{\times} \quad 646$	6000	281	14000	88.9	
603	500	983	929	865	561	1130	2830	839	$\mathrm{S}_{\mathrm{x}} 2140$	7000	222	16000	76.1	
W610x82	4000	1390	1280	1120	3240	1910	3150	1440	$M_{t} 683$	3000	587	8000	145	
W24x55	3000	1360	1260	1120	3240	1790	3090	1310	V, 1170	4000	448	10000	106	
$b=178$	2000	1230	1160	1010	2240	1620	2990	1140	$L_{u} 2110$	5000	304	12000	83.4	
12.8	1000	1040	963	855	1120	1300	2780	902	$\mathrm{I}_{\mathrm{x}} \quad 560$	6000	225	14000	68.9	
$\mathrm{d}=599$	500	882	829	767	561	1030	2530	749	S 1870	7000	177	16000	58.7	
W530x13	4000	2030	1890	1690	4490	2560	4940	1830	M, 1120	3000	1110	8000	515	
W21x93	3000	1880	1770	1580	3370	2360	4820	1650	V $\mathrm{V}_{5} 1650$	4000	1000	10000	390	
$=214$	2000	1730	1620	1450	2240	2080	4630	1450	$L_{u} 2930$	5000	884	12000	314	
23.6	1000	1490	1400	1290	1120	1650	4250	1190	$\mathrm{I}_{\mathrm{x}} \quad 861$	6000	759	14000	263	
9	500	1320	1260	1200	561	1320	3880	1040	S 3140	7000	616	16000	227	
W530x12	4000	1850	1720	1540	4490	2320	4430	670	M $\mathrm{M}_{1} 997$	3000	984	8000	421	
W21x83	3000	1710	1610	1440	3370	2150	4330	1520	V, 1460	4000	879	10000	316	
$=212$	2000	1560	1470	1310	2240	1910	4160	1320	$L_{0} 2860$	5000	762	12000	253	
21.2	1000	1350	1270	1160	1120	1510	3840	1080	$\mathrm{I}_{\mathrm{x}} \quad 761$	6000	631	14000	211	
44	500	1190	1140	1080	561	1210	3500	932	$\mathrm{S}_{\mathrm{x}} 2800$	0	505	16000	182	
W530x10	40	1680	1550	1380	4310	209	3930	1530	$\begin{array}{ll}M_{r} & 879\end{array}$	000	862	8000	2	
W21x73	3000	1550	1450	1300	3370	1940	3850	1380	V 1280	4000	764	10000	254	
211	2000	1410	1330	1190	2240	1730	3720	1210	$L_{u} 2810$	5000	652	12000	202	
18.8	1000	1220	1140	1040	1120	1380	3440	977	1x 667	6000	520	14000	168	
$\mathrm{d}=539$	500	1070	1020	957	561	1100	3	834	$\mathrm{S}_{\mathrm{x}} 2480$	7000	413	16000	144	
W530×101	4000	1570	1450	1290	4010	1960	3670	1450	$\begin{array}{ll}M_{r} & 814\end{array}$	3000	79	8000	301	
W21x68	3000	1470	1370	1230	3370	1830	3600	1310	V 1200	4000	699	10000	222	
$b=210$	2000	1330	1260	1120	2240	1640	3470	1140	$L_{u} 2770$	5000	591	12000	176	
17.4	1000	1150	1080	975	1120	1310	3220	922	$\mathrm{I}_{\mathrm{x}} \quad 617$	6000	462	14000	146	
$\mathrm{d}=537$	500	1000	951	893	561	1040	2940	782	$\mathrm{S}_{\mathrm{x}} 2300$	7000	365	16000	125	
W530x92	4000	1430	1320	1170	3660	1800	3340	1340	$M_{\text {r }} \quad 733$	3000	711	8000	253	
W21x62	3000	1370	1280	1140	3370	1690	3280	1220	$V_{r} 1110$	4000	621	9000	214	
$\mathrm{b}=209$	2000	1230	1160	1030	2240	1510	3170	1060	$L_{u} 2720$	5000	516	10000	185	
$\mathrm{t}=15.6$	1000	1060	991	894	1120	1210	2950	849	$\mathrm{l}_{\mathrm{x}} \quad 552$	6000	393	12000	146	
$d=533$	500	917	869	812	561	960	2690	714	$\mathrm{S}_{\mathrm{x}} 2070$	7000	309	14000	120	
W530x82	4000	1280	1170	1030	3250	1610	2960	1210	$M_{\text {r }} 6640$	3000	616	8000	203	
W21x55	3000	1240	1150	1030	3250	1510	2910	1100	V, 1030	4000	531	9000	170	
$\mathrm{b}=209$	2000	1120	1050	933	2240	1370	2820	961	$L_{\text {L }} 2660$	5000	433	10000	147	
$t=13.3$	1000	959	893	798	1120	1100	2630	764	$\mathrm{I}_{\mathrm{x}} \quad 477$	6000	320	12000	115	
$d=528$	500	821	774	718	561	868	2400	635	$\mathrm{S}_{\mathrm{x}} 1810$	7000	249	14000	94.0	

Units: $M_{t}-k N \cdot m, V_{t}-k N, L_{u}-m m, I_{x}-10^{6} m^{4}, S_{x}-10^{3} m^{3}, b-m m, t-m m, d-m m$

COMPOSITE BEAMS
Trial Selection Table
75 mm Deck with 85 mm Slab
$\phi=0.90, \phi_{\mathrm{c}}=0.65$

ASTM A992
A572 Grade 50 $\mathrm{f}^{\prime}{ }_{\mathrm{c}}=\mathbf{2 5} \mathrm{MPa}$
$\gamma_{\mathrm{c}}=1850 \mathrm{~kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite					
		$\mathrm{M}_{\mathrm{rc}}(\mathrm{kN} \cdot \mathrm{m})$ for \% shear connection			$\begin{array}{\|c} Q_{r} \\ (\mathrm{kN}) \\ \hline 100 \% \end{array}$	$\begin{gathered} 1 \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{t}} \\ 10^{3} \\ \hline \mathrm{~mm}^{3} \end{gathered}$	$\begin{array}{\|c} \mathrm{I}_{\mathrm{ts}} \\ 10^{6} \\ \hline \mathrm{~mm}^{4} \\ \hline \end{array}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	40\%						m	$\mathrm{kN} \cdot \mathrm{m}$	m	m	
W530x74	4000	1170	1070	932		2960	1470	2670	1120	562	3000	74	8000	123
W21x50	3000	1140	1060	927	2960	1390	2620	1020	V, 1050	4000	357	9000	105	
$\mathrm{b}=166$	2000	1040	977	856	2240	1250	2540	881	L. 2040	5000	247	10000	91.7	
$\mathrm{t}=13.6$	1000	883	815	720	1120	1010	2360	694	$\mathrm{I}_{\mathrm{x}} \quad 411$	6000	186	12000	73.2	
$\mathrm{d}=529$	500	743	696	640	561	793	2150	568	$\mathrm{S}_{\mathrm{x}} 1550$	7000	148	14000	61.0	
W530x66	4000	1030	939	813	2600	1300	2340	1000	M, 484	3000	398	8000	94.9	
W21×44	3000	1010	929	810	2600	1230	2300	916	V, 927	4000	284	9000	80.6	
$\mathrm{b}=165$	2000	945	882	772	2240	1120	2230	796	Lu. 1980	5000	195	10000	70.0	
$\mathrm{t}=11.4$	1000	795	733	641	1120	913	2090	623	$\mathrm{I}_{\mathrm{x}} \quad 351$	6000	145	12000	55.5	
$\mathrm{d}=525$	500	663	617	562	561	716	1900	504	$\mathrm{S}_{\mathrm{x}} 1340$	7000	115	14000	46.0	
W460x158	4000	2000	1870	1680	4490	2310	5160	1630	M, 1170	4500	1150	9000	794	
W18×106	3000	1860	1750	1590	3370	2120	5030	1470	V, 1460	5000	1110	10000	696	
$\mathrm{b}=284$	2000	1700	1620	1470	2240	1860	4820	1290	L, 4200	6000	1040	11000	617	
$\mathrm{t}=23.9$	1000	1500	1420	1330	1120	1470	4430	1070	$\mathrm{I}_{x} 796$	7000	955	12000	555	
476	500	1350	1300	1250	561	1180	4050	941	Sx 3350	8000	875	14000	462	
W460x144	4000	1870	1740	1560	4490	2140	4750	1520	M, 1070	4500	1050	9000	693	
W18x97	3000	1730	1620	1470	3370	1980	4640	1380	V, 1320	5000	1010	10000	602	
$\mathrm{b}=283$	2000	1580	1500	1360	2240	1740	4460	1210	$L_{v} 4130$	6000	936	11000	533	
$\mathrm{t}=22.1$	1000	1390	1320	1230	1120	1380	4100	994	$\mathrm{I}_{x} 726$	7000	858	12000	478	
472	500	1250	1200	1150	561	1100	3760	868	$\mathrm{S}_{\mathrm{x}} 3080$	8000	779	14000	396	
W460×128	4000	1710	1580	410	4490	1940	4240	1390	$M_{t} 947$	4500	917	9000	566	
W18×86	3000	1570	1470	1330	3370	1800	4150	1260	Vf 1170	5000	884	10000	489	
$\mathrm{b}=282$	2000	1430	1360	1230	2240	1590	3990	1100	$L_{v} 4040$	6000	812	11000	431	
$\mathrm{t}=19.6$	1000	1260	1190	1100	1120	1260	3690	898	1x 637	7000	736	12000	38	
$d=467$	500	1120	1080	1020	561	1000	3380	776	Sx 2730	8000	658	14000	318	
W460x113	4000	1560	1440	1270	4470	1740	3750	1270	M 829	4500	796	9000	458	
W18x76	3000	1430	1330	1200	3370	1620	3680	1150	V 1020	5000	765	10000	394	
$\mathrm{b}=280$	2000	1280	1220	1100	2240	1440	3550	999	$L_{\sim} 3950$	6000	696	11000	345	
$\mathrm{t}=17.3$	1000	1130	1070	979	1120	1140	3290	809	$\mathrm{I}_{\times} 556$	7000	623	12000	307	
463	500	999	956	905	561	908	3020	692	Sx 2400	8000	545	14000	252	
W460x106	4000	1480	1360	1200	4180	1640	3460	1190	$M_{t} 742$	3000	719	8000	308	
W18x71	3000	1370	1270	1130	3370	1530	3390	1080	$V_{\text {t }} 1210$	4000	637	9000	266	
$\mathrm{b}=194$	2000	1230	1160	1030	2240	1360	3260	931	$L_{v} 2690$	5000	549	10000	235	
$\mathrm{t}=20.6$	1000	1050	985	893	1120	1070	3010	743	Ix 488	6000	450	11000	210	
$\mathrm{d}=469$	500	915	870	818	561	841	2730	626	Sx 2080	7000	366	12000	190	
W460x97	4000	1360	1240	1090	3820	1520	3180	1120	M $\mathrm{M}_{\mathrm{t}} 677$	3000	652	8000	264	
W18x65	3000	1280	1190	1050	3370	1420	3110	1010	$V_{\text {r }} 1090$	4000	574	9000	227	
$b=193$	2000	1140	1070	955	2240	1270	3000	874	Lu 2650	5000	488	10000	200	
$t=19$	1000	980	916	827	1120	1010	2780	694	Ix 445	6000	389	11000	178	
$d=466$	500	848	804	753	561	788	2530	581	Sx 1910	7000	314	12000	161	

Units: $\mathrm{M}_{\mathrm{r}}-\mathrm{kN}-\mathrm{m}, \mathrm{V}_{\mathrm{r}}-\mathrm{kN}, \mathrm{L}_{v}-\mathrm{mm}, \mathrm{I}_{\mathrm{x}}-10^{6} \mathrm{~mm}^{4}, \mathrm{~S}_{\mathrm{x}}-10^{3} \mathrm{~mm}^{3}, \mathrm{~b}-\mathrm{mm}, \mathrm{t}-\mathrm{mm}, \mathrm{d}-\mathrm{mm}$ $\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$

[^45]COMPOSITE BEAMS

Trial Selection Table
75 mm Deck with 85 mm Slab
$\phi=0.90, \phi_{\mathrm{c}}=0.65$

Steel section	b_{1}	Composite							Non-composite					
		$\mathrm{M}_{\mathrm{rc}}(\mathrm{kN} \cdot \mathrm{~m})$ for \% shear connection			$\begin{array}{\|c\|} \hline Q_{r} \\ (\mathrm{kN}) \\ \hline 100 \% \\ \hline \end{array}$	$\begin{gathered} \mathrm{I}_{\mathrm{t}} \\ 10^{6} \\ \hline \mathrm{~mm}^{4} \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{t}} \\ 10^{3} \\ \hline \mathrm{~mm}^{3} \end{gathered}$	$\begin{gathered} \mathrm{I}_{\text {ts }} \\ 10^{6} \\ \hline \mathrm{~mm}^{4} \end{gathered}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	40\%						mm	$\mathrm{kN} \cdot \mathrm{m}$	mm	$\mathrm{kN} \cdot \mathrm{m}$	
W460x89	3000	1210	1120	990		3370	1330	2890	952	4	3000	598	8000	231
W18x60	2000	1070	1010	897	2240	1190	2790	825	V, 996	4000	523	9000	198	
$\mathrm{b}=192$	1500	1000	943	839	1680	1090	2710	746	$L_{0} 2620$	5000	439	10000	174	
$\mathrm{t}=17.7$	1000	919	859	773	1120	949	2590	653	$\mathrm{I}_{\mathrm{x}} \quad 409$	6000	343	11000	155	
$d=463$	500	793	751	700	561	743	2360	543	S 1770	7000	276	12000	140	
W460x82	3000	1130	1040	915	3240	1230	2650	891	$\mathrm{M}_{\mathrm{t}} \quad 568$	3000	540	8000	195	
W18x55	2000	1000	938	835	2240	1110	2570	772	$\mathrm{V}_{\text {t }} \quad 933$	4000	466	9000	166	
$\mathrm{b}=191$	1500	933	879	779	1680	1020	2500	697	$L_{u} 2560$	5000	384	10000	146	
$t=16$	1000	854	798	715	1120	888	2390	608	$\mathrm{I}_{\times} \quad 370$	6000	292	11000	129	
$\mathrm{d}=460$	500	734	693	643	561	695	2180	501	$\mathrm{S}_{\mathrm{x}} 1610$	7000	234	12000	116	
W460x74	3000	1030	942	827	2930	1130	2410	827	M, 512	3000	484	8000	164	
W18x50	2000	932	867	772	2240	1020	2340	718	$V_{1} \quad 843$	4000	414	9000	140	
$b=190$	1500	861	811	719	1680	941	2280	648	$L_{u} 2530$	5000	332	10000	122	
$t=14.5$	1000	787	737	657	1120	824	2180	564	$\mathrm{I}_{\mathrm{x}} \quad 332$	6000	249	11000	108	
$d=457$	500	675	635	586	561	645	1990	461	$\mathrm{S}_{\mathrm{x}} 1460$	7000	198	12000	96.8	
W460x68	3000	963	876	765	2710	1060	2	778	$M_{r} 463$	3000	390	8000	112	
W18x46	2000	884	820	723	2240	959	2150	674	$\mathrm{V}_{\mathrm{r}} \quad 856$	4000	301	9000	96.7	
$b=154$	1500	814	763	670	1680	884	2100	607	$L_{u} 2010$	5000	213	10000	85.2	
$t=15.4$	1000	739	688	608	1120	775	2010	526	Ix 297	6000	164	11000	76.1	
$\mathrm{d}=459$	500	626	586	536	561	605	1830	425	$\mathrm{S}_{\mathrm{x}} 1.290$	7000	133	12000	68.9	
W460x60	3000	842	762	663	2350	935	1940	700	$M_{\text {r }} \quad 397$	3000	329	8000	86.6	
W18x40	2000	799	737	649	2240	854	1880	609	$V_{1} \quad 746$	4000	242	9000	74.3	
$b=153$	1500	731	682	600	1680	791	1840	549	$L_{u} 1970$	5000	169	10000	65.2	
$t=13.3$	1000	660	616	541	1120	698	1770	474	$\mathrm{I}_{\mathrm{x}} \quad 255$	6000	129	11000	58.1	
$\mathrm{d}=455$	500	558	520	472	561	547	1620	380	S 1120	7000	104	12000	52.4	
W460x52	3000	739	665	573	2060	819	1680	622	M $\mathrm{H} \quad 338$	3000	269	8000	63.6	
W18x35	2000	712	652	569	2060	752	1640	543	$V_{t} \quad 680$	4000	185	9000	54.3	
$b=152$	1500	660	612	536	1680	699	1600	489	$L_{u} 1890$	5000	128	10000	47.4	
$t=10.8$	1000	590	550	478	1120	620	1540	421	$\mathrm{l}_{\mathrm{x}} \quad 212$	6000	96.2	11000	42.0	
$\mathrm{d}=450$	500	494	457	411	561	487	1410	333	$\mathrm{S}_{\mathrm{x}} 942$	7000	76.7	12000	37.8	
W410x149	3000	1650	1540	1390	3370	1750	4460	1200	Mt 1010	4500	983	8000	760	
W16x100	2000	1500	1420	1280	2240	1530	4270	1050	$V_{\text {r }} 1320$	5000	952	9000	696	
$b=265$	1500	1420	1340	1220	1680	1390	4130	958	$L_{v} 4080$	5500	921	10000	621	
$t=25$	1000	1310	1240	1150	1120	1200	3910	857	$\mathrm{I}_{\mathrm{x}} 618$	6000	889	11000	554	
$\mathrm{d}=431$	500	1170	1130	1080	561	955	3560	745	S, 2870	7000	825	12000	501	
W410x132	3000	1500	1390	1250	3370	1580	3970	1090	$M_{t} \quad 885$	4500	853	8000	635	
W16x89	2000	1350	1270	1150	2240	1390	3810	950	V, 1160	5000	823	9000	565	
$b=263$	1500	1270	1200	1090	1680	1260	3690	865	$L_{\nu} \quad 3940$	5500	792	10000	495	
$t=22.2$	1000	1180	1110	1030	1120	1090	3500	769	$\mathrm{I}_{\mathrm{x}} \quad 538$	6000	761	11000	440	
$\mathrm{d}=425$	500	1050	1010	957	561	862	3190	661	$\mathrm{S}_{\mathrm{x}} 2530$	7000	698	12000	397	

Units: $M_{r}-k N \cdot m, V_{r}-k N, L_{u}-m m, I_{x}-10^{6} \mathrm{~mm}^{4}, \mathrm{~S}_{\mathrm{x}}-10^{3} \mathrm{~mm}^{3}, \mathrm{~b}-\mathrm{mm}, \mathrm{t}-\mathrm{mm}, \mathrm{d}-\mathrm{mm}$
$\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$
This table may also be used with a concrete density of $2000 \mathrm{~kg} / \mathrm{m}^{3}$
Readily available sizes are shown in yellow.

COMPOSITE BEAMS
Trial Selection Table
75 mm Deck with 85 mm Slab
$\phi=0.90, \phi_{\mathrm{c}}=0.65$

ASTM A992
A572 Grade 50
$\mathbf{f}^{\prime}{ }_{\mathrm{c}}=\mathbf{2 5} \mathrm{MPa}$
$\gamma_{\mathrm{c}}=1850 \mathrm{~kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite					
		$\mathrm{M}_{\mathrm{rc}}(\mathrm{kN} \cdot \mathrm{~m})$ for \% shear connection			$\begin{gathered} Q_{r} \\ (\mathrm{kN}) \\ \hline 100 \% \end{gathered}$	$\begin{gathered} \mathrm{I}_{4} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{t}} \\ 10^{3} \\ \mathrm{~mm}^{3} \end{gathered}$	$\begin{gathered} \mathrm{I}_{\text {ts }} \\ 10^{6} \\ \hline \mathrm{~mm}^{4} \end{gathered}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	40\%						m	$\mathrm{kN} \cdot \mathrm{m}$	mm	$\mathrm{kN} \cdot \mathrm{m}$	
W410x11	3000	1340	1240	1110		3370	1410	3470	984	M	4500	726	8000	513
W16x77	2000	1200	1130	1020	2240	1250	3340	853	$\mathrm{V}_{\mathrm{t}} \quad 998$	5000	698	9000	438	
$=261$	1500	1120	1070	966	1680	1130	3240	774	$L_{u} 3810$	5500	668	10000	382	
$\mathrm{t}=19.3$	1000	1040	985	904	1120	981	3090	685	$\mathrm{I}_{\mathrm{x}} \quad 461$	6000	638	11000	338	
$d=420$	500	922	882	834	561	772	2810	581	S 2200	7000	576	12000	304	
W410x100	3000	1210	1120	989	3370	1250	3040	889	$M_{r} 661$	4500	623	8000	411	
W16x67	2000	1070	1000	910	2240	1120	2940	770	$\mathrm{V}_{\mathrm{t}} \quad 850$	5000	596	9000	348	
$=260$	1500	999	947	858	1680	1020	2860	698	$L_{u} 3730$	5500	568	10000	302	
$\mathrm{t}=16.9$	1000	924	875	799	1120	886	2730	614	$\mathrm{I}_{\mathrm{x}} 398$	6000	539	11000	266	
$\mathrm{d}=415$	500	815	778	731	561	696	2490	515	S $\mathrm{S}_{\mathrm{x}} 1920$	7000	479	12000	238	
W410x85	3000	1100	1000	875	3360	1090	257	781	$M_{r} \quad 534$	3000	507	8000	205	
W16x57	2000	959	891	790	2240	979	2480	673	V, 931	4000	443	9000	177	
$=181$	1500	886	832	736	1680	895	2410	606	$L_{u} 2530$	5000	375	10000	157	
=18.2	1000	808	754	675	1120	778	2300	526	$\mathrm{I}_{\mathrm{x}} \quad 315$	6000	297	11000	140	
417	500	692	654	606	561	603	2080	431	$\mathrm{S}_{\mathrm{x}} 1510$	7000	242	12000	127	
W410x74	3000	975	88	770	2960	98	228	712	$M_{r} \quad 469$	3000	440	8000	163	
W16x50	2000	873	808	715	2240	885	2210	615	$\mathrm{V}_{\mathrm{t}} \quad 821$	4000	379	9000	140	
$\mathrm{b}=180$	1500	802	751	665	1680	812	2150	553	$L_{u} 2470$	5000	312	10000	123	
$t=16$	1000	728	681	606	1120	709	2050	479	$\mathrm{I}_{\mathrm{x}} \quad 275$	6000	239	11000	110	
413	500	622	585	540	561	551	1870	388	$\mathrm{S}_{\mathrm{x}} 1330$	7000	194	12000	99.7	
W410x67	3000	884	79	692	2670	89	2060	658	M $\mathrm{M}_{\mathrm{r}} 422$	3000	392	8000	135	
W16x45	2000	810	746	659	2240	813	2000	570	$\mathrm{V}_{\mathrm{t}} 739$	4000	333	9000	116	
$b=179$	1500	741	691	612	1680	748	1950	512	$L_{u} 2420$	5000	264	10000	102	
$t=14.4$	1000	668	627	556	1120	656	1870	443	$\mathrm{I}_{\mathrm{x}} \quad 245$	6000	201	11000	90.4	
$\mathrm{d}=410$	500	571	535	490	561	510	1700	356	Sx 1200	7000	161	12000	81.6	
W410x60	3000	786	706	609	2350	807	1830	602	$M_{r} \quad 369$	3000	341	8000	109	
W16x40	2000	743	681	598	2240	736	1780	523	$\mathrm{V}_{\mathrm{r}} \quad 642$	4000	286	9000	93.1	
$\mathrm{b}=178$	1500	675	626	555	1680	681	1740	471	$\mathrm{L}_{u} 2390$	5000	218	10000	81.3	
12.8	1000	604	568	503	1120	600	1670	406	$\mathrm{I}_{\times} \quad 216$	6000	165	11000	72.1	
$\mathrm{d}=407$	500	516	483	440	561	469	1530	324	S $\mathrm{S}_{\mathrm{x}} 1060$	7000	131	12000	64.9	
W410x54	3000	707	633	544	2110	725	1630	547	$M_{r} 326$	3000	295	8000	86.0	
W16x36	2000	679	619	540	2110	664	1590	476	$\mathrm{V}_{\mathrm{r}} \quad 619$	4000	241	9000	73.1	
$\mathrm{b}=177$	1500	623	575	507	1680	617	1550	429	$\mathrm{L}_{\mathrm{u}} 23310$	5000	176	10000	63.5	
$\mathrm{t}=10.9$	1000	553	518	455	1120	546	1490	369	$\mathrm{I}_{\mathrm{x}} \quad 186$	6000	132	11000	56.2	
$d=403$	500	468	435	393	561	427	1370	291	$\mathrm{S}_{\mathrm{x}} 923$	7000	104	12000	50.4	
W410x46	3000	619	551	470	1830	639	1410	491	$\begin{array}{lll}M_{r} & 274\end{array}$	2000	265	7000	61.7	
W16x31	2000	597	540	467	1830	589	1380	429	$\mathrm{V}_{\mathrm{t}} 578$	3000	210	8000	51.8	
$b=140$	1500	566	519	453	1680	550	1350	386	$L_{u} \quad 1790$	4000	142	9000	44.6	
$\mathrm{t}=11.2$	1000	497	464	404	1120	489	1300	332	$\mathrm{I}_{\mathrm{x}} \quad 156$	5000	99.9	10000	39.2	
$d=403$	500	416	384	342	561	385	1190	259	$\mathrm{S}_{\mathrm{x}} \quad 772$	6000	76.4	11000	35.0	

Units: $M_{r}-k N \cdot m, V_{r}-k N, L_{u}-m m, I_{x}-10^{6} \mathrm{~mm}^{4}, S_{x}-10^{3} \mathrm{~mm}^{3}, \mathrm{~b}-\mathrm{mm}, \mathrm{t}-\mathrm{mm}, \mathrm{d}-\mathrm{mm}$
$F_{y}=345 \mathrm{MPa}$
This table may also be used with a concrete density of $2000 \mathrm{~kg} / \mathrm{m}^{3}$. Readily available sizes are shown in yellow.

Trial Selection Table
75 mm Deck with 85 mm Slab
$\phi=0.90, \phi_{\mathrm{c}}=0.65$

ASTM A992
A572 Grade 50
$\mathrm{f}^{\prime}{ }_{\mathrm{c}}=25 \mathrm{MPa}$
$\gamma_{\mathrm{c}}=1850 \mathrm{~kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite					
		$M_{t c}(\mathrm{kN} \cdot \mathrm{m})$ for \% shear connection			$\begin{array}{\|c\|} \hline Q_{r} \\ (\mathrm{kN}) \\ \hline 100 \% \\ \hline \end{array}$	$\begin{gathered} \mathrm{I}_{1} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	$\begin{gathered} S_{t} \\ 10^{3} \\ \mathrm{~mm}^{3} \end{gathered}$	$\begin{gathered} \mathrm{I}_{\mathrm{ts}} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	40\%						mm	$\mathrm{kN} \cdot \mathrm{m}$	mm	kN.m	
W410x39	300	527	467	395		1550	546	1200	427	M $\mathrm{V}_{\text {t }} 2227$	2000	216	7000	44.
W16x26	2000	512	459	393	1550	507	1170	376	$\mathrm{V}_{\mathrm{t}} \quad 480$	3000	166	8000	36.5	
$=140$	1500	496	452	390	1550	475	1140	339	$L_{v} 1730$	4000	105	9000	31.2	
$\mathrm{t}=8.8$	1000	440	408	353	1120	426	1100	291	$\mathrm{l}_{\mathrm{x}} \quad 126$	5000	73.0	10000	27.3	
$\mathrm{d}=399$	500	363	334	293	561	338	1020	224	$\mathrm{S}_{\mathrm{x}} \quad 634$	6000	55.1	11000	24.2	
W360x79	3000	932	841	722	3130	335	2210	596	M $\mathrm{M}_{\text {t }} 444$	3500	425	7000	267	
W14x53	2000	815	750	663	2240	749	2140	512	$\mathrm{V}_{\mathrm{t}} \quad 682$	4000	404	8000	225	
$\mathrm{b}=205$	1500	744	693	619	1680	684	2080	459	Lu 3010	4500	383	9000	194	
$t=16.8$	1000	671	632	566	1120	594	1980	396	$\mathrm{I}_{\times} \quad 226$	5000	361	10000	171	
$d=354$	500	579	547	505	561	458	1800	320	Sx 1280	6000	317	11000	153	
W360x72	3000	846	759	648	2830	761	2000	551	M $\mathrm{M}_{\text {t }} \quad 397$	3500	377	0	222	
W14×48	2000	757	693	608	2240	686	1940	474	$\mathrm{V}_{\mathrm{t}} \quad 617$	4000	357	8000	186	
$\mathrm{b}=204$	1500	687	637	567	1680	629	1890	425	Lu 2940	4500	336	9000	160	
$\mathrm{t}=15.1$	1000	615	579	517	1120	549	1810	366	$\mathrm{I}_{\mathrm{x}} \quad 201$	5000	315	10000	141	
350	500	529	498	457	561	423	1640	293	Sx 1150	6000	272	11000	126	
W360x64	3000	762	680	578	2530	691	1800	507	M ${ }_{\text {t }} \quad 354$	3500	332	000	183	
W14x43	2000	702	639	556	2240	626	1740	438	$\mathrm{V}_{\mathrm{t}} \quad 548$	4000	313	8000	153	
$\mathrm{b}=203$	1500	633	585	51	1680	77	1700	392	$\mathrm{L}_{\mathrm{u}} 2870$	4500	293	9000	131	
$\mathrm{t}=13.5$	1000	562	529	471	1120	505	1630	337	$\mathrm{I}_{\mathrm{x}} 178$	5000	273	10000	115	
$\mathrm{d}=347$	500	482	453	413	561	391	1490	268	$\mathrm{S}_{\mathrm{x}} 1030$	6000	228	11000	102	
W360x57	3000	696	619	526	2240	648	1620	482	$\begin{array}{lll}M_{t} & 314\end{array}$	300	289	0	119	
W14x38	2000	664	603	521	2240	591	1570	417	$\mathrm{V}_{\mathrm{t}} \quad 580$	3500	267	8000	99.7	
$\mathrm{b}=172$	15	597	549	483	1680	546	1530	374	$L_{u} 2360$	4000	244	9000	85.9	
$\mathrm{t}=13.1$	1000	527	493	435	1.120	481	1470	320	$\mathrm{I}_{\mathrm{x}} \quad 160$	5000	192	10000	75.6	
$d=358$	500	446	417	377	561	373	1340	252	$\mathrm{S}_{\mathrm{x}} \quad 896$	6000	147	11000	67.	
W360x51	3000	625	553	68	2000	585	1450	442	Mr 277	3000	25	000	96.9	
W14x34	2000	599	540	464	2000	537	1410	384	$\mathrm{V}_{1} \quad 524$	3500	232	8000	80.9	
$\mathrm{b}=171$	1500	552	505	442	1680	498	1380	345	$L_{\text {L }} 2320$	4000	210	9000	69.4	
$\mathrm{t}=11.6$	1000	483	450	397	1120	441	1320	295	$\mathrm{I}_{\mathrm{x}} \quad 141$	5000	159	10000	60.8	
$\mathrm{d}=355$	500	407	379	341	561	344	1210	230	Sx 796	6000	121	11000	54.1	
W360x45	3000	558	492	415	1780	525	1290	402	$\mathrm{M}_{\mathrm{t}} \quad 242$	3000	217	7000	76.4	
W14x30	2000	538	482	412	1780	483	1250	351	$\mathrm{V}_{\mathrm{t}} \quad 498$	3500	197	8000	63.3	
$\mathrm{b}=171$	1500	511	465	403	1680	451	1230	315	L. 2260	4000	176	9000	54.0	
$\mathrm{t}=9.8$	1000	443	411	360	1120	401	1180	270	$\mathrm{l}_{\mathrm{x}} 122$	5000	128	10000	47.	
$\mathrm{d}=352$	500	36	342	30	561	314	109	209	$\mathrm{S}_{\mathrm{x}} 691$	6000	96.0	1100	41.8	
W360x39	3000	490	430	361	1550	465	1120	361	M, 206	2000	193	6000	54.	
W14x26	2000	475	423	359	1550	430	1090	317	$\mathrm{V}_{t} \quad 470$	2500	172	7000	44.2	
$\mathrm{b}=128$	1500	460	415	356	1550	403	1070	285	L, 1660	3000	148	8000	37.	
$\mathrm{t}=10.7$	1000	404	372	322	1120	360	1030	244	$\mathrm{I}_{\mathrm{x}} \quad 102$	4000	97.0	9000	32.	
$\mathrm{d}=353$	500	331	305	268	561	284	949	187	$\mathrm{S}_{\mathrm{x}} \quad 580$	5000	69.7	100	28.7	

Units: $\mathrm{M}_{\mathrm{r}}-\mathrm{kN} \cdot \mathrm{m}, \mathrm{V}_{\mathrm{t}}-\mathrm{kN}, \mathrm{L}_{\mathrm{u}}-\mathrm{mm}, \mathrm{I}_{\mathrm{x}}-10^{6} \mathrm{~mm}^{4}, \mathrm{~S}_{\mathrm{x}}-10^{3} \mathrm{~mm}^{3}, \mathrm{~b}-\mathrm{mm}, \mathrm{t}-\mathrm{mm}, \mathrm{d}-\mathrm{mm} \quad \mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$ This table may also be used with a concrete density of $2000 \mathrm{~kg} / \mathrm{m}^{3}$. Readily available sizes are shown in yellow.

COMPOSITE BEAMS
Trial Selection Table
75 mm Deck with 85 mm Slab
$\phi=0.90, \phi_{\mathrm{c}}=0.65$

ASTM A992 A572 Grade 50 $\mathrm{f}^{\prime}{ }_{\mathrm{c}}=\mathbf{2 5} \mathrm{MPa}$ $\gamma_{\mathrm{c}}=1850 \mathrm{~kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite					
		$\mathrm{M}_{\mathrm{rc}}(\mathrm{kN} \cdot \mathrm{~m})$ for \% shear connection			$\begin{gathered} Q_{r} \\ (\mathrm{kN}) \\ \hline 100 \% \end{gathered}$	$\begin{gathered} I_{1} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{t}} \\ 10^{3} \\ \mathrm{~mm}^{3} \end{gathered}$	$\begin{gathered} \mathrm{I}_{\text {ts }} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	40\%						mm	$\mathrm{kN} \cdot \mathrm{m}$	mm	$\mathrm{kN} \cdot \mathrm{m}$	
W36	2500	408	358	299		1290	382	928	297	68	2000	155	6000	38.0
W14×22	2000	401	354	298	1290	367	915	276	V, 396	2500	135	7000	30.8	
$b=127$	1500	391	349	297	1290	345	897	250	$L_{u} 1600$	3000	113	8000	25.8	
$\mathrm{t}=8.5$	1000	358	327	282	1120	312	868	214	$\mathrm{I}_{\times} \quad 82.6$	4000	70.2	9000	22.3	
$\mathrm{d}=349$	500	288	265	230	561	249	805	163	$\mathrm{S}_{\times} 473$	5000	49.6	10000	19.6	
W310x74	2500	783	706	601	2810	634	1900	441	$M_{t} \quad 366$	3500	354	6000	274	
W12x50	2000	716	651	566	2240	595	1860	404	$V_{\text {r }} \quad 597$	4000	339	7000	240	
$\mathrm{b}=205$	1500	646	595	527	1680	544	1810	360	$L_{u} 3100$	4500	323	8000	204	
$t=16.3$	1000	573	538	481	1120	471	1730	308	$\mathrm{I}_{x} 164$	5000	307	9000	177	
$\mathrm{d}=310$	500	491	462	425	561	359	1560	244	S $\mathrm{S}^{1} 060$	5500	291	10000	156	
W310x67	2500	717	642	543	2620	575	1710	405	M ${ }_{\text {r }} \quad 326$	3500	312	6000	234	
W12x45	2000	665	602	518	2240	542	1680	372	$\mathrm{V}_{r} \quad 533$	4000	297	7000	198	
$\mathrm{b}=204$	1500	596	547	482	1680	497	1630	332	$L_{u} 3020$	4500	282	8000	167	
$\mathrm{t}=14.6$	1000	524	490	437	1120	432	1560	283	$\mathrm{I}_{\mathrm{x}} \quad 144$	5000	266	9000	144	
$d=306$	500	446	420	383	561	330	1410	222	$\mathrm{S}_{\mathrm{x}} 942$	5500	250	10000	127	
W310x60	2500	6	5	483	2340	523	1530	374	$M_{r} \quad 290$	3500	275	6000	199	
W12x40	2000	618	557	475	2240	494	1510	344	V, 466	4000	261	7000	163	
$\mathrm{b}=203$	1500	550	503	440	1680	455	1470	307	$L_{v} 2960$	4500	246	8000	137	
$t=13.1$	1000	480	447	398	1120	398	1410	262	I. 128	5000	231	9000	118	
$\mathrm{d}=303$	500	406	382	347	561	306	1280	204	$\mathrm{S}_{\mathrm{x}} 842$	5500	215	10000	104	
W310x52	2500	59	526	443	2070	499	1390	363	Mr 260	3000	240	6000	130	
W12x35	2000	578	518	440	2070	473	1360	334	$\mathrm{V}_{\text {r }} \quad 494$	3500	223	7000	106	
$\mathrm{b}=167$	1500	525	478	415	1680	438	1330	299	$L_{u} 2380$	4000	206	8000	89.4	
$t=13.2$	1000	456	422	373	1120	386	1280	254	$\mathrm{I}_{\mathrm{x}} \quad 118$	4500	187	9000	77.4	
$\mathrm{d}=317$	500	381	356	321	561	298	1170	197	$\mathrm{S}_{\mathrm{x}} \quad 747$	5000	167	10000	68.4	
W310x45	2500	512	450	376	1770	434	1190	323	Mt 220	3000	200	6000	98.2	
W12x30	2000	500	444	374	1770	414	1170	298	$V_{r} \quad 423$	3500	184	7000	79.3	
$b=166$	1500	474	428	367	1680	385	1150	267	$L_{u} 2310$	4000	167	8000	66.5	
$t=11.2$	1000	406	374	329	1120	342	1100	228	$\mathrm{I}_{\mathrm{x}} \quad 99.2$	4500	150	9000	57.3	
$\mathrm{d}=313$	500	335	313	279	561	266	1020	175	$\mathrm{S}_{\mathrm{x}} 634$	5000	128	10000	50.4	
W310x39	2500	447	391	326	1530	383	1040	290	$M_{\text {r }} \quad 189$	3000	170	6000	77.7	
W12x26	2000	438	386	324	1530	366	1020	269	V, 368	3500	155	7000	62.2	
$b=165$	1500	423	379	322	1530	343	1000	242	$L_{u} 2260$	4000	139	8000	51.8	
$\mathrm{t}=9.7$	1000	369	337	295	1120	307	969	207	$\mathrm{I}_{\mathrm{x}} 85.1$	4500	121	9000	44.3	
$\mathrm{d}=310$	500	299	280	248	561	242	896	158	$\mathrm{S}_{\times} \quad 549$	5000	103	10000	38.8	
W250x67	2500	659	584	484	2660	465	1580	322	$M_{t} \quad 280$	3500	275	6000	223	
W10x45	2000	604	541	457	2240	437	1550	294	$V_{\text {r }} \quad 469$	4000	265	6500	212	
$\mathrm{b}=204$	1500	535	486	422	1680	399	1500	260	$L_{\text {L }} 3260$	4500	254	7000	202	
$t=15.7$	1000	464	430	382	1120	344	1430	219	$\mathrm{I}_{\mathrm{x}} \quad 104$	5000	244	7500	192	
$\mathrm{d}=257$	500	389	366	333	561	259	1290	169	$\mathrm{S}_{\mathrm{x}} 806$	5500	233	8000	180	

Units: $\mathrm{M}_{\mathrm{r}}-\mathrm{kN} \cdot \mathrm{m}, \mathrm{V}_{\mathrm{t}}-\mathrm{kN}, \mathrm{L}_{u}-\mathrm{mm}, \mathrm{I}_{\mathrm{x}}-10^{6} \mathrm{~mm}^{4}, \mathrm{~S}_{\mathrm{x}}-10^{3} \mathrm{~mm}^{3}, \mathrm{~b}-\mathrm{mm}, \mathrm{t}-\mathrm{mm}, \mathrm{d}-\mathrm{mm} \quad \mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$ This table may also be used with a concrete density of $2000 \mathrm{~kg} / \mathrm{m}^{3}$. Readily available sizes are shown in yellow.

COMPOSITE BEAMS
Trial Selection Table
75 mm Deck with 85 mm Slab
$\phi=0.90, \phi_{\mathrm{c}}=0.65$

ASTM A992
A572 Grade 50
$\mathbf{f}^{\prime}{ }_{\mathrm{c}}=\mathbf{2 5} \mathrm{MPa}$
$\gamma_{\mathrm{c}}=1850 \mathrm{~kg} / \mathrm{m}^{3}$

Steel section	b_{1}	Composite							Non-composite					
		$\mathrm{M}_{\mathrm{rc}}(\mathrm{kN} \cdot \mathrm{m})$ for \% shear connection			$\begin{gathered} Q_{r} Q_{r} \\ (\mathrm{kN}) \\ \hline 100 \% \end{gathered}$	$\begin{gathered} I_{1} \\ 10^{6} \\ \mathrm{~mm}^{4} \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{t}} \\ 10^{3} \\ \mathrm{~mm}^{3} \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \mathrm{I}_{\mathrm{ts}} \\ 10^{6} \\ \hline \mathrm{~mm}^{4} \\ \hline \end{array}$	Steel section data	Unbraced condition				
	mm	100\%	70\%	40\%						m	$\mathrm{kN} \cdot \mathrm{m}$	mm	$\mathrm{kN} \cdot \mathrm{m}$	
W250x58	2500	578	507	417		2300	409	1370	288	Mr 239	3500	232	6000	181
W10x39	2000	554	493	411	2240	386	1350	264	$\mathrm{V}_{5} \quad 413$	4000	222	6500	171	
$\mathrm{b}=203$	1500	487	439	376	1680	354	1310	234	$L_{4} 3130$	4500	212	7000	161	
$\mathrm{t}=13.5$	1000	417	383	339	1120	308	1250	197	$\mathrm{I}_{\mathrm{x}} 87.3$	5000	202	7500	148	
$\mathrm{d}=252$	500	344	323	291	561	233	1130	150	$\mathrm{S}_{\mathrm{x}} \quad 693$	5500	192	8000	137	
W250x45	2500	473	410	336	1780	354	1100	259	M $\mathrm{V}_{\mathrm{t}} 187$	3000	167	5500	101	
W10x30	2000	461	404	334	1780	336	1080	238	$\mathrm{V}_{\mathrm{r}} \quad 414$	3500	155	6000	90.6	
$\mathrm{b}=148$	1500	434	388	326	1680	312	1050	212	$L_{\text {L }} 2170$	4000	142	6500	82.2	
$\mathrm{t}=13$	1000	366	333	289	1120	275	1010	179	$\mathrm{I}_{\mathrm{x}} \quad 71,1$	4500	129	7000	75.2	
$\mathrm{d}=266$	500	294	273	242	561	212	922	134	$\mathrm{S}_{\mathrm{x}} \quad 534$	5000	114	7500	69.3	
W250x39	2500	409	353	288	1530	309	949	231	M $M_{\text {r }} 159$	3000	140	5500	77,5	
W10x26	2000	401	349	286	1530	295	934	214	$\mathrm{V}_{\mathrm{r}} \quad 354$	3500	128	6000	69.2	
$\mathrm{b}=147$	1500	386	341	284	1530	275	913	191	$L_{u} 2110$	4000	115	6500	62.5	
$\mathrm{t}=11.2$	1000	331	300	258	1120	245	879	162	$\mathrm{I}_{\mathrm{x}} 60.1$	4500	102	7000	57.0	
$\mathrm{d}=262$	500	261	243	214	561	190	808	121	$\mathrm{S}_{\mathrm{x}} \quad 459$	5000	88.0	7500	52.4	
W250x33	2500	349	299	242	1290	265	806	202	$\begin{array}{lll}\text { M } & 132\end{array}$	3000	112	5500	55.6	
W10x22	2000	342	296	241	1290	254	793	188	$\mathrm{V}_{1} \quad 323$	3500	100	6000	49.4	
$\mathrm{b}=146$	1500	332	290	240	1290	238	776	169	$L_{\text {L }} 2020$	4000	88.4	6500	44.4	
$t=9.1$	1000	299	268	227	1120	213	749	143	$\mathrm{I}_{\mathrm{x}} \quad 48.9$	4500	74.1	7000	40.3	
$d=258$	500	230	213	185	561	168	692	107	$\mathrm{S}_{\mathrm{x}} \quad 379$	5000	63.6	7500	36.9	
W200x42	2500	392	332	263	1650	250	918	181	$\mathrm{M}_{\mathrm{r}} 1338$	3000	133	5500	99.6	
W8x28	2000	381	327	262	1650	237	901	166	$\mathrm{V}_{\mathrm{r}} \quad 302$	3500	126	6000	92.9	
$\mathrm{b}=166$	1500	364	319	259	1650	219	878	147	$L_{u} 2610$	4000	120	6500	84.6	
$\mathrm{t}=11.8$	1000	300	268	226	1120	193	843	123	$\mathrm{I}_{\mathrm{x}} 40.9$	4500	113	7000	77.5	
$\mathrm{d}=205$	500	229	212	187	561	147	767	89.2	Sx 399	5000	106	7500	71.6	
W200x 36	2500	339	286	225	1420	218	796	162	$\begin{array}{ll}M_{t} & 118\end{array}$	3000	112	5500	79.3	
W8×24	2000	332	282	224	1420	208	782	149	$\mathrm{V}_{\mathrm{r}} \quad 255$	3500	105	6000	71.3	
$\mathrm{b}=165$	1500	319	276	222	1420	193	763	133	$L_{u} 2510$	4000	99.0	6500	64.6	
$\mathrm{t}=10.2$	1000	274	243	202	1120	171	734	111	$\mathrm{I}_{\mathrm{s}} 34.4$	4500	92.5	7000	59.0	
$\mathrm{d}=201$	500	205	189	165	561	132	673	80.5	$\mathrm{S}_{\mathrm{x}} 342$	5000	85.9	7500	54.4	
W200x31	2500	306	257	203	1240	204	711	154	M $\mathrm{V}_{\text {t }} 104$	2000	104	4500	65.2	
W8x21	2000	300	254	202	1240	195	698	143	$\mathrm{V}_{\mathrm{t}} \quad 275$	2500	96.7	5000	57.0	
$\mathrm{b}=134$	1500	290	249	200	1240	182	682	128	Lu 1980	3000	89.3	5500	50.6	
$\mathrm{t}=10.2$	1000	262	231	191	1120	163	657	107	$\mathrm{I}_{\times} \quad 31.4$	3500	81.7	6000	45.6	
$\mathrm{d}=210$	500	193	177	153	561	127	605	78.0	S, 299	4000	74.0	6500	41.5	
W200x27	2500	260	218	171	1050	176	607	135	M, 86.6	2000	85.3	4500	47.5	
W8x18	2000	256	216	170	1050	168	596	126	$\mathrm{V}_{\text {t }} \quad 246$	2500	78.7	5000	41.2	
$\mathrm{b}=133$	1500	249	212	169	1050	158	582	113	$L_{v} 1890$	3000	71.5	5500	36.4	
$\mathrm{t}=8.4$	1000	235	206	167	1050	142	562	96.1	$\mathrm{I}_{\mathrm{x}} \quad 25.8$	3500	64.1	6000	32.6	
$\mathrm{d}=207$	500	173	157	134	561	113	521	70.0	S ${ }_{x} \quad 249$	4000	56.0	6500	29.6	

Units: $\mathrm{M}_{\mathrm{r}}-\mathrm{kN} \cdot \mathrm{m}, \mathrm{V}_{\mathrm{r}}-\mathrm{kN}, \mathrm{L}_{\mathrm{u}}-\mathrm{mm}, \mathrm{I}_{\mathrm{x}}-10^{6} \mathrm{~mm}^{4}, \mathrm{~S}_{\mathrm{x}}-10^{3} \mathrm{~mm}^{3}, \mathrm{~b}-\mathrm{mm}, \mathrm{t}-\mathrm{mm}, \mathrm{d}-\mathrm{mm}$

DEFLECTION OF FLEXURAL MEMBERS

The CSA S16-14 Standard considers deflection to be a serviceability limit state which must be accounted for in the design of flexural members. Annex D of S16-14, "Recommended maximum values for deflection for specified design live, snow and wind loads", provides some guidance to designers. Deflections tend to be more significant with longer clear spans, shallower members and with the use of high-strength steels. Deflection calculations are based on specified loads.

Three methods for dealing with deflection of prismatic beams are summarized below:

1. Compute the required minimum moment of inertia to satisfy the deflection constraint, prior to selection of the beam size,
$I_{\text {reqd }}=W C_{d} B_{d}$, where
$I_{\text {reqd }}=$ required value of moment of inertia $\left(10^{6} \mathrm{~mm}^{4}\right)$
$W=$ specified load value as described in Table $5-8(\mathrm{kN})$
For distributed loading, W is the total applied load in kN . If there are multiple spans, W is the total applied load on a single span.
For point loads, W is the value of a single point load in kN . For example, if point loads are applied at the quarter points (number of spaces, $n=4$), the total load applied on a given span is $(n-1) W=3 W$.
$C_{d}=$ value of deflection constant obtained from Figure 5-2 for the appropriate span L and span/deflection limit $L / \Delta\left(10^{6} \mathrm{~mm}^{4} / \mathrm{kN}\right)$
$B_{d}=$ a number to relate the actual load and support condition to a uniformly distributed load (UDL) on a simply-supported beam, Table 5-8. Values of B_{d} are computed for the maximum deflection within the span. For a uniformly distributed load, $B_{d}=1.0$.

The actual deflection of a beam can be computed as:
$\Delta=\left(I_{\text {reqd }} / I\right) \Delta_{m}$, where
$\Delta=$ actual deflection (mm)
$I=$ moment of inertia of beam $\left(10^{6} \mathrm{~mm}^{4}\right)$
$\Delta_{m}=$ maximum deflection permitted (mm)
$I_{\text {reqd }}=$ moment of inertia required to meet $\Delta_{m}\left(10^{6} \mathrm{~mm}^{4}\right)$.
2. Compute deflections using the formulas for deflection of beams included in the Beam Diagrams and Formulas provided in Part 5 of this Handbook.
3. The Beam Load Tables for W-shapes in Part 5 list approximate deflections for the various steel sections and spans, based on the tabulated uniformly distributed total factored loads at an assumed stress of 240 MPa for steels with a yield stress of 345 or 350 MPa . Deflections (for live load only or for total load) caused by stress levels that are different from those assumed can be determined by multiplying the tabulated deflection with the ratio of actual stress to assumed stress $(240 \mathrm{MPa})$. Also see Vertical Deflection in the section on Factored Resistance of Beams in Part 5.

Examples

Given:

A W410x85 section has been chosen for a simply supported non-composite beam spanning 10 m and subjected to a uniformly distributed specified load of $15 \mathrm{kN} / \mathrm{m}$ live and $7 \mathrm{kN} / \mathrm{m}$ dead. Check for live load deflection assuming the beam is laterally supported, ASTM A992 steel, and deflection is limited to $L / 300=33 \mathrm{~mm}$.

Solutions:

Method I

From Table 5-8:

$$
B_{d}=1.0 \text { (simple-span UDL) }
$$

Using the graph (Figure 5-2, upper left):

$$
C_{d}=1.95 \times 10^{6} \mathrm{~mm}^{4} / \mathrm{kN}(\text { for } L / \Delta=300 \text { and } L=10 \mathrm{~m})
$$

Or using the formula given on the same figure:

$$
\begin{aligned}
& C_{d}=\gamma L^{2} / 15360=300 \times 10^{2} / 15360=1.95 \times 10^{6} \mathrm{~mm}^{4} / \mathrm{kN} \\
& I_{\text {reqd }}=W C_{d} B_{d}=(15 \times 10) \times 1.95 \times 10^{6} \times 1.0=293 \times 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

For W410x85, $I_{x}=315 \times 10^{6} \mathrm{~mm}^{4}$
Actual deflection, $\Delta=\left(I_{\text {reqd }} / I\right) \Delta_{m}=(293 / 315) 33=31 \mathrm{~mm}$

Method 2

From Beam Diagrams and Formulas in Part 5:

$$
\begin{aligned}
& \Delta=\frac{5 w L^{4}}{384 E I}, \text { where } \\
& I=315 \times 10^{6} \mathrm{~mm}^{4}, E=200000 \mathrm{MPa}
\end{aligned}
$$

Therefore $\Delta=\frac{5 \times 15 \times\left(10 \times 10^{3}\right)^{4}}{384 \times 200000 \times 315 \times 10^{6}}=31 \mathrm{~mm}$

Method 3

From the Beam Load Tables in Part 5, approximate deflection for W410x85 beam, span 10 m , loaded to a stress of $240 \mathrm{MPa}=61 \mathrm{~mm}$
Stress due to live load is:

$$
\frac{M}{S}=\frac{W L}{8 S}=\frac{\left(15 \times 10 \times 10^{3}\right)\left(10 \times 10^{3}\right)}{8 \times 1510 \times 10^{3}}=124 \mathrm{MPa}
$$

Live load deflection is $(124 / 240) 61=32 \mathrm{~mm}$

Table 5-8

Values of B_{d} for Various Loadings \& Support Conditions									
LOADING CONDITION	a/L	B_{d}	LOADING CONDITION	a/L	B_{d}	LOADING CONDITION	B_{d}	LOADING CONDITION	B_{d}
$\xrightarrow[L]{-1 \cdot \frac{w}{1}}$	$\begin{aligned} & 1.0 \\ & 0.8 \\ & 0.6 \\ & 0.5 \\ & 0.4 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.927 \\ & 1.52 \\ & 1.60 \\ & 1.52 \\ & 0.927 \\ & \hline \end{aligned}$		1.00.80.60.50.40.2	$\begin{aligned} & 0.000 \\ & 0.155 \\ & 0.366 \\ & 0.400 \\ & 0.366 \\ & 0.155 \end{aligned}$	WW	1.00	\ldots	0.200
						$\stackrel{w}{w}$	0.415	W	9.60
	1.0 0.8 0.6 0.5 0.4 0.2	$\begin{aligned} & 1.00 \\ & 1.13 \\ & 1.10 \\ & 1.01 \\ & 0.869 \\ & 0.477 \end{aligned}$		1.00.80.60.50.40.2	0.200 0.237 0.233 0.206 0.163 0.0576	$\xrightarrow[L]{\text { 步 }}$	1.43	$\stackrel{L}{\left.-\frac{1}{4}\right)^{w}-\left\|\frac{1}{4}\right\|^{-}}$	2.24
						\xrightarrow{W}	1.00	$\stackrel{w}{\infty}$	1.28
	1.0 0.8 0.6 0.5 0.4 0.2	$\begin{aligned} & 0.415 \\ & 0.456 \\ & 0.393 \\ & 0.325 \\ & 0.243 \\ & 0.0794 \end{aligned}$		1.0 0.8 0.6 0.5 0.4 0.2	$\begin{aligned} & 0.415 \\ & 0.503 \\ & 0.539 \\ & 0.520 \\ & 0.467 \\ & 0.271 \end{aligned}$		0.716		1.15
							1.17	$\xrightarrow[1]{\substack{\text { w } \\ 1+1}}$	1.93
	$\begin{array}{\|l\|} \hline 1.0 \\ 0.8 \\ 0.6 \\ 0.5 \\ 0.4 \\ 0.2 \\ \hline \end{array}$	0.0000.5170.7520.7160.5900.219		1.0 0.8 0.6 0.5 0.4 0.2	25.618.011.18.005.321.43		1.60		2.69
						W 1	0.416	Γ^{W}	0.703
$I_{\text {required }}=W C_{d} B_{d}$ Where: । $10^{6} \mathrm{~mm}^{4}$ W kN C_{d} from graph (Figure 5-2) B_{d} from this table $=1.0$ for single span, UDL						$\begin{array}{\|l\|l\|l\|} \hline \frac{w}{w} \\ \hline 1 & W \end{array}$	0.529	$\square^{W}+$	0.760
							0.886		1.24
LOADING CONDITION	n	B_{d}	LOADING CONDITION	n	B_{d}	LOADING CONDITION	B_{d}	LOADING CONDITION	B_{d}
	234567	1.60 2.73 3.80		2 3 4	$\begin{aligned} & 0.400 \\ & 0.593 \\ & 0.800 \end{aligned}$	$\frac{\pi_{1111}^{6 w}}{111}$	1.47		2.09
		4.84 5.87 6.89		5 6 7	$\begin{aligned} & 0.998 \\ & 1.20 \\ & 1.40 \end{aligned}$		2.04		2.91

B_{d} is calculated at the position of maximum deflection. For multiple spans, each span length is L.

BEAM DIAGRAMS AND FORMULAS

Equivalent Tabular Load is the uniformly distributed factored load given in the Beam Load Tables.

1. SIMPLE BEAM - UNIFORMLY DISTRIBUTED LOAD

2. SIMPLE BEAM - LOAD INCREASING UNIFORMLY TO ONE END

3. SIMPLE BEAM - LOAD INCREASING UNIFORMLY TO CENTER

Note: For deflection calculations, use specified loads.

BEAM DIAGRAMS AND FORMULAS

Equivalent Tabular Load is the uniformly distributed factored load given in the Beam Load Tables.

5. SIMPLE BEAM - UNIFORM LOAD PARTIALLY DISTRIBUTED AT ONE END
$R_{1}=V_{1}$ max .
$=\frac{w a}{2 l}(2 l-a)$
$R_{2}=V_{2} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots=\frac{w a^{2}}{2 l}$
V_{x} (when $x<a$)
$=R_{1}-w x$
M max. $\left(\right.$ at $\left.x=\frac{R_{1}}{W}\right)$
$=\frac{R_{1}{ }^{2}}{2 w}$
$M_{x}($ when $x<a)$
$=R_{1} x-\frac{w x^{2}}{2}$
$M_{x}($ when $x>a) \ldots \ldots \ldots \ldots \ldots \ldots=R_{2}(1-x)$
$\Delta_{x}($ when $x<a) \ldots \ldots \ldots \ldots \ldots=\frac{w x}{24 E \| l}\left(a^{2}(2 l-a)^{2}-2 a x^{2}(2 l-a)+l x^{3}\right)$
Δ_{x} (when $x>a$)
$=\frac{w a^{2}(I-x)}{24 E I I}\left(4 x 1-2 x^{2}-a^{2}\right)$
6. SIMPLE BEAM - UNIFORM LOADS PARTIALLY DISTRIBUTED AT EACH END

Note: For deflection calculations, use specified loads.

BEAM DIAGRAMS AND FORMULAS

Equivalent Tabular Load is the uniformly distributed factored load given in the Beam Load Tables.

Note: For deflection calculations, use specified loads.

BEAM DIAGRAMS AND FORMULAS

Equivalent Tabular Load is the uniformly distributed factored load given in the Beam Load Tables.
10. SIMPLE BEAM - TWO EQUAL CONCENTRATED LOADS UNSYMMETRICALLY PLACED

Moment
11. SIMPLE BEAM - TWO UNEQUAL CONCENTRATED LOADS UNSYMMETRICALLY PLACED

Moment

$R_{1}=V_{1}$	$\frac{P_{1}(l-a)+P_{2} b}{l}$
$R_{2}=V_{2}$	$\frac{P_{1} a+P_{2}(1-b)}{1}$
$V_{x}($ when $x>a$ and $<(l-b))$	$R_{1}-P_{1}$
$M_{1}\left(\right.$ max. when $\left.R_{1}<P_{1}\right)$	$R_{1} a$
M_{2} (max. when $\left.R_{2}<P_{2}\right)$.	$R_{2} b$
$M_{x}($ when $x<a) \ldots \ldots \ldots \ldots$	R, x
$M_{x}($ when $x>a$ and $<(l-b))$	$R_{1} x-P_{1}(x-a)$

2. BEAM FIXED AT ONE END, SUPPORTED AT OTHER - UNIFORMLY DISTRIBUTED LOAD

Equivalent Tabular Load $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .=w i$
$R_{1}=V_{1} \ldots \ldots$
$R_{2}=V_{2} \max \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots=\frac{5 w l}{8}$
$V_{x} \ldots \ldots=R_{1}-w x$
$M_{\text {max }}$.
$=\frac{w l^{2}}{8}$

$M_{x} \ldots \ldots=R_{1} x-\frac{w x^{2}}{2}$
$\Delta \max .\left(\right.$ at $\left.x=\frac{l}{16}(1+\sqrt{33})=.4215 l\right) \ldots \ldots=\frac{w l^{4}}{185 E l}$

Note: For deflection calculations, use specified loads.

BEAM DIAGRAMS AND FORMULAS

Equivalent Tabular Load is the uniformly distributed factored load given in the Beam Load Tables.
13. BEAM FIXED AT ONE END, SUPPORTED AT OTHER - CONCENTRATED LOAD AT CENTER

14. BEAM FIXED AT ONE END, SUPPORTED AT OTHER - CONCENTRATED LOAD AT ANY POINT

$$
\begin{aligned}
& R_{1}=V_{1} \ldots \ldots=\frac{P b^{2}}{2 t^{3}}(a+2 l) \\
& R_{2}=V_{2} \ldots \ldots=\frac{P a}{2 t^{3}}\left(3 t^{2}-a^{2}\right) \\
& M_{1} \text { (at point of load) } \\
& =R_{1} a \\
& M_{2} \text { (at fixed end) } \\
& =\frac{P a b}{2 l^{2}}(a+l) \\
& M_{x} \text { (when } x<a \text {) } \\
& =R_{1} x \\
& M_{x}(\text { when } x>a) \\
& =R_{1} x-P(x-a) \\
& \Delta \text { max. }\left(\text { when } a<.414 l \text { at } x=l \frac{l^{2}+a^{2}}{3 l^{2}-a^{2}}\right)=\frac{P a}{3 E I} \frac{\left(l^{2}-a^{2}\right)^{3}}{\left(3 l^{2}-a^{2}\right)^{2}} \\
& \Delta \max .\left(\text { when } a>.414 l \text { at } x=I \sqrt{\frac{a}{2 l+a}}\right)=\frac{P a b^{2}}{6 E l} \sqrt{\frac{a}{2 l+a}} \\
& \left.\Delta_{a}(\text { at point of load }) \ldots \ldots \ldots \ldots \ldots+\ldots, \ldots, \ldots, \ldots, \ldots\right)
\end{aligned}
$$

Note: For deflection calculations, use specified loads.

BEAM DIAGRAMS AND FORMULAS

Equivalent Tabular Load is the uniformly distributed factored load given in the Beam Load Tables.

Note: For deflection calculations, use specified loads.

BEAM DIAGRAMS AND FORMULAS

Equivalent Tabular Load is the uniformly distributed factored load given in the Beam Load Tables.
18. CANTILEVER BEAM - LOAD INCREASING UNIFORMLY TO FIXED END

Equivalent Tabular Load $=\frac{8}{3} \mathrm{~W}$
$R=V \ldots \ldots$
$v_{x} \ldots \ldots{ }^{2}$
M max. (at fixed end) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots=\frac{W l}{3}$
$M_{x}, \ldots \ldots, \ldots=\frac{W x^{3}}{3 l^{2}}$
Δ max. (at free end) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . .=\frac{W l^{3}}{15 E l}$
$\Delta_{x} \ldots \ldots=\frac{W}{60 E l l^{2}}\left(x^{5}-5 l^{4} x+4 l^{5}\right)$
19. CANTILEVER BEAM - UNIFORMLY DISTRIBUTED LOAD

20. BEAM FIXED AT ONE END, FREE BUT GUIDED AT OTHER - UNIFORMLY DISTRIBUTED LOAD

Note: For deflection calculations, use specified loads.

BEAM DIAGRAMS AND FORMULAS

Equivalent Tabular Load is the uniformly distributed factored load given in the Beam Load Tables.

Note: For deflection calculations, use specified loads.

BEAM DIAGRAMS AND FORMULAS

Equivalent Tabular Load is the uniformly distributed factored load given in the Beam Load Tables.
24. BEAM OVERHANGING ONE SUPPORT - UNIFORMLY DISTRIBUTED LOAD

25. BEAM OVERHANGING ONE SUPPORT - UNIFORMLY DISTRIBUTED LOAD ON OVERHANG
$R_{1}=V_{1}$ $=\frac{w a^{2}}{21}$
$R_{2}=V_{1}+V_{2}$ $=\frac{w a}{2 l}(2 l+a)$
V_{2}
$V_{x_{1}}$ (for overhang) \qquad = wa
$M_{\max .}\left(\right.$ at $\left.R_{2}\right) \ldots \ldots \ldots \ldots \ldots \ldots \ldots=\frac{w a^{2}}{2}$
M_{x} (between supports)
$=\frac{w a^{2} x}{2 l}$
$M_{x_{1}}$ (for overhang)
$=\frac{w}{2}\left(a-x_{1}\right)^{2}$
Δ max. (between supports at $\left.x=\frac{l}{\sqrt{3}}\right)=\frac{W \mathrm{a}^{2} \mathrm{l}^{2}}{18 \sqrt{3 E l}}=.03208 \frac{\mathrm{wa} \mathrm{a}^{2} \mathrm{l}^{2}}{E l}$
Δ max. (for overhang at $\left.x_{1}=a\right) \ldots \ldots \ldots=\frac{w a^{3}}{24 E l}(4 l+3 a)$
Δ_{x} (between supports) \qquad

$$
=\frac{w a^{2} x}{12 E I l}\left(l^{2}-x^{2}\right)
$$

$\Delta_{x_{1}}$ (for overhang)
$=\frac{W x_{1}}{24 E l}\left(4 a^{2} l+6 a^{2} x_{1}-4 a x_{1}^{2}+x_{1}^{3}\right)$

Note: For deflection calculations, use specified loads.

BEAM DIAGRAMS AND FORMULAS

Equivalent Tabular Load is the uniformly distributed factored load given in the Beam Load Tables.
26. BEAM OVERHANGING ONE SUPPORT - CONCENTRATED LOAD AT END OF OVERHANG

27. BEAM OVERHANGING ONE SUPPORT - UNIFORMLY DISTRIBUTED LOAD BETWEEN SUPPORTS

28. BEAM OVERHANGING ONE SUPPORT - CONCENTRATED LOAD ANY POINT BETWEEN SUPPORTS

Note: For deflection calculations, use specified loads.

BEAM DIAGRAMS AND FORMULAS

Equivalent Tabular Load is the uniformly distributed factored load given in the Beam Load Tables.
29. BEAM - UNIFORMLY DISTRIBUTED LOAD AND VARIABLE END MOMENTS

$$
\begin{aligned}
& R_{1}=V_{1}=\frac{w l}{2}+\frac{M_{1}-M_{2}}{l} \\
& R_{2}=V_{2}=\frac{w l}{2}-\frac{M_{1}-M_{2}}{l} \\
& V_{x}=w\left(\frac{l}{2}-x\right)+\frac{M_{1}-M_{2}}{l} \\
& M_{3}\left(\text { at } x=\frac{l}{2}+\frac{M_{1}-M_{2}}{w l}\right)=\frac{w l^{2}}{8}-\frac{M_{1}+M_{2}}{2}+\frac{\left(M_{1}-M_{2}\right)^{2}}{2 w l^{2}} \\
& M_{x}=\frac{w x}{2}(l-x)+\left(\frac{M_{1}-M_{2}}{l}\right) x-M_{1} \\
& \mathrm{~b} \text { (To locate infection points) }=\sqrt{\frac{l^{2}}{4}-\left(\frac{M_{1}+M_{2}}{w}\right)+\left(\frac{M_{1}-M_{2}}{w l}\right)^{2}} \\
& \Delta_{x}=\frac{w x}{24 E l}\left[x^{3}-\left(2 l+\frac{4 M_{1}}{w l}-\frac{4 M_{2}}{w l}\right) x^{2}+\frac{12 M_{1}}{w} x+l^{3}-\frac{8 M_{1} l}{w}-\frac{4 M_{2} l}{w}\right]
\end{aligned}
$$

30. BEAM - CONCENTRATED LOAD AT CENTER AND VARIABLE END MOMENTS

$$
\begin{aligned}
& R_{1}=V_{1}=\frac{P}{2}+\frac{M_{1}-M_{2}}{l} \\
& R_{2}=V_{2}=\frac{P}{2}-\frac{M_{1}-M_{2}}{l} \\
& M_{3} \text { (at center) }=\frac{P l}{4}-\frac{M_{1}+M_{2}}{2} \\
& M_{x}\left(\text { when } x<\frac{l}{2}\right)=\left(\frac{P}{2}+\frac{M_{1}-M_{2}}{l}\right) x-M_{1} \\
& M_{x}\left(\text { when } x>\frac{l}{2}\right)=\frac{P}{2}(l-x)+\frac{\left(M_{1}-M_{2}\right) x}{l}-M_{1} \\
& \Delta_{x}\left(\text { when } x<\frac{l}{2}\right)=\frac{P_{x}}{48 E l}\left(3 l^{2}-4 x^{2}-\frac{8(l-x)}{P l}\left[M_{1}(2 l-x)+M_{2}(l+x)\right]\right)
\end{aligned}
$$

Note: For deflection calculations, use specified loads.

BEAM DIAGRAMS AND FORMULAS

Equivalent Tabular Load is the uniformly distributed factored load given in the Beam Load Tables.
31. SIMPLE BEAM - ONE CONCENTRATED MOVING LOAD
R_{1} max $=V_{1}$ max. (at $\left.x=0\right) \ldots \ldots \ldots \ldots \ldots \ldots, \ldots$

M max. $\left(\right.$ at point of load, when $\left.x=\frac{l}{2}\right) \ldots \ldots \ldots \ldots=\frac{P l}{4}$
32. SIMPLE BEAM - TWO EQUAL CONCENTRATED MOVING LOADS
R_{1} max. $=V_{1} \max .($ at $x=0) \ldots \ldots \ldots \ldots \ldots \ldots \ldots=p\left(2-\frac{a}{1}\right)$

M max.
$\left\{\begin{array}{l}{\left[\begin{array}{l}\text { when } a<(2-\sqrt{2}) l=.586 l \\ \text { under load } 1 \text { at } x=\frac{1}{2}\left(1-\frac{a}{2}\right)\end{array}\right] \cdots \cdots=\frac{P}{2 l}\left(1-\frac{a}{2}\right)^{2}} \\ {\left[\begin{array}{l}\text { when } a>(2-\sqrt{2}) l=.586 l \\ \text { with one load at center of span } \\ \text { (case 31) }\end{array}\right] \cdots \cdots=\frac{P l}{4}}\end{array}\right.$
33. SIMPLE BEAM - TWO UNEQUAL CONCENTRATED MOVING LOADS
R_{1} max. $=V_{1} \max .($ at $x=0) \ldots \ldots \ldots \ldots \ldots \ldots \ldots=P_{1}+P_{2} \frac{l-a}{l}$

M max. $\left\{\begin{array}{l}{\left[\text { under } P_{1} \text {, at } x=\frac{1}{2}\left(1-\frac{P_{2} a}{P_{1}+P_{2}}\right)\right]=\left(P_{1}+P_{2}\right) \frac{x^{2}}{1}} \\ {\left[\begin{array}{l}M \text { max. may occur with larger } \\ \text { load at center of span and other } \\ \text { load off span (case 31)] }\end{array}\right] \ldots . .=\frac{P_{1} 1}{4}}\end{array}\right.$

GENERAL RULES FOR SIMPLE BEAMS CARRYING MOVING CONCENTRATED LOADS

Moment

The maximum shear due to moving concentrated loads occurs at one support when one of the loads is at that support. With several moving loads, the location that will produce maximum shear must be determined by trial.

The maximum bending moment produced by moving concentrated loads occurs under one of the loads when that load is as far from one support as the center of gravity of all the moving loads on the beam is from the other support.

In the accompanying diagram, the maximum bending moment occurs under load P_{1} when $x=b$. It should also be noted that this condition occurs when the center line of the span is midway between the center of gravity of loads and the nearest concentrated load.

Note: For deflection calculations, use specified loads.

BEAM DIAGRAMS AND FORMULAS

Equivalent Tabular Load is the uniformly distributed factored load given in the Beam Load Tables.
34. CONTINUOUS BEAM - TWO EQUAL SPANS - UNIFORM LOAD ON ONE SPAN

Equivalent Tabular Load .	$\frac{49}{64}$ wl
$R_{1}=V_{1}$	$\frac{7}{16} w l$
$R_{2}=V_{2}+V_{3}$	$=\frac{5}{8} w l$
$R_{3}=V_{3}$	$-\frac{1}{16} w l$
	$\frac{9}{16} w l$
M max. $\left(\right.$ at $\left.x=\frac{7}{16} l\right)$	$\frac{49}{512} w l^{2}$
M_{1} (at support R_{2})	$\frac{1}{16} w l^{2}$
$M_{x}($ when $x<1)$	$\frac{w x}{16}(71-8 x)$
$\Delta \max \left(0.472 /\right.$ from $\left.R_{1}\right)$,	$=0.0092 \mathrm{wl}^{4} / \mathrm{El}$

35. CONTINUOUS BEAM - TWO EQUAL SPANS - CONCENTRATED LOAD AT CENTER OF ONE SPAN

36. CONTINUOUS BEAM - TWO EQUAL SPANS - CONCENTRATED LOAD AT ANY POINT

$R_{1}=V_{1}$
$=\frac{P b}{4 l^{3}}\left(4 l^{2}-a(l+a)\right)$
$R_{2}=V_{2}+V_{3}$
$=\frac{P a}{2 l^{3}}\left(2 l^{2}+b(l+a)\right)$
$R_{3}=V_{3}$ $=-\frac{P a b}{4 l^{3}}(l+a)$
V_{2}.
$=\frac{P a}{4 l^{3}}\left(4 l^{2}+b(l+a)\right)$
$M_{\text {max. }}$ (at point of load)
$=\frac{P a b}{4 l^{3}}\left(4 l^{2}-a(l+a)\right)$
M_{1} (at support R_{2})
$=\frac{P a b}{4 l^{2}}(l+a)$

Note: For deflection calculations, use specified loads.

MOMENTS, REACTIONS Equal Span Continuous Beams

UNIFORMLY DISTRIBUTED LOADS
Moment $=$ Coefficient $\times \mathrm{W} \times \mathrm{L}$
Reaction $=$ Coefficient $\times \mathrm{W}$
Where: $W=$ Total uniformly distributed load on one span
$\mathrm{L}=$ Length of one span

MOMENTS, REACTIONS
 Equal Span Continuous Beams

UNIFORMLY DISTRIBUTED LOADS
Moment $=$ Coefficient $\times \mathrm{W} \times \mathrm{L}$
Reaction $=$ Coefficient $\times W$
Where: $W=$ Total uniformly distributed load on one span
$\mathrm{L}=$ Length of one span

MOMENTS, REACTIONS Equal Span Continuous Beams

CENTRAL POINT LOADS
Moment $=$ Coefficient $\times \mathrm{W} \times \mathrm{L}$
Reaction $=$ Coefficient $\times \mathrm{W}$
Where: $\mathrm{W}=$ The concentrated load on one span
$L=$ Length of one span

MOMENTS, REACTIONS

Equal Span Continuous Beams

CENTRAL POINT LOADS
Moment $=$ Coefficient $\times \mathrm{W} \times \mathrm{L}$
Reaction $=$ Coefficient $\times W$
Where: $\mathrm{W}=$ The concentrated load on one span
$\mathrm{L}=$ Length of one span

[^46]
MOMENTS, REACTIONS Equal Span Continuous Beams

POINT LOADS AT THIRD POINTS OF SPAN
Moment $=$ Coefficient $\times \mathrm{W} \times \mathrm{L}$
Reaction $=$ Coefficient $\times \mathbf{W}$
Where: $W=$ The lotal load on one span
$\mathrm{L}=$ Length of one span

MOMENTS, REACTIONS

Equal Span Continuous Beams

POINT LOADS AT THIRD POINTS OF SPAN

Moment $=$ Coefficient $\times \mathrm{W} \times \mathrm{L}$
Reaction $=$ Coefficient $\times \mathrm{W}$
Where: $W=$ The total load on one span
$\mathrm{L}=$ Length of one span

PART SIX PROPERTIES AND DIMENSIONS

Structural Steels 6-5
Historical Listing of Selected Structural Steels 6-7
Table 6-1 - Grades, Types, Strength Levels 6-8
Table 6-2 - Shape Size Groupings for Tensile Property Classification 6-8
Table 6-3-Mechanical Properties Summary 6-9
Table 6-4 - Chemical Composition - CSA G40.21 6-I0
Table 6-5 - Steel Marking Colour Code 6-11
Table 6-6 - Standard Impact Energy and Test Temperature 6-12
Table 6-7 - Mechanical Properties of Selected ASTM Steel Grades 6-13
Table 6-8 - Steel Grades for Building Construction - Relative Availability 6-13
Table 6-9 - Chemical Composition of Selected ASTM Steel Grades 6-14
Standard Mill Practice 6-15
Figures 6-1, 6-2, 6-3, 6-4 6-15
Permissible Variations in Straightness (W, HP, S, M, C, MC, L, T, Bars) 6-16
Permissible Variations in Sectional Dimensions (Welded, W, HP) 6-17
Permissible Variations in Length (W, HP) 6-17
Permissible Variations in Length (S, M, C, MC, L, T) 6-18
Permissible Variations in Section Dimensions (S, M, C, MC) 6-18
Tolerances for Angles 6-19
Hollow Structural Sections (HSS) 6-20
Principal Sources of Structural Steel Sections 6-22
Metric and Imperial Shapes 6-24
Metric Shapes - CISC Handbook and ASTM A6/A6M Designations 6-25
Designation Table for W-Shapes 6-27
Designation Table for HP, M, S, C, MC-Shapes 6-29
Designation Table for Angles 6-30
Designation Tables for Hollow Structural Sections 6-31
Rolled Structural Shapes 6-34
W Shapes 6-36
HP Shapes 6-54
M Shapes 6-56
S Shapes 6-58
Standard Channels (C) 6-62
Miscellaneous Channels (MC) 6-64
Angles (L) 6-68
Structural Tees (WT) 6-80
Hollow Structural Sections (HSS) 6-94
CSA G40.20 - Square 6-97
CSA G40.20 - Rectangular 6-100
CSA G40.20 - Round 6-106
ASTM A500 - Square 6-108
ASTM A500 - Rectangular 6-110
ASTM A500 - Round 6-116
Pipe 6-119
ASTM A53 Pipe 6-120
Built-up Sections 6-123
Two Angles - Equal Legs Back-to-Back 6-124
Two Angles - Unequal Legs - Long Legs Back-to-Back 6-126
Two Angles - Unequal Legs - Short Legs Back-to-Back 6-129
Two Channels - Toe-to-Toe 6-132
Two Channels - Back-to-Back 6-133
W Shapes and Channels 6-134
Built-up Sections - Diagrams and Formulas 6-136
Cold-Formed Steel C- and Z-Sections 6-140
Cold-Formed C-Sections, Coated 6-142
Cold-Formed C-Sections, Uncoated 6-146
Cold-Formed Z-Sections, Uncoated 6-150
Bars and Plates 6-152
Flat Metal Products - Plate 6-154
SI Wire Size - Wire Gauges Comparison 6-155
SI Thickness - Imperial Gauge Comparisons 6-156
Crane Rails 6-157
Properties and Dimensions 6-158
Rail Fasteners 6-159
Rail Splices 6-160
Fasteners 6-162
Markings - ASTM High-Strength Bolts, Nuts and Assemblies 6-164
High-Strength Bolts, Nuts and Assemblies - Dimensions. 6-165
High-Strength Bolts, Nuts and Assemblies - Acceptable ASTM A563 Nut Grade and Finish, and ASTM F436 Washer Type and Finish 6-166
Bolt Lengths for Various Grips - ASTM A325 and A490 Bolts 6-167
Weight of ASTM A325 Bolts, Nuts and Washers 6-168
ASTM F436 Washer Dimensions 6-169
ASTM A307 Hex Bolts and Heavy Hex Nuts - Dimensions 6-170
High-Strength Bolts - Purchase Order Information 6-171
Fasteners - Miscellaneous Detailing Data 6-172
Usual Gauges - W, M, S, C shapes, and Angles 6-173
Installation Clearances 6-174
Metric Fastener Data 6-175
ASTM A325M and ASTM A490M - Dimensions 6-176
Minimum and Maximum Grips 6-177
Mass of ASTM A325M Bolts, Nuts and Washers 6-178
ASTM F436M Metric Washer Dimensions 6-179
Fasteners - Miscellaneous Detailing Data 6-180
Erection Clearances 6-182
Welding 6-183
Welding Practice 6-186
Welded Joints - Standard Symbols 6-188
Welding Symbols 6-189
Sample Groove Welds 6-190
Steel Products - Record of Changes 6-191

STRUCTURAL STEELS

General

Canadian structural steels are covered by two standards prepared by the Canadian Standards Association Technical Committee on Structural Steel, G40. These are CSA G40.20 and CSA G40.21. The information provided in this section is based on the current 2013 editions of both standards, and on the SI metric values, in keeping with Canadian design standards for steel structures.

CSA G40,20, "General Requirements for Rolled or Welded Structural Quality Steel" sets out the general requirements governing the delivery of structural quality steels. These requirements include: Definitions, Chemical Composition, Variations in Dimensions, Methods of Testing, Frequency of Testing, Heat Treatment, Repairs of Defects, Marking, etc.

CSA G40.21, "Structural Quality Steel" governs the chemical and mechanical properties of 7 types and 9 strength levels of structural steels for general construction and engineering purposes. All strength levels are not available in all types, and selection of the proper grade (type and strength level) is important for a particular application. G40.21-350A and G40.21-350AT are atmospheric corrosion-resistant steels normally used in bridge construction. For HSS sections, 350W is the normal grade used when produced to G40.21.

The 7 types covered in G40.21 are:
(a) Type W - Weldable Steel. Steels of this type meet specified strength requirements and are suitable for general welded construction where notch toughness at low temperatures is not a design requirement. Applications include buildings, compression members of bridges, etc. Steels within this type meeting more restrictive chemical and mechanical requirements ${ }^{1}$ shall be designated WM. This designation meets the requirements of ASTM A992/A992M.
(b) Type WT - Weldable Notch-Tough Steel. Steels of this type meet specified strength and Charpy V-notch impact requirements and are suitable for welded construction where notch toughness at low temperature is a design requirement. The purchaser, in addition to specifying the grade, specifies the required category of steel that establishes the Charpy V-notch test temperature and energy level. Applications include primary tension members in bridges and similar elements. Steels within this type meeting more restrictive chemical and mechanical requirements ${ }^{1}$ shall be designated WMT. This designation meets the requirements of ASTM A992/A992M with Charpy V-notch toughness.
(c) Type R - Atmospheric Corrosion-Resistant Steel. Steels of this type meet specified strength requirements. The atmospheric corrosion resistance of these steels in most environments is substantially better than that of carbon structural steels with or without a copper addition ${ }^{2}$. These steels are welded readily up to the maximum thickness covered by the G40.21 standard. Applications include unpainted siding, unpainted light structural members, etc., where notch toughness at low temperature is not a design requirement.
(d) Type A - Atmospheric Corrosion-Resistant Weldable Steel. Steels of this type meet specified strength requirements. The atmospheric corrosion resistance of these steels in most environments is substantially better than that of carbon structural steels with or without a copper addition ${ }^{2}$. These steels are suitable for welded construction where notch toughness at low temperature is not a design requirement. Applications include those similar to type W steel.
(e) Type AT - Atmospheric Corrosion-Resistant Weldable Notch-Tough Steel. Steels of this type meet specified strength and Charpy V-notch impact requirements. The atmospheric corrosion resistance of these steels in most environments is substantially better than that of carbon structural steels with or without a copper addition ${ }^{2}$. These steels are suitable for welded construction where notch toughness at low temperature is a design requirement. The purchaser, in addition to specifying the grade, specifies the required category of steel that establishes the Charpy V-notch test temperature and energy level. Applications include primary tension members in bridges and similar elements.
(f) Type Q - Quenched and Tempered Low-Alloy Steel Plate. Steels of this type meet specified strength requirements. While these steels are weldable, the welding and fabrication techniques are of fundamental importance to the properties of the plate, especially the heat-affected zone. Applications include bridges and similar structures.
(g) Type QT - Quenched and Tempered Low-Alloy Notch-Tough Steel Plate. Steels of this type meet specified strength and Charpy V-notch impact requirements. They provide good resistance to brittle fracture and are suitable for structures where notch toughness at low temperature is a design requirement. The purchaser, in addition to specifying the grade, specifies the required category of steel that establishes the Charpy V-notch test temperature and energy level. While these steels are weldable, the welding and fabrication techniques are of fundamental importance to the properties of the plate, especially the heat-affected zone. Applications include primary tension members in bridges and similar elements.

I See CSA G40.21 Tables 3, 6 and Clause 7.7.
2 For methods of estimating the atmospheric corrosion resistance of low-alloy steels, see CSA G40.21 Clause 7.6. When properly exposed to the atmosphere, these steels can be used bare (unpainted) for many applications.

Tables

Table 6-1, "Grades, Types, Strength Levels", gives the grade designation of the various types and strength levels of structural steels according to the requirements of CSA G40.21.

Availability of any grade and shape combination should be kept in mind when designing to ensure overall economy, since a specified product may not always be available in the tonnage and time frame contemplated. Local availability should always be checked.

Table 6-2, "Shape Size Groupings for Tensile Property Classification", summarizes the size groupings for C, MC and L shapes. Table 6-3, "Mechanical Properties Summary", summarizes the various grades, tensile strengths and yield strengths for plates, bars, welded shapes, rolled shapes, sheet piling, and hollow structural sections based on CSA G40.21.

Table 6-4, "Chemical Composition", summarizes the chemical requirements of various grades of steel covered by CSA G40.21. Table 6-5 specifies the "Steel Marking Colour Code" for material identification. Table $6-6$ specifies the "Standard Impact Energy and Test Temperature" for the various grades, strength levels and categories of notch-tough steels.

The particular standards, CSA G40.20 and CSA G40.21, should be consulted for more details. Similar information about steel covered by ASTM standards should be consulted when appropriate.

Historical Remarks

When confronted with an unidentified structural steel, Clause 5.2.2 of CSA S16-14 requires that F_{y} be taken as 210 MPa and F_{u} as 380 MPa . This provides a minimum in the
place of more precise information, such as coupon testing. The following tables list selected dates of publication and data from various CSA and ASTM structural steel standards and specifications, many of which preceded current standards.

For more information on ASTM specifications and properties and dimensions of iron and steel beams previously produced in the USA, consult the "AISC Rehabilitation and Retrofit Guide: A Reference for Historic Shapes and Specifications" published by the American Institute of Steel Construction. In that publication, the first date listed for both ASTM A7 and A9 is the year 1900. Between 1900 and 1909, medium steel in A7 and A9 had a tensile strength 5 ksi higher than that adopted in 1914. For CSA standards, consult original documents.

Historical Listing of Selected Structural Steels

CSA Standards

Designation	Date Published	Yieid Strength		Tensile Strength (F_{v})	
		ksi	MPa	ksi	MPa
A16	1924	$1 / 2 F_{u}$	$1 / 2 \mathrm{~F}_{\mathrm{u}}$	55-65	380-450
S39	1935	30	210	55-65	380-450
S40	1935	33	230	60-72	410-500
G40.4	1950	33	230	60-72	410-500
G40.5	1950	33	230	60-72	410-500
G40.6	1950	45^{1}	310	80-95	550-650
G40.8	1960	40^{2}	280	65-85	450-590
G40.12	1964	44^{3}	300	65	450
G40.21	1973	Replaced all previous Standards, see CISC Handbook			

${ }^{1}$ Silicon steel $\quad{ }^{2}$ Yield reduces when thickness exceeds $\% /$ inches $(16 \mathrm{~mm})$.
${ }^{3}$ Yield reduces when thickness exceeds $11 / 2$ inches (40 mm).

Rivet Steel

Designation	Date Published	Yield Strength		Tensile Strength (Fu)	
		ksi	MPa	ksi	MPa
G40.2	1950	28	190	$52-62$	$360-430$

ASTM Specifications

Designation	Date Published	Yield Strength		Tensile Strength (F_{u})	
		ksi	MPa	ksi	MPa
A7 (bridges) A9 (buildings)	1914*	$1 / 2 \mathrm{~F}_{u}$	$1 / 2 \mathrm{~F}_{4}$	55-65	380-450
	1924	$1 / 2 F_{u} \geq 30$	$1 / 2 F_{u} \geq 210$	55-65	380-450
	1934	$1 / 2 F_{u} \geq 33$	$1 / 2 \mathrm{~F}_{u} \geq 230$	60-72	410-500
A373	1954	32	220	58-75	400-520
A242	1955	50^{1}	350	70^{1}	480
A36	1960	36	250	60-80	410-550
A440	1959	50^{1}	350	70^{1}	480
A441	1960	50^{1}	350	70^{1}	480
A572 grade 50	1966	50	345	65	450
A588	1968	50^{1}	345	70^{1}	485
A992	1998	50 min . to 65 max.	345 min. to 450 max.	65	450

[^47]${ }^{1}$ Reduces with increasing thickness

Type	Nominal Yield Strength, MPa								
	260	300	345-350	380	400	450	480	550	700
W	260W	300W	345WM, 350W	380W**	400W	450W	480W	550W	-
WT	260WT	$300 W T$	$\begin{aligned} & \text { 345WMT, } \\ & 350 \mathrm{WT} \end{aligned}$	380WT***	400WT	450WT	480WT	550WT	
R	-	-	350R	-	-	-	-	-	-
A	-	-	350A	-	400A	-	480A	550A	-
AT	-	-	350AT	-	400AT	-	480AT	550AT	-
Q	-	-	-	-	-	-	-	-	7000
QT	-	-	-	-	-	-	-	-	700QT

* See CSA G40.20/G40.21
** This grade is available in Hollow Structural Sections, angles and bars only.
*** This grade is available in Hollow Structural Sections only.

SHAPE SIZE GROUPINGS FOR
Table 6-2
TENSILE PROPERTY CLASSIFICATION*

Shape Type	Group 1	Group 2	Group 3
C Shapes	To $30.8 \mathrm{~kg} / \mathrm{m}$	Over $30.8 \mathrm{~kg} / \mathrm{m}$	-
MC Shapes	To $42.4 \mathrm{~kg} / \mathrm{m}$	Over $42.4 \mathrm{~kg} / \mathrm{m}$	-
L Shapes	To 13 mm	Over 13 to 19 mm	Over 19 mm

* See CSA G40.20/G40.21

Table 6-3

$\begin{gathered} \text { CSA } \\ \text { G40.20/G40.21 } \end{gathered}$		Tensile Strength	Plates, FI Bars, Welded	Plates, et and hapes	Rolled and S	hapes Piling	Hollow Structural Sections
		$\mathrm{Fu}_{\mathrm{u}}(\mathrm{MPa})$	$\mathrm{F}_{\mathrm{Y}}(\mathrm{MPa}) \mathrm{min}$.		Common Available Shape Size Group	$\mathrm{F}_{y}(\mathrm{MPa})$ $\min .$	$\begin{gathered} \mathrm{F}_{\mathrm{y}}(\mathrm{MPa}) \\ \min . \end{gathered}$
Type	Grade		Thickness $\mathrm{t} \leq 65 \mathrm{~mm}$	Thickness ${ }^{4}$ $t>65 \mathrm{~mm}$		Groups 1 to 3	
W	260W	410-590	260	250	3	260	-
	300W	440-620 ${ }^{1}$	300	280	3	300	300
	$345 W M^{5}$	≥ 450	345-450	345-450	2	345-450	-
	350W	450-650 ${ }^{2}$	350	320	2	350	350
	$380 \mathrm{~W}^{3}$	480-650	380	350	2	380	380
	400W	520-690	400	370	1	400	400
	450W	550-725	450	420	-	-	-
	480W	590-790	480	450	1	480	480
	550W	620-860	550	520	-	-	550
WT	260WT	410-590	260	250	3	260	-
	300 WT	440-620 ${ }^{6}$	300	280	3	300	-
	$345 \mathrm{WMT}^{5}$	2450	345-450	345-450	3	345-450	-
	350 WT	450-650 ${ }^{2,7}$	350	320	3	350	350
	380WT	480-650	-	-	-	-	380
	400WT	520-690	400	370	2	400	400
	450WT	550-725	450	420	-	-	-
	480WT	590-790	480	450	1	480	480
	550WT	620-860	550	520	-	-	550
R	350R	480-650	350	-	1	350	-
A	350A	480-650	350	350	3	350	350
	400A	520-690	400	-	2	400	400
	480A	590-790	480	-	-	-	480
	550A	620-860	550	-	-	-	550
AT	350AT	480-650	350	350	3	350	350
	400AT	520-690	400	-	2	400	400
	480AT	590-790	480	-	-	-	480
	550AT	620-860	550	-	-	-	550
Q	700Q	760-895	700	620	-	-	-
QT	700QT	760-895	700	620	-	-	-

[^48]| $\begin{aligned} & \text { CSA } \\ & \text { G40.21 } \\ & \text { Grade } \end{aligned}$ | Chemical Composition (Heat Analysis) Percent ${ }^{2}$ | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | All percentages are maxima unless otherwise indicated. | | | | | | | | |
| | C | Mn^{3} | P | S | $\mathrm{Si}^{4,5}$ | Other ${ }^{6}$ | Cr | Ni | $\mathrm{Cu}^{\text {T }}$ |
| 260W | $0.20{ }^{10}$ | 0.50-1.50 | 0.04 | 0.05 | 0.40 | 0.15 | - | - | - |
| $300 \mathrm{~W}^{8}$ | 0.22^{10} | 0.50-1.50 | 0.04 | 0.05 | 0.40 | 0.15 | - | - | - |
| 345 WM | $0.23{ }^{18}$ | 0.50-1.60 | 0.035 | 0.045 | 0.10-0.40 | 0.15^{19} | 0.35 | 0.45 | 0.60 |
| 350W | 0.23 | 0.50-1.50 | 0.04 | 0.05 | 0.40 | 0.15 | - | - | - |
| $380 \mathrm{~W}^{9}$ | 0.23 | 0.50-1.50 | 0.04 | 0.05 | 0.40 | 0.15 | - | - | - |
| 400W | $0.23{ }^{11}$ | 0.50-1.50 | 0.04 | 0.05 | 0.40 | 0.15 | - | - | - |
| 450W | 0.23 | 0.50-1.50 | 0.04 | 0.05 | 0.40 | 0.15 | - | - | - |
| 480W | 0.26^{11} | 0.50-1.50 | 0.04 | 0.05 | 0.40 | $0.15{ }^{15}$ | - | - | - |
| 550W | 0.15 | $1.75{ }^{12}$ | 0.04 | 0.05 | 0.40 | 0.15 | - | - | - |
| 260WT | $0.20{ }^{10}$ | 0.80-1.50 | 0.03 | 0.04 | 0.15-0.40 | 0.15 | - | - | - |
| 300 WT | 0.22^{10} | 0.80-1.50 | 0.03 | 0.04 | 0,15-0,40 | 0.15 | - | - | - |
| 345WMT | $0.23{ }^{18}$ | 0.80-1.50 ${ }^{12}$ | 0.035 | 0.045 | 0.10-0.40 | $0.15{ }^{19}$ | 0.35 | 0.45 | 0.60 |
| 350WT | 0.22^{10} | 0.80-1.50 ${ }^{12}$ | 0.03 | 0.04 | 0.15-0.40 | 0.15 | - | - | - |
| $380 \mathrm{WT}{ }^{9}$ | 0.22 | 0.80-1.50 | 0.03 | 0.04 | 0.15-0.40 | 0.15 | - | - | - |
| 400WT | 0.22^{11} | 0.80-1.60 | 0.03 | $0.04{ }^{14}$ | 0.15-0.40 | 0.15 | - | - | - |
| 450WT | 0.22 | 0.80-1.50 ${ }^{12}$ | 0.03 | 0.04 | 0.15-0.40 | 0.15 | - | - | - |
| 480WT | 0.26^{11} | $0.80-1.50{ }^{12}$ | 0.03 | $0.04{ }^{14}$ | 0.15-0.40 | $0.15{ }^{15}$ | - | - | - |
| 550WT | 0.15 | $1.75{ }^{12}$ | 0.03 | $0.04{ }^{14}$ | 0.15-0.40 | 0.15 | - | - | - |
| 350R | 0.16 | 0.75 | 0.05-0.15 | 0.04 | 0.75 | 0.15 | $0.30-1.25^{16}$ | $0.90{ }^{16}$ | $0.20-0.60{ }^{16}$ |
| 350A | 0.20 | 0.75-1.35 ${ }^{12}$ | 0.03 | 0.04 | 0.15-0.50 | 0.15 | $0.70{ }^{17}$ | $0.90{ }^{17}$ | 0.20-0.60 |
| 400A | 0.20 | $0.75-1.35^{12}$ | 0.03 | $0.04{ }^{14}$ | 0.15-0.50 | 0.15 | $0.70{ }^{17}$ | $0.90{ }^{17}$ | 0.20-0.60 |
| 480A | 0.20 | 1.00-1.60 | 0.025^{13} | 0.035^{14} | 0.15-0.50 | $0.15{ }^{15}$ | $0.70{ }^{17}$ | 0.25-0.50 ${ }^{17}$ | 0.20-0.60 |
| 550A | 0.15 | $1.75{ }^{12}$ | 0.025^{13} | 0.035^{14} | 0.15-0.50 | 0.15 | 0.70^{17} | 0.25-0.50 ${ }^{17}$ | 0.20-0.60 |
| 350AT | 0.20 | 0.75-1.35 ${ }^{12}$ | 0.03 | 0.04 | 0.15-0.50 | 0.15 | $0.70{ }^{17}$ | $0.90{ }^{17}$ | 0.20-0.60 |
| 400AT | 0.20 | 0.75-1.35 ${ }^{12}$ | 0.03 | $0.04{ }^{14}$ | 0.15-0.50 | 0.15 | $0.70{ }^{17}$ | $0.90{ }^{17}$ | 0.20-0.60 |
| 480AT | 0.20 | 1.00-1.60 | 0.025^{13} | 0.035^{14} | 0.15-0.50 | 0.15^{15} | $0.70{ }^{17}$ | 0,25-0.50 ${ }^{17}$ | 0.20-0.60 |
| 550AT | 0.15 | $1.75{ }^{12}$ | 0.025^{13} | 0.035^{14} | 0.15-0.50 | 0.15 | 0.70^{17} | $0.25-0.50{ }^{17}$ | 0.20-0.60 |
| 700Q | 0.20 | 1.50 | 0.03 | 0.04 | 0.15-0.40 | - | Boron 0.0 | 005-0.005 | - |
| 700QT | 0.20 | 1.50 | 0.03 | 0.04 | 0.15-0.40 | - | Boron 0.0 | 005-0.005 | - |

Notes:

1. Consult CSA G40.20/G40.21 for full details. Usual deoxidation for all grades is fully killed.
2. Additional alloying elements may be used when approved.
3. For HSS Mn 0.50-1.50\% for 350WT and 380WT, 1.65% for 400 yield, 1.75% for 480 yield and 1.85% for 550 yield steels. For HSS minimum limit for Mn shall be 0.30% provided that the ratio of Mn to C is not less than 2 to 1 and the ratio of Mn to S is not less than 20 to 1.
4. Si content of 0.15% to 0.40% is required for type W steel over 40 mm thickness, HSS of A or AT steel, or bar diameter except as required by Note 5.
5. By purchaser's request or producer's option, no minimum Si content is required provided that 0.015% acidsoluble Al or 0.02% total Al is used.
6. Includes grain-refining elements $\mathrm{Cb}, \mathrm{V}, \mathrm{Al}$. Elements Cb and V may be used singly or in combination.

See G40.20/G40.21 for qualifications. Al, when used, is not included in the summation.
For HSS with 300-400 yield, 0.10\%.
7. Copper content of 0.20% minimum may be specified,
8. For HSS $0.26 \% \mathrm{C}$ and $0.30-1.20 \% \mathrm{Mn}$.
9. Only angles, bars, and HSS in 380W grade, and only HSS in 380WT grade.
10. For thicknesses over $100 \mathrm{~mm}, \mathrm{C}$ may be 0.22% for 260 W and 260 WT grades, and 0.23% for $300 \mathrm{~W}, 300 \mathrm{WT}$ and 350WT grades.
11. For HSS 0.20% C.
12. Mn may be increased. See G40.20/G40.21 for qualifications.
13. For HSS 0.03% P.
14. For HSS 0.03% S.
15. For HSS 0.12\%
16. $\mathrm{Cr}+\mathrm{Ni}+\mathrm{Cu} \geq 1.00 \%$
17. $\mathrm{Cr}+\mathrm{Ni} \geq 0.40 \%$ and for HSS, 0.90% Ni max.
18. Carbon equivalent $\leq 0.47 \%$ for shapes with flange thickness $>50 \mathrm{~mm}$ and 0.45% for other shapes.
19. When steel is aluminum-killed, total aluminum $\geq 0,015 \%$. $\mathrm{N} \leq 0.015 \% . \mathrm{V} \leq 0.15 \%, \mathrm{Nb} \leq 0.05 \%, \mathrm{~V}+\mathrm{Nb} \leq 0.15 \%, \mathrm{Mo} \leq 0.15 \%$. Consult CSA G40.20/G40.21 for full delails.

Steel Grade	Primary Colour	Secondary Colour
260W	White	Green
300 W	Green	Green
350W	Blue	Green
380W	Brown	Green
400W	Black	Green
480W	Yellow	Green
550W	Pink	Green
260WT	White	White
300WT	Green	White
350WT	Blue	White
380WT	Brown	White
400WT	Black	White
480WT	Yellow	White
550WT	Pink	White
350R	Blue	Blue
350 A	Blue	Yellow
400A	Black	Yellow
480A	Yellow	Yellow
550 A	Pink	Yellow
350AT	Blue	Brown
400AT	Black	Brown
480AT	Yellow	Brown
550AT	Pink	Brown
700Q	Red	Red
700QT	Red	Purple

In this Code, the following colour system applies;

Strength Level	Primary Colour	Type	Secondary Colour
260	White	W	Green
300	Green	WT	White
350	Blue	R	Blue
380	Brown	A	Yellow
400	Black	AT	Brown
480	Yellow	Q	Red
550	Pink	QT	Purple
700	Red		

STANDARD IMPACT ENERGY AND TEST
TABLE 6-6 TEMPERATURE FOR NOTCH-TOUGH STEELS

Type	Grade		Category			
		1	2	3	4	5
WT	260,300	$20 \mathrm{~J}, 0^{\circ} \mathrm{C}$	$20 \mathrm{~J},-20^{\circ} \mathrm{C}$	$20 \mathrm{~J},-30^{\circ} \mathrm{C}$	$20 \mathrm{~J},-45^{\circ} \mathrm{C}$	
	$350,380,400$, $450,480,550$	$27 \mathrm{~J}, 0^{\circ} \mathrm{C}$	$27 \mathrm{~J},-20^{\circ} \mathrm{C}$	$27 \mathrm{~J},-30^{\circ} \mathrm{C}$	$27 \mathrm{~J},-45^{\circ} \mathrm{C}$	Both energy and test
WMT	345	$27 \mathrm{~J}, 0^{\circ} \mathrm{C}$	$27 \mathrm{~J},-20^{\circ} \mathrm{C}$	$27 \mathrm{~J},-30^{\circ} \mathrm{C}$	$27 \mathrm{~J},-45^{\circ} \mathrm{C}$	temperature are specified by the
purchaser.						

Units: Impact energy in Joules ($1 \mathrm{~J} \approx 0.738 \mathrm{ft} \cdot \mathrm{lb}$) and test temperature in degrees Celsius.
Notes: Charpy V-Notch, longitudinal specimens. See CSA G40.21-13 Clause 8.2.2.
See CSA S16-14 Annex L "Design to Prevent Brittle Fracture" for information on test and service temperatures.

MECHANICAL PROPERTIES
Of Selected ASTM Steel Grades

Steel Grade		$\mathrm{F}_{\mathrm{y}}(\mathrm{MPa})$	$\mathrm{F}_{u}(\mathrm{MPa})$
Rolled Shapes and HSS	Plates and Bars		
A36 ${ }^{1}$	A36 ${ }^{2}$	250	400-550
A500 Gr. C-Round		$317{ }^{3}$	$427{ }^{3}$
A500 Gr. C-Square and Rectangular	-	345	427^{3}
A572 Gr. 50 (345) A913 Gr. 50 (345)	A572 Gr. $50(345)^{6}$	345	450
A709M Gr. 345S A992		$345 \cdot 450{ }^{4}$	$450{ }^{4}$
A1085 ${ }^{5}$		345-485	450
A588	A709M Grades 345W ${ }^{6}$, HPS $345 \mathrm{~W}^{6}$	345	485
A913 Gr. 65 (450)		450	550
	A709M Gr. HPS 485W ${ }^{6}$	485	585-760
A913 Gr. 70 (485)		485	620

${ }^{1}$ Flange thickness $\leq 75 \mathrm{~mm}$
${ }^{2}$ Plate thickness $\leq 200 \mathrm{~mm}$
${ }^{3}$ Soft-converted from imperial units
${ }^{4}$ Fy/ Fu ≤ 0.85
${ }^{5}$ Heat treatment available as supplementary requirement S1
${ }^{6}$ Plate thickness $\leq 100 \mathrm{~mm}$

STEEL GRADES FOR BUILDING CONSTRUCTION
Table 6-8
Relative Availability

Steel Grade		$F_{y}$$\mathrm{MPa}$	Steel Shapes						
		W	C	L	HSS		HP		
		Square, Rectangular			Round				
CSA			350				West of Quebec *		
	G40.21 300W	300							
ASTM	A992	345							
	A572 Gr. 50	345							
	A913 Gr. 65	450	Heavy Sections						
	A500 Gr. C	345				East of Ontario			
	A500 Gr. C	317							
Grade preferred Other grades		lative	ilability				* G40.21 350W Class C		
									OF SELECTED ASTM STEEL GRADES

ASTM Steel Grade	Chemical Composition (Heat Analysis) Percent								
	All percentages are maxima unless otherwise indicated.								
	C	Mn	P	S	Si	Other	Cr	Ni	Cu
A36 Shapes ${ }^{2}$	0.26	$-^{3}$	0.04	0.05	$0.40{ }^{4}$	-	-	-	$0.20{ }^{6}$
A500 Gr. C	$0.23{ }^{5}$	$1.35{ }^{5}$	0.035	0.035	-	-	-	-	$0.20{ }^{6}$
A572 Gr. $50(345)^{7}$	$0.23{ }^{8}$	$1.35{ }^{\text {9 }}$	0.04	0.05	$0.40{ }^{10}$	-	-	-	${ }^{6}$
A913 Gr. 50 (345) A913 Gr. 65 (450) A913 Gr. 70 (485)	$\begin{aligned} & 0,12 \\ & 0.16 \\ & 0.16 \end{aligned}$	$\begin{aligned} & 1.60 \\ & 1.60 \\ & 1.60 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.03 \\ & 0.04 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.03 \\ & 0.03 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.40 \\ & 0.40 \end{aligned}$	$\begin{aligned} & \text { (11) } \\ & \text { (11) } \\ & \text { (ii) } \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.25 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.25 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.45 \\ & 0.35 \\ & 0.45 \end{aligned}$
A992 ${ }^{12}$	0.23	$0.50-1.60{ }^{13}$	0.035	0.045	0.40	(14)	0.35	0.45	0.60
$\begin{gathered} \mathrm{A} 709 \mathrm{M} \mathrm{Gr} \\ 345 \mathrm{~S}^{12} \end{gathered}$	0.23	$0.50-1.60{ }^{13}$	0,035	0.045	0.40	(14)	0.35	0.45	0.60
A588 Gr. A	0.19^{5}	$0.80-1.25^{5}$	0.04	0.05	0.30-0.65	V 0.02-0.10	0.40-0.65	0.40	0.25-0.40
A709M Gr. $345 W^{15}$ Type A	$0.19{ }^{5}$	$0.80-1.25^{5}$	0.04	0.05	0.30-0.65	V 0.02-0.10	0.40-0.65	0.40	0.25-0.40
A588 Gr. B	$0.20{ }^{5}$	$0.75-1.35^{5}$	0.04	0.05	0.15-0.50	V 0.01-0.10	0.40-0.70	0.50	0.20-0.40
A709M Gr. $345 W^{15}$ Type B	$0.20{ }^{5}$	$0.75-1.35^{5}$	0.04	0.05	0.15-0.50	V 0.01-0.10	0.40-0.70	0.50	0.20-0.40
A709M Gr. HPS 345W	0.11	$1.10-1.35^{16}$	0.02	0.006^{17}	0.30-0.50	(18)	0.45-0.70	0.25-0.40	0.25-0.40
A709M Gr. HPS 485W	0.11	$1.10-1.35^{16}$	0.02	0.006^{17}	0.30-0.50	(18)	0.45-0.70	0.25-0.40	0.25-0.40
A1085	$0.26{ }^{5}$	1.35^{5}	0.035	0.035	0.04	(19)	-	-	-

Notes:

Where "-" appears in this table, there is no requirement.

1. Consult ASTM standards for full details.
2. For A36 plates and bars, refer to the A36 standard.
3. Mn content of $0.85-1.35 \%$ is required for shapes with flange thickness over 75 mm .
4. Si content of $0.15-0.40 \%$ is required for shapes with flange thickness over 75 mm .
5. For each reduction of 0.01 percentage point below the specified maximum for C , an increase of 0.06 percentage point above the specified maximum for Mn is permitted, up to a maximum of 1.50% by heat analysis.
6. Cu when specified shall have a minimum content of 0.20% by heat analysis.
7. Round bars up to and including 275 mm in diameter are permitted.
8. For each reduction of 0.01 percentage point below the specified maximum for C, an increase of 0.06 percentage point above the specified maximum for Mn is permitted, up to a maximum of 1.60% by heat analysis.
9. Mn, minimum, by heat analysis of 0.80% shall be required for all plates $>10 \mathrm{~mm}$ thick; a minimum of 0.50% shall be required for plates $\leq 10 \mathrm{~mm}$ thick, and for all other products. The Mn to C ratio shall not be less than 2 to 1 ,
10. Plates $\leq 40 \mathrm{~mm}$ thick, shapes with flange or leg thickness $\leq 75 \mathrm{~mm}$, sheet piling, bars, zees, and rolled tees. Plates $>40 \mathrm{~mm}$ thick and shapes with flange thickness $>75 \mathrm{~mm}$ shall have a Si content of $0.15-0.40 \%$. Bars $>40 \mathrm{~mm}$ in diameter, thickness, or distance between parallel faces shall be made by a killed steel practice.
11. Mo 0.07%; Nb $0.05 \% ; \mathrm{V} 0.06 \% \mathrm{gr}, 50,0.08 \% \mathrm{gr} .65,0.09 \% \mathrm{gr} .70$. Consult ASTM standard for full details.
12. In addition to the elements listed, test reports shall include, for information, the chemical analysis for tin. Where the amount of tin is $<0.02 \%$, it shall be permissible for the analysis to be reported as " $<0.02 \%$ ".
13. Provided that the ratio of $M n$ to S is ≥ 20 to 1 , the minimum limit for $M n$ for shapes with flange or leg thickness $\leq 25 \mathrm{~mm}$ shall be 0.30%.
14. Mo $0.15 \%, \mathrm{Nb} 0.05 \%, \mathrm{~V} 0.15 \% \mathrm{Nb}+\mathrm{V} \leq 0.15 \%$. Consuit ASTM standard for full details.
15. Types A and B for $A 709 M$ Gr. 345W steel are equivalent to $A 588 / A 588 M$, Grades A and B, respectively.
16. Mn content for plates and bars $\leq 65 \mathrm{~mm}$. Mn content of $1.10-1.50 \%$ is required for plates and bars $>65 \mathrm{~mm}$.
17. The steel shall be calcium treated for sulfide shape control.
18. Mo 0.02-0.08\%, Al 0.01-0.04\%, V 0.04-0.08\%, N 0.015%.
19. Acid soluble AI $\mathrm{Q} .015 \%$ minimum or total AI content 0.02% minimum.

STANDARD MILL PRACTICE

General

Rolled structural shapes are produced by passing hot blooms, billets or slabs of steel through a series of grooved rolls. Wear on the rolls can cause the dimensions of the finished product to vary slightly from the theoretical, published dimensions. Standard rolling tolerances have been established to make allowance for roll wear and other factors. These tolerances are contained in CSA Standard G40.20, "General Requirements for Rolled or Welded Structural Quality Steel".

Letter symbols for dimensions on sketches shown in this section are in accordance with CSA G40.20, ASTM A6, and mill catalogs.

Methods of increasing area and mass by spreading rolls

Most nominal size groups of rolled shapes contain several specific shapes, each of which is slightly different in mass, area and properties from other shapes in the same size group. Methods used to increase the area and mass, from the minimum nominal size, by spreading the rolls are described below:

For W Shapes (Fig. 6-1), the thickness of both flange and web is increased, resulting in an increase to the overall beam depth and flange width, with the distance between inside faces of flanges being unchanged.

For S Shapes and Channels (Fig. 6-2 and 6-3), the web thickness and flange width are increased by equal amounts, all other dimensions remaining unchanged,

For angles (Fig. 6-4) the thickness of each leg is increased an equal amount, resulting in a corresponding increase in leg length.

Fig. 6-4

1

Tolerances

Tolerances are the permissible variations in the mass, cross-sectional area, length, depth, flange width, camber, sweep and other geometric properties of a rolled or welded section. A summary of the basic manufacturing tolerances, taken from CSA G40.20, are provided in the following tables. While these tables are provided for convenience, the actual Standard should be referred to for complete information.

Camber and Sweep

After a section is rolled, it is cold-straightened to meet the specified sweep and camber tolerances.

Camber is a deflection, approximating a simple regular curve, measured along the depth of a section. It is usually measured halfway between two specified points. The length for purposes of determining the "maximum permissible variation" is the distance between the two specified points.

Positions for measuring camber and sweep

Sweep is a deflection, similar to camber, measured along the width of the section.
The following table lists Permissible Variations in Straightness.

PERMISSIBLE VARIATIONS IN STRAIGHTNESS

Shape	Maximum Permissible Variation in Straightness, mm
W and HP shapes with flange width $\geq 150 \mathrm{~mm}^{1}$ (camber and sweep) Welded beams or girders where there is no specified camber or sweep	L/ 1000
W and HP shapes with flange width $<150 \mathrm{~mm}{ }^{\prime}$ (sweep)	L/ 500
Welded beams or girders with specified camber	$6+L / 4000$
W and HP shapes specified as columns, with flange width approximately equal to depth ${ }^{1,2}$ (camber and sweep) Welded columns and compression members in trusses	$\begin{aligned} & L \leq 14000 \mathrm{~mm}: \\ & L>14000 \mathrm{~mm}: \\ & \quad 10+(L-14000 \leq 10 \mathrm{~mm} \\ & \quad \mathrm{L} \\ & \hline 1000) / 1000 \end{aligned}$
S, M, C, MC, L, T shapes ${ }^{1}$ (greatest cross-sectional dimension $\geq 75 \mathrm{~mm}$)	Camber: L/ 500 Sweep; Negotiable
Bars ${ }^{1,3}$	6 mm in any 1500 mm and $\mathrm{L} / 250^{\text {(4) }}$
S, M, C, MC, L, T bar-size shapes ${ }^{1}$ (greatest cross-sectional dimension $<75 \mathrm{~mm}$)	Camber: L. 250 Sweep: Negotiable

Notes:

${ }^{1}$ See ASTM A6/A6M
${ }^{2}$ Applies only to: 200 mm -deep sections $-46 \mathrm{~kg} / \mathrm{m}$ and heavier, 250 mm -deep sections $-73 \mathrm{~kg} / \mathrm{m}$ and heavier, 310 mm -deep sections $-97 \mathrm{~kg} / \mathrm{m}$ and heavier, and 360 mm -deep sections $-116 \mathrm{~kg} / \mathrm{m}$ and heavier. For other sections specified as columns, tolerances are negotiable.
${ }^{3}$ Permitted variations do not apply to hot-rolled bars if any subsequent heating operation has been periormed.
${ }^{4}$ Round to the nearest whole millimetre.

Sectional Dimensions

The permissible variations in sectional dimensions for welded shapes and rolled shapes are given in the following tables.

PERMISSIBLE VARIATIONS IN SECTIONAL DIMENSIONS OF WELDED STRUCTURAL SHAPES

- The combined warpage and till of the flange is measured from the toe of the flange to a line normal to the plane of the web through the intersection of the centreline of the web with the outside surface of the flange plate.
** The deviation from flatness of the web is measured in any length of the web equal to the fotal depth of the beam.
PERMISSIBLE VARIATIONS IN SECTIONAL DIMENSIONS OF W AND HP SHAPES

" A " is measured at the centreline of the web, " B " parallel to the flange, and " C " parallel to the web.
*Web off-centre tolerance is 8 mm for sections over $634 \mathrm{~kg} / \mathrm{m}$. See ASTM A6/A6M.

PERMISSIBLE VARIATIONS IN LENGTH FOR W AND HP SHAPES

Nominal Depth, mm	Variations from Specified Length for Lengths Given, mm			
	9000 and under		Over 9000	
	Over	Under	Over	Under
Beams 610 mm and under	10	10	10 plus 1 for each additional 1000 mm or fraction there of	10
Beams over 610 mm and all columns	13	13	13 plus 1 for each additiona 1000 mm or fraction thereof	13

Notes: For W and HP shapes used as bearing piles, the length tolerance is $+125 \mathrm{~mm},-0 \mathrm{~mm}$.
The permitted variations in end out-of-square for W and HP shapes shall be 0.016 mm per mm of depth, or per mm of flange width if the flange width is larger than the depth, rounded to the nearest mm. See ASTM A6/ A6M.

PERMISSIBLE VARIATIONS IN LENGTH FOR S, M, C, MC, L, AND T SHAPES

Nominal Size, mm (Greatest Cross-sectional Dimension)	Variations from Specified Length for Lengths Given, mm											
	$\begin{gathered} 1500 \text { to } \\ 3000 \text { excl. } \end{gathered}$		$\begin{aligned} & 3000 \text { to } \\ & 6000 \text { excl. } \end{aligned}$		$\begin{aligned} & 6000 \text { to } \\ & 9000 \text { incl. } \end{aligned}$		Over 9000 to 12000 incl .		Over 12000 to 20000 incl .		Over 20000	
	Over	Under										
Under 75	16	0	25	0	38	0	51	0	64	0	-	-
75 and over	25	0	38	0	45	0	57	0	70	0	-	-

Note: Where "__" appears in this table, there is no requirement. See ASTM A6 /A6M.

PERMISSIBLE VARIATIONS IN SECTION DIMENSIONS FOR S, M, C AND MC SHAPES

*Web off-centre tolerance is 5 mm .
** Back of square and centreline of web to be parallel when measuring out-of-square.
" A " is measured at centreline of web for beams and at back of web for channels.

Mass and Area Tolerances

Structural-size shapes - cross-sectional area or mass: $\pm 2.5 \%$ from theoretical.

Tolerances for Angles

Permissible variations for cross-sectional dimensions of bar-size angles (defined as rolled angles having maximum cross-sectional dimensions less than 75 mm), differ from structural size angles, and both variations are given in the following table (see ASTM A6 / A6M).

Structural Size Angles				Bar-Size Angles**					
Specified Size*, mm	Length of Leg, B, mm		Out-of- Square T/B	Specified Size*, mm	Variations from Thickness Given, mm			Variations from Length of Leg Over and Under, mm	
	Over	Under			5 and under	Over 5 to 10 incl .	Over 10		
Over 64 to 102 incl.	3	2	0.026	25 and Under	0.2	0.2	-	1	
Over 102 to 152 incl.	3	3	0.026	Over 25 to 51 incl.	0.2	0.2	0.3	1	
Over 152 to 203 incl.	5	3	0.026	Over 51 to 64 incl.	0.3	0.4	0.4	2	
Over 203 to 254 incl.	6	6	0.026	Note: Where "_ " appears in this table, there is no requirement. - For unequal-leg angles, longer leg determines classification. ** Permissible out-of-square in either direction is 1.5 degrees.					
Over 254	6	10	0.026						

HOLLOW STRUCTURAL SECTIONS (HSS)

General

Production information and tolerances given below correspond to HSS produced in accordance with CSA G40.20/G40.21, unless noted otherwise.

Class

Class H means hollow sections made by:
(i) A seamless or furnace-butt-welded (continuous-welded) or automatic electric welding process hot-formed to final shape; or
(ii) A seamless or automatic electric welding process producing a continuous weld, and cold-formed to final shape, subsequently stress-relieved by beating to a temperature of $450^{\circ} \mathrm{C}$ or higher, followed by cooling in air.

Class C means HSS that are cold-formed from a section produced by a seamless process or by an automatic electric welding process producing a continuous weld.

Cross-Sectional Dimensions

Outside dimensions measured across the flats or diameter at positions at least 50 mm from either end of a piece, including an allowance for convexity or concavity, shall not vary from the specified dimensions of the section by more than the prescribed tolerances.

Largest Outside Dimension Across Flats or Diameter, mm Tolerance* mm To 65 ± 0.5 Over $65-90$ incl. ± 0.8 Over $90-140$ incl. ± 1.0 Over 140 $\pm 1 \%$${ }^{2}$	

* Tolerance includes allowance for convexity or concavity. Tolerance may be increased by 50 percent when applied to the smaller dimension of rectangular sections whose ratio of cross-sectional dimensions is between 1.5 and 3, and by 100 percent when this ratio exceeds 3 .

Corner Squareness

For rectangular sections, corners shall be square $\left(90^{\circ}\right)$ within $\pm 1^{\circ}$ for hot-formed sections and $\pm 2^{\circ}$ for cold-formed sections, with the average slope of the sides being the basis for determination.

Straightness Variation

Deviation from straightness in millimetres shall not exceed the total length in millimetres divided by 500 .

Permissible Twist

Twist of a rectangular section, measured by holding down the side of one end of the section on a flat surface and noting the height above the surface of either comer at the opposite end of that side, shall not exceed the prescribed tolerances:

Largest Outside Dimension, mm	Maximum Twist per $\mathbf{1 0 0 0} \mathbf{~ m m}$ of Length, mm
To 40 incl.	1.3
Over $40-65$ incl.	1.7
Over $65-105$ incl.	2.1
Over $105-155$ incl.	2.4
Over $155-205$ incl.	2.8
Over 205	3.1

Cutting Tolerances

Tolerances on ordered cold-cut lengths are:
+12 and -6 millimetres for lengths 7500 mm and under;
+18 and -6 millimetres for lengths over 7500 mm .
Tolerances on ordered hot-cut lengths of hot rolled sections are:
± 25 millimetres for lengths 7500 mm and under;
± 50 millimetres for lengths over 7500 mm .

Mass Variation - CSA G40.20, ASTM A1085, and ASTM A500

For HSS produced to CSA G40,20 and to ASTM A1085 and based on a mass density of $7850 \mathrm{~kg} / \mathrm{m}^{3}$, the actual mass shall not deviate from the published mass by more than -3.5% or $+10 \%$. For HSS produced to ASTM A500, there is no restriction on mass variation.

Wall Thickness - CSA G40.20, ASTM A1085 and ASTM A500

For HSS produced to CSA G40.20 and to ASTM A1085, the tolerance on the wall thickness is not more than -5% or $+10 \%$ from the nominal specified wall thickness, except for the weld seam. For ASTM A500, the tolerance is not more than $\pm 10 \%$ from the nominal wall thickness, except for the weld seam.

Outside Corner Radius Tolerances for Square and Rectangular HSS
CSA G40.20

Wall Thickness mm	Maximum Outside Corner Radii, mm	
	Perimeter to 700 mm Incl.	Perimeter Over 700 mm
Ta 3 incl.	6	-
Over 3-4 incl.	8	-
Over 4-5 incl.	15	-
Over 5-6 incl.	18	18
Over 6-8 incl.	21	24
Over 8 - 10 incl.	27	30
Over 10-13 incl.	36	39
Over 13	-	$3 \times$ wall thickness

For HSS produced to ASTM A500, the radius of outside corners shall not exceed three times the specified wall thickness. For ASTM A1085, the outside corner radius shall meet the following requirements, where t is the wall thickness:
$t \leq 10.2 \mathrm{~mm}, 1.6 t \leq$ corner radius $\leq 3.0 t$
$t>10.2 \mathrm{~mm}, 1.8 t \leq$ corner radius $\leq 3.0 t$

PRINCIPAL SOURCES OF STRUCTURAL STEEL SECTIONS

General

Standard Canadian and North American sections can be supplied by a number of steel mills in Canada and elsewhere. Principal sources for the various section sizes listed in this Handbook are indicated below.

In 2010, Essar Steel Algoma Inc. withdrew from the production of welded wide-flange (WWF) sections.

W-Shapes

In 1999, Algoma Steel Inc. (Essar Steel Algoma Inc.), the sole Canadian producer of W and HP-shapes for three decades, announced its withdrawal from the rolled shape market. W-shapes most commonly used in North America today are ASTM A992 products. Some of the very heavy sections are produced to ASTM A913.

Channel and Angle Sections

Most channels and angles listed in Part 6 are available from Canadian mills. Imported sizes are identified by an asterisk (*) in tables of Properties and Dimensions. In general, all sizes should be specified to the CSA G40.20/G40,21 material standards. Gerdau operates several North American mills that typically produce channels and angles certified to multiple grades, including CSA G40.21-350W and 300W, and ASTM 572 Grade 50.

Hollow Structural Sections

Both CSA G40.20/G40.21 and ASTM A500 HSS are produced in Canada. Jumbo HSS are the exceptions; they are identified as imports by an asterisk (*) in tables of Properties and Dimensions. A500 products are not a direct substitute for G40,21-350W HSS. In the section entitled Hollow Structural Sections, the text preceding the tables of Properties and Dimensions highlights the differences between these two products.

Principal Sources

Some of the more common sources (for Canada) of structural sections and other products are listed below. Producers' catalogs should be consulted for more information and details about other products produced. This list is a general guide and is not necessarily complete,

```
ArcelorMittal Canada (bars, sheet steel)
ArcelorMittal International Canada * (shapes, plate, bars, HSS)
Atlas Tube Canada ULC (HSS)
Essar Steel Algoma Inc. (plate, checkered floor plate, coil)
Evraz North America * (pipe, plate, coil)
Gerdau (angles, channels, bars)
Gerdau - Texas Steel Mill * (shapes)
Nucor Corporation* (plate, bars, sheet steel)
Nucor-Yamato Steel Company * (shapes)
SSAB Central Inc., (sheet steel, plate)
Steel Dynamics Inc. * (shapes, sheet steel)
Welded Tube of Canada (HSS, pipe)
```

* non-Canadian sources

Note: Since not all of the above are members of CISC, please visit the CISC website (www.cisc-icca.ca) to view the current list of CISC mill and steel service centre members.

Availability

Section sizes are generally produced according to production (rolling) schedules. Steel producers and service centres carry various inventories, usually of the more commonly used sections, and serve as a buffer between production cycles to provide ready availability of material. The designer should consider material availability when specifying section sizes, particularly for the heavier mass per metre sizes in a nominal size range and for small quantities of the less commonly used sizes.

Because regional availability of steel products varies, information on the availability of particular sizes can be obtained from local steel fabricators, producers, and service centres. In order to provide approximate guidance on general availability, this Handbook adopts the following convention:

- 1-shapes (all W, HP, S and M sections are imported): readily available sizes are highlighted in yellow.
- Other sections (the majority of channels, angles and HSS are produced in Canada): imported sizes are labelled with an asterisk (*).

Table $6-8$ shows the primary and secondary grades for common steel shapes in terms of general availability and usage,

METRIC AND IMPERIAL SHAPES

General

In Canada, the official size designation for structural steel sections for purposes of design, detailing and ordering material is the metric (SI) designation. Canadian and North American sections may also be defined using imperial designations; however, all tables of properties and dimensions, and all design tables included elsewhere in this Handbook generally provide only metric properties and metric design information.

General requirements for rolled and welded shapes are specified in CSA Standard G40.20/21, which refers mostly to ASTM A6/A6M for the designation and dimensions of rolled shapes. Tables on the following pages list metric (SI) designations and corresponding imperial designations.

W, HP, S, M, C and MC Shapes

The metric designation is the nominal depth in millimetres times the nominal mass in kilograms per metre, and the corresponding imperial designation is expressed in inches $\times \mathrm{lb} / \mathrm{ft}$.

Angles (L)

The metric size description given in this Handbook is expressed as leg lengths in whole millimetres and thickness in millimetres to two significant figures, while the imperial description is expressed as leg lengths in inches and thickness in fractional inches.

Hollow Structural Sections (HSS)

The metric size description of square, rectangular and round hollow structural sections is expressed as the outside dimensions in whole millimetres times the nominal wall thickness in millimetres to two significant figures. The imperial description consists of the outside dimensions in inches and the nominal wall thickness in decimal inches.

Weided Sections

Welded wide-flange (WWF) and welded reduced-flange (WRF) sections must be produced to CSA Standard G40.20/21, whereas welded three-plate sections are generally fabricated to the requirements of CSA Standard W59. The major producer of WWF and WRF sections discontinued production in 2010. Data for these sections are no longer provided in this Handbook.

METRIC SHAPES

Metric (SI) designations for rolled shapes in this Handbook generally comply with ASTM A6/A6M except for sections also listed in CSA Standard G312.3-M92 "Metric Dimensions for Structural Steel Shapes and Hollow Structural Sections". For a number of section sizes, the respective metric designations in the two standards are slightly different. In many cases, the principal difference involves a decimal digit in the nominal mass based on A6. These sections are listed in the comparison table below, with the imperial designation also provided for reference purposes. For other sections not listed, metric designations given in this Handbook are the same as in A6/A6M.

In the case of angles, the only difference between the respective metric size descriptions involves a decimal digit in the nominal leg thickness based on A6 for thicknesses greater than 9.5 mm . Since the leg widths are identical according to both standards, only the thicknesses are listed.

Handbook	A6/A6M	
Metric	Metric	Imperial
W Shapes		
W410x74	W410x75	W16x50
W410x54	W410x53	W16x36
W410x46	W410x46.1	W16x31
W410x39	W410x38.8	W16x26
W 360×57	W360x58	W14×38
W360x45	W360×44.6	W14×30
W360x39	W360×39.0	W14×26
W360x33	W360x32.9	W14×22
W310x118	W310x+17	W12x79
W310×45	W310x44.5	W12x30
W310x39	W310x38.7	W12x26
W310x33	W310x32.7	W12x22
W310x28	W310x28.3	W 12×19
W310x24	W310x23.8	W12×16
W310x21	W310x21.0	W12×14
W250x49	W250x49.1	W10x33
W250x45	W250x44.8	W10x30
W250×39	W250x38.5	W10x26
W250x33	W250x32.7	W10x22
W 250×28	W250x28.4	W10x19
W250x25	W250x25.3	W10x17
W250x22	W250x22.3	W10×15
W250×18	W250×17.9	W10x12

Handbook	A6/A6M	
Metric	Metric	Imperial
W Shapes (Cont'd)		
W200x46	W200x46.1	W8×31
W200×42	W200x41.7	W8×28
W200x36	W200×35.9	W8×24
W200x31	W 200×31.3	W8×21
W200x27	W200x26.6	W8x18
W200x22	W200x22.5	W8×15
W200x19	W200×19.3	W8x 13
W200×15	W200×15.0	W8×10
W 450×37	W150x37.1	W6x25
W150x30	W150x29.8	W6x20
W150x24	W150×24.0	W6x16
W150x22	W150x22.5	W6x15
W150×18	W150×18.0	W6x12
W150x14	W 150×13.5	W6x9
W150x13	W150×13.0	W6x8.5
W130×28	W130×28.1	W5x19
W130×24	W130×23.8	W5 $\times 16$
W100×19	W100×19.3	W4×13

METRIC SHAPES (Cont'd)

Handbook	A6/A6M	
Metric	Metric	Imperial
HP Shapes		
HP310x94	HP310x93	HP12x63
HP200x54	HP200x53	HP8x36
S Shapes		
S510x98.2	S510x98	S20x66
S310×47	S310x47.3	S12x31.8
S250x38	S250x37.8	S10x25.4
S200×27	S200x27,4	S8×18.4
S150×26	S150x25.7	S6x17.25
S150×19	S150×18.6	S6x12.5
S100x11	S100×11.5	S 4×7.7
S75×11	S75×11.2	S3x7.5
S75x8	S75x8.5	S3x5,7
C Shapes		
C380x50	C380×50.4	C15x33.9
C310x31	C310x30.8	C12x20.7
C250x23	C250×22.8	C10×15.3
C230x20	C230×19.9	C9×13.4
C200x28	C200x27.9	C8×18.75
C200x21	C200×20.5	C8x13.75
C200x17	C200x 17.1	C8×11.5
C180×18	C180×18.2	C7x12.25
C180×15	C180×14.6	C7x9.8
C150×19	C150×19.3	C6x13
C150×16	C150×15,6	C6x10.5
C150×12	C150×12.2	C6x8.2
C130×10	C130×10.4	C5x6.7
C100x11	C100×10.8	C4x 7.25
C100x9	C100×9.3	C4×6.25
C100x7	C100x6.7	C4×4.5
C75x9	C75×8.9	C3x6
C75×7	C75x7.4	C3x5
C75x6	C75×6.1	C3x4.1
C75×5	C75×5.2	C3x3.5

Handbook	A6/A6M	
mm	mm	in.
L Shapes - Leg Thicknesses > 9.5 mm		
35	34.9	$13 / 8$
32	31.8	$11 / 4$
29	28.6	$11 / 8$
25	25.4	1
22	22.2	$7 / 8$
19	$19.1 / 19.0$	$3 / 4$
16	15.9	$5 / 8$
14	14.3	$9 / 16$
13	12.7	$1 / 2$
11	11.1	$7 / 16$

DESIGNATION TABLE FOR W SHAPES

Canadian (SI) Designation ($\mathrm{mm} \times \mathrm{kg} / \mathrm{m}$)	Imperial Designation (in. x lb./ft.)	Canadian (SI) Designation ($\mathrm{mm} \times \mathrm{kg} / \mathrm{m}$)	Imperial Designation (in. x lb./ft.)	Canadian (SI) Designation ($\mathrm{mm} \times \mathrm{kg} / \mathrm{m}$)	imperial Designation (in. $x \mid \mathrm{lb} . / \mathrm{ft}$.)
W1100×499	W44×335	W840x576	W33x387	W610×551	W24×370
$\times 433$	$\times 290$	$\times 527$	$\times 354$	$\times 498$	$\times 335$
x390	$\times 262$	$\times 473$	$\times 318$	$\times 455$	$\times 306$
$\times 343$	$\times 230$	$\times 433$	$\times 291$	$\times 415$	$\times 279$
		$\times 392$	$\times 263$	x372	$\times 250$
W1000×976	W40×655	$\times 359$	$\times 241$	$\times 341$	$\times 229$
$\times 883$	$\times 593$	$\times 329$	$\times 221$	$\times 307$	$\times 207$
$\times 748$	$\times 503$	$\times 299$	$\times 201$	$\times 285$	$\times 192$
$\times 642$	$\times 431$			$\times 262$	$\times 176$
$\times 591$	$\times 397$	W840x251	W33x169	$\times 241$	$\times 162$
$\times 554$	$\times 372$	$\times 226$	$\times 152$	$\times 217$	$\times 146$
$\times 539$	$\times 362$	$\times 210$	$\times 141$	$\times 195$	$\times 131$
$\times 483$	$\times 324$	$\times 193$	$\times 130$	$\times 174$	$\times 117$
$\times 443$	$\times 297$	$\times 176$	$\times 118$	$\times 155$	$\times 104$
$\times 412$	$\times 277$				
$\times 371$	$\times 249$	W760x582	W30x391	W610x153	W24×103
$\times 321$	$\times 215$	$\times 531$	$\times 357$	x140	x94
$\times 296$	$\times 199$	$\times 484$	$\times 326$	$\times 125$	$\times 84$
		$\times 434$	$\times 292$	$\times 113$	$\times 76$
W1000×584	W40x392	$\times 389$	$\times 261$	$\times 101$	$\times 68$
$\times 494$	x331	$\times 350$	$\times 235$		
$\times 486$	$\times 327$	$\times 314$	$\times 211$	W610x92	W24x62
$\times 438$	$\times 294$	$\times 284$	$\times 191$	x82	$\times 55$
$\times 415$	$\times 278$	$\times 257$	$\times 173$		
$\times 393$	$\times 264$			W530x409	W21×275
$\times 350$	$\times 235$	W760x220	W30×148	$\times 369$	x248
x314	$\times 211$	$\times 196$	$\times 132$	$\times 332$	$\times 223$
$\times 272$	$\times 183$	$\times 185$	$\times 124$	x300	$\times 201$
$\times 249$	$\times 167$	$\times 173$	$\times 116$	$\times 272$	$\times 182$
$\times 222$	$\times 149$	$\times 161$	$\times 108$	x248	$\times 166$
		$\times 147$	$\times 99$	$\times 219$	$\times 147$
W920×1377	W36x925	$\times 134$	$\times 90$	$\times 196$	$\times 132$
×1269	$\times 853$			$\times 182$	$\times 122$
$\times 1194$	$\times 802$	W690x802	W27×539	$\times 165$	$\times 111$
$\times 1077$ $\times 970$	$\times 723$ $\times 652$	$\times 548$ $\times 500$	P368 $\times 336$	$\times 150$	$\times 101$
$\times 970$ $\times 787$	x $\times 652$ $\times 529$	$\times 500$ $\times 457$	+ $\times 336$ $\times 307$		
$\times 725$	$\times 487$	+ $\times 419$	$\times 281$	W530x138 $\times 123$	W21×93 $\times 83$
$\times 656$	$\times 441$	$\times 384$	$\times 258$	$\times 109$	$\times 73$
$\times 588$	$\times 395$	$\times 350$	$\times 235$	$\times 101$	$\times 68$
$\times 537$	$\times 361$	$\times 323$	$\times 217$	$\times 92$	$\times 62$
$\times 491$	$\times 330$	$\times 289$	$\times 194$	$\times 82$	$\times 55$
$\times 449$	$\times 302$	$\times 265$	$\times 178$	$\times 72$	$\times 48$
$\times 420$	$\times 282$	$\times 240$	$\times 161$		
$\times 390$ $\times 368$	+262	$\times 217$	$\times 146$	W530x85	W21×57
$\times 368$ $\times 344$	$\times 2627$ $\times 231$	W690x192	W27x129		$\times 50$ $\times 44$
		+170	$\times 114$		
W920x381	W36x256	$\times 152$	$\times 102$		
$\times 345$ $\times 313$	$\times 232$	$\times 140$	$\times 94$		
+271	x $\times 182$ $\times 170$				
$\times 253$	$\times 170$				
$\times 238$	$\times 160$				
$\times 223$ $\times 201$	$\times 150$ $\times 135$				

DESIGNATION TABLE FOR W SHAPES

Canadian (SI) Designation ($\mathrm{mm} \times \mathrm{kg} / \mathrm{m}$)	Imperial Designation (in. x lb.ft.)
W460×464	W18x311
$\times 421$	$\times 283$
$\times 384$	$\times 258$
$\times 349$	$\times 234$
$\times 315$	$\times 211$
$\times 286$	$\times 192$
$\times 260$	$\times 175$
$\times 235$	$\times 158$
$\times 213$	$\times 143$
$\times 193$	$\times 130$
$\times 177$	$\times 119$
$\times 158$	$\times 106$
$\times 144$	$\times 97$
$\times 128$	$\times 86$
$\times 113$	$\times 76$
W460×106	W18x71
$\times 97$	$\times 65$
$\times 89$	$\times 60$
$\times 82$	$\times 55$
x74	$\times 50$
W460x68	W18×46
$\times 60$	$\times 40$
$\times 52$	$\times 35$
W410x149	W16x100
$\times 132$	$\times 89$
$\times 114$	$\times 77$
$\times 100$	$\times 67$
W410x85	W16x57
x 74	x50
$\times 67$	$\times 45$
$\times 60$	$\times 40$
$\times 54$	$\times 36$
W410x46	W16x31
$\times 39$	x26
W360×1299	W14x873
$\times 1202$	$\times 808$
$\times 1086$	$\times 730$
$\times 990$	$\times 665$
$\times 900$	$\times 605$
$\times 818$	$\times 550$
$\times 744$	$\times 500$
$\times 677$	$\times 455$
$\times 634$	$\times 426$
$\times 592$	$\times 398$
$\times 551$	$\times 370$
$\times 509$	$\times 342$
$\times 463$	$\times 311$
$\times 421$	$\times 283$
$\times 382$	$\times 257$
$\times 347$	$\times 233$
$\times 314$	$\times 211$
$\times 287$	$\times 193$
$\times 262$	$\times 176$
$\times 237$	$\times 159$
$\times 216$	$\times 145$

Canadian (SI) Designation ($\mathrm{mm} \times \mathrm{kg} / \mathrm{m}$)	Imperial Designation (in. $\times \mathrm{lb} . / \mathrm{ft}$.)
$\begin{array}{r} \text { W360×196 } \\ \times 179 \\ \times 162 \\ \times 147 \\ \times 134 \end{array}$	$\begin{array}{r} W 14 \times 132 \\ \times 120 \\ \times 109 \\ \times 99 \\ \times 90 \end{array}$
$\begin{array}{r} \text { W360x122 } \\ \times 110 \\ \times 101 \\ \times 91 \end{array}$	W14×82 $\times 74$ $\times 68$ $\times 61$
$\begin{array}{r} \text { W } 360 \times 79 \\ \times 72 \\ \times 64 \end{array}$	$\begin{array}{r} W 14 \times 53 \\ \times 48 \\ \times 43 \end{array}$
$\begin{array}{r} \text { W360 } \times 57 \\ \times 51 \\ \times 45 \end{array}$	$\begin{array}{r} \text { W14×38 } \\ \times 34 \\ \times 30 \end{array}$
$\begin{array}{r} \text { W380 } \times 39 \\ \times 33 \end{array}$	$\begin{array}{r} W 14 \times 26 \\ \times 22 \end{array}$
$\begin{array}{r} \text { W310×500 } \\ \times 454 \\ \times 415 \\ \times 375 \\ \times 342 \\ \times 313 \\ \times 283 \\ \times 253 \\ \times 226 \\ \times 202 \\ \times 179 \\ \times 158 \\ \times 143 \\ \times 129 \\ \times 118 \\ \times 107 \\ \times 97 \end{array}$	$\begin{array}{r} \mathrm{W} 12 \times 336 \\ \times 305 \\ \times 279 \\ \times 252 \\ \times 230 \\ \times 210 \\ \times 190 \\ \times 170 \\ \times 152 \\ \times 136 \\ \times 120 \\ \times 106 \\ \times 96 \\ \times 87 \\ \times 79 \\ \times 76 \\ \times 65 \end{array}$
$\begin{array}{r} \text { W310×86 } \\ \times 79 \end{array}$	$\begin{array}{r} W \\ \\ \hline \end{array}$
$\begin{array}{r} \text { W } 310 \times 74 \\ \times 67 \\ \times 60 \end{array}$	$\begin{array}{r} \text { W12 } \times 50 \\ \times 45 \\ \times 40 \end{array}$
$\begin{array}{r} W 310 \times 52 \\ \times 45 \\ \times 39 \end{array}$	$\begin{array}{r} W 12 \times 35 \\ \times 30 \\ \times 26 \end{array}$
$\begin{array}{r} \text { W310 } \times 33 \\ \times 28 \\ \times 24 \\ \times 21 \end{array}$	$\begin{array}{r} \text { W } 12 \times 22 \\ \times 19 \\ \times 16 \\ \times 14 \end{array}$

Canadian (SI) Designation ($\mathrm{mm} \times \mathrm{kg} / \mathrm{m}$)	Imperial Designation (in. x lb./ft.)
$\begin{array}{r} \text { W250×167 } \\ \times 149 \\ \times 131 \\ \times 115 \\ \times 101 \\ \times 89 \\ \times 80 \\ \times 73 \end{array}$	$\begin{array}{r} \text { W10×112 } \\ \times 100 \\ \times 88 \\ \times 77 \\ \times 68 \\ \times 60 \\ \times 54 \\ \times 49 \end{array}$
$\begin{array}{r} W 250 \times 67 \\ \times 58 \\ \times 49 \end{array}$	W10x45 $\begin{array}{r} \times 39 \\ \times 33 \\ \times 33 \end{array}$
$\begin{array}{r} \text { W } 250 \times 45 \\ \times 39 \\ \times 33 \end{array}$	W10x30 x26 $\times 22$
$\begin{array}{r} W 250 \times 28 \\ \times 25 \\ \times 22 \\ \times 18 \end{array}$	$\begin{array}{r} \text { W10×19 } \\ \times 17 \\ \times 15 \\ \times 12 \end{array}$
$\begin{array}{r} \text { W200x } 100 \\ \times 86 \\ \times 71 \\ \times 59 \\ \times 52 \\ \times 46 \end{array}$	$\begin{array}{r} \text { W8x67 } \\ \times 58 \\ \times 48 \\ \times 40 \\ \times 35 \\ \times 31 \end{array}$
$\begin{array}{r} W 200 \times 42 \\ \times 36 \end{array}$	$\begin{array}{r} W 8 \times 28 \\ \times 24 \end{array}$
$\begin{array}{r} W 200 \times 31 \\ \times 27 \end{array}$	$\begin{array}{r} W 8 \times 21 \\ \times 18 \end{array}$
$\begin{array}{r} W 200 \times 22 \\ \times 19 \\ \times 15 \end{array}$	$\begin{array}{r} W 8 \times 15 \\ \times 13 \\ \times 10 \end{array}$
$\begin{array}{r} \text { W150×37 } \\ \times 30 \\ \times 22 \end{array}$	$\begin{array}{r} W 6 \times 25 \\ \times 20 \\ \times 15 \end{array}$
$\begin{array}{r} \text { W150 } 24 \\ \times 18 \\ \times 14 \\ \times 13 \end{array}$	$\begin{array}{r} \text { W6x16 } \\ \times 12 \\ \times 9 \\ \times 8.5 \end{array}$
$\begin{array}{r} W 130 \times 28 \\ \times 24 \end{array}$	$\begin{array}{r} W 5 \times 19 \\ \times 16 \end{array}$
W100x19	W4×13

DESIGNATION TABLE FOR HP, M, S, C, MC SHAPES

Canadian (SI) Designation ($\mathrm{mm} \times \mathrm{kg} / \mathrm{m}$)	Designation (in. x lb./ft.)	Canadian (SI) Designation ($\mathrm{mm} \times \mathrm{kg} / \mathrm{m}$)	Imperial Designation (in. x lb.ft.)	Canadian (SI) Designation ($\mathrm{mm} \times \mathrm{kg} / \mathrm{m}$)	Imperial Designation (in. $\mathrm{x} \mathrm{lb}, / \mathrm{ft}$.)
$\begin{array}{r} H P 460 \times 304 \\ \times 269 \\ \times 234 \\ \times 202 \end{array}$	$\begin{array}{r} H P 18 \times 204 \\ \times 181 \\ \times 157 \\ \times 135 \end{array}$	$\begin{array}{r} S 460 \times 104 \\ \times 81,4 \end{array}$	$\begin{array}{r} \mathrm{S} 18 \times 70 \\ \times 54.7 \end{array}$	675×9 $\times 7$ $\times 6$ $\times 5$	$\begin{array}{r}C 3 \times 6 \\ \times 5 \\ \times 4.1 \\ \times 3.5 \\ \hline\end{array}$
HP410x272	HP16x183	S310×74		MC460×86	MC18x58
$\times 242$	$\times 162$			$\times 77.2$$\times 68.2$	x51.9
$\times 211$	$\times 141$	$\begin{array}{r} \text { S310x74 } \\ \times 60.7 \end{array}$	$\begin{array}{r} \mathrm{S} 12 \times 50 \\ \times 40.8 \end{array}$		
$\times 181$	$\times 121$	S310x52		$\times 63.5$	$\times 42.7$
$\times 151$	$\times 101$		$\begin{array}{r} \mathrm{S} 12 \times 35 \\ \times 31,8 \end{array}$		
$\times 131$	$\times 88$	$\times 47$		MC330×74$\times 60$	MC13×50
					$\times 40$
HP360×174	HP 14×117	S250×52$\times 38$	$\begin{array}{r} \mathrm{S} 10 \times 35 \\ \times 25,4 \end{array}$	$\times 52$$\times 47.3$	$\times 35$$\times 31.8$
+152	-102				
$\times 132$	$\times 89$	$\begin{array}{r} 5200 \times 34 \\ \times 27 \end{array}$		MC310x74$\times 67$	MC12×50
$\times 108$	$\times 73$		$\begin{array}{r} 58 \times 23 \\ \times 18.4 \end{array}$		
					$\times 45$
HP310x132	HP12x89	S150×26	S6×17.25	$\times 60$$\times 52$	$\times 40$
$\times 125$	x84				$\begin{array}{r} \times 35 \\ \times 31 \end{array}$
$\times 110$$\times 94$	x74	$\begin{array}{r} S 150 \times 26 \\ \times 19 \end{array}$	$\times 12.5$	x46	
	$\times 63$				
$\times 79$	$\times 53$	S100×14.1	S5×10	MC310×21.3	MC12x14.3
$\begin{array}{r} \text { HP250×85 } \\ \times 62 \end{array}$	$\begin{array}{r} \text { HP10×57 } \\ \times 42 \end{array}$		$\begin{array}{r} S 4 \times 9.5 \\ \times 7.7 \end{array}$	MC310x 15.8	MC12×10.6
		$\begin{array}{r} \mathrm{S} 100 \times 14.1 \\ \times 11 \end{array}$			
				$\begin{array}{r} \text { MC250 } 61.2 \\ \times 50 \\ \times 42.4 \end{array}$	$\begin{array}{r} \text { MC10 } \times 41.1 \\ \times 33.6 \\ \times 28,5 \end{array}$
HP200×54	HP8x36	$\begin{array}{r} 575 \times 11 \\ \times 8 \\ \hline \end{array}$	$\begin{array}{r} S 3 \times 7.5 \\ \times 5.7 \\ \hline \end{array}$		
$\begin{array}{r} \text { M318×18.5 } \\ \times 17.3 \end{array}$	$\begin{array}{r} \text { M12.5 } \times 12.4 \\ \times 11.6 \end{array}$	$\begin{array}{r} \text { C380x74 } \\ \times 60 \\ \times 50 \end{array}$	$\begin{array}{r} \mathrm{C} 15 \times 50 \\ \times 40 \\ \times 33.9 \end{array}$	$\begin{array}{r} M C 250 \times 37 \\ \times 33 \end{array}$	$\begin{array}{r} \text { MC10×25 } \\ \times 22 \end{array}$
$\begin{array}{r} \text { M310 } \times 17.6 \\ \times 16.1 \\ \times 14.9 \end{array}$	$\begin{array}{r} M 12 \times 11.8 \\ \times 10.8 \\ \times 10.0 \end{array}$				
		C310×45		$\begin{array}{r} \text { MC250 } \\ \times 9.5 \\ \times 9.7 \end{array}$	$\begin{array}{r} \text { MC10×8.4 } \\ \times 6.5 \end{array}$
			$\begin{array}{r} \mathrm{C} 12 \times 30 \\ \times 25 \\ \times 007 \end{array}$		
		$\begin{array}{r} \times 37 \\ \times 31 \end{array}$			
$\begin{array}{r} \text { M } 250 \times 13.4 \\ \times 11.9 \\ \times 11.2 \end{array}$	$\begin{array}{r} M 10 \times 5.0 \\ \times 8.0 \\ \times 7.5 \end{array}$		$\times 20.7$	$\begin{array}{r} \text { MC230×37.8 } \\ \times 35.6 \end{array}$	$\begin{array}{r} \text { MC9×25.4 } \\ \times 23.9 \end{array}$
		$\begin{array}{r} \mathrm{C} 250 \times 45 \\ \times 37 \end{array}$	C10x30$\times 25$		
				MC200×33.9$\times 31.8$	$\begin{array}{r} \text { MC8 } \times 22.8 \\ \times 21.4 \end{array}$
$\begin{array}{r} \text { M200 } \times 9.7 \\ \times 9.2 \end{array}$	$\begin{array}{r} M 8 \times 6.5 \\ \times 6.2 \end{array}$	$\begin{array}{r} \times 30 \\ \times 23 \end{array}$	$\begin{array}{r} \times 20 \\ \times 15.3 \end{array}$		
$\begin{array}{r} \text { M150x6.6 } \\ \times 5.5 \end{array}$	$\begin{array}{r} M 6 \times 4.4 \\ \times 3.7 \end{array}$	C230x30	C9x20	$\begin{array}{r} \text { MC200 } 29.8 \\ \times 27.8 \end{array}$	$\begin{array}{r} M C 8 \times 20 \\ \times 18.7 \end{array}$
		$\times 22$	$\times 15$		
		$\times 20$	$\times 13.4$	MC200×12.6	MC8x8.5
M130×28.1	M 5×18.9	C200x28	$\begin{array}{r} C 8 \times 18.75 \\ \times 13.75 \\ \times 11.5 \end{array}$	$\begin{array}{r} \text { MC1 } 80 \times 33.8 \\ \times 28.4 \end{array}$	$\begin{array}{r} \text { MC7 } \times 22.7 \\ \times 19.1 \end{array}$
$\begin{array}{r} \mathrm{M} 100 \times 8.9 \\ \times 6.1 \end{array}$	$\begin{array}{r} M 4 \times 6.0 \\ \times 4.08 \end{array}$	$\begin{aligned} & \times 21 \\ & \times 17 \end{aligned}$			
	M 3×2.9	C180×22		$\begin{array}{r} \text { MC150×26.8 } \\ \times 22.8 \end{array}$	$\begin{array}{r} \text { MC6x } 18 \\ \times 15,3 \end{array}$
M75 4.3			C7x14.75		
$\begin{array}{r} \mathrm{S} 610 \times 180 \\ \times 158 \end{array}$	$\begin{array}{r} \mathrm{S} 24 \times 121 \\ \times 106 \end{array}$	$\begin{array}{r} \times 18 \\ \times 15 \end{array}$	$\begin{array}{r} \times 12.25 \\ \times 9.8 \end{array}$	$\begin{array}{r} \text { MC150×24.3 } \\ \times 22.5 \end{array}$	$\begin{array}{r} \text { MC6 } \times 16.3 \\ \times 15.1 \end{array}$
$\begin{array}{r} \mathrm{S} 610 \times 149 \\ \times 134 \\ \times 119 \end{array}$	$\begin{array}{r} S 24 \times 100 \\ \times 90 \\ \times 80 \end{array}$	$\begin{array}{r} C 150 \times 19 \\ \times 16 \\ \times 12 \end{array}$	$\begin{array}{r} C 6 \times 13 \\ \times 10.5 \\ \times 8.2 \end{array}$	MC150×17.9	
					MC6x12
				MC150× 10.4$\times 9.7$	$\begin{array}{r} \text { MC } 6 \times 7.0 \\ \times 6.5 \end{array}$
		$\begin{array}{r} \mathrm{C} 130 \times 13 \\ \times 10 \end{array}$	$\begin{array}{r} C 5 \times 9 \\ \times 6.7 \end{array}$		
$\begin{array}{r} \mathrm{S} 510 \times 143 \\ \times 128 \end{array}$	$\begin{array}{r} 520 \times 96 \\ \times 86 \end{array}$			MC100x20.5	MC4x 13.8
		C100×11	C4×7. 25	MC75×10.6	$M C 3 \times 7.1$
S510x112	$\begin{array}{r} 520 \times 75 \\ \times 66 \end{array}$	$\times 9$$\times 8$$\times 7$	$\times 6.25$		
$\times 98.2$			$\begin{array}{r} \times 5.4 \\ \times 4.5 \\ \hline \end{array}$		

ANGLES

SQUARE HSS

$\begin{gathered} \text { Canadian (SI) } \\ \text { Section } \\ (\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}) \end{gathered}$	Imperial Section （in．x in．x in．）	区	$\sum_{i=0}^{i o g}$	$\begin{gathered} \text { Canadian (SI) } \\ \text { Section } \\ (\mathrm{mm} \times m \mathrm{~m} \times \mathrm{mm}) \end{gathered}$	Imperial Section （in．x in．x in．）	《N N゙	$\sum 8$ $\begin{gathered}0 \\ 0 \\ 8\end{gathered}$
$559 \times 559 \times 19$	$22 \times 22 \times 0.750$	\checkmark		102× 102×13	$4 \times 4 \times 0.500$ $\times 0.375$	\checkmark	\checkmark
$508 \times 508 \times 22$	$20 \times 20 \times 0.875$	\checkmark		$\times 9.5$ $\times 7.9$	$\times 0.375$ $\times 0.313$	\checkmark	\checkmark
$508 \times 508 \times 22$ $\times 19$	$20 \times 20 \times 0.875$ $\times 0.750$	\checkmark		＋$\times 6.4$	＋ 0.250	\checkmark	\checkmark
$\times 16$	$\times 0.625$	\checkmark		$\times 4.8$	$\times 0.188$	\checkmark	\checkmark
$\times 13$	$\times 0.500$	\checkmark		＋3．2	$\times 0.125$	\checkmark	\checkmark
$457 \times 457 \times 22$	$18 \times 18 \times 0.875$	\checkmark		$89 \times 89 \times 9.5$	$3.5 \times 3.5 \times 0.375$	\checkmark	\checkmark
＋19	$\times 0.750$	\checkmark		＋ 7.9	＋ 0.313	\checkmark	\checkmark
$\times 16$	x 0.625	\checkmark		$\times 6.4$	＋ 0.250	\checkmark	\checkmark
$\times 13$	$\times 0.500$	\checkmark		$\times 4.8$	× 0.188	\checkmark	\checkmark
$406 \times 406 \times 22$	$16 \times 16 \times 0.875$	\checkmark		$76 \times 76 \times 9.5$	$3 \times 3 \times 0.375$	\checkmark	\checkmark
$\times 19$	$\times 0.750$	\checkmark		$\times 7.9$	＋ 0.313	\checkmark	\checkmark
$\times 16$	$\times 0.625$	\checkmark	\checkmark	$\times 6.4$	＋ 0.250	\checkmark	\checkmark
＋13	＋ 0.500	\checkmark	\checkmark	＋4．8	＋0．188	\checkmark	\checkmark
＋9．5	＋ 0.375	\checkmark	\checkmark	＋3．2	＋ 0.125	\checkmark	\checkmark
$356 \times 356 \times 16$	$14 \times 14 \times 0.625$	\checkmark	\checkmark	$64 \times 64 \times 6.4$	$2.5 \times 2.5 \times 0.250$	\checkmark	\checkmark
＋13	＋ 0.500	\checkmark	\checkmark	＋4．8	x 0.188	\checkmark	\checkmark
＋9．5	＋0．375	\checkmark	\checkmark	＋3．2	x 0.125	\checkmark	\checkmark
$\times 7.9$	$\times 0.313$	\checkmark	\checkmark				
				51x 51x 6.4	$2 \times 2 \times 0.250$	\checkmark	\checkmark
$305 \times 305 \times 16$	$12 \times 12 \times 0.625$	\checkmark	\checkmark	＋4．8	＋ 0.188	\checkmark	\checkmark
$\times 13$	$\times 0.500$	\checkmark	\checkmark	＋3．2	$\times 0.125$	\checkmark	\checkmark
＋9．5	× 0.375	\checkmark	\checkmark				
$\times 7.9$	＋ 0.313	\checkmark	\checkmark	$38 \times 38 \times 4.8$	$1.5 \times 1.5 \times 0.188$	\checkmark	\checkmark
$\times 6.4$	x 0.250	\checkmark	\checkmark	＋3．2	$\times 0.125$	\checkmark	\checkmark
$254 \times 254 \times 16$			\checkmark				
$\times 13$	＋0．500	\checkmark	\checkmark				
＋9．5	x 0.375	\checkmark	\checkmark				
$\times 7.9$	$\times 0.313$	\checkmark	\checkmark				
$\times 6.4$	＋ 0.250	\checkmark	\checkmark				
$\times 4.8$	$\times 0.188$	\checkmark	\checkmark				
$203 \times 203 \times 16$	$8 \times 8 \times 0.625$		\checkmark				
$\times 13$	－$\times 0.500$	\checkmark	\checkmark				
$\times 9.5$	＋ 0.375	\checkmark	\checkmark				
x 7.9	x 0.313	\checkmark	\checkmark				
＋6．4	＋ 0.250	\checkmark	\checkmark				
$\times 4.8$	$\times 0.188$	\checkmark	\checkmark				
178× 178×16	$7 \times 7 \times 0.625$	\checkmark	\checkmark				
－$\times 13$	7x $\times 0.500$	\checkmark	\checkmark				
$\times 9.5$	＋ 0.375	\checkmark	\checkmark				
＋7．9	＋ 0.313	\checkmark	\checkmark				
＋6．4	× 0.250	\checkmark	\checkmark				
$\times 4.8$	$\times 0.188$	\checkmark	\checkmark				
$152 \times 152 \times 13$	$6 \times 6 \times 0.500$	\checkmark					
$\times 9.5$	$\times 0.375$	\checkmark	\checkmark				
＋ 7.9	＋0．313	\checkmark	\checkmark				
$\times 6.4$	＋ 0.250	\checkmark	\checkmark				
$\times 4.8$	$\times 0.188$	\checkmark	\checkmark				
$127 \times 127 \times 13$	$5 \times 5 \times 0.500$	\checkmark	\checkmark				
127×9.5 $\times 7.9$	＋$\times 0.375$	\checkmark	\checkmark				
$\times 7.9$	X 0.313	\checkmark	\checkmark				
$\times 6.4$	＋ 0.250	\checkmark	\checkmark				
$\times 4.8$	＋0．188	\checkmark	\checkmark				
＋3．2	$\times 0.125$	\checkmark	\checkmark				

$\begin{gathered} \text { Canadian (SI) } \\ \text { Section } \\ (\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}) \end{gathered}$	Imperial Section (in. x in. x in.)	$\begin{aligned} & \mathbb{N} \\ & \text { Wi } \\ & \hline \text { N } \end{aligned}$	
$305 \times 203 \times 16$	$12 \times 8 \times 0.625$	\checkmark	\checkmark
r $\times 13$	$12 \times 8 \times 0.625$ $\times 0.500$	\checkmark	\checkmark
× 9.5	+ 0.375	\checkmark	\checkmark
+ 7.9	+0.313	\checkmark	\checkmark
$\times 6.4$	+ 0.250	\checkmark	\checkmark
$305 \times 152 \times 16$	$12 \times 6 \times 0.625$	\checkmark	\checkmark
- 13	+0.500	\checkmark	\checkmark
x 9.5	+0.375	\checkmark	\checkmark
$\times 7.9$	+0.313	\checkmark	\checkmark
$\times 8.4$	+0.250	\checkmark	\checkmark
$254 \times 203 \times 16$	$10 \times 8 \times 0.625$	\checkmark	\checkmark
- 13	x 0.500	\checkmark	\checkmark
+ 9.5	+ 0.375	\checkmark	\checkmark
$\times 7.9$	+ 0.313	\checkmark	\checkmark
x6.4	+ 0.250	\checkmark	\checkmark
$254 \times 152 \times 16$	$10 \times 6 \times 0.625$	\checkmark	\checkmark
-13	+ 0.500	\checkmark	\checkmark
x 9.5	+0,375	\checkmark	\checkmark
$\times 7.9$	$\times 0.313$	\checkmark	\checkmark
x 6.4	+0,250	\checkmark	\checkmark
$\times 4.8$	x 0.188	\checkmark	\checkmark
203x 152x 16	$8 \times 6 \times 0.625$	\checkmark	\checkmark
$\times 13$	+ 0.500	\checkmark	\checkmark
$\times 9.5$	+ 0.375	\checkmark	\checkmark
+ 7.9	$\times 0,313$	\checkmark	\checkmark
+6.4	+0.250	\checkmark	\checkmark
$\times 4.8$	+0.188	\checkmark	\checkmark
$203 \times 102 \times 13$	$8 \times 4 \times 0.500$	\checkmark	\checkmark
+ 9.5	er $\times 0.375$	\checkmark	\checkmark
+ 7.9	+0.313	\checkmark	\checkmark
x 6.4	+0.250	\checkmark	\checkmark
$\times 4.8$	+0.188	\checkmark	\checkmark
$178 \times 127 \times 13$	$7 \times 5 \times 0.500$	\checkmark	
P $\times 9.5$	+0.375	\checkmark	\checkmark
+ 7.9	+ 0.313	\checkmark	\checkmark
$\times 6.4$	+ 0.250	\checkmark	\checkmark
$\times 4.8$	+0.188	\checkmark	\checkmark
$152 \times 102 \times 13$	$6 \times 4 \times 0.500$	\checkmark	\checkmark
+ $\times 1.5$	+ $\times 0.375$	\checkmark	\checkmark
+ 7.9	+0.313	\checkmark	\checkmark
$\times 6.4$	+0.250	\checkmark	\checkmark
+4.8	+0,188	\checkmark	\checkmark
$\times 3.2$	× 0.125	\checkmark	\checkmark
$\begin{array}{r} 152 \times 76 \times 13 \\ \times 9.5 \end{array}$	$\begin{array}{r} 6 \times 3 \times 0.500 \\ \times 0.375 \end{array}$	\checkmark	\checkmark
+ 7.9	+0.313	\checkmark	\checkmark
$\times 6.4$	+ 0.250	\checkmark	\checkmark
$\times 4.8$	+ 0.188	\checkmark	\checkmark
+3.2	+0.125	\checkmark	\checkmark

ROUND HSS

$\begin{gathered} \text { Canadian (SI) } \\ \text { Section } \\ (\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}) \end{gathered}$	$\begin{aligned} & \text { Imperial } \\ & \text { Section } \\ & \text { (in. } \mathrm{x} \text { in. } \mathrm{x} \text { in.) } \end{aligned}$	$\begin{aligned} & \mathbb{N} \\ & \text { Wi } \\ & \hline \text { O. } \end{aligned}$	
$\begin{array}{r} 508 \times 13 \\ \times 9.5 \\ \times 6.4 \end{array}$	$\begin{array}{r} 20 \times 0.500 \\ \times 0.375 \\ \times 0.250 \end{array}$		$\begin{aligned} & \checkmark \\ & \checkmark \end{aligned}$
$\begin{array}{r} 457 \times 13 \\ \times 9.5 \\ \times 6.4 \end{array}$	$\begin{array}{r} 18 \times 0.500 \\ \times 0.375 \\ \times 0.250 \end{array}$		$\begin{aligned} & \checkmark \\ & \checkmark \\ & \checkmark \end{aligned}$
$\begin{array}{r} 406 \times 16 \\ \times 13 \\ \times 9.5 \\ \times 6.4 \end{array}$	$\begin{array}{r} 16 \times 0.625 \\ \times 0.500 \\ \times 0.375 \\ \times 0.250 \end{array}$	7 \checkmark 7	
$\begin{array}{r} 356 \times 13 \\ \times 9.5 \\ \times 6.4 \end{array}$	$\begin{array}{r} 14 \times 0.500 \\ \times 0.375 \\ \times 0.250 \end{array}$	\checkmark	
$\begin{array}{r} 324 \times 13 \\ \times 9.5 \\ \times 6.4 \end{array}$	$\begin{array}{r} 12.75 \times 0.500 \\ \times 0.375 \\ \times 0.250 \end{array}$	\checkmark	\checkmark
$\begin{array}{r} 273 \times 13 \\ \times 9.5 \\ \times 7.9 \\ \times 6.4 \\ \times 4.8 \end{array}$	$\begin{array}{r} 10.75 \times 0.500 \\ \times 0.375 \\ \times 0.313 \\ \times 0.250 \\ \times 0.188 \end{array}$	7 \checkmark \checkmark 7	\checkmark \checkmark \checkmark \checkmark \checkmark
245×9.5 $\times 6.4$	$\begin{array}{r} 9.625 \times 0.375 \\ \times 0.250 \end{array}$	\checkmark	\checkmark
$\begin{array}{r} 219 \times 13 \\ \times 9.5 \\ \times 6.4 \\ \times 4.8 \end{array}$	$\begin{array}{r} 8.625 \times 0.500 \\ \times 0.375 \\ \times 0.250 \\ \times 0.188 \end{array}$	7 7 7	\checkmark \checkmark \checkmark 7
$\begin{array}{r} 178 \times 13 \\ \times 9.5 \end{array}$	$\begin{array}{r} 7 \times 0.500 \\ \times 0.375 \end{array}$	\checkmark	\checkmark
$\begin{array}{r} 168 \times 13 \\ \times 9.5 \\ \times 6.4 \\ \times 4.8 \end{array}$	$\begin{array}{r} 6.625 \times 0.500 \\ \times 0.375 \\ \times 0.250 \\ \times 0.188 \end{array}$	7 \checkmark 7	7 7 7
$\begin{array}{r} 141 \times 13 \\ \times 9.5 \\ \times 6.4 \end{array}$	$\begin{array}{r} 5.563 \times 0.500 \\ \times 0.375 \\ \times 0.250 \end{array}$	\checkmark	\checkmark
$\begin{array}{r} 127 \times 9.5 \\ \times 6.4 \end{array}$	$\begin{array}{r} 5 \times 0.375 \\ \times 0.250 \end{array}$	\checkmark	\checkmark
$\begin{array}{r} 89 \times 6.4 \\ \times 4.8 \\ \times 3.2 \end{array}$	$\begin{array}{r} 3.5 \times 0.250 \\ \times 0.188 \\ \times 0.125 \end{array}$	\checkmark	\checkmark \checkmark
$\begin{array}{r} 76 \times 6.4 \\ \times 4.8 \\ \times 3.2 \end{array}$	$\begin{array}{r} 3 \times 0.250 \\ \times 0.188 \\ \times 0.125 \end{array}$	\checkmark	\checkmark
$\begin{array}{r} 73 \times 6.4 \\ \times 4.8 \\ \times 3.2 \end{array}$	$\begin{array}{r} 2.875 \times 0.250 \\ \times 0.188 \\ \times 0.125 \end{array}$	\checkmark	7 \checkmark 7

ROLLED STRUCTURAL SHAPES

General

The majority of rolled shapes available in Canada are produced either to ASTM A992, ASTM A572 grade 50, or CSA Standard G40,21-350W. These grades have similar, but not identical, specified minimum values of yield. For more information on steel grades, tolerances, and mill practice, see Grades, Types, Strength Levels and Standard Mill Practice in Part 6.

The tables of properties and dimensions on the following pages include most of the rolled shapes used in construction. See Principal Sources of Structural Sections in Part 6 for information regarding Canadian and non-Canadian sections.

Special shapes, such as rolled Tees, Zees, bulb angles, car-building and shipbuilding channels are produced by some mills. These shapes are generally rolled only at irregular intervals and usually by special arrangement. Their use should, therefore, be avoided unless the quantity of any one size can warrant a rolling. Properties and dimensions of these shapes may be obtained from the appropriate mill catalogs.

Properties and Dimensions

The basic metric dimensions used to compute properties of the rolled steel shapes were originally taken from CSA Standard G312.3-M92 "Metric Dimensions for Structural Steel Shapes and Hollow Structural Sections". General requirements for rolled shapes are specified in CSA Standard G40.20/21, which refers mostly to ASTM A6 for the designation and dimensions of rolled shapes.

Section properties for hot-rolled shapes (except angles) are calculated using the smallest theoretical web-to-flange fillet radius, while dimensions for detailing are adjusted for the largest theoretical fillet radius. Due to differences in fillet radii among steel producers, actual properties may vary slightly from the tabulated values.

Most W and HP shapes are produced in the U.S. W-shapes available in Canada have essentially parallel flanges. HP shapes are essentially square (equal flange width and overall depth) with parallel flange surfaces, and with flanges and web of equal thickness. S-shapes and standard channels (C-shapes) have tapered flanges with the inside face sloping at approximately $16 \frac{2}{3} \%$ (2 in 12). The tabulated thickness is the mean thickness. All C-shapes listed in the tables are produced in Canada, except for sections denoted with an asterisk (*), although no information is given regarding availability. S-shapes are not available from any Canadian producer.

M and MC-shapes are essentially shapes that cannot be classified as W, HP, S or Cshapes. They are not rolled in Canada and are usually only produced by a single mill. Availability should be checked before specifying their use. These shapes may be produced with parallel flanges or with tapered flanges of various slopes. Dimensions and properties provided in this Handbook should be suitable for general use, in spite of possible variations in actual dimensions.

Availability of W-Shapes

Currently, structural steel is widely available and as such makes an excellent choice as a structural material. While there are thousands of sections listed at any one time, the availability of a specific section in a particular region of the country for a specific project and time frame may result in the fabricator requesting a substitution. Some sections are almost always available due to a constant demand for them. It is important to remember that the least-cost solution is not always the least-weight alternative.

W-shapes are not produced by Canadian mills. Their availability is indicated in this Handbook by means of yellow shading. The highlighted sections are the commonly used sizes which are generally readily ayailable.

Angles

Properties and dimensions are provided for hot-rolled equal-leg and unequal-leg angles. The tables include properties and dimensions for single angles and for two equal-leg angles back-to-back, two unequal-leg angles with short legs back-to-back, and two unequal-leg angles with long legs back-to-back. Section properties of hot-rolled angles are based on flat rectangular legs, excluding the fillet and roundings.

All angles listed in the tables are produced in Canada, except for sections denoted with an asterisk (*), although no information is given regarding availability.

The properties of hot-rolled L254 angles produced by Arcelor-Mittal may be up to 3\% less than the tabulated values due to the presence of a rounded heel. In general, the properties of angles produced by cold-forming may be up to 7% less than the properties of hot-rolled angles of similar size due to the rounded heel. Designers encountering cold-formed angles should consult the manufacturer's catalog for the exact dimensions and properties. Coldformed members are generally designed according to CSA Standard S136.

The tables of properties and dimensions for single angles include both equal-leg and unequal-leg angles. Since equal-leg angles are the more commonly available of the two types, their properties about axis $\mathrm{Y}-\mathrm{Y}$ (which are identical to those about axis $\mathrm{X}-\mathrm{X}$) have been omitted to help identify them more readily.

For the definition of torsional properties $x_{o}, y_{a}, \bar{r}_{a}$ and Ω given in the tables, see CSA S16-14 Clause 13.3.2. The y-axis of symmetry of equal-leg angles as defined in this Clause corresponds to $\mathrm{X}^{\prime}-\mathrm{X}^{\prime}$ in the tables.

Tees Cut from W-Shapes

Properties and dimensions of Tees are based on W-shapes assuming a depth of the Tee equal to one-half the depth of the corresponding W-shape. Tees are not rolled and are usually fabricated from W-shapes by splitting the web using either rotary shears or flame cutting, and subsequently straightening to meet published tolerances.

For the definition of torsional properties y_{o}, \bar{r}_{o} and Ω, see CSA S16-14 Clause 13.3.2.

W SHAPES
W1100 - W1000

PROPERTIES

Designation	Dead Load	Area	Axis X-X				Axis Y-Y				Torsional Constant J	Warping Constant$\|$
			$1 \times$	S_{x}	r_{x}	Z_{x}	1 y	S_{y}	r_{y}	z_{y}		
	kN/m	mm^{2}	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{8} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{4}$	$10^{9} \mathrm{~mm}^{8}$
$\begin{gathered} \text { W1100 } \\ \times 499 \\ \times 433 \\ \times 390 \\ \times 343 \end{gathered}$												
	4.89	63500	12900	23100	451	26600	500	2470	88.7	3870	31100	144000
	4.24	55100	11300	20300	452	23200	434	2160	88.7	3360	21200	124000
	3.83	49700	10100	18300	450	20800	385	1920	88.0	2990	15600	109000
	3.36	43600	8670	15900	446	18100	331	1660	87.1	2570	10300	92900
W1000												
$\times 976$	9.56	124300	23500	42400	435	50300	1190	5540	97.7	8840	244000	307000
$\times 883$	8.66	112500	21000	38400	432	45300	1050	4950	96.6	7870	185000	268000
$\times 748$	7.34	95300	17300	32400	426	37900	851	4080	94.5	6460	116000	212000
$\times 642$	6.29	81800	14500	27700	421	32100	703	3410	92.7	5380	73800	172000
$\times 591$	5.79	75300	13300	25600	421	29500	640	3130	92.2	4920	59000	155000
$\times 554$	5.43	70600	12300	23900	418	27500	591	2900	91.5	4550	48300	142000
$\times 539$	5.29	68700	12000	23400	418	26800	576	2830	91.6	4440	45300	138000
$\times 483$	4.74	61500	10700	20900	417	23900	507	2510	90,8	3920	33100	120000
$\times 443$	4.34	56400	9670	19100	414	21800	455	2260	89.8	3530	25400	107000
$\times 412$	4.04	52500	9100	18100	416	20500	434	2160	90,9	3350	21400	102000
x371	3.64	47300	8140	16300	415	18400	386	1930	90.3	2980	15900	89600
$\times 321$	3.15	40800	6960	14100	413	15800	331	1660	90.0	2550	10300	76100
$\times 296$	2.91	37700	6200	12600	405	14300	290	1450	87.6	2240	7640	66000
W1000												
$\times 584$	5.73	74400	12500	23600	409	28000	334	2130	67.0	3470	71500	82200
$\times 494$	4.84	62900	10300	19800	404	23400	268	1740	65.3	2820	44000	64700
$\times 486$	4.77	61900	10.200	19700	406	23200	266	1730	65.5	2790	42900	64100
$\times 438$	4.28	55600	9090	17700	404	20700	234	1530	64.8	2460	31800	55700
$\times 415$	4.07	52800	8530	16700	402	19600	217	1430	64.1	2300	27000	51500
x393	3.85	50100	8080	15900	402	18500	205	1350	64.0	2170	23300	48400
$\times 350$	3,43	44600	7230	14300	403	16600	185	1220	64.4	1940	17200	43200
x314	3.08	40000	6440	12900	401	14900	162	1080	63.7	1710	12600	37700
$\times 272$	2.67	34600	5540	11200	400	12800	140	933	63.5	1470	8350	32200
$\times 249$	2.44	31700	4810	9820	390	11300	118	783	60.9	1240	5820	26700
$\times 222$	2.18	28200	4080	8410	380	9800	95.4	636	58.1	1020	3900	21500

DIMENSIONS AND SURFACE AREAS

W SHAPES
W920 - W840

PROPERTIES
Y

Designation	Dead Load	Area	Axis X-X				Axis Y-Y				Torsional Constant J	Warping ConstantC_{w}
			I_{x}	S_{x}	r_{x}	Z_{x}	1 y	Sy	r_{y}	Z_{y}		
	kN/m	mm^{2}	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{4}$	$10^{9} \mathrm{~mm}^{6}$
W920												
$\times 1377$	13.5	175400	30300	55500	416	67600	2060	8720	108	14200	596000	493000
$\times 1269$	12.4	161700	29000	53000	423	63900	1900	8240	108	13100	514000	454000
$\times 1194$	11.7	152200	26900	49800	421	59800	1750	7660	107	12200	435000	413000
$\times 1077$	10.6	137200	23800	44800	416	53400	1530	6770	106	10700	326000	353000
$\times 970$	9.52	123700	21000	40300	412	47700	1340	6000	104	9490	243000	304000
$\times 787$	7.71	100400	16500	32600	405	38000	1030	4730	102	7420	134000	227000
$\times 725$	7.10	92400	14900	29900	402	34700	932	4290	100	6730	106000	202000
$\times 656$	6.43	83700	13400	27100	400	31300	830	3850	99.7	6020	79500	178000
$\times 588$	5.76	75000	11800	24200	397	27800	728	3410	98.6	5310	58100	154000
$\times 537$	5.25	68500	10700	22100	395	25300	656	3080	98.0	4790	44500	137000
$\times 491$	4.80	62600	9660	20200	394	23000	590	2800	97.3	4340	34400	122000
$\times 449$	4.40	57600	8750	18500	391	20900	540	2550	97.2	3950	26300	111000
$\times 420$	4.11	53500	8130	17300	390	19500	501	2370	96.8	3670	21500	102000
$\times 390$	3.81	49700	7420	15800	387	17900	453	2160	95.7	3330	16900	91500
x368	3.58	46800	6920	14900	386	16800	421	2010	95.1	3100	14100	84700
$\times 344$	3.37	43900	6450	13900	384	15700	390	1870	94.5	2880	11600	78100
W920												
x381	3.74	48600	6960	14600	379	17000	219	1410	67.2	2240	21800	45100
$\times 345$	3.38	44000	6250	13300	377	15300	195	1270	66.7	2000	16400	39800
$\times 313$	3.06	39900	5480	11800	371	13600	170	1100	65.4	1750	11500	34300
$\times 289$	2.83	36800	5040	10900	370	12500	156	1020	65.3	1600	9160	31300
$\times 271$	2.66	34600	4710	10200	369	11800	145	946	64.8	1490	7630	28900
$\times 253$	2.48	32300	4370	9510	368	10900	134	874	64.3	1370	6210	26500
$\times 238$	2.33	30300	4060	8870	366	10200	123	806	63.7	1270	5100	24300
$\times 223$	2.20	28500	3760	8260	363	9520	112	738	62.7	1160	4180	22100
$\times 201$	1.97	25600	3250	7190	356	8340	94.4	621	60.7	982	2880	18400
W840												
$\times 576$	5.65	73500	10100	22200	371	25600	672	3270	95.7	5100	61700	123000
$\times 527$	5.18	67200	9150	20300	369	23300	607	2970	95.0	4620	47800	110000
$\times 473$	4.65	60300	8130	18200	367	20800	537	2640	94.3	4100	35100	95800
$\times 433$	4.25	55200	7360	16600	365	18900	484	2390	93.5	3710	27000	85500
x392	3.85	49900	6600	15000	363	17000	430	2140	92.7	3310	20300	75300
$\times 359$	3.53	45700	5920	13600	359	15400	389	1930	92.1	2980	15100	67400
$\times 329$	3.24	41900	5360	12400	357	14000	349	1740	91.1	2690	11600	60000
$\times 299$	2.94	38100	4800	11200	355	12700	312	1560	90.4	2410	8660	53200
W840												
+226	2.46 2.22	28800	3400	7990	348 343	10300 9160	129 114	884 774	63.6 62.8	1380 1210	7350 5140	22100 19300
$\times 210$	2.07	26800	3110	7340	340	8430	103	700	61.8	1100	4050	17300
$\times 193$	1.90	24700	2780	6630	336	7620	90.3	618	60.5	971	3050	15100
$\times 176$	1.73	22400	2460	5900	331	6810	78.2	536	59.1	844	2220	13000

Nominal Mass	Theoretical Mass	Depth d	Flange Width b	Flange Thickness t	Web Thickness w	Distances					Surface Area (m^{2}) per metre of length		Imperial Designation
						a	T	k	k_{1}	d-2t	otal	Minus Top	
kg / m	kg/m	mm		Top Flange									
1377	1376.7	1093	473	115.1	76.7	198	800	147	68	863	3.92	3.45	W36x925
1269	1269.0	1093	461	115.1	64.0	199	800	147	62	863	3.90	3.44	W36x853
1194	1194.4	1081	457	109.0	60.5	198	800	141	60	863	3.87	3.41	W36x802
1077	1076.6	1061	451	99.1	55.0	198	800	131	58	863	3.82	3.37	W36x723
970	970.7	1043	446	89.9	50.0	198	800	121	55	863	3.77	3.32	W36x652
787	786.6	1011	437	73.9	40.9	198	800	105	50	863	3.69	3.25	W36x529
725	724.5	999	434	68.1	38.1	198	800	100	49	863	3.66	3.22	W36x487
656	655.7	987	431	62.0	34.5	198	800	94	47	863	3.63	3.20	W36x441
588	587.2	97,5	427	55.9	31.0	198	800	87	46	863	3.60	3.17	W36x395
537	535.8	965	425	51.1	28.4	198	800	83	44	863	3.57	3.15	W36x361
491	489.3	957	422	47.0	25.9	198	800	79	43	863	3.55	3.13	W36x330
449	448.5	948	423	42.7	24.0	200	800	74	42	863	3.54	3.12	W36x302
420	419.2	943	422	39.9	22.5	200	800	71	41	863	3.53	3.11	W36x282
390	388.0	936	420	36.6	21.3	199	800	68	41	863	3.51	3.09	W36x262
368	365.5	931	419	34.3	20.3	199	799	66	40	862	3.50	3.08	W36x247
344	343.2	927	418	32.0	19.3	199	800	64	40	863	3.49	3.07	W36x231
381	381.1	951	310	43.9	24.4	143	800	75	42	863	3.09	2.78	W36x256
345	344.8	943	308	39.9	22.1	143	800	71	41	863	3.07	2.77	W36x232
313	312.4	932	309	34.5	21.1	144	800	66	41	863	3.06	2.75	W36x210
289	288.3	927	308	32.0	19.4	144	800	64	40	863	3.05	2.74	W 36×194
271	271.4	923	307	30.0	18.4	144	800	62	39	863	3.04	2.73	W 36×182
253	253.4	919	306	27.9	17.3	144	800	59	39	863	3.03	2.72	W36x170
238	238.0	915	305	25.9	16.5	144	800	57	38	863	3.02	2.71	W 36×160
223	223.9	911	304	23.9	15.9	144	800	55	38	863	3.01	2.70	W 36×150
201	201.0	903	304	20.1	15.2	144	800	52	38	863	2.99	2.69	W36x135
576	576.6	913	411	57.9	32.0	190	734	89	46	797	3.41	3.00	W33x387
527	528.2	903	409	53.1	29.5	190	734	85	45	797	3.38	2.97	W 33×354
473	473.8	893	406	48.0	26.4	190	734	80	43	797	3.36	2.95	W 33×318
433	433.8	885	404	43.9	24.4	190	734	75	42	797	3.34	2.93	W 33×291
392	392.2	877	401	39.9	22.1	189	734	71	41	797	3.31	2.91	W33x263
359	359.9	868	403	35.6	21.1	191	734	67	41	797	3.31	2.90	W 33×241
329	330.0	862	401	32.4	19.7	191	734	64	40	797	3.29	2.89	W33x221
299	299.9	855	400	29.2	18.2	191	734	61	39	797	3.27	2.87	W33x201
251	250.6	859	292	31.0	17.0	138	734	63	39	797	2.85	2.56	W33x169
226	226.6	851	294	26.8	16.1	139	734	58	38	797	2.85	2.55	W 33×152
210	210.8	846	293	24.4	15.4	139	734	56	38	797	2.83	2.54	W 33×141
193	193.5	840	292	21.7	14.7	139	734	53	37	797	2.82	2.53	W 33×130
176	176.0	835	292	18.8	14.0	139	734	50	37	797	2.81	2.52	W 33×118

Sections highlighted in yellow are commonly used sizes and are generally readily available.

PROPERTIES

Designation	$\begin{aligned} & \text { Dead } \\ & \text { Load } \end{aligned}$	Area	Axis $\mathrm{X}-\mathrm{X}$				Axis Y - Y				Torsional Constant J	Warping Constant C_{w}
			I_{x}	S_{x}	r_{x}	Z_{x}	Iy	Sy	r_{y}	Z_{y}		
	kN/m	mm^{2}	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{4}$	$10^{9} \mathrm{~mm}^{6}$
W760												
$\times 582$	5.72	74200	8620	20400	341	23800	644	3250	93.2	5080	72200	98300
$\times 531$	5.21	67600	7770	18600	339	21600	578	2940	92.4	4580	55600	87000
$\times 484$	4.76	61700	6990	17000	336	19500	517	2650	91.4	4120	42800	76800
$\times 434$	4.26	55300	6190	15200	334	17400	455	2350	90.7	3650	31300	66800
$\times 389$	3.82	49500	5450	13600	332	15500	399	2070	89.8	3210	22500	57800
$\times 350$	3.43	44500	4870	12200	330	13900	355	1860	89.1	2870	16800	50800
x314	3.09	40000	4290	10900	327	12300	316	1640	88.7	2540	11800	44700
$\times 284$	2.79	36200	3830	9820	325	11100	280	1470	87.9	2260	8750	39300
$\times 257$	2.53	32800	3430	8880	323	9970	250	1310	87.2	2020	6510	34800
W760												
$\times 220$	2.16	28100	2780	7140	315	8190	94.4	710	58.0	1110	6050	13200
$\times 196$	1.93	25100	2400	6240	309	7170	81.7	610	57.1	959	4040	11300
$\times 185$	1.81	23500	2230	5820	308	6690	75.1	563	56.5	884	3330	10300
$\times 173$	1.70	22100	2060	5400	305	6210	68.7	515	55.7	810	2690	9420
$\times 161$	1.57	20500	1860	4900	302	5660	60.7	457	54.5	720	2070	8280
$\times 147$	1.44	18800	1660	4410	298	5100	52.9	399	53.1	631	1560	7160
$\times 134$	1.31	17000	1500	4010	297	4630	47.7	361	53.0	568	1180	6430
W690												
$\times 802$	7.86	102200	10600	25700	322	30900	875	4520	92.6	7140	203000	119000
$\times 548$	5.38	69800	6730	17400	310	20400	543	2920	88.1	4570	70700	68200
$\times 500$	4.91	63700	6060	15900	308	18500	487	2640	87.4	4110	54600	60300
$\times 457$	4.49	58200	5470	14500	306	16800	439	2390	86.7	3720	42300	53600
$\times 419$	4.11	53300	4950	13300	305	15300	395	2170	86.0	3370	33000	47700
$\times 384$	3.77	48900	4490	12200	303	14000	357	1970	85.3	3050	25700	42600
$\times 350$	3.44	44600	4030	11100	300	12600	319	1770	84.4	2740	19500	37600
$\times 323$	3.18	41100	3710	10300	300	11700	294	1640	84.4	2530	15700	34400
$\times 289$	2.83	36800	3260	9140	298	10300	256	1440	83.4	2220	11200	29600
$\times 265$	2.61	33700	2920	8270	294	9330	231	1290	82.7	1990	8340	26400
$\times 240$	2.36	30600	2630	7490	292	8430	206	1160	82.0	1790	6270	23400
$\times 217$	2.15	27700	2360	6790	291	7610	185	1040	81.5	1610	4720	20800
W690												
$\times 170$	1.67	21600	1700	4900	280	5620	66.2	517	55.3	809	3040	7410
$\times 152$	1.49	19400	1510	4380	279	5000	57.8	455	54.6	710	2200	6420
$\times 140$	1.37	17900	1360	3980	276	4550	51.7	407	53.9	636	1670	5720
$\times 125$	1.23	16000	1180	3500	272	4010	44.1	349	52.5	546	1170	4830

Nominal Mass	Theoretical Mass	Depth d	Flange Width b	Flange Thickness t	Web Thick- ness w	Distances					Surface Area $\left(\mathrm{m}^{2}\right)$ per metre of length		Imperial Designation
						a	T	k	k_{1}	d-2t		Minus Top	
kg/m	kg/m	mm		Top Flange									
582	582.9	843	396	62.0	34.5	181	656	94	47	719	3.20	2.81	W30x391
531	531.6	833	393	56.9	31.5	181	656	88	46	719	3.18	2.78	W30x357
484	485.3	823	390	52.1	29.0	181	656	84	45	719	3.15	2.76	W30x326
434	434.4	813	387	47.0	25.9	181	656	79	43	719	3.12	2.74	W30x292
389	389.2	803	385	41.9	23.6	181	656	73	42	719	3.10	2.71	W30x261
350	350.3	795	382	38.1	21.1	180	656	70	41	719	3.08	2.69	W30x235
314	315.3	786	384	33.4	19.7	182	656	65	40	719	3.07	2.68	W30x211
284	284.8	779	382	30.1	18.0	182	656	62	39	719	3.05	2.67	W30×191
257	258.5	773	381	27.1	16.6	182	656	59	38	719	3.04	2.66	W 30×173
220	220.2	779	266	30.0	16.5	125	656	62	38	719	2.59	2.32	W30x148
196	196.8	770	268	25.4	15.6	126	656	57	38	719	2.58	2.31	W30x132
185	184.8	766	267	23.6	14.9	126	656	55	37	719	2.57	2.30	W30x124
173	173.6	762	267	21.6	14.4	126	656	53	37	719	2.56	2.30	W30x116
161	160.4	758	266	19.3	13.8	126	656	51	37	719	2.55	2.29	W 30×108
147	147.1	753	265	17.0	13.2	126	656	49	37	719	2.54	2.27	W30x99
134	133.2	750	264	15.5	11.9	126	656	47	36	719	2.53	2.27	W 30×90
802	801.4	826	387	89.9	50.0	169	583	121	55	646	3.10	2.71	W27x539
548	548.6	772	372	63.0	35.1	168	583	95	48	646	2.96	2.59	W 27×368
500	500.5	762	369	57.9	32.0	169	583	89	46	646	2.94	2.57	W27x336
457	458.2	752	367	53.1	29.5	169	583	85	45	646	2.91	2.55	W27x307
419	419.1	744	364	49.0	26.9	169	583	81	43	646	2.89	2.53	W27x281
384	384.7	736	362	45.0	24.9	169	583	77	42	646	2.87	2.51	W 27×258
350	351.0	728	360	40.9	23.1	168	583	72	42	646	2.85	2.49	W27x235
323	324.4	722	359	38.1	21.1	169	583	70	41	646	2.84	2.48	W27x217
289	289.1	714	356	34.0	19.0	169	583	66	40	646	2.81	2.46	W27x194
265	265.7	706	358	30.2	18.4	170	583	62	39	646	2.81	2.45	W27x178
240	241.1	701	356	27.4	16.8	170	583	59	38	646	2.79	2.44	W27x161
217	218.9	695	355	24.8	15.4	170	582	56	38	645	2.78	2.42	W27x146
192	191.4	702	254	27.9	15.5	119	583	59	38	646	2.39	2.14	W27x129
170	169.9	693	256	23.6	14.5	121	583	55	37	646	2.38	2.13	W 27×114
152	152.1	688	254	21.1	13.1	120	583	53	37	646	2.37	2.11	W27x102
140	139.8	684	254	18.9	12.4	121	583	50	36	646	2.36	2.11	W27x94
125	125.5	678	253	16.3	11.7	121	582	48	36	645	2.34	2.09	W27x84

Sections highlighted in yellow are commonly used sizes and are generally readily available.

W SHAPES
 W610 - W530

PROPERTIES
Y

Designation	Dead Load	Area	Axis X-X				Axis Y-Y				Torsional Constant J	Warping Constant C_{w}
			I_{x}	S_{x}	r_{x}	Z_{x}	ly	S_{y}	r_{y}	Z_{y}		
	kN/m	mm^{2}	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{4}$	$10^{9} \mathrm{~mm}^{6}$
W610												
$\times 551$	5.40	70200	5570	15700	282	18600	484	2790	83.0	4380	83800	49900
$\times 498$	4.89	63500	4950	14200	279	16700	426	2480	81.9	3890	63200	43100
$\times 455$	4.45	57900	4440	12900	277	15100	381	2240	81.1	3500	48800	37900
$\times 415$	4.07	52900	4000	11800	275	13700	343	2030	80.5	3160	37700	33600
$\times 372$	3.65	47400	3530	10600	273	12200	302	1800	79.8	2800	27700	29100
x341	3.34	43400	3180	9630	271	11100	271	1630	79.0	2520	21300	25800
x307	3.01	39100	2840	8690	269	9930	240	1450	78.2	2240	15900	22500
$\times 285$	2.80	36100	2610	8060	268	9170	221	1340	77.9	2070	12800	20500
$\times 262$	2.56	33300	2360	7360	266	8350	198	1210	77.2	1870	9900	18300
$\times 241$	2.37	30800	2150	6780	264	7670	184	1120	77.4	1730	7700	16800
$\times 217$	2.14	27700	1910	6070	262	6850	163	995	76.7	1530	5600	14700
$\times 195$	1.92	24800	1680	5400	260	6070	142	871	75.6	1340	3970	12700
$\times 174$	1.71	22200	1470	4780	257	5360	124	761	74.7	1170	2800	10900
$\times 155$	1.52	19700	1290	4220	256	4730	108	666	73.9	1020	1950	9450
W610												
x153	1.51	19600	1250	4020	253	4600	50.0	437	50.5	682	2950	4470
$\times 140$	1.37	17900	1120	3630	250	4150	45.1	392	50.3	613	2180	3990
$\times 125$	1.23	15900	985	3220	249	3670	39.3	343	49.7	535	1540	3450
$\times 113$	1.11	14500	875	2880	246	3290	34.3	300	48.7	469	1120	2990
$\times 101$	0.997	13000	764	2530	243	2900	29.5	259	47.7	404	781	2550
W610												
$\times 92$	0.905	11700	646	2140		2510	14.4	161	35.0	258	710	1250
$\times 82$	0.803	10500	560	1870	232	2200	12.1	136	34.0	218	488	1040
W530												
x409	4.01	52200	3170	10300	247	12100	325	1990	79.1	3100	41300	25300
x369	3.61	47000	2810	9310	245	10800	287	1770	78.3	2750	30800	21900
$\times 332$	3.25	42300	2.480	8350	242	9660	254	1580	77.6	2440	22600	19000
x300	2.94	38200	2210	7550	241	8670	225	1410	76.7	2180	17000	16600
$\times 272$	2.66	34600	1970	6820	239	7790	200	1260	76.1	1950	12800	14600
$\times 248$	2.42	31500	1770	6220	238	7060	180	1140	75.7	1760	9770	13000
$\times 219$	2.15	27900	1510	5390	233	6110	157	986	75.0	1520	6420	11000
$\times 196$	1.93	25000	1340	4840	231	5460	139	877	74.4	1350	4700	9640
$\times 182$	1.78	23200	1240	4480	231	5040	127	808	74.2	1240	3740	8820
$\times 165$	1.62	21100	1110	4060	230	4550	114	726	73.4	1110	2830	7790
$\times 150$	1.48	19200	1010	3710	229	4150	103	659	73.2	1010	2160	7030
W530												
$\times 138$	1.36	17600	861	3140	221	3610	38.7	362	46.9	569	2500	2670
$\times 123$	1.21	15700	761	2800	220	3210	33.8	319	46.4	499	1800	2310
$\times 109$	1.07	13900	667	2480	219	2830	29.5	280	46.1	437	1260	2000
$\times 101$	0.995	12900	617	2300	219	2620	26.9	256	45.6	400	1020	1820
$\times 92$	0.907	11800	552	2070	217	2360	23.8	228	44.9	355	762	1590
$\times 82$	0.805	10500	477	1810	213	2060	20.3	194	44.0	303	518	1340
$\times 72$	0.706	9180	401	1530	209	1760	16.2	156	42.0	245	338	1060

DIMENSIONS AND SURFACE AREAS

Nominal Mass	Theoretical Mass	Depth d	Flange Width b	Flange Thickness t	Web Thick- ness w	Distances					Surface Area (m^{2}) per metre of length		Imperial Designation
						a	T	k	k_{1}	d-2t		Minus Top	
kg / m	kg/m	mm		Top Flange									
551	551.1	711	347	69.1	38.6	154	510	101	49	573	2.73	2.39	W24×370
498	498.2	699	343	63.0	35.1	154	510	95	48	573	2.70	2.36	W 24×335
455	454.1	689	340	57.9	32.0	154	510	89	46	573	2.67	2.33	W24×306
415	415.5	679	338	53.1	29.5	154	510	85	45	573	2.65	2.31	W24x279
372	372.3	669	335	48.0	26.4	154	510	80	43	573	2.63	2.29	W 24×250
341	340.4	661	333	43.9	24.4	154	510	75	42	573	2.61	2.27	W24x229
307	307.3	653	330	39.9	22.1	154	510	71	41	573	2.58	2.25	W 24×207
285	285.3	647	329	37.1	20.6	154	510	69	40	573	2.57	2.24	W 24×192
262	261.1	641	327	34.0	19.0	154	510	66	40	573	2.55	2.23	W 24×176
241	241.7	635	329	31.0	17.9	156	510	63	39	573	2.55	2.22	W 24×162
217	217.9	628	328	27.7	16.5	156	510	59	38	573	2.54	2.21	W 24×146
195	195.6	622	327	24.4	15.4	156	510	56	38	573	2.52	2.19	W 24×131
174	174.3	616	325	21.6	14.0	156	510	53	37	573	2.50	2.18	W 24×117
155	154.9	611	324	19.0	12.7	156	510	51	36	573	2.49	2.17	W24×104
153	153.6	623	229	24.9	14.0	108	510	56	37	573	2.13	1.91	W24×103
140	140.1	617	230	22.2	13.1	108	510	54	37	573	2.13	1.90	W 24×94
125	125.1	612	229	19.6	11.9	109	510	51	36	573	2.12	1.89	W24x84
113	113.4	608	228	17.3	11.2	108	510	49	36	573	2.11	1.88	W 24×76
101	101.7	603	228	14.9	10.5	109	510	46	35	573	2.10	1.87	W 24×68
92	92.3	603	179	15.0	10.9	84	528	38	26	573	1.90	1.72	W24x62
82	81.9	599	178	12.8	10.0	84	528	35	26	573	1.89	1.71	W 24×55
409	408.6	613	327	55.6	31.0	148	439	87	46	502	2.47	2.15	W21x275
369	367.9	603	324	50.5	27.9	148	439	82	44	502	2.45	2.12	W 21×248
332	331.2	593	322	45.5	25.4	148	439	77	43	502	2.42	2.10	W21x223
300	299.5	585	319	41.4	23.1	148	439	73	42	502	2.40	2.08	W 21×201
272	271.3	577	317	37.6	21.1	148	439	69	41	502	2.38	2.06	W 21×182
248	246.6	571	315	34.5	19.0	148	439	66	40	502	2.36	2.05	W 21×166
219	218.9	560	318	29.2	18.3	150	439	61	39	502	2.36	2.04	W 21×147
196	196.5	554	316	26.3	16.5	150	438	58	38	501	2.34	2.02	W 21×132
182	181.7	551	315	24.4	15.2	150	439	56	38	502	2.33	2.02	W21x122
165	165.3	546	313	22.2	14.0	150	439	54	37	502	2.32	2.00	W 21×111
150	150.6	543	312	20.3	12.7	150	439	52	36	502	2.31	2.00	W 21×101
138	138.3	549	214	23.6	14.7	100	461	44	26	502	1.92	1.71	W21x93
123	123.2	544	212	21.2	13.1	99	461	42	26	502	1.91	1.70	W21×83
109	109.0	539	211	18.8	11.6	100	460	39	25	501	1.90	1.69	W21x73
101	101.4	537	210	17.4	10.9	100	461	38	24	502	1.89	1.68	W21x68
92	92.5	533	209	15.6	10.2	99	461	36	24	502	1.88	1.67	W 21×62
82	82.1	528	209	13.3	9.5	100	460	34	24	501	1.87	1.66	W21x55
72	72.0	524	207	10.9	9.0	99	461	31	24	502	1.86	1.65	W 21×48

Sections highlighted in yellow are commonly used sizes and are generally readily available.

W SHAPES
 W530 - W410

PROPERTIES

Designation	Dead Load	Area	Axis X-X				Axis Y-Y				Torsional Constant J	Warping Constant C_{w}
			I_{x}	S_{x}	r_{x}	Z_{x}	Iy	S_{y}	r_{y}	Z_{y}		
	kN/m	mm^{2}	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{4}$	$10^{9} \mathrm{~mm}^{6}$
W530												
$\times 85$	0.830	10800	485	1810	212	2100	12.6	152	34.2	242	737	849
x74	0.733	9480	411	1550	208	1810	10.4	125	33.1	200	480	692
$\times 66$	0.644	8390	351	1340	205	1560	8.57	104	32.0	166	320	565
W460												
$\times 464$	4.55	59100	2900	10200	222	12400	331	2170	74.9	3400	73100	20500
$\times 421$	4.14	53700	2570	9250	219	11100	293	1940	73.9	3030	55700	17700
$\times 384$	3.77	49000	2290	8420	217	10000	261	1750	73.1	2730	42700	15500
x349	3.42	44400	2040	7640	214	9010	233	1570	72.3	2440	32800	13500
$\times 315$	3.08	40100	1800	6850	212	8020	204	1390	71.4	2160	24300	11600
$\times 286$	2.80	36400	1610	6230	210	7240	183	1260	70.9	1940	18600	10200
$\times 260$	2.55	33100	1440	5650	208	6530	163	1130	70.1	1740	14100	8950
$\times 235$	2.30	29900	1270	5080	206	5840	145	1010	69.5	1550	10500	7790
$\times 213$	2.09	27100	1140	4620	205	5270	129	909	69.1	1400	7970	6890
$\times 193$	1.90	24700	1020	4190	204	4750	115	816	68.5	1250	6030	6060
$\times 177$	1.74	22600	910	3780	201	4280	105	735	68.2	1130	4400	5440
$\times 158$	1.55	20100	796	3350	199	3770	91.4	643	67.4	989	3110	4670
$\times 144$	1.42	18400	726	3080	199	3450	83.6	591	67.4	906	2440	4230
$\times 128$	1.26	16300	637	2730	197	3050	73.3	520	67.0	796	1710	3670
$\times 113$	1.11	14400	556	2400	196	2670	63.3	452	66.3	691	1180	3150
W460												
$\times 106$	1.04	13400	488	2080	190	2390	25.1	259	43.2	405	1460	1260
$\times 97$	0.947	12300	445	1910	190	2180	22.8	237	43.1	368	1130	1140
$\times 89$	0.875	11400	409	1770	190	2010	20.9	218	42.9	339	905	1040
$\times 82$	0.803	10500	370	1610	188	1830	18.6	195	42.2	303	690	918
$\times 74$	0.727	9480	332	1460	188	1650	16.6	175	41.9	271	516	813
W460												
$\times 68$	0.672	8710	297	1290	184	1490	9.40	122	32.8	192	508	463
$\times 60$	0.584	7610	255	1120	183	1280	7.96	104	32.4	163	334	388
$\times 52$	0.510	6650	212	942	179	1090	6.34	83.4	30.9	131	209	306
W410												
x149	1.46	19000	618	2870	180	3250	77.7	586	63.9	900	3210	3200
$\times 132$	1.30	16900	538	2530	179	2850	67.4	512	63.3	785	2250	2730
$\times 114$	1.12	14600	461	2200	178	2460	57.2	439	62.7	671	1480	2300
$\times 100$	0.977	12700	398	1920	177	2130	49.5	381	62.5	581	993	1960
W410												
$\times 85$	0.833	10800	315	1510	171	1720	18.0	199	40.8	310	924	717
$\times 74$	0.735	9480	275	1330	170	1510	15.6	173	40.4	269	636	614
$\times 67$	0.662	8580	245	1200	169	1360	13.8	154	40.1	239	468	540
$\times 60$	0.583	7610	216	1060	169	1190	12.0	135	39.9	209	327	468
$\times 54$	0.524	6840	186	923	165	1050	10.1	114	38.5	177	225	388
W410												
$\times 46$	0.453	5880	156	772	163	884	5.14	73.4	29.5	115	192	197
$\times 39$	0.384	4950	126	634	159	730	4.04	57.6	28.4	90.6	110	154

DIMENSIONS AND SURFACE AREAS

Nominal Mass	Theoretical Mass	Depth d	Flange Width b	Flange Thickness t	Web Thick- ness w	Distances					Surface Area (m^{2}) per metre of length		Imperial Designation
						a	T	k	k_{1}	d-2t	Tot	Minus Top	
kg/m	kg/m	mm		Top Flange									
85	84.7	535	166	16.5	10.3	78	461	37	24	502	1.71	1.55	W21×57
74	74.7	529	166	13.6	9.7	78	461	34	24	502	1.70	1.54	W21x50
66	65.7	525	165	11.4	8.9	78	461	32	23	502	1.69	1.53	W21x44
464	464.0	567	305	69.6	38.6	133	385	91	39	428	2.28	1.97	W18x311
421	421.8	555	302	63.5	35.6	133	385	85	38	428	2.25	1.94	W18x283
384	384.1	545	299	58.4	32.5	133	385	80	36	428	2.22	1.92	W18x258
349	348.9	535	296	53.6	29.5	133	385	75	35	428	2.20	1.90	W18x234
315	314.2	525	293	48.5	26.9	133	385	70	33	428	2.17	1.88	W18x211
286	285.6	517	291	44.4	24.4	133	385	66	32	428	2.15	1.86	W18x192
260	259.9	509	289	40.4	22.6	133	385	62	32	428	2.13	1.84	W18x175
235	234.8	501	287	36.6	20.6	133	384	58	31	428	2.11	1.82	W18x158
213	212.7	495	285	33.5	18.5	133	384	55	30	428	2.09	1.81	W18x143
193	193.3	489	283	30.5	17.0	133	384	52	29	428	2.08	1.79	W18×130
177	177.3	482	286	26.9	16.6	135	385	49	29	428	2.07	1.79	W18x119
158	157.7	476	284	23.9	15.0	135	385	46	28	428	2.06	1.77	W18×106
144	144.5	472	283	22.1	13.6	135	384	44	27	428	2.05	1.77	W18x97
128	128.4	467	282	19.6	12.2	135	384	41	26	428	2.04	1.76	W18x86
113	113.0	463	280	17.3	10.8	135	385	39	26	428	2.02	1.74	W18x76
106	105.7	469	194	20.6	12.6	91	391	39	23	428	1.69	1.49	W18x71
97	96.5	466	193	19.0	11.4	91	391	38	23	428	1.68	1.49	W18x65
89	89.3	463	192	17.7	10.5	91	391	36	22	428	1.67	1.48	W18x60
82	81.9	460	191	16.0	9.9	91	391	35	22	428	1.66	1.47	W18x55
74	74.2	457	190	14.5	9.0	91	391	33	22	428	1.66	1.47	W18x50
68	68.5	459	154	15.4	9.1	72	391	34	22	428	1.52	1.36	W18×46
60	59.5	455	153	13.3	8.0	73	391	32	21	428	1.51	1.35	W18x40
52	52.0	450	152	10.8	7.6	72	391	29	21	428	1.49	1.34	W18x35
149	149.3	431	265	25.0	14.9	125	337	47	28	381	1.89	1.63	W16x100
132	132.1	425	263	22.2	13.3	125	337	44	27	381	1.88	1.61	W16x89
114	114.5	420	261	19.3	11.6	125	338	41	26	381	1.86	1.60	W16x77
100	99.6	415	260	16.9	10.0	125	338	39	25	381	1.85	1.59	W16x67
85	85.0	417	181	18.2	10.9	85	340	39	24	381	1.54	1.36	W16x57
74	74.9	413	180	16.0	9.7	85	340	37	24	381	1.53	1.35	W16x50
67	67.5	410	179	14.4	8.8	85	340	35	23	381	1.52	1.34	W16x45
60	59.5	407	178	12.8	7.7	85	340	33	23	381	1.51	1.33	W16x40
54	53.4	403	177	10.9	7.5	85	340	31	23	381	1.50	1.32	W16x36
46	46.2	403	140	11.2	7.0	67	344	30	21	381	1.35	1.21	W16x31
39	39.2	399	140	8.8	6.4	67	344	27	20	381	1.35	1.21	W16x26

Sections highlighted in yellow are commonly used sizes and are generally readily available.

PROPERTIES

Designation	Dead Load	Area	Axis X -X				Axis $\mathrm{Y}-\mathrm{Y}$				Torsional Constant J	Warping ConstantC_{w}
			I_{x}	S_{x}	r_{x}	Z_{x}	Iy	S_{y}	${ }^{\text {y }}$	z_{y}		
	kN/m	mm^{2}	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{4}$	$10^{9} \mathrm{~mm}^{6}$
W360												
$\times 1299$	12.7	165000	7550	25200	214	33200	2540	10700	124	16700	944000	135000
$\times 1202$	11.8	153000	6640	22900	208	30000	2290	9710	122	15200	762000	116000
$\times 1086$	10.7	139000	5960	20900	207	27200	1960	8650	119	13400	605000	96700
$\times 990$	9.72	126000	5190	18900	203	24300	1730	7740	117	12000	469000	82000
x900	8.85	115000	4500	17000	198	21600	1530	6940	116	10700	364000	69200
$\times 818$	8.03	105000	3920	15300	194	19300	1360	6200	114	9560	278000	58900
$\times 744$	7.30	94800	3420	13700	190	17200	1200	5550	112	8550	214000	50200
$\times 677$	6.65	86500	2990	12400	186	15300	1070	4990	111	7680	164000	43100
$\times 634$	6.22	80600	2740	11600	184	14200	983	4630	110	7120	138000	38700
$\times 592$	5.81	75500	2500	10800	182	13100	902	4280	109	6570	114000	34800
$\times 551$	5.40	70300	2260	9940	180	12100	825	3950	108	6050	92500	31000
$\times 509$	5.00	65200	2050	9170	178	11000	754	3630	108	5550	73900	27700
$\times 463$	4.54	59000	1800	8280	175	9880	670	3250	107	4980	56500	23900
$\times 421$	4.13	53700	1600	7510	172	8880	601	2940	106	4490	43400	20800
$\times 382$	3.75	48800	1410	6790	170	7960	536	2640	105	4030	32800	18200
$\times 347$	3.40	44200	1250	6140	168	7140	481	2380	104	3630	24800	15900
x314	3.07	40000	1100	5530	166	6370	426	2120	103	3240	18500	13800
$\times 287$	2.82	36600	997	5070	165	5810	388	1940	103	2960	14500	12300
$\times 262$	2.58	33400	894	4620	163	5260	350	1760	102	2680	11000	11000
$\times 237$	2.32	30100	788	4150	162	4690	310	1570	102	2390	8180	9500
$\times 216$	2.12	27500	711	3790	161	4260	283	1430	101	2180	6320	8520
W360												
$\times 196$	1.93	25000	636	3420	159	3840	229	1220	95.6	1860	5130	6830
$\times 179$	1.76	22800	574	3120	159	3480	207	1110	95.2	1680	3910	6120
$\times 162$	1.59	20600	515	2830	158	3140	186	1000	94.9	1520	2940	5430
$\times 147$	1.45	18800	463	2570	157	2840	167	904	94.3	1370	2230	4840
$\times 134$	1.31	17100	415	2330	156	2560	151	817	94.0	1240	1680	4310
W360												
$\times 122$	1.19	15500	365	2010	154	2270	61.5	478	63.0	732	2110	
$\times 110$	1.08	14100	331	1840	154	2060	55.7	435	63.0	664	1600	1610
$\times 101$	0.992	12900	301	1690	153	1880	50.6	397	62.7	605	1250	1450
$\times 91$	0.890	11500	267	1510	152	1680	44.8	353	62.3	538	914	1270
W360												
$\times 79$		10100	226	1280	150	1430					811	
$\times 72$	0.701	9100	201	1150	149	1280	21.4	210	48.5	322	601	600
$\times 64$	0.626	8130	178	1030	148	1140	18.8	186	48.1	284	436	524

When subject to tension, bolted connections are preferred for these sections.

DIMENSIONS AND SURFACE AREAS

Nominal Mass	Theoretical Mass	Depth d	Flange Width b	Flange Thickness t	Web Thick- ness w	Distances					Surface Area (m^{2}) per metre of length		Imperial Designation
						a	T	k	k_{1}	d-2t	al	Minus Top	
kg/m	kg/m	mm		Top Flange									
1299	1299.0	600	476	140.0	100.0	188	257	172	80	320	2.90	2.43	W14×873
1202	1201.5	580	471	130.0	95.0	188	257	162	78	320	2.85	2.38	W14x808
1086	1087.8	569	454	125.0	78.0	188	256	157	69	319	2.80	2.34	W14x730
990	991.0	550	448	115.0	71.9	188	257	147	66	320	2.75	2.30	W14x665
900	902.1	531	442	106.0	65.9	188	256	138	63	319	2.70	2.26	W14x605
818	819.0	514	437	97.0	60.5	188	257	129	60	320	2.66	2.22	W14×550
744	744.2	498	432	88.9	55.6	188	257	120	58	320	2.61	2.18	W14×500
677	677.8	483	428	81.5	51.2	188	257	113	56	320	2.58	2.15	W14×455
634	634.3	474	424	77.1	47.6	188	257	109	54	320	2.55	2.12	W14×426
592	592.6	465	421	72.3	45.0	188	257	104	53	320	2.52	2.10	W14x398
551	550.6	455	418	67.6	42.0	188	257	99	51	320	2.50	2.08	W14×370
509	509.4	446	416	62.7	39.1	188	258	94	50	321	2.48	2.06	W14×342
463	462.8	435	412	57.4	35.8	188	257	89	48	320	2.45	2.03	W14x311
421	421.6	425	409	52.6	32.8	188	257	84	46	320	2.42	2.01	W14x283
382	382.3	416	406	48.0	29.8	188	257	80	45	320	2.40	1.99	W14x257
347	346.9	407	404	43.7	27.2	188	257	75	44	320	2.38	1.97	W14x233
314	313.3	399	401	39.6	24.9	188	257	71	42	320	2.35	1.95	W14×211
287	287.5	393	399	36.6	22.6	188	257	68	41	320	2.34	1.94	W14x193
262	262.7	387	398	33.3	21.1	188	257	65	41	320	2.32	1.93	W14x176
237	236.2	380	395	30.2	18.9	188	257	62	39	320	2.30	1.91	W14x159
216	216.3	375	394	27.7	17.3	188	257	59	39	320	2.29	1.90	W14×145
196	196.5	372	374	26.2	16.4	179	257	58	38	320	2.21	1.83	W14×132
179	179.2	368	373	23.9	15.0	179	257	55	38	320	2.20	1.83	W14x120
162	161.9	364	371	21.8	13.3	179	257	53	37	320	2.19	1.81	W14x109
147	147.5	360	370	19.8	12.3	179	257	51	36	320	2.18	1.81	W14x99
134	133.9	356	369	18.0	11.2	179	257	50	36	320	2.17	1.80	W14x90
122	121.7	363	257	21.7	13.0	122	276	44	27	320	1.73	1.47	W14x82
110	110.2	360	256	19.9	11.4	122	277	42	26	320	1.72	1.47	W14x74
101	101.2	357	255	18.3	10.5	122	277	40	26	320	1.71	1.46	W14x68
91	90.8	353	254	16.4	9.5	122	277	38	25	320	1.70	1.45	W14x61
79	79.2	354	205	16.8	9.4	98	277	39	25	320	1.51	1.30	W14x53
72	71.5	350	204	15.1	8.6	98	276	37	25	320	1.50	1.29	W14×48
64	63.9	347	203	13.5	7.7	98	276	35	24	320	1.49	1.29	W14×43

Sections highlighted in yellow are commonly used sizes and are generally readily available.

PROPERTIES

Designation	Dead Load	Area	Axis X-X				Axis Y-Y				TorsionalConstant	Warping ConstantC_{w}
			I_{x}	S_{x}	r_{x}	Z_{x}	$1 y$	Sy	r_{y}	Z_{y}		
	kN/m	mm^{2}	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{4}$	$10^{9} \mathrm{~mm}^{5}$
W360												
$\times 57$	0.555	7230	160	896	149	1010	11.1	129	39.3	199	333	331
$\times 51$	0.496	6450	141	796	148	893	9.68	113	38.8	174	237	285
$\times 45$	0.441	5710	122	691	146	778	8.18	95.7	37.8	148	159	239
W360												
$\times 39$	0.383	4960	102	580	143	662	3.75	58.6	27.4	91.6	150	110
$\times 33$	0.321	4190	82.6	473	141	541	2.91	45.8	26.4	71.8	85.3	84.3
W310												
$\times 500$	4.91	63700	1690	7910	163	9880	494	2910	88.0	4490	101000	15300
$\times 454$	4.45	57800	1480	7130	160	8820	436	2600	86.8	4000	77200	13100
$\times 415$	4.07	52800	1300	6450	157	7900	391	2340	86.0	3610	59500	11300
$\times 375$	3.68	47800	1130	5770	154	7000	344	2080	84.8	3210	44900	9570
x342	3.37	43700	1010	5260	152	6330	310	1890	84.2	2910	34900	8420
$\times 313$	3.07	39900	896	4790	150	5720	277	1700	83.3	2620	27000	7350
$\times 283$	2.77	36000	787	4310	148	5100	246	1530	82.6	2340	20300	6330
$\times 253$	2.48	32300	682	3830	146	4490	215	1350	81.6	2060	14800	5370
$\times 226$	2.22	28800	596	3420	144	3970	189	1190	81.0	1830	10800	4620
$\times 202$	1.99	25700	520	3050	142	3510	166	1050	80.2	1610	7730	3960
$\times 179$	1.75	22800	445	2670	140	3050	144	919	79.5	1400	5370	3340
$\times 158$	1.54	20100	386	2360	139	2670	125	805	78.9	1220	3770	2840
$\times 143$	1.40	18200	348	2150	138	2420	113	729	78.6	1110	2860	2540
+129	1.27	16500	308	1940	137	2160	100	652	78.0	991	2130	2220
×118	1.15	15000	275	1750	136	1950	90.2	588	77.6	893	1600	1970
$\times 107$	1.05	13600	248	1590	135	1760	81.2	531	77.2	806	1210	1760
$\times 97$	0.949	12300	222	1440	134	1590	72.9	478	76.9	725	909	1560
W310												
$\times 79$	0.773	10100	177	1150	133	1280	39.9	314	63.6 63.0	478	874 655	961 847
W310												
$\times 74$	0.726	9480	164	1060	132	1180	23.4	229	49.9	350	718	505
$\times 67$	0.650	8520	144	942	131	1050	20.7	203	49.5	310	522	439
$\times 60$	0.580	7610	128	842	130	933	18.3	180	49.3	275	378	384
W310												
$\times 52$	0.513	6650	118	747		837	10.3	123	39.2	189	308	237
$\times 45$	0.438	5670	99.2	634	132	708	8.55	103	38.8	158	191	195
$\times 39$	0.380	4940	85.1	549	131	610	7.27	88.1	38.4	135	126	164
W310												
$\times 33$	0.321	4180	65.0	415	125	480	1.92	37.6	21.4	59.6	122	43.8
$\times 28$	0.278	3590	54.3	351	123	407	1.58	31.0	20.9	49.2	75.7	35.6
$\times 24$	0.234	3040	42.7	280	119	328	1.16	22.9	19.5	36.7	42.5	25.7
$\times 21$	0.207	2680	37.0	244	117	287	0.983	19.5	19.1	31.2	29.4	21.7

When subject to tension, bolted connections are preferred for these sections.

W SHAPES W360-W310

DIMENSIONS AND SURFACE AREAS

Nominal Mass	Theoretical Mass	Depth d	Flange Width b	Flange Thickness t	Web Thick- ness w	Distances					Surface Area (m^{2}) per metre of length		Imperial Designation
						a	T	k	k_{1}	d-2t	Total	Minus Top of Top Flange	
kg/m	kg/m	mm											
57	56.6	358	172	13.1	7.9	82	295	31	21	332	1.39	1.22	W14×38
51	50.6	355	171	11.6	7.2	82	295	30	20	332	1.38	1.21	W14×34
45	45.0	352	171	9.8	6.9	82	296	28	20	332	1.37	1.20	W14x30
39	39.1	353	128	10.7	6.5	61	295	29	20	332	1.21	1.08	W14×26
33	32.7	349	127	8.5	5.8	61	296	27	20	332	1.19	1.07	W14×22
500	500.4	427	340	75.1	45.1	147	233	97	43	277	2.12	1.78	W12x336
454	454.0	415	336	68.7	41.3	147	234	91	41	278	2.09	1.76	W12x305
415	415.1	403	334	62.7	38.9	148	234	85	40	278	2.06	1.73	W12x279
375	374.8	391	330	57.2	35.4	147	233	79	38	277	2.03	1.70	W12x252
342	343.2	382	328	52.6	32.6	148	233	74	37	277	2.01	1.68	W12x230
313	313.3	374	325	48.3	30.0	148	234	70	35	277	1.99	1.66	W 12×210
283	282.9	365	322	44.1	26.9	148	233	66	34	277	1.96	1.64	W 12×190
253	252.9	356	319	39.6	24.4	147	233	61	33	277	1.94	1.62	W12x170
226	226.7	348	317	35.6	22.1	147	233	57	31	277	1.92	1.60	W12x152
202	202.6	341	315	31.8	20.1	147	234	54	30	277	1.90	1.59	W12x136
179	178.7	333	313	28.1	18.0	148	233	50	29	277	1.88	1.57	W12x120
158	157.4	327	310	25.1	15.5	147	233	47	28	277	1.86	1.55	W12x106
143	143.1	323	309	22.9	14.0	148	234	45	27	277	1.85	1.55	W12x96
129	129.6	318	308	20.6	13.1	147	233	42	27	277	1.84	1.53	W12x87
118	117.5	314	307	18.7	11.9	148	233	41	26	277	1.83	1.53	W12x79
107	106.9	311	306	17.0	10.9	148	233	39	26	277	1.82	1.52	W12×72
97	96.8	308	305	15.4	9.9	148	234	37	25	277	1.82	1.51	W12x65
86	86.3	310	254	16.3	9.1	122	234	38	25	277	1.62	1.36	W12x58
79	78.9	306	254	14.6	8.8	123	234	36	24	277	1.61	1.36	W12x53
74	74.0	310	205	16.3	9.4	98	234	38	25	277	1.42	1.22	W12x50
67	66.3	306	204	14.6	8.5	98	234	36	24	277	1.41	1.21	W12x45
60	59.1	303	203	13.1	7.5	98	234	35	24	277	1.40	1.20	W12x40
52	52.3	317	167	13.2	7.6	80	256	31	20	291	1.29	1.12	W12x35
45	44.6	313	166	11.2	6.6	80	256	29	19	291	1.28	1.11	W12x30
39	38.7	310	165	9.7	5.8	80	256	27	19	291	1.27	1.10	W12x26
33	32.8	313	102	10.8	6.6	48	264	24	15	291	1.02	0.919	W12x22
28	28.4	309	102	8.9	6.0	48	264	22	15	291	1.01	0.912	W12x19
24	23.8	305	101	6.7	5.6	48	265	20	15	292	1.00	0.902	W12×16
21	21.1	303	101	5.7	5.1	48	265	19	15	292	1.00	0.899	W12x14

Sections highlighted in yellow are commonly used sizes and are generally readily available.

PROPERTIES

Designation	Dead Load	Area	Axis X-X				Axis $\mathrm{Y}-\mathrm{Y}$				Torsional Constant J	Warping Constant C_{w}
			I_{x}	S_{x}	r_{x}	$\mathrm{Z}_{\text {x }}$	$1{ }^{\text {y }}$	S_{y}	r_{y}	Z_{y}		
	kN/m	mm^{2}	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{4}$	$10^{9} \mathrm{~mm}^{6}$
W250												
$\times 167$	1.64	21200	300	2080	119	2430	98.8	746	68.1	1140	6310	1630
$\times 149$	1.46	19000	259	1840	117	2130	86.2	656	67.4	1000	4510	1390
$\times 131$	1.29	16700	221	1610	115	1850	74.5	571	66.8	870	3120	1160
$\times 115$	1.13	14600	189	1410	114	1600	64.1	495	66.2	753	2130	976
$\times 101$	0.992	12900	164	1240	113	1400	55.5	432	65.6	656	1490	829
$\times 89$	0.878	11400	143	1100	112	1230	48.4	378	65.1	574	1040	713
$\times 80$	0.786	10200	126	982	111	1090	43.1	338	65.0	513	757	623
$\times 73$	0.715	9290	113	891	110	985	38.8	306	64.6	463	575	553
W250												
$\times 67$	0.658	8580	104	806	110	901	22.2	218	51.0	332	625	324
$\times 58$	0.571	7420	87.3	693	108	770	18.8	186	50.4	283	409	268
$\times 49$	0.481	6260	70.6	572	106	633	15.1	150	49.2	228	241	211
W250												
$\times 45$	0.440	5700	71.1	534	111	602	7.03	95.1	35.1	146	261	113
$\times 39$	0.379	4910	60.1	459	110	513	5.94	80.8	34.7	124	169	93.4
$\times 33$	0.321	4190	48.9	379	108	424	4.73	64.7	33.7	99.5	98.5	73.2
W250												
$\times 28$	0.279	3630	40.0	307	105	353	1.78	34.8	22.1	54.7	96.7	27.7
$\times 25$	0.249	3220	34.2	266	103	307	1.49	29.2	21.5	46.2	65.2	23.0
$\times 22$	0.219	2850	28.9	227	101	263	1.23	24.0	20.7	38.1	43.4	18.7
$\times 18$	0.175	2280	22.4	179	99.3	207	0.913	18.1	20.0	28.6	22.4	13.8
W200												
$\times 100$	0.976	12700	113	989	94.5	1150	36.6	349	53.8	533	2090	386
$\times 86$	0.850	11000	94.7	853	92.6	981	31.4	300	53.3	458	1390	318
$\times 71$	0.701	9100	76.6	709	91.7	803	25.4	246	52.8	375	817	250
$\times 59$	0.582	7550	61.1	582	89.9	653	20.4	199	52.0	303	463	196
$\times 52$	0.512	6650	52.7	512	89.0	569	17.8	175	51.8	266	323	167
$\times 46$	0.451	5890	45.4	448	88.1	495	15.3	151	51.2	229	220	141
W200												
$\times 42$		5320	40.9	399	87.7	445	9.00		41.2	165	222	84.0
$\times 36$	0.352	4570	34.4	342	86.7	379	7.64	92.6	40.9	141	145	69.6
$\underset{x, 31}{W}$	0.308	3970	31.4	299	88.6	335	4.10	61.1	32.0	93.8	119	
$\times 27$	0.261	3390	25.8	249	87.3	279	3.30	49.6	31.2	76.1	71.3	32.5
W200												
$\times 22$	0.220	2860	20.0	194	83.6	222	1.42	27.8	22.3	43.7	56.6	13.9
$\times 19$	0.191	2480	16.6	163	81.7	187	1.15	22.6	21.6	35.6	36.2	11.1
$\times 15$	0.147	1910	12.7	127	81.8	145	0.869	17.4	21.4	27.1	17.6	8.24

Nominal Mass	Theoretical Mass	Depth d	Flange Width b	Flange Thickness t	Web Thick- ness w	Distances					Surface Area $\left(\mathrm{m}^{2}\right)$ per metre of length		Imperial Designation
						a	T	k	k_{1}	d-2t	Total	Minus Top	
kg/m	kg/m	mm		Top Flange									
167	167.4	289	265	31.8	19.2	123	184	52	29	225	1.60	1.33	W10x112
149	148.9	282	263	28.4	17.3	123	184	49	28	225	1.58	1.32	W10x100
131	131.1	275	261	25.1	15.4	123	184	46	27	225	1.56	1.30	W10x88
115	114.8	269	259	22.1	13.5	123	184	43	26	225	1.55	1.29	W10x77
101	101.2	264	257	19.6	11.9	123	184	40	25	225	1.53	1.28	W10x68
89	89.6	260	256	17.3	10.7	123	184	38	24	225	1.52	1.27	W10x60
80	80.1	256	255	15.6	9.4	123	184	36	24	225	1.51	1.26	W10x54
73	72.9	253	254	14.2	8.6	123	184	35	23	225	1.50	1.25	W10x49
67	67.1	257	204	15.7	8.9	98	185	36	23	226	1.31	1.11	W10x45
58	58.2	252	203	13.5	8.0	98	184	34	23	225	1.30	1.10	W10x39
49	49.0	247	202	11.0	7.4	97	184	32	23	225	1.29	1.09	W10x33
45	44.9	266	148	13.0	7.6	70	209	29	18	240	1.11	0.961	W10x30
39	38.7	262	147	11.2	6.6	70	209	27	17	240	1.10	0.952	W10x26
33	32.7	258	146	9.1	6.1	70	211	24	16	240	1.09	0.942	W10x22
28	28.5	260	102	10.0	6.4	48	213	24	15	240	0.915	0.813	W10x19
25	25.3	257	102	8.4	6.1	48	213	22	15	240	0.910	0.808	W10x17
22	22.4	254	102	6.9	5.8	48	213	20	15	240	0.904	0.802	W10x15
18	17.9	251	101	5.3	4.8	48	213	19	14	240	0.896	0.795	W10x12
100	99.5	229	210	23.7	14.5	98	148	40	22	182	1.27	1.06	W8x67
86	86.7	222	209	20.6	13.0	98	147	37	22	181	1.25	1.04	W8x58
71	71.5	216	206	17.4	10.2	98	148	34	20	181	1.24	1.03	W 8×48
59	59.3	210	205	14.2	9.1	98	148	31	20	182	1.22	1.02	W8x40
52	52.2	206	204	12.6	7.9	98	147	29	19	181	1.21	1.01	W8x35
46	46.0	203	203	11.0	7.2	98	148	28	19	181	1.20	1.00	W8x31
42	41.7	205	166	11.8	7.2	79	152	26	17	181	1.06	0.894	W8828
36	35.9	201	165	10.2	6.2	79	152	25	16	181	1.05	0.885	W8x24
31	31.4	210	134	10.2	6.4	64	166	22	14	190	0.943	0.809	W8×21
27	26.6	207	133	8.4	5.8	64	167	20	13	190	0.934	0.801	W 8×18
22	22.4	206	102	8.0	6.2	48	166	20	13	190	0.808	0.706	W8×15
19	19.4	203	102	6.5	5.8	48	165	19	14	190	0.802	0.700	W 8×13
15	15.0	200	100	5.2	4.3	48	165	18	13	190	0.791	0.691	W 8×10

Sections highlighted in yellow are commonly used sizes and are generally readily available.

W SHAPES
 W150 - W100

PROPERTIES

Designation	Dead Load	Area	Axis X-X				Axis Y-Y				Torsional Constant J	Warping Constant C_{w}
			I_{x}	S_{x}	r_{x}	Z_{x}	ly	S_{y}	r_{y}	Z_{y}		
	kN/m	mm^{2}	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{4}$	$10^{9} \mathrm{~mm}^{6}$
W150												
$\times 37$	0.364	4740	22.2	274	68.5	310	7.07	91.8	38.7	140	192	40.0
$\times 30$	0.292	3790	17.1	218	67.3	244	5.56	72.6	38.3	111	100	30.3
$\times 22$	0.219	2860	12.0	159	65.1	176	3.87	50.9	36.9	77.5	41.5	20.4
$\begin{gathered} \text { W150 } \\ \times 24 \end{gathered}$	0.235	3060	13.4	168	66.3	191	1.83	35.8	24.5	55.2	92.3	10.2
$\times 18$	0.176	2290	9.15	120	63.3	136	1.26	24.7	23.5	38.2	36.9	6.70
$\times 14$	0.133	1730	6.85	91.3	63.0	102	0.918	18.4	23.0	28.3	16.8	4.79
$\times 13$	0.124	1630	6.13	82.8	61.7	93.0	0.818	16.4	22.5	25.3	13.6	4.19
$\begin{gathered} \text { W130 } \\ \times 28 \end{gathered}$	0.275	3590	10.9	167	55.3	190	3.81	59.6	32.7	90.7	127	13.8
$\times 24$	0.231	3040	8.79	138	54.1	156	3.11	49.0	32.2	74.5	76.2	10.8
$\begin{gathered} \text { W100 } \\ \times 19 \end{gathered}$	0.190	2470	4.76	89.8	43.9	103	1.61	31.2	25.5	47.9	62.9	3.79

DIMENSIONS AND SURFACE AREAS

Sections highlighted in yellow are commonly used sizes and are generally readily available.

PROPERTIES

Note: These sections are not available from Canadian mills.

HP SHAPES

DIMENSIONS AND SURFACE AREAS

PROPERTIES

Designation	Dead Load	Area	Axis X -X				Axis Y-Y				Torsional Constant J	Warping Constant
			I_{x}	S_{x}	${ }^{\text {x }}$	Z_{x}	$1 y$	S_{y}	${ }^{\text {r }}$ y	z_{y}		
	kN/m	mm^{2}	$10^{8} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{8} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{4}$	$10^{9} \mathrm{~mm}^{8}$
M318 $\times 18.5$ $\times 17.3$												
	0,179	2361	37.0	233	126	269	0.830	17.5	18.9	27.3	20.5	20.2
	0.168	2213	33.4	211	124	246	0.636	14.3	17.1	22.6	17.2	15.4
$\begin{gathered} \text { M310 } \\ \times 17.6 \\ \times 16.1 \\ \times 14.9 \end{gathered}$												
	0.173	2240	30.1	197	116	235	0.453	11.6	14.2	18.8	20.8	10.1
	0.159	2050	27.7	182	116	216	0,421	10.8	14.3	17.4	16.3	9.39
	0.147	1900	25.8	170	116	201	0.440	10.6	15.2	16.9	12.1	9.85
$\begin{gathered} \text { M250 } \\ \times 13.4 \\ \times 11.9 \\ \times 11.2 \end{gathered}$												
	0.132	1710	16.2	127	97.2	151	0.274	8.05	12.7	13.0	13.1	4.24
	0.118	1520	14.4	113	96.9	134	0.242	7.12	12.6	11.4	9.31	3.73
	0.110	1430	13.6	108	97.6	126	0.231	6.80	12.7	10.8	7.76	3.57
M200 $\times 9.7$ $\times 9.2$												
	0.0943	1240	7.61	74.9	78.8	87.9	0.149	5.22	11.0	8.36	7.60	1.46
	0.0907	1170	7.30	71.9	78.7	84.4	0.147	5.07	11.2	8.10	6.48	1.45
M150 $\times 6.6$ $\times 5.5+$	0,0642	832	2.99	39.3	59.8	45.7	0.0747	3.18	9.47	5.05		
	0.0543	703	2.48	33.0	59.3	38.3	0.0731	2.87	10.2	4.52	2.21	0.394
$\begin{aligned} & \text { M130 } \\ & \times 28.1+ \end{aligned}$	0.276	3580	10.1	158	53.0	182	3.620	57.1	31.8	87.2	130	12.3
M100 $\times 8.9$	0.0876	1150	2.00	41.2	41.9	45.6	0.624	12.9	23.4	19.5	7.63	1.35
$\times 6.1+$	0.0628	775	1.48	29.0	42.6	32.7	0.133	4.66	12.8	7.18	6.12	0.317
M75 x4.3+	0.0453	550	0.618	16.3	32.4	18.2	0.102	3.58	13.2	5.45	3.24	0,135

Note: These sections are not available from Canadian mills.

+ This section had no known producer at time of printing.

DIMENSIONS AND SURFACE AREAS

Nominal Mass	Theoretical Mass	Depth d	Flange Width b	Flange Thickness t	Web Thick- ness w	Distances				Surface Area (m^{2}) per metre of length		Imperial Designation
						a	T	k	k_{1}	Total	Minus Top of Top Flange	
kg/m	kg/m	mm										
18.5	18.3	318	95	5.8	3.9	46	290	14	10	1.01	0.913	M12.5×12.4
17.3	17,2	317	89	5.4	3.9	43	289	14	10	0.982	0.893	M12.5×11.6
17.6	17.6	305	78	5.7	4.5	37	277	14	10	0.913	0.835	M12x11.8
16.1	16.2	304	78	5.3	4.1	37	276	14	10	0.912	0.834	M12 $\times 10.8$
14.9	15.0	304	83	4.6	3.8	40	278	13	10	0.932	0.849	M12 $\times 10.0$
13.4	13.4	254	68	5.2	4.0	32	226	14	10	0.772	0.704	M10x9.0
11.9	12.0	253	68	4.6	3.6	32	225	14	10	0.771	0.703	M10 08.0
11.2	11.2	253	68	4.4	3.3	32	227	13	9	0.771	0.703	M10x 7.5
9.7	9.6	203	57	4.8	3.4	27	175	14	10	0.627	0.570	M8x6.5
9.2	9.2	203	58	4.5	3.3	27	177	13	9	0.631	0.573	M8x6.2
6.6	6.5	152	47	4.3	2.9	22	132	10	6	0.486	0.439	M6x4.4
5.5	5.5	150	51	3.3	2.5	24	132	9	6	0.499	0.448	M6x3.7
28.1	28.2	127	127	10.6	8.0	60	85	21	13	0.746	0.619	M5×18.9
8.9	8.9	97	97	4.1	3.3	47	71	13	9	0.575	0.478	M4x6.0
6.1	6.4	102	57	4.3	2.9	27	74	14	10	0.426	0.369	M 4×4.08
4.3	4.6	76	57	3.3	2.3	27	50	13	10	0.375	0.318	M 3×2.9

S SHAPES
S610-S200

PROPERTIES

Designation	Dead Load	Area	Axis X-X				Axis Y-Y				Torsional Constant 	Warping Constant C_{w}
			I_{x}	S_{x}	r_{x}	z_{x}	Iy	S_{y}	Ty	Z_{y}		
	kN/m	mm^{2}	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{4}$	$10^{9} \mathrm{~mm}{ }^{6}$
$\begin{gathered} \text { S610 } \\ \times 180 \\ \times 158 \end{gathered}$	1.76	23000	1310	4220	239	5020	33.9	332	38.5	592	5330	2990
	1.55	20100	1220	3940	247	4580	31.6	316	39.7	545	4210	2790
$\begin{array}{r} \text { S610 } \\ \times 149 \\ \times 134 \\ \times 119 \end{array}$	1.46	18900	996	3270	229	3930	19.7	214	32.2	393	3150	1700
	1.32	17100	939	3080	234	3650	18.6	205	32.9	367	2520	1600
	1.17	15200	879	2880	241	3360	17.5	197	34.0	342	2030	1510
$\begin{gathered} \text { S510 } \\ \times 143 \\ \times 128 \end{gathered}$	1.40	18200	700	2710	196	3250	20.7	226	33.7	410	3490	1260
	1.26	16300	658	2550	200	3010	19.2	214	34.2	378	2770	1160
S510 $\times 112$ $\times 98.2$	1.09	14200	532	2090	194	2500	12.3	152	29.4	274	1900	731
	0.964	12500	497	1950	199	2290	11.5	145	30.3	253	1480	684
S460 $\times 104$ $\times 81.4$	1.03	13300	387	1690	170	2050	10.1	127	27.5	238	1740	487
	0.800	10400	335	1470	180	1710	8.62	113	28.8	199	983	416
$\begin{array}{r} \text { S380 } \\ \times 74 \\ \times 64 \end{array}$	0.731	9480	203	1060	146	1270	6.49	90.8	26.1	164	884	217
	0.627	8130	187	980	151	1140	6.01	85.9	27.2	149	641	200
$\begin{gathered} \text { S310 } \\ \times 74 \\ \times 60.7 \end{gathered}$	0.729	9480	127	833	116	1000	6.48	93.3	26.2	169	1160	135
	0.595	7740	113	743	121	868	5.56	83.7	26.8	145	721	116
$\begin{array}{r} \$ 310 \\ \times 52 \\ \times 47 \end{array}$	0.512	6650	95.8	628	120	736	4.10	63.5	24.8	112	447	86.9
	0.465	6030	91.0	597	123	689	3.88	61.2	25.4	105	372	82.3
S250$\times 52$$\times 38$												
	0.513	6650	61.5	484	96.1	583	3.51	55.8	23.0	103	539	51.2
	0.370	4810	51.4	405	103	465	2.80	47.5	24.1	81.3	250	40.9
S200												
$\times 34$	0.336	4370	27.0	266	78.6	316	1.79	33.8	20.2	60.4	229	16.5
$\times 27$	0.269	3480	24.0	236	82.9	274	1.56	30.7	21.2	52.4	138	14.4

Note: These sections are not available from Canadian mills.

DIMENSIONS AND SURFACE AREAS

Nominal Mass	Theoretical Mass	Depth d	Flange Width\qquad b	Mean Flange Thickness t	Web Thicknessw	Distances			Surface Area (m^{2}) per metre of length		imperial Designation
						a	T	k	Total	Minus Top of	
kg/m	kg/m	mm		Top Flange							
180	180.0	622	204	27.7	20.3	92	516	53	2.02	1.82	S24×121
158	157.8	622	200	27.7	15.7	92	516	53	2.01	1.81	S24×106
149	148.7	610	184	22.1	18.9	83	518	46	1.92	1.73	S24×100
134	134.4	610	181	22.1	15.9	83	518	46	1.91	1.73	S24×90
119	119.1	610	178	22.1	12.7	83	518	46	1.91	1.73	S24×80
143	142.9	516	183	23.4	20.3	81	420	48	1.72	1.54	S20x96
128	128.6	516	179	23.4	16.8	81	422	47	1.71	1.54	S20x86
112	111.4	508	162	20.2	16.1	73	420	44	1.63	1.47	S20×75
98.2	98.3	508	159	20.2	12.8	73	420	44	1.63	1.47	S20x66
104	104.7	457	159	17.6	18.1	70	383	37	1.51	1.35	
81.4	81.5	457	152	17.6	11.7	70	383	37	1.50	1.35	$\mathrm{S} 18 \times 54.7$
74	74.6	381	143	15.8	14.0	65	313	34	1.31	1.16	
64	64.0	381	140	15.8	10.4	65	313	34	1.30	1.16	$\mathrm{S} 15 \times 42.9$
74	74.4	305	139	16.7	17.4	61	235	35	1.13	0.992	
60.7	60.6	305	133	16.7	11.7	61	235	35	1.12	0.986	$\mathrm{S} 12 \times 40.8$
52	52.2	305	129	13.8	10.9	59	245	30	1.10	0.975	S12x35
47	47.4	305	127	13.8	8.9	59	245	30	1.10	0.973	S12x31.8
52	52.3	254	126	12.5	15.1	55	200	27	0.982	0.856	S10x35
38	37.8	254	118	12.5	7.9	55	200	27	0.964	0.846	S10x25.4
34	34.3	203	106	10.8	11.2	47	155	24	0.808	0.702	S8×23
27	27.4	203	102	10.8	6.9	48	155	24	0.800	0.698	S8×18.4

S SHAPES
S150-S75

PROPERTIES

Designation	Dead Load	Area	Axis $\mathrm{X}-\mathrm{X}$				Axis Y-Y				Torsional Constant J	Warping Constant C_{w}
			I_{x}	S_{x}	r_{x}	$Z_{\text {x }}$	I_{y}	S_{y}	r_{y}	Z_{y}		
	kN/m	mm^{2}	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}{ }^{4}$	$10^{3} \mathrm{~mm}^{6}$
$\begin{array}{r} \mathbf{S} 150 \\ \times 26 \end{array}$	0.251	3270	10.9	143	57.8	173	0.969	21.3	17.2	38.9	152	4.95
$\times 19$	0.182	2360	9.16	121	62.2	138	0.765	18.0	18.0	30.6	68.5	3.90
$\begin{array}{r} \mathbf{S 1 3 0} \\ \times 15 \end{array}$	0.145	1880	5.11	80.5	52.0	92.7	0.501	13.2	16.3	22.3	47.0	1.76
$\begin{gathered} \text { S100 } \\ \times 14.1 \end{gathered}$	0.139	1800	2.85	55.9	39.7	66.5	0.372	10.5	14.4	18.4	50.1	0.832
$\times 11$	0.113	1450	2.56	50.2	41.8	57.9	0.320	9.40	14.8	15.9	30.4	0.715
$\begin{gathered} \mathbf{S 7 5} \\ \times 11 \\ \times 8 \end{gathered}$	$\begin{aligned} & 0.110 \\ & 0.083 \end{aligned}$	$\begin{aligned} & 1430 \\ & 1080 \end{aligned}$	1.22 1.04	32.0 27.4	29.2 31.2	38.7 31.8	0.246 0.187	7.68 6.34	13.1 13.2	13.6 10.6	38.1 18.2	$\begin{aligned} & 0.296 \\ & 0.225 \end{aligned}$

Note: These sections are not available from Canadian mills.

DIMENSIONS AND SURFACE AREAS

Designation	Dead Load	Area	Axis $\mathrm{X}-\mathrm{X}$			Axis Y-Y				Shear Centre x_{o}	Torsional Constant J	Warping ConstantC_{w}
			1_{x}	S_{x}	${ }^{\text {x }}$	1 y	S_{y}	r_{y}	x			
	kN/m	mm^{2}	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	mm	mm	$10^{3} \mathrm{~mm}^{4}$	$10^{9} \mathrm{~mm}^{6}$
C380												
$\times 74 *$	0.730	9480	168	881	133	4.60	62.4	22.0	20.3	34.9	1100	131
$\times 60{ }^{*}$	0.583	7610	145	760	138	3.84	55.5	22.5	19.8	39.1	603	109
$\times 50{ }^{*}$	0.495	6430	131	687	143	3.39	51.4	23.0	20.0	42.6	421	95.2
C310												
$\times 45$	0.438	5690	67.3	442	109	2.12	33.6	19.3	17.0	32.4	360	39.9
$\times 37$	0.363	4740	59.9	393	113	1.85	30.9	19.8	17.1	35.9	222	34,6
$\times 31$	0.301	3930	53.5	351	117	1.59	28.1	20.1	17.6	39.3	152	29.3
C250												
$\times 45$	0.437	5690	42.8	337	86.9	1.60	26.8	16.8	16.3	25.3	508	20.5
$\times 37$	0.365	4740	37.9	299	89.4	1.40	24.3	17.1	15.7	28.1	289	18.2
$\times 30$	0.291	3790	32.7	257	93.0	1.16	21.5	17.5	15.4	31.3	153	15.0
$\times 23$	0.221	2900	27.8	219	98.2	0.920	18.8	17.9	15.9	35.7	86.4	11.7
C230												
$\times 30{ }^{*}$	0.292	3790	25.5	222	81.9	1.01	19.3	16.3	14.8	27.7	179	10.5
$\times 22$	0.219	2850	21.3	186	86.6	0.805	16.8	16.8	15.0	32.3	86.6	8.33
$\times 20$	0.195	2540	19.8	173	88.6	0.715	15.6	16.8	15.2	33.7	69.5	7.35
C200												
$\times 28$	0.274	3550	18.2	180	71.6	0.825	16.6	15.2	14.4	25.2	182	6.67
$\times 21$	0.200	2610	14.9	147	75.8	0.627	13.9	15,5	14.0	29.1	77.0	5.04
$\times 17$	0.167	2180	13.5	133	78.7	0.543	12.8	15.8	14.5	32.0	53.8	4.34
C180												
$\times 2{ }^{*}$	0,214	2790	11.3	127	63.7	0.568	12.8	14.3	13.5	24.6	110	3.47
$\times 18$	0.178	2320	10.0	113	65.9	0,476	11.4	14.3	13,2	26.5	66.8	2.90
$\times 15$	0.142	1850	8.86	99,6	69.3	0.404	10.3	14.8	13.8	30.3	41.4	2.46
C150												
$\times 19$	0.188	2470	7.11	93.6	53.9	0.425	10.3	13.2	12.9	22.3	98.9	1.84
$\times 16$	0.152	1990	6.21	81.8	56.1	0.351	9.13	13.3	12.6	24.6	53.4	1.53
$\times 12$	0.118	1550	5.36	70.5	59.1	0.278	7.93	13.5	12.9	27.7	30.6	1.21
C130												
$\times 13$	0.130	1700	3.66	57.6	46.5	0.252	7.20	12.2	12.0	22.3	45.0	0.746
$\times 10$	0.097	1270	3.09	48.6	49.5	0.195	6.14	12.4	12.3	26.1	22.5	0.579
C100												
$\times 11$	0.106	1370	1.91	37.4	37.3	0.174	5.52	11.3	11.5	20.9	34.1	0.320
$\times 9$	0.088	1190	1.68	33.0	38.3	0.146	4.73	11.3	11.1	22.2	20.5	0.281
$\times 8$	0.079	1030	1.61	31.6	39.7	0.132	4.65	11.4	11.6	24.2	16.6	0.246
$\times 7$	0.069	852	1.53	30.0	41.4	0.122	4.45	11.7	12.6	27.3	13.3	0.233
C75												
$\times 9$	0,087	1130	0.847	22.3	27.4	0.123	4.31	10.5	11.5	19.4	29.7	0.118
$\times 7$	0.072	948	0.749	19.7	28.3	0.0959	3.67	10.1	10.9	20.3	17.5	0.0934
$\times 6$	0.059	781	0.670	17.6	29.6	0.0772	3.21	10.1	11.0	22.3	10.9	0.0768
$\times 5$	0.054	665	0.651	17.1	30.4	0.0737	3.13	10.2	11.4	24.0	9.49	0.0747

[^49]

STANDARD CHANNELS (C SHAPES)

Nominal Mass	Theoretical Mass	Depth d	Flange Width b	Flange Thickness t.	Web Thick- ness w	Distances			Surface Area (m^{2}) per metre of length		Imperial Designation
						a	T	k	Total	Minus Top of Top Flange	
kg / m	kg/m	mm	mm	mm	mm	$m m$	mm	mm			
74	74.4	381	94	16.5	18.2	76	309	36	1.10	1.01	C15x50
60	59.4	381	89	16.5	13.2	76	309	36	1.09	1.00	C15×40
50	50.5	381	86	16.5	10.2	76	309	36	1.09	1.00	C15×33.9
45	44.7	305	80	12.7	13.0	67	246	29	0,904	0.824	C12x30
37	37.0	305	77	12.7	9.8	67	246	29	0.898	0.821	C12x25
31	30.7	305	74	12.7	7.2	67	246	29	0.892	0.818	C12x20.7
45	44.5	254	76	11.1	17.1	59	200	27	0.778	0.702	C10x30
37	37.3	254	73	11.1	13.4	60	200	27 ,	0.773	0.700	C10x25
30	29.6	254	69	11.1	9.6	59	200	27	0.765	0.696	C10x 20
23	22.6	254	65	11.1	6.1	59	200	27	0.756	0.691	C10×15.3
30	29.8	229	67	10.5	11.4	56	182	23	0.703	0.636	C9x20
22	22.3	229	63	10.5	7.2	56	182	23	0.696	0.633	C9×15
20	19.8	229	61	10.5	5.9	55	182	23	0.690	0.629	C9x13.4
28	27.9	203	64	9.9	12.4	52	159	22	0.637	0.573	C8×18.75
21	20.4	203	59	9.9	7.7	51	159	22	0.627	0.568	C8×13.75
17	17.0	203	57	9.9	5.6	51	159	22	0.623	0.566	C8×11.5
22	21.9	178	58	9.3	10.6	47	136	21	0.567	0.509	C7x14.75
18	18.2	178	55	9.3	8.0	47	136	21	0.560	0.505	C7x12.25
15	14.5	178	53	9.3	5.3	48	136	21	0.557	0.504	C7x9.8
19	19.2	152	54	8.7	11.1	43	113	20	0.498	0.444	C6x13
16	15.5	152	51	8.7	8.0	43	113	20	0.492	0.441	C6x10.5
12	12.0	152	48	8.7	5.1	43	113	20	0.486	0.438	C6x8.2
13	13.3	127	47	8.1	8.3	39	90	18	0.425	0.378	C5x9
10	9.9	127	44	8.1	4.8	39	90	19	0.420	0.376	C5x6.7
11	10.8	102	43	7.5	8.2	35	67	17	0.360	0.317	C4x7. 25
9	9.0	102	42	6.9	6.3	36	68	17	0.359	0.317	C4x6.25
8	8.0	102	40	7.5	4.7	35	67	17	0.355	0.315	C4×5.4
7	7.0	102	40	7.5	3.2	37	67	17	0.358	0.318	C4×4.5
9	8.8	76	40	6.9	9.0	31	43	16	0.294	0.254	C3x6
7	7.3	76	37	6.9	6.6	30	43	16	0.287	0.250	C3x5
6	6.0	76	35	6.9	4.3	31	43	16	0.283	0.248	C3x4.1
5	5.5	76	35	6.9	3.4	32	43	16	0.285	0.250	C3x3.5

MISCELLANEOUS CHANNELS
MC460 - MC200

PROPERTIES

Designation	Dead Load	Area	Axis $\mathrm{X}-\mathrm{X}$			Axis Y-Y				Shear Centre x_{0}	Torsional Constant J	Warping Constant$\|$ C_{w}
			I_{x}	S_{x}	${ }^{\text {x }}$	Iy	S_{y}	r_{y}	x			
	kN/m	mm^{2}	$10^{8} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	mm	mm	$10^{3} \mathrm{~mm}^{4}$	$10^{9} \mathrm{~mm}^{6}$
$\begin{gathered} \text { MC460 } \\ \text { x86 } \\ \text { x77.2* } \\ \times 68.2^{*} \\ \times 63.5^{*} \end{gathered}$												
	0.848	11000	282	1230	160	7.36	86.4	25.8	21.9	39.6	1170	290
	0.758	9870	261	1140	163	6.81	82.8	26.3	21.8	42.1	842	264
	0.669	8710	241	1050	166	6.18	77.1	26.7	21.9	45.2	605	243
	0.623	8130	231	1010	169	5.94	76.3	27.1	22.2	46.8	513	227
$\begin{gathered} \text { MC330 } \\ \times 74^{*} \\ \times 60^{*} \\ \times 52^{*} \\ \times 47.3^{*} \end{gathered}$												
	0.730	9480	131	792	117	6.81	78.0	26.8	24.7	45,4	1240	149
	0.582	7610	113	685	122	5.63	69.0	27.3	24.4	50.6	643	123
	0.511	6640	105	635	126	5.13	65.8	27.8	24.9	54.1	472	110
	0.464	6030	99.3	602	128	4.69	61.1	27.9	25.4	57.2	393	103
MC310												
$\times 74^{*}$ $\times 67$	0.731 0.656	9480	112	738	109	7.26	92.7	27.7	26.7	45.5	1340	111
x67**	0.656	8500	105	688	111	6.55	86.5	27.7	26.3	47.9	966	101
$\times 60^{*}$	0.585	7610	97.8	641	113	5.92	81.4	27.9	26.3	50.5	708	90.9
$\times 52^{*}$	0.510	6620	90,3	592	117	5.26	76.1	28.2	26.8	54.2	514	80.6
$\times 46^{*}$	0.453	5890	84,4	554	120	4.69	71.6	28.2	27.6	57.2	418	71.5
$\begin{array}{r} \text { MC310 } \\ \times 21.3^{*} \end{array}$	0.210	2700	32.0	210	108	0.413	9.28	12.3	9.52	20.6	51.0	8.94
$\begin{array}{r} \text { MC310 } \\ \times 15.8^{+} \end{array}$	0.154	2000	23.0	151	107	0.157	5.04	8.88	6.81	14.0	24.8	3.11
$\begin{gathered} \text { MC250 } \\ \times 61.2^{\circ} \\ \times 50^{\circ} \\ \times 42.4^{*} \end{gathered}$	0.601	7810	65.7	518	91.8	6.56	79.6	29.0	27.6	49.7	942	72.7
	0.490	6370	57.9	456	95.3	5.43	70.9	29.2	27.5	54.4	500	60.0
	0.416	5400	52.6	414	98.7	4.66	64.9	29.4	28.2	58.9	329	51.5
MC250$\times 37^{*}$$\times 33^{+}$	0.365	4740	45.8	360	98.2	3.02	48.9	25.2	24.2	49.9	264	33.1
	0.321	4160	42.7	336	101	2.67	45.2	25.3	25.1	53.4	213	29.6
$\begin{array}{r} \text { MC250 } \\ \times 12.5^{\circ} \end{array}$	0.122	1590	13,3	104	91.6	0.136	4.41	9.28	7.21	15.6	17.2	1.87
$\times 9.7{ }^{*}$	0.096	1240	9.35	73.6	86.4	0.0512	2.20	6.40	4.71	8.64	7.80	0.624
$\begin{array}{r} \text { MC230 } \\ \times 37.8^{*} \end{array}$	0.369	4820	36.6	319	87.3	3.06	48.0	25.3	24.3	49.0	286	
$\times 35.6$ *	0,347	4530	35.2	308	88.4	2.88	46.0	25.3	24.4	50.4	246	25,8
$\begin{array}{r} \text { MC200 } \\ \times 33.9^{*} \end{array}$	0.330	4320	26.2	258	78.3	2.81	44.7	25.6	25.2	51.3	234	
$\times 31.8{ }^{*}$	0.310	4050	25.4	250	79.4	2.66	43.4	25.7	25.7	53.2	203	18,6

[^50]

MISCELLANEOUS CHANNELS
MC460 - MC200

DIMENSIONS AND SURFACE AREAS

Nominal Mass	Theoretical Mass	Depth d	Flange Width b	Flange Thickness t	Web Thick- ness w	Distances			Surface Area (m^{2}) per metre of length		Imperial Designation
						a	T	k	Total	Minus Top	
kg/m	kg/m	mm		Top Flange							
86	86.5	457	107	15.9	17.8	89	385	36	1.31	1.20	MC18×58
77.2	77.2	457	104	15.9	15.2	89	385	36	1.30	1.20	MC18×51,9
68.2	68.2	457	102	15.9	12.7	89	385	36	1.30	1.19	MC18×45.8
63.5	63.6	457	100	15.9	11.4	89	385	36	1.29	1.19	MC18×42.7
74	74.5	330	112	15.5	20.0	92	258	36	1.07	0.956	MC13x50
60	59.3	330	106	15.5	14,2	92	258	36	1.06	0.950	MC13x40
52	52.1	330	103	15.5	11.4	92	258	36	1.05	0.946	MC13×35
47.3	47.3	330	102	15.5	9.5	93	258	36	1.05	0.947	MC13x31.8
74	74.5	305	105	17.8	21.2	84	237	34	0.988	0.883	MC12x50
67	66.9	305	102	17.8	18.0	84	237	34	0.982	0.880	MC12×45
60	59.7	305	99	17.8	15.0	84	237	34	0.976	0.877	MC12×40
52	52.0	305	96	17.8	11.8	84	237	34	0.970	0.874	MC12x35
46	46.2	305	93	17.8	9.4	84	237	34	0.963	0.870	MC12×31
21.3	21.4	305	54	8.0	6.4	48	265	20	0.813	0.759	MC12×14.3
15.8	15.7	305	38	7.8	4.8	33	267	19	0.752	0.714	MC12×10.6
61.2	61.3	254	110	14.6	20.2	90	188	33	0.908	0.798	MC10x41.1
50	50.0	254	104	14.6	14.6	89	188	33	0.895	0.791	MC10x33.6
42.4	42.4	254	100	14.6	10.8	89	188	33	0.886	0.786	MC10x28.5
37	37.2	254	86	14.6	9.7	76	188	33	0.833	0.747	MC10x25
33	32.7	254	84	14.6	7.4	77	188	33	0.829	0.745	MC10×22
12.5	12.4	254	38	7.1	4.3	34	218	18	0.651	0.613	MC10x8.4
9.7	9.8	254	28	5.1	3.9	24	226	14	0.612	0.584	MC10x6.5
37.8	37.7	229	88	14.0	11.4	77	167	31	0.787	0.699	MC9x25.4
35.6	35.4	229	87	14.0	10.2	77	167	31	0.786	0.699	MC9x23.9
33,9	33.6	203	88	13.3	10.8	77	143	30	0.736	0.648	MC8*22.8
31.8	31.6	203	87	13.3	9.5	78	143	30	0.735	0.648	MC8×21.4

MISCELLANEOUS CHANNELS
MC200 - MC75

PROPERTIES

[^51]

DIMENSIONS AND SURFACE AREAS

PROPERTIES ABOUT GEOMETRIC AXES

Designation	Dead Load	Area	Axis $\mathrm{X}-\mathrm{X}$				Axis Y-Y				Torsional Constant	Warping Constant
			I_{x}	S_{x}	r_{x}	y	Iy	S_{y}	${ }^{\text {y }}$	x	J	C_{w}
	kN/m	mm^{2}	$10^{8} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	mm	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	mm	$10^{3} \mathrm{~mm}^{4}$	$10^{9} \mathrm{~mm}^{8}$
L254×254$\times 32^{*}$$\times 29^{*}$$\times 25 *$$\times 22^{*}$$\times 19$												
	1.17	15100	90.5	506	77.3	75.2					5100	24.1
	1.06	13700	82.9	460	77.7	74.0					3740	17.9
	0.944	12300	74,9	414	78.2	72.9					2640	12.8
	0.830	10800	66.7	366	78.6	71.7					1770	8.71
	0.719	9310	58.4	318	79.1	70.6					1140	5.65
L203x203												
- 29 *	0.831	10800	40.7	287	61.4	61.2					2940	8.73
$\times 25{ }^{*}$	0.744	9680	36.9	258	61.8	60.1					2080	6.27
$\times 22$ *	0.656	8500	33.0	229	62.2	58.9					1400	4.30
$\times 19 *$	0.566	7360	28.9	199	62.7	57.8					885	2.76
$\times 16{ }^{*}$	0.477	6200	24.7	169	63.1	56.6					523	1.66
$\times 14^{*}$	0.431	5600	22.5	153	63.3	56.0					382	1.22
$\times 13^{*}$	0.385	5000	20.2	137	63.6	55.5					269	0.865
$L 203 \times 152$												
$\times 25^{*}$	0:644	8390	33.5	247	63.3	67.4	16.0	145	43.7	41.9	1800	4.37
$\times 22$	0.569	7420	30.0	219	63.7	66.2	14.4	129	44.1	40.7	1210	3.00
$\times 19 *$	0.491	6410	26.2	190	64.1	65.1	12.7	113	44.5	39.6	768	1.93
$\times 16{ }^{+}$	0.415	5390	22.5	162	64.6	64.0	10.9	95.9	44.9	38.5	454	1.16
$\times 14^{*}$	0.375	4880	20.4	146	64.8	63.4	9.94	87.1	45.2	37.9	332	0.857
$\times 13{ }^{*}$	0.335	4350	18.4	131	65.0	62.8	8.96	78.1	45.4	37.3	234	0.609
x11*	0.294	3830	16.3	115	65.3	62.2	7.94	68.9	45.6	36.7	157	0.412
L203×102												
$\times 25^{*}$	0.547	7100	29.0	230	63.8	77.2	4.90	65.1	26.3	26.7	1530	3.46
$\times 22$ *	0.483	6280	25.9	204	64.3	76.0	4.43	57.9	26.6	25.5	1030	2.38
$\times 19$	0.418	5450	22.8	178	64.7	74.8	3.93	50.6	26.9	24.3	654	1.53
$\times 16{ }^{*}$	0.354	4590	19.5	151	65.2	73.6	3.41	43.3	27.3	23.1	387	0.921
$\times 14 *$	0.320	4150	17.8	137	65.4	73.0	3.13	39.4	27.4	22.5	283	0.680
$\times 13^{*}$	0,286	3710	16.0	123	65.7	72.4	2.84	35.4	27.6	21.9	200	0.482
$\times 11 *$	0.251	3260	14.2	108	65.9	71.8	2.53	31.4	27.9	21.3	134	0.327
L178×102$\times 19^{*}$												
	0.382	4960	15.8	138	56,4	63,7	3.80	49.9	27.7	25.7	597	
$\times 16{ }^{*}$	0.323	4180	13.6	118	56.8	62.6	3.31	42.7	28.1	24.6	354	0.642
$\times 13$	0.261	3390	11.1	95.6	57.3	61.4	2.75	35.0	28.5	23.4	183	0.338
$\times 11 *$	0.230	2980	9.88	84.3	57.5	60.8	2.45	31.0	28.7	22.8	123	0.229
$\times 9.5$	0.198	2570	8.60	73.0	57.8	60.2	2.15	26.9	28.9	22.2	78.0	0.147

*Nol available from Canadian mills

ANGLES
L254-L178

DIMENSIONS AND PROPERTIES ABOUT PRINCIPAL AXES

Mass	d	b	t	Axis $\mathrm{X}^{\prime}-\mathrm{X}^{\prime}$		Axis $Y^{\prime}-Y^{\prime}$		\tilde{r}_{0}	Ω	$\tan \alpha$
				${ }^{\text {x }}$	yo	r_{y}	x_{0}			
kg/m	mm									
119	254	254	31.8	97.4	0.00	49.7	83.8	138	0.630	1.00
108	254	254	28.6	98.0	0.00	49.8	84.4	139	0.629	1.00
96.2	254	254	25.4	98.6	0.00	49.9	85.1	140	0.628	1.00
84.6	254	254	22.2	99.3	0.00	50.1	85.7	140	0.627	1.00
73.1	254	254	19.1	99.9	0.00	50.3	86.3	141	0.627	1.00
84.7	203	203	28,6	77.3	0.00	39.6	66.3	109	0.631	1.00
75.9	203	203	25,4	77.9	0.00	39.7	67.0	110	0.630	1.00
67.0	203	203	22.2	78.5	0.00	39.8	67.6	111	0.629	1.00
57.9	203	203	19.0	79.1	0.00	40.0	68.2	112	0.628	1.00
48.7	203	203	15.9	79.7	0.00	40.1	68.8	113	0.627	1.00
44.0	203	203	14.3	80.0	0.00	40.2	69,2	113	0.626	1.00
39.3	203	203	12.7	80.3	0.00	40.3	69.5	114	0.626	1.00
65.5	203	152	25.4	69.7	34.2	32.4	51.7	98.8	0.606	0.541
57.9	203	152	22.2	70.3	34.2	32.5	52.4	99.6	0.605	0.545
50.1	203	152	19.0	70.9	34.2	32.6	53.1	100	0.604	0,549
42.2	203	152	15.9	71.5	34.3	32.8	53.8	101	0.603	0.553
38.1	203	152	14.3	71.8	34.3	32.9	54.1	102	0.603	0.554
34.1	203	152	12.7	72.1	34.3	33.0	54.5	102	0.603	0.556
29.9	203	152	11.1	72.4	34.3	33.1	54.8	103	0.603	0.558
55.4	203	102	25.4	65.6	59.2	21.6	29.2	95.5	0.523	0.249
49.3	203	102	22.2	66.1	59.3	21.6	30.0	96.2	0.523	0.255
42.5	203	102	19,0	66.6	59.5	21.7	30.8	96.9	0.523	0.260
36.0	203	102	15.9	67.2	59.6	21.9	31.5	97.7	0.523	0.265
32.4	203	102	14.3	67.4	59.7	22.0	31.9	98.0	0.524	0.267
29.0	203	102	12.7	67.7	59.8	22.1	32.2	98.4	0.524	0.269
25.6	203	102	11.1	68.0	59.8	22.2	32.6	98.8	0.524	0.272
38.8	178	102	19.0	58.9	46.5	21.9	32.2	84.6	0.552	0.326
32.7	178	102	15.9	59.4	46.6	22.1	33.0	85.3	0.552	0.331
26.5	178	102	12.7	80.0	46.7	22.2	33.7	86.1	0.552	0.336
23.4	178	102	11.1	60.3	46.8	22.3	34.1	86.5	0.552	0.339
20.2	178	102	9.53	60.6	46.8	22.4	34.4	86.9	0.553	0.341

See Rolled Structural Shapes for further information on the properties of angles.

PROPERTIES ABOUT GEOMETRIC AXES

Designation	Dead Load	Area	Axis $\mathrm{X}-\mathrm{X}$				Axis Y-Y				Torsional Constant J	Warping ConstantC_{w}
			I_{x}	S_{x}	r_{x}	y	I_{y}	Sy	${ }^{\prime} y$	\times		
	kN/m	mm^{2}	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	mm	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	mm	$10^{3} \mathrm{~mm}^{4}$	$10^{9} \mathrm{~mm}^{6}$
L152x162												
$\times 25 *$	0.545	7100	14.6	140	45,5	47.2					1520	2.46
$\times 22{ }^{*}$	0.482	6280	13.2	124	45.9	46.1					1030	1.70
$\times 19$	0.417	5450	11.6	108	46.3	45.0					652	1.10
$\times 16$	0.353	4590	9.99	92.3	46.7	43.9					386	0.668
$\times 14{ }^{*}$	0.319	4150	9.12	83.8	46.9	43.3					282	0.494
$\times 13$	0.285	3710	8.22	75.2	47.1	42.7					199	0.352
$\times 11{ }^{*}$	0.250	3270	7.29	66.4	47.4	42.1					134	0.239
$\times 9.5$	0.216	2810	6.36	57.5	47.6	41.5					85.0	0.153
$\times 7.9{ }^{*}$	0.181	2360	5.38	48.4	47.8	41.0					49.4	0.0902
L152×102												
$\times 22^{*}$	0.396	5150	11.5	117	47.2	53.7	4.10	55.9	28.2	28.7	845	1.08
$\times 19$	0.344	4480	10.1	102	47.6	52.5	3.65	48.9	28.6	27.5	537	0.702
$\times 16$	0.291	3780	8.73	86.8	48.0	51.4	3.17	41.9	28.9	26.4	319	0.427
$\times 14^{*}$	0,264	3430	7.98	78.8	48.2	50.8	2.91	38.2	29.1	25.8	234	0.316
$\times 13$	0.236	3060	7.20	70.7	48.5	50.2	2.64	34.4	29.3	25.2	165	0.226
$\times 11^{*}$	0.208	2700	6.39	62.4	48.7	49.6	2.35	30.4	29.6	24.6	111	0.153
$\times 9.5$	0.179	2330	5.58	54.2	48.9	49.1	2.06	26.5	29.8	24.1	70.5	0.0988
x7.9	0.150	1950	4.72	45.6	49.2	48.5	1.76	22.4	30.0	23.5	41.1	0,058 2
L152x89												
x13 $\times 9.5$	0.170	2900 2210	6.86 5.32	69.1 52.9	48.6 49.1	52.7 51.6	1.77 1.39	26.1 20.2	24.7 25.1	21.2 20.0	156 66.8	0.208 0.0911
$\times 7.9$	0.142	1850	4.50	44.6	49.3	51.0	1.19	17.1	25.3	19.4	38.9	0.0536
$L 127 \times 127$												
X22* $\times 19$	0.396 0.344	5150 4480	7.39 6.54	84.7 74.0	37.9 38.3	39.8 38.7					845 537	0.946 0.618
$\times 16$	0.291	3780	5.66	63.3	38.7	37.6					319	0.377
$\times 13$	0.236	3070	4.68	51.7	39.1	36.4					165	0.200
$\times 11^{*}$	0.208	2700	4.17	45.7	39.3	35.8					111	0.136
$\times 9.5$	0.179	2330	3,64	39.7	39.5	35.3					70.5	0.0878
$\times 7.9$	0.150	1960	3,09	33.5	39.8	34.7					41.1	0.0518
L127×89												
x19**	0.288	3750 3170	5.78	69.9	39.3	44.3	2.31	36.2	24.8	25.3	450	0.404
$\times 16^{*}$	0.245	3170	5.01	59.8	39.7	43.2	2.01	31.1	25.2	24.2	268	0.248
$\times 13^{*}$	0.199	2580	4.16	48.9	40.1	42.1	1.68	25.6	25.6	23.0	139	0.132
$\times 9.5$	0.151	1970	3.24	37.6	40.6	40.9	1.33	19.8	26.0	21.9	59.5	0.0582
$\times 7.9$	0.127	1650	2.75	31.7	40.8	40.3	1.13	16.7	26.2	21.3	34.7	0.0344
$\times 6.4$	0.102	1330	2.24	25.7	41.0	39.7	0.928	13.6	26.4	20.7	17.9	0.0180

[^52]ANGLES
L152-L127

DIMENSIONS AND PROPERTIES ABOUT PRINCIPAL AXES

Mass	d	b	t	Axis $\mathrm{X}^{\prime}-\mathrm{X}^{\prime}$		Axis $Y^{\prime}-Y^{\prime}$		\bar{r}_{0}	Ω	$\tan \alpha$
				r_{x}	yo	r_{y}	x_{0}			
kg/m	mm									
55.7	152	152	25.4	57.1	0.00	29.6	48.8	80.8	0.634	1.00
49.3	152	152	22.2	57.7	0.00	29.6	49.5	81.6	0.632	1.00
42.7	152	152	19,0	58.3	0.00	29.7	50.2	82.5	0.630	1.00
36.0	152	152	15.9	58.9	0.00	29.8	50.8	83.3	0.628	1.00
32.6	152	152	14.3	59.2	0.00	29.9	51.1	83.7	0.628	1.00
29.2	152	152	12.7	59.5	0.00	30.0	51.4	84.2	0.627	1.00
25.6	152	152	11.1	59.8	0.00	30.1	51.7	84.6	0.627	1.00
22.2	152	152	9,53	60.1	0.00	30.2	52.0	85.1	0.626	1.00
18.5	152	152	7.94	60.5	0.00	30.3	52.3	85.5	0.626	1.00
40.3	152	102	22.2	50.5	32.2	21.9	32.9	71.7	0.588	0.427
35.0	152	102	19.0	51.0	32.3	21.9	33.6	72.5	0.586	0.434
29.6	152	102	15.9	51.6	32.3	22.0	34.4	73.3	0.585	0.440
26.8	152	102	14.3	51.8	32.4	22.1	34.7	73.7	0.585	0.443
24.0	152	102	12.7	52.1	32.4	22.2	35.1	74.1	0.585	0.446
21.2	152	102	11.1	52.4	32.4	22.3	35.5	74.5	0.584	0.449
18.2	152	102	9.53	52.7	32.4	22.4	35.8	74.9	0.584	0.451
15.3	152	102	7.94	53.0	32.5	22.5	36.1	75.3	0.584	0.454
22.7	152	88.9	12.7	51.0	39.0	19.3	29.2	73.1	0.556	0.345
17.3	152	88.9	9.53	51.6	39.1	19.5	29.9	73.9	0.557	0.351
14.5	152	88.9	7.94	51.9	39.1	19.6	30.2	74.3	0.557	0.354
40.5	127	127	22.2	47.5	0.00	24.7	40.6	67.2	0.635	1.00
35.1	127	127	19,0	48.1	0.00	24.8	41.3	68.1	0.632	1.00
29.8	127	127	15.9	48.7	0.00	24.8	41.9	68.9	0.630	1.00
24,1	127	127	12.7	49.3	0.00	25.0	42.5	69.8	0.628	1.00
21.3	127	127	11.1	49.6	0.00	25.0	42.8	70.2	0.627	1,00
18.3	127	127	9.53	49.9	0.00	25.1	43.2	70.6	0.627	1.00
15.3	127	127	7.94	50.3	0.00	25.2	43.5	71.1	0.626	1.00
29.3	127	88.9	19.0	42.4	24.9	19.0	29.0	60.2	0.597	0.464
24.9	127	88.9	15.9	43.0	25.0	19.1	29.7	61.0	0.594	0.472
20.2	127	88.9	12.7	43.5	25.0	19.2	30.5	61.8	0.593	0.479
15.4	127	88.8	9.53	44.1	25.0	19.3	31.2	62.6	0.592	0.486
12.9	127	88.9	7.94	44.4	25.1	19.4	31.5	63.0	0.592	0.489
10.4	127	88.9	6.35	44.7	25.1	19.6	31.8	63.4	0.592	0.492

See Rolled Structural Shapes for further information on the properties of angles.

PROPERTIES ABOUT GEOMETRIC AXES

Designation	Dead Load	Area	Axis X -X				Axis Y-Y				Torsional Constant J	Warping Constant C_{w}
			I_{x}	S_{x}	r_{x}	y	19	Sy	r_{y}	x		
	kN/m	mm^{2}	$10^{6} \mathrm{~mm}^{4}$	$10^{2} \mathrm{~mm}^{3}$	mm	mm	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	mm	$10^{3} \mathrm{~mm}^{4}$	$10^{9} \mathrm{~mm}^{8}$
L127×76												
$\times 13$	0.186	2420	3.93	47.7	40,3	44.5	1.07	18.8	21.1	19.1	130	0.119
$\times 11 *$	0.164	2140	3.51	42.2	40.6	43.9	0.963	16.7	21.3	18.5	87.6	0.0815
$\times 9.5$	0.142	1850	3.07	36.7	40.8	43.3	0.849	14.6	21.5	17.9	55.9	0.0527
$\times 7.9$	0.119	1550	2.61	30.9	41.0	42.7	0.727	12.3	21.7	17.3	32.6	0.0311
$\times 6,4$	0.0962	1250	2.13	25.0	41.2	42.1	0.598	10.1	21.9	16.7	16.8	0.0163
L102×102												
$\times 19$ $\times 16$	0.271 0.230	3510 2970	3.23 2.81	46.3 39.8	30.3 30.7	32.4 31.3					423 252	0.302 0.186
$\times 13$	0.187	2420	2.34	32.6	31.1	30.2					131	0.0996
$\times 11$	0.165	2140	2.09	28.9	31.3	29.6					87.9	0.0682
$\times 9.5$	0.143	1850	1.84	25.2	31.5	29.0					56.1	0.0442
$\times 7.9$	0.120	1550	1.57	21.3	31.7	28.4					32.7	0.0262
x6.4	0.0966	1250	1.28	17.3	31.9	27.9					16.9	0.0137
L102x89												
$\times 13$ $\times 9.5$			2.24 1.76	32.0	31.5	31.9					122	0.0818
x7.9	0.112	1450	1.50	20.9	32.1	30.8 30.2	1.06	19.2	26.8	24.2 23.6	52.3 305	0.0364
$\times 6.4$	0.0902	1170	1.23	16.9	32.3	29.6	0.872	13.2	27.3	23.1	15.8	0.0113
L102x76												
$\times 13$	0.162	2100	2,12	31.2	31.8	33.9	1.01	18.3	21.9	21.0	113	0.0692
$\times 9.5$	0.124	1600	1.67	24.1	32.2	32.7	0.800	14.2	22.3	19.8	48.7	0.0309
$\times 7.9$	0.104	1350	1.42	20.4	32.4	32.1	0.686	12.0	22.5	19.2	28.4	0.0183
$\times 6.4$	0.0840	1090	1.17	16.5	32.7	31.6	0.565	9,81	22.7	18.7	14.7	0.00963
$\begin{gathered} \text { L89x89 } \\ \times 13 \end{gathered}$	0.161	2100	1.51	24.4	26.9	26.9					113	0.0640
$\times 11^{\prime \prime}$	0.142	1850	1,36	21.7	27.1	26.3					76.0	0.0440
x9.5	0.123	1600	1.19	18.9	27.3	25.7					48.5	0.0286
$\times 7.9$	0.104	1350	1.02	16.0	27.5	25.2					28.3	0.0170
$\times 6.4$	0.0838	1090	0.837	13.0	27.7	24,6					14.6	0.00898

[^53]

DIMENSIONS AND PROPERTIES ABOUT PRINCIPAL AXES

Mass	d	b	1	Axis $\mathrm{X}^{\prime}-\mathrm{X}^{\prime}$		Axis $Y^{\prime}-Y^{\prime \prime}$		\bar{r}_{0}	Ω	$\tan a$
				r_{x}	y_{0}	${ }^{\prime}$	x_{0}			
kg/m	mm									
19.0	127	76.2	12.7	42.4	31.6	16.5	24.8	60.7	0.562	0.357
16.7	127	76.2	11.1	42.7	31.7	16.5	25.1	61.1	0.562	0.361
14.5	127	76.2	9.53	43.0	31.7	16.6	25.5	61.5	0.562	0.364
12.1	127	76.2	7.94	43.3	31.7	16.7	25.9	61.9	0.562	0.368
9.8	127	76.2	6.35	43.6	31.8	16.8	26.2	62.3	0.562	0.371
27.5	102	102	19.0	38.0	0.00	19.8	32.4	53.7	0.637	1.00
23.4	102	102	15.9	38.5	0.00	19.9	33.0	54.5	0.633	1.00
19.0	102	102	12.7	39.1	0.00	19.9	33.7	55.3	0.630	1.00
16.8	102	102	11.1	39.4	0.00	20.0	34.0	55.8	0.629	1.00
14.6	102	102	9.53	39.7	0.00	20.1	34.3	56.2	0.628	1.00
12.2	102	102	7.94	40.1	0.00	20.2	34.6	56.6	0.627	1.00
9.8	102	102	6.35	40.4	0.00	20.3	34.9	57.1	0.626	1.00
17.6	102	88.9	12.7	36.8	9.16	18.4	30.5	52.0	0.625	0.744
13.5	102	88.9	9.53	37.4	9.15	18.5	31.2	52.8	0.622	0.749
11.4	102	88.9	7.94	37.7	9,15	18.6	31.5	53.3	0.621	0.751
9.2	102	88.9	6.35	38.0	9,15	18.7	31.8	53.7	0.621	0.753
20.2	102	76.2	15.9	34.5	17.3	16.2	25.2	48.8	0.609	0.529
16.4	102	76.2	12.7	35.0	17.3	16.2	25.9	49.6	0.606	0.538
12.6	102	76.2	9.53	35.6	17.3	16.4	26.6	50.4	0.604	0.547
10.7	102	76.2	7.94	35.9	17.3	16.5	27.0	50.9	0.603	0.550
8.6	102	76.2	6.35	36.2	17.3	16.6	27.3	51.3	0.603	0.554
16.5	88.9	88.9	12.7	33.8	0.00	17.3	29.0	47.8	0.632	1.00
14.6	88.9	88.9	11.1	34.1	0.00	17.4	29.3	48.2	0.630	1.00
12.6	88.9	88.9	9.53	34.4	0.00	17.4	29.7	48.7	0.629	1.00
10.7	88.9	88.9	7.94	34.7	0.00	17.5	30.0	49.1	0.627	1.00
8.6	88.9	88.9	6.35	35.0	0.00	17.6	30.3	49.5	0.627	1.00

See Rolled Structural Shapes for further information on the properties of angles.

PROPERTIES ABOUT GEOMETRIC AXES

Designation	Dead Load	Area	Axis X -X				Axis $\mathrm{Y}-\mathrm{Y}$				Torsional Constant J	Warping ConstantC_{w}
			$1 \times$	S_{x}	r_{x}	y	ly	S_{y}	${ }^{\prime} y$	x		
	kN/m	mm^{2}	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	mm	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	mm	$10^{3} \mathrm{~mm}^{4}$	$10^{8} \mathrm{~mm}^{8}$
L89x76												
$\times 13$	0.149	1940	1.44	23.8	27.3	28.6	0.969	18.0	22.4	22.2	104	0.0514
$\times 11^{*}$	0.132	1710	1.29	21.2	27.5	28.0	0.871	16.0	22.6	21.7	70.2	0.0354
x9.5	0.114	1480	1.13	18.5	27.7	27.4	0.769	14.0	22.8	21.1	44.9	0.0231
$\times 7.9$	0.0961	1250	0.970	15.6	27.9	26.9	0.659	11.8	23.0	20.5	26.2	0.0138
$\times 6.4$	0.0776	1010	0.796	12.7	28.1	26.3	0.543	9.65	23.2	19.9	13.5	0.00725
L89x64												
$\times 13$	0.137	1770	1.35	23.1	27.6	30.6	0.568	12.5	17.9	17.9	95.4	0.0426
$\times 9.5$	0,105	1360	1.07	17.9	28.0	29.5	0.454	9.71	18.3	16.8	41.2	0.0192
$\times 7.9$	0.0883	1150	0.912	15.2	28.2	28.9	0.391	8.26	18.5	16.2	24.1	0.0115
$\times 6.4$	0.0714	929	0.749	12.4	28.4	28.3	0.323	6.75	18.7	15.6	12.5	0.00604
$L 76 \times 76$												
+ $\times 13$	0.137 0.121	1770 1570	0.923 0.830	17.6 15.6	22.8	23.7					95.4	0.0388
$\times 9.5$	0.105	1360	0.733	13.7	23.2	22.5					64.4 41.2	0.0268 0.0175
$\times 7.9$	0.0883	1150	0.629	11.6	23.4	22.0					24.1	0.0105
$\times 6.4$	0.0714	929	0.518	9.45	23.6	21.4					12.5	0.00554
$\times 4.8$	0.0541	703	0.400	7.22	23.9	20.8					5.31	0.00241
L76x64												
$\times 11{ }^{\circ}$	0.110	1430	0.780	15.2	23.4	25.4 24.8	0.489	10.9	18.5	19.1	86.7 58.6	0,0208
$\times 9.5$	0.0955	1240	0.690	13.3	23.6	24.3	0.434	9.52	18.7	17.9	37.6	0.0136
$\times 7.9$	0.0805	1050	0.592	11.3	23.8	23.7	0.374	8.10	18.9	17.4	22.0	0.00817
$\times 6.4 *$	0,0652	845	0.488	9,20	24.0	23.1	0.309	6.62	19.1	16.8	11.4	0.00433
$\times 4.8{ }^{*}$	0.0494	643	0.377	7.04	24.2	22.6	0.240	5.08	19.3	16.2	4.85	0.00189
L76x51												
$\times 9.5$	0.0862	1120		12.4	23.5	27.	. 200	7.77	13.9	14.8	78.0	0.0244
x9.5	0.0862	1120	0.638	12.8	23.9	26.4	0.226	6.09	14.2	13.7	33.9	0.0111
$\times 7.9$	0.0728	942	0.548	10.9	24.1	25.8	0.196	5.20	14.4	13.1	19.9	0.00667
$\times 6.4$	0.0590	768	0.453	8.88	24.3	25.2	0.163	4.26	14.6	12.5	10.3	0.00354
$\times 4.8$	0.0448	582	0.350	6.79	24.5	24.6	0.128	3.28	14.8	11.9	4.39	0.00155

[^54]

DIMENSIONS AND PROPERTIES ABOUT PRINCIPAL AXES

Mass	d	b	1	Axis $\mathrm{X}^{-}-\mathrm{X}^{\prime}$		Axis $Y^{\prime}-Y^{\prime}$		\bar{r}_{0}	Ω	$\tan \alpha$
				r_{x}	Yo	ry	x_{0}			
kg/m	mm									
15, 1	88.9	76.2	12.7	31.5	8.86	15.8	25.8	44.6	0.625	0.714
13.5	88.9	76.2	11.1	31.8	8.85	15.8	26.2	45.0	0.623	0.718
11.7	88.9	76.2	9.53	32.1	8.85	15.9	26.5	45.4	0,622	0.721
9.8	88.9	76.2	7.94	32.4	8.84	15.9	26.8	45.9	0.621	0.724
8.0	88.9	76.2	6.35	32.7	8.84	16.0	27.1	46.3	0.620	0.727
13.9	88.9	63.5	12.7	29.9	16.8	13.6	21.0	42.4	0.600	0.486
10.7	88.9	63.5	9.53	30.5	16.8	13.6	21.7	43.2	0.597	0.496
9.0	88.9	63.5	7.94	30.8	16.8	13.7	22.1	43.7	0.596	0.501
7.3	88.9	63.5	6.35	31.1	16.8	13.8	22.4	44.1	0.596	0.506
14.0	76.2	76.2	12.7	28.6	0.00	14.8	24.5	40.5	0.634	1.00
12.4	76.2	76.2	11.1	28.9	0.00	14.9	24.8	40.9	0.632	1.00
10.7	76.2	76.2	9.53	29.2	0.00	14.9	25.1	41.3	0.630	1.00
9.1	76.2	76.2	7.94	29.5	0.00	15.0	25.5	41.8	0.628	1.00
7.3	76.2	76.2	6.35	29.8	0.00	15.0	25.8	42.2	0.627	1.00
5.5	76.2	76.2	4.76	30.2	0.00	15.1	26.1	42.6	0.626	1.00
12.6	76.2	63.5	12.7	26,4	8.81	13.2	21.1	37.4	0.625	0.667
11.3	76.2	63.5	11.1	26.7	8.80	13.2	21.5	37.8	0.622	0.672
9.8	76.2	63.5	9.53	27.0	8.79	13.3	21.8	38.2	0.620	0.676
8.3	76.2	63.5	7.94	27.3	8.79	13.3	22.2	38.6	0.619	0.680
6.7	76.2	63.5	6.35	27.6	8.79	13.4	22.5	39.1	0.618	0.684
5.1	76.2	63.5	4.76	27.9	8.79	13.5	22.8	39.5	0.617	0.688
11.5	76.2	50.8	12.7	25.0						
8.8	76.2	50.8	9.53	25.5	16.4	10.9	16.7	36.3	0.585	0.428
7.4	76.2	50.8	7.94	25.8	16.4	11.0	17.1	36.7	0.584	0.435
6.1	76.2	50.8	6.35	26.1	16.4	11.0	17.5	37.1	0.583	0.440
4.6	76.2	50.8	4.76	26.4	16.4	11.1	17.8	37.5	0.583	0.446

See Rolled Structural Shapes for further information on the properties of angles.

PROPERTIES ABOUT GEOMETRIC AXES

Designation	Dead Load	Area	Axis X-X				Axis Y-Y				Torsional Constant	Warping Constant
			I_{k}	S_{x}	${ }^{\text {x }}$	y	Iy	Sy	ry	x	J	C_{w}
	kN/m	mm^{2}	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	mm	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	mm	$10^{3} \mathrm{~mm}^{4}$	$10^{9} \mathrm{~mm}^{6}$
L64x64												
$\times 13$	0.112	1450	0.511	11.9	18.8	20.5					78.0	0.0212
$\times 9.5$	0.0862	1120	0.410	9.28	19.1	19.4					33.9	0.00974
$\times 7.9$	0.0728	942	0.353	7.90	19.3	18,8					19.9	0.00587
$\times 6.4$	0.0590	768	0.293	6.46	19.5	18.2					10.3	0.00312
$\times 4.8$	0.0448	581	0.227	4.96	19.8	17.6					4.39	0.00137
$\begin{array}{r} \mathrm{L} 64 \times 51 \\ \times 9.5 \end{array}$												
$\times 9.5$ $\times 7.9$	0.0769 0.0650	1000 845	0.380 0.328	8.96 7.64	19.5 19.7	21.1 20.6	0.214 0.186	5.94 5.08	14.6 14.8	14.8 14.2	30.2 17.7	0.00722 0.00436
$\times 6.4$	0.0528	684	0.272	6.25	19.9	20.0	0,155	4.17	15.0	13.6	9,21	0.00233
$\times 4.8$	0.0401	522	0:212	4.80	20.1	19.4	0.121	3.21	15.2	13.1	3,94	0.00102
L64×38$\times 6.4^{*}$												
	0.0466	605	0.246	5.96	20.2	22.2	0.0671	2.35	10.5	9.52	8.13	0.00186
$\times 4.8{ }^{*}$	0.0355	461	0.192	4.58	20.4	21.6	0.0530	1.82	10.7	8.94	3.48	0.000821
L51x51												
$\times 9.5$	0.0675	877	0.199	5.76	15.1	16.2					26.6	0.00469
$\times 7.9$	0.0572	742	0.173	4.92	15.3	15.6					15.6	0.00286
$\times 6.4$	0.0466	605	0.145	4.04	15.5	15.0					8.13	0.00154
$\times 4.8$	0.0355	461	0.113	3.12	15.7	14.5					3.48	0.000680
$\times 3.2$	0.0241	312	0.0792	2.14	15.9	13.9					1.05	0.000213
L51×38												
$\times 6.4$	0.0404	525	0.131	3,87	15,8	16.9	0.0630	2.28	11.0	10.5	7.05	0.00107
$\times 4.8$	0.0308	401	0.103	2.99	16.0	16.3	0.0499	1.77	11.2	9.93	3.02	0.000477
$\times 3.2$	0.0210	272	0.0721	2.06	16.3	15.7	0.0353	1.23	11.4	9.35	0.919	0.000150
L44×44 $\times 6.4$												
$\begin{aligned} & \times 6.4 \\ & \times 4.8 \end{aligned}$	0.0404 0.0309	525	0.0949	3.06	13.4	13.4					7.05 3	0.00100
$\times 4.8$ $\times 3.2$	0.0309 0.0210	401 272	0.0748 0.0525	2.36 1.63	13.7 13.9	12.9 12.3					3.03	0.000448
$\times 3.2$	0.0210	272	0.0525	1.63	13.9	12.3					0.920	0.000141
L38×38	0.0341	444	0.0577	2.20	11.4	11.8					5.96	
$\times 4.8$	0.0262	340	0.0458			11.3						0.000606
x4,0*	0.0221	286	0.0393	1.45	11.7	11.0					2.57 1.51	0.000273
$\times 3.2$	0.0179	232	0.0324	1.18	11.8	10.7					0.783	0.000087

[^55]ANGLES
L64 - L38

DIMENSIONS AND PROPERTIES ABOUT PRINCIPAL AXES

Mass	d	b	!	Axis $\mathrm{X}^{\prime}-\mathrm{X}^{\prime}$		Axis $Y^{\prime}-Y^{\prime}$		r_{0}	Ω	$\tan \alpha$
				$r_{\text {x }}$	yo	${ }^{\prime} y$	x_{0}			
kg/m	mm									
11.4	63.5	63.5	12.7	23.5	0.00	12.4	20.0	33.2	0.639	1.00
8.7	63.5	63.5	9.53	24.1	0.00	12.4	20.6	34.0	0.632	1.00
7.4	63.5	63.5	7.94	24.4	0.00	12.4	21.0	34.4	0.630	1.00
6.1	63.5	63.5	6.35	24.7	0.00	12.5	21.3	34.9	0.628	1.00
4.6	63.5	63.5	4.76	25.0	0.00	12.6	21.6	35.3	0.627	1.00
7.9	63.5	50.8	9.53	21.9	8.70	10.7	17.1	31,0	0.618	0.614
6.7	63.5	50.8	7.94	22.2	8.70	10.7	17.4	31.4	0.616	0.620
5.4	63.5	50.8	6.35	22.5	8.70	10.8	17.8	31.9	0.614	0.626
4.2	63.5	50.8	4.76	22.8	8.70	10.9	18.1	32.3	0.612	0.631
4.8	63.5	38.1	6.35	21.2	15.8	8.23	12.4	30.3	0.562	0.357
3.6	63.5	38.1	4.76	21.5	15.8	8.31	12.8	30.7	0.562	0.364
7.0	50.8	50.8	9.53	18.9	0.00	9.89	16.1	26.7	0.637	1.00
5.8	50.8	50.8	7.94	19.2	0.00	9.90	16.4	27.1	0.633	1.00
4.7	50.8	50.8	6.35	19.5	0.00	9.93	16.8	27.6	0.630	1.00
3.6	50.8	50,8	4.76	19.8	0.00	10.0	17.1	28.0	0.628	1.00
2.4	50.8	50.8	3.18	20.1	0.00	10.1	17.4	28.4	0.626	1.00
4.2	50.8	38.1	6.35	17.5	8.53	8.12	13,0	24.7	0.606	0.543
3.1	50.8	38.1	4.76	17.8	8.53	8.18	13.3	25.1	0.604	0.551
2.1	50.8	38.1	3.18	18.0	8.54	8.27	13.7	25.6	0.603	0.558
4.1	44.5	44.5	6.35	16.9	0.00	8.68	14.5	23.9	0.632	1.00
3.1	44.5	44.5	4.76	17.2	0.00	8.73	14.8	24.4	0.629	1.00
2.1	44.5	44.5	3,18	17.5	0.00	8.82	15.2	24.8	0.627	1.00
3.4	38.1	38.1	6.35	14.3	0.00	7.42	12.2	20.2	0.634	1.00
2.7	38.1	38,1	4.76	14.6	0.00	7.45	12.6	20.7	0.630	1.00
2.2	38.1	38.1	3.97	14.8	0.00	7.48	12.7	20.9	0.628	1.00
1.8	38.1	38.1	3.18	14.9	0.00	7.52	12.9	21.1	0.627	1.00

See Rolled Structural Shapes for further information on the properties of angles.

ANGLES

L32-L19

PROPERTIES ABOUT GEOMETRIC AXES

ANGLES
L32-L19

DIMENSIONS AND PROPERTIES ABOUT PRINCIPAL AXES

Mass	d	b	t	Axis $\mathrm{X}^{\prime}-\mathrm{X}^{\prime}$		Axis $\mathrm{Y}^{\prime}-Y^{\prime}$		\bar{r}_{0}	Ω	$\tan \alpha$
				r_{x}	yo	r_{y}	x_{0}			
kg/m	mm									
2.8	31.8	31.8	6.35	11.8	0.00	6.19	10.0	16.6	0.639	1.00
2.2	31.8	31.8	4.76	12.0	0.00	6.20	10.3	17.0	0.632	1.00
1.5	31.8	31.8	3.18	12.4	0.00	6.25	10.7	17.5	0.628	1.00
2.2	25.4	25.4	6.35	9.17	0.00	4.98	7.70	13.0	0.647	1.00
1.8	25.4	25.4	4.76	9.45	0.00	4.94	8.05	13.4	0.637	1.00
1.2	25.4	25.4	3.18	9.74	0.00	4.97	8.38	13.8	0.630	1.00
0.9	19.1	19.1	3.18	7.18	0.00	3.72	6.14	10.2	0.634	1.00

See Rolled Structural Shapes for further information on the properties of angles.

STRUCTURAL TEES
Cut from W Shapes
WT460 - WT345

PROPERTIES

Designation	Dead Load	Area	Axis X-X				Axis Y-Y			Torsional Constant J	Warping Conslant C_{w}
			$1 \times$	S_{x}	r_{x}	y	1 l	S_{y}	r_{y}		
	kN/m	mm^{2}	$10^{8} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	mm	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{4}$	$10^{8} \mathrm{~mm}^{\mathrm{e}}$
WT460											
$\times 224.5$	2.20	28800	533	1450	137	107	270	1280	97.2	13100	76.5
$\times 210$	2.06	26800	497	1360	136	106	250	1190	96.8	10700	62.4
$\times 195$	1.90	24800	460	1270	136	105	226	1080	95.7	8440	49.6
$\times 184$	1.79	23400	434	1200	136	105	211	1010	95.1	7020	41.6
$\times 172$	1.68	22000	408	1140	137	105	195	933	94.4	5780	34.6
WT460											
$\times 156,5$	1.53	20000	410	1200	144	124	85.2	551	65.4	5750	32.0
$\times 144.5$	1.41	18400	376	1100	143	122	78.2	508	65.2	4570	24.9
$\times 135.5$	1.33	17300	353	1040	143	121	72.6	473	64.8	3810	20.9
$\times 126.5$	1.24	16200	329	969	143	121	66.8	437	64.3	3100	17.1
$\times 119$	1.17	15200	309	916	143	121	61.4	403	63.6	2540	14.4
x111.5	1.10	14200	292	874	143	122	56.1	369	62.7	2080	12.4
$\times 100.5$	0.986	12800	265	814	144	126	47.2	311	60.7	1430	10.0
WT420											
$\times 179.5$	1.76	22800	363	1080	126	97.5	195	965	92.1	7530	39.3
$\times 164.5$	1.62	21000	333	997	126	96.9	174	870	91.1	5780	30,4
$\times 149.5$	1.47	19000	303	912	126	96.1	156	780	90.3	4320	22.9
WT420											
$\times 113$	1.11	14400	247	778	131	108	56.9	387	62.8	2560	
$\times 105$	1.03	13400	230	733	131	109	51.3	350	61.8	2020	9.57
x96.5	0.949	12400	213	688	131	111	45.1	309	60.5	1520	7.81
$\times 88$	0.863	11200	196	646	132	114	39.1	268	59.1	1100	6.35
WT380											
$\times 157$	1,55	20000	254	828	112	86.2	158	822	88.7	5900	26.0
$\times 142$	1.40	18100	229	750	112	84.8	140	733	87.8	4360	19.1
$\times 128.5$	1.27	16400	207	684	112	83.9	125	657	87.1	3250	14.3
WT380											
$\times 98$	0.965	12600	175	613	118	99.0	40.9	305	57.1	2020	7.63
$\times 92.5$	0.906	11800	165	580	118	99.1	37.5	281	56.5	1660	6,44
$\times 86.5$	0.851	11000	156	554	119	100	34.4	257	55.7	1340	5.54
$\times 80.5$	0.786	10200	145	523	119	102	30.4	228	54.5	1030	4.62
$\times 73.5$	0.722	9400	134	493	120	104	26.4	200	53.1	778	3.83
$\begin{aligned} & \text { WT345 } \\ & \times 132,5 \end{aligned}$	1.30	16800	172	624	101	77.2	116	646	82.7	4160	
$\times 120$	1.18	15300	156	567	101	76.0	103	580	82.0	3130	11.5
$\times 108.5$	1.07	13800	140	514	100	74.7	92.6	522	81.5	2350	8.57

STRUCTURAL TEES
 Cut from W Shapes
 WT460 - WT345

PROPERTIES AND DIMENSIONS

Nominal Mass	Theoretical Mass	Depth d	Flange Width b	Flange Thickness t	Stem Thickness w	$\beta_{\text {x }}$	yo	\vec{r}_{0}	Ω
kg/m	kg/m	mm							
224.5	224.3	474	423	42.7	24.0	310	86.0	188	0.792
210	209.7	472	422	39.9	22.5	310	86.0	188	0.791
195	194.0	468	420	36.6	21.3	309	87.1	188	0.785
184	182.8	466	419	34.3	20.3	309	87.8	188	0.782
172	171.7	464	418	32.0	19.3	309	88.6	188	0.778
156.5	156.2	466	309	34.5	21.1	334	107	190	0.686
144.5	144.2	464	308	32.0	19.4	334	106	190	0.688
135.5	135.8	462	307	30.0	18.4	333	106	190	0.685
126.5	126.8	460	306	27.9	17.3	333	107	189	0.683
119	119.0	458	305	25.9	16.5	333	108	190	0.678
111.5	112.0	456	304	23,9	15.9	333	110	191	0.669
100.5	100.6	452	304	20.1	15.2	335	116	195	0.645
179.5	180.0	434	403	35.6	21.1	282	79.7	175	0.793
164.5	165.0	431	401	32.4	19.7	282	80.7	175	0.788
149.5	150.0	428	400	29.2	18.2	282	81.5	175	0.783
113	113.4	426	294	26.8	16.1	305	95.0	173	0.700
105	105.4	423	293	24.4	15.4	305	96.9	174	0.691
96.5	96.8	420	292	21.7	14.7	305	99.9	176	0.677
88	88.0	418	292	18.8	14.0	307	104	179	0.659
157	157.6	393	384	33.4	19.7	250	69.5	159	0.809
142	142.5	390	382	30.1	18.0	250	69.8	159	0.807
128.5	129.3	387	381	27.1	16.6	249	70.4	159	0.803
98	98.4	385	268	25.4	15.6	275	86.3	157	0.698
92.5	92.4	383	267	23.6	14.9	275	87.3	157	0.693
86.5	86.8	381	287	21.6	14.4	275	89.3	159	0.683
80.5	80.2	379	266	19.3	13.8	276	92.2	160	0.669
73.5	73.6	377	265	17.0	13.2	277	95.7	162	0.652
132.5	132.8	353	358	30.2	18.4	222	62.1	144	0.815
120	120.6	351	356	27.4	16.8	222	62.3	144	0.813
108.5	109.5	348	355	24.8	15.4	221	62.3	143	0.812

Note: β_{x} is positive when the llange is in flexural compression, and negative otherwise.
See S16-14 Clauses 13.3.2 and 13.6 and the Commentary in Part 2 for further information on section properties.

STRUCTURAL TEES
Cut from W Shapes
WT345 - WT265

PROPERTIES

Designation	Dead Load	Area	Axis $\mathrm{X}-\mathrm{X}$				Axis Y-Y			Torsional Constant J	WarpingConstantC_{w}
			I_{x}	S_{x}	r^{x}	y	Iy	S_{y}	r_{y}		
	kN/m	mm^{2}	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	mm	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{4}$	$10^{9} \mathrm{~mm}^{6}$
WT345											
$\times 85$	0.834	10800	121	465	106	87.1	33.1	259	55.3	1520	4.72
$\times 76$	0.746	9700	107	415	105	85.8	28.9	227	54.6	1100	3.38
$\times 70$	0.685	8950	99.3	389	106	86.5	25.9	204	53.9	831	2.72
$\times 62.5$	0.616	8000	89.9	359	106	88.3	22.0	174	52.5	584	2,10
WT305											
$\times 120.5$	1,19	15400	123	491	89.2	68.6	92.1	560	77.3	3840	11.8
$\times 108.5$	1.07	13800	110	444	B8.8	67.4	81.6	497	76.7	2790	8,58
x97.5	0.959	12400	99.4	408	89.3	67.4	71.2	435	75.6	1980	6.23
$\times 87$	0.854	11100	88.3	366	89.2	66.5	61.9	381	74.7	1400	4.40
$\times 77.5$	0.760	9850	78.9	329	89.4	66.1	53.9	333	73.9	975	3.10
WT305											
$\times 70$	0.688	8950	77.8	334	93.3	76.2	22.6	196	50.3	1090	2.58
$\times 62.5$	0.613	7950	69.0	299	93.1	75.4	19.7	172	49.7	769	1.84
$\times 56.5$	0.556	7250	63.2	278	93.5	76.3	17.1	150	48.7	559	1.43
$\times 50.5$	0.499	6500	57.4	256	94.1	77,8	14.7	129	47.7	389	1.09
WT305											
$\times 46$	0.453	5850	54.8	256	96.5	87.9	7.20	80.5	35.0	354	1.05
$\times 41$	0.402	5250	48.7	231	96.6	89.1	6.04	67.9	34.0	243	0.785
WT265											
$\times 109.5$	1.07	14000	85.0	388	78.1	60.8	78.4	493	75.0	3200	8.74
$\times 98$	0.964	12500	75.2	345	77.5	59.0	69.3	438	74.4	2340	6.28
$\times 91$	0.891	11600	69.3	317	77.3	57.9	63.6	404	74.1	1860	4.94
x82.5	0.811	10600	62.2	288	76.9	56.7	56.8	363	73.4	1410	3.70
$\times 75$	0.739	9600	56.5	261	76.7	55.5	51.4	330	73.2	1080	2.79
WT265											
x69 $\times 61.5$	0.679	8800	60.2	293	82.6	69.6	19,3	181	46.8	1250	2.50
$\times 61.5$	0,604	7850	52.6	258	81.9	67.6	16.9	159	46.4	899	1.75
$\times 54.5$	0.535	6950	46.2	227	81.5	66.1	14.8	140	46.1	630	1.20
$\times 50.5$	0.498	6450	43.0	212	81.6	65.9	13.5	128	45.6	507	0.973
$\times 46$	0.454	5900	39.3	196	81.7	66.0	11.9	114	44.9	380	0.754
$\times 41$	0.403	5250	35.0	178	81.9	66.9	10.1	97.0	44.0	258	0.555
WT265											
$\times 42.5$	0.416	5400	37.8	194	83.7	72.7	6.32	76.1	34.2	367	0.675
$\times 37$	0.367	4740	33.7	177	84.1	74.7	5.21	62.7	33.1	239	0.516
$\times 33$	0.323	4200	29.8	159	84.3	76.1	4.29	52.0	32.0	159	0.380

STRUCTURAL TEES Cut from W Shapes WT345 - WT265

Nominal Mass	Theoretical Mass	Depth d	Flange Width b	Flange Thickness t	Stem Thickness w	$\beta_{\text {x }}$	y_{0}	\bar{r}_{0}	Ω
kg/m	kg/m	mm							
85	85.0	347	256	23.6	14.5	245	75.3	141	0.715
76	76.0	344	254	21.1	13.1	244	75.3	140	0.713
70	69.9	342	254	18,9	12.4	244	77.1	141	0,703
62.5	62.8	339	253	16.3	11.7	244	80.2	143	0.685
120.5	120.9	318	329	31.0	17.9	195	53.1	129	0.832
108.5	108.9	314	328	27.7	16.5	194	53.5	129	0.828
97.5	97.8	311	327	24.4	15.4	193	55.2	129	0.818
87	87.1	308	325	21.6	14.0	193	55.7	129	0.813
77.5	77.5	306	324	19.0	12.7	193	56.6	129	0.808
70	70.1	309	230	22.2	13.1	216	65.1	124	0.726
62.5	62.5	306	229	19.6	11.9	215	65.6	124	0.721
56.5	56.7	304	228	17.3	11.2	216	67.7	125	0.708
50.5	50.9	302	228	14.9	10.5	216	70,3	127	0.692
46	46.2	302	179	15.0	10.9	227	80.4	130	0.620
41	41.0	300	178	12.8	10.0	228	82.7	132	0.606
109.5	109.5	280	318	29.2	18.3	163	46.2	118	0.846
98	98.3	277	316	26.3	16.5	163	45.9	117	0.846
91	90.9	276	315	24.4	15.2	163	45.7	116	0.846
82.5	82.7	273	313	22.2	14.0	162	45.6	116	0.845
75	75.4	272	312	20.3	12.7	162	45.4	115	0.845
69	69.2	275	214	23.6	14.7	189	57.8	111	0.730
61.5	61.6	272	212	21.2	13.1	188	57.0	110	0.731
54.5	54.6	270	211	18.8	11.6	188	56.7	109	0.732
50.5	50.8	269	210	17.4	10.9	188	57.2	110	0.728
46	46.3	267	209	15,6	10.2	188	58.2	110	0.719
41	41.1	264	209	13.3	9.5	187	60.2	111	0.704
42.5	42.4	268	166	16.5	10.3	197	64.4	111	0,663
37	37.4	265	166	13.6	9.7	197	67.9	113	0.639
33	32.9	263	165	11.4	8.9	198	70.4	114	0.621

Note: β_{z} is positive when the flange is in flexural compression, and negative otherwise.
See S16-14 Clauses 13.3.2 and 13.6 and the Commentary in Part 2 for further information on section properties.

STRUCTURAL TEES
Cut from W Shapes
WT230 - WT205

PROPERTIES

PROPERTIES AND DIMENSIONS

Note: β_{x} is positive when the flange is in flexural compression, and negative otherwise,
See S16-14 Clauses 13.3.2 and 13.6 and the Commentary in Part 2 for further information on section properties.

STRUCTURAL TEES
Cut from W Shapes
WT180

PROPERTIES

Designation	Dead Load	Area	Axis $\mathrm{X}-\mathrm{X}$				Axis Y-Y			Torsional Constant J	Warping ConstantC_{w}
			I_{x}	S_{x}	r_{x}	y	$1{ }^{\prime}$	S_{y}	T_{y}		
	kN/m	mm^{2}	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	mm	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{4}$	$10^{6} \mathrm{~mm}{ }^{\text {e }}$
WT180											
$\times 543$	5.34	69500	308	1570	66.7	88.2	981	4320	119	299000	1410
$\times 495$	4.86	63000	259	1350	64.1	82.7	867	3870	117	232000	1060
$\times 450$	4.43	57500	219	1160	61.7	77.5	767	3470	115	180000	791
$\times 409$	4.02	52500	184	997	59.4	72.4	678	3100	114	138000	585
$\times 372$	3.65	47400	156	864	57.4	67.9	600	2780	112	106000	434
$\times 338.5$	3.33	43200	134	754	55.8	63.9	534	2500	111	81500	325
$\times 317$	3.11	40300	119	677	54.3	61.0	491	2320	110	68300	266
$\times 296$	2.91	37800	108	620	53.5	58.6	451	2140	109	56400	215
$\times 275.5$	2.70	35200	95.9	557	52.3	55.8	412	1970	108	45900	172
$\times 254.5$	2.50	32600	84.8	499	51.1	53.0	377	1810	108	36700	135
$\times 231.5$	2.27	29500	73.8	439	50.0	50.1	335	1630	107	28100	100
$\times 210.5$	2.07	26800	64.2	387	48.9	47.3	300	1470	106	21600	75.5
$\times 191$	1.87	24400	55.4	338	47.7	44.5	268	1320	105	16300	56.0
$\times 173.5$	1.70	22100	48.5	300	46.8	42.1	240	1190	104	12300	41.6
$\times 157$	1.54	20000	42.6	266	46.2	39.9	213	1060	103	9210	30.3
$\times 143.5$	1.41	18300	37.6	236	45.3	37.9	194	972	103	7220	23.5
$\times 131$	1.29	16700	33.9	215	45.0	36.4	175	880	102	5500	17.6
$\times 118.5$	1.16	15000	29.1	187	44.0	34.3	155	786	102	4080	12.8
$\times 108$	1.06	13800	26.2	189	43.6	32.9	141	717	101	3150	9.79
WT180											
$\begin{aligned} & \text { x98 } \\ & \times 89.5 \end{aligned}$	0.964 0.879	12500 11400	24.0 21.6	157 141	43.8 43.5	32.7 31.4	114	611 554	95.6	2560	7.17
$\times 89.5$ $\times 81$	0.879	11400	21.6	141	43.5	31.4	103	554	95.2	1950	5.40
$\times 81$	0.794	10300	18.8	124	42.7	29.8	92.8	500	94.9	1470	4.00
$\times 73.5$	0.723	9400	17.0	113	42.6	28.9	83.6	452	94.3	1110	2.98
$\times 67$	0.657	8550	15.2	101	42.2	27.8	75.4	409	94.0	839	2.22
WT180											
$\times 61$	0.597	7750	17.3	118	47.2	35.5	30.7	239	62.9	1050	1.51
$\times 55$	0.540	7050	15.0	102	46.2	33.5	27.8	218	63.0	799	1.12
$\times 50.5$	0.497	6450	13.7	93.7	46.1	32.7	25.3	199	62.6	626	0.863
$\times 45.5$	0.446	5750	12.1	83.5	45.8	31.7	22.4	176	62.2	456	0,617
WT180											
$\times 36$	0.350	4550	10.3	73.1	47.5	34.2	10.7	105	48.5	300	0.394
$\times 32$	0.314	4060	9.17	65.2	47.4	33.4	9.42	92.8	48.1	218	0.202

PROPERTIES AND DIMENSIONS

Nominal Mass	Theoretical Mass	Depth d	Flange Width b	Flange Thickness 1	Stem Thickness w	$\beta_{\text {x }}$	y_{0}	\bar{r}_{0}	Ω
kg/m	kg/m	mm							
543	544.2	285	454	125	78.0	61.7	25.7	139	0.966
495	495.5	275	448	115	71.9	58.4	25.2	136	0.966
450	451.3	266	442	106	65.9	55.5	24.5	133	0.966
409	409.5	257	437	97.0	60.5	52.3	23.9	131	0.966
372	372.1	249	432	88.9	55.6	49.6	23.5	128	0.967
338.5	339.1	242	428	81.5	51.2	47.3	23.1	127	0.967
317	317.1	237	424	77.1	47.6	45.4	22.4	125	0.968
296	296.5	233	421	72.3	45.0	44.8	22.4	124	0.967
275.5	275.5	228	418	67.6	42.0	42.8	22.0	122	0.968
254.5	254.7	223	416	62.7	39.1	40.4	21.6	121	0.968
231.5	231.5	218	412	57.4	35.8	39.3	21.4	120	0.968
210.5	210.9	213	409	52.6	32.8	37.3	21.0	118	0.969
191	191.2	208	406	48.0	29.8	35.1	20.5	117	0.969
173.5	173.6	204	404	43.7	27,2	33.7	20.2	116	0.970
157	156.8	200	401	39.6	24.9	32.7	20.1	115	0,969
143.5	143.9	197	399	36.6	22.6	31.5	19.6	114	0.970
131	131.4	194	398	33.3	21.1	30.5	19.8	113	0.970
118.5	118.1	190	395	30.2	18.9	28.6	19.2	112	0.971
108	108.2	188	394	27.7	17.3	28.2	19.0	112	0.971
98	98.3	186	374	26.2	16.4	37.2	19.6	107	0.966
89.5	89.6	184	373	23.9	15.0	36.7	19.5	106	0.966
81	81.0	182	371	21.8	13.3	36.3	18.9	106	0.968
73.5	73.7	180	370	19.8	12.3	35.8	19.0	105	0.967
67	67.0	178	369	18.0	11.2	35.0	18.8	105	0.968
61	60.9	182	257	21.7	13.0	87.4	24.6	82.4	0.911
	55.1	180	256	19.9	11.4	86.4	23,6	81.6	0.916
50.5	50.6	179	255	18.3	10.5	86.8	23.6	81.3	0.916
45.5	45.4	177	254	16.4	9.5	86.3	23.5	80.8	0.915
39.5	39.6	177	205	16.8	9.4	102	26.6	73.4	0.868
36	35.7	175	204	15.1	8.6	102	26.7	73,0	0.866
32	32.0	174	203	13.5	7.7	102	26.6	72.6	0.865

Note: β_{x} is positive when the flange is in flexural compression, and negative otherwise,
See S16-14 Clauses 13.3.2 and 13.6 and the Commenlary in Part 2 for further information on section properties.

STRUCTURAL TEES
Cut from W Shapes
WT180 - WT155

PROPERTIES

Designation	Dead Load	Area	Axis X - X				Axis Y-Y			Torsional Constant J	Warping Constant C_{w}
			$\mathrm{I}^{\text {x }}$	S_{x}	${ }^{\text {x }}$	y	1 y	Sy	${ }^{\prime} y$		
	kN/m	mm^{2}	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	mm	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{4}$	$10^{9} \mathrm{~mm}^{8}$
WT180											
$\times 28.5$	0.278	3620	9.70	69.4	51.9	39,2	5.56	64.7	39.3	166	0.150
$\times 25.5$	0.248	3220	8.73	62.8	52.0	39.0	4.84	56.6	38.7	118	0.107
$\times 22.5$	0.221	2860	7.96	58.6	52.7	40.2	4.09	47.8	37.8	79.4	0.0784
WT180											
$\times 19.5$	0.192	2480	7.28	54.7	54.0	43.8	1.88	29.3	27.4	74.9	0.0564
$\times 16.5$	0.161	2100	6.19	47.6	54.5	44.8	1.45	22.9	26.4	42.6	0.0357
WT155											
$\times 250$	2.46	31800	79.7	513	50.0	58.7	247	1450	88.0	50100	130
$\times 227$	2.23	28900	68.2	446	48.6	55.2	218	1300	86.8	38300	95.7
$\times 207.5$	2.04	26400	59.6	397	47.4	52.2	195	1170	85.9	29500	71.9
$\times 187.5$	1.84	23900	50.5	343	46.0	48.9	172	1040	84.8	22300	52.5
$\times 171$	1.68	21800	43.8	302	44.8	46.1	155	946	84.2	17300	40.0
$\times 156.5$	1.54	20000	38.5	269	43.9	43.8	139	852	83.3	13400	30.1
$\times 141.5$	1.39	18000	33.1	233	42.8	41.1	123	764	82.6	10100	22.1
$\times 126.5$	1.24	16200	28.1	202	41.8	38.6	107	673	81.6	7340	15.6
$\times 113$	1.11	14400	24.3	176	41.0	36.4	94.6	597	81.0	5350	11.1
$\times 101$	0.994	12800	21.3	156	40.7	34.6	82.9	527	80.1	3850	7.82
$\times 89.5$	0.877	11400	18.2	135	39.9	32.5	71.9	459	79.4	2680	5.30
$\times 79$	0.772	10000	15.2	114	38.9	30.3	62.4	402	78.9	1880	3.63
$\times 71.5$	0.702	9100	13.5	101	38.4	28.9	56.3	365	78.6	1430	2.72
$\times 64.5$	0.635	8250	12.0	91.8	38.2	27.9	50.2	326	78.0	1060	1.98
$\times 59$	0.576	7500	10.7	82.0	37.8	26.8	45.1	294	77.6	798	1,46
$\times 53.5$	0.525	6800	9.71	74.7	37.7	26.0	40.6	265	77.2	605	1.09
$\times 48.5$	0.475	6150	8.59	66.6	37.3	25.0	36.4	239	76.9	454	0.804
WT155											
$\times 43$ $\times 39.5$	0.423 0.387	5500 5050	7.93 7.38	61.5 58.1	38.0 38.3	26.1	22.3 20.0	175 157	63.6 63.0	436 327	0.559 0.413
WT155											
+37	0.363	4740	7.80	62.3	40.7	29.7	11.7	114	49.9	358	0.332
$\times 33.5$	0.325	4260	6.88	55.3	40.3	28.8	10.3	101	49.5	260	0.236
$\times 30$	0.290	3800	6.05	48.7	40.0	27.7	9.14	90.1	49.2	189	0.167
WT155											
$\times 26$	0.257	3320	6.66	52.9	44.7	33.1	5.13		39.2	154	
$\times 22.5$	0.219	2840	5.64	45.2	44.5	32.2	4.27	51.5	38.7	95.5	0.0723
$\times 19.5$	0.190	2470	4.82	39.0	44.2	31.4	3.63	44.0	38.4	62.8	0.0468

Cut from W Shapes
WT180 - WT155

PROPERTIES AND DIMENSIONS

Nominal Mass	Theoretical Mass	Depth d	Flange Width b	Flange Thickness t	Stem Thickness w	β_{x}	Yo	\bar{r}_{0}	Ω
kg/m	kg/m	mm							
28.5	28.3	179	172	13.1	7.9	116	32.6	72.8	0.799
25.5	25.3	178	171	11.6	7.2	116	33.2	72.9	0.793
22.5	22.5	176	171	9.8	6.9	117	35.3	73.8	0.771
19.5	19.6	177	128	10.7	6.5	126	38.5	71.8	0.712
16.5	16.4	175	127	8.5	5.8	127	40.6	72.9	0.690
250	250.4	214	340	75,1	45,1	56.3	21.1	103	0.958
227	227.1	208	336	68.7	41,3	54.9	20.8	102	0.958
207.5	207.7	202	334	62.7	38.9	52.7	20.8	100	0.957
187.5	187.5	196	330	57.2	35.4	50.7	20.3	98.6	0.958
171	171.6	191	328	52.6	32.6	48.4	19.8	97.4	0.959
156.5	156.6	187	325	48.3	30.0	47.7	19.6	96.2	0.958
141.5	141.6	183	322	44.1	26.9	46.7	19.1	95.0	0.960
126.5	126.4	178	319	39.6	24.4	44.9	18.8	93.6	0.960
113	113.4	174	317	35,6	22.1	43.5	18.6	92.6	0.960
101	101.4	171	315	31.8	20.1	43.4	18.7	91.8	0.959
89.5	89.4	167	313	28.1	18.0	41.9	18.5	90.8	0.959
79	78.7	164	310	25.1	15.5	41.3	17.8	89.7	0,961
71.5	71.6	162	309	22.9	14.0	40.7	17.5	89.2	0.962
64.5	64.8	159	308	20.6	13.1	39.2	17.6	88.6	0.960
59	58.7	157	307	18.7	11.9	38.5	17.4	88.1	0.961
53.5	53.5	156	306	17.0	10.9	39.0	17.5	87.7	0.960
48.5	48.4	154	305	15.4	9.9	38.2	17.3	87.2	0.961
43	43.2	155	254	16.3	9.1	61.5	18.0	76.3	0.944
39.5	39.4	153	254	14.6	8.8	60.9	18.8	76.1	0.939
37	37.0	155	205	16.3	9.4	80.5	21.6	67.9	
33.5	33.2	153	204	14.6	8.5	79.9	21.5	67.4	0.898
30	29.6	152	203	13.1	7.5	80.1	21.2	66.9	0.900
26	26.2	159	167	13.2	7.6	98.0	26.5	65.1	0.835
22.5	22.3	157	166	11.2	6.6	97.7	26.6	64.7	0.831
19.5	19.4	155	165	9.7	5.8	97.0	26.5	64.3	0.830

Note: β_{x} is positive when the flange is in flexural compression, and negative otherwise.
See S16-14 Clauses 13.3.2 and 13.6 and the Commentary in Part 2 for further information on section properties.

STRUCTURAL TEES
Cut from W Shapes WT155 - WT100

PROPERTIES

Designation	Dead Load	Area	Axis $\mathrm{X}-\mathrm{X}$				Axis Y-Y			Torsional Constant J	Warping ConstantC_{w}
			I_{x}	S_{x}	r_{*}	y	Iy	S_{y}	r_{y}		
	kN / m	mm^{2}	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	mm	$10^{5} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{4}$	$10^{9} \mathrm{~mm}^{6}$
WT155											
$\times 16.5$	0.161	2090	4.92	42.7	48.5	41.7	0.959	18.8	21.4	60.7	0.0371
$\times 14$	0.139	1800	4.27	37.8	48.6	42.1	0.790	15.5	20.9	37.8	0.0257
$\times 12$	0.117	1520	3.67	33.8	49.1	44.6	0.578	11.4	19.5	21.2	0.0185
$\times 10,5$	0.104	1340	3.25	30,3	49.1	45.0	0.491	9.73	19.1	14.6	0.0136
WT125											
$\times 83.5$	0.821	10600	12.1	106	33.7	30.8	49.4	373	68.0	3140	4.58
$\times 74.5$	0.730	9500	10.2	91.3	32.9	28.8	43.1	328	67.4	2250	3.19
$\times 65.5$	0.643	8350	8.73	78.7	32.3	27.0	37.2	285	66.7	1560	2.15
$\times 57.5$	0.563	7300	7.34	66.8	31.7	25.2	32.0	247	66.2	1060	1.43
$\times 50.5$	0.496	6450	6.17	57.0	31.0	23.6	27.7	216	65.6	741	0.973
$\times 44.5$	0.439	5700	5.39	50.2	30.7	22.5	24,2	189	65.1	517	0.664
$\times 40$	0.393	5100	4.61	43.2	30,1	21.2	21,6	169	65.0	377	0.477
$\times 36.5$	0.358	4640	4.17	39.2	30.0	20.5	19.4	153	64.6	287	0.356
WT125											
$\times 33.5$	0.330	4290	4.34	41.0	31.8	23.2	11.1	109	51.0	312	0.263
$\times 29$	0.286	3710	3.68	35.5	31.5	22.2	9.42	92.8	50.4	204	0.167
$\times 24.5$	0.241	3130	3.25	32.0	32.2	22.3	7.56	74.9	49.2	120	0.0949
WT125											
$\times 22.5$	0.220	2850	3.86	36.7	36.7	27.8	3.52	47.5	35.1	130	0.0741
$\times 19.5$	0.190	2460	3.26	31.3	36.4	26.7	2.97	40.4	34.7	84.1	0.0467
$\times 16.5$	0.160	2100	2.85	28.1	37.0	27.3	2.36	32.4	33.7	49.1	0.0284
WT125											
$\times 14$	0.140	1820	2.79	28.7	39.2	32.6	0.888	17.4	22.1	48.2	0.0216
$\times 12.5$	0.124	1610	2.56	26.8	39.8	33.6	0.746	14.6	21.5	32.5	0.0166
$\times 11$	0.110	1420	2.27	24.5	39.9	34.6	0.613	12.0	20.7	21.6	0.0126
$\times 9$	0.0877	1140	1.83	20.0	40.1	34.8	0.457	9.04	20.0	11.2	0.0068
WT100											
$\times 50$	0.488	6350	4.61	50.6	27.0	23.9	18.3	174	53.7	1040	0.949
$\times 43$	0.425	5500	3.80	42.8	26.2	22.2	15.7	150	53.3	694	0.617
$\times 35.5$	0.350	4550	2.86	32.5	25.1	19.8	12.7	123	52.8	407	0.349
$\times 29.5$	0.291	3780	2.39	27.7	25.1	18.7	10.2	99.5	52.0	231	0.191
$\times 26$	0.256	3320	2.00	23.4	24.5	17.5	8.92	87.4	51.8	161	0.130
$\times 23$	0.226	2940	1.79	21.1	24.7	17.0	7.67	75,6	51.2	110	0.0866
WT100											
$\times 21$	0.205	2660	1.78	21.2	25.9	18.8	4.50	54.2	41.2	111	0.0617
$\times 18$	0.176	2280	1.48	17.7	25.4	17.7	3.82	46.3	40.9	72.5	0.0389
WT100											
$\times 15.5$	0,154	1980	1.63	19.4	28.5	21.1	2.05	30.6	32.0	59.4	0.0250
$\times 13.5$	0,131	1700	1.43	17.3	29.1	21.3	1.65	24.8	31.2	35.5	0.0151

STRUCTURAL TEES
 Cut from W Shapes WT155 - WT100

PROPERTIES AND DIMENSIONS

Nominal Mass	Theoretical Mass	Depth d	Flange Width b	Flange Thickness t	Stem Thickness w	β_{*}	yo	\bar{r}_{0}	Ω
kg/m	kg/m	mm							
16.5 14 12 10.5	16.4 14.2 11.9 10.6	157 155 153 152	102 102 101 101	10.8 8.9 6.7 5.7	6.6 6.0 5.6 5.1	114 113 115 115	36.3 37.6 41.3 42.2	64.3 64.9 67.1 67.5	0.681 0.664 0.621 0.609
83.5	83.8	145	265	31.8	19.2	34.3	14.9	77.4	0.963
74.5	74.5	141	263	28.4	17.3	32.5	14.6	76.4	0.963
65.5	65.6	138	261	25.1	15.4	31.9	14.5	75,6	0.963
57.5	57.4	135	259	22.1	13.5	31.0	14.2	74.7	0.964
50.5	50.6	132	257	19.6	11.9	29.8	13.8	73.9	0.965
44.5	44.8	130	256	17.3	10.7	29.5	13.9	73.4	0.964
40	40.1	128	255	15.6	9.4	28.4	13.4	72.9	0.966
36.5	36.5	127	254	14.2	8.6	28.7	13.4	72.5	0.966
33.5	33.6	129	204	15.7	8.9	52.9	15.4	62.0	0.939
29	29.1	126	203	13.5	8.0	51.6	15.5	61.4	0.937
24.5	24.6	124	202	11.0	7.4	52.3	16.8	61.1	0.925
22.5	22.5	133	148	13.0	7.6	78.6	21.3	55.1	0.851
19.5	19.3	131	147	11.2	6.6	78.1	21.1	54.5	0.850
16.5	16.4	129	146	9.1	6.1	78.3	22.7	54.9	0.829
	14.2	130	102	10.0	6.4	90.0	27.6	52.9	0.727
12.5	12.7	129	102	8.4	6.1	90.7	29.4	53.9	0.702
11	11.2	127	102	6.9	5.8	90.6	31.1	54.7	0.676
9	8.9	126	101	5.3	4.8	91.3	32.1	55.1	0.660
50	49.8	115	210	23.7	14.5	28.3	12.1	61.3	0.961
43	43.4	111	209	20.6	13.0	25.9	11.9	60.6	0.961
35.5	35.7	108	206	17.4	10.2	25.4	11.1	59.5	0.965
29.5	29.7	105	205	14.2	9.1	24.7	11.6	58.9	0.961
26	26.1	103	204	12.6	7.9	23.6	11.2	58.4	0.963
23	23.0	102	203	11.0	7.2	24.2	11.5	58.0	0.961
21	20.9	103	166	11.8	7.2	41.8	12.9	50.3	0.935
18	18.0	101	165	10.2	6.2	41.0	12.6	49.7	0.936
15.5	15.7	105	134	10.2	6.4	57.1	16.0	45.8	0.877
13.5	13.3	104	133	8.4	5.8	57.9	17.1	45.9	0.862

Note: β_{x} is positive when the flange is in flexural compression, and negative otherwise.
See S16-14 Clauses 13.3.2 and 13,6 and the Commentary in Part 2 for further information on section properties,

STRUCTURAL TEES

Cut from W Shapes
WT100 - WT50

PROPERTIES

Designation	Dead Load	Area	Axis X -X				Axis Y-Y			Torsional Constant J	WarpingConstantC_{w}
			I_{x}	S_{x}	${ }^{\text {x }}$	y	I_{y}	S_{y}	r_{y}		
	kN/m	mm^{2}	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	mm	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{4}$	$10^{9} \mathrm{~mm}^{6}$
$\begin{gathered} \text { WT100 } \\ \times 11 \\ \times 9.5 \\ \times 7.5 \end{gathered}$											
	0.110	1430	1.36	17.5	30.9	25.3	0.710	13.9	22.3	28.1	0.0102
	0.0956	1240	1.22	16.0	31.3	26.1	0.577	11.3	21.6	18.0	0.0072
	0.0733	955	0.885	11.7	30.5	24.1	0.434	8.69	21.4	8.75	0.0030
$\begin{gathered} \text { WT75 } \\ \times 18.5 \\ \times 15 \\ \times 11 \end{gathered}$											
	0.182	2370	0.947	14.5	20.0	15.5	3.53	45.9	38.7	95.5	0.0459
	0.146	1900	0.725	11.3	19.6	14.2	2.78	36.3	38.3	49.9	0.0232
	0.109	1430	0.581	9.38	20.2	14.1	1.93	25.4	36.9	20.6	0.0091
$\begin{gathered} \text { WT75 } \\ \times 12 \\ \times 9 \\ \text { x7 } \end{gathered}$											
	0.117	1530	0.708	11.3	21.5	17.3	0.913	17.9	24.5	46.0	0.0114
	0.0879	1140	0.544	9.16	21.8	17.1	0.629	12.3	23.5	18.3	0.0047
	0.0665	865	0.395	6.68	21.4	15.8	0.459	9.18	23.0	8.35	0.0020
	0.138 0.116	1800 1520	0.426 0.350	8.02 6.74	15.4 15.3	12.4 11.6	1.91 1.55	29.8 24.5	32.7 32.2	63.4 38.0	0.0208 0.0120
$\begin{array}{r} \text { WT50 } \\ \times 9.5 \end{array}$	0.0951	1240	0.221	5.28	13.4	11.2	0.803	15.6	25.5	31.2	0.0063

PROPERTIES AND DIMENSIONS

Nominal Mass	Theoretical Mass	Depth d	Flange Width b	Flange Thickness t	Stem Thickness w	β_{x}	yo	\bar{i}_{0}	Ω
kg/m	kg/m	mm							
$\begin{aligned} & 11 \\ & 9.5 \\ & 7.5 \end{aligned}$	$\begin{array}{r} 11.2 \\ 9.7 \\ 7.5 \end{array}$	$\begin{aligned} & 103 \\ & 102 \\ & 100 \end{aligned}$	$\begin{aligned} & 102 \\ & 102 \\ & 100 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.5 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 6.2 \\ & 5.8 \\ & 4.3 \end{aligned}$	67.0 67.6 66.7	$\begin{aligned} & 21.3 \\ & 22.8 \\ & 21.5 \end{aligned}$	$\begin{aligned} & 43.6 \\ & 44.3 \\ & 43.0 \end{aligned}$	$\begin{aligned} & 0.761 \\ & 0.734 \\ & 0.750 \end{aligned}$
$\begin{aligned} & 18.5 \\ & 15 \\ & 11 \end{aligned}$	$\begin{aligned} & 18.6 \\ & 14.9 \\ & 11.2 \end{aligned}$	$\begin{aligned} & 81.0 \\ & 78.5 \\ & 76.0 \end{aligned}$	$\begin{aligned} & 154 \\ & 153 \\ & 152 \end{aligned}$	11.6 9.3 6.6	$\begin{aligned} & 8.1 \\ & 6.6 \\ & 5.8 \end{aligned}$	21.0 19.9 20.1	9.68 9.51 10.8	$\begin{aligned} & 44.6 \\ & 44.0 \\ & 43.4 \end{aligned}$	$\begin{aligned} & 0.953 \\ & 0.953 \\ & 0.938 \end{aligned}$
$\begin{array}{r} 12 \\ 9 \\ 7 \end{array}$	$\begin{array}{r} 12.0 \\ 9.0 \\ 6.8 \end{array}$	$\begin{aligned} & 80.0 \\ & 76.5 \\ & 75.0 \end{aligned}$	$\begin{aligned} & 102 \\ & 102 \\ & 100 \end{aligned}$	10.3 7.1 5.5	$\begin{aligned} & 6.6 \\ & 5.8 \\ & 4.3 \end{aligned}$	42.0 41.2 41.2	$\begin{aligned} & 12.1 \\ & 13.5 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 34.8 \\ & 34.8 \\ & 34.0 \end{aligned}$	$\begin{aligned} & 0.878 \\ & 0.848 \\ & 0.853 \end{aligned}$
$\begin{aligned} & 14 \\ & 12 \end{aligned}$			128 127		$\begin{aligned} & 6.9 \\ & 6.1 \end{aligned}$		6.96 7.07	$\begin{aligned} & 36.8 \\ & 36.3 \end{aligned}$	0.964 0.962
9.5	9.7	53.0	103	8.8	7.1	12.1	6.80	29.6	0.947

Note: β_{x} is positive when the flange is in flexural compression, and negative otherwise.
See S16-14 Clauses 13.3.2 and 13.6 and the Commentary in Part 2 for further information on section properties.

HOLLOW STRUCTURAL SECTIONS

General

Manufacturers of Hollow Structural Sections (HSS) may produce HSS to meet the requirements of either CSA Standard G40.20/G40.21, ASTM Specification A500 or ASTM A1085. The availability of HSS to these standards or specifications varies across the different regions of Canada, Round sections produced in accordance with common pipe specifications may sometimes be used as structural members, but are not classified as HSS.

For information on steel grades, manufacturing tolerances and Class of HSS, see Standard Mill Practice in Part 6.

Availability

Since the sections listed in this Handbook are those best suited for structural applications, designers may wish to consult the catalogs of HSS producers supplying HSS to their region of the country for sections not listed herein,

When a particular Hollow Structural Section is listed under both CSA G40 and ASTM A500 steel grades in Part 6, choosing the most readily available grade for a project may depend on the project location. In Ontario, most HSS sizes are available in either G40 and A500 grades, In western Canada, square and rectangular sections are more readily available in G40, while round sections are mainly available in A500. In Atlantic Canada and in Quebec, A500 is the prevalent grade.

A number of sizes are identified with an asterisk (*), denoting imported sections which are produced by non-Canadian mills and may be subject to a cost premium.

HOLLOW STRUCTURAL SECTIONS PRODUCED TO CSA G40.20

General

Hollow Structural Sections (HSS) are produced in Canada to the requirements of the CSA G40.20 Standard to either Class C or Class H , from steel meeting the requirements of the CSA G40.21 material Standard. The common grade of steel used is G40.21-350W.

Manufacture

HSS produced to the CSA G40.20 Standard may be manufactured using either a seamless or a welding process. Seamless products are produced by piercing solid material to form a tube or by an extrusion-type process (but are uncommon). Welded products are manufactured from flat-rolled steel which is formed and joined by various welding processes into a tubular shape. The tubular shape is then either cold-formed or hot-formed to the final shape and, if coldformed, may be subsequently stress-relieved. Class H sections are either hot-formed to final shape (uncommon today), or are cold-formed to final shape and then stress-relieved. Class C sections are generally more readily available than Class H sections, although Class H sections have greater resistance in axial compression. Outside dimensions for HSS are constant for all sizes in the same size range, with the inside dimensions changing with material thickness.

Properties and Dimensions

The tables of properties and dimensions on the following pages include square, rectangular and round HSS currently produced in Canada. The metric section sizes (e.g. HSS $127 \times 76 \times 6.4$) include the outer dimensions (depth \times width for rectangular sections) and wall thickness in millimetres.

Section properties given in the following tables for square and rectangular sections are based on an interior corner radius taken equal to the wall thickness, and on an exterior comer radius taken equal to twice the wall thickness.

HOLLOW STRUCTURAL SECTIONS PRODUCED TO ASTM A500

General

ASTM A500 grade C HSS may be the product of choice in some regions of Canada when CSA G40.21-350W HSS may not be available in the quantities and time frame envisaged for a specific project.

Manufacture

HSS manufactured to ASTM Standard A500 Grade C are not equivalent to HSS meeting the requirements of CSA G40.21 grade 350W. Unlike CSA Standard G40.20/G40.21, the ASTM A500 specification has no restriction for mass variation and has a tolerance of $\pm 10 \%$ on the wall thickness. If HSS produced to A500 are offered as a substitute, it would be prudent to assess the influence of the differences that arise from a possible difference in wall thickness and material strengths.

Properties and Dimensions

The tables of properties and dimensions on the following pages, prepared for HSS produced to ASTM A500 Grade C, include a quantity termed the "Design Wall Thickness". In accordance with to CSA S16-14 Clause 5.1.3, this Design Wall Thickness is taken as 90% of the nominal wall thickness. The nominal wall thickness is the thickness that has been published in previous tables as the "wall thickness" and, when rounded, forms the third term of the HSS section size.

With the exception of the Mass and the Dead Load, the values of Properties and Dimensions published in the following tables were computed based on the value of the "Design Wall Thickness".

Information on ASTM A500 Grade C

The following information is taken from ASTM A500-10a, "Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes". For complete information on HSS produced to ASTM A500 Grade C, please refer to the ASTM specification.

Mechanical Properties of ASTM A500 Grade C Steel *

HSS Shape	$F_{y}(\mathrm{~min})^{* *}$	$F_{u}(\mathrm{~min})$
Round HSS	317 MPa	427 MPa
Square and Rectangular HSS	345 MPa	427 MPa

* Clause 1.2 Note 1: Products manufactured to this specification may not be suitable for those applications such as dynamically loaded elements in welded structures, etc., where low-temperature notch-toughness properties may be important.
*" Clause 15.3: The yield strength corresponding to an offset of 0.2% of the gage length or to a total extension under load of 0.5% of the gage length shall be determined.

HOLLOW STRUCTURAL SECTIONS PRODUCED TO ASTM A1085

General

ASTM A1085 was introduced in 2013. HSS produced to A1085 meet requirements comparable to those of CSA G40.20/21-350WT Category 1. The material is required to conform to a minimum average Charpy V-notch impact value of 34 Joules at $4^{\circ} \mathrm{C}$, as represented by the test specimen. In addition, a minimum yield stress at 345 MPa and a maximum yield stress of 485 MPa apply.

Manufacture

Square and rectangular A1085 HSS meet requirements for minimum and maximum corner radii as a function of wall thickness. See Standard Mill Practice in Part 6.

Purchasers of A1085 HSS may specify heat treatment as supplemental requirement S1, which also conforms to the stress-relieved requirement for Class H G40.20 HSS.

Properties and Dimensions

Wall thickness and mass tolerances for ASTM A1085 products are essentially the same as those specified for HSS in CSA G40.20. Section properties provided for CSA G40.20 HSS in Part 6, which are calculated from the nominal wall thickness, depth, width and diameter, may be used for design.

HOLLOW STRUCTURAL SECTIONS
CSA G40.20
Square

PROPERTIES AND DIMENSIONS

Section	Outside Dimension	Wall Thickness	Mass	Dead Load	Area	1	S	r	Z	Torsional Constant J	Surface Area
$\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$	mm	mm	kg/m	kN/m	mm^{2}	$10^{6} \mathrm{~mm}{ }^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{4}$	$\mathrm{m}^{2} / \mathrm{m}$
$\underset{\times 19^{*}}{\text { HSS } 559 \times 559}$	558.8	19.05	316	3.10	40200	1930	6900	219	8070	3050000	2.17
$\begin{gathered} \text { HSS } 508 \times 508 \\ \times 22^{*} \end{gathered}$	508.0	22.23	329	3.23	41900	1620	6390	197	7560	2600000	
$\times 19{ }^{*}$	508.0	19.05	285	2.80	36300	1430	5620	198	6600	2270000	1.97
$\times 16{ }^{*}$	508.0	15.88	240	2.36	30600	1220	4810	200	5610	1930000	1.98
$\times 13$ *	508.0	12.70	194	1.91	24700	1000	3950	201	4570	1570000	1.99
$\begin{gathered} \text { HSS } 457 \times 457 \\ \times 22^{*} \end{gathered}$	457.2	22.23	294	2.88	37400	1160	5070	176	6030	1870000	
$\times 19 *$	457.2	19.05	255	2.50	32500	1020	4470	178	5280	1640000	1.76
$\times 16{ }^{*}$	457.2	15.88	215	2.11	27400	878	3840	179	4490	1390000	1.77
$\times 13{ }^{*}$	457.2	12.70	174	1.71	22200	723	3160	181	3670	1130000	1.79
HSS 406x406											
x22*	406.4	22.23	258	2.53	32900	793	3900	155	4670	1290000	1.55
$\times 19 *$	406.4	19.05	224	2.20	28600	703	3460	157	4100	1130000	1.56
$\times 16$ *	406.4	15.88	190	1.86	24200	606	2980	158	3500	965000	1.57
$\times 13{ }^{*}$	406.4	12.70	154	1.51	19600	500	2460	160	2870	788000	1.58
x9.5*	406.4	9.53	117	1.15	14900	388	1910	161	2200	604000	1.59
$\text { HSS } 356 \times 356$	355.6	15.88	164	1.61	20900	396	2230	138	2640		
x13**	355.6	12.70	133	1.31	17000	329	1850	139	2170	522000	1.37 1.38
x9.5*	355.6	9.53	102	0.998	13000	256	1440	141	1670	401000	1.39
x7.9*	355.6	7.94	85.4	0.838	10900	218	1220	141	1410	338000	1.40
HSS 305x305											
- $\times 16$	304.8	15.88	139	1.36	17700	242	1590	117	1890	392000	1.16
$\times 13$	304.8	12.70	113	1.11	14400	202	1330	118	1560	323000	1.18
$\times 9.5$	304.8	9.53	86.5	0.849	11000	158	1040	120	1210	250000	1.19
$\times 7.9$	304.8	7.94	72.7	0.714	9270	135	885	121	1030	211000	1.19
$\times 6.4$	304.8	6.35	58.7	0.576	7480	110	723	121	833	171000	1.20
HSS 254x254											
$\times 16$	254.0	15.88	114	1.11	14500	134	1050	96.1	1270	220000	0.961
$\times 13$	254.0	12.70	93.0	0.912	11800	113	889	97.6	1060	183000	0.972
$\times 9.5$	254.0	9.53	71.3	0.700	9090	89.3	703	99.1	825	142000	0.983
$\times 7.9$	254.0	7.94	60.1	0.589	7650	76.4	601	99.9	701	120000	0.989
$\times 6.4$	254.0	6.35	48.6	0.476	6190	62.7	494	101	571	97800	0.994
$\times 4.8$	254.0	4.78	36.9	0.362	4710	48.4	381	101	438	74800	1.000
HSS 203x203											
$\times 16$ $\times 13$	203.2	15.88	88.3	0.866	11200	63.8	628	75.3	774	107000	0.758
x9.5	203.2	9.53	72.7 56.1	0.551	9260 7150	54.7 43.9	538 432	76.9 78.4	651 513	90200 70800	0.769 0.780
$\times 7.9$	203.2	7.94	47.4	0.465	6040	37.8	372	79.2	438	60300	0.786
$\times 6.4$	203.2	6.35	38.4	0.377	4900	31.3	308	79.9	359	49300	0.791
$\times 4.8$	203.2	4.78	29.3	0.288	3730	24.3	239	80.7	276	37800	0.796

[^56]HOLLOW STRUCTURAL SECTIONS CSA G40.20
Square

PROPERTIES AND DIMENSIONS

Section	Outside Dimension	Wall Thick- ness	Mass	Dead Load	Area	1	S	1	z	Torsional Constant J	Surface Area
$\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$	mm	mm	kg/m	kN/m	mm^{2}	$10^{8} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{4}$	$\mathrm{m}^{2} / \mathrm{m}$
HSS 178×178											
$\times 16$	177.8	15.88	75.6	0.742	9640	40.6	457	64.9	571	69300	0.657
$\times 13$	177.8	12.70	62.6	0.614	7970	35.2	396	66.5	484	58800	0.668
$\times 9.5$	177.8	9.53	48.5	0.476	6180	28.6	322	68.0	385	46500	0.678
$\times 7.9$	177.8	7.94	41.1	0.403	5230	24.8	279	68.8	330	39800	0.684
$\times 6.4$	177.8	6.35	33.4	0.327	4250	20.6	231	69.6	271	32600	0.689
$\times 4.8$	177.8	4.78	25.5	0.250	3250	16.1	181	70.3	210	25100	0.695
HSS 152×152											
$\times 13$	152.4	12.70	52.4	0.515	6680	21.0	276	56.1	342	35600	0.566
$\times 9.5$	152.4	9.53	40.9	0.401	5210	17.3	227	57.6	275	28500	0.577
$\times 7.9$	152.4	7.94	34.7	0.341	4430	15.1	198	58.4	237	24500	0.582
$\times 6.4$	152.4	6.35	28.3	0.278	3610	12.6	166	59.2	196	20200	0.588
$\times 4.8$	152.4	4.78	21.7	0.213	2760	9.93	130	59.9	152	15600	0.593
HSS 127x127											
$\times 13$	127.0	12.70	42.3	0.415	5390	11.3	177	45.7	225	19500	0.464
$\times 9.5$	127.0	9.53	33.3	0.327	4240	9.48	149	47.3	183	15900	0.475
$\times 7.9$	127.0	7.94	28.4	0.279	3620	8.35	131	48.0	159	13800	0.481
$\times 6.4$	127.0	6.35	23.2	0.228	2960	7.05	111	48.8	132	11400	0.486
$\times 4.8$	127.0	4.78	17.9	0.175	2280	5.60	88.1	49.6	103	8900	0.492
$\times 3.2$	127.0	3.18	12.2	0.119	1550	3.92	61.8	50.3	71.5	6120	0.497
$\text { HSS } 102 \times 102$											
$\times 13$	101.6	12.70 9	32.2	0.316	4100	5.10	100	35.3	131	9070	0.363
$\times 9.5$	101.6	9.53	25.7	0.252	3280	4.45	87.6	36,9	110	7640	0.374
$\times 7.9$	101.6	7.94	22.1	0.217	2810	3.99	78.5	37.7	96.7	6710	0.379
$\times 6.4$	101.6	6.35	18.2	0.178	2320	3.42	67.3	38.4	81.4	5640	0.385
$\times 4.8$	101.6	4.78	14.1	0.138	1790	2.75	54.2	39.2	64.3	4440	0.390
$\times 3.2$	101.6	3.18	9.62	0.094	1230	1.96	38.5	40.0	44.9	3080	0.395
HSS 89×89											
x9.5	88.9	9.53	21.9	0.215	2790	2.80	63.0	31.7	80.5	4880	0.323
$\times 7.9$	88.9	7.94	18.9	0.186	2410	2.54	57.1	32.5	71.3	4330	0.328
$\times 6.4$	88.9	6.35	15.6	0.153	1990	2.20	49.5	33.2	60.5	3670	0.334
$\times 4.8$	88.9	4.78	12.2	0.118	1550	1.79	40.3	34.0	48.2	2920	0.339
HSS 76×76											
$\times 9.5$	76.2	9.53	18.1	0.178	2310	1.61	42.4	26.5	55.5	2870	0.272
$\times 7.9$	76.2	7.94	15.7	0.154	2010	1.49	39.1	27.3	49.8	2590	0.278
$\times 6.4$	76.2	6.35	13.1	0.129	1670	1.31	34.5	28.0	42.8	2230	0.283
$\times 4.8$	76.2	4.78	10.3	0.101	1310	1.08	28.5	28.8	34.4	1790	0.288
$\times 3.2$	76.2	3.18	7.09	0.070	903	0.790	20.7	29.6	24.5	1260	0.294
$\text { HSS } 64 \times 64$ $\times 6.4$	63.5	6.35	10.6	0.104	1350		22.2				
+4.8	63.5	4.78	8.35	0.082	1060	0.594	18.7	23.8	23.0	1220 995	0.232 0.238 0.243
$\times 3.2$	63.5	3.18	5.82	0.057	741	0.441	13.9	24.4	16.6	715	0.243

HOLLOW STRUCTURAL SECTIONS CSA G40.20
Square

PROPERTIES AND DIMENSIONS

Section	Outside Dimen- sion	Wall Thick- ness	Mass	Dead Load	Area							

HOLLOW STRUCTURAL SECTIONS
CSA G40.20
Rectangular

DIMENSIONS

Section	Outside Dimensions		Wall Thickness	Mass	Dead Load	Area	Surface Area
	Depth	Width					
$\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$	mm	mm	mm	kg/m	kN/m	mm^{2}	$\mathrm{m}^{2} / \mathrm{m}$
HSS 305x203							
$\times 16$	304.8	203.2	15.88	114	1.11	14500	0.961
$\times 13$	304.8	203.2	12.70	93.0	0.912	11800	0.972
$\times 9.5$	304.8	203.2	9.53	71.3	0.700	9090	0.983
$\times 7.9$	304.8	203.2	7.94	60.1	0.589	7650	0.989
$\times 6.4$	304.8	203.2	6.35	48.6	0.476	6190	0.994
HSS 305×152							
$\times 16$	304.8	152.4	15.88	101	0.991	12900	0.860
$\times 13$	304.8	152.4	12.70	82.8	0.813	10600	0.871
$\times 9.5$	304.8	152.4	9.53	63.7	0.625	8120	0.882
$\times 7.9$	304.8	152.4	7.94	53.7	0.527	6850	0.887
$\times 6.4$	304.8	152.4	6.35	43.5	0.427	5540	0.893
HSS 254×203							
$\times 16$	254.0	203.2	15.88	101	0.991	12900	0.860
$\times 13$	254.0	203.2	12.70	82.8	0.813	10600	0.871
$\times 9.5$	254.0	203.2	9.53	63.7	0.625	8120	0.882
$\times 7.9$	254.0	203.2	7.94	53.7	0.527	6850	0.887
$\times 6.4$	254.0	203.2	6.35	43.5	0.427	5540	0.893
HSS 254x152							
$\times 16$	254.0	152.4	15.88	88.3	0.866	11200	0.758
$\times 13$	254.0	152.4	12.70	72.7	0.713	9260	0.769
$\times 9.5$	254.0	152.4	9.53	56.1	0.551	7150	0.780
$\times 7.9$	254.0	152.4	7.94	47.4	0.465	6040	0.786
$\times 6.4$	254.0	152.4	6.35	38.4	0.377	4900	0.791
$\times 4.8$	254.0	152.4	4.78	29.3	0.288	3730	0.796
HSS 203×152							
$\times 16$	203.2	152.4	15.88	75.6	0.742	9640	0.657
$\times 13$	203.2	152.4	12.70	62.6	0.614	7970	0.668
$\times 9.5$	203.2	152,4	9.53	48.5	0.476	6180	0.678
$\times 7.9$	203.2	152.4	7.94	41.1	0.403	5230	0.684
$\times 6.4$	203.2	152.4	6.35	33.4	0.327	4250	0.689
x4.8	203.2	152.4	4.78	25.5	0.250	3250	0.695
HSS 203x102							
$\times 13$	203.2	101.6	12.70	52.4	0.515	6680	0.566
x9,5	203.2	101.6	9.53	40.9	0.401	5210	0.577
$\times 7.9$	203,2	101.6	7.94	34.7	0.341	4430	0.582
$\times 6.4$	203.2	101.6	6.35	28.3	0.278	3610	0.588
$\times 4.8$	203.2	101.6	4.78	21.7	0.213	2760	0.593
HSS 178×127							
$\times 13$	177.8	127.0	12.70	52.4	0.515	6680	0.566
$\times 9.5$	177.8	127.0	9.53	40.9	0.401	5210	0.577
$\times 7.9$	177.8	127.0	7.94	34.7	0,341	4430	0.582
$\times 6.4$	177.8	127.0	6.35	28.3	0.278	3610	0.588
$\times 4.8$	177.8	127.0	4.78	21.7	0.213	2760	0.593

HOLLOW STRUCTURAL SECTIONS
CSA G40.20
Rectangular

PROPERTIES

Axis X-X				Axis $Y-Y$				Torsional Constant	Section
I_{x}	S_{x}	r_{x}	$Z_{\text {x }}$	1 y	S_{y}	r_{y}	z_{y}	J	
$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{4}$	$\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$
									HSS 305×203
174	1140	110	1430	92.2	907	79.8	1080	200000	$\times 16$
147	964	111	1190	78.2	769	81.2	897	167000	$\times 13$
116	762	113	926	62.1	611	82.7	701	130000	$\times 9.5$
99.3	652	114	786	53.2	524	83.4	596	110000	$\times 7.9$
81.5	535	115	640	43.8	431	84.1	486	89700	$\times 6.4$
									HSS 305×152
141	922	105	1190	46.5	610	60.1	729	119000	$\times 16$
119	784	106	999	40.0	524	61.5	613	100000	$\times 13$
95.1	624	108	783	32.2	422	62.9	482	79000	$\times 9.5$
81.6	535	109	666	27.7	364	63.7	411	67400	$\times 7.9$
67.1	440	110	544	23.0	301	64.4	337	55100	$\times 6.4$
									HSS 254x203
111	872	92.8	1080	78.0	767	77.9	925	153000	$\times 16$
94.0	740	94.4	903	66.4	654	79.3	774	127000	$\times 13$
74.8	589	96.0	707	53.0	522	80.8	607	99600	$\times 9.5$
64.2	505	96.8	602	45.5	448	81.6	517	84600	$\times 7.9$
52.8	416	97.6	491	37.5	369	82.3	422	69000	x6.4
									HSS 254×152
87.8	691	88.3	888	38.9	511	58.8	619	91900	$\times 16$
75.2	592	90.1	747	33.6	442	60.3	522	77700	$\times 13$
60.4	475	91.9	589	27.2	357	61.7	413	61400	$\times 9.5$
52.0	409	92.8	502	23.5	309	62.4	353	52400	$\times 7.9$
42.9	338	93.6	411	19.5	256	63.1	290	42900	$\times 6.4$
33.3	262	94.5	317	15.2	200	63.8	224	33000	$\times 4.8$
									HSS 203x152
49.6	488	71.7	623	31.4	412	57.1	509	65900	$\times 16$
43.0	423	73.4	528	27.3	359	58.6	432	56000	$\times 13$
34.8	343	75.1	420	22.3	292	60.0	344	44400	$\times 9.5$
30.2	297	75.9	359	19.3	253	60.8	295	38000	$\times 7.9$
25.0	246	76.7	295	16.1	211	61.5	243	31200	$\times 6.4$
19.5	192	77.5	228	12.6	165	62.2	188	24100	$\times 4.8$
									HSS 203x102
31.3	308	68.4	405	10.2	201	39.1	246	26700	$\times 13$
25.8	254	70.3	326	8.57	169	40.5	199	21700	$\times 9.5$
22.5	221	71.2	281	7.53	148	41.3	172	18800	$\times 7.9$
18.8	185	72.2	232	6.35	125	42.0	143	15600	$\times 6.4$
14.7	145	73.1	180	5.03	99.0	42.7	111	12100	x4.8
									HSS 178×127
26.4	297	62.9	378	15.5	244	48.1	298	33300	$\times 13$
21.7	244	64.6	303	12.8	202	49.6	240	26800	$\times 9.5$
18.9	213	65.4	261	11.2	177	50.3	207	23000	x7.9
15.8	178	66.2	216	9.40	148	51.1	171	19000	$\times 6.4$
12.4	140	67.1	168	7.41	117	51.8	133	14700	$\times 4.8$

HOLLOW STRUCTURAL SECTIONS
CSA G40.20
Rectangular

DIMENSIONS

Section	Outside Dimensions		Wall Thickness	Mass	Dead Load	Area	Surface Area
	Depth	Width					
$\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$	mm	mm	mm	kg/m	kN/m	mm^{2}	$\mathrm{m}^{2} / \mathrm{m}$
HSS 152x102							
$\times 13$	152.4	101.6	12.70	42.3	0.415	5390	0.464
x9.5	152.4	101.6	9.53	33.3	0,327	4240	0.475
$\times 7.9$	152.4	101.6	7.94	28.4	0.279	3620	0.481
$\times 6.4$	152.4	101.6	6.35	23.2	0.228	2960	0.486
$\times 4.8$	152.4	101.6	4.78	17.9	0.175	2280	0.492
$\times 3.2$	152.4	101,6	3.18	12.2	0.119	1550	0.497
HSS 152×76							
$\times 13$	152.4	76.2	12.70	37.3	0.365	4750	0.414
$\times 9.5$	152.4	76.2	9.53	29.5	0.290	3760	0.424
$\times 7.9$	152.4	76.2	7.94	25.2	0.248	3220	0.430
$\times 6.4$	152.4	76.2	6.35	20.7	0.203	2640	0.435
$\times 4.8$	152.4	76.2	4.78	16.0	0.157	2040	0.441
$\times 3.2$	152.4	76.2	3.18	10.9	0.107	1390	0.446
HSS 127×76							
$\times 13$	127.0	76.2	12.70	32.2	0.316	4100	0.363
$\times 9.5$	127.0	76.2	9.53	25.7	0.252	3280	0.374
$\times 7.9$	127.0	76.2	7.94	22.1	0.217	2810	0.379
$\times 6.4$	127.0	76.2	6.35	18.2	0.178	2320	0.385
$\times 4.8$	127.0	76.2	4.78	14.1	0.138	1790	0.390
$\times 3.2$	127.0	76.2	3.18	9.62	0.094	1230	0.395
$\text { HSS } 102 \times 76$							
$\times 9.5$	101.6	76.2	9.53	21.9	0.215	2790	0.323
$\times 7.9$	101.6	76.2	7.94	18.9	0.186	2410	0.328
$\times 6.4$	101.6	76.2	6.35	15.6	0.153	1990	0.334
$\times 4.8$	101.6	76.2	4.78	12.2	0.119	1550	0.339
$\times 3.2$	101.6	76.2	3.18	8.35	0.082	1060	0.345
HSS 102×51							
$\times 9.5$	101.6	50.8	9.53	18.1	0.178	2310	0.272
x7.9	101.6	50.8	7.94	15.7	0.154	2010	0.278
$\times 6.4$	101.6	50.8	6.35	13.1	0.129	1670	0.283
$\times 4.8$	101.6	50.8	4.78	10.3	0.101	1310	0.288
$\times 3.2$	101.6	50.8	3.18	7.09	0.070	903	0.294
HSS 89×64							
$\times 6.4$	88.9	63.5	6.35	13.1	0.129	1670	0.283
$\times 4.8$	88.9	63.5	4.78	10.3	0.101	1310	0.288
HSS 76x51							
+7.9	76.2	50.8	7.94	12.6	0.123	1600	0.227
$\times 6.4$	76.2	50.8 50.8	6.35	10.6	0.104	1350	0.232
$\times 4.8$ $\times 3.2$	76.2	50.8 50.8	4.78 3.18	8.35 5.82	0.082 0.057	1060 741	0.238 0.243

HOLLOW STRUCTURAL SECTIONS
CSA G40.20
Rectangular

PROPERTIES

Axis X-X				Axis $\mathrm{Y}-\mathrm{Y}$				Torsional Constant	Section
I_{x}	S_{x}	r_{x}	$\mathrm{Z}_{\text {x }}$	1 y	S_{y}	r_{x}	z_{y}	J	
$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{4}$	$\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$
14.7	193	52.2	252	7.67	151	37.7		17500	$\text { HSS } 152 \times 102$
14.7 12.4	162	52.2 54.0	252	6.67	128	37.7 39.2	189 155	14400	$\times 13$ $\times 9.5$
10.9	143	54.9	178	5.76	113	39.9	134	12500	$\times 7.9$
9.19	121	55.7	148	4.88	96.2	40.6	112	10400	$\times 6.4$
7.28	95.6	56.5	116	3.89	76.6	41.3	87.8	8150	$\times 4.8$
5.10	66.9	57.4	80.2	2.74	53.9	42.1	60.8	5620	$\times 3.2$
									HSS 152x76
11.5	152	49.3	207	3.71	97.3	28.0	124	9960	$\times 13$
9.89	130	51.3	171	3.24	85.0	29.4	104	8450	x9.5
8.78	115	52.3	149	2.91	76.3	30.1	91.1	7440	$\times 7.9$
7.47	98.0	53.2	125	2.50	65.5	30.8	76.6	6270	$\times 6.4$
5.96	78.2	54.1	98.1	2.02	52.9	31.5	60.5	4950	$\times 4.8$
4.20	55.1	55.0	68.1	1.44	37.7	32.2	42.2	3450	$\times 3.2$
									HSS 127x76
7.02	111	41.4	151	3.05	80.0	27.3	104	7590	$\times 13$
6.13	96.5	43.3	126	2.70	70.8	28.7	87.8	6500	x9.5
5.49	86.4	44.2	111	2.43	63.9	29.4	77.3	5750	$\times 7.9$
4.70	74.1	45.1	93.4	2.10	55.2	30.1	65.3	4860	$\times 6.4$
3.78	59.6	45.9	73.8	1.71	44.8	30.8	51.8	3850	$\times 4.8$
2.69	42.3	46.8	51.5	1.22	32.1	31.6	36.3	2690	$\times 3.2$
									HSS 102x76
3.42	67.4	35.0	87.9	2.16	56.6	27.8	71.6	4630	x9.5
3.10	61.0	35.9	77.8	1.96	51.5	28.5	63.6	4120	$\times 7.9$
2.69	52.9	36.7	66.0	1.71	44.8	29.3	54.0	3500	$\times 6.4$
2.18	43.0	37.5	52.6	1.39	36.6	30.0	43.1	2780	$\times 4.8$
1.57	30.8	38.4	37.0	1.01	26.4	30.7	30.4	1950	x3.2
									HSS 102×51
2.39 2.21	43.6	32.2 33.2	65.6 58.9	0.714	38.1	18.2	39.2 35.5	1910	$\times 9.5$ $\times 7.9$
1.95	38.5	34.2	50.7	0.640	25.2	19.6	30.8	1670	$\times 6.4$
1.61	31.8	35.1	40.8	0.537	21.1	20.3	25.0	1360	$\times 4.8$
1.17	23.1	36.1	29.0	0.397	15.6	21.0	17.9	976	x3.2
									HSS 89x64
1.65	37.1	31.4	47.2	0.968	30.5	24.1	37.3	2080	$\times 6.4$
1.36	30.6	32.3	38.0	0.803	25.3	24.8	30.1	1680	$\times 4.8$
									HSS 76×51
0.919	26.7 24.1	25.2	36.0 31.5	0.527 0.479	18.9	18.1 18.9	26.9 23.6	1240 1100	$\times 7.9$ $\times 6.4$
0.775	20.3	27.0	25.8	0.408	16.1	19.6	19.4	903	x4.8
0.575	15.1	27.8	18.6	0.306	12.0	20.3	14.0	652	$\times 3.2$

HOLLOW STRUCTURAL SECTIONS
CSA G40.20
Rectangular

DIMENSIONS

Section	Outside Dimensions		Wall Thickness	Mass	Dead Load	Area	Surface Area
	Depth	Width					
$\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$	mm	mm	mm	kg/m	kN/m	mm^{2}	$\mathrm{m}^{2} / \mathrm{m}$
HSS 76x38							
$\times 6.4$	76.2	38.1	6.35	9.31	0.091	1190	0.207
$\times 4.8$	76.2	38.1	4.78	7.40	0.073	942	0.212
$\times 3.2$	76.2	38.1	3.18	5.18	0.051	660	0.218
HSS 64×38							
$\times 6.4$	63.5	38.1	6.35	8.05	0.079	1030	0.181
$\times 4.8$	63.5	38.1	4.78	6.45	0.063	821	0.187
$\times 3.2$	63.5	38.1	3.18	4.55	0.045	580	0.192
HSS 51×25							
$\times 3.2$	$\begin{aligned} & 50.8 \\ & 50.8 \end{aligned}$	$\begin{aligned} & 25.4 \\ & 25.4 \end{aligned}$	$\begin{aligned} & 4.78 \\ & 3.18 \end{aligned}$	$\begin{aligned} & 4.54 \\ & 3.28 \end{aligned}$	$\begin{aligned} & 0.045 \\ & 0.032 \end{aligned}$	$\begin{aligned} & 578 \\ & 418 \end{aligned}$	$\begin{aligned} & 0.136 \\ & 0.141 \end{aligned}$

HOLLOW STRUCTURAL SECTIONS
CSA G40.20
Rectangular

PROPERTIES

HOLLOW STRUCTURAL SECTIONS
CSA G40.20
Round

PROPERTIES AND DIMENSIONS

Section	Outside Dimen- sion	Wall Thick- ness	Mass	Dead Load	Area							

HOLLOW STRUCTURAL SECTIONS
CSA G40.20
Round

PROPERTIES AND DIMENSIONS

Section	Outside Dimen- sion	Wall Thick- ness	Mass	Dead Load	Area						

HOLLOW STRUCTURAL SECTIONS
ASTM A500
Square

PROPERTIES AND DIMENSIONS

Section	Outside Dimension	Wall Thickness		Mass	Dead Load	Area	1	S	r	Z	Torsional Constant	Surface Area
		Nominal	Design								J	
$\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$	mm	mm	mm	kg/m	kN/m	mm^{2}	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{4}$	$\mathrm{m}^{2} / \mathrm{m}$
$\begin{gathered} \text { HSS } 406 \times 406 \\ \times 16^{*} \\ \times 13^{*} \\ \times 9.5^{*} \end{gathered}$												
	406.4	15.88	14.29	190	1.86	21900	554	2730	159	3190	878000	1.58
	406.4	9.53	8.58	117	1.15	13500	353	1740	162	2000	547000	1.60
HSS 356×356												
	355.6	15.88	14.29	164	1.61	19000	363	2040	138	2410	580000	1.37
	355.6	12.70	11.43	133	1.31	15400	301	1690	140	1970	474000	1.38
	355.6	9.53	8.58	102	0.998	11700	233	1310	141	1520	363000	1.39
	355.6	7.94	7.15	85.4	0.838	9830	198	1110	142	1280	306000	1.40
$\begin{gathered} \text { HSS } 305 \times 305 \\ \times 16 \\ \times 13 \\ \times 9.5 \\ \times 7.9 \\ \times 6.4 \end{gathered}$												
	304.8	15.88	14.29	139	1.36	16100	222	1460	118	1730	358000	1.17
	304.8	12.70	11.43	113	1.11	13100	185	1210	119	1430	294000	1.18
	304.8	9.53	8.58	86.5	0.849	9980	144	948	120	1100	227000	1.19
	304.8	7.94	7.15	72.7	0.714	8380	123	806	121	930	191000	1.19
	304.8	6.35	5.72	58.7	0.576	6760	100	657	122	755	155000	1.20
$\begin{gathered} \text { HSS } 254 \times 254 \\ \times 16 \\ \times 13 \\ \times 9.5 \\ \times 7.9 \\ \times 6.4 \\ \times 4.8 \end{gathered}$	254.0	15.88	14.29	114	111	13200	124	973			202000	
	254.0	12.70	11.43	93.0	0.912	10800	104	817	98.2	968	167000	0.977
	254.0	9.53	8.58	71.3	0.700	8230	81.7	643	99.6	752	129000	0.987
	254.0	7.94	7.15	60.1	0.589	6930	69.7	549	100	637	109000	0.991
	254.0	6.35	5.72	48.6	0.476	5600	57.1	449	101	518	88700	0.996
	254.0	4.78	4.30	36.9	0.362	4250	43.9	346	102	396	67600	1.00
HSS $203 \times 203$$\times 16$$\times 13$$\times 9.5$$\times 7.9$$\times 6.4$$\times 4.8$												
	203.2	15.88	14.29	88.3	0.866	10300	59.5	585	76.1	714	99000	0.764
	203.2	12.70	11.43	72.7	0.713	8430	50.6	498	77.5	598	82700	0.774
	203.2	9.53	8.58	56.1	0.551	6490	40.4	397	78.9	469	64600	0.783
	203.2	7.94	7.15	47.4	0.465	5480	34.6	341	79.5	399	54900	0.788
	203.2	6.35	5.72	38.4	0.377	4430	28.5	281	80.2	326	44700	0.793
	203.2	4.78	4.30	29.3	0.288	3370	22.1	217	80.9	250	34300	0.798
HSS $178 \times 178$$\times 16$$\times 13$$\times 9.5$	177.8	15,88	14.29	75.6	0.742	8820	38.1	428	65.7	529	64300	0.662
	177.8	12.70	11,43	62.6	0.614	7270	32.7	368	67.1	446	54100	0.672
	177.8	9.53	8,58	48.5	0.476	5620	26.3	296	68.5	352	42600	0.682
	177.8	7.94	7.15	41.1	0.403	4750	22.7	256	69.2	301	36300	0.687
	177.8	6.35	5.72	33.4	0.327	3850	18.8	212	69.9	247	29700	0.692
	177.8	4.78	4.30	25.5	0.250	2940	14.6	164	70.5	190	22800	0.696
$\begin{gathered} \text { HSS } 152 \times 152 \\ \times 13 \end{gathered}$	152.4	12.70	11.43	52.4	0.515	6110	19.6	258	56.7	317	32900	0,570
$\times 9.5$	152.4	9.53	8.58	40.9	0.401	4750	16.0	210	58.1	252	26200	0.580
$\times 7.9$	152.4	7.94	7.15	34.7	0.341	4020	13.9	182	58.8	217	22400	0.585
$\times 6.4$	152.4	6.35	5.72	28.3	0.278	3270	11.6	152	59.5	178	18400	0.590
$\times 4.8$	152.4	4.78	4.30	21.7	0.213	2500	9.05	119	60.2	138	14200	0.595

[^57]

PROPERTIES AND DIMENSIONS

Section	Outside Dimension	Wall Thickness		Mass	Dead Load	Area	1	S	r	Z	Torsional Constant	Surface Area
		Nominal	Design								J	
$\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$	mm	mm	mm	kg/m	kN/m	mm^{2}	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{4}$	$\mathrm{m}^{2} / \mathrm{m}$
$\begin{gathered} \text { HSS } 127 \times 127 \\ \times 13 \\ \times 9.5 \\ \times 7.9 \\ \times 6.4 \\ \times 4.8 \\ \times 3.2 \end{gathered}$												
	127.0	12.70	11.43	42.3	0.415	4950	10.6	167	46.3	209	18100	0.469
	127.0	9.53	8.58	33.3	0.327	3870	8.82	139	47.7	169	14600	0.479
	127.0	7.94	7.15	28.4	0.279	3300	7.73	122	48.4	146	12600	0.483
	127.0	6.35	5.72	23.2	0.228	2690	6.49	102	49.1	121	10400	0.488
	127.0	4.78	4.30	17.9	0.175	2060	5.11	80.6	49.8	94.2	8090	0.493
	127.0	3.18	2.86	12.2	0.119	1400	3.57	56.2	50.5	64.8	5540	0.498
$\begin{aligned} & \text { HSS } 102 \times 102 \\ & \times 13 \\ & \times 9.5 \\ & \times 7.9 \\ & \times 6.4 \\ & \times 4.8 \\ & \times 3.2 \end{aligned}$												
	101.6 101.6	12.70 9.53	$\begin{array}{r}11.43 \\ 8.58 \\ \hline\end{array}$	32.2 25.7	0.316 0.252	3790 3000	4.88 4.19	96.1 82.4	35.9 37.3	124 102	8570 7100	0.367 0.377
	101.6	7.94	7.15	22.1	0.217	2570	3.72	73.2	38.0	89.3	6190	0.382
	101.6	6.35	5.72	18.2	0.178	2110	3.17	62.3	38.7	74.8	5170	0.387
	101.6	4.78	4.30	14.1	0.138	1630	2.53	49.7	39.4	58.7	4050	0.392
	101.6	3.18	2.86	9.62	0.094	1110	1.78	35.1	40.1	40.8	2800	0.397
HSS 89×89												
	88.9	9.53	8.58	21.9	0.215	2570	2.65	59.6	32.1	75.2	4570	0.326
	88.9	7.94	7.15	18.9	0.186	2210	2.38	53.5	32.8	66.2	4020	0.331
	88.9	6.35	5.72	15.6	0.153	1820	2.05	46.0	33.5	55.8	3380	0.336
	88.9	4.78	4.30	12.2	0.119	1410	1.65	37.1	34.2	44.1	2660	0.341
HSS $76 \times 76$$\times 9.5$$\times 7.9$$\times 6.4$$\times 4.8$$\times 3.2$												
	76.2	9.53	8.58	18.1	0.178	2130	1.55	40.6	26.9	52.2	2710	0.275
	76.2	7.94	7.15	15.7	0.154	1840	1.41	37.0	27.6	46.5	2420	0.280
	76.2	6.35	5.72	13.1	0.129	1530	1.23	32.2	28.4	39.6	2060	0.285
	76.2	4.78	4.30	10.3	0.101	1190	1.00	26.3	29.0	31.6	1640	0.290
	76.2	3.18	2.86	7.09	0.070	818	0.724	19.0	29.7	22.3	1150	0.295
HSS $64 \times 64$$\times 6.4$$\times 4.8$$\times 3.2$												
	63.5	6.35	5.72	10.6	0.104	1240	0.664	20.9	23.2	26.2	1130	0.234
	63.5	4.78	4.30	8.35	0.082	971	0.552	17.4	23.9	21.2	917	0.239
	63.5	3.18	2.86	5.82	0.057	673	0.406	12.8	24.6	15.1	652	0.244
HSS $51 \times 51$$\times 6.4$$\times 4.8$$\times 3.2$	50.8	6.35	5.72	8.05	0.079	947	0.305	12.0	18.0	15.5	536	
	50.8	4.78	4.30	6.45	0.063	752	0.262	10.3	18.7	12.8	445	0.188
	50.8	3.18	2.86	4.55	0.045	527	0.198	7.79	19.4	9.35	323	0.193
$\begin{gathered} \text { HSS } 38 \times 38 \\ \times 4.8 \end{gathered}$	38.1	4.78	4.30	4.54	0.045	534	0.0967	5.08	13.5	6.54	170	
	38.1	3.18	2.86	3.28	0.032	382	0.0768	4.03	14.2	4.95	129	0.143

HOLLOW STRUCTURAL SECTIONS
ASTM A500
Rectangular

DIMENSIONS

Section	Outside Dimensions		Wall Thickness		Mass	Dead Load	Area	Surface Area
	Depth	Width	Nominal	Design				
$\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$	mm	mm	mm	mm	kg/m	kN/m	mm^{2}	$\mathrm{m}^{2} / \mathrm{m}$
HSS 305x203								
$\times 16$	304.8	203.2	15.88	14.29	114	1.11	13200	0.967
x13	304.8	203.2	12.70	11.43	93.0	0.912	10800	0.977
$\times 9.5$	304.8	203.2	9.53	8.58	71.3	0.700	8230	0.987
$\times 7.9$	304.8	203.2	7.94	7.15	60.1	0.589	6930	0.991
$\times 6.4$	304.8	203.2	6.35	5.72	48.6	0.476	5600	0.996
HSS 305×152								
$\times 16$	304.8	152.4	15.88	14.29	101	0.991	11700	0.865
$\times 13$	304.8	152.4	12.70	11.43	82.8	0.813	9590	0.875
$\times 9.5$	304.8	152.4	9.53	8.58	63.7	0.625	7360	0.885
$\times 7.9$	304.8	152.4	7.94	7.15	53.7	0.527	6200	0.890
$\times 6.4$	304.8	152.4	6.35	5.72	43.5	0.427	5020	0.895
HSS 254×203								
$\times 16$	254.0	203.2	15.88	14.29	101	0.991	11700	0.865
$\times 13$	254.0	203.2	12.70	11.43	82.8	0.813	9590	0.875
x9.5	254.0	203.2	9.53	8.58	63.7	0.625	7360	0.885
$\times 7.9$	254.0	203.2	7.94	7.15	53.7	0.527	6200	0.890
$\times 6.4$	254.0	203.2	6.35	5.72	43.5	0.427	5020	0.895
$\text { HSS } 254 \times 152$								
	254.0	152.4	15.88	14.29	88.3	0.866	10300	0.764
$\times 13$	254.0	152.4	12.70	11.43	72.7	0.713	8430	0.774
$\times 9.5$	254.0	152.4	9.53	8.58	56.1	0.551	6490	0.783
$\times 7.9$	254.0	152.4	7.94	7.15	47.4	0.465	5480	0.788
$\times 6.4$	254.0	152.4	6.35	5.72	38.4	0.377	4430	0.793
$\times 4.8$	254.0	152.4	4.78	4.30	29.3	0.288	3370	0.798
HSS 203×152								
$\times 16$	203.2	152.4	15.88	14.29	75.6	0.742	8820	0.662
$\times 13$	203.2	152.4	12.70	11.43	62.6	0.614	7270	0.672
$\times 9.5$	203.2	152.4	9.53	8.58	48.5	0.476	5620	0.682
$\times 7,9$	203.2	152.4	7.94	7.15	41.1	0.403	4750	0.687
$\times 6.4$	203.2	152.4	6.35	5.72	33.4	0.327	3850	0.692
$\times 4.8$	203.2	152.4	4.78	4.30	25.5	0.250	2940	0.696
HSS 203x102								
$\times 13$	203.2	101.6	12.70	11.43	52.4	0.515	6110	0.570
$\times 9.5$	203.2	101.6	9.53	8.58	40.9	0.401	4750	0.580
$\times 7.9$	203.2	101.6	7.94	7.15	34.7	0.341	4020	0.585
$\times 6.4$	203.2	101.6	6.35	5.72	28.3	0.278	3270	0.590
x 4.8	203.2	101.6	4.78	4.30	21.7	0.213	2500	0.595
HSS 178×127								
$\times 13$	177.8	127.0	12.70	11.43	52.4	0.515	6110	0.570
$\times 9.5$	177.8	127.0	9.53	8.58	40.9	0.401	4750	0.580
$\times 7.9$	177.8	127.0	7.94	7.15	34.7	0.341	4020	0.585
$\times 6.4$	177.8	127.0	6.35	5.72	28.3	0.278	3270	0.590
x4.8	177.8	127.0	4.78	4.30	21.7	0.213	2500	0.595

HOLLOW STRUCTURAL SECTIONS
ASTM A500
Rectangular
PROPERTIES

Axis X -X				Axis Y-Y				Torsional Constant	Section
I_{x}	S_{x}	r_{x}	$\mathrm{Z}_{\text {x }}$	Iy	S_{y}	r_{y}	z_{y}	J	
$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{4}$	$\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$
161	1060	111	1310	85.4	841	80.5	989	184000	HSS ${ }_{\text {305 }} \times 16$
135	886	112	1090	72.0	709	81.8	821	152000	$\times 13$
106	697	114	843	56.9	560	83.1	638	118000	$\times 9.5$
90.6	594	114	714	48.6	478	83.8	542	100000	$\times 7.9$
74.1	486	115	581	39.9	392	84.4	441	81400	$\times 6.4$
130	856	105	1100	43.4	569	60.8	672	110000	HSS ${ }_{\times 16}^{305 \times 152}$
110	722	107	915	37.0	485	62.1	562	92000	$\times 13$ $\times 13$
87.1	572	109	714	29.6	388	63.4	440	72100	$\times 9.5$
74.5	489	110	606	25.4	333	64.0	375	61300	$\times 7.9$
61.1	401	110	494	21.0	275	64.6	306	50100	$\times 6.4$
103	809	93.6	994	72.4	713	78.6	852	140000	$\begin{gathered} \text { HSS } 254 \times 203 \\ \times 16 \end{gathered}$
86.7	682	95.1	827	61.3	603	79.9	709	117000	$\times 16$ $\times 13$
68.5	540	96.5	645	48.6	478	81.3	554	90700	$\times 9.5$
58.6	462	97.2	548	41.6	410	81.9	470	76900	$\times 7.9$
48.1	379	97.9	446	34.2	337	82.6	384	62600	$\times 6.4$
81.8	644	89.2	820	36.4	478	59.6	572	85100	$\begin{gathered} \text { HSS } 254 \times 152 \\ \times 16 \end{gathered}$
69.6	548	90.8	686	31.2	410	60.8	480	71400	$\times 13$
55.4	436	92.4	538	25.0	329	62.1	378	56100	$\times 9.5$
47.5	374	93.2	458	21.6	283	62.8	322	47700	$\times 7.9$
39.1	308	94.0	374	17.8	234	63.4	264	39000	$\times 6.4$
30.3	238	94.7	287	13.8	182	64.1	203	29900	$\times 4.8$
46.5	457	72.6	577	29.5	387	57.8	472	61100	$\text { HSS } \underset{y 16}{203 \times 152}$
39.9	393	74.1	486	25.4	334	59.1	398	51600	$\times 13$
32.1	316	75.6	384	20.5	270	60.5	315	40600	$\times 9.5$
27.7	272	76.3	328	17.7	233	61.1	269	34700	$\times 7.9$
22.9	225	77.1	269	14.7	193	61.8	221	28400	$\times 6.4$
17.8	175	77.8	207	11.4	150	62.4	170	21800	$\times 4.8$
29.2	288	69.2	375	9.63	190	39.7	228	24800	$\underset{\times 13}{\text { HSS } 203 \times 102}$
23.8	235	70.9	299	7.97	157	41.0	183	20000	-9.5
20.7	204	71.7	257	6.96	137	41.6	158	17200	x7.9
17.2	169	72.5	211	5.84	115	42.2	131	14200	$\times 6.4$
13.4	132	73.3	164	4.60	90.5	42.9	101	11000	$\times 4.8$
24.7	278	63.6	350	14.5	228	48.7	276	30800	$\text { HSS } \underset{\times 13}{178 \times 127}$
20.1	226	65.1	279	11.9	187	50.0	221	24600	x9.5
17.4	196	65.8	239	10.3	163	50.7	190	21100	x7.9
14.5	163	66.6	197	8.63	136	51.4	156	17300	$\times 6.4$
11.3	127	67.3	152	6.76	106	52.0	121	13400	$\times 4.8$

HOLLOW STRUCTURAL SECTIONS
ASTM A500
Rectangular

DIMENSIONS

Section	Outside Dimensions		Wall Thickness		Mass	Dead Load	Area	Surface Area
	Depth	Width	Nominal	Design				
mm \times mm \times mm	mm	mm	mm	mm	kg/m	kN/m	mm^{2}	$\mathrm{m}^{2} / \mathrm{m}$
HSS 152x102								
$\times 13$	152.4	101.6	12.70	11.43	42.3	0.415	4950	0.469
$\times 9.5$	152.4	101.6	9.53	8.58	33.3	0.327	3870	0.479
$\times 7.9$	152.4	101.6	7.94	7.15	28.4	0.279	3300	0.483
$\times 6.4$	152.4	101.6	6.35	5.72	23.2	0.228	2690	0.488
$\times 4.8$	152.4	101.6	4.78	4.30	17.9	0.175	2060	0.493
$\times 3.2$	152.4	101.6	3.18	2.86	12.2	0.119	1400	0.498
HSS 152x76								
$\times 13$	152.4	76.2	12.70	11.43	37.3	0.365	4370	0.418
$\times 9.5$	152.4	76.2	9,53	8.58	29.5	0.290	3440	0.428
$\times 7.9$	152.4	76.2	7.94	7.15	25.2	0.248	2930	0.433
$\times 6.4$	152.4	76.2	6.35	5.72	20.7	0.203	2400	0.438
$\times 4.8$	152.4	76.2	4.78	4.30	16.0	0.157	1840	0.442
$\times 3,2$	152.4	76.2	3.18	2.86	10.9	0.107	1250	0.447
HSS 127x76								
$\times 13$	127.0	76.2	12.70	11.43	32.2	0.316	3790	0.367
$\times 9.5$	127.0	76.2	9.53	8.58	25.7	0.252	3000	0.377
$\times 7.9$	127.0	76.2	7.94	7.15	22.1	0.217	2570	0.382
$\times 6.4$	127.0	76.2	6.35	5.72	18.2	0.178	2110	0.387
$\times 4.8$	127.0	76.2	4.78	4.30	14.1	0.138	1630	0.392
$\times 3.2$	127.0	76.2	3.18	2.86	9.62	0.094	1110	0.397
HSS 102x76								
$\times 9.5$	101.6	76.2	9.53	8.58	21.9	0.215	2570	0.326
x7.9	101.6	76.2	7.94	7.15	18.9	0.186	2210	0.331
$\times 6.4$	101.6	76.2	6.35	5.72	15.6	0.153	1820	0.336
$\times 4.8$	101.6	76.2	4.78	4.30	12.2	0.119	1410	0.341
$\times 3.2$	101.6	76.2	3.18	2.86	8.35	0.082	963	0.346
$\begin{array}{r} \times 9.5 \\ \times 7.9 \end{array}$	101.6 101.6	50.8 50.8	9.53 7.94	8.58 7.15	18.1 15.7	0.178 0.154	2130	0.275
$\times 6.4$	101.6	50.8	6.35	5.72	13.1	0.154	1840	0.280
$\times 4.8$	101.6	50.8	4.78	4.30	10.3	0.101	1190	0.290
$\times 3.2$	101.6	50.8	3.18	2.86	7.09	0.070	818	0.295
$\times 6.4$			6.35	5.72	13.1	0.129	1530	0.285
$\times 4.8$	88.9	63.5	4.78	4.30	10.3	0.101	1190	0.290
HSS 76×51								
$\times 7.9$ $\times 6.4$	76.2 76.2	50.8 50.8	7.94 6.35	7.15 5.72	12.6 10.6	0.123 0.104	1480 1240	0.229 0.234
$\times 4.8$	76.2	50.8	4.78	4.30	8.35	0.082	971	0.239
$\times 3.2$	76.2	50.8	3.18	2.86	5.82	0.057	673	0.244

HOLLOW STRUCTURAL SECTIONS
ASTM A500
Rectangular

PROPERTIES

Axis X-X				Axis $\mathrm{Y}-\mathrm{Y}$				Torsional Constant	Section
I_{x}	S_{x}	r_{x}	$\mathrm{Z}^{\text {x }}$	Iy	S_{y}	r_{y}	Z_{y}	J	
$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}{ }^{4}$	$\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$
13.9	182	52.9	235	7.26	143	38.3	176	16400	$\text { HSS } 152 \times 102$
11.5	151	54.5	190	6.08	120	39.6	143	13300	$\times 9.5$
10.1	132	55.3	164	5.34	105	40.3	124	11500	$\times 7.9$
8.45	111	56.0	136	4.50	88.6	40.9	103	9530	$\times 6.4$
6.65	87.3	56.8	106	3.56	70.1	41.6	80.0	7410	$\times 4.8$
4.63	60.8	57.5	72.6	2.49	49.1	42.2	55.1	5090	$\times 3.2$
11.0	144								HSS ${ }_{\text {152x }} 13$
9.25	121	50.1	194	3.55 3.05	93.2 80.0	28.5	117	9430	
8.15	107	52.7	137	2.71	71.2	30.4	84.1	6880	$\times 7.9$
6.89	90.4	53.6	114	2.31	60.7	31.0	70.3	5760	$\times 6.4$
5.45	71.6	54.4	89.4	1.85	48.6	31.7	55.2	4520	$\times 4.8$
3.82	50.1	55.2	61.8	1.31	34.4	32.3	38.3	3130	x3.2
6.72	106	42.1	142	2.93	77.0	27.8	98.2	7220	$\text { HSS } 127 \times 76$ $\times 13$
5.76	90.7	43.8	117	2.55	66.9	29.1	81.7	6070	x9.5
5.12	80.6	44.6	103	2.28	59.8	29.8	71.6	5320	x7.9
4.35	68.5	45.4	85.8	1.95	51.2	30.4	60.1	4470	$\times 6.4$
3.47	54.6	46.2	67.4	1.57	41.2	31.1	47.3	3510	$\times 4.8$
2.45	38.5	47.0	46.8	1.11	29.3	31.7	33.0	2440	$\times 3.2$
									HSS 102×76
3.24	63.8	35.5	82.1	2.05	53.7	28.2	67.0	4340	x9.5
2.91	57.2	36.3	72.2	1.84	48.4	28.9	59.0	3820	$\times 7.9$
2.50	49.1	37.0	60.8	1.59	41.7	29.6	49.8	3220	$\times 6.4$
2.01	39.6	37.8	48.1	1.29	33.7	30.2	39.5	2550	$\times 4.8$
1.43	28.1	38.5	33.6	0.919	24.1	30.9	27.6	1770	+3.2
2.29	45.2	32.8	61.8	0.736	29.0	18.6	37.1	1980	$\text { HSS } 102 \times 51$
2.09	41.2	33.7	55.0	0.681	26.8	19.2	33.3	1800	$\times 7.5$ $\times 7.9$
1.83	36.0	34.6	46.9	0.602	23.7	19.9	28.6	1550	$\times 6.4$
1.49	29.4	35.4	37.5	0.499	19.6	20.5	23.0	1250	$\times 4.8$
1.08	21.2	36.3	26.4	0.365	14.4	21.1	16.3	890	$\times 3.2$
1.54	34.7	31.8	43.7	0.907	28.6	24.4	34.5		HSS ${ }^{89 \times 64}$
1.26	28.3	32.5	34.9	0.744	23.4	24.4 25.0	27.6	1540	x6.4 $\times 4.8$
0.974	25.6	25.7	33.9	0.506	19.9	18.5	25.4	1170	$\text { HSS } 76 \times 51$
0.867	22.8	26.5	29.4	0.454	17.9	19.1	22.0	1030	$\times 6.4$
0.721	18.9	27.2	23.8	0.380	15.0	19.8	17.9	834	$\times 4.8$
0.528	13.9	28.0	17.0	0.281	11.1	20.5	12.8	596	$\times 3.2$

HOLLOW STRUCTURAL SECTIONS
ASTM A500
Rectangular

DIMENSIONS

HOLLOW STRUCTURAL SECTIONS ASTM A500
Rectangular

PROPERTIES

HOLLOW STRUCTURAL SECTIONS
ASTM A500
Round

PROPERTIES AND DIMENSIONS

Section	Outside Dimension	Wall Thickness		Mass	Dead Load	Area	1	S	r	2	Torsional Constant	Surface Area
		Nominal	Design								J	
mm \times mm $\times \mathrm{mm}$	mm	mm	mm	kg/m	kN/m	mm^{2}	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{4}$	$\mathrm{m}^{2} / \mathrm{m}$
$\begin{gathered} \text { HSS } 508 \\ \times 13^{*} \\ \times 9.5^{*} \\ \times 6.4^{*} \end{gathered}$												
	508.0	12,70	11.43	155	1.52	17800	550	2160	176	2820	1100000	1.60
	508.0	9.53	8.58	117	1.15	13500	420	1650	177	2140	840000	1.60
	508.0	6.35	5.72	78.6	0.771	9030	285	1120	178	1440	569000	1.60
$\begin{gathered} \text { HSS } 457 \\ \times 13^{*} \\ \times 9.5^{*} \\ \times 6.4^{*} \end{gathered}$												
	457.2	12,70	11.43	139	1.37	16000	398	1740	158	2270	796000	1.44
	457,2	9.53	8.58	105	1.03	12100	304	1330	159	1730	609000	1.44
	457.2	6.35	5.72	70.6	0.693	8110	207	904	160	1170	413000	1.44
$\text { HSS } 406$	406.4	15.88	14.29	153	1.50	17600	339	1670	139	2200	678000	1.28
$\times 13$	406.4	12.70	11.43	123	1.21	14200	277	1360	140	1780	554000	1.28
$\times 9.5$	406.4	9.53	8.58	93.3	0.915	10700	212	1040	141	1360	424000	1.28
$\times 6.4$	406.4	6.35	5.72	62.6	0.615	7200	145	711	142	918	289000	1.28
HSS 356												
$\times 13$	355.6	12.70	11.43	107	1.05	12400	183	1030	122	1350	366000	1.12
x9.5	355.6	9.53	8.58	81.3	0.798	9350	141	792	123	1030	282000	1.12
$\times 6.4$	355.6	6.35	5.72	54.7	0.537	6290	96.2	541	124	700	192000	1.12
HSS 324												
$\times 13$	323.9	12.70	11.43	97.5	0.956	11200	137	847	111	1120	274000	1.02
$\times 9.5$	323.9	9.53	8.58	73.9	0.725	8500	108	653	112	853	211000	1.02
$\times 6,4$	323.9	6.35	5.72	49.7	0.488	5720	72.4	447	113	579	145000	1.02
HSS 273												
$\times 13$	273.1	12.70	11.43	81.6	0.800	9400	80.6	590	92.6	783	161000	0.858
$\times 9.5$	273.1	9.53	8.58	61.9	0.608	7130	62.4	457	93.6	601	125000	0.858
$\times 7.9$	273.1	7.94	7.15	51.9	0.509	5970	52.9	387	94.1	506	106000	0.858
$\times 6.4$	273.1	6.35	5.72	41.8	0.410	4800	43.0	315	94.6	409	85900	0.858
$\times 4.8$	273.1	4.78	4.30	31.6	0.310	3630	32.8	240	95.0	311	65600	0.858
HSS 245												
$\times 9.5$	244.5	9.53	8.58	55.2	0.542	6360	44.3	362	83.5	478	88600	0.768
$\times 6.4$	244.5	6.35	5.72	37.3	0.366	4290	30.6	250	84.4	326	61200	0.768
HSS 219												
$\times 13$	219.1	12.70	11.43	64.6	0.634	7460	40.3	368	73.5	493	80600	0.688
$\times 9.5$	219.1	9.53	8.58	49.3	0.483	5670	31.5	287	74.5	380	63000	0.688
$\times 6.4$	219.1	6.35	5.72	33.3	0.327	3830	21.8	199	75.5	260	43700	0.688
$\times 4.8$	219.1	4.78	4.30	25.3	0.248	2900	16.7	153	76.0	198	33500	0.688
$\begin{gathered} \text { HSS } 178 \\ \times 13 \\ \times 9.5 \end{gathered}$	177.8	12.70	11.43	51.7	0.507	5970	20.8	234	59.0	317	41500	0.559
	177.8	9.53	8.58	39.5	0.388	4560	16.4	184	59,9	246	32700	0.559

[^58]HOLLOW STRUCTURAL SECTIONS
ASTM A500
Round

PROPERTIES AND DIMENSIONS

Section	Outside Dimension	Wall Thickness		Mass	Dead Load	Area	1	S	r	Z	Torsional Constant	Surface Area
		Nominal	Design								J	
$\mathrm{mm} \times \mathrm{mm} \times \mathrm{mm}$	mm	mm	mm	kg/m	kN/m	mm^{2}	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{4}$	$\mathrm{m}^{2} / \mathrm{m}$
HSS 168												
$\times 13$	168.3	12.70	11.43	48.7	0.478	5630	17.4	207	55.6	282	34800	0.529
$\times 9.5$	168.3	9.53	8.58	37.3	0.366	4310	13.8	164	56.6	219	27500	0.529
x6.4	168.3	6.35	5.72	25.4	0.249	2920	9.66	115	57.5	151	19300	0.529
$\times 4.8$	168.3	4.78	4.30	19.3	0.189	2220	7.45	88.6	58.0	116	14900	0.529
$\text { HSS } 141$												
$\mathrm{x} 13$	141.3	12.70	11.43	40.3	0.395	4660	9.91	140	46.1	193	19800	0.444
$\times 9.5$	141.3	9.53	8.58	31.0	0.304	3580	7.91	112	47.0	151	15800	0.444
$\times 6.4$	141.3	6.35	5.72	21.1	0.207	2440	5.61	79.4	48.0	105	11200	0.444
HSS 127												
$\times 9.5$	127.0	9.53	8.58	27.6	0.271	3190	5.62	88.6	42.0	121	11200	0.399
$\times 6.4$	127.0	6.35	5.72	18.9	0.185	2180	4.02	63.2	42.9	84.2	8030	0.399
HSS 89												
$\times 6.4$	88.9	6.35	5.72	12.9	0.127	1490	1.30	29.2	29.5	39.6	2600	0.279
$\times 4.8$	88.9	4.78	4.30	9.92	0.097	1140	1.03	23.1	29.9	30.8	2050	0.279
$\times 3.2$	88.9	3.18	2.86	6.72	0.066	773	0.716	16.1	30.4	21.2	1430	0.279
HSS 76												
$\times 6.4$	76.2	6.35	5.72	10.9	0.107	1270	0.792	20.8	25.0	28.5	1580	0.239
$\times 4.8$	76.2	4.78	4.30	8.42	0.083	971	0.630	16.5	25.5	22.3	1260	0.239
x3.2	76.2	3.18	2.86	5.73	0.056	659	0.444	11.6	25.9	15.4	887	0.239
HSS 73												
$\times 6.4$	73.0	6.35	5.72	10.4	0.102	1210	0.689	18.9	23.9	26.0	1380	0.229
$\times 4.8$	73.0	4.78	4.30	8.04	0.079	928	0.550	15.1	24.3	20.3	1100	0.229
$\times 3.2$	73.0	3.18	2.86	5.48	0.054	630	0.388	10.6	24.8	14.1	776	0.229
HSS 64												
$\times 6.4$	63.5	6.35	5.72	8.95	0.088	1040	0.438	13.8	20.5	19.2	875	0.199
$\times 4.8$	63.5	4.78	4.30	6.92	0.068	800	0.352	11.1	21.0	15.1	704	0.199
$\times 3.2$	63.5	3.18	2.86	4.73	0.046	545	0.251	7.91	21.5	10.5	502	0.199
HSS 60												
$\times 6.4$	60.3	6.35	5.72	8.45	0.083	981	0.369	12.2	19.4	17.1	738	0.189
$\times 4.8$	60.3	4.78	4.30	6.54	0.064	756	0.298	9.89	19.9	13.5	597	0.189
$\times 3.2$	60.3	3.18	2.86	4.48	0.044	516	0.213	7.08	20.3	9.44	427	0.189
HSS 48												
$\times 4.8$	48.3	4.78	4.30	5.13	0.050	594	0.145	6.01	15.6	8.35	290	0.152
$\times 3.2$	48.3	3.18	2.86	3.54	0.035	408	0.106	4.38	16.1	5.91	212	0.152
$\begin{array}{r} \text { HSS } 42 \\ \times 3.2 \end{array}$	42.2	3.18	2.86	3.06	0.030	353	0.069	3.26	13.9	4.43	137	0.133

NOTES

PIPE

General

Tables of properties and dimensions for steel pipe provided on the following pages are based on ASTM A53 "Standard Specification for Pipe, Steel, Black and Hot-Dipped, ZincCoated, Welded and Seamless". Although not a normal structural quality steel, pipe produced in accordance with the ASTM A53 Standard is available in two grades with the following mechanical properties:

Grade A: $F_{y}=205 \mathrm{MPa}, F_{u}=330 \mathrm{MPa}$
Grade B: $F_{y}=240 \mathrm{MPa}, F_{u}=415 \mathrm{MPa}$
and in three types:
F: Furnace-butt-welded, continuous welded Grade A
E: Electric-resistance-welded, Grades A and B
S: Seamless, Grades A and B

Ordering Information

When ordering pipe according to ASTM A53, the size may be specified using either the NPS (nominal pipe size) designator or DN (diameter nominal) designator. The wall thickness of pipe is expressed in terms of "standard wall" (STD), "extra strong" (XS), "double extra strong" (XXS), and in terms of "schedule numbers" (Sch). STD is the same as Sch 40 for all sizes up to and including 273.0 mm outside diameter; XS is the same as Sch 80 for all sizes up to and including 219.1 mm outside diameter; and XXS is the next heavier pipe to the Sch 160 pipe for all sizes up to and including 168.3 mm outside diameter. See ASTM A53 for further information.

Tolerances and Section Properties

Permissible tolerances for pipe are $\pm 1 \%$ on the outside diameter and $\pm 10 \%$ on the mass. The under-tolerance on the wall thickness is 12.5%.

Tabulated section properties (Area, I, S, r, Z and J) are based on a design wall thickness taken equal to 90% of the nominal thickness.

PROPERTIES AND DIMENSIONS

DN Designator	NPS Designator	Weight Class ${ }^{*}$	Mass	Dead Load	Outside Diameter	Nominal Wall Thickness	Design Wall Thickness
			kg / m	kN/m	mm	mm	mm
300	12	$\begin{gathered} \text { XXS } \\ \text { XS } \\ \text { STD } \end{gathered}$	187 97.4 73.8	$\begin{aligned} & 1.83 \\ & 0.956 \\ & 0.724 \end{aligned}$	$\begin{aligned} & 323.8 \\ & 323.8 \\ & 323.8 \end{aligned}$	$\begin{array}{r} 25.40 \\ 12.70 \\ 9,52 \end{array}$	$\begin{array}{r} 22.86 \\ 11.43 \\ 8.57 \end{array}$
250	10	$\begin{aligned} & \text { XXS } \\ & \text { XS } \\ & \text { STD } \end{aligned}$	155 81.5 60.3	$\begin{aligned} & 1.52 \\ & 0.800 \\ & 0.591 \end{aligned}$	$\begin{aligned} & 273.0 \\ & 273.0 \\ & 273.0 \end{aligned}$	$\begin{array}{r} 25.40 \\ 12.70 \\ 9.27 \end{array}$	$\begin{array}{r} 22.86 \\ 11.43 \\ 8.34 \end{array}$
200	8	$\begin{aligned} & \text { XXS } \\ & \text { XS } \\ & \text { STD } \end{aligned}$	108 64.6 42.6	$\begin{aligned} & 1.06 \\ & 0.634 \\ & 0.417 \end{aligned}$	$\begin{aligned} & 219.1 \\ & 219.1 \\ & 219.1 \end{aligned}$	$\begin{array}{r} 22.22 \\ 12.70 \\ 8.18 \end{array}$	$\begin{array}{r} 20.00 \\ 11.43 \\ 7.36 \end{array}$
150	6	$\begin{gathered} \text { XXS } \\ \text { XS } \\ \text { STD } \end{gathered}$	$\begin{aligned} & 79.2 \\ & 42.6 \\ & 28.3 \end{aligned}$	$\begin{aligned} & 0.777 \\ & 0.418 \\ & 0.277 \end{aligned}$	$\begin{aligned} & 168.3 \\ & 168.3 \\ & 168.3 \end{aligned}$	$\begin{array}{r} 21.95 \\ 10.97 \\ 7.11 \end{array}$	$\begin{array}{r} 19.76 \\ 9.87 \\ 6.40 \end{array}$
125	5	$\begin{gathered} \text { XXS } \\ \text { XS } \\ \text { STD } \end{gathered}$	$\begin{aligned} & 57.4 \\ & 30.9 \\ & 21.8 \end{aligned}$	$\begin{aligned} & 0.563 \\ & 0.304 \\ & 0.214 \end{aligned}$	$\begin{aligned} & 141.3 \\ & 141.3 \\ & 141.3 \end{aligned}$	$\begin{array}{r} 19.05 \\ 9.52 \\ 6.55 \end{array}$	$\begin{array}{r} 17.15 \\ 8.57 \\ 5.90 \end{array}$
100	4	$\begin{aligned} & \text { XXS } \\ & \text { XS } \\ & \text { STD } \end{aligned}$	$\begin{aligned} & 41.0 \\ & 22.3 \\ & 16.1 \end{aligned}$	$\begin{aligned} & 0.403 \\ & 0.219 \\ & 0.158 \end{aligned}$	$\begin{aligned} & 114.3 \\ & 114.3 \\ & 114.3 \end{aligned}$	$\begin{array}{r} 17.12 \\ 8.56 \\ 6.02 \end{array}$	$\begin{array}{r} 15.41 \\ 7.70 \\ 5.42 \end{array}$
90	$31 / 2$	$\begin{aligned} & \text { XS } \\ & \text { STD } \end{aligned}$	$\begin{aligned} & 18.6 \\ & 13.6 \end{aligned}$	$\begin{aligned} & 0.183 \\ & 0.133 \end{aligned}$	$\begin{aligned} & 101,6 \\ & 101.6 \end{aligned}$	$\begin{aligned} & 8.08 \\ & 5.74 \end{aligned}$	$\begin{aligned} & 7.27 \\ & 5.17 \end{aligned}$
80	3	$\begin{aligned} & \text { XXS } \\ & \text { XS } \\ & \text { STD } \end{aligned}$	$\begin{aligned} & 27.7 \\ & 15,3 \\ & 11.3 \end{aligned}$	$\begin{aligned} & 0.272 \\ & 0.150 \\ & 0.111 \end{aligned}$	$\begin{aligned} & 88.9 \\ & 88.9 \\ & 88.9 \end{aligned}$	$\begin{array}{r} 15.24 \\ 7.62 \\ 5.49 \end{array}$	$\begin{array}{r} 13.72 \\ 6.86 \\ 4.94 \end{array}$
65	21/2	$\begin{aligned} & \text { XXS } \\ & \text { XS } \\ & \text { STD } \end{aligned}$	$\begin{gathered} 20.4 \\ 11.4 \\ 8.63 \end{gathered}$	0.200 0.112 0.0847	$\begin{aligned} & 73.0 \\ & 73,0 \\ & 73.0 \end{aligned}$	$\begin{array}{r} 14.02 \\ 7.01 \\ 5.16 \end{array}$	$\begin{array}{r} 12.62 \\ 6.31 \\ 4.64 \end{array}$
50	2	$\begin{aligned} & \text { XXS } \\ & \text { XS } \\ & \text { STD } \end{aligned}$	13.4 7.48 5,44	0.132 0.0734 0.0534	$\begin{aligned} & 60.3 \\ & 60.3 \\ & 60.3 \end{aligned}$	$\begin{array}{r} 11.07 \\ 5.54 \\ 3.91 \end{array}$	$\begin{aligned} & 9.96 \\ & 4.99 \\ & 3.52 \end{aligned}$
40	11/2	$\begin{gathered} \text { XXS } \\ \text { XS } \\ \text { STD } \end{gathered}$	$\begin{aligned} & 9.56 \\ & 5.41 \\ & 4.05 \end{aligned}$	0.0938 0.0531 0.0397	$\begin{aligned} & 48.3 \\ & 48.3 \\ & 48.3 \end{aligned}$	$\begin{array}{r} 10.16 \\ 5.08 \\ 3.68 \end{array}$	$\begin{aligned} & 9.14 \\ & 4.57 \\ & 3.31 \end{aligned}$
32	11/4	$\begin{aligned} & \text { XXS } \\ & \text { XS } \\ & \text { STD } \end{aligned}$	$\begin{aligned} & 7.77 \\ & 4.47 \\ & 3.39 \end{aligned}$	0.0762 0.0439 0.0333	$\begin{aligned} & 42.2 \\ & 42.2 \\ & 42.2 \end{aligned}$	$\begin{aligned} & 9.70 \\ & 4.85 \\ & 3.56 \end{aligned}$	$\begin{aligned} & 8.73 \\ & 4.37 \\ & 3.20 \end{aligned}$
25	1	$\begin{aligned} & \text { XXS } \\ & \text { XS } \\ & \text { STD } \end{aligned}$	$\begin{aligned} & 5.45 \\ & 3.24 \\ & 2.50 \end{aligned}$	0.0535 0.0318 0.0245	$\begin{aligned} & 33.4 \\ & 33.4 \\ & 33.4 \end{aligned}$	$\begin{aligned} & 9.09 \\ & 4.55 \\ & 3.38 \end{aligned}$	8.18 4.10 3.04
20	$3 / 4$	$\begin{gathered} \text { XXS } \\ \text { XS } \\ \text { STD } \end{gathered}$	$\begin{aligned} & 3.64 \\ & 2.20 \\ & 1.69 \end{aligned}$	0.0357 0.0216 0.0166	$\begin{aligned} & 26.7 \\ & 26.7 \\ & 26.7 \end{aligned}$	$\begin{aligned} & 7.82 \\ & 3.91 \\ & 2.87 \end{aligned}$	$\begin{aligned} & 7.04 \\ & 3.52 \\ & 2.58 \end{aligned}$
15	1/2	$\begin{aligned} & \text { XXS } \\ & \text { XS } \\ & \text { STD } \end{aligned}$	$\begin{aligned} & 2.55 \\ & 1.62 \\ & 1.27 \end{aligned}$	0.0250 0.0159 0.0125	$\begin{aligned} & 21.3 \\ & 21.3 \\ & 21.3 \end{aligned}$	$\begin{aligned} & 7.47 \\ & 3.73 \\ & 2.77 \end{aligned}$	$\begin{aligned} & 6.72 \\ & 3.36 \\ & 2.49 \end{aligned}$

[^59]| Area | 1 | S | r | z | J | Surface Area |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm^{2} | $10^{8} \mathrm{~mm}^{4}$ | $10^{3} \mathrm{~mm}^{3}$ | mm | $10^{3} \mathrm{~mm}^{3}$ | $10^{3} \mathrm{~mm}^{4}$ | $\mathrm{m}^{2} / \mathrm{m}$ |
| $\begin{array}{r} 21600 \\ 11200 \\ 8490 \end{array}$ | $\begin{aligned} & 246 \\ & 137 \\ & 105 \end{aligned}$ | $\begin{array}{r} 1520 \\ 846 \\ 652 \end{array}$ | $\begin{aligned} & 107 \\ & 111 \\ & 111 \end{aligned}$ | $\begin{array}{r} 2070 \\ 1120 \\ 852 \end{array}$ | $\begin{aligned} & 492000 \\ & 274000 \\ & 211000 \end{aligned}$ | $\begin{aligned} & 1.02 \\ & 1.02 \\ & 1.02 \end{aligned}$ |
| 18000 9390
 6930 | 142 80.5 60.8 | $\begin{array}{r} 1040 \\ 590 \\ 445 \end{array}$ | $\begin{aligned} & 88.8 \\ & 92.6 \\ & 93.6 \end{aligned}$ | $\begin{array}{r} 1430 \\ 783 \\ 584 \end{array}$ | 283000 161000 122000 | |
| 12500 7460 4900 | $\begin{aligned} & 62.6 \\ & 40.3 \\ & 27.5 \end{aligned}$ | $\begin{aligned} & 572 \\ & 368 \\ & 251 \end{aligned}$ | $\begin{aligned} & 70.7 \\ & 73.5 \\ & 74.9 \end{aligned}$ | $\begin{aligned} & 795 \\ & 493 \\ & 330 \end{aligned}$ | 125000 80600 54900 | $\begin{aligned} & 0.688 \\ & 0.688 \\ & 0.688 \end{aligned}$ |
| $\begin{aligned} & 9220 \\ & 4910 \\ & 3260 \end{aligned}$ | $\begin{aligned} & 25.9 \\ & 15.5 \\ & 10.7 \end{aligned}$ | $\begin{aligned} & 308 \\ & 184 \\ & 127 \end{aligned}$ | $\begin{aligned} & 53.0 \\ & 56.1 \\ & 57.3 \end{aligned}$ | $\begin{aligned} & 439 \\ & 248 \\ & 168 \end{aligned}$ | 51800 30900
 21400 | $\begin{aligned} & 0.529 \\ & 0.529 \\ & 0.529 \end{aligned}$ |
| $\begin{aligned} & 6690 \\ & 3570 \\ & 2510 \end{aligned}$ | $\begin{gathered} 13.1 \\ 7.90 \\ 5.76 \end{gathered}$ | $\begin{gathered} 186 \\ 112 \\ 81.6 \end{gathered}$ | $\begin{aligned} & 44.3 \\ & 47.0 \\ & 47.9 \end{aligned}$ | $\begin{aligned} & 266 \\ & 151 \\ & 108 \end{aligned}$ | 26300 15800 11500 | 0.444
 0.444
 0.444 |
| $\begin{aligned} & 4790 \\ & 2580 \\ & 1850 \end{aligned}$ | $\begin{aligned} & 5.99 \\ & 3.68 \\ & 2.75 \end{aligned}$ | 105
 64.4
 48.2 | $\begin{aligned} & 35.4 \\ & 37.8 \\ & 38.5 \end{aligned}$ | 152
 87.7
 64.3 | $\begin{array}{r} 12000 \\ 7360 \\ 5510 \end{array}$ | $\begin{aligned} & 0.359 \\ & 0.359 \\ & 0.359 \end{aligned}$ |
| $\begin{aligned} & 2150 \\ & 1570 \end{aligned}$ | $\begin{aligned} & 2.41 \\ & 1.83 \end{aligned}$ | 47.5 35.9 | $\begin{aligned} & 33.4 \\ & 34.1 \end{aligned}$ | $\begin{aligned} & 64.8 \\ & 48.1 \end{aligned}$ | $\begin{aligned} & 4820 \\ & 3650 \end{aligned}$ | $\begin{aligned} & 0.319 \\ & 0.319 \end{aligned}$ |
| $\begin{aligned} & 3240 \\ & 1770 \\ & 1300 \end{aligned}$ | $\begin{aligned} & 2.37 \\ & 1.50 \\ & 1.15 \end{aligned}$ | $\begin{aligned} & 53.2 \\ & 33.7 \\ & 25.9 \end{aligned}$ | $\begin{aligned} & 27.0 \\ & 29.1 \\ & 29.7 \end{aligned}$ | $\begin{aligned} & 78.4 \\ & 46.3 \\ & 34.9 \end{aligned}$ | $\begin{aligned} & 4730 \\ & 3000 \\ & 2300 \end{aligned}$ | $\begin{aligned} & 0.279 \\ & 0.279 \\ & 0.279 \end{aligned}$ |
| $\begin{array}{r} 2390 \\ 1320 \\ 996 \end{array}$ | 1.14
 0.742
 0.585 | $\begin{aligned} & 31.2 \\ & 20.3 \\ & 16.0 \end{aligned}$ | $\begin{aligned} & 21.8 \\ & 23.7 \\ & 24.2 \end{aligned}$ | 46.7
 28.1
 21.7 | $\begin{aligned} & 2280 \\ & 1480 \\ & 1170 \end{aligned}$ | $\begin{aligned} & 0.229 \\ & 0.229 \\ & 0.229 \end{aligned}$ |
| $\begin{array}{r} 1580 \\ 867 \\ 628 \end{array}$ | $\begin{aligned} & 0.518 \\ & 0.334 \\ & 0.254 \end{aligned}$ | $\begin{gathered} 17.2 \\ 11.1 \\ 8.42 \end{gathered}$ | $\begin{aligned} & 18.1 \\ & 19.6 \\ & 20.1 \end{aligned}$ | $\begin{aligned} & 25.6 \\ & 15.3 \\ & 11.4 \end{aligned}$ | $\begin{array}{r} 1040 \\ 669 \\ 508 \end{array}$ | $\begin{aligned} & 0.189 \\ & 0.189 \\ & 0.189 \end{aligned}$ |
| $\begin{array}{r} 1120 \\ 628 \\ 468 \end{array}$ | $\begin{aligned} & 0.227 \\ & 0.152 \\ & 0.119 \end{aligned}$ | $\begin{aligned} & 9.41 \\ & 6.28 \\ & 4.93 \end{aligned}$ | $\begin{aligned} & 14.2 \\ & 15.5 \\ & 15.9 \end{aligned}$ | 14.3
 8.77
 6.71 | $\begin{aligned} & 455 \\ & 303 \\ & 238 \end{aligned}$ | $\begin{aligned} & 0.152 \\ & 0.152 \\ & 0.152 \end{aligned}$ |
| $\begin{aligned} & 918 \\ & 519 \\ & 392 \end{aligned}$ | $\begin{aligned} & 0.137 \\ & 0.0941 \\ & 0.0750 \end{aligned}$ | $\begin{aligned} & 6.51 \\ & 4.46 \\ & 3.56 \end{aligned}$ | $\begin{aligned} & 12.2 \\ & 13.5 \\ & 13.8 \end{aligned}$ | $\begin{gathered} 10.0 \\ 6.28 \\ 4.88 \end{gathered}$ | $\begin{aligned} & 275 \\ & 188 \\ & 150 \end{aligned}$ | $\begin{aligned} & 0.133 \\ & 0.133 \\ & 0.133 \end{aligned}$ |
| $\begin{aligned} & 648 \\ & 377 \\ & 290 \end{aligned}$ | 0.0569 0.0413 0.0337 | $\begin{aligned} & 3.41 \\ & 2.47 \\ & 2.02 \end{aligned}$ | $\begin{gathered} 9,37 \\ 10.5 \\ 10.8 \end{gathered}$ | $\begin{aligned} & 5.39 \\ & 3.54 \\ & 2.81 \end{aligned}$ | 114 82.6 67.5 | $\begin{aligned} & 0.105 \\ & 0.105 \\ & 0.105 \end{aligned}$ |
| $\begin{aligned} & 435 \\ & 256 \\ & 196 \end{aligned}$ | | $\begin{aligned} & 1.78 \\ & 1.32 \\ & 1.08 \end{aligned}$ | $\begin{aligned} & 7.38 \\ & 8.29 \\ & 8.58 \end{aligned}$ | $\begin{aligned} & 2.84 \\ & 1.91 \\ & 1.51 \end{aligned}$ | 47.4
 35.2
 28.8 | $\begin{aligned} & 0.0839 \\ & 0.0839 \\ & 0.0839 \end{aligned}$ |
| $\begin{aligned} & 308 \\ & 189 \\ & 147 \end{aligned}$ | | $\begin{aligned} & 0.931 \\ & 0.740 \\ & 0.622 \end{aligned}$ | $\begin{aligned} & 5.68 \\ & 6.45 \\ & 6.71 \end{aligned}$ | $\begin{aligned} & 1.53 \\ & 1.09 \\ & 0.886 \end{aligned}$ | $\begin{aligned} & 19.8 \\ & 15.8 \\ & 13.2 \end{aligned}$ | 0.0669
 0.0669
 0.0669 |

Note: Section properties are based on a design wall thickness taken equal to 90% of the nominal thickness.

NOTES

BUILT-UP SECTIONS

Built-up sections may be fabricated from plates and shapes in various configurations to produce efficient and economical structural sections. Generally, the components are joined by welding, although bolting may also be used for some combinations. Frequently used built-up sections include double angles back-to-back, double channels back-to-back or toe-to-toe, and a channel or C shape in combination with a W shape.

Tables of properties and dimensions on the following pages include: equal-leg angles, unequal-leg angles with long legs back-to-back and with short legs back-to-back, double channels, and built-up shapes consisting of W shapes and channels (C shapes). For information on β_{x}, the monosymmetry constant (or asymmetry parameter) for singly-symmetric beams, see CSA S16-14 Clause 13.6(e).

Many other combinations of built-up members are possible. The information on built-up sections concludes with diagrams and formulas for computing the properties of some possible combinations.

TWO ANGLES EQUAL LEGS
Back-to-Back

PROPERTIES OF SECTIONS

Designation	Mass of 2 Angles kg / m	Dead Load kN / m	Area of 2 Angles	Axis X -X				Radil of Gyration about Axis Y Y-Y					
				1	S	r	y	Back-to-back spacing, s, millimetres					
				$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	mm	0	8	10	12	16	20
L254x 254													
x32	238	2.33	30200	181	1010	77.3	75.2	108	111	111	112	114	115
$\times 29$	216	2.11	27400	166	921	77.7	74.0	107	110	111	112	113	114
$\times 25$	192	1.89	24600	150	827	78.2	72.9	107	110	110	111	112	114
$\times 22$	169	1.66	21600	133	731	78.6	71.7	106	109	110	111	112	113
$\times 19$	146	1.44	18600	117	636	79.1	70.6	106	109	109	110	111	113
$\begin{array}{r} \times 29 \\ \times 25 \end{array}$	169	1.66	21600	81.4	574	61.4	61.2	86.7	89.6	90.3	91.0	92.5	94.0
$\times 25$	152	1.49	19400	73.8	517	61.8	60.1	86.2	89.0	89.7	90.5	91.9	93.4
$\times 22$	134	1.31	17000	66.0	458	62.2	58.9	85.7	88,5	89.2	89.9	91,4	92.8
$\times 19$	116	1.13	14700	57.7	398	62.7	57.8	85.2	88.0	88.7	89.4	90.8	92.3
$\times 16$	97.4	0.955	12400	49.4	337	63.1	56.6	84.8	87.5	88.2	88.9	90.3	91.8
$\times 14$	88.0	0.862	11200	44.9	306	63.3	56.0	84.6	87.3	88.0	88.7	90.1	91.5
$\times 13$	78.6	0.769	10000	40.4	274	63.6	55.5	84.4	87.0	87.7	88.4	89.8	91.2
L152×152													
$\times 25$ $\times 22$	98.6	0.963	12600	26.3	249	45.9	46.1	65.6 65.0	67.9	68.7	69.4	71.5 70.9	72.5
$\times 19$	85.4	0.834	10900	23.2	217	46.3	45.0	64.5	67.4	68.1	68.8	70.3	71.9
$\times 16$	72.0	0.705	9180	20.0	185	46.7	43.9	64.1	66.9	67.6	68.3	69.8	71,3
$\times 14$	65.2	0.638	8300	18.2	168	46.9	43.3	63.8	66.6	67.3	68.0	69.5	71.0
$\times 13$	58.4	0.570	7420	16.4	150	47.1	42.7	63.6	66.3	67.1	67.8	69.2	70.7
$\times 11$	51.2	0.501	6540	14.6	133	47.4	42.1	63.4	66.1	66.8	67.5	69.0	70.4
$\times 9.5$	44.4	0.432	5620	12.7	115	47.6	41.5	63.2	65.9	66.6	67.3	68.7	70.1
$\times 7.9$	37.0	0.362	4720	10.8	96.8	47.8	41.0	63.0	65.6	66.3	67.0	68.4	69.9
$\mathrm{L} 127 \times 127$													
$\times 22$	81.0	0.792	10300	14.8	169	37.9	39.8	55.0	57.9	58.7	59.4	61.0	62.6
$\times 19$	70.2	0.687	8960	13.1	148	38.3	38.7	54.4	57.3	58.1	58.8	60.4	61.9
$\times 16$	59.6	0.583	7560	11.3	127	38.7	37.6	53.9	56.8	57.5	58.3	59.8	61.3
$\times 13$	48.2	0.472	6140	9.37	103	39.1	36.4	53.4	56.2	57.0	57.7	59.2	60.7
$\times 11$	42.6	0.415	5400	8.33	91.4	39.3	35.8	53.2	56.0	56.7	57.4	58.9	60.4
$\times 9.5$	36.6	0.359	4660	7.28	79.4	39.5	35.3	53.0	55.7	56.4	57.2	58.6	60,1
$\times 7.9$	30.6	0.301	3920	6.18	66.9	39.8	34.7	52.8	55.5	56.2	56,9	58.3	59.8
+ $\times 16$	46.8	0.460	5940	5.62	79.5	30.3	32.4 31.3	44.3 43.8	47.3	48.1	48.9 48.3	50.5 49.8	52.1 51.4
$\times 13$	38.0	0.374	4840	4.69	65.3	31.1	30.2	43.3	46.2	46.9	47.7	49.2	50.8
$\times 11$	33.6	0.330	4280	4.19	57.8	31,3	29.6	43,0	45.9	46.6	47.4	48.9	50.4
$\times 9.5$	29.2	0.285	3700	3.68	50,4	31.5	29.0	42.8	45.6	46.4	47.1	48.6	50.1
$\times 7.9$	24.4	0.240	3100	3.13	42.6	31.7	28.4	42.6	45.4	46.1	46,8	48.3	49.8
$\times 6.4$	19.6	0.193	2500	2.56	34.5	31.9	27.9	42.4	45.1	45.8	46.5	48.0	49,5
L89×89													
$\times 13$	33.0	0.323	4200	3.03	48.8	26,9	26.9	38.0	40.9	41.7	42.4	44.0	45.6
$\times 11$	29.2	0.285	3700	2.71	43.3	27.1	26.3	37.7	40,6	41.4	42.1	43.7	45.3
$\times 9.5$	25.2	0.247	3200	2.39	37.8	27.3	25.7	37.5	40.3	41.1	41.8	43.4	45.0
$\times 7.9$	21.4	0.208	2700	2.04	32.0	27.5	25.2	37.3	40.1	40.8	41.6	43.1	44.6
$\times 6.4$	17.2	0.168	2180	1.67	26.0	27.7	24.6	37.0	39.8	40.5	41.3	42.8	44.3

See Rolled Structural Shapes for further information on the properties of angles.

TWO ANGLES EQUAL LEGS Back-to-Back

PROPERTIES OF SECTIONS

Designation	Mass of 2 Angles kg / m	Dead Load kN / m	Area of 2 Anglesmm^{2}	Axis X-X				Radii of Gyration about Axis Y-Y					
				1	S	1	y	Back-to-back spacing, s, millimetres					
				$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	mm	0	8	10	12	16	20
L76x76													
$\times 13$	28.0	0.273	3540	1.85	35.1	22.8	23.7	32.9	35.9	36.6	37.4	39.0	40.7
$\times 11$	24.8	0.241	3140	1.66	31.2	23.0	23.1	32.6	35.5	36.3	37.1	38,7	40.3
$\times 9.5$	21.4	0.210	2720	1.47	27.3	23.2	22.5	32.3	35.3	36.0	36.8	38.4	40.0
$\times 7.9$	18.2	0.177	2300	1.26	23.2	23.4	22.0	32.1	35.0	35.7	36.5	38.0	39.6
$\times 6.4$	14.6	0.143	1860	1,04	18.9	23.6	21.4	31.9	34.7	35.4	36,2	37.7	39.3
- $\times 4.8$	11.0	0.108	1410	0.800	14.4	23.9	20.8	31.7	34.4	35.2	35.9	37.4	39.0
L64×64													
$\times 13$	22.8	0.223	2900	1.02	23.7	18.8	20.5	27.8	30.8	31.6	32.4	34.1	35.8
$\times 9.5$	17.4	0.172	2240	0.819	18.6	19.1	19.4	27.2	30,2	31.0	31.8	33,4	35.0
$\times 7.9$	14.8	0.146	1880	0.707	15.8	19.3	18.8	27.0	29.9	30.7	31.4	33.0	34.7
$\times 6.4$	12.2	0.118	1540	0.585	12.9	19.5	18.2	26.7	29.6	30.3	31.1	32.7	34.3
$\times 4.8$	9.2	0.090	1160	0.455	9.92	19.8	17.6	26.5	29.3	30.1	30.8	32.4	34.0
L51×51													
$\times 9.5$	14.0	0.135	1750	0,399	11.5	15.1	16.2	22.1	25.2	26.0	26.8	28.5	30.2
$\times 7.9$	11.6	0.114	1480	0.347	9.84	15.3	15.6	21.8	24.8	25.6	26.4	28.1	29.8
$\times 6.4$	9.4	0.093	1210	0.289	8.09	15.5	15.0	21.6	24.5	25.3	26.1	27.7	29.4
$\times 4.8$	7.2	0.071	922	0.227	6.24	15.7	14.5	21.3	24.2	25.0	25.8	27.4	29.1
$\times 3.2$	4.8	0.048	624	0.158	4.29	15.9	13.9	21.1	23.9	24.7	25.5	27.1	28.7
L44×44													
$\times 6.4$	8.2	0.081	1050	0.190	6.11	13.4	13.4	19.0	22.0	22.8	23.6	25.3	27.0
$\times 4.8$	6.2	0.062	802	0,150	4.73	13.7	12.9	18.8	21.7	22.5	23.3	24.9	26.6
$\times 3.2$	4.2	0.042	544	0.105	3.26	13.9	12.3	18.5	21.4	22.2	23.0	24.6	26.3
L38×38													
$\times 6.4$	6.8	0.068	888	0.115	4.39	11.4	11.8	16.4	19.5	20.3	21.2	22.9	24.6
$\times 4.8$	5.4	0.052	680	0.0915	3.41	11.6	11.3	16.2	19.2	20.0	20.8	22.5	24.2
$\times 4.0$	4.4	0.044	572	0.0786	2.90	11.7	11.0	16.1	19.0	19.8	20.6	22.3	24.0
$\times 3.2$	3.6	0.036	464	0.0648	2.37	11.8	10.7	15.9	18.9	19.6	20.5	22.1	23.8
L32×32													
$\times 6.4$	5.6	0.056	726	0.0642	2.98	9,40	10.2	13.9	47.1	17.9	18.8	20.5	22.3
$\times 4.8$	4.4	0.043	560	0.0514	2.33	9.58	9.69	13.6	16.7	17.5	18.4	20.1	21,9
$\times 3.2$	3.0	0.030	384	0.0368	1.62	9.79	9.12	13.4	16.4	17.2	18.0	19.7	21.5
L25x25													
$\times 6.4$	4.4	0.043	566	0.0307	1.83	7.37	B. 62	11.3	14.6	15.5	16.4	18,2	20.0
$\times 4.8$	3.6	0.034	438	0.0249	1.44	7.54	8.07	11.0	14.2	15.1	16.0	17.8	19.6
$\times 3.2$	2.4	0.023	302	0.0181	1.01	7.73	7.52	10.8	13.9	14.7	15.6	17.3	19.1
$\begin{array}{r} L 19 \times 19 \\ \times 3.2 \end{array}$	1.8	0.017	222	0.0073	0.55	5.72	5.93	8.2	11.5	12.3	13.2	15.1	16.9

See Rolled Structural Shapes for further information on the properties of angles.

TWO ANGLES UNEQUAL LEGS Long Legs Back-to-Back

PROPERTIES OF SECTIONS
Y

Designation	Mass of 2 Angles kg / m	Dead Load kN/m	Area of 2 Angles$\|$	Axis X-X				Radii of Gyration about Axis Y-Y					
				1	s	r	y	Back-to-back spacing, s, millimetres					
				$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	mm	0	8	10	12	16	20
L203×152													
$\times 25$	131	1.29	16800	67.0	494	63.3	67.4	60.6	63.4	64.1	64.9	66.3	67.9
$\times 22$	116	1.14	14800	59.9	438	63.7	66.2	60.1	62.8	63.6	64.3	65.7	67.2
$\times 19$	100	0.983	12800	52.5	381	64.1	65.1	59.6	62.3	63.0	63.7	65.2	66.6
$\times 16$	84.4	0.830	10800	44.9	323	64.6	64.0	59.1	61.8	62.5	63.2	64.6	66.1
$\times 14$	76.2	0.750	9760	40.9	293	64.8	63.4	58.9	61.6	62.3	63.0	64.4	65.8
$\times 13$	68.2	0.669	8700	36.8	262	65.0	62.8	58,7	61.4	62.0	62.7	64.1	65.5
$\times 11$	59.8	0.588	7660	32.5	231	65.3	62.2	58.5	61.1	61.8	62.5	63.9	65,3
L203x102													
+25	111	1.09	14200	57.9	460	63.8	77.2	37.4	40.4	41.2	41.9	43.5	45.1
$\times 22$	98.6	0.967	12600	51.9	408	64.3	76.0	36.8	39.7	40.4	41.2	42.8	44.3
$\times 19$	85.0	0.837	10900	45.5	355	64.7	74.8	36.3	39.0	39.8	40.5	42.0	43.6
$\times 16$	72.0	0.708	9180	39.1	302	65.2	73.6	35,8	38.5	39.2	39,9	41.4	42.9
$\times 14$	64.8	0.640	8300	35.6	274	65.4	73.0	35,5	38.2	38.9	39.6	41.1	42.6
$\times 13$	58.0	0.572	7420	32.0	245	65.7	72.4	35.3	37.9	38.6	39.3	40.7	42.2
$\times 11$	51.2	0.502	6520	28.3	216	65.9	71.8	35.1	37.6	38.3	39.0	40.4	41.9
L178×102													
$\times 19$	77.6	0.764	9920	31.5	276	56.4	63.7	37.8	40.6	41.4	42.1	43.6	45.2
$\times 16$	65.4	0.647	8360	27.1	235	56.8	62.6	37.3	40.0	40.8	41.5	43.0	44.5
$\times 13$	53.0	0.523	6780	22.3	191	57.3	61.4	36.8	39.5	40.2	40.9	42.4	43.9
$\times 11$	46.8	0.460	5960	19.8	169	57.5	60.8	36.6	39.2	39.9	40.6	42.1	43.6
$\times 9.5$	40.4	0.397	5140	17.2	146	57.8	60.2	36,4	39.0	39.7	40.4	41.8	43.3
L152×102													
$\times 22$	B0.6	0.792	10300	22.9	233	47.2	53.7	40.2	43.2	43.9	44.7	46.3	47.9
$\times 19$	70.0	0.687	8960	20.2	203	47.6	52.5	39.7	42.5	43.3	44.0	45.6	47.2
$\times 16$	59.2	0.583	7560	17.5	174	48.0	51.4	39.2	42.0	42.7	43.4	44.9	46.5
$\times 14$	53.6	0.528	6860	16.0	158	48.2	50.8	38.9	41.7	42.4	43.1	44.6	46.2
$\times 13$	48.0	0.472	6120	14.4	141	48.5	50.2	38.7	41.4	42.1	42.8	44.3	45.8
$\times 11$	42.4	0.415	5400	12.8	125	48.7	49.6	38.5	41.1	41.9	42.6	44.0	45.5
$\times 9.5$	36.4	0.359	4660	11.2	108	48.9	49.1	38.3	40.9	41.6	42.3	43.7	45.2
$\times 7.9$	30.6	0.301	3900	9.44	91.2	49.2	48.5	38.1	40.7	41.3	42.0	43.5	44.9
L152x89													
$\times 13$	45.4	0.446	5800	13.7	138	48.6	52.7	32.5	35.3	36.0	36.7	38.2	39.8
$\times 9.5$	34.6	0.339	4420	10.6	106	49.1	51.6	32.1	34.7	35.4	36.2	37.6	39.1
$\times 7.9$	29.0	0.285	3700	9.01	89.1	49.3	51.0	31.9	34.5	35.2	35.9	37.3	38.8
$\times 19$ $\times 16$	58.6 49.8	0.576	7500 6340	11.6 10.0	140 120	39.3 39.7	44.3	35.4 34.9	38.4 37.8	39.2 38.5	39.9 39.3	41.5 40.8	43.1 42.4
$\times 13$	40.4	0.397	5160	8.31	97.9	40.1	42.1	34.4	37.2	37.9	38.7	40.2	41.8
$\times 9.5$	30.8	0.303	3940	6.48	75.2	40.6	40.9	33.9	36.6	37.4	38.1	39.6	41.1
$\times 7.9$	25.8	0.254	3300	5.50	63.5	40.8	40.3	33.7	36,4	37.1	37.8	39.3	40.8
$\times 6.4$	20.8	0.205	2660	4.48	51.4	41.0	39.7	33.5	36,2	36.8	37.5	39.0	40.5

See Rolled Structural Shapes for further information on the properties of angles.

TWO ANGLES UNEQUAL LEGS Long Legs Back-to-Back

Designation		Dead Load	Area of 2 Angles	Axis X -X				Radii of Gyration about Axis Y-Y					
				1	S	r	y	Back-to-back spacing, s, millimetres					
	kg/m	kN/m	mm^{2}	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	mm	0	8	10	12	16	20
L127x76													
$\times 13$	38.0	0.372	4840	7.87	95.3	40.3	44.5	28,4	31,2	32.0	32.7	34.3	35,9
$\times 11$	33.4	0.328	4280	7.01	84.4	40.6	43.9	28.2	30.9	31.7	32.4	33.9	35.5
$\times 9.5$	29.0	0.284	3700	6.14	73.3	40.8	43.3	27.9	30.6	31.4	32.1	33.6	35.2
$\times 7.9$	24.2	0.239	3100	5.21	61.9	41.0	42.7	27.7	30.4	31.1	31.8	33.3	34.8
$\times 6.4$	19,6	0.192	2500	4.25	50.1	41.2	42.1	27.5	30.1	30.8	31.5	33.0	34.5
L102x89													
$\times 13$	35.2	0.348	4520	4.48	63.9	31.5	31.9	36.6	39.5	40.2	41.0	42.6	44.1
$\times 9.5$	27.0	0.266	3440	3.52	49.4	31.9	30.8	36.1	38.9	39.7	40.4	41.9	43,5
$\times 7.9$	22.8	0.224	2900	3.00	41.7	32.1	30.2	35.9	38.7	39.4	40.1	41.6	43.2
$\times 6.4$	18.4	0.180	2340	2.45	33.9	32.3	29.6	35.7	38.4	39.1	39.9	41.3	42.9
L102x76													
$\times 16$	40.4	0.397	5140	5.09	75.9	31.4	35.0	30.9	33.9	34.6	35.4	37.0	38.7
$\times 13$	32.8	0.324	4200	4.25	62.4	31.8	33.9	30.3	33.2	34.0	34.8	36.3	37.9
$\times 9.5$	25.2	0.247	3200	3.34	48.2	32.2	32.7	29,8	32.6	33.4	34.1	35.7	37.2
$\times 7.9$	21.4	0.208	2700	2.85	40.7	32.4	32.1	29.6	32.4	33.1	33.8	35.4	36.9
$\times 6.4$	17.2	0.168	2180	2.33	33.1	32.7	31.6	29.4	32.1	32.8	33.6	35.0	36.6
L89x76													
$\times 13$	30.2	0.298	3880	2.87	47.7	27,3	28.6	31.5	34.5	35.2	36.0	37.6	39.2
$\times 11$	27.0	0.263	3420	2.58	42.3	27.5	28.0	31.3	34.2	34.9	35.7	37.3	38.9
$\times 9.5$	23.4	0.228	2960	2.27	36.9	27.7	27.4	31.0	33,9	34.6	35.4	36.9	38.5
$\times 7.9$	19.6	0.192	2500	1.94	31.3	27.9	26.9	30.8	33,6	34.3	35.1	36.6	38.2
$\times 6.4$	16.0	0.155	2020	1.59	25.4	28.1	26.3	30.6	33.3	34.1	34.8	36.3	37.9
L89x64													
$\times 13$	27.8	0.273	3540	2.70	46.2	27.6	30.6	25.3	28.3	29.1	29.8	31.5	33.1
x9.5	21.4	0.210	2720	2.13	35.9	28.0	29.5	24.8	27.6	28,4	29.2	30,8	32.4
$\times 7.9$	18.0	0.177	2300	1.82	30.4	28.2	28.9	24.5	27.4	28.1	28.9	30.4	32.0
$\times 6.4$	14.6	0.143	1860	1.50	24.7	28.4	28.3	24.3	27.1	27.8	28.6	30.1	31.7
L76x64													
$\times 13$	25.2	0.248	3220	1.73	34.1	23.2	25.4	26.4	29.5	30.2	31.0	32.7	34.4
$\times 11$	22.6	0.220	2860	1.56	30.4	23.4	24.8	26.2	29.1	29.9	30.7	32.3	34.0
x9.5	19.6	0.191	2480	1.38	26.6	23.6	24.3	25.9	28.8	29.6	30.4	32.0	33.6
$\times 7.9$	16.6	0.161	2100	1.18	22.6	23.8	23.7	25.7	28.5	29.3	30.0	31.6	33.3
$\times 6.4$	13.4	0.130	1690	0.977	18.4	24.0	23.1	25.4	28.2	29.0	29.7	31.3	32.9
$\times 4.8$	10.2	0.099	1290	0.755	14.1	24.2	22.6	25.2	28.0	28.7	29.4	31.0	32.6
L76x51													
$\times 13$	23.0	0.223	2900	1.60	32.9	23.5	27.5	20.3	23.4	24.2	25.0	26.7	28.4
$\times 9.5$	17.6	0.172	2240	1.28	25.6	23.9	26.4	19.7	22.7	23.5	24.3	25.9	27.6
$\times 7.9$	14.8	0.146	1880	1.10	21.8	24.1	25.8	19.5	22.4	23.1	23.9	25.6	27.2
$\times 6.4$	12.2	0.118	1540	0.905	17.8	24.3	25.2	19.2	22.1	22.8	23.6	25.2	26.8
$\times 4.8$	9.2	0.090	1160	0.700	13.6	24.5	24.6	19.0	21.8	22.5	23.3	24.8	26.5

See Rolled Structural Shapes for further information on the properties of angles.

TWO ANGLES UNEQUAL LEGS
 Long Legs Back-to-Back

PROPERTIES OF SECTIONS

See Rolled Structural Shapes for further information on the properties of angles.

TWO ANGLES UNEQUAL LEGS Short Legs Back-to-Back

PROPERTIES OF SECTIONS

Designation	Mass of 2 Angles kg / m	Dead Load kN / m	Area of 2 Angles mm^{2}	Axis $\mathrm{X}-\mathrm{X}$				Radii of Gyration about Axis Y-Y					
				$\begin{array}{\|c} \mid \\ \hline 10^{6} \mathrm{~mm}^{4} \\ \hline \end{array}$	S $10^{3} \mathrm{~mm}^{3}$	$\frac{\mathrm{r}}{\mathrm{~mm}}$	$\frac{\mathrm{y}}{\mathrm{~mm}}$	Back-to-back spacing, s, millimetres					
								0	8	10	12	16	20
L203×152													
$\times 25$	131	1.29	16800	32.0	291	43.7	41.9	92.4	95.4	96.1	96.9	98.4	99.9
$\times 22$	116	1.14	14800	28.8	259	44.1	40.7	91.9	94.8	95.6	96.3	97.8	99.3
$\times 19$	100	0.983	12800	25.3	225	44.5	39.6	91.4	94.3	95.0	95.7	97.2	98.7
$\times 16$	84.4	0.830	10800	21.8	192	44.9	38.5	90.9	93.7	94.5	95.2	96.7	98.2
$\times 14$	76.2	0.750	9760	19.9	174	45.2	37.9	90.6	93.5	94.2	94.9	96.4	97.9
$\times 13$	68.2	0.669	8700	17.9	156	45.4	37.3	90.4	93.2	93.9	94.6	96.1	97.6
$\times 11$	59.8	0.588	7660	15.9	138	45.6	36.7	90.1	92.9	93.7	94.4	95.8	97.3
	111	1.09	14200	9.81	130	26.3	26.7	100	103	104	105	106	108
$\times 22$	98.6	0.967	12600	8.87	116	26.6	25.5	99.5	103	103	104	106	107
$\times 19$	85.0	0.837	10900	7.87	101	26.9	24.3	98.9	102	103	104	105	107
$\times 16$	72.0	0.708	9180	6.83	86.6	27.3	23.1	98.3	101	102	103	104	106
$\times 14$	64.8	0.640	8300	6.26	78,8	27.4	22.5	98.0	101	102	103	104	106
$\times 13$	58.0	0.572	7420	5.67	70.9	27.6	21.9	97.8	101	102	102	104	105
$\times 11$	51.2	0.502	6520	5.06	62.7	27.9	21.3	97.5	100	101	102	104	105
L178×102													
$\times 19$	77.6	0.764	9920	7.61	99.7	27.7	25.7	86.1	88.1	88.9	89.7	91.2	92.8
$\times 16$	65.4	0.647	8360	6.61	85.4	28.1	24.6	84.5	87.5	88.3	89.1	90,6	92.2
$\times 13$	53.0	0.523	6780	5.50	69.9	28.5	23.4	84.0	86.9	87.7	88.5	90.0	91.5
$\times 11$	46.8	0.460	5960	4.90	61.9	28.7	22.8	83.7	86.6	87.4	88.2	89.7	91.2
$\times 9.5$	40.4	0.397	5140	4.30	53.9	28.9	22.2	83.4	86.4	87.1	87.9	89.4	90.9
L152×102													
$\times 22$	80.6	0.792	10300	8.20	112	28.2	28.7	71.5	74.5	75.3	76.1	77.6	79.2
$\times 19$	70.0	0.687	8960	7.29	97.9	28.6	27.5	70.9	73.9	74.7	75.4	77.0	78.6
$\times 16$	59.2	0.583	7560	6.34	83.8	28.9	26.4	70.3	73.3	74.1	74.8	76.4	77.9
$\times 14$	53.6	0.528	6860	5.82	76.4	29.1	25.8	70.1	73.0	73.8	74.5	76.1	77.6
$\times 13$	48.0	0.472	6120	5.28	68.7	29.3	25.2	69.8	72.7	73.5	74.2	75.8	77.3
$\times 11$	42.4	0.415	5400	4.71	60.9	29.6	24.6	69.5	72.4	73.2	73.9	75.5	77.0
$\times 9.5$	36.4	0.359	4660	4.13	53.0	29.8	24.1	69.3	72.2	72.9	73.7	75.2	76.7
$\times 7.9$	30.6	0.301	3900	3.51	44.7	30.0	23.5	69.0	71.9	72.6	73.4	74.9	76.4
L152×89													
$\times 13$	45.4 34.6	0.446 0.339	5800 4420	3.54	52.2	24.7	21.2	71.7	74.7	75.5	76.3	77.8	79.4
$\times 9.5$ $\times 7.9$	34.6	0.339	4420	2.78	40.4	25.1	20.0	71.2	74.2	74.9	75.7	77.2	78.7
x7.9	29.0	0.285	3700	2.37	34.1	25.3	19.4	70.9	73.9	74.6	75.4	76.9	78.4
L127x89													
$\times 19$	58.6	0.576	7500	4.61	72.5	24.8	25.3	59,2	62.3	63.1	63.9	65.5	67.1
$\times 16$	49.8	0.490	6340	4.03	62.2	25.2	24.2	58,7	61.7	62.5	63.2	64.8	68.4
$\times 13$	40.4	0.397	5160	3.37	51.2	25.6	23.0	58.1	61.1	61.9	62.6	64.2	65.7
$\times 9.5$	30.8	0.303	3940	2.65	39.6	26.0	21.9	57.6	60.5	61.3	62.0	63.6	65.1
$\times 7.9$	25.8	0.254	3300	2.26	33.5	26.2	21.3	57.4	60.3	61.0	61.7	63.3	64.8
$\times 6.4$	20.8	0.205	2660	1.86	27.2	26.4	20.7	57.1	60.0	60.7	61.5	63.0	64.5

[^60]TWO ANGLES UNEQUAL LEGS
Short Legs Back-to-Back

PROPERTIES OF SECTIONS

Designation	Mass of 2 Angles kg / m	Dead Load kN / m	Areaof 2Angles	Axis $\mathrm{X}-\mathrm{X}$				Radil of Gyration about Axis $\mathrm{Y}-\mathrm{Y}$					
				1	S	r	y	Back-to-back spacing, s, millimetres					
				$10^{8} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	mm	0	8	10	12	16	20
L127x76													
$\times 13$	38.0	0.372	4840	2.15	37.6	21.1	19.1	60.0	63.0	63,8	64.6	66,2	67.8
$\times 11$	33.4	0.328	4280	1.93	33.4	21.3	18.5	59.7	62.7	63.5	64.3	65.8	67.4
$\times 9.5$	29,0	0.284	3700	1.70	29.1	21.5	17.9	59.5	62.4	63.2	64.0	65.5	67.1
$\times 7.9$	24.2	0.239	3100	1.45	24.7	21.7	17.3	59.2	62.1	62.9	63.7	65.2	66.8
$\times 6.4$	19.6	0.192	2500	1.20	20.1	21.9	16.7	58.9	61.9	62.6	63.4	64.9	66.4
L102x89													
$\times 13$	35.2	0.348	4520	3.16	49.7	26.4	25.4	44.8	47.7	48.5	49.3	50.8	52.4
$\times 9.5$	27.0	0.266	3440	2.49	38.5	26.8	24.2	44.3	47.2	47.9	48.7	50.2	51.8
$\times 7.9$	22.8	0.224	2900	2.13	32.6	27.1	23.6	44.1	46.9	47.6	48.4	49.9	51.4
$\times 6.4$	18.4	0.180	2340	1.74	26.5	27.3	23.1	43.8	46.6	47.4	48.1	49.6	51.1
L102x76													
$\times 16$	40.4	0.397	5140	2.40	44.3	21.6	22.1	47.0	50.1	50.9	51.6	53.2	54.9
$\times 13$	32.8	0.324	4200	2.02	36.6	21.9	21.0	46.5	49.4	50.2	51,0	52.6	54.2
$\times 9.5$	25.2	0.247	3200	1.60	28.4	22.3	19.8	45.9	48.9	49.6	50.4	51.9	53.5
$\times 7.9$	21.4	0.208	2700	1.37	24.1	22.5	19.2	45.7	48.6	49.3	50,1	51.6	53.2
$\times 6.4$	17.2	0.168	2180	1.13	19.6	22.7	18.7	45.4	48.3	49.0	49.8	51.3	52.9
L89×76													
$\times 13$	30.2	0.298	3880	1.94	35,9	22.4	22.2	39.5	42.5	43.2	44.0	45.6	47.2
$\times 11$	27.0	0.263	3420	1.74	31.9	22.6	21.7	39.2	42.2	42.9	43.7	45.3	46.9
$\times 9.5$	23.4	0.228	2960	1.54	27.9	22.8	21.1	39.0	41.9	42.6	43.4	45.0	46.6
$\times 7.9$	19.6	0.192	2500	1.32	23.7	23.0	20.5	38.7	41.6	42.3	43.1	44.6	46.2
$\times 6.4$	16.0	0.155	2020	1.09	19.3	23.2	19.9	38.5	41,3	42.1	42.8	44.3	45.9
L89×64													
$\times 13$	27.8	0.273	3540	1.14	24.9	17.9	17.9	41.2	44.2	45.0	45.8	47.4	49.1
x9.5	21.4	0.210	2720	0.908	19.4	18.3	16.8	40.6	43.6	44.4	45.2	46.8	48.4
$\times 7.9$	18.0	0.177	2300	0.782	16.5	18.5	16.2	40.4	43.3	44.1	44.9	46.4	48.0
$\times 6.4$	14.6	0.143	1860	0.647	13.5	18.7	15.6	40.1	43.0	43.8	44.5	46.1	47.7
L76x64													
$\times 13$	25.2	0.248	3220	1.08	24.4	18.3	19.1	34.4	37.4	38.2	39.0	40.7	42.3
$\times 11$	22.6	0.220	2860	0.978	21.7	18.5	18.5	34.1	37.1	37.9	38.7	40.3	42.0
$\times 9.5$	19.6	0.191	2480	0.868	19.0	18.7	17.9	33.8	36.8	37.6	38.4	40.0	41.6
$\times 7.9$	16.6	0.161	2100	0.748	16.2	18.9	17.4	33.6	36.5	37.3	38.1	39.6	41.3
$\times 6.4$	13.4	0.130	1690	0.619	13.2	19.1	16,8	33.3	36,2	37.0	37.8	39.3	40.9
$\times 4.8$	10.2	0.099	1290	0.480	10.2	19.3	16.2	33.1	36.0	36.7	. 37.5	39.0	40.6
L76x51													
$\times 13$	23.0	0.223	2900	0.559	15.5	13.9	14.8	36.2	39.3	40.1	40.9	42.6	44.3
$\times 9.5$	17.6	0.172	2240	0.452	12.2	14.2	13.7	35.6	38.6	39.4	40.2	41.9	43.5
$\times 7.9$	14.8	0.146	1880	0.392	10.4	14.4	13.1	35.3	38.3	39.1	39.9	41.5	43.2
$\times 6.4$	12.2	0.118	1540	0.326	8.52	14.6	12.5	35.0	38.0	38.8	39.6	41.2	42.8
$\times 4.8$	9.2	0.090	1160	0.255	6.56	14.8	11.9	34.8	37.7	38.5	39.3	40.8	42.5

See Rolled Structural Shapes for further information on the properties of angles.

TWO ANGLES UNEQUAL LEGS
 Short Legs Back-to-Back

PROPERTIES OF SECTIONS

See Rolled Structural Shapes for further information on the properties of angles.

TWO CHANNELS
Toe-to-Toe

PROPERTIES OF SECTIONS

$\begin{aligned} & \text { Channel } \\ & \text { Size } \end{aligned}$	For Two Channels			Axis X-X			Axis Y-Y					
	Mass	Dead Load	Area	I_{x}	S_{x}	$r_{\text {x }}$	Toe-to-Toe			$c=d$		
							I_{y}	S_{y}	r_{y}	I_{y}	S_{y}	r_{y}
	kg/m	kN/m	mm^{2}	$10^{8} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm
$\begin{aligned} & \text { MC460 } \\ & \times 86^{*} \\ & \times 77.2^{*} \\ & \times 68.2^{*} \\ & \times 63.5^{*} \end{aligned}$												
	172	1.70	22000	564	2460	160	174	1630	88,9	956	4180	208
	154	1.52	19700	522	2280	163	147	1410	86.3	855	3740	208
	136	1.34	17400	482	2100	166	124	1210	84.4	754	3300	208
	127	1.25	16300	462	2020	169	110	1100	82.4	701	3070	208
$\begin{array}{r} \text { C380 } \\ \times 74^{*} \\ \times 60^{*} \\ \times 50^{*} \end{array}$												
	148	1.46	19000	336	1760	133	112	1190	76.9	558	2930	172
	120	1,17	15200	290	1520	138	80.2	901	72.8	449	2360	172
	100	0.990	12900	262	1370	143	62.8	730	69.9	381	2000	172
C310												
$\times 45$	90	0.876	11400	135	884	109	49.4	618	65.9	213	1400	137
$\times 37$	74	0.727	9480	120	786	113	37.6	488	63.1	177	1160	137
$\times 31$	62	0.603	7860	107	702	117	28.1	380	59,9	146	956	136
C250												
$\times 45$	90	0.873	11400	85.6	674	86.9	43.6	574	62.0	142	1120	112
$\times 37$	74	0.731	9480	75.8	598	89.4	34.0	465	59.8	120	948	113
$\times 30$	60	0.582	7580	65.4	514	93.0	24.0	348	56.4	96.4	759	113
$\times 23$	46	0.443	5800	55.6	438	98.2	15.7	242	52.3	72.8	574	113
C230												
$\times 30^{*}$	60	0.585	7580	51.0	444	81.9	22.7	339	54.7	77.5	677	101
$\times 22$	44	0.437	5700	42.6	372	86.6	14.7	233	50.9	57.8	505	101
$\times 20$	40	0.389	5080	39.6 .	346	88.6	12.0	197	48.8	51.3	448	101
C200												
$\times 28$	56	0.548	7100	36.4	360	71.6	19.1	299	51.9	55,6	548	88.4
$\times 21$	42	0.400	5220	29.8	294	75.8	11.8	199	47.6	41.0	404	88.9
$\times 17$	34	0.334	4360	27.0	266	78.7	8.93	157	45.3	33.9	334	88.4
C180												
$\times 22^{*}$	44	0.429	5580	22.6	254	63.7	12.2	210	46.7	32.9	369	76.8
$\times 18$	36	0.356	4640	20.0	226	65.9	9.04	164	44.2	27.5	310	77.1
$\times 15$	30	0.284	3700	17.7	199	69,3	6.48	122	41.9	21.7	244	76.6
C150												
$\times 19$	38	0.377	4940	14.2	187	53.9	9.12	169	43.2	20.3	268	64.5
$\times 16$	32	0.305	3980	12.4	164	56.1	6.53	128	40.6	16.6	218	64.8
$\times 12$	24	0.236	3100	10.7	141	59.1	4.34	90.4	37.6	12.8	168	64.5
C130												
$\times 13$	26	0.261	3400	7.32	115	46.5	4.65	99.0	37.1	9.49	149	52.9
$\times 10$	20	0.194	2540	6.18	97.2	49.5	2.92	66.3	34.1	6.98	110	52.7
C100												
$\times 11$	22	0.211	2740	3.82	74.8	37,3	3.07	71.4	33.5	4.63	90.7	41.1
$\times 9$	18	0.177	2380	3.36	66.0	38.3	2.49	59.2	32.9	3.95	77.4	41.5
$\times 8$	16	0.157	2060	3.22	63.2	39.7	1.91	47.8	30.6	3.44	67.4	41.0
C75												
$\times 9$	18	0.173	2260	1.69	44.6	27.4	2.07	51.8	30.4	\dagger		\dagger
$\times 7$	14	0.144	1900	1.50	39.4	28.3	1.46	39.6	28.0	1.56	41.1	28.9
$\times 6$	12	0.118	1560	1.34	35.2	29.6	1.03	29.5	26.0	1.27	33.3	28.8

- Not available from Canadian mills
+ The condition $\mathrm{c}=\mathrm{d}$ cannot be met for this section.

TWO CHANNELS Back-to-Back

$\begin{aligned} & \text { Channel } \\ & \text { Size } \end{aligned}$	For Two Channels			Axis X-X			Radii of Gyration about Axis Y-Y					
	Mass	Dead Load	Area	$\mathrm{I}_{\text {x }}$	S_{x}	r_{x}	Back-to-Back Channels, millimetres					
	kg/m	kN/m	mm^{2}	$10^{6} \mathrm{~mm}{ }^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	0	8	10	12	16	20
$\begin{gathered} \text { MC460 } \\ \times 86^{*} \\ \times 77.2^{*} \\ \times 68.2^{*} \\ \times 63.5^{*} \end{gathered}$	172	1.70	22000	564	2460	160	33.9	36.6				
	154	1.52	19700	522	2280	163	33.9 34.2	36.6 36.8	37.3 37.6	38.0 38.3	39.5 39.8	41.1 41.3
	136	1.34	17400	482	2100	166	34.5	37.2	37.9	38.6	40.1	41.6
	127	1.25	16300	462	2020	169	35,0	37.7	38.4	39.1	40.6	42.1
$\begin{array}{r} \text { C380 } \\ \times 74^{*} \\ \times 60^{\circ} \\ \times 50^{*} \end{array}$												
	148	1.46	19000	336	1760	133	30.0	32.8	33.5	34,3	35.9	37.5
	120	1.17	15200	290	1520	138	30.0	32.8	33.5	34.2	35.8	37.4
	100	0.990	12900	262	1370	143	30.5	33.2	33.9	34.7	36.2	37.8
C310												
$\times 45$	90	0.876	11400	135	884	109	25.7	28.5	29.3	30.0	31.6	33.2
$\times 37$	74	0.727	9480	120	786	113	26.2	28.9	29.7	30.4	32.0	33.6
$\times 31$	62	0.603	7860	107	702	117	26.8	29.5	30.3	31.0	32.6	34.2
C250												
$\times 45$	90	0.873	11400	85.6	674	86.9	23.4	26.3	27.1	27.9	29.5	31.2
$\times 37$	74	0.731	9480	75.8	598	89.4	23.3	26.1	26.9	27.7	29.3	30.9
x30	60	0.582	7580	65.4	514	93.0	23.3	26.1	26.9	27.7	29.2	30.9
$\times 23$	46	0.443	5800	55.6	438	98.2	23.9	26.8	27.5	28.3	29.9	31.5
C230												
$\times 30 *$	60	0.585	7580	51.0	444	81.9	22.0	24.9	25.7	26.4	28.0	29.7
$\times 22$	44	0.437	5700	42.6	372	86.6	22.5	25.4	26.1	26.9	28.5	30.1
$\times 20$	40	0.389	5080	39.6	346	88.6	22.7	25.5	26.3	27.1	28.7	30.3
C200												
$\times 28$	56	0.548	7100	36,4	360	71.6	21.0	23.9	24.7	25.5	27.1	28.8
$\times 21$	42	0.400	5220	29.8	294	75.8	20.9	23.8	24.5	25.3	26.9	28.6
$\times 17$	34	0.334	4360	27.0	266	78.7	21.5	24.3	25.1	25.9	27.5	29.2
C180												
$\times 22^{*}$	44	0.429	5580	22.6	254	63.7	19.7	22.6	23,4	24.2	25.8	27.5
$\times 18$	36	0.356	4640	20.0	226	65.9	19.5	22.4	23.2	24.0	25.6	27.3
$\times 15$	30	0.284	3700	17.7	199	69.3	20.2	23.1	23.9	24.7	26.3	28.0
C150												
$\times 19$	38	0.377	4940	14.2	187	53.9	18.4	21.4	22.2	23.0	24.7	26.4
$\times 16$	32	0.305	3980	12.4	164	56.1	18.3	21.3	22.1	22.9	24.5	26.2
$\times 12$	24	0.236	3100	10.7	141	59.1	18.6	21.6	22.4	23.2	24.9	26.6
C130												
$\times 13$	26	0.261	3400	7.32	115	46.5	17.1	20.1	20.9	21.7	23.4	25.2
$\times 10$	20	0.194	2540	6.18	97.2	49.5	17.5	20.5	21.3	22.1	23.8	25.5
C100												
$\times 11$	22	0.211	2740	3.82	74.8	37.3	16.1	19.2	20.0	20.8	22.5	24.3
$\times 9$	18	0.177	2380	3.36	66.0	38.3	15.8	18.8	19.7	20.5	22.2	23.9
$\times 8$	16	0.157	2060	3.22	63.2	39.7	16.2	19.3	20.1	20.9	22.7	24.4
C75												
$\times 9$	18	0.173	2260	1.69	44.6	27.4	15.5	18.7	19.5	20.4	22.1	23.9
$\times 7$	14	0.144	1900	1.50	39.4	28.3	14.9	18.0	18.9	19.7	21.4	23.2
$\times 6$	12	0.118	1560	1.34	35.2	29.6	14.9	18.1	18.9	19.8	21,5	23.3

[^61]
W SHAPES AND CHANNELS

PROPERTIES OF SECTIONS

γ

Beam	Channel	Dead Load	Total Area	Axis $\mathrm{X}-\mathrm{X}$					
				1	$\mathrm{S}_{1}=1 / \mathrm{Y}_{1}$	$\mathrm{S}_{2}=1 / Y_{2}$	r	Y_{1}	Y_{2}
		kN/m	mm^{2}	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{3}$	mmm	mm	mm
W920×289	MC460×63.5	3.46	44900	6410	11800	16300	378	545	393
	C380×50	3,33	43200	6180	11600	15200	378	531	406
$\times 271$	MC460x63.5	3.29	42700	6050	11100	15600	376	547	387
	C380×50	3.16	41000	5830	11000	14500	377	532	401
$\times 253$	MC460x63.5	3.11	40400	5680	10300	14900	375	549	381
	C380x50	2.98	38700	5460	10200	13800	376	534	395
$\times 238$	MC460×63.5	2.96	38500	5340	9680	14200	372	551	375
	C380x50	2.83	36800	5120	9560	13100	373	536	390
$\times 223$	MC460×63.5	2.83	36700	5020	9070	13600	370	554	369
	C380x50	2.69	35000	4810	8950	12500	371	537	384
W840x226	MC460x63.5	2.85	37000	4490	8700	13000	348	516	346
	C380x50	2.72	35300	4310	8600	12000	349	501	360
$\times 210$	MC460x63.5	2.69	34900	4170	8040	12300	346	519	339
	C380x50	2.56	33200	4000	7950	11300	347	503	353
$\times 193$	MC460x63.5	2.53	32800	3800	7290	11500	340	521	330
	C380x50	2.39	31100	3640	7210	10500	342	505	345
W760x196	MC460x63.5	2.56	33200	3260	6840	10700	313	476	305
	C380x50	2.42	31500	3120	6760	9790	315	462	319
$\times 185$	MC460x63.5	2.43	31600	3060	6400	10200	311	478	299
	C380×50	2.30	29900	2930	6330	9360	313	463	313
$\times 173$	MC460x63.5	2.32	30200	2870	5980	9790	308	480	293
	C380×50	2.19	28500	2750	5920	8940	311	465	308
$\times 161$	MC460x63.5	2.19	28500	2650	5480	9270	305	484	286
	C380×50	2.06	26800	2530	5410	8410	307	467	301
W690×170	C380x50	2.16	28000	2260	5330	8090	284	424	279
	C310x31	1.96	25500	2070	5200	6850	285	398	302
$\times 152$	C380×50	1.99	25800	2050	4800	7560	282	427	271
	C310x31	1.79	23300	1870	4670	6340	283	400	295
$\times 140$	C380×50	1.86	24200	1880	4370	7120	279	430	264
	C310x31	1.67	21700	1710	4260	5910	281	402	289
W610x125			22300	1390			250	391	
	C310x31	1.52	19800	1260	3460	4950	252	364	255
$\times 113$	C380×50	1.60	20800	1260	3190	5640	246	395	223
	C310x31	1.41	18300	1140	3110	4590	250	367	248
W530×101	C380×50	1.49	19300	904	2550	4690	216	355	193
	C310x31	1.29	16800	817	2490	3790	221	329	216
$\times 92$	C380×50	1.40	18200	826	2310	4440	213	357	186
	C310x31	1.21	15700	745	2260	3550	218	330	210
W460x74	C380×50	1.22	15900	516	1630	3440	180	317	150
	C310×31	1.03	13400	465	1590	2710	186	292	172
W410x54	C380×50	1.02	13200	308	1050	2600	153	295	119
	C310x31	0.824	10700	277	1020	1990	161	271	139
W360x45	C310x31	0.743	9650	186	765	1600	139	243	116
	C250×23	0.663	8610	175	756	1380	143	232	127
W310x39	C310x31	0,682	8860	131	598	1330	122	219	98.2
	C250x23	0.602	7820	123	590	1140	125	208	108
W250x33	C250x23	0.543	7050	73.1	411	846	102	178	86.4
	C200×17	0.488	6340	69.5	409	743	105	170	93.5
W200x27	C200×17	0.428	5560	37,6	268	521	82.2	140	72.2

Mass	Axis $Y-Y$			Shear	Torsional Constant	Warping Constant	Monosymmetry Constant \dagger
	1	S	r	Y_{0}	J	C_{w}	$\beta_{\text {x }}$
kg/m	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	mm	$10^{3} \mathrm{~mm}^{4}$	$10^{9} \mathrm{~mm}^{6}$	mm
352.5	387	1690	92.8	212	9740	53500	523
339.1	287	1510	81.5	156	9650	48200	395
335.2	376	1650	93.8	216	8210	50100	538
321.9	276	1450	82.0	161	8120	45100	411
317.1	365	1600	95.1	220	6780	46500	554
303.8	265	1390	82.7	167	6690	42000	428
302.2	354	1550	95.9	225	5660	43200	570
288.9	254	1330	83.1	173	5570	39100	445
288.1	343	1500	96.7	230	4730	39800	586
274.8	243	1280	83.3	180	4640	36100	464
290.5	345	1510	96.6	214	5650	35000	545
277.1	245	1290	83.3	167	5560	31700	430
274.0	334	1460	97.8	219	4560	31800	562
260.6	234	1230	84.0	174	4470	28900	450
257.5	321	1410	99.0	224	3560	28200	581
244.1	221	1160	84.4	182	3470	25800	474
280.6	313	1370	97.0	215	4550	21600	548
247.3	213	1120	82.2	178	4460	19800	452
248.1	306	1340	98.4	217	3840	19900	558
234.7	206	1080	83.0	182	3750	18300	465
237.1	300	1310	99.6	219	3200	18300	568
223.7	200	1050	83.7	186	3110	16900	479
223.7	292	1280	101	222	2580	16300	582
210.4	192	1010	84.6	192	2490	15200	498
219.8	197		83.9	172	3470	13500	
200.2	120	785	68.5	114	3200	11400	292
202.5	189	991	85.5	176	2620	12000	460
182.9	111	730	69.1	122	2350	10200	314
190.0	183	959	86.9	179	2090	10800	474
170.3	105	690	69.6	128	1820	9250	331
175.1							
155.4	92.8	609	68.5	133	1690	5910	338
163.3	165	868	89.1	175	1540	6000	469
143.7	87.8	576	69.3	139	1270	5240	357
151.5	158	829	90.5	162	1440	3790	434
131.9	80.4	527	69.2	136	1170	3350	347
142.9	155	813	92.2	162	1180	3360	439
123.2	77.3	507	70.2	139	914	2990	360
124.8	148	775	96.3	143	938	1800	384
105.2	70.1	460	72.3	131	669	1630	342
103.6	141	741	103	125	647	897	313
84.0	63.6	417	77.1	124	378	831	331
75.8	61.7	404	79.9	111	312	533	287
67.6	36.0	283	64.6	100	246	493	268
69.6	60.8	398	82.8	98.2	278	377	231
61.4	35.1	276	67.0	89.9	212	349	237
55.3	32.5	256	67.9	83.8	185	168	192
49.8	18.2	180	53.6	71.7	152	153	188
43.6	16.8	166	55.0	65.2	125	74.0	147

$\dagger \beta_{\mathrm{x}}$ is positive when the larger flange is in flexural compression, and negative otherwise.

BUILT-UP SECTIONS

$h=d+2 t$
$b_{0}=a+2 b$
$A_{1}=b_{1} t$
$A=2\left(A_{1}+A_{2}\right)$
$I_{x x}=2 I_{x c}+\frac{b_{1}}{12}\left(h^{3}-d^{3}\right)$
$S_{x x}=2 I_{x x} / h \quad r_{x x}=\sqrt{I_{x x} / A}$
$I_{y y}=2 I_{y c}+\frac{A_{1}}{6} b_{1}^{2}+2 A_{2}(x+a / 2)^{2}$
$S_{y y}=2 l_{y y} / b_{0}$ if $b_{i}<b_{0}$
$S_{y y}=2 l_{y y} / b_{1}$ if $b_{1} \geq b_{0}$
$r_{y y}=\sqrt{I_{y y} / A}$

$h=d-2 t$
$A_{1}=b t$
$A_{2}=w h$
$A=2\left(A_{1}+A_{2}\right)$
$c=a-2 w$

$I_{x x}=\frac{1}{12}\left\{b\left(d^{3}-h^{3}\right)+2 A_{2} h^{2}\right\} \quad r_{x x}=\sqrt{I_{x x} / A}$
$S_{x x}=2 I_{x x} / d \quad Z_{x x}=\frac{b}{4}\left(d^{2}-h^{2}\right)+\frac{A_{2} h}{2}$
$I_{y y}=\frac{1}{12}\left\{2 A_{1} b^{2}+h\left(a^{3}-c^{3}\right)\right\} \quad r_{y y}=\sqrt{I_{y y} / A}$
$S_{y y}=2 I_{y y} / b \quad Z_{y y}=\frac{h}{4}\left(a^{2}-c^{2}\right)+\frac{A_{1} b}{2}$

$h=d+2 t \quad A_{1}=b_{1} t \quad A=2\left(A_{1}+A_{2}\right)$
$I_{x x}=2 I_{x c}+\frac{b_{1}}{12}\left(h^{3}-d^{3}\right) \quad S_{x x}=2 I_{x x} / h$
$I_{y y}=2 I_{y c}+\frac{A_{1}}{6} b_{1}^{2}+2 A_{2}(a / 2-x)^{2}$
$S_{y y}=2 l_{y y} / b_{1} \quad$ if $a<b_{1}$
$S_{y y}=2 l_{y y} / a \quad$ if $a \geq b_{1}$
$r_{x x}=\sqrt{I_{x x} / A} \quad r_{y y}=\sqrt{I_{y y} / A}$
$h=d-2 t$
$\mathrm{A}_{1}=\mathrm{bt}$

$\mathrm{A}_{2}=\mathrm{ht}$
$A=2 A_{1}+3 A_{2}$
$I_{x x}=\frac{1}{12}\left\{3 A_{2} h^{2}+b\left(d^{3}-h^{3}\right)\right\}$
$S_{x x}=2 I_{x x} / d \quad Z_{x x}=\frac{3 A_{2} h}{4}+A_{1}(d-t)$
$I_{y y}=\frac{1}{12}\left\{2 A_{1} b^{2}+A_{2} t^{2}+h\left[b^{3}-(b-2 t)^{3}\right]\right\}$
$S_{y y}=2 l_{y y} / b \quad Z_{y y}=\frac{A_{1} b}{2}+\frac{A_{2} t}{4}+A_{2}(b-t)$
$r_{x x}=\sqrt{I_{x x} / A} \quad r_{y y}=\sqrt{I_{y y} / A}$

Elements of the shape which are shown in dotted outline are optional and, if omitted, the variable defining their size should be set equal to zero.

BUILT-UP SECTIONS

$A=2\left(A_{1}+A_{2}\right) \quad A_{2}=b t$
$I_{x x}=2 I_{x w}+\frac{1}{12} b\left[(d+2 t)^{3}-d^{3}\right]$
$S_{x x}=2 I_{x x} /(d+2 t)$
$l_{y y}=2 I_{y w}+\frac{1}{6} A_{2} b^{2}+\frac{1}{2} A_{1} x^{2}$
For $\left(x+b_{1}\right)>b: \quad S_{y y}=21_{y y} /\left(x+b_{1}\right)$
For $\left(x+b_{1}\right) \leq b: \quad S_{y y}=2 I_{y y} / b$
$r_{\mathrm{xx}}=\sqrt{I_{\mathrm{xx}} / \mathrm{A}} \quad r_{\mathrm{yy}}=\sqrt{I_{\mathrm{yy}} / \mathrm{A}}$

$d_{0}=d+2 t$
$A=2\left(A_{1}+A_{3}\right)+A_{2} \quad A_{3}=b_{1} t$
$l_{x x}=2 I_{x 1}+l_{y 2}+\frac{b_{1}}{12}\left(d_{0}^{3}-d^{3}\right)$
$S_{x x}=21_{x x} / d_{0}$
$I_{y y}=I_{x 2}+2 I_{y 1}+\frac{A_{3}}{6} b_{1}^{2}+A_{1}\left(b-b_{f}\right)^{2} / 2$
$S_{y y}=2 l_{y y} / b_{1}$ if $b<b_{1}$
$S_{y y}=2 l_{y y} / b \quad$ if $b \geq b_{1}$
$r_{x x}=\sqrt{I_{x x} / A} \quad r_{y y}=\sqrt{1_{y y} / A}$

$h=d+\frac{1}{2}\left(b_{1}+w_{1}\right) \quad A=A_{1}+A_{2}$
$y_{1}=\frac{A_{1}\left(d+w_{1} / 2\right)+A_{2} d / 2}{A_{1}+A_{2}} \quad y_{2}=h-y_{1}$
$I_{x x}=l_{y 1}+l_{x 2}+A_{1}\left(y_{2}-b_{1} / 2\right)^{2}+A_{2}\left(y_{1}-d / 2\right)^{2}$
$S_{x 1}=l_{x x} / y_{1} \quad S_{x 2}=l_{x x} / y_{2}$
$l_{y y}=l_{x 1}+l_{y 2} \quad S_{y y}=2 l_{y y} / b$
${ }^{7} \mathrm{l}_{\mathrm{y} T}=I_{\mathrm{x} 1}+\mathrm{l}_{\mathrm{y} 2} / 2-\left(\mathrm{y}_{1}-\mathrm{d} / 2\right) \mathrm{w}_{2}^{3} / 12$
$r_{x x}=\sqrt{I_{x x} / A} \quad r_{y y}=\sqrt{I_{y y} / A}$

$A=A_{c}+A_{w} \quad d_{0}=d+w$
$y_{1}=\frac{A_{w} d / 2+A_{c}\left(d_{0}-x\right)}{A} \quad y_{2}=d_{0}-y_{1}$
$I_{x x}=I_{x w}+I_{y c}+A_{w}\left(y_{1}-d / 2\right)^{2}+A_{c}\left(y_{2}-x\right)^{2}$
$x_{y y}=l_{y w}+x_{x c}$
${ }^{*} I_{y T}=I_{x c}+\frac{I_{y w}}{2}-\left(y_{1}-d / 2\right) \frac{t^{3}}{12}$
$S_{x 1}=I_{x x} / y_{1} \quad S_{x 2}=I_{x x} / y_{2} \quad S_{y y}=2 l_{y y} / b$
$r_{x x}=\sqrt{I_{x x} / A} \quad r_{y y}=\sqrt{I_{y y} / A}$
*lyT is the moment of inertia of the T-section above the neutral axis.

BUILT-UP SECTIONS

Note: Centres of gravity of both channels are on the same vertical line. $A=A_{1}+A_{2}$ $b_{1}=\left(d_{1} / 2\right)+\bar{x} \quad y_{1}=\frac{A_{1}(d-\bar{y})+\frac{A_{2}}{2} d_{2}}{A}$ $b_{2}=d_{1}-b_{1} \quad y_{2}=d-y_{1}$ $I_{x x}=I_{1 y}+I_{2 x}+A_{1}\left(y_{2}-\bar{y}\right)^{2}+A_{2}\left(y_{1}-\frac{d_{2}}{2}\right)^{2}$ $S_{x 1}=I_{x x} / y_{1} \quad S_{x 2}=I_{x x} / y_{2} \quad r_{x x}=\sqrt{I_{x x} / A}$ $I_{y y}=I_{x 1}+I_{y 2} \quad S_{y}=2 l_{y y} / d_{1} \quad r_{y y}=\sqrt{I_{y y} / A}$	$\begin{aligned} & h=d-2 w \\ & A=2 A_{1}+A_{2} \quad A_{2}=h t \\ & I_{x x}=2 I_{y c}+\frac{1}{12} A_{2} h^{2}+2 A_{1}(d / 2-y)^{2} \\ & S_{x x}=2 I_{x x} / d \\ & I_{y y}=2 I_{x c}+\frac{1}{12} A_{2} t^{2} \quad S_{y y}=2 I_{y y} / b \\ & r_{x x}=\sqrt{I_{x x} / A} \quad r_{y y}=\sqrt{I_{y y} / A} \end{aligned}$
Note: a and b are the angle leg lengths, and b_{1} is the width of the channel flange. $\begin{aligned} & A=A_{a}+A_{c} \quad y_{1}=\frac{A_{a} y_{a}+A_{c} d / 2}{A} \quad y_{2}=d-y_{1} \\ & x_{1}=\frac{A_{a}\left(b-x_{a}\right)+A_{c}\left(b+x_{c}\right)}{A} \quad x_{2}=b_{1}+b-x_{1} \\ & l_{x x}=I_{y a}+I_{x c}+A_{a}\left(y_{1}-y_{a}\right)^{2}+A_{c}\left(\frac{d}{2}-y_{1}\right)^{2} \\ & S_{x 1}=I_{x x} / y_{1} \quad S_{x 2}=I_{x x} / y_{2} \\ & I_{y y}=I_{x a}+l_{y c}+A_{a}\left(x_{1}-b+x_{a}\right)^{2}+A_{c}\left(b_{1}-x_{2}-x_{c}\right)^{2} \\ & S_{y y}=I_{y y} / x_{1} \quad S_{y 2}=I_{y y} / x_{2} \\ & r_{x x}=\sqrt{I_{x x} / A} \quad r_{y y}=\sqrt{I_{y y} / A} \end{aligned}$	$\begin{aligned} & A=4 A_{1}+2 A_{2}+A_{3} \quad A_{1}=b t \\ & A_{2}=(d-w-2 t) w / 2 \quad A_{3}=2 A_{2}+w^{2} \\ & I_{x}=I_{y}=\frac{1}{12}\left\{b\left(d^{3}-E^{3}\right)+w E^{3}+2 t b^{3}+E w^{3}-w^{4}\right\} \\ & E=d-2 t \\ & S_{x}=S_{y}=2 I_{x} / d \\ & r_{x}=r_{y}=\sqrt{I_{x} / A} \end{aligned}$

BUILT-UP SECTIONS

$A_{1}=b_{1} t_{1} \quad A_{2}=b_{2} t_{2} \quad A_{3}=w h$
$d=h+t_{1}+t_{2}$
$A=A_{1}+A_{2}+A_{3}$
$\mathrm{y}_{1}=\frac{\mathrm{A}_{1}\left(\mathrm{~d}-\mathrm{t}_{1} / 2\right)+\mathrm{A}_{3}\left(\mathrm{t}_{2}+\mathrm{h} / 2\right)+\mathrm{A}_{2} \mathrm{t}_{2} / 2}{\mathrm{~A}}$
$y_{2}=d-y_{1}$
$J=\frac{1}{3}\left\{A_{1} t_{1}^{2}+A_{3} w^{2}+A_{2} t_{2}^{2}\right\}$
$C_{w}=\frac{\left(d-\frac{t_{1}+t_{2}}{2}\right)^{2} b_{1}^{3} t_{1}}{12\left[1+\left(b_{1} / b_{2}\right)^{3}\left(t_{1} / t_{2}\right)\right]}$

$I_{x x}=\frac{1}{12}\left[A_{1} t_{1}^{2}+A_{2} t_{2}^{2}+A_{3} h^{2}\right]+A_{1}\left(y_{2}-t_{1} / 2\right)^{2}+A_{2}\left(y_{1}-t_{2} / 2\right)^{2}+A_{3}\left(y_{1}-t_{2}-h / 2\right)^{2}$
$S_{x 1}=I_{x x} / y_{1} \quad S_{x 2}=I_{x x} / y_{2}$
$l_{y y}=\frac{1}{12}\left[A_{1} b_{1}^{2}+A_{2} b_{2}^{2}+A_{3} w^{2}\right] \quad S_{y y}=2 l_{y y} / b_{1}$

* $1_{y T}=\frac{1}{12}\left[A_{1} b_{1}^{2}+\left(y_{2}-t_{1}\right) w^{3}\right] \quad r_{x x}=\sqrt{I_{x x} / A} \quad r_{y y}=\sqrt{I_{y y} / A}$
$A=A_{1}+A_{2}+A_{s} \quad h=d+t_{1}+t_{2}$
$y_{1}=\frac{A_{1}\left(h-t_{1} / 2\right)+A_{S}\left(t_{2}+d / 2\right)+A_{2} t_{2} / 2}{A}$
$y_{2}=h-y_{1}$
$l_{x x}=I_{x S}+\frac{1}{12}\left(A_{1} t_{1}^{2}+A_{2} t_{2}^{2}\right)+A_{S}\left(y_{1}-t_{2}-d / 2\right)^{2}$ $+A_{1}\left(y_{2}-t_{1} / 2\right)^{2}+A_{2}\left(y_{1}-t_{2} / 2\right)^{2}$
$S_{x 1}=I_{x x} / y_{1} \quad S_{x 2}=I_{x x} / y_{2}$
$r_{x x}=\sqrt{I_{x x} / A}$
$l_{y y}=l_{y s}+\frac{1}{12}\left[A_{1} b_{1}^{2}+A_{2} b_{2}^{2}\right]$
$S_{y y}=2 l_{y y} / b_{1}$ if $b_{1}>b_{2}$
$S_{y y}=2 l_{y y} / b_{2}$ if $b_{1} \leq b_{2}$
$r_{y y}=\sqrt{I_{y y} / A}$

${ }^{*} \mathrm{l}_{\mathrm{y}}$ is the moment of inertia of the T-section above the neutral axis.

COLD-FORMED STEEL C- and Z-SECTIONS

General

While various proprietary cold-formed C - and Z-sections are available from Canadian roll formers, the sections listed on the following pages are representative of those included in CSA Standard G40.20/G40.21-13, and other products generally available. Coated sections refer to products that are typically supplied with a metallic coating such as zinc or aluminumzinc alloy. Uncoated products do not have this coating. The metallic coating, if present, does not affect the calculated properties of the section, Both gross and effective section properties are presented in these tables. For coated sections the calculated values were based on an inside bend radius, R, taken as the greater of $R_{1}=(2.381-t / 2)$ and $R_{2}=1.5 t$, and for uncoated sections the inside bend radius was taken as $2 t$. The effective section properties, factored shear and moment resistances were computed in accordance with the applicable sections of CSA Standard S136-12, North American Specification for the Design of ColdFormed Steel Structural Members. For coated sections with a design base steel thickness less than or equal to $1.146 \mathrm{~mm}, F_{y}=230 \mathrm{MPa}$ and $F_{u}=310 \mathrm{MPa}$. For coated sections with a design base steel thickness greater than $1.146 \mathrm{~mm}, F_{y}=345 \mathrm{MPa}$ and $F_{u}=450 \mathrm{MPa}$. For all uncoated sections, $F_{y}=345 \mathrm{MPa}$ and $F_{u}=450 \mathrm{MPa}$. Cold work of forming was not included. Distortional buckling calculations were based on $K_{\varphi}=0$.

Material

For coated sections, steel meets the requirements of ASTM A653/A653M Grade 340 (Grade 50), $F_{y}=345 \mathrm{MPa}$, and for uncoated sections, steel meets the requirements of ASTM A1011/A1011M Grade 340 (Grade 50), $F_{y}=345 \mathrm{MPa}$.

Tables

Only some of the noteworthy terms are defined below. All others are self-explanatory.
$I_{x d}=$ effective deflection moment of inertia about $\mathrm{X}-\mathrm{X}$ axis $\left(10^{6} \mathrm{~mm}^{4}\right)$ at $0.6 F_{y}$
$S_{x e}=$ effective section modulus about X-X axis $\left(10^{3} \mathrm{~mm}^{3}\right)$
$I_{y e}=$ effective moment of inertia about $\mathrm{Y}-\mathrm{Y}$ axis assuming lips in tension $\left(10^{6} \mathrm{~mm}^{4}\right)$
$S_{y e}=$ effective section modulus about $\mathrm{Y}-\mathrm{Y}$ axis $\left(10^{3} \mathrm{~mm}^{3}\right)$
$M_{\text {rlb }}=$ factored moment resistance based on local buckling about X-X axis ($\mathrm{kN} \cdot \mathrm{m}$)
$L_{c r} \quad=$ critical unbraced length of distortional buckling (mm)
$M_{r d b}=$ factored moment resist. based on distortional buckling about X-X axis ($\mathrm{kN} \cdot \mathrm{m}$)
$V_{T} \quad=$ factored shear resistance (kN)
$L_{u}=$ maximum unbraced length of compression flange beyond which appropriate values in the Table must be reduced for lateral-torsional buckling (mm)
$t \quad=$ design base steel thickness (mm)
$x_{o}=$ distance from shear centre to centroid of gross area (mm)
$r_{o} \quad=$ polar radius of gyration (mm)
$J=$ Saint-Venant torsion constant $\left(10^{3} \mathrm{~mm}^{4}\right)$
j = flexural-torsional buckling parameter (mm)
$C_{w}=$ torsional warping constant $\left(10^{9} \mathrm{~mm}^{6}\right)$

The minimum base steel thickness is 95% of the design base steel thickness. The design base steel thickness was used to calculate values in the tables.

Minimum base steel thickness (mm)	Design base steel thickness (mm)
5.41	5.69
4.68	4.93
3.96	4.17
3.62	3.81
3.26	3.43
2.90	3.05
2.54	2.67
2.18	2.29
1.81	1.91
1.44	1.52

Minimum base steel thickness (mm)	Design base steel thickness (mm)
2.997	3.155
2.454	2.583
1.720	1.811
1.367	1.438
1.087	1.146

These tables have been prepared by Dr. R.M. Schuster, Professor Emeritus of Structural Engineering and Director of the Canadian Cold-Formed Steel Research Group at the University of Waterloo,

COLD-FORMED C-SECTIONS, COATED
Effective Properties

Designation	Mass	Gross Area	Effective Section Properties				$\mathrm{M}_{\text {Hb }}$	$L_{\text {cr }}$	$\mathrm{Mrab}_{\text {rab }}$	V_{1}	L_{0}
			X-X Axis		$Y-Y$ Axis						
			$\mathrm{I}_{\times 0}$	$\mathrm{S}_{\mathrm{x} 0}$	1 Iye	$\mathrm{S}_{\text {ye }}$					
	kg/m	mm^{2}	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	$10^{5} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	$\mathrm{kN} \cdot \mathrm{m}$	mm	kN /m	kN	mm
1400S300-118	12.8	1629	27.2	138	0.702	13.5	42.9	474	35.4	72.4	1407
1400S300-97	10.6	1345	21.7	104	0.562	11.3	32.4	527	26.5	39.4	1418
1400S300-68	7.48	953	14.3	59.8	0.369	7.98	18.6	637	15.8	13.4	1433
1400S250-118	12.2	1549	24.7	129	0.443	10.1	40.1	426	33.8	72.4	1173
1400S250-97	10.0	1279	20.1	98.4	0.357	8.44	30.6	474	25.3	39.4	1184
1400S250-68	7.12	907	13.5	58.1	0.237	6.04	18.1	573	15.0	13.4	1199
1400S200-118	11.5	1469	22.2	116	0.252	6.99	36.1	375	31.4	72.4	933
1400S200-97	9.53	1213	18.1	91.4	0.206	5.94	28.4	417	23.6	39.4	945
1400S200-68	6.76	861	12.3	57.4	0.138	4.31	17.8	503	14.0	13.4	961
1400S162-118	10.9	1388	19.8	103	0.133	4.33	32.0	297	27.5	72.4	714
1400S162-97	9.01	1148	16.1	80.5	0.111	3.74	25.0	325	20.5	39.4	727
1400S162-68	6.40	815	10.9	51.4	0.076	2.78	15.9	386	12.0	13.4	745
1200S300-118	11.5	1469	18.8	119	0.698	13.5	36.9	454	30.0	85.1	1428
1200S300-97	9.53	1213	15.4	95.5	0.559	11.3	29.7	506	22.6	46.3	1437
12005300-68	6.76	861	10.7	54.3	0.368	7.97	16.9	612	13,6	15.7	1450
1200S250-118	10.9	1388	17.0	107	0.441	10.0	33.3	408	28.7	85.1	1195
1200S250-97	9.01	1148	14.0	82.5	0.356	8.43	25.6	454	21.7	46.3	1205
1200S250-68	6.40	815	9.53	49.2	0.236	6.03	15.3	550	13.1	15.7	1219
1200S200-118	10.3	1308	15.1	96.1	0.251	6.97	29.8	357	26.8	85.1	956
1200S200-97	8.50	1082	12.5	76.3	0.205	5.93	23.7	398	20.4	46.3	967
1200S200-68	6.04	769	8.62	48.5	0.138	4.31	15.1	482	12.3	15,7	982
1200S162-118	9.64	1228	13.4	84.7	0.132	4.32	26.3	278	23,6	85.1	736
1200S162-97	7.98	1017	11.1	67.0	0.110	3.74	20.8	306	17.9	46.3	748
1200S162-68	5.68	723	7.60	43.3	0.076	2.78	13.5	368	10.6	15.7	765
1000S300-97	8.50	1082	9.95	73.7	0.555	11.2	22.9	482	18.6	56.0	1455
1000S300-68	6.04	769	6.92	45.9	0.366	7.95	14.3	585	11.3	19.0	1467
1000S300-54	4.82	615	5.33	31.1	0.276	6.28	9.67	661	8.13	9.4	1472
1000S250-97	7.98	1017	9.09	69.0	0.353	8.41	21.4	433	17.9	56.0	1226
1000S250-68	5.68	723	6.47	45.3	0.235	6.02	14.1	525	10.9	19.0	1239
1000S250-54	4.54	578	5.08	30.8	0.177	4.78	9.56	595	7.89	9.4	1245
1000S200-97	7.47	951	8.05	61.3	0.204	5.92	19.0	379	16.8	56,0	990
1000S200-68	5.32	677	5.66	39.6	0.137	4.30	12.3	460	10.4	19.0	1004
1000S200-54	4.25	542	4.43	27.9	0.104	3.44	8.66	521	7.48	9.4	1010
1000S162-97	6.95	885	7.06	53.6	0.110	3.73	16.6	289	14.9	56.0	771
1000S162-68	4.95	631	4.96	35.3	0.076	2.77	11.0	349	9.04	19.0	786
1000S162-54	3.96	505	3.87	25.7	0.058	2.24	7.99	395	6.48	9.4	794

Designation Example: 1400S300-97; where $1400=14 \mathrm{in}$. section depth; $S=$ stud or joist C-section;
$300=3$ in. flange width; $97=$ minimum base steel thickness in mils;

COLD-FORMED C-SECTIONS, COATED
Dimensions and Gross Properties

Depth	Flange Width	Stiffr Depth	Thickness	Gross Section Properties										
				X-X Axis			Y-Y Axis			x_{0}	r_{0}	J	j	$\mathrm{C}_{\text {w }}$
d	b	D	t	I_{x}	S_{x}	r	y	S_{y}	r_{y}					
mm	mm	mm	mm	$10^{6} \mathrm{~mm}{ }^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	mm	mm	$10^{3} \mathrm{~mm}^{4}$	mm	$10^{9} \mathrm{~mm}^{6}$
356	76	15.9	3.15	27.3	154	130	0.905	14.8	23.6	39,2	137	5.40	238	23.0
356	76	15,9	2.58	22.8	128	130	0.772	12.7	24.0	39.8	138	2.99	233	19.4
356	76	15.9	1.81	16.3	91.8	131	0.570	9.35	24.5	40.7	139	1.04	227	14.2
356	64	15.9	3.15	24.9	140	127	0.563	10.9	19.1	30.6	132	5.14	267	14.8
356	64	15.9	2.58	20.7	117	127	0.483	9.35	19.4	31.1	132	2,84	260	12.5
356	64	15.9	1.81	14.9	83.7	128	0.360	6.97	19.9	31.9	133	0.99	251	9.16
356	51	15.9	3.15	22.4	126	123	0.314	7.49	14.6	22.4	126	4.87	317	8.56
356	51	15.9	2.58	18.7	105	124	0.273	6.49	15.0	23.0	127	2.70	306	7.29
356	51	15.9	1.81	13.4	75.6	125	0.206	4.89	15.5	23.7	128	0.94	293	5.39
356	41	12.7	3.15	20.0	112	120	0.161	4.60	10.8	15.5	121	4.61	403	4.57
356	41	12.7	2.58	16.7	94.0	121	0.142	4.05	11.1	16.0	122	2.55	384	3.93
356	41	12.7	1.81	12.1	67.8	122	0.109	3.11	11.6	16.6	123	0.89	361	2.94
305	76	15.9	3.15	18.8	123	113	0.872	14.7	24.4	42.3	123	4.87	189	16.2
305	76	15.9	2.58	15.7	103	114	0.743	12.5	24.8	43.0	124	2.70	185	13.7
305	76	15.9	1.81	11.3	73.8	114	0.549	9.24	25.3	43.8	125	0.94	181	9.97
305	64	15.9	3.15	17.0	111	111	0.544	10.8	19.8	33.2	117	4.61	206	10.4
305	64	15,9	2.58	14.2	92.9	111	0.467	9.25	20.2	33.8	118	2.55	201	8.79
305	64	15.9	1.81	10.2	66.9	112	0.348	6.89	20.7	34.6	119	0.89	195	6.45
305	51	15.9	3.15	15.1	99.3	108	0.305	7.43	15.3	24.5	111	4.34	239	6.03
305	51	15.9	2.58	12.7	83.1	108	0.264	6.43	15.6	25.1	112	2.41	231	5.14
305	51	15.9	1.81	9.14	60.0	109	0.199	4.85	16.1	25.8	113	0.84	222	3.81
305	41	12.7	3.15	13.4	87.8	104	0.157	4.57	11.3	17.0	106	4.07	299	3.22
305	41	12.7	2.58	11.2	73.7	105	0.138	4.02	11.7	17.6	107	2.26	286	2.77
305	41	12.7	1.81	8.13	53.3	106	0.106	3.09	12.1	18.3	108	0.79	270	2.08
254	76	15,9	2.58	10.1	79,7	96.7	0.708	12.3	25.6	46.7	110	2.41	146	9.01
254	76	15.9	1.81	7.29	57.4	97.4	0.524	9.10	26.1	47.6	111	0.84	143	6.59
254	76	15.9	1.44	5,86	46.1	97.7	0.426	7.41	26.3	48.1	112	0.42	142	5.34
254	64	15,9	2.58	9.09	71.6	94.5	0.446	9.12	21.0	36.9	104	2.26	153	5.81
254	64	15.9	1.81	6.56	51.6	95.2	0.333	6.80	21.4	37.8	105	0.79	149	4.27
254	64	15.9	1.44	5.28	41.6	95.6	0.272	5.56	21.7	38.2	105	0.40	148	3.47
254	51	15.9	2.58	8.05	63.4	92.0	0.254	6.35	16.3	27.6	97	2.12	170	3.40
254	51	15.9	1.81	5.83	45.9	92.8	0.191	4.79	16.8	28,4	98	0.74	164	2.52
254	51	15.9	1.44	4,70	37,0	93.1	0,157	3.93	17.0	28.8	99	0.37	161	2.06
254	41	12.7	2.58	7.06	55.6	89.3	0.133	3.97	12.3	19.5	92	1.97	204	1.83
254	41	12.7	1.81	5.13	40.4	90.2	0.103	3.06	12.7	20.3	93	0.69	193	1.38
254	41	12.7	1.44	4.14	32.6	90.6	0.085	2.53	13.0	20.6	94	0,35	189	1.13

COLD-FORMED C-SECTIONS, COATED
Effective Properties

Designation	Mass	Gross Area	Effective Section Properties				$M_{\text {rb }}$	$L_{\text {cr }}$	$M_{\text {cod }}$	V,	L_{u}
			X-X Axis		Y-Y Axis						
			I_{xd}	$\mathrm{S}_{\text {xe }}$	1 yo	$\mathrm{S}_{\text {ye }}$					
	kg/m	mm^{2}	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	kN•m	mm	kN•m	kN	mm
800S300-97	7.47	951	5.88	54.1	0.549	11.2	16.8	456	14,4	61.9	1473
8005300-68	5.32	677	4.10	35.1	0.363	7.93	10.9	552	8.90	24.0	1481
800S300-54	4.25	542	3.19	25.1	0.274	6.27	7.80	625	6.45	11.9	1486
800S250-97	6.95	885	5.32	50.4	0.350	8.37	15.7	408	13.9	61.9	1248
800S250-68	4.95	631	3.80	33.7	0.233	6.00	10.5	496	8.62	24.0	1257
800S250-54	3.96	505	2.98	25.0	0.176	4.77	7.75	562	6.28	11.9	1263
800S200-97	6.44	820	4.66	45.9	0.202	5.89	14.3	357	13,0	61.9	1015
800S200-68	4.59	585	3.39	32.6	0.136	4.29	10,1	434	8,20	24.0	1026
800S200-54	3.68	468	2.74	24.5	0.103	3.43	7.62	492	5.99	11.9	1031
800S162-97	5.92	754	4.04	39,8	0.108	3.72	12.4	270	11.5	61.9	796
800S162-68	4.23	539	2.94	27.3	0.075	2.77	8.46	329	7.24	24.0	808
800S162-54	3.39	432	2.32	20.1	0.058	2.24	6.25	373	5.26	11.9	815
600\$300-97	4.59	585	2.11	23.7	0.359	7.89	7.35	514	6.50	30.4	1495
600S300-68	3.68	468	1.64	18.1	0.272	6.24	5.63	582	4.75	16.0	1498
600S300-54	2.95	376	1.37	15.5	0.218	5.05	3.20	656	2.71	8.0	1840
600S250-97	4.23	539	1.97	24.9	0.243	6.10	5.16	461	4,76	24.9	1570
600S250-68	3.39	432	1.59	18.9	0.185	4.86	3.92	523	3.54	15.7	1572
600S250-54	2.72	347	1.27	15.0	0.141	3.86	3.11	590	2.62	8.0	1574
600S200-97	3.87	493	1.71	22.4	0.142	4.36	4.64	404	4.38	24.9	1291
600S200-68	3.10	395	1.38	18.1	0.109	3.50	3.75	458	3,33	15.7	1294
600S200-54	2.49	318	1.12	14.3	0.083	2.79	2.96	517	2.49	8.0	1298
600S162-97	3.51	447	1.47	19.3	0.078	2.81	3.99	305	3.77	24.9	$\uparrow 023$
600S162-68	2.82	359	1.19	15.6	0.061	2.28	3.23	346	2.94	15.7	1028
600S162-54	2.26	288	0.96	12.7	0.046	1.83	2.62	392	2.19	8.0	1032
362S250-97	3.37	430	0.62	13,0	0.232	5.99	2.69	407	2.64	16.6	1629
362S250-68	2.71	345	0,50	9.9	0.179	4.79	2.04	461	2.01	13.5	1622
362S250-54	2.18	278	0.41	7.8	0.137	3.81	1.61	520	1.51	9.9	1618
362S200-97	3.01	384	0.53	11.4	0.135	4.28	2.37	356	2.24	16.6	1357
362S200-68	2.42	309	0.43	9.3	0.105	3.45	1.93	404	1.82	13.5	1352
362S200-54	1.95	248	0.35	7.3	0.081	2.76	1.52	456	1.41	9.9	1350
362S162-97	2.65	338	0.44	9.7	0.075	2.76	2.00	268	1.89	16,6	1076
362S162-68	2.14	272	0.36	7.9	0.059	2.25	1.63	305	1.54	13.5	1073
362S162-54	1.72	219	0.30	6.4	0.045	1.81	1.33	345	1.23	9.9	1073

Designation Example: 600S200-97; where $600=6 \mathrm{in}$. section depth; $S=$ stud or joist C-section;
$200=2 \mathrm{in}$. flange width; $97=$ minimum base sleel thickness in mils;

COLD-FORMED C-SECTIONS, COATED

Dimensions and Gross Properties

Depth	Flange Width	StiffrDepth	Thickness	Gross Section Properties										
				X-X Axis			Y-Y Axis			x_{0}	T_{0}	J	i	C_{w}
d	b	D	t	I_{x}	S_{x}	r_{x}	1 y	S_{y}	r_{y}					
mm	mm	mm	mm	$10^{6} \mathrm{~mm}{ }^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{8} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	mm	mm	$10^{3} \mathrm{~mm}^{4}$	mm	$10^{9} \mathrm{~mm}^{8}$
203	76	15.9	2.58	5.98	58.9	79.3	0.664	12.0	26.4	51.2	98	2.12	115	5.45
203	76	15.9	1.81	4.32	42.5	79.9	0.491	8.90	26.9	52.2	99	0.74	114	4.00
203	76	15.9	1.44	3.48	34.2	80.2	0.399	7.25	27.2	52.7	100	0.37	113	3.24
203	64	15.9	2.58	5.32	52.4	77.6	0.420	8.94	21.8	40.8	90	1.97	115	3.52
203	64	15.9	1.81	3.86	37.9	78.2	0.313	6.67	22.3	41.8	91	0.69	113	2.59
203	64	15.9	1,44	3.11	30.6	78.5	0.256	5.45	22.5	42.2	92	0.35	112	2.11
203	51	15.9	2.58	4.66	45.9	75.4	0.240	6.24	17.1	30.8	83	1.82	121	2.06
203	51	15.9	1.81	3.39	33.4	76.1	0.181	4.71	17.6	31.7	84	0.64	117	1.53
203	51	15.9	1.44	2.74	26.9	76.4	0.149	3.87	17.8	32.1	85	0.32	116	1.25
203	41	12.7	2.58	4.04	39.8	73.2	0.127	3.91	13.0	22.0	78	1,68	139	1.10
203	41	12.7	1.81	2.95	29.1	74.0	0.098	3.01	13.5	22.8	79	0.59	133	0.83
203	41	12.7	1.44	2.39	23.5	74.4	0.081	2.50	13.7	23.2	79	0.30	130	0.68
152	76	15.9	1.81	2.23	29.2	61.7	0.447	8.61	27.7	57.9	89	0.64	93	2.13
152	76	15.9	1.44	1.80	23.6	62.0	0.364	7.01	27.9	58.4	90	0.32	93	1.73
152	76	15.9	1.15	1.45	19.0	62.1	0.296	5.70	28.1	58.8	90	0.16	93	1.41
152	64	15.9	1.81	1.97	25.8	60.4	0.286	6.47	23.1	46.8	80	0.59	87	1.38
152	64	15.9	1.44	1.59	20.9	60.7	0.234	5.29	23.3	47.2	80	0.30	87	1.13
152	64	15.9	1.15	1.28	16.9	60.9	0.191	4.32	23.5	47.6	81	0.15	86	0.92
152	51	15.9	1.81	1,71	22,4	58.8	0.166	4.59	18.4	35.9	71	0.54	83	0.82
152	51	15.9	1.44	1.38	18.1	59.1	0.137	3.77	18.6	36.4	72	0.27	83	0.67
152	51	15.9	1.15	1.12	14.7	59.3	0.112	3.09	18.8	36.7	72	0.14	82	0.55
152	41	12.7	1.81	1.47	19.3	57.3	0.091	2.94	14.2	26.2	65	0.49	87	0.44
152	41	12.7	1.44	1.19	15.6	57.6	0.075	2.44	14.5	26.6	65	0.25	86	0.36
152	41	12.7	1.15	0.97	12.7	57.8	0,062	2.01	14.6	27.0	65	0.13	85	0.29
92	64	15.9	1.81	0,62	13.5	38.0	0.240	6.07	23.6	55.0	71	0.47	69	0.49
92	64	15.9	1.44	0.50	10.9	38.2	0.197	4.97	23.9	55.5	71	0.24	70	0.40
92	64	15.9	1.15	0.41	8.9	38.4	0.160	4.06	24.0	55.9	72	0.12	70	0.33
92	51	15.9	1.81	0.53	11.4	37.0	0.140	4.33	19.1	43.1	60	0.42	60	0.29
92	51	15.9	1.44	0.43	9.3	37.3	0.115	3.57	19.3	43.6	60	0.21	60	0.24
92	51	15.9	1.15	0.35	7.6	37.4	0.094	2.92	19.5	43.9	61	0.11	60	0.20
92	41	12.7	1.81	0.44	9.7	36.3	0.077	2.79	15.1	32.1	51	0.37	54	0.15
92	41	12.7	1.44	0.36	7.9	36.5	0.064	2.32	15.4	32.6	51	0.19	54	0.12
92	41	12.7	1.15	0.30	6.4	36.7	0.053	1.91	15.5	32.9	52	0.10	53	0.10

COLD-FORMED C-SECTIONS, UNCOATED
Effective Properties

Designation	Mass	Gross Area	Effective Section Properties				$\mathrm{M}_{\text {tb }}$	$L_{\text {cr }}$	$\mathrm{M}_{\text {rob }}$	V_{r}	L_{u}
			X-X Axis		Y-Y Axis						
			I_{xd}	$\mathrm{S}_{\text {xe }}$	1 ye	$\mathrm{S}_{\text {ye }}$					
	kg/m	mm^{2}	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	$\mathrm{kN} \cdot \mathrm{m}$	mm	$\mathrm{kN} \cdot \mathrm{m}$	kN	mm
406S76-290M	13.9	1771	37.2	169	0.787	15.9	52.3	659	43.3	57.2	1489
406S76-254M	12.2	1558	32.4	140	0.676	14.1	43.4	708	36.0	38.1	1496
356S89-326M	15.0	1906	33.5	183	1.34	23.2	56.9	684	47.0	94.3	1763
356S89-290M	13.4	1704	30.1	163	1.17	20.8	50.5	730	40.2	65.8	1769
356S89-254M	11.8	1499	26.6	140	1.00	18.4	43.4	785	33.5	43.8	1774
356S89-218M	10.1	1292	23.0	108	0.832	15.8	33.6	853	27.1	27.4	1780
356S76-290M	12.7	1616	27.2	144	0.783	15.9	44,8	636	37.8	65.8	1512
356S76-254M	11.2	1423	23.8	120	0.673	14.1	37.4	684	31.5	43.8	1518
305S89-326M	13.6	1732	23.1	148	1.33	23.1	45.8	658	39.5	109	1786
305S89-290M	12.2	1549	20.8	131	1.16	20.8	40.7	702	33.9	77.5	1791
305S89-254M	10.7	1364	18.4	112	0.996	18.3	34.9	755	28.4	51.5	1796
305S89-218M	9.23	1176	15.9	93,4	0.829	15.8	29.0	820	23.1	32.2	1801
305S89-181M	7.74	986	13.1	71.2	0.663	13.1	22.1	904	18.0	18.5	1806
305S76-290M	11.5	1462	18.9	124	0.779	15.9	38.4	611	31.9	77.5	1536
305S76-254M	10.1	1287	16.7	107	0.670	14.0	33.3	658	26.8	51.5	1541
305S76-218M	8.72	1111	14.5	90.4	0.559	12.1	28.1	715	21.8	32.2	1546
305S76-181M	7.31	932	12.3	67.8	0.449	10.1	21.0	789	17.0	18.5	1552
254S89-326M	12.2	1557	15.0	115	1.31	23.1	35.6	628	32.0	109	1812
254S89-290M	10.9	1394	13.5	102	1.15	20.7	31.7	670	27.6	86.2	1815
254S89-254M	9.64	1228	12.0	87.3	0.988	18.3	27.1	721	23.2	62.5	1819
254S89-218M	8.32	1060	10.4	72.4	0.824	15.7	22.5	783	18.9	39.0	1822
254S89-181M	6.98	889	8.53	60.0	0.660	13.1	18.6	864	14.8	22.3	1827
254S89-144M	5.62	716	6.76	43.0	0.501	10.4	13.4	973	10.9	11.3	1831
254S76-290M	10.3	1307	12.2	95.9	0.772	15.8	29.8	583	25.9	86.2	1561
254S76-254M	9.04	1152	10.8	83.1	0.665	14.0	25.8	628	21.9	62.5	1565
254S76-218M	7.81	995	9.39	70.0	0,556	12.1	21.7	683	17.9	39.0	1570
254S76-181M	6.55	835	7.94	56.6	0.447	10.1	17.6	754	14.0	22.3	1574
254S76-144M	5.28	673	6.29	41.7	0.339	8.08	12.9	849	10.3	11.3	1579
229S89-326M	11.5	1470	11.7	99.4	1.31	23.0	30.9	611	28.3	109	1827
229S89-290M	10.3	1317	10.5	88.4	1.15	20.7	27.5	652	24.4	86.2	1829
229S89-254M	9.11	1160	9.35	75.7	0.983	18.2	23.5	702	20.6	66.0	1831
229S89-218M	7.86	1002	8.10	62.7	0.820	15.7	19.5	763	16.8	43.6	1834
229589-181M	6.60	841	6.67	52.0	0.658	13.1	16.1	841	13.2	25.0	1838
203S76-290M	9.04	1152	7.17	70.6	0.762	15.7	21.9	552	19.9	86.2	1591
203S76-254M	7.98	1016	6.38	61.3	0.657	13.9	19.0	594	16.9	66.0	1593
203S76-218M	6.90	878	5.55	51.6	0.550	12.1	16.0	646	13.9	48.5	1596
203576-181M	5.79	738	4.70	41.6	0.443	10.1	12.9	713	11.0	28.3	1599
203S76-144M	4.67	595	3.72	33.5	0.337	8.06	10.4	803	8.14	14.3	1603

Designation Example: 356 S89-254M; where $356=$ section depth $(\mathrm{mm}) ; \mathrm{S}=$ stud or joist C -section;
$89=$ flange width $(\mathrm{mm}) ; 254=$ minimum base steel thickness $\times 100(\mathrm{~mm}) ; M=$ metric designation

Depth	Flange Width	Stiffr Depth	Thickness	Gross Section Properties										
				X-X Axis			Y-Y Axis			x_{0}	r_{0}	J	j	C_{w}
d	b	D	t	I_{x}	S_{x}	r_{x}	$1 y$	S_{y}	r_{y}					
mm	mm	mm	mm	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{8} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	mm	mm	$10^{3} \mathrm{~mm}^{4}$	mm	$10^{6} \mathrm{~mm}^{6}$
406	76	24	3.05	38.1	188	147	1.07	17.6	24.5	40.8	154	5.49	281	36.7
406	76	24	2.67	33.7	166	147	0.956	15.8	24.8	41.2	155	3.69	277	32.7
356	89	25	3.43	33.5	188	133	1.71	25.2	30.0	53.7	146	7.47	213	44.8
356	89	25	3.05	30.1	169	133	1.56	23.0	30.2	54.1	147	5.28	211	40.5
356	89	25	2.67	26.6	150	133	1.39	20.6	30.5	54.6	147	3.55	209	36.0
356	89	25	2.29	23.1	130	134	1.22	18.0	30.7	55.0	148	2.25	206	31.4
356	76	24	3.05	27.5	154	130	1.03	17.4	25.3	43.7	140	5.01	227	27.2
356	76	24	2,67	24.3	137	131	0,926	15.6	25,5	44.1	140	3.37	223	24.2
305	89	25	3.43	23.1	152	116	1.64	24.9	30.8	57.6	133	6.79	174	31.8
305	89	25	3.05	20.8	136	116	1.49	22.7	31.0	58.0	133	4.80	173	28.8
305	89	25	2.67	18.4	121	116	1.34	20.3	31.3	58.5	134	3.23	171	25.6
305	89	25	2.29	16.0	105	117	1.17	17.8	31.6	58.9	134	2.05	170	22.3
305	89	25	1.91	13.5	88.4	117	0.997	15.2	31.8	59.4	135	1.19	169	18.9
305	76	24	3.05	18.9	124	114	0.991	17.2	26.0	47.1	126	4.53	181	19.3
305	76	24	2.67	16.7	110	114	0.890	15.4	26.3	47.5	126	3.05	178	17.2
305	76	24	2.29	14.5	95.3	114	0.782	13.6	26.5	48.0	127	1.93	176	15.0
305	76	24	1.91	12.3	80.4	115	0.668	11.6	26.8	48.4	127	1.13	174	12.8
254	89	25	3.43	15.0	118	98.1	1.55	24.5	31.6	62.2	120	6.10	143	21.3
254	89	25	3.05	13.5	106	98.4	1.41	22.3	31.8	62.6	121	4.32	142	19.3
254	89	25	2.67	12.0	94.2	98.7	1.27	19.9	32.1	63.1	121	2.91	141	17.2
254	89	25	2.29	10.4	81.8	99.0	1.11	17.5	32.3	63.6	122	1.85	140	15.0
254	89	25	1.91	8.77	69.1	99.3	0.944	14.9	32.6	64.1	123	1.08	139	12.7
254	89	25	1.52	7.11	56.0	99.6	0.772	12.2	32.8	64.5	123	0.55	139	10.4
254	76	24	3.05	12,2	95.9	96.5	0,941	16.9	26.8	51.1	112	4.05	143	12.9
254	76	24	2.67	10.8	85.1	96.9	0.845	15,2	27.1	51.6	113	2.73	142	11.5
254	76	24	2.29	9.40	74.0	97.2	0.743	13.4	27.3	52.0	114	1.73	140	10.1
254	76	24	1.91	7.94	62.5	97.5	0.635	11.4	27.6	52.5	114	1,01	139	8,56
254	76	24	1.52	6.44	50.7	97.8	0.521	9.37	27.8	52.9	115	0.52	138	6.98
229	89	25	3.43	11.7	102	89.2	1.50	24.2	32.0	64.8	115	5.76	130	17.0
229	89	25	3.05	10.5	92.2	89.5	1.37	22.0	32.2	65.3	115	4.08	129	15.4
229	89	25	2.67	9.35	81.8	89.8	1.22	19.7	32.5	65.7	116	2.75	129	13.7
229	89	25	2.29	8.13	71.1	90.1	1.07	17.3	32.7	66.2	116	1.75	128	12.0
229	89	25	1.91	6,86	60.0	90.3	0,913	14.7	33.0	66.7	117	1.02	128	10.2
203	76	24	3.05	7.17	70.6	78.9	0.878	16.5	27.6	56.0	101	3.57	114	7.98
203	76	24	2.67	6.38	62.8	79.2	0.788	14.9	27.9	56.5	101	2.41	114	7.14
203	76	24	2.29	5.55	54.7	79.5	0.693	13.1	28.1	56.9	102	1.53	113	6.25
203	76	24	1.91	4.70	46.3	79.8	0.593	11.2	28.3	57.4	102	0.89	112	5.32
203	76	24	1.52	3.82	37.6	80.1	0.486	9.17	28.6	57.9	103	0.46	112	4.35

COLD-FORMED C-SECTIONS, UNCOATED

Designation	Mass	Gross Area	Effective Section Properties				$\mathrm{Mrb}_{\text {to }}$	$L_{\text {cr }}$	$\mathrm{M}_{\text {cob }}$	V,	L_{u}
			X-X Axis		Y-Y Axis						
			I_{xd}	$\mathrm{S}_{\times 0}$	Iye	$\mathrm{S}_{\text {ye }}$					
	kg/m	mm^{2}	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	$\mathrm{kN} \cdot \mathrm{m}$	mm	$\mathrm{kN} \cdot \mathrm{m}$	kN	mm
203S70-326M	9.83	1252	7.57	74.5	0.719	15.8	23.1	512	21.9	104	1496
203S70-290M	8.82	1123	6.84	67.4	0.635	14.3	20,9	547	19.7	86.2	1498
203570-254M	7.78	991	6.09	59.9	0.548	12.7	18.6	589	16.8	66.0	1500
203S70-218M	6.72	857	5.30	52.2	0.459	11.0	16.2	641	13.8	48.5	1503
203S70-181M	5.65	720	4.49	41.9	0.370	9.25	13.0	708	10.9	28.3	1506
203S70-144M	4.56	581	3.59	32.5	0.281	7.40	10.1	797	8.15	14.3	1510
152S76-290M	7.83	997	3.66	48.0	0.743	15.6	14.9	513	14.1	67.7	1636
152S76-254M	6.91	881	3.26	41.8	0.643	13.8	13.0	552	12.1	60.2	1635
152S76-218M	5.98	762	2.84	35.2	0.541	12.0	10.9	601	9.99	48.5	$\dagger 634$
152S76-181M	5.03	641	2.41	28.2	0.437	10.0	8.77	663	7.94	33.7	1635
152S76-144M	4.06	518	1.91	22.7	0.334	8.03	7.05	747	5.94	19.4	1637
152S70-326M	8.46	1078	3.83	50.2	0.698	15.7	15.6	477	14.7	74.9	1550
152S70-290M	7.60	968	3.47	45.5	0.619	14.2	14.1	509	13,4	67.7	1549
152S70-254M	6.72	856	3.09	40.6	0.537	12.6	12.6	548	11.9	60.2	1548
152S70-218M	5.81	741	2.70	35.4	0.451	11.0	11.0	597	9.88	48.5	1548
152S70-181M	4.89	623	2.29	28.4	0.365	9.20	8.83	659	7.88	33.7	1549
152S70-144M	3.95	503	1.83	22.0	0.279	7.37	6.83	742	5.92	19.4	1550

Designation Example: 152S76-181M; where $152=$ section depth (mm); S = stud or joist C-section:
$76=$ flange width $(\mathrm{mm}) ; 181=$ minimum base steel thickness $\times 100(\mathrm{~mm}) ; M=$ metric designation

Depth	Flange Width	Stiffr Depth	Thickness	Gross Section Properties										
				X-X Axis			Y-Y Axis			x_{0}	r_{0}	J	j	C_{w}
d	b	D	t	I_{x}	S_{x}	r_{x}	$1 y^{\prime}$	S_{y}	r_{y}					
mm	mm	mm	mm	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	mm	mm	mm	$10^{3} \mathrm{~mm}{ }^{4}$	mm	$10^{9} \mathrm{~mm}^{6}$
203	70	25	3.43	7.57	74.5	77.8	0.800	16.4	25.3	51.1	96	4.91	113	7.53
203	70	25	3.05	6.84	67.4	78.1	0.732	15.0	25.5	51.6	97	3.48	112	6.84
203	70	25	2.67	6.09	59.9	78.4	0.658	13.5	25.8	52.0	98	2.35	111	6.12
203	70	25	2.29	5.30	52.2	78.7	0.579	11.9	26.0	52.5	98	1.49	110	5.36
203	70	25	1.91	4.49	44.2	79.0	0.496	10.2	26.2	53.0	99	0.87	110	4.57
203	70	25	1.52	3.65	35.9	79.3	0.407	8.37	26.5	53.4	99	0.45	109	3.74
152	76	24	3.05	3.66	48.0	60.6	0.795	16,0	28.2	62.1	91	3.09	94	4.43
152	76	24	2.67	3.26	42.8	60.8	0.714	14.4	28.5	62.6	92	2.09	94	3.97
152	76	24	2.29	2.84	37.3	61.1	0.629	12.7	28.7	63.1	92	1.33	94	3.48
152	76	24	1.91	2.41	31.7	61.3	0.538	10.8	29.0	63.6	93	0.78	94	2.97
152	76	24	1.52	1.96	25.8	61.6	0.441	8.89	29.2	64.1	94	0.40	94	2.43
152	70	25	3.43	3.83	50.2	59.6	0.724	15.9	25.9	56.9	86	4.23	90	4.21
152	70	25	3.05	3.47	45.5	59.8	0.663	14.5	26.2	57.4	87	3.00	90	3.83
152	70	25	2.67	3.09	40.6	60.1	0.596	13.1	26.4	57.9	88	2.03	90	3.44
152	70	25	2.29	2.70	35.4	60.4	0.525	11.5	26.6	58.4	88	1.29	90	3.02
152	70	25	1.91	2.29	30.1	60.6	0.450	9.89	26.9	58.9	89	0.75	89	2.58
152	70	25	1.52	1.87	24.5	60.9	0.369	8.13	27.1	59.3	89	0.39	89	2.11

Effective Properties
$\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$

Designation Example: 229Z76-290M; where $229=$ section depth (mm); $Z=Z$-section;
$76=$ flange width $(\mathrm{mm}) ; 290=$ minimum base steel thickness $\times 100(\mathrm{~mm}) ; M=$ metric designation

BARS AND PLATES

Bars

The term "bars" means:
(a) Rounds, squares and hexagons of all sizes;
(b) Flats up to 150 mm in width and over 5 mm in thickness; flats over 150 mm to 200 mm in width and over 6 mm in thickness.

Bar-size shapes include rolled flanged sections and angles under 75 mm in maximum dimension.

Plates

The term "plate" means flat hot-rolled steel, when ordered to thickness:
(a) Over 200 mm in width and 6 mm or over in thickness;
(b) Over 1200 mm in width and 4.5 mm or over in thickness.

Slabs, sheet bars, and skelp, although frequently falling within these size ranges, are not classified as plate. The table on the following page, Standard Product Classification for Flat Hot-Rolled Steel Products and Bars, summarizes the ranges for plate, bar, strip and sheet products.

Plates may be further defined as "Universal Mill Plates" or "Sheared Plates". Sheared plates are rolled on a mill with horizontal rolls only, producing a.product with uneven edges which must be sheared (or, at the option of the producer, flame cut) to ordered dimensions.

Universal mill plates are rolled to the ordered width on a mill having side rollers to control the width. Slab or ingot on a universal mill plate are not cross-rolled, but are only elongated during the rolling process. The mill order must specify universal mill plate when it is required.

Extreme plate sizes produced by mills vary greatly with the size of various mills, and individual mills should be consulted for this information,

Various extras for thickness, width, length, cutting, quality, quantity (or quantity discounts), and for other special requirements are added to the base price of plates. Particulars of these extras should be obtained from the producing mills.

Sketch Plates

Sketch plates of special or unusual shape usually require flame cutting, for which flame cutting extras apply. Some mills can supply sketch plates of certain shapes by shearing to size.

Floor Plates

Floor plates in different styles, patterns, and extreme dimensions are produced by different mills. The nominal, or ordered, thickness is that of the flat plate exclusive of the raised pattern. Individual producers should be consulted for more details.

Bearing Plates

Rolled steel bearing plates are used for column bases, and other bearing plates. Depending on the thickness required by design, bearing plates may require additional thickness for machining to ensure proper bearing. According to CSA S16-14 Clause 25.4.1.3, column base plates up to and including 55 mm in thickness are rolled flat with surfaces sufficiently smooth to receive, without machining or flattening, the milled or machine-cut ends of column shafts. Bearing plates over 55 mm in thickness may be flattened by pressing or machining to achieve the required flatness tolerances.

Tables

The following Tables are included in this section:
Standard Product Classification of Flat Hot-Rolled Steel Products and Bars
Flat Metal Products - Plate
SI Wire Size - Wire Gauges Comparison
SI Thickness - Imperial Gauge Comparisons

STANDARD PRODUCT CLASSIFICATION

Flat Hot-Rolled Steel Products and Bars

Width, w (mm)	Thickness, t (mm)					
	$t>6$	$6 \geq t>5$	$5 \geq t>4.5$	$4.5 \geq 1>1.2$	$1.2 \geq t>0.9$	$0.9 \geq t>0.65$
w ≤ 100	BAR	BAR	STRIP	STRIP	STRIP	STRIP
$100<w \leq 150$	BAR	BAR	STRIP	STRIP	STRIP	
$150<w \leq 200$	BAR	STRIP	STRIP	STRIP		
$200<w \leq 300$	PLATE	STRIP	STRIP	STRIP		
$300<w \leq 1200$	PLATE	SHEET*	SHEET*	SHEET*		
$1200<w$	PLATE	PLATE	PLATE	SHEET		

*For alloy steels, sheet begins at widths over 600 mm .

FLAT METAL PRODUCTS* - PLATE
If metric plate thicknesses are desired

Nominal Thickness, ${ }^{*+} \mathrm{mm}$		Mass ${ }^{\dagger}$ $\mathrm{kg} / \mathrm{m}^{2}$	Dead Load$\mathrm{kN} / \mathrm{m}^{2}$
First Preference	Second Preference		
4.5		35.3	0.347
	4.8	37.7	0.370
5.0		39.3	0.385
	5.5	43.2	0.424
6.0		47.1	0.462
7.0		55.0	0.539
8.0		62.8	0.616
	9.0	70.7	0.693
10		78.5	0.770
	11	86.4	0.847
12		94.2	0.924
	14	110	1.08
16		126	1.23
	18	141	1.39
20		157	1.54
	22	173	1.69
25		196	1.93
	28	220	2.16
30		236	2.31
	32	251	2.46
35		275	2.70
	38	298	2.93
40		314	3.08
	45	353	3.47
50		393	3.85
	55	432	4.24
60		471	4.62
	70	550	5.39
80		628	6.16
	90	707	6.93
100		785	7.70
	110	864	8.47
120		942	9.24
	130	1020	10.0
140		1100	10.8
	150	1180	11.6
160		1260	12.3
180		1410	13.9
200		1570	15.4
250		1960	19.3
300		2360	23.1

*Sizes are those listed in CAN3-G312.1-75. Metric plate thickness
preferences apply mostly to bridge structures.
** For coated structural sheet, the nominal thickness applies to the base metal. For metric thickness dimensions for zinc coated structural quality sheet steel, see Part 7, Structural Sheet Steel Products.
${ }^{t}$ Computed using steel density of $7850 \mathrm{~kg} / \mathrm{m}^{3}$.

SI WIRE SIZE - WIRE GAUGES COMPARISON

$\left.\begin{array}{|c|c|c|c|c|}\hline \begin{array}{c}\text { SI Wire } \\ \text { Size } \\ \text { Preferred } \\ \text { Diam. } \\ \text { (mm) }\end{array} & \begin{array}{c}\text { United } \\ \text { States } \\ \text { Steel } \\ \text { Wire } \\ \text { Gauge }\end{array} & \begin{array}{c}\text { American } \\ \text { or Brown } \\ \text { \& Sharpe } \\ \text { Wire } \\ \text { Gauge }\end{array} & \begin{array}{c}\text { British } \\ \text { Imperial } \\ \text { Or English } \\ \text { Legal } \\ \text { Standard } \\ \text { Wire } \\ \text { Gauge }\end{array} & \begin{array}{c}\text { Birming- } \\ \text { ham or } \\ \text { Stubs }\end{array} \\ \text { Iron Wire } \\ \text { Gauge }\end{array}\right]$

SI Wire Size Preferred Diam.* (mm)	United States Steel Wire Gauge	American or Brown \& Sharpe Wire Gauge	British Imperial or English Legal Standard Wire Gauge	Birmingham or Stubs Iron Wire Gauge
6.0				
	4	3	4	
5.6				
			5	5
5.3				
	5	4		6
5.0				
	6		6	
4.8				
		5		
4.6				
	7		7	7
$\begin{array}{r} 4.4 \\ 4.2 \\ \hline \end{array}$				
	8	6	8	8
$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$				
	9	7	9	9
3.6				
	10			10
3.4				
		8	10	
3.2				
	11			11
3.0				
		9	11	
2.8				
	12		12	12
2.6				
		10		13
2.4				
	13	11	13	
$\begin{aligned} & 2.3 \\ & 2.2 \\ & \hline \end{aligned}$				
				14
2.1				
	14	12	14	
$\begin{aligned} & 2.0 \\ & 1.90 \\ & \hline \end{aligned}$				
	15	13	15	15
$\begin{aligned} & 1.80 \\ & 1.70 \end{aligned}$				
		14	16	16
1.60				
	16			
1.50				

[^62]
SI THICKNESS - IMPERIAL GAUGE COMPARISONS ${ }^{\dagger}$

SI Preferred Thickness		United States Standard Gauge*				Birmingham Sheet Gauge		
		Weight	Ga . No.	Approximate Thickness		Gauge Number	Thickness	
First mm	Second mm	Oz . per sq. ft.		Inches	mm		Inches	mm
	18						.	
						7/0	0.6666	16.932
16								
						$\begin{aligned} & 6 / 0 \\ & 5 / 0 \end{aligned}$	$\begin{aligned} & 0.6250 \\ & 0.5883 \end{aligned}$	$\begin{aligned} & 15.875 \\ & 14.943 \end{aligned}$
	14							
						$\begin{aligned} & 4 / 0 \\ & 3 / 0 \end{aligned}$	$\begin{aligned} & 0.5416 \\ & 0.5000 \end{aligned}$	$\begin{aligned} & 13.757 \\ & 12.700 \end{aligned}$
12								
						$2 / 0$	0.4452	11.308
	11							
						0	0.3984	10.069
10	9.0							
						1	0.3532	8.971
8.0								
						2	0.3147	7.993
						3	0.2804	7.122
7.0								
		160	3	0.2391	6.073	4	0.2500	6.350
6.0								
		150	4	0.2242	5.695	5	0.2225	5.652
	5.5							
		140	5	0.2092	5.314	6	0.1981	5.032
5.0								
		130	6	0.1943	4.935			
	4.8							
		120	7	0.1793	4.554			
4.5								

${ }^{\dagger}$ Preferred thicknesses are as per CAN3-G312.1-75

* U.S. Standard Gauge is officially a weight gauge, in oz. per sq. ft. as tabulated. The Approx. thickness shown is the "Manufacturers' Standard" of the AISI based on a steel density of 501.81 lb . per ft^{3}

CRANE RAILS

General

Crane rails are designated by their mass in pounds per yard, with bolt sizes, hole diameters, and washer sizes dimensioned in inches. The SI metric dimensions and properties for crane rails and their accessories given on the following pages are soft-converted from manufacturers' catalogs. For ordering information, refer to ASTM standards A1 and A759 for tee rails ($60 \mathrm{lb} / \mathrm{yd}$ and over) and crane rails (104 to $175 \mathrm{lb} / \mathrm{yd}$), respectively.

Rails listed in this handbook are the most popular sizes used for crane runways. For dimensions and properties not provided in the tables, consult the supplier.

Rails are typically supplied in lengths ranging from 9140 mm for the lighter rails up to 23800 mm for the heavier sections. Consult the supplier for further information.

If bolted rail bar splices are to be used, the number of rail lengths required, plus one short length in each run, should be specified to permit staggering of the joints. Orders must clearly specify that "These Rails Are Intended for Crane Service".

Most manufacturers will chamfer the top and sides of the rail head at the ends, unless specified otherwise by the purchaser. Chamfering permits mild deformations to occur and minimizes chipping of the running surfaces.

When selecting a rail for crane service, the characteristics of operation must be considered. Some common variables which affect service life are:

- Frequency of operation
- Crane carriage speed and impact - rate of loading and unloading
- Corrosion-acidic mill conditions
- Abrasion
- Alignment of crane and supporting members
- Crane operating procedures

Crane rails are joined together end-to-end by either mechanical fasteners or welding. When bolting is used, special joint bars are employed, as shown on the following pages. If welded, manual are welding is usually used and joint bars are not required. Welding has the advantage of eliminating mechanical joints, thus reducing the problem of aligning the top of rails.

CRANE RAILS - PROPERTIES AND DIMENSIONS

30 to $104 \mathrm{lb} / \mathrm{yd}$

Dimensions

Rail type		Depth	Head		Base		Web		k	h	r	R	R_{1}	R_{2}	a
		d	c	c_{1}	b	t	w	Gauge g							
		mm	deg												
ASCE	30	79	43	43	79	4.4	8.3	35	13	44	305	305	6.4	6.4	13
	40	89	48	48	89	5.6	9.9	39	16	47	305	305	6.4	6.4	13
	60	108	60	60	108	7.1	12	48	19	58	305	305	6.4	6.4	13
	80	127	64	64	127	7.5	14	56	22	67	305	305	6.4	6.4	13
	85	132	65	65	132	7.5	14	58	23	70	305	305	6.4	6.4	13
	100	146	70	70	146	7.9	14	64	25	53	305	305	6.4	6.4	13
$\begin{gathered} \text { ASTM } \\ \text { A759 } \end{gathered}$	104	127	64	64	127	13	25	62	27	62	305	89	13	13	13
	135	146	87	76	132	12	32	63	27	71	356	305	19	19	13
	171	152	109	102	152	16	32	67	32	70	Flat	Vert.	19	22	12
	175	152	108	102	152	13	38	67	29	79	457	Vert.	29	51	12

Properties

Rail type		Mass	Dead Load	Area	$1 \times$	Sx	S_{x}	y	
		Head				Base			
			kg/m	kN/m	mm^{2}	$10^{6} \mathrm{~mm}^{4}$	$10^{3} \mathrm{~mm}^{3}$	$10^{3} \mathrm{~mm}^{3}$	mm
ASCE	30	14.9	0.146	1940	1.71	41.8	-	-	
	40	19.8	0.195	2540	2.72	58.8	63.7	42.7	
	60	29.8	0.292	3830	6.08	109	117	52.1	
	80	39.7	0.389	5070	11.0	166	182	60.5	
	85	42.2	0.413	5370	12.5	182	200	62.7	
	100	49.6	0.486	6350	18.3	239	264	69.3	
$\begin{aligned} & \text { ASTM } \\ & \text { A759 } \end{aligned}$	104	51.6	0.506	6650	12.4	175	221	56.1	
	135	67.0	0.657	8580	21.1	283	297	71.4	
	171	84.8	0.832	10800	30.6	401	400	76.5	
	175	86.8	0.851	11000	29.3	383	387	75.7	

Rail Fasteners

Hook bolts are primarily used when the flange of the crane beam is too narrow to permit the use of rail clamps. Hook bolts are used in groups of 2, located about 100 mm to 140 mm apart, at 600 mm centres, and may be adjusted plus or minus 12 mm . Suggested dimensions are shown in Section A-A. Rails require special preparation either in the fabricator's shop or by the crane rail supplier.

Suggested rail clamp dimensions are shown in Section B-B. For prefabricated rail clamps, reference should be made to manufacturers' catalogs of track accessories. Two types of clamps are available: the tight clamp and the floating clamp. Floating clamps are used when longitudinal and controlled transverse movement is required for thermal expansion and alignment. Rail clamps are fabricated from pressed or forged steel and usually have single or double bolts.

RAIL FASTENERS

RAIL SPLICES

Rail End

40 to 104 lbs.

Joint Bar

135 to 175 lbs .

$\begin{aligned} & \text { Rail } \\ & \text { Type } \end{aligned}$	Rail					Joint Bar					
	9	Hole dia.	A	B	C	Hole dia.	D	B	C	S	G
	mm	inch.	mm	mm	mm	inch.	mm	mm	mm	mm	mm
40	39.5	*13/16	63.5	127	-	*13/16	125	127	-	508	55.6
60	48.2	*13/16	63.5	127	-	*13/16	125	127	-	610	68,3
85	57.5	*15/16	63.5	127	-	*15/16	125	127	-	610	84.9
104	61.9	1-1/16	102	127	152	1-1/16	202	127	152	864	88.9
135	62.7	1-3/16	102	127	152	1-3/16	202	127	152	864	-
171	66.7	1-3/16	102	127	152	1-3/16	202	127	152	864	-
175	67.5	1-3/16	102	127	152	1-3/16	202	127	152	864	-

*Special rail drilling and joint bar punching.

Rail Type	Bolt					Spring Washer		Mass of Ass'y	
	diam.	Grip	L	H	Hole dia.	Thk. \& width	With Flg.Without Flg.		
	in.	mm	mm	mm	in.	$\mathrm{in} . \mathrm{in}$.	kg.	kg.	
40	$3 / 4$	49.2	88.9	63.5	$13 / 16$	$7 / 16 \times 3 / 8$	9.07	7.48	
60	$3 / 4$	65.9	102	68.3	$13 / 16$	$7 / 16 \times 3 / 8$	16.56	13.43	
85	$7 / 8$	80.2	121	81.0	$15 / 16$	$7 / 16 \times 3 / 8$	25.67	20.55	
104	1	88.9	133	88.9	$1-1 / 16$	$7 / 16 \times 1 / 2$	33.34	25.13	
135	$1-1 / 8$	92.1	140	93.7	$1-3 / 16$	$7 / 16 \times 1 / 2$	-	34.16	
171	$1-1 / 8$	113	159	103	$1-3 / 16$	$7 / 16 \times 1 / 2$	-	41.19	
175	$1-1 / 8$	105	152	100	$1-3 / 16$	$7 / 16 \times 1 / 2$	-	39.78	

Splices

Rail drilling and joint bar punching as supplied for track work is not recommended for crane rails, since oversize holes may allow too much movement at the rail ends and result in failure. Tight joints which require special rail and joint bar drilling (see table on previous page) and squaring of the rail ends are recommended.

Light rails are not finished at the mill and are usually finished at the fabricator's shop or at the erection site. This may require reaming of holes for proper fit of bolts if dimensional tolerances are cumulative.

Joint bars are provided for crane service to match the rails ordered and may be ordered blank. Under no circumstances should these joint bars be used as welding straps. Manufacturer's catalogs should be consulted for joint bar specifications, dimensions and identification necessary to match the crane rail specified.

Joint bar bolts for crane service are readily identified from those used for track work, as they have straight shanks and are manufactured to ASTM A449 specification. Matching nuts are manufactured to ASTM A563 Grade B. The bolted assembly includes an alloy spring washer which is furnished to American Railway Engineering and Maintenance of Way Association (AREMA) specifications. Bolts and nuts manufactured to ASTM A325 may also be acceptable.

To prolong the life of the runway, bolts should be retightened within 30 days after installation and every 3 months thereafter.

FASTENERS

General

The information on fasteners provided herein is based on standards, specifications and publications of the:

Canadian Standards Association (CSA Group)
American National Standards Institute (ANSI)
American Society of Mechanical Engineers (ASME)
Industrial Fasteners Institute (IFI)
Research Council on Structural Connections (RCSC)
Additional fastener information can be obtained from the various manufacturers and from the Canadian Fasteners Institute (CFI).

Availability

The more commonly used fasteners for structural purposes in Canada have included the following:
$5 / 8$-inch ASTM A307 bolts for light steel framing such as girts, purlins, etc.
$3 / 4$-inch ASTM A325 bolts for building structures
$7 / 8$-inch ASTM A325 bolts for bridge structures
While other diameters and types of bolts have been used on specific projects in Canada, larger sizes of ASTM A325 bolts, all sizes of ASTM A490 bolts, and all sizes of metric bolts (A325M and A490M) have not been in common use in Canada, and designers contemplating their use should first check for their availability.

Definitions

Body Length: Distance from the underside of the head bearing surface to either the last scratch of thread or the top of the extrusion angle, whichever is the closest to the head.
Bolt Length: Length from the underside of the head bearing surface to the extreme point.
Finished Fastener: Fastener made to close tolerances and having surfaces other than the threads and bearing surface finished to provide a general high-grade appearance.
Grip: Total thickness of the plies of a joint through which the bolt passes, exclusive of washers or direct-tension indicators.

Height of Bolt Head: Overall distance, measured parallel to the fastener axis, from the extreme top (excluding raised identification marks) to the bearing surface and including the thickness of the washer face where provided.
Natural Finish: As-processed finish, unplated or uncoated, of the bolt or nut.
Nominal Size: Designation used for the purpose of general identification.
Proof Load: Specified test load which a fastener must withstand without any indication of significant deformation or failure.
Thickness of Nut: Overall distance from the top of the nut to the bearing surface, measured parallel to the axis of the nut.

Thread Length of a Bolt: Distance from the extreme point to the last complete thread.

Transition Thread Length: Distance from the last complete thread to either the last scratch of thread or the top of the extrusion angle, whichever is the closest to the head.

Washer Face: Circular boss on the bearing surface of a bolt or nut.

Tables

The following tables are included in this section:

- Markings - ASTM High-Strength Bolts, Nuts and Assemblies
- High-Strength Bolts, Nuts and Assemblies - Dimensions
- High-Strength Bolts, Nuts and Assemblies - Acceptable ASTM A563 Nut Grade and Finish, and ASTM F436 Washer Type and Finish
- Bolt Lengths for Various Grips - ASTM A325 and A490 Bolts
- Weight of ASTM A325 Bolts, Nuts and Washers
- ASTM F436 Washer Dimensions
* ASTM A307 Hex Bolts and Heavy Hex Nuts - Dimensions
- High-Strength Bolts - Purchase Order Information
- Fasteners - Miscellaneous Detailing Data (Diagonal Distance for Staggered Fasteners, Bolt Length Tolerances, and Minimum Edge Distance for Bolt Holes)
- Usual Gauges - W, M, S, C shapes, and Angles
- Installation Clearances

Metric Fasteners

Archival material on metric-size bolts found in previous editions of the Handbook is provided in Metric Fastener Data at the end of this section.

Anchor Rods

See Anchor Rods in Part 4

MARKINGS - ASTM HIGH-STRENGTH BOLTS, NUTS AND ASSEMBLIES ${ }^{1}$

Bolt Head ${ }^{2}$		
Designation / Grade	Type 1	Type 3
A325 Bolt ${ }^{3}$	Three radial lines 120° apart are optional.	4 $\begin{aligned} & \text { x22 } \\ & \text { A325 }\end{aligned}$
F1852 Bolt Assembly ${ }^{4}$		$x^{2} \mathrm{z}$ 0 0 325
A490 Bolt		
F2280 Bolt Assembly ${ }^{4}$	$\left(\begin{array}{c}x^{Y} 2 \\ 0 \\ 7+2005\end{array}\right.$	K_{2} 0 0 2905

| A563 Nut | Nut 2 |
| :---: | :---: | :---: |

Notes:

1. Adapted from the Specification for Structural Joints Using High-Strength Bolts, Research Council on Structural Connections (RCSC), 2014.
2. XYZ represents the manufacturer's indentification mark.
3. For A325 bolts threaded fulf length and their bolt head markings, see next page.
4. For F1852 and F2280 twist-off-type tension-control bolt assemblies, the letters "TC" are optional, in accordance with ASTM Standard F3125. These assemblies are also produced with a heavy-hex head that has similar markings.

HIGH-STRENGTH BOLTS, NUTS AND ASSEMBLIES

Dimensions

Imperial Dimensions					Nominal Bolt Size D in.	Metric Dimensions (Soft)				
Bolt Dimensions* Heavy Hex Structural Bolts in.			Nut Dimensions* Heavy Hex Nuts in.			Boll Dimensions* Heavy Hex Structural Bolts mm			Nut Dimensions* Heavy Hex Nuts mm	
Width across flats F	Height H	Thread length \dagger	Width across flats W	Height H		Width across fiats F	Height H	Thread length ${ }^{\dagger}$	Width across flats W	Height H
7/8	5/16	1	7/8	$31 / 64$	1/2	22.2	7.9	25.4	22.2	12.3
$11 / 16$	25/64	$11 / 4$	11/16	$39 / 4$	5/4	27.0	9.9	31.8	27.0	15.5
$11 / 4$	15/32	13/6	$11 / 4$	47/BA	3/4	31.8	11.9	34.9	31.8	18.7
17/10	35/64	$11 / 2$	17/10	55/64	\%	36.5	13.9	38.1	36.5	21.8
1/6	39/64	$13 / 4$	15/8	83/6x	1	41.3	15.5	44.5	41.3	25.0
$13 / 16$	11/16	2	$13 / 18$	17/64	1/1/8	46.0	17.5	50.8	46.0	28.2
2	25/32	2	2	$1^{1 / 32}$	1/4	50.8	19.8	50.8	50.8	31.0
23/16	$27 / 32$	$21 / 4$	23/16	$11 / 32$	1%	55.6	21.4	57.2	55.6	34.1
2\% ${ }^{3}$	15/16	$21 / 4$	$2{ }^{2} / 6$	15/32	$11 / 2$	60.3	23.8	57.2	60.3	37.3

* Dimensions according to ASME B18.2.6.
t Certain A325 bolts may be ordered threaded full length. See notes and figure below.

A325 Bolt with Standard Thread Length

A325 Bolt Threaded Full Length

Note: A325 bolts threaded full length are permitted under Supplementary Requirement S1 of ASTM A325. They are restricted to bolts with nominal lengths no greater than four times the nominal diameter.

HIGH-STRENGTH BOLTS, NUTS AND ASSEMBLIES

Acceptable ASTM A563 Nut Grade and Finish and ASTM F436 Washer Type and Finish

ASTM Desig.	Bolt Type	Bolt Finish ${ }^{\text {d }}$	ASTM A563 Nut Grade and Finlsh ${ }^{\text {d }}$	ASTM F436 Washer Type and Finish ${ }^{\text {a,d }}$
A325	1	Plain (uncoated)	C, C3, D, DH ${ }^{\text {c }}$ and DH3; plain	1: plain
		Galvanized	DH°; galvanized and lubricated	1; galvanized
		$\mathrm{Zn} / \mathrm{Al}$ Inorganic, per ASTM F1136 Grade 3	$\mathrm{DH}^{\mathrm{c}} ; \mathrm{Zn} / \mathrm{Al}$ Inorganic, per ASTM F1136 Grade 5	1; $\mathrm{Zn} / \mathrm{Al}$ Inorganic, per ASTM F1136 Grade 3
	3	Plain	C3 and DH3; plain	3; plain
F1852	1	Plain (uncoated)	$\mathrm{C}, \mathrm{C} 3, \mathrm{DH}^{\mathrm{c}} \text { and } \mathrm{DH} 3 ;$ plain	1: plain ${ }^{\text {b }}$
		Mechanically Galvanized	DH^{c}; mechanically galvanized and lubricated	1; mechanically galvanized ${ }^{\text {b }}$
	3	Plain	C3 and DH3; plain	3; plain ${ }^{\text {b }}$
A490	1	Plain	$\mathrm{DH}^{\text {c }}$ and DH 3 ; plain	1: plain
		$\mathrm{Zn} / \mathrm{Al}$ Inorganic, per ASTM F1136 Grade 3	$\mathrm{DH}^{\mathrm{c}} ; \mathrm{Zn} / \mathrm{Al}$ Inorganic, per ASTM F1136 Grade 5	1; $\mathrm{Zn} / \mathrm{Al}$ Inorganic, per ASTM F1136 Grade 3
	3	Plain	DH3; plain	3; plain
F2280	1	Plain	$\mathrm{DH}^{\text {c }}$ and $\mathrm{DH3}^{\text {; plain }}$	1; plain ${ }^{\text {b }}$
	3	Plain	DH3; plain	3; plain ${ }^{\text {b }}$
a Applicable only if washer is required b Required in all cases under nut. - The substitution of ASTM A194 grade 2H nuts in place of ASTM A563 grade DH nuts is permitted. d "Galvanized" as used in this table refers to hot-dip galvanizing in accordance with ASTM F2329 or mechanical galvanizing in accordance with ASTM B695. - " $\mathrm{Zn} / \mathrm{Al}$ Inorganic" as used in this table refers to application of a $\mathrm{Zn} / \mathrm{Al}$ Corrosion Protective Coating in accordance with ASTM F1136 which has met all the requirements of IFI-144. Source: Specification for Structural Joints Using High-Strength Bolts, Research Council on Structural Connections (RCSC), 2014.				

BOLT LENGTHS* FOR VARIOUS GRIPS** ASTM A325 AND A490 BOLTS

*Bolt lengths must be specified in inches for ASTM A325 and A490 bolts.
** Grip is thickness of material to be connected exclusive of washers.
For each flat washer, add $4 \mathrm{~mm}(5 / 32$ inch $)$ lo grip.
For each beveled washer, add $8 \mathrm{~mm}(5 / 18$ inch $)$ to grip.
For information on A325 bolts threaded full length, see High-Strength Bolts, Nuts and Assemblies .

WEIGHT OF ASTM A325 BOLTS, NUTS AND WASHERS

WEIGHT IN POUNDS PER 100 UNITS

HEAVY HEX STRUCTURAL BOLTS WITH HEAVY HEX NUTS (WITHOUT WASHERS)									
Length Under Head, Inches	Bolt Diameter, Inches								
	1/2	5/8	$3 / 4$	7/6	1	11/8	$11 / 4$	13/6	$11 / 2$
1	16.5	29.4	47.0						
1/4/4	17.8	31.1	49.6	74.4	104				
1/2/2	19.2	33.1	52.2	78.0	109	148	197		
$13 / 4$	20.5	35.3	55.3	81.9	114	154	205	261	333
2	21.9	37.4	58.4	86.1	119	160	212	270	344
$21 / 4$	23.3	39.8	61.6	90.3	124	167	220	279	355
21/2	24.7	41.7	64.7	94.6	130	174	229	290	366
$23 / 4$	26.1	43.9	67.8	98.8	135	181	237	300	379
3	27.4	46.1	70.9	103	141	188	246	310	391
$31 / 4$	28.8	48.2	74.0	107	146	195	255	321	403
$31 / 2$	30.2	50.4	77.1	111	151	202	263	332	416
$33 / 4$	31.6	52.5	80.2	116	157	209	272	342	428
4	33.0	54.7	83.3	120	162	216	280	353	441
$41 / 4$	34.3	56.9	86.4	124	168	223	289	363	453
41/2	35.7	59.0	89.5	128	173	230	298	374	465
$4 / 4$	37.1	61.2	92.7	133	179	237	306	384	478
5	38.5	63.3	95.8	137	184	244	315	395	490
$51 / 4$	39.9	65.5	98.9	141	190	251	324	405	503
$51 / 2$	41.2	67.7	102	146	196	258	332	416	515
$5 \frac{3}{4}$	42.6	69.8	105	150	201	265	341	426	527
6	44.0	71.9	108	154	207	272	349	437	540
$61 / 4$		74.1	111	158	212	279	358	447	552
$61 / 2$		76.3	114	163	218	286	367	458	565
$63 / 4$		78.5	118	167	223	293	375	468	577
7		80.6	121	171	229	300	384	479	589
$71 / 4$		82.8	124	175	234	307	392	489	602
$71 / 2$		84.9	127	179	240	314	401	500	614
$73 / 4$		87.1	130	183	246	321	410	510	626
8		89.2	133	187	251	328	418	521	639
$81 / 4$				192	257	335	427	531	651
$81 / 2$				196	262	342	435	542	664
$83 / 4$							444	552	676
9							453	563	689
Per inch additional	5.5	8.6	12.4	16.9	22.1	28.0	34.4	42.5	49.7

Plain round washers	2.1	3.6	4.8	7.0	9.4	11.3	13.8	16.8	20.0
Beveled square washers	23.1	22.4	21.0	20.2	19.2	34.0	31.6	31.2	32.9

ASTM F436 WASHER DIMENSIONS

PLAIN CIRCULAR WASHERS

Bolt Size	B		A		T	
	Outside Diameter mm		Hole Diameter mm		Thickness mm	
in.	Max	Min	Max	Min	Max	Min
$1 / 2$	27.8	26.2	14.3	13.5	4.5	2.5
5/8	34.2	32.5	18.3	17.5	4.5	3.1
$3 / 4$	38.1	36.5	21.5	20.7	4.5	3.1
7/6	45.3	43.6	24.6	23.8	4.5	3.5
1	52.4	49.2	28.6	27.0	4.5	3.5
$11 / 6$	58.8	55.5	31.8	30.2	4.5	3.5
$11 / 4$	65.1	61.9	36.5	34.9	4.5	3.5
$13 / 8$	71.5	68.2	39.7	38.1	4.5	3.5
$11 / 2$	77.8	74.6	42.9	41.3	4.5	3.5

Note: Minimum thickness 7.7 mm and maximum thickness 9.5 mm for extra thick washers
Metric dimensions have been soft-converted. For official dimensions, refer to ASTM F436,

BEVELLED SQUARE WASHERS

Bolt Size	C		A		S	T	U
	Width mm		Hole Diameter mm		Thickness, mm		
			Thick Side	Mean Nom.	Thin Side		
in.	Max	Min				Max	Min
1/2	45.3	43.6	14.3	13.5	11.6	7.9	4.2
5/8	45.3	43.6	18.3	17.5	11.6	7.9	4.2
$3 / 4$	45.3	43.6	21.5	20.6	11.6	7.9	4.2
7/8	45.3	43.6	24.6	23.8	11.6	7.9	4.2
1	46.1	42.8	30.2	28.6	11.6	7.9	4.2
$11 / 8$	58.8	55.5	33.4	31.8	12.7	7.9	3.2
$11 / 4$	58.8	55.5	36.5	34.9	12.7	7.9	3.2
13/8	58.8	55.5	39.7	38.1	12.7	7.9	3.2
$11 / 2$	58.8	55.5	42.9	41.3	12.7	7.9	3.2

Note: Metric dimensions have been soft-converted. For official dimensions, refer to ASTM F436.

ASTM A307 HEX BOLTS AND HEAVY HEX NUTS

DIMENSIONS

Imperial Dimensions						Nominal Bolt Size D in.	Metric Dimensions (Soft-Converted)					
Bolt Dimensions Hex Structural Bolts in.				Nut Dimensions Heavy Hex Nuts in.			Bolt Dimensions Hex Structural Bolts mm				Nut Dimensions Heavy Hex Nuts mm	
Width across fiats F	Meight H	Minimum Thread Length		Width across flats F	Height N		Width across flats F	Height H	Minimum Thread Length		Width across flats F	Height N
		$\mathrm{L} \leq 6 \mathrm{in}$.	$L>6$ in,						$\mathrm{L} \leq 152$	L> 152		
$3 / 4$	11/32	$11 / 4$	$11 / 2$	7/0	31/44	1/2	19	9	32	38	22	12
15/10	27/84	$11 / 2$	13/4	$11 / 10$	3\%/4	3/6	24	11	38	44	27	15
11/6	1/2	$11 / 4$	2	$11 / 4$	47/4	1/4	29	13	44	51.	32	19
$15 / 16$	31/64	2	$21 / 4$	17/16	55/4	1/1	33	15	51	57	37	22
$11 / 2$	13/44	$21 / 4$	$21 / 2$	$15 / 6$	83/64	1	38	17	57	64	41	25
$111 / 18$	3/4	$21 / 2$	$23 /$	131318	$11 / 84$	$11 / 8$	43	19	64	70	46	28
1/6	27/32	$23 / 4$	3	2	$17 / 32$	$11 / 4$	48	21	70	76	51	31
$21 / 16$	29/32	3	$31 / 4$	23/18	$111 / 32$	1%	52	23	76	83	56	34
21/4	1	$31 / 4$	$31 / 2$	23/6	1 $15 / 32$	$11 / 2$	57	25	83	89	60	37

Note: ASTM A307 bolts shall be Grade A hex bolts with heavy hex nuts as per ASTM A563, according to S16-14 Clause 13.12.1.2

Imperial dimensions for Hex Structural Bolts and Heavy Hex Nuts conform to ASME B18.2.1 and B18.2.2, respectively. Metric dimensions in millimetres have been softconverted and rounded to the nearest millimetre.

The minimum thread lengths are in agreement with the requirements of ASME B18.2.1 In general, these requirements are as follows:

- Bolts 6 inches or less in length - twice diameter plus $1 / 4$-inch.
- Bolts longer than 6 inches - twice diameter plus $1 / 2$-inch.
- Bolts too short for the above thread lengths shall be threaded as close to the head as practicable.
Note: A307 bolts and nuts are manufactured in imperial units only.

HIGH-STRENGTH BOLTS PURCHASE ORDER INFORMATION

ASTM F3125, a consolidation and replacement of six standards (A325, A325M, A490, A490M, F1852, and F2280) was published in January 2015. In this "umbrella" standard, the name of each bolt standard becomes a bolt grade (e.g. A490 becomes F3125 Grade A490). The traditional bolt type designations remain, i.e. Type 3 for weathering steel and Type 1 for bolts of other high-strength steel compositions. There are two bolt styles: F1852 and F2280 are referred to as Twist-off Style bolts, while the others are Heavy Hex Style bolts. All bolts manufactured after the publication date of F3125 must comply with the requirements of F3125. The bolt head markings, however, remain essentially unchanged, as shown in the table entitled Markings - ASTM High-Strength Bolts, Nuts and Assemblies above.

The design of bolted connections must comply with CSA S16-14, which specifies the bolt strength and resistances, and references the ASTM bolt standards prior to the consolidation. New purchase orders, however, may be placed in accordance with the ordering requirements in ASTM F3125 as summarized below:

- ASTM designation
* Quantity: Number of bolts or assemblies, including washers, if required
- Size: Including nominal bolt diameter and bolt length, and thread pitch if other than standard
- Grade: A325, A325M, A490, A490M, F1852 or F2280
- Type: Type 1 or Type 3. When the Type is not specified, either Type 1 or Type 3 may be furnished at the supplier's option
- Style: Heavy Hex or Twist-Off Style

Additional ordering information may include, if required: coatings or finishes, test reports, details of other assembly components such as nuts and washers, rotational capacity testing, special observations or inspection requirements, and country of origin requirements. Heavy hex bolts may be ordered individually, packaged with nuts, packaged with nuts and washers, or as assemblies. See ASTM F3125 for further information.

A typical description: 1000 pieces $3 / 4 " \times 3$ " ASTM F3125-15, Grade A325 heavy hex bolt, Type 1, each with one hardened ASTM F436 Type 1 washer and one A563 Grade DH heavy hex nut

FASTENERS - MISCELLANEOUS DETAILING DATA Diagonal Distance for Staggered Fasteners

BOLT LENGTH TOLERANCES

Nominal Length mm	Nominal size, in.					
	$3 / 8$	$3 / 4$	$7 / 8$	1	$11 / 8$	$11 / 4$
Up to 25	+0.5	+0.5	\ldots	\ldots	\ldots	$\ldots-$
	-0.8	-0.8	\ldots	\ldots	\ldots	\ldots
Over 25 to 64	+1.5	+1.5	+2.0	+2.0	+3.0	+3.0
	-2.0	-2.0	-2.5	-2.5	-3.0	-3.0
Over 64 to 102	+2.0	+2.0	+2.5	+2.5	+4.1	+4.1
	-2.5	-2.5	-3.6	-3.6	-4.1	-4.1
Over 102 to 152	+2.5	+2.5	+3.0	+3.0	+4.6	+4.6
	-2.5	-2.5	-4.1	-4.1	-4.6	-4.6
Over 152	+3.6	+3.6	+4.1	+4.1	+5.6	+5.6
	-4.6	-4.6	-5.1	-5.1	-5.6	-5.6

Note: Metric dimensions have been soft-converted.
Refer to ASME B18.2.1 for further information.

MINIMUM EDGE DISTANCE FOR BOLT HOLES

Bolt diameter in.	At sheared edge mm	At rolled or sawn edges, or edges cut by gas*, plasma, laser or water jet, mm
$5 / 4$	28	22
$3 / 4$	32	25
$1 / 4$	38^{\dagger}	28
1	44^{\dagger}	32
$11 / 4$	51	38
$11 / 4$	57	41
Over $11 / 4$	$1.75 \times$	$1.25 \times$ diameter
	diameter	

* Gas-cut edges shall be smooth and free from notches. The edge distance in this column may be decreased by 3 mm when the hole is at a point where the calculated stress under factored loads is not more than 0.3 of the yield stress.
\dagger At the ends of beam-framing angles, this distance may be 32 mm .

USUAL GAUGES

๑ Holes usually drilled due to size of punch die block
\dagger Some of the gauge and flange width combinations may not meet edge distance requirements in S16-14 Table 6.

Usual Gauges for Angles, Millimetres			
	Leg	Gauge	
		9	9,
-	203	115	75
- 1	178	100	65
$\mathrm{g}_{1} \quad \mathrm{~g}_{2} \geq 27$ bolt diameters	152	90	60
\% $\quad g_{2} \geq 2.7$ bolt diameters	127	75	50
g (See CSA S16-14	102	65	
∇^{9} Clause 22.3.1)	89	50	
	76	45	
	64	35	
	51	29	
	44	25	

Note: Bolt gauges shown do not necessarily comply with S16 installation clearances. Clearance and edge dislance limitations should be verified for the selected bolt size.

Aligned Bolts								
	D	B	H_{H}	H_{s}	C_{T}	C_{E}	$\mathrm{C}_{\text {F }}$	
							Circular	Clipped
$\mathrm{C}_{\mathrm{E}} \mathrm{C}_{\text {I }}+$	5/8	44.5	9.9	31.8	25.4	17.5	17.5	14.3
	\%	57,2	11.9	34.9	31.8	19.1	19,1	17.5
典与	7/8	63.5	13.9	38.1	34.9	22.2	22.2	20.6
$\xrightarrow{\square}$	1	66.7	15.5	41.3	36.5	23.8	25.4	22.2
	11/6	73.0	17.5	47.6	39.7	27.0	28.6	25.4
$\mathrm{C}_{\mathrm{F}} \sim$ Fillet	11/4	79.4	19.8	50.8	42.9	28.6	31.8	28.6
	13/6	82,6	21.4	54.0	44.5	31.8	34.9	31.8
	$11 / 2$	88.9	23.8	57.2	47.6	33.3	38.1	33.3

METRIC FASTENER DATA

General

The tables on the following pages contain design data on metric-size high-strength bolts (ASTM A325M and A490M) and accessories (ASTM F436M washers) found in the $10^{\text {th }}$ edition of the Handbook. This material is reprinted herein without revision for historical reference. Metric bolt sizes have not been in common use in Canada, and designers considering their use should first check for their availability.

Tables

The following tables are included in this section:

- ASTM A325M and ASTM A490M - High-Strength Bolts and Nuts
- Minimum and Maximum Grips for Metric Heavy Hex Structural Bolts
- Mass of ASTM A325M Bolts, Nuts and Washers
- ASTM F436M Metric Washer Dimensions
- Fasteners - Miscellaneous Detailing Data;
- Thread Data, Designations, and Slotted Hole Dimensions
- Bolt Length Tolerances, Minimum Edge Distance for Bolt Holes, and Usual Gauges
- Erection Clearances - Bolt Impact Wrenches

ASTM A325M AND ASTM A490M** HIGH-STRENGTH BOLTS AND NUTS

BOLTS

NUTS

DIMENSIONS

Nominal Bolt Size	Heavy Hex Bolt or Nut Dimension				Heavy Hex Nut Max. Height N	Heavy Hex Structural Boll			
	Across Flats For W		Across Corners F^{\prime} or W'			Max Head Height H	Thread Length*		Max. Transition Thread Length
			Boit Lengths≤ 100	Bolt Lengths >100					
	Max.	Min.					Max.	Min.	
mm									
M16 $\times 2$	27.00	26.16	31.18	29.56	17.1	10.75	31	38	6.0
M 20×2.5	34.00	33.00	39.26	37.29	20.7	13.40	36	43	7.5
$\mathrm{M} 22 \times 2.5$	36.00	35.00	41.57	39.55	23.6	14.90	38	45	7.5
M 24×3	41.00	40.00	47,34	45.20	24.2	15.90	41	48	9.0
M 27×3	46.00	45.00	53.12	50.85	27.6	17.90	44	51	9.0
M30 $\times 3.5$	50.00	49.00	57.74	55.37	30.7	19.75	49	56	10.5
M36 $\times 4$	60.00	58.80	69.28	66.44	36.6	23.55	56	63	12.0

[^63]MINIMUM AND MAXIMUM GRIPS FOR METRIC HEAVY HEX. STRUCTURAL BOLTS, IN MILLIMETRES

Nominal Bolt Size	M16		M20		M22		M24		M27		M30		M36	
Nominal Length (mm)	Min. Grip	Max. Grip												
45	14	26		23		20								
50	19	31	14	28		25		24						
55	24	36	19	32	17	29		29		25				
60	29	41	24	37	22	34	19	34		30		27		
65	34	46	29	42	27	39	24	39	21	35		32		
70	39	51	34	47	32	44	29	44	26	40	21	37		31
75	44	56	39	52	37	49	34	49	31	45	26	42		36
80	49	61	44	57	42	54	39	54	36	50	31	47	24	41
85	54	66	49	62	47	59	44	59	41	55	36	52	29	46
90	59	71	54	67	52	64	49	64	46	60	41	57	34	51
95	64	76	59	72	57	69	54	69	51	65	46	62	39	56
100	69	81	64.	77	62	74	59	74	56	70	51	67	44	61
110	72	91	67	87	65	84	62	84	59	80	54	77	47	71
120	82	101	77	97	75	94	72	94	69	90	64	87	57	81
130	92	110	87	107	85	104	82	103	79	100	74	97	67	91
140	102	120	97	117	95	114	92	113	89	110	84	107	77	101
150	112	130	107	127	105	124	102	123	99	120	94	117	87	111
160	122	138	117	135	115	132	112	131	109	128	104	125	97	119
170	132	148	127	145	125	142	122	141	119	138	114	135	107	129
180	142	158	137	155	135	152	132	151	129	148	124	145	117	139
190	152	168	147	165	145	162	142	161	139	158	134	155	127	149
200	162	178	157	175	155	172	152	171	149	168	144	165	137	159
210	172	188	167	185	165	182	162	181	159	178	154	175	147	169
220	182	198	177	195	175	192	172	191	169	188	164	185	157	179
230	192	208	187	205	185	202	182	201	179	198	174	195	167	189
240	202	218	197	215	195	212	192	211	189	208	184	205	177	199
250	212	228	207	225	205	222	202	221	199	218	194	215	187	209
260	222	238	217	235	215	232	212	231	209	228	204	225	197	219
270	232	248	227	245	225	242	222	241	219	238	214	235	207	229
280	242	258	237	255	235	252	232	251	229	248	224	245	217	239
290	252	268	247	265	245	262	242	261	239	258	234	255	227	249
300	262	278	257	275	255	272	252	271	249	268	244	265	237	259

1. This table is based on ANSI B18.2.3.7M-1979 (R2006).
2. Bolts with lengths above the heavy solid line are threaded full length.

MASS OF ASTM A325M BOLTS, NUTS AND WASHERS
MASS IN KILOGRAMS PER 100 UNITS

HEAVY HEX STRUCTURAL BOLTS WITH HEAVY HEX NUTS (WITHOUT WASHERS)							
Length Under	Bolt Diameter, mm						
Head, mm	M16	M20	M22	M24	M27	M30	M36
45	16.3						
50	17.1	30.4					
55	17.8	31.6	39.2				
60	18.6	32.9	40.7	53.7			
65	19.4	34.1	42.2	55.4	76.8		
70	20.2	35.3	43.7	57.2	79.0	98.0	
75	21.0	36.6	45.2	59.0	81.3	101	
80	21.8	37.8	46.7	60.7	83.5	104	167
85	22.6	39.0	48.1	62.5	85.8	106	171
90	23.4	40.3	49.6	64.3	88.0	109	175
95	24.1	41.5	51.1	66.1	90.2	112	179
100	24.9	42.7	52.6	67.8	92.5	114	183
110	26.3	44.9	55.3	71.0	96.7	120	191
120	27.9	47.4	58.2	74.5	101	125	199
130	29.5	49.8	61.2	78.0	106	131	207
140	31.1	52.3	64.2	81.6	110	136	214
150	32.6	54.7	67.2	85.1	115	142	222
160	34.2	57.2	70.2	88.7	119	147	230
170	35.8	59.7	73.1	92.2	124	153	238
180	37.3	62.1	76.1	95.8	128	158	246
190	38.9	64.6	79.1	99.3	132	164	254
200	40.5	67.0	82.1	103	137	169	262

Plain round washers	1.8	2.9	3.2	4.3	5.2	5.9	8.6
Beveled square washers	10.5	9.7	9.3	8.8	15.9	14.9	12.8

ASTM F436M METRIC WASHER DIMENSIONS

PLAIN CIRCULAR WASHERS

Metric Bolt Size	B		A		T	
	Outside Diameter		Hole Diameter		Thickness	
	Max	Min	Max	Min	Max	Min
M16 $\times 2$	34.0	32.4	18.4	18.0	4.6	3.1
M20 $\times 2.5$	42.0	40.4	22.5	22.0	4.6	3.1
M22 $\times 2.5$	44.0	42.4	24.5	24.0	4.6	3.4
M24 $\times 3$	50.0	48.4	26.5	26.0	4.6	3.4
M27 $\times 3$	56.0	54.1	30.5	30.0	4.6	3.4
M30 $\times 3.5$	60.0	58.1	33.6	33.0	4.6	3.4
M36 $\times 4$	72.0	70.1	39.6	39.0	4.6	3.4

BEVELLED SQUARE WASHERS

Metric Bolt Size	C		A		S	T	U
	Width		Hole Diameter		Thickness		
			Thick Side	Mean Nom.	Thin Side		
	Max	Min				Max	Min
M16 $\times 2$	45.0	43.0	18.4	18.0	11.7	8	4.3
M20 $\times 2.5$	45.0	43.0	22.5	22.0	11.7	8	4.3
$\mathrm{M} 22 \times 2.5$	45.0	43.0	24.5	24.0	11.7	8	4.3
M 24×3	45.0	43.0	26.5	26.0	11.7	8	4.3
M27 $\times 3$	58.0	56.0	30.5	30.0	12.8	8	3.3
M 30×3.5	58.0	56.0	33.6	33.0	12.8	8	3.3
M36 $\times 4$	58.0	56.0	39.6	39.0	12.8	8	3.3

Metric Fastener Designations

THREAD DATA

Diameter Pitch Combinations				
Nominal dia. (mm)	Thread pitch (mm)	Nominal dia. (mm)	Thread pitch (mm)	
1.6	0.35	20	2.5	
2	0.4	22	2.5	
2.5	0.45	24	3	
3	0.5	27	3	
3.5	0.6	30	3.5	
4	0.7	36	4	
5	0.8	42	4.5	
6.0	1.0	48	5	
8	1.25	56	5.5	
10	1.5	64	6	
12	1.75	72	6	
14	2	80	6	
16	2	90	6	
	2	100	6	

Basic Metric Thread Designation: Metric screw threads are designated by the letter " M " followed by the nominal size (basic major diameter) in millimetres and the pitch in millimetres separated by the symbol " X ".

$\left.$| M12 | X | 1.75
 Size
 (mm) | -6 g
 (pitch
 in mm$)$ |
| :---: | :---: | :---: | :---: | | Standard |
| :---: |
| class of fit | \right\rvert\,

Note: In the metric system, the pitch of the thread is given in mm instead of threads per inch - thus a M12 x 1.75 thread has a nominal diameter of 12 mm and the pitch of the thread is 1.75 mm .

PRODUCT DESIGNATION

Metric Bolt Designation: The standard method of designating a metric bolt is by specifying (in sequence) the product name, nominal diameter and thread pitch, nominal length, type, steel property class, and protective coating (if required).

Heavy Hex Structural Bolt, M22x2.5x160,
Type 2, ASTM A325M-09, Zinc Galvanized

Metric Nut Designation: The standard method of designating a metric nut is by specifying (in sequence) the product name, nominal diameter and pitch, steel property class or material identification, and protective coating (if required).

Heavy Hex Nut, M30x3.5, ASTM A563M class 105, hot dipped galvanized

Note: It is common practice to omit the thread pitch from the product designation.

Slotted Hole Dimensions

See S16-14 Clause 22.3.5.2 regarding provisions.

SHORT SLOT DIMENSIONS
LONG SLOT DIMENSIONS

Nominal Bolt Diameter	Slot Dimensions	
	Width, A	Length, B
mm	mm	mm
16	18	22
20	22	26
22	24	28
24	26	32
27	29	37
30	32	40
36	38	46

Nominal Boit Diameter	Slot Dimensions	
	Width, A	Lengh, B
mm	mm	mm
16	18	40
20	22	50
22	24	55
24	26	60
27	29	67.5
30	32	75
36	38	90

BOLT LENGTH TOLERANCES

Nominal Length	Nominal Bolt Dia.
	M16 thru 36
to 50 mm	± 1.2
over 50 to 80 mm	± 1.5
over 80 to 120 mm	± 1.8
over 120 to 150 mm	± 2.0
over 150 mm	± 4.0

MINIMUM EDGE DISTANCE FOR BOLT HOLES

Boit Diameter mm	At Sheared Edge mm	At Rolled or Gas Cut Edge mm
16	28	22
20	34	26
22	38	28
24	42	30
27	48	34
30	52	38
36	64	46
over 36	$13 \times$ Diameter	$11 / 4 \times$ Diameter

${ }^{+}$Gas cut edges shall be smooth and free from notches. Edge distance in this column may be decreased 3 mm when hole is at a point where computed stress under factored loads is not more than 0.3 of the yield stress.

USUAL GAUGES

	Size	C	D
Light Wrenches	16 to 24	337 to 356	54
Heavy Wrenches	24 to 36	375 to 438	64

Sockets			Min. Clearance	
Bolt size	A	B	E	. F
16	80	45	25	28
20	85	54	30	34
22	90	57	32	36
24	95	60	34	38
27	100	70	38	42
30	110	75	41	45
36	130	90	48	52

WELDING

The welding of steel shapes and plates for structural purposes is governed by CSA S16, Design of Steel Structures, and CSA Standard W59, Welded Steel Construction (Metal Arc Welding). In case of conflict between the requirements of CSA W59 and S16, however, S16 shall take precedence (see CSA S16-14 Clause 24.1).

While both standards provide design information on the resistance of welds, CSA Standard W59 extensively covers workmanship, inspection, and acceptance criteria for welded joints in both statically and dynamically loaded structures.

Welding is a process used to join two or more pieces of material together. Arc welding is a process which produces coalescence of metals by heating them with an arc, with or without the application of pressure, and with or without the use of filler metal.

Welding processes used primarily for structural steelwork are:

Shielded Metal Arc Welding	SMAW
Flux Cored Arc WeIding	FCAW
Metal Cored Arc Welding	MCAW
Gas Metal Arc Welding	GMAW
Gas Tungsten Arc Welding	GTAW
Submerged Arc Welding	SAW
Electroslag Welding	ESW
Electrogas Welding	EGW
Stud Welding	SW

Welding Definitions

Arc Cutting: a group of cutting processes which melts the metal to be cut with the heat of an arc between an electrode and the base metal.

Arc Spot Weld: a weld made by arc welding between or upon overlapping members in which coalescence may start and occur on the faying surfaces or may proceed from the surface of one member. This is commonly used for thin materials, such as roof and floor deck attachment.
Base Metal: the metal to be welded or cut.
Bevel Angle: the angle formed between the prepared edge of a member and a plane perpendicular to the surface of the member.
Chain Intermittent Welds: intermittent welds on both sides of a joint in which the weld increments on one side are approximately opposite those on the other side.
Coalescence: the growing together or growth into one body of the materials being welded.
Complete Joint Penetration (CJP): a joint welded from both sides or from one side on a backing, having complete penetration and fusion of weld and base metal throughout the thickness of the joint. (Refer to figures in W59)
Edge Joint: a joint between the edges of two or more parallel or nearly parallel members.
Effective Weld Length: the length of weld throughout which the correctly proportioned cross section exists. In a curved weld, it is measured along the axis of the weld.
Effective Throat: the minimum distance from the root of a weld to its face, less any reinforcement.
End Return (Boxing): the continuation of a fillet weld around a corner of a member, as an extension of the principal weld.

Face of Weld: the exposed surface of a weld on the side from which the welding was done.
Fillet Weld: a weld of approximately triangular cross section joining two surfaces approximately at right angles to each other in a lap joint, T -joint, or comer joint.
Groove Angle: the included angle between the weld groove faces.
Groove Weld: a weld made in a groove between two members to be joined.
Intermittent Weld: a weld in which the continuity is broken by recurring unwelded spaces.
Joint Design: the joint geometry together with the required dimensions of the welded joint.
Joint Penetration: the minimum depth a groove weld extends from its face into a joint, exclusive of reinforcement, but including, if present, root penetration.
Leg of a Fillet Weld: the distance from the root of the joint to the toe of the fillet weld.
Partial Joint Penetration (PJP): a groove weld condition in which weld metal extends through a part of joint thickness.
Procedure Qualification: a demonstration that welds made by a specific procedure can meet prescribed standards.
Root of Joint: that portion of a joint to be welded where the members approach closest to each other. In cross section, the root of the joint may be a point, a line or an area.
Root of Weld: the points, as shown in cross section, at which the weld metal intersects the base metal and extends furthest into the weld joint.
Root Penetration: the depth that a weld extends into the root of a joint measured on the centreline of the root cross section.

Size of Weld:

It should be noted that weld symbols and sizes used in North America generally comply with American Welding Society A2.4 "Standard Symbols for Welding, Brazing and Nondestructive Examination". Care should be taken when interpreting other symbol systems.

Groove Weld: See Complete Joint Penetration and Partial Joint Penetration definitions above.

Fillet Weld:

For equal-leg fillet welds, the leg lengths of the largest isosceles right triangle which can be inscribed within the fillet weld cross section.
For unequal-leg fillet welds, the leg lengths of the largest right triangle which can be inscribed within the fillet weld cross section.
The preceding definition applies to right-angle connections only. See figure in W59 for the definition of effective size of a fillet weld for connections in which the fusion faces form an angle between 60° and 135°.
Note: When one member makes an angle with the other member greater than 105 degrees, the leg length (size) is of less significance than the effective throat which is the controlling factor for the strength of a weld.
Staggered Intermittent Welds: an intermittent weld on both sides of a joint in which the weld increments on one side are alternated with respect to those on the other side.
Tack Weld: a weld made to hold parts of a weldment in proper alignment until the final welds are made. (Care should be taken to ensure the compatibility of weld metals.)

Throat of a Fillet Weld:

Theoretical Throat: the distance from the beginning of the root of the joint perpendicular to the hypotenuse of the largest right triangle that can be inscribed within the fillet weld cross section. This dimension is based on the assumption that the root opening is equal to zero.
Actual Throat: the shortest distance from the root of weld to its face.
Effective Throat: the minimum distance minus any reinforcement or convexity, from the root of weld to its face.

WELDING PRACTICE

Fillet Welds

Minimum Size

The minimum fillet size as measured should be as shown in the table, unless a larger size is required to meet the calculated resistance. This minimum size requirement need not apply when:
a) welding attachments to members without calculated stress or
b) welding procedures have been established to prevent cracking in accordance with W59-13.
For consumables with a hydrogen content conforming to the H8 requirement or lower, t is the thickness of the thinner part joined.

Material thickness $t(\mathrm{~mm})$	Minimum fillet size (mm)
$t \leq 6$	3^{*}
$6<t \leq 12$	5
$12<t \leq 20$	6
$20<t$	8

* For cyclically-loaded structures min. size $=5 \mathrm{~mm}$ Otherwise, t is the thickness of the thicker part joined; the weld size, however, need not exceed the thickness of the thinner part provided particular care is taken to provide sufficient heat input to ensure weld soundness.

The minimum effective length of a fillet weld should be 38 mm or 4 times the size of the fillet, whichever is larger. Where the geometry of the joint makes it impossible to deposit the minimum effective length, the effective fillet size shall be 0.25 times its effective length.

Maximum Size

The maximum fillet weld size, $D_{\max }$, recommended by good practice along a sheared edge is:

$$
\begin{array}{ll}
D_{\text {max }}=t & \text { when } t<6 \mathrm{~mm} \\
D_{\text {max }}=t-2 & \text { when } t \geq 6 \mathrm{~mm}
\end{array}
$$

When fillet welds are used in holes or slots, the diameter of the hole or the width of the slot should not be less than the thickness (t) of the member containing it plus 8 mm . The maximum diameter or width shall be $t+12 \mathrm{~mm}$ or $2.25 t$, whichever is greater.

Lap Joints

$$
\begin{aligned}
& L_{\text {min }}=5 t_{1} \geq 25 \mathrm{~mm} \text { when } t_{1} \leq t_{2} \\
& L_{\text {min }}=5 t_{2} \geq 25 \mathrm{~mm} \text { when } t_{2}<t_{1}
\end{aligned}
$$

Partial Penetration Groove Welds

Minimum Groove Depth for Partial Joint Penetration V-, and Bevel Groove Welds ${ }^{\dagger}$

Thickness, t of Thicker Part Joined (mm)	Minimum Groove Depth, mm	
	Groove Angle, α, at Root $45^{\circ} \leq \alpha<60^{\circ}$	Groove Angle, α, at Root $\alpha \geq 60^{\circ}$
$t \leq 12$	8	5
$12<t \leq 20$	10	6
$20<t \leq 40$	11	8
$40<t \leq 60$	12	10
$60<t$	16	12

${ }^{\dagger}$ Not combined with fillet welds

Effective Throats

Flare Bevel and Flare V-Welds (Flush Welds Only)

Solid or hollow sections with weld filled flush to the curved surface:
Not applicable to flare V-welds using GMAW process except when $R \geq 12 \mathrm{~mm}$, in which case the effective throat $=0.375 R$.

Flare Bevel Groove Weld

When $R>10 \mathrm{~mm}$, the effective throat for a joint between a curved and a planar surface shall be $0.3 R$. When $R \leq 10 \mathrm{~mm}$, design as a fillet weld unless an effective throat has been previously qualified as a Flare Bevel (See W59 Clause 4.3.1.6.2.2).

Flare Vee Groove Weld

When $R>10 \mathrm{~mm}$, the effective throat for a joint between two curved surfaces shall be $0.5 R$.

WELDED JOINTS
 Standard Symbols

Notes:

Size, weld symbol, length of weld and spacing must read in that order from left to right along the reference line. Neither orientation of reference line nor location of the arrow alter this rule.
The perpendicular leg of $\Delta, V, Y, I /$ weld symbols must be at left.
Size and spacing of fillet welds must be shown on both the Arrow Side and the Other Side Symbol.
Symbols apply between abrupt changes in direction of welding unless governed by the "all around" symbol or otherwise dimensioned.

These symbols do not explicitly provide for the case that frequently occurs in structural work, where duplicate material (such as stiffeners) occurs on the far side of a web or gusset plate. The fabricating industry has adopted this convention: when the billing of the detail material discloses the identity of far side with near side, the welding shown for the near side shall also be duplicated on the far side.

[^64]
WELDING SYMBOLS

SAMPLE GROOVE WELDS

PREPARATION

Note 1: For bevel and V-grooves, the groove angle equals the angle at the root. (Does not apply to J and U grooves.)

COMPLETE PENETRATION

See CSA W59 for more details.

PARTIAL PENETRATION

Note 2a: Effective throat $=$ depth of preparation -3 mm when $45^{\circ} \leq$ Angle at root $<60^{\circ}$ *
2b: Effective throat = depth of preparation when angle at root of groove $\geq 60^{\circ}$ *
*Applies only to PJPG welds

STEEL PRODUCTS - RECORD OF CHANGES

Following is a chronological record of changes to the list of steel sections included in the CISC Handbook of Steel Construction since the first printing of the Third Edition.

1983 No longer produced by Algoma are:

> M100×19

S150x26, 19; S130x22, 15; S100x11; S75x11,8
All angles except $8^{\prime \prime} \times 8^{\prime \prime}$ leg sizes
1985 No longer produced by Algoma are:
WWF550x217; WWF350x385
New shapes and sections produced by Algoma:
WWF $1800 \times 632,548$; WWF1600x579, 495
WWF1400x491, 407; WWF550x280
Welded Reduced Flange (WRF) shapes with top flanges narrower than the bottom flanges and intended primarily for composite bridge girders:

WRF 1800x543, 480, 416; WRF1600x491, 427, 362
WRF1400x413, 348, 284; WRF1200x373, 309, 244
WRF $1000 \times 340,275,210$
1986 New shapes and sections produced by Algoma:
W610x91, 84; W530x72; W310x31; W250x24; W200x21
1989 Sections produced by Algoma
Sections deleted:
WWF1800x632, 548; WWF1600×579, 495
WWF1400x491, 407; WWF1200x403, 364
WWFI $100 \times 335,291,255,220$; WWF1000 $\times 324,280,244$
WWF900x293, 249, 213; WWF800x332-154; WWF700x222-141
Sections added:
WWF2000x732-542; WWF1800x700-510; WWF1600×622-431
WWFI400x597-358; WWF1200x418, 380, 333
WWF1 100x351, 304, 273, 234; WWF1000x340, 293, 262, 223
WWF900x309, 262, 231; WWF800x339-161; WWF700x245-152
WWF650x864-400; WWF600x793-369

Sections not available from Canadian mills added:
W1000-All sizes
W920×1262-488; W840×922-392; W760×865-350; W760×134
W690x802-289; W610x732-262; W530x599-248; W460x464-193

Sections deleted:
W1000x488-286, 976, 790-483; W920x1072, 876, 722; W840x922-577 W760x865, 783, 644, 531; W690x735, 605, 500, 419
W610x670, 551, 455; W530x599-331
HP330x149-89
M150x29.8, 6.5; M100x19
S180x30, 22.8; S130x22
C130x17
MC250x9.7; MC180x26.2; MC150x22.8
L152x102x4.8; L127x127x4.8; L127x89x11, 4.8; L127x76x16, 4.8
L102x102x4.8; L102x89x16, 11, 4.8; L102x76x4.8; L89x89x16, 4.8
L89x76x16, 11; L89x64x16, 11; L76x76x16; L76x64x16, 11
L76x51x16, 11; L64x64x3.2; L64x51x3.2; L51x38x9.5, 3.2
L32x32x9.5; L25x25x9.5, 7.9
L200-L25 (All metric angles)
Sections added:
W1100x499-342; W1000×749-478, 259, 693-314; W920x381, 345
W840x251; W760x220; W690x192; W610x153; W360x1202
M310x16.1; M250x11.9; M100x8.9
SLB100x5.4, 4.8; SLB75 $\times 4.5,4.3$
L203x102×22, 16, 11; L178×102×11; L19×19×3.2
1997 Sections deleted:
W1000x478, 259, 693; W920x1262; W760x710; W690x667
W610x732, 608; W460x464-286; W360xI202
L203x203x14; L203x152x22, 16, 14; L203x102x22, 16, 14, 11
L152x102x6.4; L152x89x6.4; L89x76x4.8; L89x64x4.8; L64x38x7.9-4.8
L51x38x7.9; L44x44x9.5, 7.9; L38x38x9.5, 7.9, 4.0; L32x32x7.9
HSS51x51x2.5; HSS38x38x2.5; HSS32x32x3.8-2.5; HSS25x25x3.2, 2.5
HSS127x64x9.5-4.8; HSS127x51x9.5-4.8; HSS51x25x2.5
HSS 48×2.8; HSS42x3.2, 2.5; HSS33x3.2, 2.5; HSS27x3.2, 2.5
Sections added:
W1000x591, 539, 486, 483; W840x576; W760x531; W690x500, 419
W610x551, 455; W150x13
L152x152x6.4

HSS $127 \times 127 \times 13 ;$ HSS $102 \times 102 \times 3.8,3.2 ;$ HSS89 $\times 89 \times 3.8,3.2$
HSS76x76x9.5, 3.8, 3.2
HSS $152 \times 102 \times 13 ;$ HSS $152 \times 76 \times 9.5-4.8 ;$ HSS $127 \times 76 \times 3.8$
HSS102x76x3.8, 3.2; HSS76x51×3.2
HSS610x13-6.4; HSS559x 13-6.4; HSS508x 13-6.4

Sections deleted:
HP310×174, 152, 132
Sections deleted:
W840×576; W760×531
WT230x33.5, 30.5
L203x152×11
HSS305x305x11; HSS254x254x11; HSS203x203x11; HSS178×178x11
HSS $152 \times 152 \times 11$; HSS $127 \times 127 \times 11$; HSS $102 \times 102 \times 3.8$; HSS $89 \times 89 \times 3.8$
HSS $76 \times 76 \times 3,8$; HSS $64 \times 64 \times 3.8$; HSS $51 \times 51 \times 3.8$; HSS $38 \times 38 \times 3.8$
HSS305x203x11; HSS254x152x11; HSS203x152x11; HSS203x102x11
HSS178x127x11; HSS152x102x11; HSS127x76x3.8; HSS102x76x3.8
HSS 102x51x3.8; HSS89x64x3.8; HSS76x51x3.8
HSS610x13, 11, 9.5, 8.0, 6.4; HSS559x13, 11, 9.5, 8.0, 6.4
HSS508x13, 11, 9.5, 8.0, 6.4; HSS406x11, 8,0; HSS356x11, 8.0
HSS324x11, 8.0; HSS273x11, 9.5, 8.0; HSS219x11, 8.0; HSS141×8.0
HSS114x8.0, 6.4; HSS102x3.8; HSS89x3.8; HSS73x3.8; HSS60x3.8 HSS 48×3.8

Sections added:
M310x14.9; M250x11.2; M200x9.2; M150x6.6, 5.5
SLB100x5.1; SLB75 $\times 5.6,3.8$; SLB55 $\times 6.4$
C100x7, C75×5
MC150×22.8
L203×203x14; L203x152x22, 16, 14; L102x89x11; L51×38×3.2 HSS $305 \times 305 \times 16$; HSS254×254×16; HSS203×203x16; HSS $178 \times 178 \times 16$ HSS $114 \times 114 \times 13,9.5,8.0,6.4,4.8,3.2$; HSS $102 \times 102 \times 13$; HSS $64 \times 64 \times 8.0$ HSS356x254x16, 13, 9.5; HSS305x203x16; HSS254x152x16
HSS $152 \times 76 \times 13$; HSS $102 \times 51 \times 9.5$; HSS51× 25×4.8
HSS356x16; HSS273x4.8; HSS219x16; HSS178x13, 9.5, 8.0, 6.4, 4.8
HSS168x13, 3.2; HSS $152 \times 9.5,8.0,6.4,4.8,3.2$
HSS127x13, 9.5, 8.0, 6.4, 4.8, 3.2; HSS114x9.5, 3.2; HSS102x3.2
HSS89x3,2; HSS76x6.4, 4.8; HSS64x6.4, 4.8, 3.2
Sections deleted:
W920x1188, $967,784,653,585,534,488,446,417,387,365,342$
Sections added:
W1000x438; W920×1191, 970, 787, 725, 656, 588, 537, 491, 449, 420, $390,368,344$; W840x576; W760x531; W460x464, 421, 384, 349, 315, 286

Sections deleted:
W920x1191, 970, 787, 725; W690x802; W310x31; W250x24; W200x21
WT460x223, 208.5, 193.5, 182.5, 171
M200x9.2, M150x5.5, M130x28.1
Sections added:
WT460x224.5, 210, 195, 184, 172
Sections deleted:
WRF 1800x543-416; WRF1600x491-362; WRF1400x413-284
WRF1200x373-244; WRF $1000 \times 340-210$
WWF2000x732-542; WWF1800x700-510; WWF1600x622-431 WWF 1400x597-358; WWF $1200 \times 487-263$; WWF $1100 \times 458-234$ WWF1000x447-200; WWF900x417-169; WWF800x339-161
WWF700x245-152; WWF650x864-400; WWF600×793-369
WWF550x721-280; WWF500x651-197; WWF450x503-177
WWF400x444-157; WWF350x315-137
W610x91, 84; W460x67, 61
SLB100x5.4-4.8; SLB75x5.6-3.8; SLB55x6.4
L152x152x6.4, L152x89x16, L127x127x6.4, L102x89x11, L102×76x1। HSS $114 \times 114 x 13,9.5,8.0,6.4,4.8,3.2$; HSS89x89x3.2; HSS64x64x8.0 HSS356x254x16, 13, 9.5; HSS89x64x8.0, 3.2
HSS356x16; HSS219x16; HSS $178 \times 8.0,6.4,4.8$
HSS168x8.0, 3.2; HSS152x9.5, 8.0, 6.4, 4.8, 3.2; HSS141x4.8
HSS $127 \times 13,8.0,4.8,3.2$; HSS $114 x 9.5,4.8,3.2$
HSS102x8.0, 6.4, 4.8, 3.2; HSS89x8.0
Sections added:
W1000x976; W920x1377, 1269, 1194, 1077, 970, 787, 725; W690x802 W530x409, 369, 332; W360x1299, 1202
M318x18.5, 17.3; M200x9.2; M150x5.5; M130x28.1; M100x6.1; M75x4.3 HP460x304, 269, 234, 202; HP410x272, 242, 211, 181, 151, 131 HP310x 132
MC310x21.3; MC250x9.7; MC150x10.4, 9.7; MC100x20.5; MC75x10.6 L254x254x32, 29, 25, 22, 19; L203x152x11; L203x102×22, 16, 14, 11 L89x76x11; L76x64x11; L64x38x6.4, 4.8; L38×38x4.0
HSS559x559x19; HSS508x508x22, 19, 16, 13
HSS457x457x22, 19, 16, 13; HSS406x406x22, 19, 16, 13, 9.5
HSS356x356x16, 13, 9.5, 7.9; HSS254x254x4.8; HSS203x203x4.8
HSS127x127x3.2
HSS $305 \times 152 \times 16,13,9.5,7.9,6.4$; HSS $254 \times 203 \times 16,13,9.5,7.9,6.4$
HSS254x 152×4.8; HSS203×152×16; HSS $152 \times 102 \times 3.2$
HSS152x76x3.2; HSS $127 \times 76 \times 13,3.2$; HSS76x38x6.4, 4.8, 3.2
HSS64x38x6.4, 4.8, 3.2
HSS508x $13,9.5,6.4$; HSS457x13, 9.5, 6.4; HSS406x 16
HSS273x9.5, 7.9; HSS245x9.5, 6.4; HSS141x13; HSS76x3.2; HSS42x3.2

PART SEVEN
 CISC CODE OF STANDARD PRACTICE AND MISCELLANEOUS DATA

CISC Code of Standard Practice for Structural Steel. 7-3
Structural Sheet Steel Products 7-65
Mass and Forces for Materials 7-68
Design Dead Loads of Materials 7-69
M/D Ratios 7-70
Coefficients of Thermal Expansion 7-76
Checklist for Design Drawings 7-78
Properties of Geometric Sections 7-80
Properties of Geometric Sections and Structural Shapes 7-87
Properties of the Circle 7-91
Properties of Parabola and Ellipse 7-92
Properties of Solids 7-93
Trigonometric Formulae 7-95
Bracing Formulae 7-96
Length of Circular Arcs 7-97
SI Summary 7-98
Table 7-1 - SI Base Units 7-98
Table 7-2 - SI Prefixes 7-98
Table 7-3-SI Prefixes 7-99
Table 7-4 - Selected SI Units 7-100
Table 7-5 - Common Conversion Factors 7-102
Millimetre Equivalents 7-103
Miscellaneous Conversion Factors 7-104

CISC

CODE OF STANDARD PRACTICE for Structural Steel

Eighth Edition

Published by the CANADIAN INSTITUTE OF STEEL CONSTRUCTION www.cisc-icca.ca • info@cisc-icca.ca
cisc $\mathbb{1}$ icca

Copyright © 2015

by
Canadian Institute of Steel Construction

All rights reserved.
This publication or any part thereof must not be reproduced in any form without the written permission of the publisher.

December 2015

ISBN 978-0-88811-195-1

TABLE OF CONTENTS

Preface 7-7

1. General Provisions 7-9
1.1 Scope 7-9
1.2 Definitions 7-9
1.3 Governing Technical Standards 7-14
1.4 Responsibility for Design 7-14
1.5 Responsibility for Erection Procedure 7-14
1.6 Patented Devices 7-14
1.7 Scheduling 7-14
2. Classification of Material 7-15
2.1 Structural Steel 7-15
2.2 Field Connection Material 7-16
2.3 Items Supplied by Others 7-16
2.4 Custom Items 7-18
3. Quotations and Contracts 7-18
3.1 Standard Form of Contract 7-18
3.2 Types of Contracts 7-18
3.3 Revisions to Contract Documents 7-19
3.4 Discrepancies 7-19
3.5 Computation of Units and Mass 7-19
3.6 Contract Price Adjustments by Unit Price 7-20
3.7 Scheduling 7-21
4. Contract Documents 7-21
4.1 Tender Documents - Tender Drawings and Tender Specifications 7-21
4.2 Architectural, Electrical and Mechanical Drawings. 7-22
4.3 IFC Construction Documents 7-22
4.4 Architecturally Exposed Structural Steel 7-23
4.5 Building Information Digital Modelling 7-23
5. Fabrication and Erection Documents 7-23
5.1 Erection Diagrams 7-23
5.2 Connection Design Details 7-24
5.3 Shop Details 7-24
5.4 Erection Procedures 7-24
5.5 Field Work Details 7-25
5.6 Fabrication and Erection Document Review 7-25
5.7 Additions, Deletions or Changes 7-25
5.8 Fabricator Models. 7-25
6. Material, Fabrication, Inspection, Painting and Delivery 7-25
6.1 Quality Certification 7-25
6.2 Materials 7-25
6.3 Identification 7-26
6.4 Preparation of Material 7-26
6.5 Fitting and Fastening 7-26
6.6 Dimensional Tolerances 7-26
6.7 Inspection of Steelwork 7-26
6.8 Surface Preparation 7-27
6.9 Paint Coatings 7-27
6.10 Marking and Shipping 7-27
6.11 Delivery of Materials. 7-28
7. Erection 7-28
7.1 Method of Erection 7-28
7.2 Erection Stability 7-28
7.3 Erection Safety 7-30
7.4 Site Conditions 7-30
7.5 Foundations 7-30
7.6 Bearing Surfaces 7-30
7.7 Building Lines and Bench Marks 7-30
7.8 Installation of Anchor Rods and Embedded Items 7-31
7.9 Bearing Devices 7-31
7.10 Site Errors or Discrepancies - Examination by Erector 7-31
7.11 Adjustable Shelf Angles and Sash Angles 7-32
7.12 Tolerances 7-32
7.13 Checking Erected Steelwork 7-32
7.14 Removal of Bracing 7-32
7.15 Correction of Errors When Material Is Not Erected by the Fabricator 7-33
7.16 Field Assembly 7-33
7.17 Accommodation of Other Trades 7-33
7.18 Temporary Floors and Access Stairs 7-33
7.19 Touch-Up of Shop Paint Coatings 7-33
7.20 Final Painting 7-33
7.21 Final Cleanup 7-33
Appendix A - Structural Steel in Buildings 7-34
Appendix B - Guideline for Unit Price Application for Changes 7-36
Appendix C - A Suggested Format for Price-per-Unit Contracts 7-38
Appendix D - Tolerances on Anchor Rod Placement 7-46
Appendix E - Conversion of SI Units to Imperial Units 7-47
Appendix F - Miscellaneous Steel 7-48
Appendix G - A Suggested Format for a Monthly Progress Payment Claim Form 7-50
Appendix H - Suggested Terms for Progress Invoicing and Substantial Performance 7-51
Appendix I - Architecturally Exposed Structural Steel (AESS) 7-52
Appendix J - Building Information Modelling 7-58

CISC CODE OF STANDARD PRACTICE

for Structural Steel

PREFACE

The CISC Code of Standard Practice for Structural Steel is a compilation of usual industry practices relating to the design, fabrication and erection of structural steel. These practices evolve over a period of time and are subject to change as improved methods replace those of an earlier period. The Code is revised whenever a sufficient number of changes have occurred to warrant a new edition.

The first edition of the Code was adopted and published in November 1958. A second edition incorporating minor revisions was published in October 1962. The third edition, published in September 1967 and revised in May 1970, incorporated minor changes throughout with principal changes in Section 2 - Definition of Structural Steel and Section 3 - Computation of Weights for Unit Price Bids.

The fourth edition adopted in June 1980, revised December 1980, broadened the scope to include bridges and other structures. It also incorporated the CISC "Guide to Tendering Procedures" into Section 3 and Appendices B and C. The Code was converted to SI (metric) units and provided conversion factors and Imperial units in Appendix E.

The fifth edition (1991) reflected the steel standard's recognition of the preparation of five types of fabrication and erection documents which may be produced in fulfilling a steel construction contract. These documents may be in the form of drawings, diagrams, sketches, computer output, hand calculations and other data which can be supplied by the fabricator/erector. This data is generally referred to in contract documents as "shop drawings". The computation of mass has been changed by deleting the mass of welds and the allowances for paint and other coatings, Appendix B, Guideline for Unit Price Application for Changes, and Appendix C, A Suggested Format for Price-Per-Unit of Mass or Price-Per-Item Contracts were substantially revised. To foster uniformity, two new appendices were added; Miscellaneous Steel and A Suggested Format for a Monthly Progress Claim Form.
The sixth edition (1999) clarified the role of the fabricator, the information required, and where that information is expected, as stipulated in the governing technical standards. Added were: definitions of Design Drawings and Quotations, clauses on quotations, discrepancies, shims for bearing surfaces, the allowance for return of documents, the information required when painting is specified, and Appendix H - Suggested Definitions for Progress Invoicing and Substantial Performance. Changes were also made to Appendix C, the terminology for Unit Price contracts, connection types, and anchor rods - the latter two to be consistent with the changes in CSA Standard CAN/CSA-S16-01.

The seventh edition (2008) added two new appendices: I - Architecturally Exposed Structural Steel (AESS) and J - Digital Modelling, in order to give guidance to designers, owners, and contractors on these two important topics. As each of these topics involved issues that vary widely and approaches differ, the Code endeavoured to identify and clarify the main points that should be addressed by the interested parties to avoid conflicts during actual construction. In addition, definitions of AESS, Steel Detailer and Work, and a time frame for accepting erected steelwork were added.

This eighth edition (2015) was updated by a consensus of stakeholders within the Canadian steel construction industry. Committee members included steel fabricators, erectors, detailers,
engineers, architects and general contractors. The Code underwent major revisions reflecting this consensus approach with noted changes including BIM (electronic documents), temporary bracing, conditions where lintels would be included in a steel contract, computations of units and mass, and erection stability.

Whenever a gender-specific term is used, it shall be read as gender-neutral.
By documenting standard practices, the CISC Code of Standard Practice aims to provide guidance on current practices in the Canadian structural steel fabrication and erection industry and its clients.

The latest edition of the Code can be found on the CISC website (www.cisc-icca.ca).

Canadian Institute of Steel Construction
Adopted September 23, 2015

1. General Provisions

1.1 Scope

This Code covers standard industry practice with respect to the furnishing of structural steel, joist, and platework, in the absence of provisions to the contrary contained in the Contract.

1.2 Definitions

Architect	As defined under the appropriate provincial Architect's Act,
Architecturally Exposed Structural Steel	Structural steel which is specifically designated as architecturally exposed and the appearance of which is governed by Appendix I, Architecturally Exposed Structural Steel.
BIM Administrator	The BIM Administrator is responsible from the pre-design phase onwards to develop and to track the object-oriented BIM against predicted and measured performance objectives, supporting multi- disciplinary building information models that drive analysis, schedules, take-off and logistics.
BIM Execution Plan	The document that defines the expected BIM deliverables 'and guides the coordination of the project teams. (Includes the BIM Responsibility Matrix).

Building Information Model (BIM)

Client

Change Directive A written instruction signed by the General Contractor directing the Fabricator and/or Erector to proceed with a change in the Work within the general scope of the Contract Documents, prior to the General Contractor and the Fabricator and/or Erector agreeing upon adjustments in the contracted price and the contracted time.

Change Order A written amendment to the Subcontract signed by the Contractor and the Subcontractor stating their agreement upon:

- A change in the Subcontract Work
- The method of adjustment or the amount of the adjustment in the Subcontract price, if any, and
- The extent of the adjustment in the Subcontract time, if any.

Connection Design \quad| Documents which provide details of standard and non-standard |
| :--- |
| Details | details.

Construction Documents

Construction
Specifications
Contract
Contract Documents

Cost-Plus Contract

Design Documents

Engineer

Engineer of Record

Erection Bracing \quad Bracing materials or members which are used to plumb, align and stabilize structural members or the structure during construction and are removed when the structural members or the structure is secured by bolting or welding of structural members (not to be confused with Temporary Bracing).

Erection Diagrams General arrangement drawings and/or models showing all information necessary for the assembly of the steel structure.

Erection Procedures

Fabrication and Erection Documents

Fabricator

Field Work Details

General Contractor, Constructor or Construction Manager

General Terminology e.g. Beams, Joists, Columns, etc.

Industry Foundation Class Model

Outline the construction methods, erection sequence, erection and temporary bracing requirements, and other engineering details necessary for shipping, handling, erecting, and maintaining the stability of the structural steel frame.

The party responsible for erection of the steelwork.

A collection of documents (hard copy, electronic and/or models) prepared by the Fabricator and/or Erector related to steel fabrication and erection.

The party responsible for furnishing the Structural Steel.

Details that provide complete information for modifying fabricated members - both new and existing - in the field.

The person or corporation constructing, coordinating, and supervising the Work.

These terms have the meanings stated or implied in CSA-S16 (latest edition), CSA-S6 (latest edition) and Appendix A of this Code.

A platform-neutral, open-file format specification that is not controlled by a single vendor or group of vendors. It is an objectbased file format with a data model developed by building SMART (formerly the International Alliance for Interoperability, IAI) to facilitate interoperability in the architecture, engineering and construction (AEC) industry, and is a commonly used collaboration format in Building information modelling (BIM) based projects. The Industry Foundation Class model specification is open and available. It is registered by ISO and is an official International Standard ISO 16739:2013.

Issued-for- The initial milestone set of drawings, specifications and other Construction Documents (IFC)
documents (including hard copy, electronic and/or models) produced by the Engineer of Record to be used by the Contractor, Fabricator and/or Erector and other trades for construction. Issued-for-Construction Documents shall conform to the requirements of CSA S16 or CSA S6.

Level of Development (LOD)

Lump Sum Price
Contract

Manufacturing Model

Miscellaneous Steel

Others

Owner

Quotations

Revision

Shop Details

Steel Detailer

A specification that enables practitioners in the AEC Industry to specify and articulate with a high level of clarity the content and reliability of Building Information Models (BIMs) at various stages in the design and construction process.

Also called Stipulated Price Contract; an agreement whereby the Fabricator and/or Erector contracts to fulfill the Contract terms for a lump sum (stipulated price) consideration.

A 3D model created from the LOD that represents the "as fabricated" or "as shop issued" status. The manufacturing model is typically prepared by the detailer and should include all material in the accurate sizes, locations and profiles to represent what is fabricated in the assembled state, including bolts but not necessarily welds.

Steel items described and listed in Appendix F of this Code.

A party or parties other than the Fabricator and/or Erector.

The Owner of a structure, and shall include his authorized agent and any person taking possession of a structure on the Owner's behalf. Depending on the circumstances, an authorized agent may be the architect, engineer, general contractor, construction manager, public authority or other designated representative of the Owner.

Proposals by the Fabricator based on Structural Steel as defined in Clause 2.1 and as included in the Tender Documents, and in accordance with the documents outlined in Clause 3.1.1.

A change in the Contract Documents.

Documents which provide complete information for the fabrication of various members and components of the structure, including the required material and product standards; the location, type, and size of all mechanical fasteners; bolt installation requirements and welds.

Those responsible for the preparation of shop details and other data necessary for fabrication and/or erection. May also be the Fabricator.
Steel Erection

Stipulated Price Contract

Structural Design Documents

Processes and procedures for the safe positioning, aligning and securing of the structural steel components on prepared foundations to form a complete frame.

See Lump Sum Price Contract.

May include drawings, specifications, computer output, and electronic and other data. The Structural Design Documents shall show a complete design of the structure with members suitably designated and located, including such dimensions and details as necessary to permit the preparation of Fabrication and Erection Documents. Documents shall be in accordance with CSA S16 and CSA S6.

Structural Steel Those items listed under Clause 2.1

Structural Steel Frame An assemblage of Structural Steel components (beams, columns, purlins, girts, etc.) for the purpose of resisting loads and forces. See Clause 2.1.

Structural Steel The portion of the Tender Specifications containing the Specifications

Temporary Bracing Members that are designed by the Engineer of Record or a third party, to be removed at a later date at their instruction (not to be confused with Erection Bracing).

Tender Documents Drawings, BIM files, specifications, general conditions, addenda, etc., used as the basis for preparing a tender.

Tender Drawings Drawings used as the basis for preparing a tender.

Tender Specifications
Specifications used as the basis for preparing a tender.

Also called Price-per-Unit Contract. An agreement whereby the Fabricator and/or Erector contracts to fulfill the contract terms for a consideration which is based on the units of steel calculated in accordance with the CISC Code of Standard Practice for Structural Steel.

Work The product and/or services provided by the Steel Fabricator and/or Erector.

1.3 Governing Technical Standards

The provisions of the latest edition of CSA-S16 "Design of Steel Structures" shall govern the design, fabrication and erection of steel structures except bridges. The provisions of the latest edition of CSA-S6 "Canadian Highway Bridge Design Code", the "Ontario Highway Bridge Design Code" (in Ontario) or the American Railway Engineering Association's "Specifications for Steel Railway Bridges" shall govern the design, fabrication and erection of structural steel for bridges. The provisions of the latest edition of CSA Standard W59 "Welded Steel Construction (Metal-Arc Welding)" shall govern are welding design and practice. The provisions of other standards shall be applicable if called for in the Tender Drawings and Tender Specifications.

1.4 Responsibility for Design

When the Client provides the structural drawings and specifications, the Fabricator and the Erector shall not be responsible for determining the adequacy of the design nor be liable for the loss or damage resulting from an inadequate design. Should the Client desire the fabricator to assume any responsibility for design beyond that of proposing adequate connections and details, and, when required, components, members, or assemblies standardized by the Fabricator, the Client shall state clearly his requirements in the invitation to tender or in the accompanying Tender Drawings and Tender Specifications. Even though proposed connections and design details may be prepared by the Fabricator's technical staff, the overall behaviour of the structure remains the responsibility of the designer of the structure. (See also Clause 5.6).

1.5 Responsibility for Erection Procedure

When the erection of Structural Steel is part of his Contract, the Fabricator shall be responsible for determining the Erection Procedure, for checking the adequacy of the connections for the uncompleted structure, and for providing Erection Bracing or connection details. When the erection of the Structural Steel is not part of his Contract, the Fabricator shall not be responsible for determining the Erection Procedure, for checking the adequacy of the connections for the uncompleted structure, or for providing Erection Bracing or connection details not included in the Structural Design Documents, nor shall the Fabricator be liable for loss or damage resulting from faulty erection. However, the steel Fabricator shall be informed by the Client of the erection sequence to be used, which may influence the sequence and process of the manufacturing. (See also Clauses 5.1 and 5.4).

1.6 Patented Devices

Except when the Contract Documents call for the design to be furnished by the Fabricator and/or Erector, the Fabricator and/or Erector assume that all necessary patent rights have been obtained by the Client and that the Fabricator and/or Erector will be fully protected by the Client in the use of patented designs, devices or parts required by the Structural Design Documents.

1.7 Scheduling

The Client should provide a construction schedule in the Tender Documents. In the absence of such a schedule, one should be mutually agreed upon between the contracting parties, prior to the Contract award.

2. Classification of Material

2.1 Structural SteeI

Unless otherwise specified in the Tender Documents, a Contract to supply, fabricate and deliver Structural Steel shall include only those items from the following list which are clearly indicated as being required by the Structural Design Documents. (See Appendix A)

2.1.1

Anchors for Structural Steel.
Base plates and bearings for Structural Steel members.
Beams, purlins, girts forming part of the Structural Steel frame.
Bearing plates and angles for Structural Steel members and steel deck.
Bins and hoppers of 6 mm plate or heavier, attached to the Structural Steel frame(s).
Bracing for Structural Steel members, steel trusses or steel frames,
Brackets attached to the Structural Steel.
Bridge bearings connected to the Structural Steel members.
Cables for permanent bracing or suspension systems.
Canopy framing if attached to the Structural Steel frame.
Cold-formed channels when used as structural members as listed in the CISC Handbook of Steel Construction.
Columns.
Conveyor galleries and supporting bents (exclusive of conveyor stringers, deck plate and supporting posts which are normally part of the conveyor assembly).
Crane rails and stops, excluding final alignment of the rails, unless otherwise noted on the Drawings.
Curb angles and plates attached to the Structural Steel frame where shown on the Structural Design Documents.
Deck support angles at columns, walls, where shown on the Structural Steel drawings.
Diaphragms for bridges.
Door frame supports attached to the Structural Steel frame.
Expansion joints connected to the Structural Steel frame (excluding expansion joints for bridges).
Field bolts to connect Structural Steel components.
Floor plates, roof plates (raised pattern or plain) and steel grating connected to the Structural Steel frame.
Girders.
Grillage beams of Structural Steel.
Hangers supporting Structural Steel framing.
Jacking girders.
Lintels shown, detailed and dimensioned on the Structural Design Documents.
Mechanical roof support and floor opening framing shown on Structural Design Documents.
Monorail beams of standard Structural Steel shapes.

Open-web steel joists, including anchors, bridging, headers and trimmers; also, when specified to be included in the Structural Steel Design Documents, light-gauge forms and temperature reinforcement.
Sash angles shown, detailed and dimensioned on the Structural Design Documents.
Separators, angles, tees, clips and other detail fittings essential to the Structural Steel frame.
Shear connectors/studs, except when installed through the sheet steel floor or roof deck by the deck installer.
Shelf angles shown, detailed and dimensioned on the Structural Design Documents.
Shop fasteners or welds, and fasteners required to assemble parts for shipment.
Steel connection plates or fixtures for Structural Steel embedded or anchored on site in concrete or masonry.
Steel tubes or cores for composite columns or braces.
Steel window sills attached to the Structural Steel frame.
Struts.
Suspended ceiling supports of Structural Steel shapes where shown on the Structural Design Documents.
Temporary components to facilitate transportation to the site.
Tie, hanger and sag rods forming part of the Structural Steel frame.
Trusses.
2.1.2 Only if shown and designed on the Structural Design Documents and specifically noted by the Tender Documents to be supplied by the Structural Fabricator:

Steel stairs, walkways, ladders and handrails forming part of the structural steelwork. (See Appendix A)

2.2 Field Connection Material

2.2.1 When the erection of the Structural Steel is part of the Fabricator's Contract, he shall supply all material required for temporary and for permanent connection of the component parts of the Structural Steel.
2.2.2 When the erection of the Structural Steel is not part of the Fabricator's Contract, unless otherwise specified in the Tender Documents, the Fabricator shall furnish appropriate bolts and nuts (plus washers, if required) or special fasteners, of suitable size and in sufficient quantity for all field connections of steel to steel which are specified to be thus permanently connected, plus an over-allowance of two per cent of each size to cover waste.
Unless otherwise specified in the Tender Documents, welding electrodes, back-up bars, temporary shims, levelling plates, fitting-up bolts and drift pins required for the Structural Steel shall not be furnished by the Fabricator when the erection of the Structural Steel is not part of the Fabricator's Contract.

2.3 Items Supplied by Others

Unless otherwise specified in the Tender Documents, the following steel or other items shall not be supplied by the Structural Steel Fabricator.

Bins and hoppers not covered in Clause 2.1 of this Code.

Bolts for wood lagging.
Bridge bearings not connected to Structural Steel items.
Canopy framing not attached to Structural Steel.
Catch basin frames.
Concrete for filling HSS or pipe sections. Concrete is to be supplied and poured by others in the shop or field with the cooperation of the Fabricator and/or Erector.
Connection material for other trades.
Conveyor stringers, deck plate and supporting posts.
Door and corner guards.
Door frames not covered in Clause 2.1 of this Code.
Drain pipes.
Drilling of holes into masonry or concrete, including core drilling of anchor rods for bridges and drilling for deck support angles.
Edge forming less than 3.2 mm thick for steel deck and not covered in Clause 2.1 of this code.
Embedded steel parts in precast concrete.
Embedded steel parts not required for Structural Steel or steel deck.
Flagpoles and supports,
Floor plates, roof plates and grating not covered in Clause 2.1 of this Code,
Grout.
Hoppers and chutes.
Hose and tire storage brackets.
Installation of structural steel parts embedded in concrete or masonry.
Lag bolts, machine bolts and shields or inserts for attaching any non-Structural Steel item
Lintels not shown, detailed and dimensioned on the Structural Design Documents.
Lintels which are an integral part of door frames.
Machine bases, rollers and pulleys.
Members made from gauge material except cold-formed channels indicated in Clause 2.1.
Metal-clad doors and frames.
Miscellaneous Steel; see Appendix F.
Shear connectors through sheet steel deck by deck installer.
Sheet steel cladding.
Sheet steel deck,
Sheet steel flashing.
Shelf angles not shown, detailed and dimensioned on the Structural Design Documents.
Shoring under composite floors and stub girders.
Steel doors.
Steel sash angles not shown, detailed and dimensioned on the Structural Design Documents.
Steel stacks.
Steel stairs, landings, walkways, ladders and handrails, not covered in Clause 2.1.2 of this Code.

Steel tanks and pressure vessels.
Steel window sills not covered in Clause 2.1 of this Code.
Support for sheet steel deck at column cut-outs and for openings not requiring framing, connected to Structural Steel.
Temporary bracing for other trades.
Trench covers.
Trim angles, eave angles or fascia plates not directly attached to the structural steel frame.

2.4 Custom Items

The responsibility for the supply and/or installation of items not conforming to the above lists shall be clearly identified by the Client at the time of tender.

3. Quotations and Contracts

3.1 Standard Form of Contract

Unless otherwise agreed upon, a Contract to fabricate, deliver and/or erect Structural Steel shall be the appropriate unaltered Standard Construction Document contract issued and duly sealed by the Canadian Construction Association (CCA) as listed at www.cca-acc.com.

3.1.1 Quotations

Unless otherwise stated, Quotations from Fabricators and/or Erectors are based on the following documents:
(1) The appropriate unaltered CCA Contract Document with copyright seal with no additional conditions, as issued by the Canadian Documents Committee.

It is accepted that alterations and/or additions to the standard CCA Contract Document by the General Contractor, Constructor or Construction Manager after Quotation may have implications not originally anticipated by the Fabricator and/or Erector. The use of non-standard Contracts, altered or modified CCA Contract Documents shall allow the Fabricator and/or Erector to incorporate related costs and implications into a new Quotation for consideration.
(2) Canadian Institute of Steel Construction (CISC) Code of Standard Practice for Structural Steel, latest edition.

3.1.2 Progress Payment Claim Form

A suggested format for a progress payment claim form is provided in Appendix G.

3.1.3 Progress Invoicing and Substantial Completion

For suggested recommended progress invoicing terms and definitions, see Appendix H .

3.2 Types of Contracts

3.2.1 For Lump Sum Price Contracts stipulating a "lump sum price", the work required to be performed by the Fabricator and/or Erector must be completely defined by the Tender Documents.
3.2.2 For Unit-Price Contracts stipulating a "price per unit", the scope of the Work, type of materials, character of fabrication, and conditions of erection are based upon the Tender Documents which must be a representative sample of the Work to be performed. Final unit
rates may be subject to adjustment, based on the complexity of the Issued-for-Construction (IFC) Documents. For methods of computing mass, area, or quantity, see Clause 3.5, Also see Appendix C of this Code for a suggested unit rate catalogue.
3.2.3 For Cost-Plus Contracts stipulating "cost plus fee", the Work required to be performed by the Fabricator and/or Erector is indefinite in nature at the time the Tender Documents are prepared. Consequently the Contract Documents should define the method of measurement of Work performed, and the fee to be paid in addition to the Fabricator's and/or Erector's costs.

3.3 Revisions to Contract Documents

3.3.1 Revisions to the Contract Documents shall be made by the issue of dated new or revised documents. All Revisions shall be clearly indicated. Such Revisions should be issued by a Change Notice. Revisions to the Work shall not be noted on Shop Details submitted for review but should be issued on revised Construction Documents.
3.3.2 The Fabricator and/or Erector shall advise the Client or Client's representative of any impact that such Revision or change will have on the price and/or schedule of the existing Contract. The response to the Change Notice shall be accompanied by a description of the impact change in sufficient detail to permit evaluation and prompt approval by the Client.
3.3.3 Upon agreement between the Fabricator and/or Erector and the Client or Client's representative as to the Revision's impact, the Client or his representative shall issue a Change Order or Extra Work Order for the Revision to the Contract for the change in the Work.
3.3.4 Unless specifically stated to the contrary, the issue of revised Contract Documents or Revisions indicated on the review documents is not authorization by the Client to release these Revisions for construction. Upon receipt of revised Construction Documents, the Fabricator and/or Erector shall notify the Client that a Revision to the Contract scope has been received, and a time frame shall be agreed for the Fabricator and/or Erector to advise the cost and schedule impact that the Revision will have on the Contract. Upon mutual agreement, and the Client's acceptance of the cost and schedule impact, the Fabricator and/or Erector will proceed with the Revision to the Work.

3.4 Discrepancies

Unless otherwise stated in the Construction Documents, the Structural Design Documents and Construction Specifications for buildings, the Construction Specifications govem. For bridges, the Structural Design Documents govern over Construction Specifications. In case of discrepancies between the Structural Design Documents and Design Documents for other trades or disciplines, the Structural Design Documents shall govern. When it has been agreed to use an electronic Building Information Model (BIM) as part of the Construction Documents, the BIM model shall govern for dimensions and geometry, while drawings shall govern for section sizes.

3.5 Computation of Units and Mass

Unless another method is specified and fully described at the time Tenders are requested, the computed mass of steel required for the structure shall be determined by the method of computation described herein. (Although the method of computation described does not result in the actual mass of fabricated Structural Steel and other items, its relative simplicity results in low computational cost and is based on quantities which can be readily computed and checked by all parties involved to establish the basis of payment). No additional mass for welds
or mass allowance for painting, galvanizing, and metallizing is to be included in the computation of mass.
a) Mass Density. The mass density of steel is assumed to be 7850 kilograms per cubic metre.
b) Shapes, Bars and Hollow Structural Sections. The mass of shapes, bars and hollow structural sections is computed using the finished dimensions shown on shop details. No deductions shall be made for holes created by cutting, punching or drilling, for material removed by coping or clipping, or for material removed by weld joint preparation. No cutting, milling or planning allowance shall be added to the finished dimensions. The mass per metre of length for shapes and hollow structural sections is the nominal published mass. The mass per metre of length for bars is the published mass, or if no mass is published, the mass computed from the specified cross-sectional area.
c) Plates and Slabs. The mass/area of plates and slabs is computed using the rectangular dimensions of plates or slabs from which the finished plate or slab pieces shown on the shop details can be cut. No burning, cutting, trimming or planning allowance shall be added.

Only when it is practical and economical to do so, and the nesting configuration is agreed to between the Fabricator and/or Erector and the Client in advance of fabrication (or defined clearly in the Tender Documents), several irregularly-shaped pieces may be cut from the same plate or slab. In this case, the mass shall be computed using the rectangular dimensions of the plate or slab from which the pieces can be cut. No cutting or trimming allowance shall be added. In all cases, the specified plate or slab thickness is to be used to compute the mass. The mass of raised-pattern rolled plate is that published by the manufacturer.
d) Bolts. The mass of shop and field bolts, nuts and washers is computed on the basis of the Shop Details and/or Erection Documents and the nominal published mass of the applicable types and sizes of fastener.
e) Studs. Unless included in the contract on a "price-per-unit basis", the mass of studs is computed on the basis of the Shop Details and/or Erection Diagrams and the published mass of the studs.
f) Grating. The mass/area of grating is computed on the basis of the Shop Details and/or Erection Documents, and the published mass of the grating. The area to be used is the minimum rectangular area from which the piece of grating can be cut.
g) Where supplied, such items as shims, levelling plates, temporary connection material, back-up bars and certain field "consumables" shall be considered as part of the Structural Steel whether or not indicated specifically in the Contract Documents. Such items then will be added to, and become a part of, computed mass of steel for the structure.

3.6 Contract Price Adjustments by Unit Price

3.6.1 Lump Sum Price Contracts

When the responsibility/scope of the Fabricator and/or Erector is changed from that which was previously established by the Contract Documents, an appropriate modification of the contract
price shall be made and specified in a Lump Sum Contract; prices for additions or deletions of materials to the Work may be made on a unit-price basis. In computing the Contract price adjustment, the Fabricator and/or Erector shall consider the quantity of Work added or deleted, modifications in the character of the Work, the timeliness of the change with respect to the status of material ordering, the detailing, fabrication and erection operations, and related impact costs. A suggested format for application of Unit Rates for changes to Work is provided in Appendix B.
3.6.2 Requests for contract price adjustments shall be presented by the Fabricator and/or Erector and shall be accompanied by a description of the change in sufficient detail to permit evaluation and prompt approval by the Client.

3.6.3 Unit-Price Contracts

Generally they provide for minor revisions to the quantity of Work prior to the time Work is approved for construction. Minor revisions to the quantity of Work should be limited to an increase or decrease in the quantity of any category not exceeding ten percent. For Unit-Price Contracts, should the quantity of steel of any category vary by more than twenty percent, then the contract unit price of that category may require adjustment. Changes to the character of the Work or the mix of the Work, at any time, or changes to the quantity of the Work after the Work is approved for construction, may require a contract price adjustment. The unit-price cost of an item subject to changes made after the date of approved Issued-for-Construction Documents shall be evaluated based on the Fabricator's Work in progress at the time of the change, as described in Appendix B.
3.6.4 A suggested format for accommodating contract price adjustments is contained in Appendix B.

3.7 Scheduling

3.7.1 The Contract Documents should specify the schedule for the performance of the Work. This schedule should state when the approved Issued-for-Construction Documents will be issued, and when Shop Details will be submitted and returned from Client review, when the job site, foundations, cores, walls, piers and abutments will be ready, free from obstructions and accessible to the Erector, so that erection can start at the designated time and continue without interference or delay caused by the Client or other trades.
3.7.2 The Fabricator and/or Erector has the responsibility to advise the Client of the effect any revision may have on the Contract schedule.
3.7.3 If the fabrication and erection schedule is significantly delayed due to revisions, or for other reasons which are the Client's responsibility, the Fabricator and/or Erector shall advise the Client in accordance with the requirements of the Contract and the Contract schedule, and the price shall be adjusted as applicable.

4. Contract Documents

4.1 Tender Documents - Tender Drawings and Tender Specifications

4.1.1 At the time tenders are called, the steel Fabricator shall receive a complete set of Tender Documents. In order to ensure adequate and complete tenders for Lump Sum Price Contracts ${ }^{l}$, these documents shall include, at minimum, complete Structural Design Documents

[^65]conforming to the requirements for design drawings established in CSA S16, Design of steel structures or S6 Canadian highway bridge design code, as applicable. Structural Steel Construction Specifications should include any special requirements controlling the fabrication and erection of the Structural Steel, surface preparation and coating, and should indicate the extent of non-destructive examination, if any, to be carried out.
4.1.2 Design drawings shall be drawn to a scale adequate to convey the required information. The drawings shall show a complete design of the structure with members suitably designated and located, including such dimensions and detailed description as necessary to permit the preparation of Fabrication and Erection Documents. Floor levels, column centres, and offsets shall be dimensioned. The term "drawings" may include computer output and other data. Stiffeners and doubler plates required to maintain stability and which are an integral part of the main member shall be shown and dimensioned.
4.1.3 Structural Design Documents shall designate the design standards used, shall show clearly the type or types of construction to be employed, shall show the category of the structural system used for seismic design, and shall designate the material or product standards applicable to the members and details depicted. Drawings shall give the governing combinations of shears, moments, pass-through forces, and axial forces to be resisted by the connections. Refer to CSA S16, Design of steel structures or S6 Canadian highway bridge design code for mandated requirements.
4.1.4 Where connections are not shown, the connections shall be assumed to be in accordance with the requirements of the governing technical standard/code (see Clause 1.3). The Tender Documents shall clearly define the scope of Work with respect to the responsibility to design Structural Steel connections. If the Work includes design of Structural Steel connections, the Tender Documents must include all connections forces as required by CSA S16, Design of steel structures or S6 Canadian highway bridge design code. Refer to the applicable standard for mandated requirements.

4.2 Architectural, Electrical and Mechanical Drawings

Architectural, electrical, additional specialty consultant, and mechanical drawings may be used as a supplement to the Structural Design Documents to define detail configurations and construction information, provided all requirements for the Structural Steel are noted on the Structural Documents. Refer to the applicable standard for mandated requirements.

4.3 IFC Construction Documents

4.3.1 At the time specified in the Tender Documents or pre-award negotiations (if different), the Client shall furnish the Fabricator and/or Erector with a plot plan of the construction site, and a set of complete Issued-for-Construction Documents approved for construction consistent with the Tender Documents and any addenda or revisions thereto. These Issued-forConstruction Documents are required by the Fabricator and/or Erector for ordering the material and for the preparation and completion of fabrication and erection documents. The Issued-forConstruction Documents shall conform to the requirements of CSA S16, Design of steel structures or S6 Canadian highway bridge design code and shall show the following:
a) The complete design of the structure with members suitably designated and located, including such dimensions and detailed description as necessary to permit preparation of the Fabrication and Erection Documents. Floor levels, column centres, and offsets shall be dimensioned;
b) All Revisions from the Tender Documents clearly indicated on the IFC Construction Documents
c) All materials to be furnished by the Fabricator, together with sufficient information to prepare Fabrication and Erection Documents, including the design standards used, the type or types of construction to be employed, the category of the system used for seismic design, the applicable material or product standards, and the governing combinations of shears, moments and axial forces to be resisted by connections. Refer to the applicable standard for mandated requirements.

4.4 Architecturally Exposed Structural Steel

In addition to the preceding requirements, all structural elements, or parts thereof, to be treated as Architecturally Exposed Structural Steel must be in accordance with the requirements of Appendix I and clearly indicated on the Structural Design Documents.

4.5 Building Information Digital Modelling

4.5.1 When a project utilizes BIM as part of the Structural Design Documents, Appendix J shall be used as a guide to define the wording, extents and deliverables of BIM in Contract Documents.
4.5.2 The designated Owner of each digital model shall be responsible for the accuracy and maintenance of the model, unless otherwise stated in the Contract Documents.
4.5.3 The Contract shall clearly stipulate the party designated as the Owner of each Building Information Model to be used as part of the Contract Documents.

5. Fabrication and Erection Documents

Note: The term "shop drawings", frequently used in the construction industry, is replaced in this Code of Standard Practice by the terms "Fabrication and Erection Documents". These terms more correctly describe the following five separate and distinct documents that may be prepared by a Fabricator/Erector. See also Clause 1.2 for definitions. Not all of these documents will be required for every project.

5.1 Erection Diagrams

Unless provided by the Client, the Fabricator will prepare Erection Diagrams from the approved Issued-for-Construction Documents. In this regard, the Fabricator may request reproducible copies of the Structural Design Documents which may be altered for use as Erection Diagrams. When using reproducible copies of the Structural Design Documents, the Engineer of Record's name and seal shall be removed. Erection Diagrams shall be submitted to the Designer for review and approval. Erection Diagrams are general arrangement drawings showing the principal dimensions of the structure, piece marks, sizes of the members, size (diameter) and type of bolts, bolt installation requirements, elevations of column bases, all necessary dimensions and details for setting anchor rods, and all other information necessary for the assembly of the structure. Only one reproducible copy, or electronic file, of each diagram will be submitted for review and approval, unless a BIM or a larger number of copies is required by the Client as specified in the Tender Documents.

5.2 Connection Design Details

5.2.1 When so specified in the Contract Documents, Connection Design Details shall be prepared in advance of Shop Details and submitted to the Engineer of Record for confirmation that the intent of the design is met. Connection Design Details shall provide details of standard and non-standard connections, and other data necessary for the preparation of Shop Details. Connection Design Details shall be referenced to the Design Drawings and/or Erection Diagrams. In the event that the design of connections for Structural Steel is the responsibility of the Fabricator, and the Fabricator's Connection Design Details meet the requirements of the Contract and the governing technical standard, any change to the Fabricator's Connection Design Details required by the Engineer of Record shall be considered as a Revision to the scope of Work.

5.2.2 Clipped Double Connections

Where two beams or girders, framing at right angles from opposite sides of a supporting member, share the same bolts, a clipped double connection shall be used unless a seated connection or other detail is used to facilitate safe erection of the beams or girders. A clipped double connection is not applicable to a two-bolt connection or when the beams are equal to or deeper than half the depth of the girder. For a description of a clipped double connection, see Appendix A.

5.3 Shop Details

Unless provided by the Client, Shop Details shall be prepared in advance of fabrication from the information on the approved Issued-for-Construction Drawings, the Connection Design Details, and the Erection Diagrams. Shop Details shall provide complete information required by the Fabricator to complete the fabrication of various members and components of the structure, including the required material and product standards; the location, type, and size of all attachments, mechanical fasteners, and welds. When Shop Details are required to be submitted for review and approval, only one reproducible copy of each Shop Detail will be submitted, unless a digital file or a larger number of copies is required by the Client as part of the Tender Documents. If mentioned in Contract Documents, shop drawing approval can be done using an appropriate BIM approval tool.

5.3.1 Shop Details Furnished by the Client

When the Shop Details are furnished by the Client, he shall deliver them in time to permit fabrication to proceed in an orderly manner according to the time schedule agreed upon. The Client shall prepare these Shop Details, insofar as practicable, in accordance with the detailing standards of the Fabricator. The Client shall indicate, in the Tender Documents, if the BIM and digital manufacturing data will be made available to the Fabricator, and if so, the digital file format that will be provided. The Client shall be responsible for the completeness and accuracy of Shop Details so prepared, and accuracy of the BIM model and digital manufacturing data.

5.4 Erection Procedures

Erection Procedures shall outline the construction methods, erection sequence, Erection Bracing, Temporary Bracing if required, and other engineering details necessary for shipping, erecting, and maintaining the stability of the steel frame; they shall be prepared in accordance with CSA S16, Design of steel structures or S6 Canadian highway bridge design code. Erection Procedures shall be supplemented by drawings and sketches to identify the location of stabilizing elements. Erection Procedures shall be submitted for review when so specified.

5.5 Field Work Details

Field Work Details shall be prepared in accordance with CSA S16, Design of steel structures or S6 Canadian highway bridge design code and submitted to the designer for review and approval, Field Work Details shall provide complete information for modifying fabricated members on the job site. All operations required to modify the member shall be shown on the Field Work Details. If extra materials are necessary to make modifications, Shop Details shall be required.

5.6 Fabrication and Erection Document Review

Erection Diagrams, non-standard Connection Design Details, Shop Details, and Field Work Details are normally submitted for review by the Engineer of Record. The duration required for such review shall be stated in the Tender Documents so that the Fabricator can prepare his schedule accordingly. Review of submitted documents by the Engineer of Record indicates that the Fabricator has interpreted correctly the design and Construction requirements. Connection Design Details and Shop Details are reviewed by the Engineer of Record for structural adequacy and to ensure conformance with the loads, forces and special instructions contained in the Structural Design Documents. Review by the Engineer of Record of Shop Details submitted by the Fabricator does not relieve the Fabricator of the responsibility for accuracy of the detail dimensions on Shop Details, nor of the general fit-up of parts to be assembled.

5.7 Additions, Deletions or Changes

Additions, deletions or changes, when approved, will be considered as Contract revisions and constitute the Client's authorization to release the additions, deletions or revisions for construction. See also Clauses 3.3 and 3.6.

5.8 Fabricator Models

When a Fabricator uses self-prepared three-dimensional software (BIM) specifically for his Work, the Fabricator owns the model and data.

6. Material, Fabrication, Inspection, Painting and Delivery

6.1 Quality Certification

For projects requiring a demonstrated level of quality control, CISC Certification of Steel Structures or CISC Certification of Steel Bridges may be specified.

CISC Certification is a third-party audited quality certification program specific to the fabrication of steel structures or steel bridges.

6.2 Materials

Materials used by the Fabricator for structural use shall conform to those listed in CSA S16, Design of steel structures or S6 Canadian highway bridge design code, or to other published material specifications, in accordance with the requirements of the Construction Documents.

6.3 Identification

The method of identification stipulated in CSA S16, Design of steel structures or S6 Canadian highway bridge design code shall form the basis for a Fabricator's identification of material. Control and identification procedures may differ to some extent from Fabricator to Fabricator.

6.4 Preparation of Material

Preparation of Material shall conform to the requirements of CSA SI6, Design of steel structures or S6 Canadian highway bridge design code. Flame or plasma cutting of Structural Steel may be done by hand, by mechanically guided means, or automatically as permitted by the applicable governing Code.

6.5 Fitting and Fastening

6.5.1 Projecting elements of connection attachments need not be straightened in the connecting plane if it can be demonstrated that installation of the connectors or fitting aids will provide adequate contact between faying surfaces.
6.5.2 When runoff tabs are used, the Fabricator and/or Erector need not remove them unless specified in the Structural Design Documents, required by the governing technical Code or the steel is exposed to view. When their removal is required, they may be hand flame-cut close to the edge of the finished member with no more finishing required, unless other finishing is specifically called for in the Structural Design Documents or the governing technical Code.

6.6 Dimensional Tolerances

Tolerances on fabricated members shall be those prescribed in CSA S16, Design of steel structures or S6 Canadian highway bridge design code, as applicable. Tolerances on steel material supplied by the Fabricator shall meet those prescribed in CSA Standard G40.20 or the applicable ASTM Standard.

6.7 Inspection of Steetwork

Should the Client wish to have an independent inspection and/or non-destructive examination of the steelwork, he shall reserve the right to do so in the Tender Documents. Inspections shall be coordinated between the Fabricator and/or Erector and the Client's inspector. Inspectors are to be appointed prior to the start of fabrication, and the Client is to advise the Fabricator of the arrangement made. The cost of this inspection and testing is the responsibility of the Client. Deficiencies in the Work of the Fabricator and/or Erector requiring re-inspection or re-testing shall have costs borne by the Fabricator and/or Erector. Third-party inspectors shall be duly certified and have sufficient experience for the type of inspection performed.
The Fabricator and/or Erector is responsible for providing a conforming product through internal inspection, quality control, quality assurance and any other means necessary. The Fabricator and/or Erector's personnel used for internal visual inspection, QC or QA shall not be required to hold a visual certification to a National Standard, provided the company has assessed their competency for the Work performed.
The Canadian Welding Bureau Letter of Validation is proof that the Fabricator and/or Erector is certified for welding to CSA Standard W47.1. The applicable welding procedure standards, welding procedure data sheets, and personnel qualifications shall be available for review and verification by the Client or his representative at the place of Work, and are not intended for submission to the Client.

6.8 Surface Preparation

Unless required for a specified coating system, fabricated steelwork will not be cleaned. Surface preparation for a specified coating system shall be described in the Structural Design Documents.

If paint is specified, the Fabricator shall clean all steel surfaces to be painted of loose rust, loose mill scale, prominent spatter, slag or flux deposit, oil, dirt and other foreign matter by wire brushing or other suitable means. Unless specified in the Construction Documents, the Fabricator shall not be obliged to blast-clean, pickle or perform any specific surface preparation operation aimed at total or near-total removal of tight mill scale, rust or non-deleterious matter.

6.9 Paint Coatings

When Structural Steel is specified to receive a shop coating, the coating requirements specified in the Tender Documents shall include the identification of the members to be painted, surface preparation, application specification, the manufacturer's product identification, and the required minimum (and maximum) dry film thickness, if required. The Fabricator shall be responsible only to the extent of performing the surface preparation and painting in the specified manner. To the extent that the Fabricator has met these requirements, the Fabricator is not responsible for the performance of the specified coating system in the service conditions and duration to which the steelwork is exposed.

The expected performance of steel with a shop coat of primer depends on the environment. The primer will provide temporary limited corrosion protection to the steel in an essentially noncorrosive atmosphere for durations not exceeding 6 or 12 months for a CISC/CPMA 1-73a or CISC/CPMA 2-75 primer respectively, or according to the manufacturer's specifications and limitations. These durations apply to installed steel or steel that is not subjected to a corrosive environment in its erected state. Uninstalled steel stored flat with the potential for water accumulation on horizontal surfaces may, in some situations, be considered a corrosive environment. The presence of minor rust bleed-through, especially between unpainted faying surfaces, is not to be considered as a failure of the paint system and is not a cause for rejection or corrective action by the Fabricator.
Unless otherwise specified, coating systems applied by steel Fabricators are for temporary corrosion protection and are not intended for esthetic or final architectural purposes. For complex anti-corrosive multi-coat industrial coating systems or architecturally exposed Structural Steel paint systems, the Fabricator's inspection and test plan for coating applications shall be approved by the Client prior to commencement of the Work. The use of samples may be agreed upon as acceptance criteria. The Client is required to approve the coating application process on an ongoing basis throughout the execution of the project.

6.10 Marking and Shipping

6.10.1 Except for weathering steel surfaces exposed to view and for architecturally exposed Structural Steel (AESS) (see also Appendix I), erection marks shall be painted or otherwise legibly marked on the members. Preferably, members which are heavy enough to require special erection equipment shall be marked to indicate the computed or scale mass, and the centre of gravity for lifting.
6.10.2 Bolts of the same length and diameter, and loose nuts and washers of each size shall be packaged separately. Pins, bolts, nuts, washers, and other small parts shall be shipped in boxes, crates, kegs or barrels, none of which are to exceed 135 kg gross mass. A list and description of material contained therein shall be marked plainly on the outside of each container.
6.10.3 When requested by the Erector, Iong girders shall be loaded and marked so that they will arrive at the job site in position for handling without turning. Instructions for such delivery shall be given to the carrying agency when required.
6.10.4 For each shipment, the Fabricator shall furnish a shipping bill listing the items in the shipment. Such bill shall show the erection mark, the approximate length, the description (whether beam, column, angle, etc.) of each item. Such bill shall be signed by the receiver and returned to the Fabricator within 48 hours of receipt of the shipment with a note regarding shortages or damages, if any, and the bill shall act as a receipt for the shipment. When the shipments are made by truck transport, the bills should accompany the shipment. When shipments are made by rail or water, the bills shall be sent to the receiver to arrive on or before receipt of the shipment.
6.10.5 Unless otherwise specified at time of tender, steel during shipment will not be covered by tarpaulins or otherwise protected. When such protection is specified, the shipper is to notify the carrier of the protection requirements.

6.11 Delivery of Materials

6.11.1 Fabricated Structural Steel shall be delivered in a sequence which will permit the most efficient and economical performance of shop fabrication and erection. If the Client contracts separately for delivery supply and erection, he must coordinate planning between the Fabricator, Erector and General Contractor as applicable.
6.11.2 Anchor rods, washers and other anchorages, grillages, or materials to be built into masonry or concrete should be shipped so that they will be on hand when needed. The Client must give the Fabricator sufficient notice to permit fabrication and shipping of materials before they are needed,
6.11.3 The size and mass of Structural Steel assemblies may be limited by the shop capabilities, the permissible mass and clearance dimensions of available transportation or government regulations, and the job site conditions. The Fabricator determines the number of field splices consistent with economy. The Engineer of Record shall review and accept splice locations prior to implementation.
6.11.4 On supply-only Contracts, the unloading of steel is the responsibility of Others. Unless stated otherwise, the unloading of steel is part of the steel erection.

7. Erection

7.1 Method of Erection

Unless otherwise specified or agreed upon, erection shall proceed according to the most efficient and economical method available to the Erector on the basis of continuous operation consistent with the Construction Documents.

7.2 Erection Stability

7.2.1 Design

7.2.1.1 The Engineer of Record shall identify the following in the Tender Documents:
a) The lateral-load-resisting system and connecting diaphragm elements that provide for lateral strength and stability in the completed structure.
b) Any special erection conditions or other considerations that are required by the design concept, such as the use of shores, jacks, or loads that must be adjusted as erection progresses to set or maintain camber, position within specified tolerances, or pre-stress.
7.2.1.2 The General Contractor shall indicate to the Fabricator and/or Erector the general construction execution plan, including the installation schedule for non-structural steel elements of the lateral-load-resisting system and connecting diaphragm elements. The General Contractor shall indicate requirements for Temporary Bracing to accommodate this plan.
7.2.1.3 Based upon the information provided in Sections 7.2.1 and 7.2.2, the Fabricator and/or Erector shall determine, furnish, and install all Erection Bracing required for the erection operation. This Temporary Bracing shall be sufficient to secure the skeletal Structural Steel framing or any portion thereof against loads that are likely to be encountered during erection, including those due to wind and those that result from erection operations.
7.2.1.4 The Fabricator and/or Erector need not consider loads during erection that result from the performance of Work by, or the acts of Others, except as specifically identified by the Engineer of Record and/or the General Contractor, nor those that are unpredictable, such as loads due to hurricane, tornado, earthquake, explosion, or collision.
7.2.1.5 Temporary Bracing that is required during or after the erection of the Structural Steel Frame, including steel deck, for the support of loads caused by non-Structural Steel elements, including cladding, interior partitions, and other such elements that will induce or transmit loads to the Structural Steel frame during or after erection, shall be the responsibility of the Engineer of Record or General Contractor, as applicable.
7.2.1.6 The Structural Steel Fabricator and/or Erector shall engage the steel deck contractor to provide a bundle layout (including locations and weights) for the landing of deck bundles based on the Structural Steel erection plan.

7.2.2 Steel Erection Execution

7.2,2.1 The Steel Erection Execution Plan provides for a sequentially erected structure. The full stability of the structure is not achieved until all of the lateral support systems are in place. Proceeding with subsequent non-structural construction prior to completion shall be at the instruction and sole risk of the General Contractor, who shall make the Erector aware of the special provisions in place to accommodate any collateral building loads.
7.2.2.2 The instruction/request to proceed with the Structural Steel erection and steel deck installation will be given by the General Contractor following agreement between all parties that the following events have taken place.
a) The Erection Diagrams and steel deck drawings have been reviewed by the Engineer of Record.
b) The Steel Erection Execution Plan has been reviewed by the General Contractor and approved in principle for compliance with his construction execution plan.

At this time, a formal review shall be completed by all parties, and Work may proceed.
7.2.2.3 During the construction period, any other trade contractor placing a load on a steel framing member shall ensure that the load is distributed so as not to exceed the carrying capacity of the subject steel framing member.
7.2.2.4 Prior to placement of steel deck bundles, communication between the General Contractor, the steel deck installer, and the structural Fabricator and/or Erector has taken place to ensure that all requirements of the Steel Erection Execution Plan have been met and it is
agreed that the structure (full or partial) is ready to accept the construction loads of the steel deck.
7.2.2.5 Once the deck installation and required inspections have been completed, and deficiencies addressed, responsibility for structural stability is assumed by the General Contractor.
7.2.2.6 The erection execution plan may be modified, and costs accommodated, to suit specific project requirements, pre- or post-bid, providing the Owner's designated representative for construction has clearly stated these requirements, and they may be accomplished in a safe manner.

Temporary Bracing of the steel frame shall only be removed on instruction from the Engineer of Record.

7.3 Erection Safety

Erection shall be done in a safe manner and in accordance with applicable provincial legislation.

7.4 Site Conditions

The Client shall provide and maintain adequate, all-weather access roads cleared of snow and ice and other material that impedes entry into and through the site for the safe delivery of derricks, cranes, other necessary equipment, and the material to be erected. The Client shall provide for the Erector a firm, properly graded, drained, convenient and adequate space and laydown area for steel of sufficient load-carrying capacity at the site for the operation of erection equipment, and shall remove at the Client's cost all overhead obstructions such as power lines, telephone lines, etc., in order to provide a safe and adequate working area for erection of the steelwork. The Erector shall provide and install the safety protection required for his own operations or for his Work forces to meet the safety requirements of applicable Acts or Codes. The General Contractor shall install protective covers on all protruding rebar, machinery, anchor rods, etc., which are a hazard to workers and shall be installed by other trades prior to commencement of steel erection. Any protection for pedestrians, property, other trades, etc., not essential to the steel erection activity is the responsibility of the Client. When the structure does not occupy the full available site, the Client shall provide adequate storage space to enable the Fabricator and Erector to operate at maximum practicable speed and efficiency. Cleaning of steelwork required because of site conditions, mud, site worker traffic, etc., shall not be to the Fabricator's and/or Erector's account.

7.5 Foundations

Neither the Fabricator nor the Erector shall be responsible for the accurate location, strength and suitability of foundations.

7.6 Bearing Surfaces

Levelling plates shall be set by other trades true, level and to the correct elevation.

7.7 Building Lines and Bench Marks

The Erector shall be provided with a plot plan accurately locating building lines and bench marks at the site of the structure. A survey bench mark establishing elevation and horizontal coordinates shall be provided by the Client at the site.

7.8 Installation of Anchor Rods and Embedded Items

7.8.1 Anchor rods and foundation rods shall be set by others in accordance with the Construction Documents. They must not vary from the dimensions shown on the Construction Documents by more than the following (see also Appendix D):
a) 3 mm centre-to-centre of any two rods within an anchor rod group, where an anchor rod group is defined as the set of anchor rods which receives a single fabricated steel shipping piece; 6 mm centre-to-centre of adjacent anchor rod groups;
b) Maximum accumulation of 6 mm per 30000 mm along the established column line of multiple anchor rod groups, but not to exceed a total of 25 mm . The established column line is the actual field line most representative of the centres of the as-built anchor rod groups along a line of columns;
c) 6 mm from the centre of any anchor rod group to the established column line through that group. Shims: the finished tops of all footings shall be at the specified level which will not exceed the maximum specified grouting allowance to predetermine the amount of shimming that will be required.

The tolerances of paragraphs (a), (b), and (c) also apply to offset dimensions, shown on the Construction Documents, measured parallel and perpendicular to the nearest established column line for individual columns shown on the drawings to be offset from established column lines.
7.8.2 Unless shown otherwise, anchor rods shall be set perpendicular to the theoretical bearing surface, threads shall be protected, free of concrete, and nuts should run freely on the threads. Shear pockets shall be cleaned of debris, formwork, ice and snow by the Client prior to steel erection.
7.8.3 Other embedded items or connection materials between the Structural Steel and the Work of Others shall be located and set by Others in accordance with approved Construction Documents. Accuracy of these items must satisfy the erection tolerance requirements of Clause 7.12.
7.8.4 All Work performed by Others shall be completed so as not to delay or interfere with the erection of the Structural Steel.

7.9 Bearing Devices

The Client shall set to lines and grades all levelling plates and loose bearing plates. The Fabricator and/or Erector shall provide the wedges, shims or levelling screws that are required, and shall scribe clearly the bearing devices with working lines to facilitate proper alignment. Promptly after the setting of any bearing devices, the Client shall check lines and grades, and grout as required. The final location and proper grouting of bearing devices are the responsibility of the Client.
When steel columns, girders or beams which will be supported on concrete or masonry have base plates or bearing plates fabricated as an integral part of the member, the bearing area of the support shall be suitably prepared by Others so as to be at exact grade and level to receive the steelwork.

7.10 Site Errors or Discrepancies - Examination by Erector

The Erector shall report to the Client any errors or discrepancies in the Work of Others, as discovered, that may affect erection of Structural Steel before or during erection. The accurate
placement and integrity of all anchor rods/embedment etc., remain the responsibility of the Client.

7.11 Adjustable Shelf Angles and Sash Angles

The Erector shall position at time of erection all adjustable shelf angles and sash angles attached to the steel frame true and level, within the tolerances permitted by the governing technical standard. Any subsequent adjustment that may be necessary to accommodate the Work of Others shall be performed by other trades.

7.12 Tolerances

Unless otherwise specified, tolerances on erected Structural Steel shall be those prescribed in CSA S16, Design of steel structures or S6 Canadian highway bridge design code as applicable.

7.13 Checking Erected Steelwork

Prior to the placement or applying of any other material of any other trades, the Client shall:

- Confirm with the Erector that the structure is complete and conforming to the Construction Documents, and
- Confirm that any third-party inspection and testing and necessary corrective action have been completed, and
- Ensure that the Erector is given timely notice of acceptance by the Client or a listing of specific items to be corrected in order to obtain acceptance, and
- Ensure such notice is rendered immediately upon completion of any part of the Work and prior to the start of Work by other trades that may be supported, attached or applied to the structural steelwork.

Should such notice not be received within 14 days, or the Client commences use, occupancy, or improvement to the steelwork, then the Work is taken to have been accepted.

The Erector is not responsible for determining or effecting the stability of the structure due to temporary loads resulting from construction activities of Others.

7.14 Removal of Bracing

7.14.1 Removal of Erection Bracing

Guys, braces and falsework or cribbing supplied by the Erector shall remain the property of the Erector. The Erector shall remove them when the steel structure is otherwise adequately braced, unless other arrangements are made. Guys and braces temporarily left in place under such other arrangements shall be removed by Others, provided prior permission by the Erector for their removal has been given and they are returned to the Erector in good condition. See Clause 7.14.2.

7.14.2 Removal of Temporary Bracing

Temporary Bracing required by the structural designer shall only be removed on instruction from the Engineer of Record.

7.15 Correction of Errors When Material Is Not Erected by the Fabricator

Correction of minor misfits and a moderate amount of cutting, welding, and reaming for the project as a whole shall be considered a part of the erection, in the same manner as if the Fabricator were erecting the Work. Any major rework required due to incorrect shop Work shall be immediately reported to the Fabricator before rework commences. The Fabricator shall then either correct the error, resupply the item within a reasonable time period, or approve the method of correction including applicable costs, whichever is the most economical. The definitions of major and minor rework should be agreed to prior to the commencement of the project.

7.16 Field Assembly

Unless otherwise specified, the Fabricator shall provide for suitable field connections that will, in his opinion, afford the greatest overall economy.

7.17 Accommodation of Other Trades

Neither the Fabricator nor the Erector shall cut, drill or otherwise alter the Work of Others or his own Work to accommodate other trades, unless such Work is clearly defined in the Structural Steel and Tender Documents, and detailed information is provided before the Erection Documents are approved. Any subsequent cutting, drilling or other alteration of the Structural Steel performed by the Fabricator or the Erector for the accommodation of other trades shall be specifically agreed upon and authorized by the Client before such Work is commenced.

7.18 Temporary Floors and Access Stairs

Unless otherwise required by law or in the Tender Documents, all temporary access stairs shall be provided by Others, except for the floor upon which erecting equipment is located. On this floor, the Erector shall provide such temporary flooring as he requires, moving his planking, etc., as the Work progresses.

7.19 Touch-Up of Shop Paint Coatings

Touch-up may also be required for unfinished field bolts or at masked connection areas. It is normal to expect that painted or coated Structural Steel surfaces will be subject to damage due to handling from loading, off- loading and installation, and due to abrasions during shipment. Unless so specified, the Fabricator and/or Erector will not perform any field coating touch-ups, spot-paint field fasteners and field welds, nor touch-up abrasions to the shop paint.

7.20 Final Painting

Unless so specified, the Fabricator and/or Erector will not be responsible for cleaning the steel after erection in preparation for field painting, nor for any general field painting that may be required.

7.21 Final Cleanup

Except as provided in Clause 7.14, upon completion of erection and before final acceptance, the Erector shall remove all falsework, rubbish and temporary building furnished by him.

APPENDIX B

Guideline for Unit Price Application for Changes

B1. Unit rates for Changes shall apply on their own, only up until commencement of material order or shop detail drawings, whichever is the earlier.
B2. It is accepted that Unit Rates for additions will be higher than for rates for deletions. Unit Rates for both additions and deletions should be requested in the Tender Documents if Unit Prices are to be used for the project.
B3. The following amounts, additional to the unit rate, shall be charged on additions at the various stages of the contract.
a) If the addition affects drawings (e.g. of support members) already in progress or complete, then the changes to such drawings or re-detailing shall be charged extra at an agreed hourly rate.
b) If the addition requires additional Work to material manufacture or erection (e.g. supporting members) in progress or complete, then such additional Work shall be charged extra at an agreed hourly rate.
c) "Detail" or "Connection" materials added to existing or supporting members, whether due to an additional member or not, shall be charged on a cost-plus basis.
d) If the timing of the addition causes the added material to be shipped as a part load, then transportation shall be charged extra at cost plus an agreed percentage markup.

B4. The following amounts, additional to the unit rate, shall be charged for deletions at the various stages of the contract.
a) If the deleted material has been ordered or delivered and cannot be used elsewhere, then a restocking charge shall be levied.
b) If the deleted member has been detailed or drawings are in progress, then the cost of such drawings shall be charged extra at an agreed hourly rate.
c) If the deletion affects drawings already completed or in progress, then the changes to such drawings or the re-detailing shall be charged extra at an agreed hourly rate.
d) If the deleted member has been manufactured or erected, or manufacture or erection is in progress, then the cost of such manufacture or erection shall be charged extra at an agreed hourly rate or lump sum cost.
e) If the deletion affects members already manufactured (e.g, supporting members), then the changes to such members shall be charged extra at an agreed hourly rate or lump sum cost.
f) If the deleted member has already been shipped, then no credit shall be given.

B5. All unit rates shall be applied in accordance with the CISC Code of Standard Practice, Clause 3.5.

B6. Hourly Rates for additions are as follows:
a) Engineering Design \quad / labour hour
b) Detailing Labour $\quad \$ \quad$ labour hour
c) Shop Labour - \$ labour hour
d) Field Labour - \$ labour hour
e) Equipment used for revisions will be charged at negotiated rental rates, according to Canadian Construction Association standard practice.

B7. Revisions involving the use of grades of steel, sources of supply, or types of sections other than specified will be subject to price adjustments.
B8. Mass will be computed in accordance with Clause 3.5 of the CISC Code of Standard Practice for Structural Steel.

APPENDIX C

A Suggested Format for Price-per-Unit Contracts Category List C1

It is common practice in the industry to limit categories for structural steel to light, medium and heavy steel members. These very general categories require the Fabricator to make allowance for the very large degree of complexity that may be encountered in the final project design. This comprehensive category list removes variability of complexity from each category, enabling a more economical price evaluation for each category.

CAT NUM	CLASSIFICATION	PAY UNIT
	Columns and Beams - Rolled Sections	
100	0 to $15 \mathrm{~kg} / \mathrm{m}$	tonne
101	16 to $30 \mathrm{~kg} / \mathrm{m}-0-3 \mathrm{~m}$	tonne
102	16 to $30 \mathrm{~kg} / \mathrm{m}-3-9 \mathrm{~m}$	tonne
103	16 to $30 \mathrm{~kg} / \mathrm{m} \rightarrow>9 \mathrm{~m}$	tonne
104	31 to $60 \mathrm{~kg} / \mathrm{m}-0-3 \mathrm{~m}$	tonne
105	31 to $60 \mathrm{~kg} / \mathrm{m}-3-9 \mathrm{~m}$	tonne
106	31 to $60 \mathrm{~kg} / \mathrm{m}$ - >9 m	tonne
107	61 to $90 \mathrm{~kg} / \mathrm{m}-0-3 \mathrm{~m}$	tonne
108	61 to $90 \mathrm{~kg} / \mathrm{m}-3.9 \mathrm{~m}$	tonne
109	61 to $90 \mathrm{~kg} / \mathrm{m} \rightarrow>9 \mathrm{~m}$	tonne
110	91 to $155 \mathrm{~kg} / \mathrm{m}-0-3 \mathrm{~m}$	tonne
111	91 to $155 \mathrm{~kg} / \mathrm{m}-3-9 \mathrm{~m}$	tonne
112	91 to $155 \mathrm{~kg} / \mathrm{m}$->9 m	tonne
113	$>155 \mathrm{~kg} / \mathrm{m}-0-3 \mathrm{~m}$	tonne
114	$>155 \mathrm{~kg} / \mathrm{m}-3-9 \mathrm{~m}$	tonne
115	$>155 \mathrm{~kg} / \mathrm{m}->9 \mathrm{~m}$	tonne
	Columns and Beams - HSS/RHS Sections	
116	0 to $30 \mathrm{~kg} / \mathrm{m}-0-3 \mathrm{~m}$	tonne
117	0 to $30 \mathrm{~kg} / \mathrm{m}-3-9 \mathrm{~m}$	tonne
118	0 to $30 \mathrm{~kg} / \mathrm{m}->9 \mathrm{~m}$	tonne
119	31 to $60 \mathrm{~kg} / \mathrm{m}-0-3 \mathrm{~m}$	tonne
120	31 to $60 \mathrm{~kg} / \mathrm{m}-3-9 \mathrm{~m}$	tonne
121	31 to $60 \mathrm{~kg} / \mathrm{m}$ - >9 m	tonne
122	$>60 \mathrm{~kg} / \mathrm{m}-0.3 \mathrm{~m}$	tonne
123	$>60 \mathrm{~kg} / \mathrm{m}-3-9 \mathrm{~m}$	tonne
124	$>60 \mathrm{~kg} / \mathrm{m}->9 \mathrm{~m}$	tonne

APPENDIX C

A Suggested Format for Price-per-Unit Contracts Category List C1 (Cont'd)

	Monorails and Crane Rails	
150	S Shapes - Straight - 0-30 kg/m	tonne
151	S Shapes - Straight - over $30 \mathrm{~kg} / \mathrm{m}$	tonne
152	S Shapes - Curved - $0-30 \mathrm{~kg} / \mathrm{m}$	tonne
153	S Shapes - Curved - over $30 \mathrm{~kg} / \mathrm{m}$	tonne
154	30 lb Crane Rail c/w Clips	tonne
155	60 lb Crane Rail c/w Clips	tonne
156	85 lb Crane Rail c/w Clips	tonne
	Bracing	
201	Rid Sec - 0 to $30 \mathrm{~kg} / \mathrm{m}-<3 \mathrm{~m}$	tonne
202	Rid Sec - 0 to $30 \mathrm{~kg} / \mathrm{m}-3-9 \mathrm{~m}$	tonne
203	Rld Sec - 0 to $30 \mathrm{~kg} / \mathrm{m} \rightarrow>9 \mathrm{~m}$	tonne
204	Rid Sec - $>30 \mathrm{~kg} / \mathrm{m}-<3 \mathrm{~m}$	tonne
205	Rld Sec - >30 kg/m-3-9 m	tonne
206	Rid Sec - > $30 \mathrm{~kg} / \mathrm{m}->9 \mathrm{~m}$	tonne
210	HSS Sec - 0 to $30 \mathrm{~kg} / \mathrm{m}-<3 \mathrm{~m}$	tonne
211	HSS Sec - 0 to $30 \mathrm{~kg} / \mathrm{m}-3-9 \mathrm{~m}$	tonne
212	HSS Sec - 0 to $30 \mathrm{~kg} / \mathrm{m}->9 \mathrm{~m}$	tonne
213	HSS Sec $->30 \mathrm{~kg} / \mathrm{m}-<3 \mathrm{~m}$	tonne
214	HSS Sec $->30 \mathrm{~kg} / \mathrm{m}-3-9 \mathrm{~m}$	tonne
215	HSS Sec $->30 \mathrm{~kg} / \mathrm{m}->9 \mathrm{~m}$	tonne
220	WT Sec - 0-30 kg/m-<3 m	tonne
221	WT Sec -0-30 kg/m-3-9 m	tonne
222	WT Sec - 0-30 kg/m - >9 m	tonne
223	WT Sec $->30 \mathrm{~kg} / \mathrm{m}-<3 \mathrm{~m}$	tonne
224	WT Sec $->30 \mathrm{~kg} / \mathrm{m}-3-9 \mathrm{~m}$	tonne
225	WT Sec $\rightarrow>30 \mathrm{~kg} / \mathrm{m}->9 \mathrm{~m}$	tonne
	Built-Up Members	
250	3 Plate Girders < 90 kg/m	tonne
251	3 Plate Girders $90-155 \mathrm{~kg} / \mathrm{m}$	tonne
252	3 Plate Girders > $155 \mathrm{~kg} / \mathrm{m}$	tonne
260	Fireproofing Corner Angles	tonne
261	Continuous Support Angles for Deck, etc,	tonne
262	Bent Plates	tonne

APPENDIX C

A Suggested Format for Price-per-Unit Contracts Category List C1 (Cont'd)

	Cold-Formed Channels and Z-Shapes	
301	$0-5.75 \mathrm{~kg} / \mathrm{m}-0-3 \mathrm{~m}$	tonne
302	$0-5.75 \mathrm{~kg} / \mathrm{m}-3-9 \mathrm{~m}$	tonne
303	$0-5.75 \mathrm{~kg} / \mathrm{m} \rightarrow>9 \mathrm{~m}$	tonne
304	$>5.75 \mathrm{~kg} / \mathrm{m}-0-3 \mathrm{~m}$	tonne
305	$>5.75 \mathrm{~kg} / \mathrm{m}-3-9 \mathrm{~m}$	tonne
306	$>5.75 \mathrm{~kg} / \mathrm{m}$ - $>9 \mathrm{~m}$	tonne
320	Sag Rods - specify diameter and finish	tonne
	Connection Materials and Welding	
401	Welded Plates - Gusset Plates, Wrap Plates, Shear Tabs	tonne
402	Welded Plates - Moment Plates	tonne
403	Welded Plates - End Plates, Clip Angles	tonne
404	Welded Plates - Base/Cap Plates	tonne
405	Welded Plates - Stiffeners under W310	tonne
406	Welded Plates - Stiffeners W360 to W460	tonne
407	Welded Plates - Stiffeners W460 to W610	tonne
408	Welded Plates - Web Doubler Plates	tonne
409	Welded Plates - Shop Welded Lifting Lugs	tonne
410	Welded Plates - Bolted Lifting Lugs	tonne
411	Loose Plates - Field-Installed	tonne
412	Prepared Groove Welds	cm^{3}
413	Seal Welding	cm
414	Welded Shear Studs	ea
	Miscellaneous	
501	Stair Stringers	tonne
502	Shop Assembled Stairs - Stringers and Bolted Treads	tonne
503	Ladders (without safety cage)	tonne
504	Ladder (with safety cage)	tonne
505	Checkerplate: 6 mm thick - specify installation location and method	tonne
506	Checkerplate: 8 mm thick - specify installation location and method	tonne
507	Handrail (straight)	tonne
508	Handrail (sloped)	tonne
509	Handrail (circular)	tonne
510	Safety gates: Premanufactured	Ea
511	Safety gates: Steel Fabricated	Ea

APPENDIX C

A Suggested Format for Price-per-Unit Contracts Category List C1 (Cont'd)

	Grating and Treads	
601	Stair Treads (specify Bearing Bar Size, tread size surface type, finish)	Ea
603	Grating (specify Bearing Bar Size, tread size surface type, finish)	m^{2}
605	Cold-Formed Walkway Channels	m
606	Cold-Formed Walkway Channel fasteners	Ea
607	Grating - Straight Banding (shop)	m
608	Grating - Circular Banding (shop)	m
609	Grating - Straight Toe Plate (shop)	m
610	Grating - Circular Toe Plate (shop)	m
611	Grating - Grating Clip (specify type)	Ea
612	Grating - Checkerpiate Nose to Grating	m
	Weided Frames (2 or more shop-welded framing members)	
701	Members - $0-15 \mathrm{~kg} / \mathrm{m}$	tonne
702	Members - $16-30 \mathrm{~kg} / \mathrm{m}$	tonne
703	Members - $31-60 \mathrm{~kg} / \mathrm{m}$	tonne
704	Members $61.90 \mathrm{~kg} / \mathrm{m}$	tonne
705	Members - $90-155 \mathrm{~kg} / \mathrm{m}$	tonne
	Bolts	
801	A307 $16 \mathrm{~mm}(5 / 8)$ dia. (Black) or $10 \mathrm{~mm}(3 / 8)$ dia. (Plated) \times length	Ea/tonne
802	A325 Bolt (Black): 20 mm (3/4) dia. x length	Ea / tonne
803	A325 Bolt (Black): 22 mm (7/8) dia. x length	Ea/tonne
804	A325 Bolt (Black): 25 mm (1) dia. \times length	Ea/tonne
805	A490 Bolt (Black): 32 mm (11/4) dia. x length	Ea/tonne
806	B307 (Button Head): $16 \mathrm{~mm}(5 / 8)$ dia. \times length	Ea/ tonne
	Hourly Rates for Extra Work	
	Extra Engineering Design	hour
	Extra Drafting Labour	hour
	Extra Shop Labour	hour
	Extra Field Labour	hour
	Extra Administration Labour	hour

APPENDIX C

A Suggested Format for Price-per-Unit Contracts

 Category List C2In the event that the comprehensive Category List Cl is deemed too onerous to manage, Category List C2 provides an alternate approach. The categories in this list include a greater variation in complexity but may be deemed easier to manage.

CAT NUM	CLASSIFICATION	$\begin{aligned} & \text { PAY } \\ & \text { UNIT } \end{aligned}$	Comments
	Columns and Beams - Rolled Sections		
100	0 to $15 \mathrm{~kg} / \mathrm{m}$	tonne	
101	16 to $30 \mathrm{~kg} / \mathrm{m}$	tonne	
104	31 to $60 \mathrm{~kg} / \mathrm{m}$	tonne	
107	61 to $90 \mathrm{~kg} / \mathrm{m}$	tonne	
110	91 to $155 \mathrm{~kg} / \mathrm{m}$	tonne	
113	$>155 \mathrm{~kg} / \mathrm{m}$	tonne	
	Columns and Beams - HSS/RHS Sections		
116	0 to $30 \mathrm{~kg} / \mathrm{m}$	tonne	
119	31 to $60 \mathrm{~kg} / \mathrm{m}$	tonne	
122	$>60 \mathrm{~kg} / \mathrm{m}$	tonne	
	Monorails and Crane Rails		
150	S Shapes - Straight - $0-30 \mathrm{~kg} / \mathrm{m}$	tonne	
151	S Shapes - Straight - over $30 \mathrm{~kg} / \mathrm{m}$	tonne	
152	S Shapes - Curved - 0-30 kg/m	tonne	
153	S Shapes - Curved - over $30 \mathrm{~kg} / \mathrm{m}$	tonne	
154	30 lb Crane Rail c/w Clips	tonne	
155	60 lb Crane Rail c/w Clips	tonne	
156	85 lb Crane Rail c/w Clips	tonne	
	Bracing		
201	Rld Sec - 0 to $30 \mathrm{~kg} / \mathrm{m}$	tonne	
204	Rld Sec - $>30 \mathrm{~kg} / \mathrm{m}$	tonne	
210	HSS Sec - 0 to $30 \mathrm{~kg} / \mathrm{m}$	tonne	
213	HSS Sec - >30	tonne	
220	WT Sec - $0.30 \mathrm{~kg} / \mathrm{m}$	tonne	
223	WT Sec - $>30 \mathrm{~kg} / \mathrm{m}$	tonne	

APPENDIX C

A Suggested Format for Price-per-Unit Contracts Category List C2 (Cont'd)

	Built-Up Members		
250	3 Plate Girders <90 kg/m	tonne	
251	3 Plate Girders $90-155 \mathrm{~kg} / \mathrm{m}$	tonne	
252	3 Plate Girders >155 kg/m	tonne	
260	Fireproofing Corner Angles	tonne	
261	Continuous Support Angles for Deck, etc.	tonne	
262	Bent Plates	tonne	
	Cold-Formed Channels and Z-Shapes		
301	$0-5.75$ kg/m - 0-3m	tonne	
304	>5.75 kg/m - 0-3m	tonne	
320	Sag Rods - specify diameter and finish	tonne	
	Connection Materials and Welding	tonne	
401	Welded Plates - Gusset Plates, Wrap Plates,	Shear Tabs	tonne
402	Welded Plates - Moment Plates	tonne	
403	Welded Plates - End Plates, Clip Angles	tonne	
404	Welded Plates - Base/Cap Plates	tonne	
405	Welded Plates - Stiffeners Under W310	tonne	
406	Welded Plates - Stiffeners W360 to W460	tonne	
407	Welded Plates - Stiffeners W460 to W610	tonne	
408	Welded Plates - Web Doubler Plates	tonne	
409	Welded Plates - Shop-Welded Lifting Lugs	tonne	
410	Welded Plates - Bolted Lifting Lugs	tonne	
411	Loose Plates - Field installed	$\mathrm{cm}{ }^{3}$	
412	Prepared Groove Welds	cm	
413	Seal Welding	ea	
414	Welded Shear Studs		

APPENDIX C

A Suggested Format for Price-per-Unit Contracts Category List C2 (Cont'd)

	Miscellaneous		
501	Stair Stringers	tonne	
502	Shop Assembled Stairs - Stringers and Bolted Treads	tonne	
503	Ladders (without safety cage)	tonne	
504	Ladder (with safety cage)	tonne	
505	Checkerplate: 6 mm thick - specify installation location and method	tonne	Specify thickness, installation location, and method
507	Handrail (straight)	tonne	
508	Handrail (sloped)	tonne	
509	Handrail (circular)	tonne	
510	Safety gates: Premanufactured	Ea	
511	Safety gates: Steel Fabricated	Ea	
	Grating and Treads		
601	Stair treads (specify Bearing Bar Size, tread size surface type, finish)	Ea	
603	Grating (specify Bearing Bar Size, tread size surface type, finish)	m^{2}	Includes banding, kickplate, and fasteners. Details required.
605	Cold-Formed Walkway Channels	m	
606	Cold-Formed Walkway Channel Fasteners	Ea	
	Welded Frames (2 or more shop-welded framing members)		
701	Members -0-15 kg/m	tonne	
702	Members - $16-30 \mathrm{~kg} / \mathrm{m}$	tonne	
703	Members - $31-60 \mathrm{~kg} / \mathrm{m}$	tonne	
704	Members -61-90 kg/m	tonne	
705	Members - $90-155 \mathrm{~kg} / \mathrm{m}$	tonne	

APPENDIX C

A Suggested Format for Price-per-Unit Contracts

 Category List C2 (Cont'd)| | Bolts | | |
| :---: | :---: | :---: | :---: |
| 801 | A307 $16 \mathrm{~mm}(5 / 8)$ dia. (Black) or $10 \mathrm{~mm}(3 / \mathrm{B})$ dia. (Plated) \times length | Ea / tonne | |
| 802 | A325 Bolt (Black): 20 mm (3/4) dia. x length | Ea / tonne | |
| 803 | A325 Boit (Black): 22 mm (7/8) dia. x length | Ea / tonne | |
| 804 | A325 Bolt (Black): 25 mm (1) dia. x length | Ea/tonne | |
| 805 | A490 Bolt (Black): 32 mm ($11 / 4$) dia. x length | Ea/ / tonne | |
| 806 | B307 (Button Head): $16 \mathrm{~mm}(5 / 8)$ dia. \times length | Ea/ tonne | |
| | | | |
| | Hourly Rates for Extra Work | | |
| | Extra Engineering Design | hour | |
| | Extra Drafting Labour | hour | |
| | Extra Shop Labour | hour | |
| | Extra Field Labour | hour | |
| | Extra Administration Labour | hour | |

Note:

This Code of Standard Practice for Structural Steel (in PDF format) and the above Category Lists C 1 and C2 (in Excel format) may be downloaded from the CISC website at this link: www.cisc-icca.ca/solutions-centre/publications/publications

APPENDIX D

Tolerances on Anchor Rod Placement

APPENDIX E

Conversion of SI Units to Imperial Units

When Imperial units are used in contract documents, unless otherwise stipulated, the SI units used in the CISC Code of Standard Practice for Structural Steel shall be replaced by the Imperial units shown, for the clause as noted.

Clause 3.5 (a). Unit Weight. The unit weight of steel is assumed to be 0.2833 pounds per cubic inch.

For other clauses, the standard conversion factors (for length, mass, etc.) stipulated in the CISC Handbook should be used.

Note: Imperial projects should be entirely in the imperial designation including shape sizes. Metric projects should be entirely in the SI designation, including shape sizes. Units should not be intermixed on the same project.

APPENDIX F
 Miscellaneous Steel

Unless otherwise specified in the tender documents, the following items are considered miscellaneous steel of ferrous metal only, fabricated from 2.0 mm (14 ga.) and more of metal, including galvanizing, cadmium and chrome plating, but not stainless steel and cast iron items. This list of items is to be read in conjunction with Clause 2.1 Structural Steel and Clause 2.3 Items Supplied by Others, and shall include all steel items not included in Clauses 2.1 and 2.3, unless specified otherwise.

Access doors and frames - except trade-name items and those required for servicing mechanical and electrical equipment.
Angles and channel frames for doors and wall openings - drilling and tapping to be specified as being done by Others.
Benches and brackets.
Bollards, bumper posts and rails
Bolts - only includes those bolts and anchors required for anchoring miscellaneous steel supplied under this list.
Burglar/security bars.
Clothes line poles, custom-fabricated types only.
Coat rods, custom-fabricated types only.
Corner protection angles.
Expansion joint angles, plates custom-fabricated, etc., including types made from steel, or a combination of steel and non-ferrous metal.
Fabricated convector frames and enclosures.
Fabricated items where clearly detailed or specified and made from 2.0 mm (14 ga.) and heavier steel, except where included in another division,
Fabricated steel framing for curtain walls and storefronts where not detailed on structural drawings and not enclosed by architectural metal.
Fabricated wire mesh and expanded metal partitions and screens.
Fire escapes.
Flag poles - steel custom-fabricated. (Excluding hardware)
(Custom-fabricated) Footscrapers, mud and foot grilles, including pans, but less drains.
Frames, grating and plate covers for manholes, catch basins, sumps, trenches, hatches, pits, etc., except cast iron, frames and covers and trade-name floor and roof drains.
Gates, grilles, grillwork and louvres, excluding baked enamel or when forming part of mechanical system.
Grating-type floors and catwalks - excluding those forming part of mechanical system.
Handrails, balusters and any metal brackets attached to steel rail including plastic cover, excluding steel handrails forming part of structural steel framing.
Joist hangers, custom-fabricated types only.
Joist strap anchors.
Lintels, unless shown on structural drawings.

Mat recess frames, custom-fabricated types only.
Mobile chalk and tackboard frames, custom-fabricated types only.
Monorail beams of standard shapes, excluding trade-name items, unless shown on structural drawings.
Shop drawings and/or erection diagrams.
Shop preparation and/or priming.
Sleeves, if specified, except for mechanical and electrical division.
Stair nosings, custom-fabricated types only.
Steel ladders and ladder rungs not forming part of Structural Steel or mechanical work.
Steel stairs and landings not forming part of Structural Steel.
Table and counter legs, frames and brackets, custom-fabricated types only.
Thresholds and sills, custom-fabricated types only.
Vanity and valance brackets, custom-fabricated types only.
Weatherbars - steel.

Miscellaneous Steel Items Excluded

Bases and supports for mechanical and electrical equipment where detailed on mechanical or electrical drawings.
Bolts other than for anchoring items of miscellaneous steel.
Cast iron frames and covers for manhole and catch basins.
Chain link and woven wire mesh.
Glulam connections and anchorages.
Joist hangers, trade-name types.
Metal cladding and covering, less than 2.0 mm (14 ga .).
Precast concrete connections and anchorages in building structure.
Reinforcing steel or mesh.
Roof and floor hatches when trade-name items.
Sheet metal items, steel decking and siding and their attachments, closures, etc., less than 2.0 mm (14 ga.),

Shoring under composite floors and stub-girders.
Steel reinforcement for architectural metal storefronts, curtain walls and windows.
Steel stacks.
Stone anchors.
Stud shear connectors when used with steel deck.
Temporary bracing for other trades.
Thimbles and breeching, also mechanical fire dampers.
Window and area wells.
When the miscellaneous steel fabricator erects miscellaneous steel, all material required for temporary and/or permanent connections of the component parts of the miscellaneous steel shall be supplied.

MONTHLY PROGRESS CLAIM FORM

\qquad

PROJECT \qquad
CONTRACT NO: \qquad
PROGRESS CLAIM NO: \qquad
DATE:

ITEM	$\begin{aligned} & \text { ORIGINAL } \\ & \text { BASE } \\ & \text { CONTRACT } \end{aligned}$	APPROVED CHANGES TO DATE	$\begin{aligned} & \text { REVISED } \\ & \text { BASE } \\ & \text { CONTRACT } \end{aligned}$	PROGRESS TO DATE	PREVIOUS AMOUNT CLAIMED	THIS PROGRESS CLAIM	\% COMPLETE
1. ENGINEERING \& DETAILING							
2. RAW MATERIALS IN YARD							
3. FABRICATION							
4. FREIGHT TO SITE							
5. ERECTION							
6. PLUMB / BOLT / CLEANUP							
7. TOTAL GROSS AMOUNT							
8. HOLDBACK							
9. NET AMOUNT							
10. APPLICABLE TAX \qquad \% OF LINE 9							
11. TOTAL AMOUNT DUE							
APPRROVED CHANGE ORDER(S)	DATE:						

APPENDIX H

Suggested Terms for Progress Invoicing

and Substantial Performance

H1. Progress Invoicing

Monthly Progress Payments shall be based on the percentage completed of each agreed progress payment criteria during the subject billing period. Suggested progress payment criteria include:
a) Shop Details and/or Erection Diagrams submitted for review.
b) Raw materials received at the fabricators plant.
c) Fabrication of materials.
d) Release for shipment, or shipment to site, as applicable.
e) Erection of materials.
f) Finishing of erected steel Work

H2. Substantial Performance and Statutory Holdback

a) Unless stated otherwise in the Contract, substantial completion criteria and release of statutory holdback shall conform to the requirements of standard construction contracts approved by the Canadian Construction Documents Committee or the Canadian Construction Association, and the governing provincial lien legislation.
b) Contracts for supply only of structural or miscellaneous steel may not be subject to statutory holdback in accordance with the governing provincial lien acts.
c) Substantial completion of Work is be directly related to the Work of the steel Fabricator or Erector, unless stated otherwise in the Contract.

APPENDIXI

Architecturally Exposed Structural Steel (AESS)

I1. Scope and Requirements

I1.1 General Requirements. When members are specifically designated as "Architecturally Exposed Structural Steel" or "AESS" in the Contract Documents, the requirements in Sections 1 through 7 shall apply as modified by this Appendix. AESS members or components shall be fabricated and erected with the care and dimensional tolerances that are stipulated in Sections I2 through I5.
11.2 Definition of Categories. Categories are listed in the AESS Matrix shown in Table I1, where each Category is represented by a set of Characteristics. The following Categories shall be used when referring to AESS:

AESS 1: Basic Elements
Suitable for "basic" elements which require enhanced workmanship.
AESS 2: Feature Elements Viewed at a Distance $>6 \mathrm{~m}$
Suitable for "feature" elements viewed at a distance greater than six metres. The process involves basically good fabrication practices with enhanced treatment of weld, connection and fabrication detail, tolerances for gaps, and copes.

AESS 3: Feature Elements Viewed at a Distance $\leq 6 \mathrm{~m}$

Suitable for "feature" elements, where the designer is comfortable allowing the viewer to see the art of metalworking. Welds are generally smooth but visible; some grind marks are acceptable. Tolerances are tighter than normal standards. The structure is normally viewed closer than six metres and is frequently subject to touching by the public.

AESS 4: Showcase Elements

Suitable for "showcase or dominant" elements, where the designer intends the form to be the only feature showing in an element. All welds are ground, and filled edges are ground square and true. All surfaces are sanded/filled. Tolerances of fabricated forms are more stringent - generally one-half of the standard tolerance. All surfaces are to be "glove" smooth.

AESS C: Custom Elements

Suitable for elements which require a different set of Characteristics than specified in Categories 1, 2, 3 or 4 .
11.3 Additional Information. The following additional information shall be provided in the Contract Documents when AESS is specified:
a) Specific identification of members or components that are AESS using the AESS Categories listed in I1.2. Refer to Table 11;
b) Fabrication and/or erection tolerances that are to be more restrictive than provided for in this Appendix;
c) For Categories AESS 2, 3 and 4, requirements, if any, of a visual sample or first-off component for inspection and acceptance standards prior to the start of fabrication;
d) For Category AESS C, the AESS Matrix included in Table I1 shall be used to specify the required treatment of the element.

12. Shop Detail, Arrangement and Erection Drawings

12.1 Identification. All members designated as AESS members are to be clearly identified with a Category, either AESS 1, 2, 3, 4 or C, on all shop detail, arrangement and erection drawings.
12.2 Variations. Any variations from the AESS Categories listed must be clearly noted. These variations could include machined surfaces, locally abraded surfaces, and forgings. In addition:
a) If a distinction is to be made between different surfaces or parts of members, the transition line/plane must be clearly identified/defined on the shop detail, arrangement and erection drawings;
b) Tack welds, temporary braces and fixtures used in fabrication are to be indicated on shop drawings;
c) All architecturally sensitive connection details will be submitted for approval to the Architect/Engineer prior to completion of shop detail drawings.

13. Fabrication

13.1 General Fabrication. The Fabricator is to take special care in handling the steel to avoid marking or distorting the steel members.
a) All slings will be nylon-type or chains with softeners, or wire rope with softeners.
b) Care shall be taken to minimize damage to any shop paint or coating.
c) If temporary braces or fixtures are required during fabrication or shipment, or to facilitate erection, care must be taken to avoid and/or repair any blemishes or unsightly surfaces resulting from the use or removal of such temporary elements.
d) Tack welds shall be ground smooth.
13.2 Unfinished, Reused or Weathering Steel. Members fabricated of unfinished, reused or weathering steel that are to be AESS may still have erection marks, painted marks or other marks on surfaces in the completed structure. Special requirements shall be specified as Category AESS C.

I3.3 Tolerances for Rolled Shapes. The permissible tolerances for depth, width, out-ofsquare, camber and sweep of rolled shapes shall be as specified in CSA G40.20/21 and ASTM A6. The following exceptions apply:
a) For Categories AESS 3 and 4: the matching of abutting cross-sections shall be required;
b) For Categories AESS 2,3 and 4: the as-fabricated straightness tolerance of a member is one-half of the standard camber and sweep tolerance in CSA G40.20/21.

I3.4 Tolerances for Built-up Members. The tolerance on overall section dimensions of members made up of plates, bars and shapes by welding is limited to the accumulation of permissible tolerances of the component parts as provided by CSA W59 and ASTM A6. For Categories AESS 2, 3 and 4, the as-fabricated straightness tolerance for the built-up member is one-half of the standard camber and sweep tolerances in CSA W59.

I3.5 Joints. For Categories AESS 3 and 4, all copes, miters and butt cuts in surfaces exposed to view are made with uniform gaps, if shown to be open-joint, or in uniform contact if shown without gap.

I3.6 Surface Appearance. For Categories AESS 1, 2 and 3, the quality surface as delivered by the mills will be acceptable. For Category AESS 4, the steel surface imperfections should be filled and sanded.

I3.7 Welds. For corrosive environments, all joints should be seal-welded. In addition;
a) For Categories AESS 1, 2 and 3, a smooth uniform weld will be acceptable. For Category AESS 4 , the weld will be contoured and blended.
b) For Categories AESS 1, 2, 3 and 4, all weld spatter is to be avoided/removed where exposed to view.
c) For Categories AESS 1 and 2, weld projection up to 2 mm is acceptable for butt and plug-welded joints. For Categories AESS 3 and 4, welds will be ground smooth/filled.
13.8 Weld Show-through. It is recognized that the degree of weld show-through, which is any visual indication of the presence of a weld or welds on the opposite surface from the viewer, is a function of weld size and material thickness.
a) For Categories AESS 1,2 and 3, the members or components will be acceptable as produced.
b) For Category AESS 4, the fabricator shall minimize the weld show-through.

I3.9 Surface Preparation for Painting. Unless otherwise specified in the Contract Documents, the Fabricator will clean AESS members to meet the requirement of SSPC-SP 6 "Commercial Blast Cleaning" (sandblast or shotblast). Prior to blast cleaning:
a) Any deposits of grease or oil are to be removed by solvent cleaning, SSPC-SP 1 ;
b) Weld spatter, slivers and surface discontinuities are to be removed;
c) Sharp edges resulting from flame cutting, grinding and especially shearing are to be softened.

13.10 Hollow Structural Sections (HSS) Seams

a) For Categories AESS 1 and 2, seams of hollow structural sections shall be acceptable as produced.
b) For Category AESS 3, seams shall be oriented away from view or as indicated in the Contract Documents.
c) For Category AESS 4, seams shall be treated so that they are not apparent.

14. Delivery of Materials

14.1 General Delivery. The Fabricator shall use special care to avoid bending, twisting or otherwise distorting the Structural Steel. All tie-downs on loads will be either nylon strap or chains with softeners to avoid damage to edges and surfaces of members.
14.2 Standard of Acceptance. The standard for acceptance of delivered and erected members shall be equivalent to the standard employed at fabrication.

15. Erection

15.1 General Erection. The Erector shall use special care in unloading, handling and erecting the AESS to avoid marking or distorting the AESS. The Erector must plan and execute all operations in a manner that allows the architectural appearance of the structure to be maintained.
a) All slings will be nylon-strap or chains with softeners.
b) Care shall be taken to minimize damage to any shop paint or coating.
c) If temporary braces or fixtures are required to facilitate erection, care must be taken to avoid and/or repair any blemishes or unsightly surfaces resulting from the use or removal of such temporary elements.
d) Tack welds shall be ground smooth and holes shall be filled with weld metal or body filler and smoothed by grinding or filling to the standards applicable to the shop fabrication of the materials.
e) All backing bars shall be removed and ground smooth.
f) All bolt heads in connections shall be on the same side, as specified, and consistent from one connection to another.
15.2 Erection Tolerances. Unless otherwise specified in the Contract Documents, members and components are plumbed, levelled and aligned to a tolerance equal to that permitted for structural steel.
15.3 Adjustable Connections. When more stringent tolerances are specifically required for erecting AESS, the Owner's plans shall specify/allow adjustable connections between AESS and adjoining structural elements, in order to enable the Erector to adjust and/or specify the method for achieving the desired dimensions. Adjustment details proposed by the Erector shall be submitted to the Architect and Engineer for review.

TABLE 11 - AESS Category Matrix

	Category	AESS C	AESS 4	AESS 3	AESS 2	AESS 1	SSS
ID	Characteristics	Custom Elements	Showcase Elements	Viewed at a distance $\leq 6 \mathrm{~m}$	Viewed at a distance $>6 \mathrm{~m}$	Basic Elements	CSA S16
$\begin{aligned} & \hline 1.1 \\ & 1.2 \\ & 1.3 \\ & 1.4 \\ & 1.5 \end{aligned}$	Surface preparation to SSPC-SP 6 Sharp edges ground smooth Continuous weld appearance Standard structural bolts Weld spatter removed		$\begin{aligned} & \hline \downarrow \\ & \downarrow \end{aligned}$	$\begin{aligned} & \hline \sqrt{ } \\ & \downarrow \\ & \downarrow \\ & \downarrow \\ & \downarrow \end{aligned}$	$\begin{aligned} & \sqrt{ } \\ & \downarrow \\ & \downarrow \\ & \downarrow \\ & \downarrow \end{aligned}$	$\begin{aligned} & \hline \\ & 1 \\ & \downarrow \\ & 1 \\ & \sqrt{2} \\ & 1 \end{aligned}$	
$\begin{aligned} & 2.1 \\ & 2.2 \\ & 2.3 \\ & 2.4 \end{aligned}$	Visual samples One-half standard fabrication tolerances Fabrication marks not apparent Welds uniform and smooth		optional	optional	optional		
$\begin{aligned} & 3.1 \\ & 3.2 \\ & 3.3 \\ & 3.4 \\ & 3.5 \\ & 3.6 \end{aligned}$	Mill marks removed Butt and plug weids ground smooth and filled HSS weld seam oriented for reduced visibility Cross-sectional abutting surfaces aligned Joint gap tolerances minimized All welded connections		$\begin{gathered} \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \downarrow \\ \text { optional } \\ \hline \end{gathered}$	\checkmark \downarrow \downarrow \downarrow \downarrow \downarrow optional			
$\begin{aligned} & 4.1 \\ & 4.2 \\ & 4.3 \\ & 4.4 \\ & \hline \end{aligned}$	HSS seam not apparent Welds contoured and blended Surfaces filled and sanded Weld show-through minimized		$\begin{aligned} & \sqrt{ } \\ & \sqrt{2} \\ & \sqrt{2} \\ & \sqrt{2} \end{aligned}$				
$\begin{aligned} & \text { C. } 1 \\ & \text { C. } 2 \\ & \text { C. } 3 \\ & \text { C. } 4 \\ & \text { C. } 5 \end{aligned}$							

TABLE I1 - AESS Category Matrix (Cont'd)

	Notes
1.1	Prior to blast cleaning, any deposits of grease or oil are to be removed by solvent cleaning, SSPC-SP 1.
1.2	Rough surfaces are to be deburred and ground smooth. Sharp edges resulting from flame cutting, grinding and especially shearing are to be softened.
1.3	Intermittent welds are made continuous, either with additional welding, caulking or body filler. For corrosive environments, all joints should be seal welded. Seams of
hollow structural sections shall be acceptable as produced.	
1.4	All bolt heads in connections shall be on the same side, as specified, and consistent from one connection to another.
2.1	Weld spalter, slivers and surface discontinuities are to be removed. Weld projection up to 2 mm is acceptable for butt and plug-welded joints.
2.2	These tolerances are required to be one-half of those of standard structural steel as specified in CSA S16.
2.3	Members marked with specific numbers during the fabrication and erection processes are not to be visible.
2.4	-
3.1	All mill marks are not to be visible in the finished product.
3.2	Caulking or body filler is acceptable.
3.3	Seams shall be oriented away from view or as indicated in the Contract Documents.
3.4	The matching of abutting cross-sections shall be required.
3.5	This characteristic is similar to 2.2 above. A clear distance of 3 mm between abutting members is required. as specified in Contract Documents.
3.6	Hidden bolts may be considered.
4.1	HSS seams shall be treated so that they are not apparent.
4.2	In addition to a contoured and blended appearance, welded transitions between members are also required to be contoured and blended.
4.3	Steel surface imperfections should be filled and sanded.
4.4	The back face of a welded element caused by the welding process can be minimized by hand grinding the back side of the weld. The degree of weld show-through is
C.	Additional characteristics may be added for custom elements.

APPENDIX J

Building Information Modelling

This Appendix is intended to facilitate the understanding and use of digital modelling technology in the design and construction of Steel Structures.

J1. General Provisions

J1. 1 Scope

The provisions in this Appendix shall apply when the Contract Documents indicate that a threedimensional digital Building Information Model (BIM) or Digital/Electronic Model replaces Contract Documents and is to be used as the primary means of designing, representing, and exchanging Structural Steel data for the project. In this case, references to the Design Drawings shall apply to the Design Model, and references to Fabrication and Erection Documents shall apply to the Manufacturing Model.
If the primary means of project communication reverts from a model-based (electronic) system to a paper-based system, the requirements of this Appendix are no longer applicable.

J1.2 Definitions

See Section 1.2 of the CISC Code of Standard Practice for all definitions related to this Appendix.

J2. Supplementary Technical Standards

The following references are provided as a guide to assist in developing a BIM Execution Plan with reference to the Contract Documents. The provisions of other standards shall be applicable if called for in the Project Tender Documents and Construction Specifications.

BIM Execution Plan - Project Execution Planning Guide V2.0 Released July 2010
https://bim.psu.edu/

LOD - 2014 LOD Specification

https://bimforum.org/lod/
LOD Matrix (also referred to as a model element table) - AIA Document E203-2013
http://www4.fm.virginia.edu/fpc/ContractAdmin/ProfSves/BIMAIASample.pdf
Naming Conventions - Naming Convention for Structural Steel Products for Use in Electronic Data Interchange (EDI). AISC Document June 25, 2001
https://aisc.org/WorkArea/showcontent.aspx? id $=6444$

J3. File Format

The Industry Foundation Class Model should be used, unless otherwise agreed, as the Building Information Model for structural steel. The Industry Foundation Class model for Structural Steel may exist solely as the project's BIM or may be integrated into a multi-disciplinary BIM for projects adopting greater digital model design application.

Refer to the Electronic Data Interchange Project Flowchart (Figure J1) for an example of this interoperability. The figure demonstrates how the BIM file serves several functions. It acts as
the repository for project information developed in stand-alone external software platforms such as the manufacturing model. It also acts as a source file from which contract documentation and specific model data can be extracted for further analysis.

Electronic Data Interchange Project Flowchart
Figure J1
Note: Images taken from www. vectorworks.net

J4. Content and Purpose of the BIM Files

In addition to the requirements in Clause 4 related to Contract Documents, the following requirements shall apply to the BIM file.

J4.1 The BIM file is intended to:

a) Govern over all other forms of information, including drawings, sketches, etc., unless specifically noted otherwise in the Construction Documents.
b) Include all steel elements (primary and secondary structural), as well as any other entities required for strength and stability of the completely erected structure.
c) Include entities that fully define each steel element, and the extent of detailing of each element, as would be recorded on an equivalent set of Structural Design Documents (see Clause 4.1.2).
d) Contain Analysis Model data so as to include load calculations as indicated in the Construction Specifications referencing jurisdictional codes.
e) Conform to the required Level of Development (LOD). See Figures J2, J3, and J4.
f) Provide a common reference point and datum ($0,0,0$).
g) Contain all necessary information to comply with downstream user requirements (i.e. design loads, member sizes, dimensions, etc.).

J5. Project Governance

For all BIM projects, a BIM Administrator will be assigned and provided by Others.
J5.1 The BIM Administrator will ensure that the BIM Execution Plan is followed, BIM Administrator responsibilities are intended to include the following:
a) Define control of the BIM by providing appropriate access privileges (read, write, etc.) to all relevant parties.
b) Maintain the security of the BIM.
c) Guard against data loss of the BIM.
d) Be responsible for updates and revisions to the BIM as they occur, and archive all versions with appropriate annotations.
e) Inform all involved parties regarding changes to the BIM.

J6. Usability and Protocol

J6.1 In addition to the requirements in Clause 5 related to Fabrication and Erection Documents, the following requirements shall apply:
a) In the event of a conflict between the BIM and Design Documents, the BIM Execution Plan will determine which document governs. In the absence of this clarification in the BIM Execution Plan, the BIM file shall govern.
b) The responsibility for the development and accuracy of the information added to the BIM file shall be defined in the Contract Documents. In the absence of such terms regarding the information added by the Fabricator (via sharing of the manufacturing model) to the BIM in the Construction Documents, the responsibility will belong to the Fabricator in accordance with the appropriate LOD definition. For clarification related to instructions provided to the Fabricator by other project stakeholders, see LOD Section J8 of this Appendix.
c) During the development of the Manufacturing Model, any relocation of, or adjustments to, members will only be done with approval by the Engineer of Record.
d) The Fabricator and Erector shall accept the use of the Manufacturing Model and the BIM under the same conditions as set forth in Clause 4.3.1, except as modified in J7.

J7. Review

Review of the Manufacturing Model by the Engineer of Record may replace the review of the actual Fabrication and Erection Documents. For this method to be effective, a system must be in place to capture review comments and action items, and to complete the review, correction and final release of the Manufacturing Model for fabrication of structural steel. The versions of the model shall be tracked with review comments permanently attached to the versions of the model to the same extent as such data is maintained with conventional hard copy approvals. The Industry Foundation Class Standard provides this level of tracking.

J7.1 When a review of the detailed material is to be done by using the Manufacturing Model, the version of the submitted model shall be identified. Comments attached to the individual elements as specified in the BIM Execution Plan shall be used to annotate the Manufacturing

Model. The Fabricator will issue the revised Manufacturing Model for review, and the version of the model submitted will be tracked as previously defined.

J8. Level of Development (LOD)

It is important to identify the extent of information that will be provided in the BIM by each stakeholder. The LOD matrix provides a mechanism for defining these responsibilities and commitments. Prior to the development of the LOD matrix specific to any given project, it will be assumed that the detailer will only be responsible for providing information up to the "asfabricated" state, commonly referred to as LOD 400. Changes beyond the base scope of Work are to be inputted into the BIM by the Owner, unless otherwise agreed to as part of the change management process.

The LOD matrix will determine which project team member is responsible for developing the model to the associated LOD status by assigning a Model Element Author (MEA) for each specific development status number for each line item. An example table taken from AIA document E202 is provided below for general reference.

§43 Modei Element Table Identify (i) zhe LOD required for cach Model Element at the end of eoch phase, and (2) the Model Element Aultor (MEA) responsible for developing the Model Element to the LOD identified. Insert abbreviations for each AEA identified in the table below, such as " A-Architect, " or " C -Contractor:" NOTE: LODs must be adapted for the unigue characteristics of each Project.												Implementatioa Documents						Note Number (See 4.A)	
Mtodd Slewents Utilising CSI UntFornarite						LOD	MEA	1000	MEA	LOT	MEA	10 D	MEA	LOO	MEN	100	SEE		
A substructure		Ala	Foundations	A1010.	Slandard Foundations	100		200		300		400		500					
		A1020		Special Foundations	100		100		300		400		500						
		A1030		Slab on Grade *	100		200		300		400		500						
			Bascment	A2010	Basemem Excavation	100		200		300		300		500					
		Construction		Basement Walls	100		200		300		400		500						
	SHELL			Superstructure	B1010	Floor Consiruction	100		200		300.		300		500				
				E1020	Roof Construction	100		200		300		300		500					

LOD Matrix

Figure J2

LOD definitions are described as follows.

Level of Development (LOD) Descriptions	
LOD 100	The Model Element may be graphically represented in the Model with a symbol or other generic representation but does not satisfy the requirements for LOD 200. Information related to the Model Element (i.e, cost per square foot, tonnage of HVAC, etc.) can be derived from other Model Elements.
LOD 200	The Model Element is graphically represented within the Model as a generic system, object, or assembly with approximate quantities, size, shape, location, and orientation. Non-graphic information may also be attached to the Model Element.
LOD 300	The Model Element is graphically represented within the Model as a specific system, object or assembly in terms of quantity, size, shape, location, and orientation. Non-graphic information may also be attached to the Model Element.
LOD 350	The Model Element is graphically represented within the Model as a specific system, object, or assembly in terms of quantity, size, shape, orientation, and interfaces with other building systems. Non-graphic information may also be attached to the Model Element.
LOD 400	The Model Element is graphically represented within the Model as a specific system, object or assembly in terms of size, shape, location, quantity, and sorientation with detailing, fabrication, assembly, and installation information. Non-graphic information may also be attached to the Model Element.
LOD 500	The Model Element is a field-verified representation in terms of size, shape, location, quantity, and orientation. Non-graphic information may also be attached to the Model Elements.

LOD Descriptions

Figure J3
Note: The definitions for LOD 100, 200, 300, 400, and 500 included in this Specification represent the updated language that appears in the AIA's most recent BIM protocol document, G202-2013, Building Information Modelling Protocol Form. The LOD 100, 200, 300, 400 and 500 definitions are produced by the AIA and have been used by permission. LOD 350 was developed by the BIMForum working group and is copyright to the BIMForum and the AIA.

Graphical representations of the LOD descriptions are provided for visual reference.

LOD 300

LOD 350

LOD 400

LOD Diagram (Example)
Figure J4

Note: Images taken from BIMFORUM Level of Development Specification 2013.

NOTES

STRUCTURAL SHEET STEEL PRODUCTS

General

Structural sheet steel products such as roof deck, floor deck and cladding complement the structural steel frame of a building. These large-surface elements often perform both structural and non-structural functions, thereby enhancing the overall economy of the design.

TYPICAL STEEL DECK AND CLADDING PROFILES

Can be supplied perforated
for acoustical applications.

Available in composite and
non-composite profiles and
as cellular or non-cellular
units.

Architectural Cladding
Available in various profiles,
widths, coatings and colours
Available in various profiles,
widths, coatings and
colours.
Available in various profiles,
widths, coatings and colours
. Building Systems Cladding

Figure 1: Typical Cladding Profiles
Figure 1 is for general information only, and manufacturers may produce additional profiles which are not represented by any of the types shown.

Many of the sheet steel products used in Canada are supplied by members of the Canadian Sheet Steel Building Institute, a national association of steel producers, zinc producers, coil coaters, fastener manufacturers and fabricators of steel building products, steel building systems and lightweight steel framing components. The Institute promotes the use of sheet steel in building construction by encouraging good design, pleasing form and greater economy.

Sheet steel materials for building construction are metallic coated (zinc or aluminum-zinc alloy) and can be prefinished for extra corrosion protection and aesthetics. Consult fabricators' catalogs for details of available products, profiles, widths, lengths, thicknesses, load capacities and other characteristics.

CSSBI PUBLICATIONS

CSSBI publications include industry product standards, informational bulletins and special publications as well as non-technical promotional material. A selection of current publications is listed below.

CSSBI Standards

Steel Roof Deck - covers design, fabrication and erection of steel roof deck with flutes not more than 200 mm on centre and a nominal 77 mm maximum profile depth, intended for use with built-up roofing or other suitable weather-resistant cover on top of the deck (CSSBI 10M).

Composite Steel Deck - covers design, fabrication and erection of composite steel deck with a nominal 77 mm maximum profile depth, intended for use with a concrete cover slab on top of the deck to create a composite slab (CSSBI 12M).

Sheet Steel Cladding for Architectural, Industrial and Commercial Building Applications - covers design, fabrication and erection of weather-tight wall and roof cladding made from metallic coated, prefinished sheet steel for use on buildings with low internal humidity (CSSBI 20M),

Steel Building Systems - covers the design, fabrication and erection of steel building systems (SBS). Includes definitions, classification of SBS by type, checklist of items normally furnished, criteria for load combinations, design standards, and certification by a registered engineer (CSSBI 30M).

Steel Farm Roofing and Siding - covers the manufacture, load carrying capacity, handling and installation of sheet steel cladding intended for application to walls and/or roofs of farm buildings (CSSBI 21M).

Bulletins and Special Publications

Criteria for the Testing of Composite Slabs - provides the criteria for conducting a series of shear-bond tests necessary to determine the structural capacity of a composite slab (CSSBI S2).

Criteria for the Design of Composite Slabs - contains design criteria, based on limit states design, for composite slabs made of a structural concrete placed permanently over a composite steel deck (CSSBI S3).

Design of Steel Deck Diaphragms - offers a simple and practical approach to the design of steel deck diaphragms supported by horizontal steel framing (CSSBI B13).

Lightweight Steel Framing Design Manual - shows through examples how to design lightweight steel framing structural systems. Detailed calculations are shown for curtain walls, infill walls, and axial load bearing systems as well as all connections (CSSBI 51M).

How-To Series: Insulated Sheet Steel Wall Assemblies - describes the various stages in the selection of sheet steel wall assembly components, architectural and structural design issues, as well as building science topics and material selection (CSSBI S10).

How-To Series: Insulated Sheet Steel Roof Assemblies - describes the various stages in the selection of the sheet steel roof assembly components, architectural and structural design issues, as well as building science topics and material selection (CSSBI S11).

How-To Series: Steel Roof and Floor Deck - describes the various stages in the selection of steel deck products, the different types of deck products, structural design issues and material selection (CSSBI S15).

How-To Series: Lightgauge Steel Roofing and Siding - offers simple and practical recommendations for the selection, application and installation of lightgauge steel cladding (CSSBI S14).

Barrier Series Prefinished Sheet Steel: Product Performance \& Applications presents the features and benefits of the Barrier Series prefinished paint system for sheet steel building products in more aggressive environments (CSSBI B17).

Lightweight Steel Framing Architectural Design Guide - provides information to the architect about the uses and specification of Lightweight Steel Framing (LSF) systems, including details on design, building science, acoustic and fire ratings, as well as extensive references (CSSBI 57).

Contact CSSBI at the address below for a complete listing of publications, copies of publications, or other information concerning sheet steel in construction.

Canadian Sheet Steel Building Institute
652 Bishop St. N., Unit 2A
Cambridge, Ontario N3H 4V6
Tel (519) 650-1285
Fax (519) 650-8081
Website: www.cssbi.ca

MASS AND FORCES FOR MATERIALS

MATERIAL	Mass $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	Force ($\mathrm{kN} / \mathrm{m}^{3}$)	MATERIAL	$\begin{gathered} \text { Mass } \\ \left(\mathrm{kg} / \mathrm{m}^{3}\right) \end{gathered}$	Force ($\mathrm{kN} / \mathrm{m}^{3}$)
METALS, ALLOYS, ORES			TIMBER, AIR-DRY		
Aluminum	2640	25.9	Birch	689	6.76
Brass	8550	83.8	Cedar	352	3.45
Bronze, 7.9-14\% tin	8150	79.9	Fir, Douglas, seasoned	545	5.34
Bronze, aluminum	7700	75.5	Fir, Douglas, unseasoned	641	6.29
Copper	8910	87.4	Fir, Douglas, wet	801	7.86
Copper ore, pyrites	4200	41.2	Fir, Douglas, glue laminated	545	5.34
Gold	19300	189	Hemlock	481	4.72
Iron, cast, pig	7210	70.7	Larch, tamarack	561	5.50
Iron, wrought	7770	76.2	Larch, western	609	5.97
Iron, spiegel-eisen	7500	73.5	Maple	737	7.23
fron, ferro-silicon	7000	68.6	Oak, red	689	6.76
Iron ore, hematite	5210	51.1	Oak, white	753	7.38
Iron ore, hematite in bank	$2560-2880$	25.1-28.2	Pine, jack	481	4.72
Iron ore, hematite, loose	2080-2 560	20.4-25.1	Pine, ponderosa	513	5.03
Iron ore, limonite	3800	37.3	Pine, red	449	4.40
Iron ore, magnetite	5050	49.5	Pine, white	416	4.08
Iron slag	2760	27.1	Poplar	481	4.72
Lead	11400	112	Spruce	449	4.40
Lead ore, galena	7450	73.1	For pressure treated timber		
Magnesium	1790	17.6	add retention to mass of		
Manganese	7610	74.6	air-dry material.		
Manganese ore	4150	40.7			
Mercury	13600	133	LIQUIDS		
Monel	8910	87.4	Alcohol, pure	785	7.70
Nickel	9050	88.8	Gasoline	673	6.60
Platinum	21300	209	Oils	929	9.11
Silver	10500	103	Water, fresh at $4^{\circ} \mathrm{C}$ (max.		
Steel, rolled	7850	77.0	density)	1000	9.81
Tin	7350	72.1	Water, fresh at $100^{\circ} \mathrm{C}$	961	9.42
Tin ore, cassiterite	6700	65.7	Water, salt	1030	10.1
Zinc	7050	69.1			
Zinc ore, blende	4050	39.7	EARTH, ETC. EXCAVATED Earth, wet	1600	15.7
MASONRY			Earth, dry	1200	11.8
Ashlar	2 240-2 560	22.0-25.1	Sand and gravel, wet	1920	18.8
Brick, soft	1760	17.3	Sand and gravel, dry	1680	16.5
Brick, common	2000	19,6			
Brick, pressed	2240	22.0	VARIOUS BUILDING		
Clay tile, average	961	9.42	MATERIALS		
Rubble	2080-2 480	20.4-24.3	Cement, Portland, loose	1510	14.8
Concrete, cinder, haydite	1600-1760	15.7-17.3	Cement, Porlland, set	2930	28.7
Concrete, slag	2080	20.4	Lime, gypsum, loose	849-1 030	8.33-10.1
Concrete, stone	2310	22.7	Mortar, cement-lime, set	1650	16.2
Concrete, stone, reinforced	2400	23.5	Quarry stone, piled	1440-1760	14.1-17.3
SOLID FUELS			MISCELLANEOUS		
Coal, anthracite, piled	753-929	7.38-9.11	Asphaltum	1300	12.7
Coal, bituminous, piled	641-865	6.29-8.48	Tar, bituminous	1200	11.8
Coke, piled	368-513	3.61-5.03	Glass, common	2500	24.5
Charcoal, piled	160-224	1.57-2.20	Glass, plate or crown	2580	25.3
Peat, piled	320-416	3.14-4.08	Glass, crystal Paper	$\begin{array}{r} 2950 \\ 929 \end{array}$	$\begin{aligned} & 28.9 \\ & 9.11 \end{aligned}$
ICE AND SNOW*					
lce	897	8.80			
Snow, dry, fresh fallen	128	1.26	* Consult building cade for		
Snow, dry, packed Snow wet	$192-400$ $432-641$	$1.88-3.92$ $4.24-6.29$	snow load and density.		

DESIGN DEAD LOADS (kPa) OF MATERIALS

STEEL DECKS

Steel deck* 38 mm deep (up to 0.91 mm thick)
(1.22 to 1.52 mm thick)
Steel deck* 76 mm deep (Narrow-Rib) (up to 0.91 mm thick)
(1.22 to 1.91 mm thick)
Steel deck* 76 mm deep (Wide-Rib)
(up to 0.91 mm thick)
(1.22 to 1.52 mm thick)

- for cellular deck, add

CONCRETE, per 100 mm

- $2350 \mathrm{~kg} / \mathrm{m}^{3}$ (N.D.)
- $2000 \mathrm{~kg} / \mathrm{m}^{3}$ (slag aggregate)
$-1850 \mathrm{~kg} / \mathrm{m}^{3}$ (S.L.D.)
HOLLOW CORE PRECAST (notopping)
- 200 mm deep (N.D.)
- 300 mm deep (N.D.)

WOOD JOISTS (at 400 mm centres)
$-38 \mathrm{~mm} \times 184 \mathrm{~mm}$ joists
$-38 \mathrm{~mm} \times 235 \mathrm{~mm}$ joists
$-38 \mathrm{~mm} \times 286 \mathrm{~mm}$ joists

PLYWOOD

-11 mm thick

- 14 mm thick
- 19 mm thick

CHIPBOARD

-12.7 mm thick

- 15.9 mm thick
- 19.0 mm thick

WALLS AND CLADDING

- Solid brick wall (concrete)
- 100 mm thick (S.L.D.)
- 100 mm thick (N.D.)
- Hollow block (S.L.D.)
- 100 mm thick
- 200 mm thick
- 300 mm thick
- Hollow block (N.D.)
- 100 mm thick
- 200 mm thick
-300 mm thick
-P.C. wall plus glazing
- Metal curtain wall
- Insulated sheel steel wall (exclude girts)
-38×89 wood studs © 400 mm
- Gypsum wallboard per 10 mm
- Stone veneer per 25 mm

FLOOR FINISHING

- Vinyl, linoleum or asphalt tile
0.07
- Softwood sublloor per $10 \mathrm{~mm} \quad 0.06$
- Hardwood per 10 mm 0.08
- Carpeting
0.10
- Asphaltic concrete per 10 mm 0.23
- 20 mm Ceramic or quarry tiles on 12 mm mortar bed
0.80
- Terrazzo per 10 mm 0.24 0.45

ROOFING

- 3 ply asphalt, no gravel 0.15
- 4 ply asphalt, no gravel 0.20
- 3 ply asphalt and gravel
0.27
- 4 ply asphalt and gravel 0.32
- Asphalt strip shingles 0.15
- Gypsum wallboard per $10 \mathrm{~mm} \quad 0.08$

INSULATION (per 100 mm thick)

- Glass fibre, batts
0.05
- Glass fibre, blown 0.04
- Glass fibre, rigid 0.07
- Urethane, rigid foam 0.03
- Insulating concrete 0.06

CEILINGS

- Gypsum wallboard per 10 mm 0.08

M/D Ratios

How M/D Ratios are Caiculated

MID ratios are used to measure the thermal mass resistance of a member under fire. Typically, the higher the M / D ratio, the greater the fire resistance. The numbers given in the following table were calculated by dividing the steel member mass per unit length, $M(\mathrm{~kg} / \mathrm{m})$ by the heated perimeter, $D(\mathrm{~m})$. The resulting units are $(\mathrm{kg} / \mathrm{m}) / \mathrm{m}$ in the Metric system and ($\mathrm{lb} / \mathrm{ft}$)/in in the Imperial system.

The D value is based on the heated perimeter following the contour of the shape, including all flange and web surfaces, and is applicable to fire protection with spray-applied fireresistive materials. Two separate M/D ratios are given for each steel section: (1) one for columns based on the entire perimeter (fire exposure from all sides), and (2) one for beams which typically have the top surface of its top flange shielded from the fire, hence having one less exposed surface.

This heated perimeter (D) calculation corresponds to the "contour protection", as described by Gewain et al (2006), and is distinct from the "box protection" based on members being boxed up with gypsum board.

Note: The above formulas for the heated perimeter are approximate and do not include the flange-to-web fillets. These have been taken into account when calculating the M/D ratios given in the following pages.

Reference

Gewain, R.G., IWankiw, N.R., Alfawakhiri, F., and Frater, G. 2006. Fire Facts for Steel Buildings, Canadian Institute of Steel Construction, American Institute of Steel Construction.

M/D RATIOS FOR CONTOUR PROTECTION W SHAPES

Designation	$\mathrm{SI}(\mathrm{kg} / \mathrm{m}) / \mathrm{m}$		Imperial (lb./ft.)/in.		Designation	$\mathrm{Sl}(\mathrm{kg} / \mathrm{m}) / \mathrm{m}$		Imperial (lb./ft.)/in.	
	Bearn	Column	Beam	Column		Beam	Column	Beam	Column
W1100					W920				
$\times 499$	149		2.54		$\times 381$	139		2.37	
$\times 433$	130		2.21		$\times 345$	127		2.16	
$\times 350$	118		2.01		$\times 313$	115		1.97	
$\times 343$	104		1.77		$\times 289$	107		1.82	
					+271	101		1.72	
W1000					$\times 253$	94.5		1.61	
$\times 976$	291		4.97		$\times 238$	89.1		1.52	
$\times 883$	267		4.55		$\times 223$	84.2		1,44	
$\times 748$	230		3.92		$\times 201$	76.0		1.30	
$\times 642$	200		3.41						
$\times 591$	185		3.16		W840				
$\times 554$	174		2.98		$\times 576$	195		3.33	
$\times 539$	170		2.90		$\times 527$	180		3.08	
$\times 483$	153		2.62		$\times 473$	163		2.78	
$\times 443$	141		2.41		$\times 433$	150		2.56	
$\times 412$	132		2.25		$\times 392$	137		2.33	
$\times 371$	119		2.04		$\times 359$	126		2.15	
$\times 321$	104		1.77		$\times 329$	116		1.98	
$\times 296$	96.3		1.64		$\times 299$	106		1.81	
W1000					W840				
$\times 584$	199		3.40		x251	99.5		1.70	
$\times 494$	171		2.92		$\times 226$	90.3		1.54	
$\times 486$	169		2.88		$\times 210$	84.3		1.44	
$\times 438$	153		2.60		$\times 193$	77.9		1.33	
$\times 415$	146		2.49		$\times 176$	71.0		1.21	
$\times 393$	138		2.36						
$\times 350$	124		2.11		W760				
$\times 314$	112		1.91		$\times 582$	211		3.60	
$\times 272$	97.4		1.66		$\times 531$	194		3.31	
$\times 249$	89.6		1.53		$\times 484$	179		3.05	
$\times 222$	80.5		1.37		$\times 434$	161		2.75	
					$\times 389$	146		2.49	
W920					$\times 350$	132		2.26	
×1377	404		6.89		x314	119		2.04	
$\times 1269$	373		6.37		$\times 284$	108		1.85	
$\times 1194$	354		6.05		$\times 257$	98.9		1.69	
$\times 1077$	324		5.53						
$\times 970$	296		5.05		W760				
$\times 787$	245		4.18		$\times 220$	96.5		1.65	
x725	228		3.89		$\times 196$	86.6		1.48	
$\times 656$	208		3.55		$\times 185$	81.7		1.39	
$\times 588$	188		3.21		$\times 173$	77.0		1.31	
$\times 537$	172		2.94		$\times 161$	71.4		1.22	
$\times 491$	159		2.71		$\times 147$	65.8		1.12	
$\times 449$	146		2.49		$\times 134$	59.8		1.02	
$\times 420$	137		2.33						
$\times 390$	127		2.17		W690				
$\times 368$	120		2.05		$\times 802$	301		5.13	
x344	113		1.93		$\times 548$	215		3.68	
					$\times 500$	198		3.38	
					$\times 457$	183		3.12	
					$\times 419$	169		2.88	
					$\times 384$	156		2.66	
					$\times 350$	143		2.45	
					$\times 323$	133		2.27	
					$\times 289$	120		2.04	
					$\times 265$	110		1.88	
					$\times 240$	101		1.72	
					$\times 217$	91.9		1.57	

M/D RATIOS FOR CONTOUR PROTECTION W SHAPES

Designation	$\mathrm{SI}(\mathrm{kg} / \mathrm{m}) / \mathrm{m}$		Imperial (lb./fi.) in .		Designation	$\mathrm{SI}(\mathrm{kg} / \mathrm{m}) / \mathrm{m}$		Imperial (lb,/ft.)/ín.	
	Beam	Column	Beam	Column		Beam	Column	Beam	Column
W690					W460				
$\times 192$	91.3		1.56		$\times 464$	239		4.07	
$\times 170$	81.4		1.39		$\times 421$	220		3.76	
+152	73.4		1.25		$\times 384$	203		3.46	
$\times 140$	67.6		1.15		$\times 349$	186		3.18	
$\times 125$	61.1		1.04		x315	170		2.90	
					$\times 286$	156		2.66	
W610					$\times 260$	143		2.45	
$\times 551$	235		4.00		$\times 235$	131		2.23	
+498	215		3.67		$\times 213$	119		2.04	
$\times 455$	198		3.37		$\times 193$	109		1.87	
$\times 415$	183		3.12		$\times 177$	101		1.72	
$\times 372$	165		2.82		$\times 158$	90.2		1.54	
$\times 341$	152		2.60		$\times 144$	83.1		1.42	
$\times 307$	139		2.37		$\times 128$	74.2		1.27	
$\times 285$	130		2.21		$\times 113$	65.8		1.12	
$\times 262$	119		2.04						
$\times 241$	111		1.89		W460				
$\times 217$	100		1.71		$\times 106$	71.8		1.23	
$\times 195$	90.7		1.55		$\times 97$	65.9		1.12	
$\times 174$	81.3		1.39		$\times 89$	61.2		1.05	
$\times 155$	72.6		1,24		$\times 82$	56.5		0.964	
					$\times 74$	51.4		0.877	
W610									
$\times 153$	82.2		1.40		W460				
$\times 140$	75.3		1,29		$\times 68$	51.2		0.873	
$\times 125$	67.6		1.15		$\times 60$	44.8		0.764	
$\times 113$	61.6		1.05		$\times 52$	39.5		0.674	
$\times 101$	55.5		0.947		W4 40				
W610					$\begin{array}{r} \text { W410 } \\ \times 149 \end{array}$	93.2		1.59	
$\times 92$	54.5		0.931		+132	83.3		1.42	
$\times 82$	48.6		0.830		$\times 114$	72.7		1.24	
					$\times 100$	63.7		1.09	
W530 $\times 409$					W410				
$\times 409$ $\times 369$	194 176		3.31 3.01		W410 $\times 85$	63.9			
$\times 332$	160		2.74		$\times 87$ $\times 74$	56.7		0.967	
$\times 300$	147		2.50		$\times 67$	51.3		0.876	
$\times 272$	134		2.29		$\times 60$	45.5		0.777	
$\times 248$	123		2.09		$\times 54$	41.2		0.703	
$\times 219$	109		1.87						
$\times 196$	98.9		1.69		W410				
x182 $\times 165$	91,8		1.57		$\times 46$	38.9		0.663	
x165 $\times 150$	84.1 76.8		1.43 1.31		$\times 39$	33.1		0.566	
W530									
$\times 138$	82.1		1.40						
$\times 123$	73.8		1.26						
$\times 109$	65.7		1.12						
$\times 101$	61.3		1.05						
$\times 92$	56.2		0.959						
$\times 82$ $\times 72$	50.2		0.856						
$\times 72$	44.3		0.757						
W530									
$\times 85$	55.7		0.951						
$\times 74$	49.5		0.845						
$\times 66$	43.8		0.748						

M/D RATIOS FOR CONTOUR PROTECTION
W SHAPES

Designation	$\mathrm{SI}(\mathrm{kg} / \mathrm{m}) / \mathrm{m}$		Imperial (lb,/ft.)/in.		Designation	$\mathrm{Sl}(\mathrm{kg} / \mathrm{m}) / \mathrm{m}$		Imperial (lb./ft.)/in.	
	Beam	Column	Beam	Column		Beam	Column	Beam	Column
W360					W310				
$\times 1299$		453		7.74	$\times 500$		239		4.08
$\times 1202$		427		7.28	$\times 454$		220		3.76
$\times 1086$		394		6.73	$\times 415$		204		3.48
$\times 990$		366		6.24	$\times 375$		187		3.20
$\times 900$		339		5.79	$\times 342$		173		2.96
$\times 818$		313		5,34	$\times 313$		160		2.73
$\times 744$		289		4.93	$\times 283$		146		2.50
$\times 677$		267		4.56	$\times 253$		132		2.26
$\times 634$		253		4.31	$\times 226$		120		2.05
$\times 592$		238		4.07	$\times 202$		108		1.85
$\times 551$		224		3.82	$\times 179$		96.5		1.65
$\times 509$		209		3.56	$\times 158$		85.9		1.47
$\times 463$		192		3.28	$\times 143$		78.5		1.34
$\times 421$		177		3.02	$\times 129$	86.2	71.5	1.47	1.22
$\times 382$		162		2.77	$\times 118$	78.6	65.2	1.34	1.11
$\times 347$		148		2.53	$\times 107$	71.8	59.6	1.23	1.02
$\times 314$		135		2,31	$\times 97$	65.4	54.2	1.12	0.925
$\times 287$		125		2.14					
$\times 262$		115		1.96	W310				
$\times 237$		104		1.78	$\times 86$	64.7	54.4	1.10	
$\times 216$		96.0		1.64	$\times 79$	59.5	49.9	1.01	0.852
W360					W310				
x196		90.6		1.55	$\times 74$	62.3	53.1	1.06	0.907
$\times 179$		83.0		1.42	$\times 67$	56.3	48.0	0.960	0.819
$\times 162$	91.2	75.4	1.56	1.29	$\times 60$	50.5	43.0	0.861	0.734
$\times 147$	83.5	69.0	1.42	1.18					
$\times 134$	76.2	63.0	1.30	1.07	W310				
					$\times 52$	47.6		0.812	
W360 $\times 122$ $\times 150$					$\times 45$	40.9		0.699	
$\times 122$ $\times 110$	84.5	71.7	1.44	1.22	$\times 39$	35.8		0.611	
$\times 110$	76.8	65.1	1.31	1.11					
$\times 101$	70.9	60.1	1.21	1.03	W310				
$\times 91$	64.0	54.3	1.09	0.927	$\times 33$	36.3		0.620	
					$\times 28$	31.7		0.541	
W360					$\times 24$	26.9		0.460	
$\times 79$	62.2	53.6			$\times 21$	23.9		0.408	
$\times 72$	56.5	48.7	0.965	0.831					
$\times 64$	50.8	43.7	0.867	0.747	W250				
					$\times 167$		106		1.82
W360					$\times 149$		95.8		1.64
$\times 57$	47.5		0.810		$\times 131$		85.4		1.46
$\times 51$	42.7		0.728		$\times 115$		75.5		1.29
$\times 45$	38.1		0.651		$\times 101$	81.1	67.2	1.38	1.15
					$\times 89$	72,3	59.9	1.23	1.02
W360					$\times 80$	65.1	53.9	1.11	0.920
x39 $\times 33$	37.1 31.3		0.633 0.535		$\times 73$	59.6	49.3	1.02	0.842
$\times 33$					W250				
					$\times 67$	62,1	52.2	1.06	0.892
					$\times 58$	54.4	45.8	0.929	0.781
					$\times 49$	46.4	38.9	0.791	0.664
					W250				
					$\times 45$	47.7		0.814	
					$\times 39$	41.4		0.707	
					x33	35.4		0.605	

Designation	SI (kg / m)/m		Imperial (lb./ft.)/in.		Designation	SI (kg / m)/m		Imperial (lb./ft.)/in.	
	Beam	Column	Beam	Column		Beam	Column	Beam	Column
W250					S610				
+28	35.7		0.610		$\times 180$	104		1.78	
$\times 25$	32.0		0,547		$\times 158$	91.4		1.56	
$\times 22$	28.5		0.486						
$\times 18$	22.9		0.391		S610 x149	89.9		1.54	
W200					$\times 149$ $\times 134$	81.4		1.54 1.39	
$\times 100$	95.9	79.8	1.64	1.36	$\times 119$	72.3		1.23	
$\times 86$	84.7	70.4	1.45	1.20					
$\times 71$	70.9	58.9	1.21	1.00	S510				
$\times 59$	59.6	49.5	1.02	0.844	$\times 143$	97.8		1.67	
$\times 52$	53.0	43.9	0.904	0.749	$\times 128$	88.3		1.51	
$\times 46$	46.9	38.9	0.801	0.664					
W200					5510 $\times 112$	79.8		1.36	
120 $\times 42$	47.7	40.1	0.814	0.684	x $\times 98.2$	70.6		1.21	
$\times 36$	41.5	34.8	0.708	0.595					
					S460				
W200					$\times 104$	81.4		1.39	
$\times 31$	39.5	33.8	0.675	0.577	$\times 81.4$	63.8		1.09	
$\times 27$	33.8	28.9	0.577	0.494					
					S380				
W200 $\times 22$					$\times 74$ $\times 64$	67.7 58.2		1.16 0.993	
$\times 22$ $\times 19$ $\times 15$	32.5 28.4		0.555		$\times 64$	58.2		0.993	
$\times 15$	22.1		0,378		S310				
					x74	79.9		1.36	
W150					$\times 60.7$	65.6		1.12	
$\times 37$	49.1	40.8	0.839	0.697					
$\times 30$	39.9	33.1	0.681	0.565	S310				
$\times 22$	30.4	25.2	0.519	0.430	$\begin{aligned} & \times 52 \\ & \times 47 \end{aligned}$	$\begin{aligned} & 56.8 \\ & 51.7 \end{aligned}$		$\begin{aligned} & 0.969 \\ & 0.882 \end{aligned}$	
W150									
$\times 24$	40.0	34.2	0.683	0.584	S250				
$\times 18$	30.6	26.0	0.522	0.445	$\times 52$	65.1		1.11	
$\times 14$	23.5	20.0	0.401	0.342	$\times 38$	47.6		0.813	
$\times 13$	22.0	18.8	0.376	0.320					
					S200				
$W 130$ $\times 28$					x34	52.3		0.892	
$\times 28$ $\times 24$		$\begin{aligned} & 37.6 \\ & 32.1 \end{aligned}$		$\begin{aligned} & 0.642 \\ & 0.547 \end{aligned}$	$\times 27$	41.9		0.715	
					S150				
						50.0		0.853	
$\begin{array}{r} \\ \times 19 \end{array}$		32.6		0.556	$\times 19$	36.5		0.624	
					$\underset{\times 15}{S 130}$	34.1		0.581	
					S100				
					x14.1	38.5		0.657	
					$\times 11$	31.4		0.536	
					S75				
					$\times 11$	$\begin{aligned} & 37,8 \\ & 380 \end{aligned}$		0.645 0.494	

M/D RATIOS FOR CONTOUR PROTECTION M SHAPES

Designation	$\mathrm{SI}(\mathrm{kg} / \mathrm{m}) / \mathrm{m}$		Imperial (Ib./ft.)/in.		Designation	$\mathrm{SI}(\mathrm{kg} / \mathrm{m}) / \mathrm{m}$		Imperial (lb./ft.)/in.	
	Beam	Column	Beam	Column		Beam	Column	Beam	Column
M318 $\times 18.5$ $\times 17 .$	$\begin{aligned} & 20.3 \\ & 19.5 \end{aligned}$		$\begin{aligned} & 0.347 \\ & 0.332 \end{aligned}$						
M310 $\times 17.6$ $\mathbf{x} 176.1$ $\times 14.9$ $\times 14$.	$\begin{aligned} & 21.4 \\ & 19.7 \\ & 17.9 \end{aligned}$		$\begin{aligned} & 0.365 \\ & 0.336 \\ & 0.306 \end{aligned}$						
M250 $\times 13.4$ $\times 11.9$ $\times 11.2$ $\times 11.2$	$\begin{aligned} & 19.4 \\ & 17.3 \\ & 16.2 \end{aligned}$		$\begin{aligned} & 0.330 \\ & 0.296 \\ & 0.276 \end{aligned}$						
$\begin{gathered} \text { M200 } \\ \times 9.7 \\ \times 9.2 \end{gathered}$	$\begin{aligned} & 17.2 \\ & 16.4 \end{aligned}$		$\begin{aligned} & 0.294 \\ & 0.280 \end{aligned}$						
M150 $\begin{array}{r} x 6.6 \\ \times 5.5 \end{array}$	$\begin{aligned} & 15.1 \\ & 12.6 \end{aligned}$		$\begin{aligned} & 0.259 \\ & 0.214 \end{aligned}$						
M130 x28.1		38.5		0.657					
M100 $\times 8.9$ $\times 6.1$	18.0	$\begin{aligned} & 15.9 \\ & 15.5 \end{aligned}$	0.308	$\begin{aligned} & 0.271 \\ & 0.265 \end{aligned}$					
M75 $\times 4.3$	15.2	12.8	0.259						

COEFFICIENTS OF THERMAL EXPANSION

(Linear, per degree $\times 10^{-6}$)

METALS	c per ${ }^{\circ} \mathrm{C}$	c per o
Aluminum	23	13
Brass	19	10.4
Bronze	18	10.1
Copper	16.7	9.3
Iron, Gray Cast	11	5.9
Iron, Wrought	12	6.7
Lead	28.7	15.9
Magnesium	28.8	16
Nickel	12.6	7
Steel, Cast	11.3	6.3
Steel, Stainless	17.8	9.9
Steel, Structural	11.7	6.5
Zinc, Rolled	31	17.3

NON-METALS	c per Cement, Portiand	c per ${ }^{\circ} \mathrm{F}$
Concrete, Stone	13	7
Glass	10	5.7
Granite	7	4
Limestone	8.3	4.6
Marble	7.9	4.4
Masonry, Ashlar	9	5
Masonry, Brick	6.3	3.5
Masonry, Rubble	6.1	3.4
Plaster	6.3	3.5
Sandstone	16	9
Slate	11	6
Fir (parallel to fibre)	10	5.8
Fir (perpendicular to fibre)	3.8	2.1

NOTE: Coefficients of thermal expansion indicated are average values from various sources. Minor variations may be expected in metals. Large variations may be expected in concrete and masonry due to the many combinations of constituents possible.

Coefficients apply in general to a temperature range from 0 to 100 degrees Celsius.
The coefficient of linear thermal expansion (c) is the change in length per unit of length for a change of one degree of temperature. The coefficient for surface expansion is approximately two times, and the coefficient of volume expansion is approximately three times, the linear coefficient.

Change in length $=c L \times$ change in temperature, if member is free to elongate or contract.

Change in unit stress $=c E \times$ change in temperature, if member is not permitted to elongate or contract ($E=$ modulus of elasticity).

NOTES

CHECKLIST FOR DESIGN DRAWINGS

General

A design does not provide a satisfactory structure unless sufficient information is conveyed to the builder so that the designer's intentions are clearly understood. Furthermore, attempting to prepare an estimate for a structure from plans and specifications which contain insufficient information involves risks which tend to increase the tendered price. Clause 4.2 of CSA S1614 governs the minimum requirements of design drawings. In addition, the following items are suggested as a checklist of information to be included on design drawings to avoid unnecessary and costly uncertainty at the time of bidding:

1. The type or types of design as defined in CSA S16-14. If plastic analysis is employed, it should be stated. Show the category of the structural system used for seismic design, as well as the seismic design criteria.
2. A list of design and material or product standards used. The grade(s) of structural steel, grade(s) and diameters of bolts.
3. All structural drawings to be adequately dimensioned, preferably in SI metric units. Do not intermix Metric and Imperial systems of units.
4. Centre-to-centre distances for all columns.
5. Outside dimensions of rigid frames and offset dimensions from grid lines to outside of rigid frames.
6. Out-to-out dimension of trusses and offset dimensions from centre line of chords to outside of chords-include any camber requirements.
7. Offset dimensions from centre of column lines to centre of beams for all beams that are not on the grid lines.
8. Relation of outside of exterior walls to centre lines of columns.
9. Relation of the top surfaces of beams to finished floor elevations.
10. Length of bearing for all beams bearing on exterior walls, including the dimension from the outside of the wall to the end of the steel beam and size of bearing plate.
11. Elevations of underside of column base plates.
12. Dimensions of all clear openings for doorways, ducts, stair wells, roof openings, etc., and their relation to adjacent steel members.
13. The specified dead, live, snow, rain, wind, seismic, and special loads, as well as design load criteria and/or parameters. Indicate whether loads and forces shown on drawings are factored or unfactored.
14. Axial loads in beams, columns and bracing members and joint pass-through forces. Forces and member sizes may be identified in beam or column schedules, or bracing elevation drawings.
15. Forces in truss members including moments when members are loaded between panel points.
16. Minimum end reactions required for all connections.
17. Moments for restrained beams and cantilevers. Governing combinations of shears, moments, and axial forces to be resisted by the connections.
18. All information necessary to design and manufacture the open-web steel joists and steel deck diaphragms to suit the loading conditions.
19. When a particular type of connection is required, the location and type of connection, Clear identification of structural connections that are critical for ductile seismic response. Locations and dimensions of protected zones.
20. Type of beam-to-column connection when beams frame over top of columns, including type and location of stiffeners.
21. Any bearing-type connections that are required to be pretensioned. The designation of joints as bearing or slip-critical.
22. For composite beams, the size and location of shear studs and which beams, if any, must be shored.
23. Size of column base plates and size and location of anchor rods or shear lugs. (Column bases require a minimum of four anchor rods unless special precautions are taken.)
24. Size and location of stiffeners, web doubler plates, reinforcement, and bracing required for stability of compression elements.
25. Details and location of built-up lintels.
26. Identify roof cladding systems that do not provide lateral restraint to the roof structure.
27. Reinforcement, where necessary, for openings through beam webs or openings in the steel deck diaphragm for rooftop units,
28. Ledger angles complete with method of attachment.
29. Members requiring prime paint or galvanizing.
30. Identify architecturally exposed structural steel elements requiring special tolerances and finishes. (Also refer to the CISC Code of Standard Practice in Part 7.)
31. Treatment of steel encased in concrete.
32. Fabrication and erection tolerances if other than those specified in CSA S16-14. Special tolerances when interfacing with other materials, i.e., steel attached to concrete.
33. A note that all structural welding is to be performed only by companies certified to Division 1 or 2.1 of CSA W47.1.
34. When weld symbols are shown, refer to "WELDED JOINTS Standard Symbols" in Part 6.

Allow as much time as possible (three weeks for an average job) for preparing bids. During the time allotted for preparing tenders, only those changes necessary to clarify bidding instructions should be issued by addendum. If major changes are included in an addendum, an extension of the tender closing should be considered.

PROPERTIES OF GEOMETRIC SECTIONS Definitions

Neutral Axis

The line, in any given section of a member subject to bending, on which there is neither tension nor compression.

For pure elastic bending of a straight beam, the neutral axis at any cross-section is coincident with the centroidal axis of the cross-section.

In the case of fully plastic bending, the neutral axis divides the sectional area equally. Therefore, the neutral axis for elastic and plastic bending coincide only in the case of sections symmetrical about the neutral axis.

Moment of Inertia I

The sum of the products obtained by multiplying each of the elementary areas, of which the section is composed, by the square of its perpendicular distance from the axis about which the moment of inertia is being calculated.

Elastic Section Modulus S

The moment of inertia divided by the perpendicular distance from the axis about which the moment of inertia has been calculated to the most remote part of the section.

The elastic section modulus is used to determine the bending stress in the extreme fibre of a section by dividing the bending moment by the section modulus, referred to the neutral axis perpendicular to the plane of bending, both values being expressed in like units of measure.

Radius of Gyration r

The perpendicular distance from a neutral axis to the centre of gyration (i.e., the point where the entire area is considered to be concentrated so as to have the same moment of inertia as the actual area). The square of the radius of gyration of a section is equal to the moment of inertia (referred to the appropriate axis) divided by the area.

The radius of gyration of a section is used to ascertain the load this section will sustain when used in compression as a strut or column. The ratio of the effective unsupported length of the section divided by the least radius of gyration applicable to this length is called the slenderness ratio.

Plastic Modulus \mathbf{Z}

The modulus of resistance to bending of a completely yielded cross-section, calculated by taking the combined statical moment, about the neutral axis, of the cross-sectional areas above and below that axis.

In general, the plastic modulus is calculated by simple statics and has been included for only a few of the shapes listed.

SQUARE Axis of moments through centre	$\begin{aligned} & A=d^{2} \\ & c=\frac{d}{2} \\ & I=\frac{d^{4}}{12} \\ & S=\frac{d^{3}}{6} \\ & r=\frac{d}{\sqrt{12}} \\ & Z=\frac{d^{3}}{4} \end{aligned}$
SQUARE Axis of moments on base	$\begin{aligned} & A=d^{2} \\ & c=d \\ & I=\frac{d^{4}}{3} \\ & S=\frac{d^{3}}{3} \\ & r=\frac{d}{\sqrt{3}} \end{aligned}$
SQUARE Axis of moments on diagonal	$\begin{aligned} & A=d^{2} \\ & c=\frac{d}{\sqrt{2}} \\ & I=\frac{d^{4}}{12} \\ & S=\frac{d^{3}}{6 \sqrt{2}} \\ & r=\frac{d}{\sqrt{12}} \\ & Z=\frac{2 c^{3}}{3}=\frac{d^{3}}{3 \sqrt{2}} \end{aligned}$
RECTANGLE Axis of moments through centre	$\begin{aligned} & A=b d \\ & c=\frac{d}{2} \\ & I=\frac{b d^{3}}{12} \\ & S=\frac{b d^{2}}{6} \\ & r=\frac{d}{\sqrt{12}} \\ & Z=\frac{b d^{2}}{4} \end{aligned}$

PROPERTIES OF GEOMETRIC SECTIONS

PROPERTIES OF GEOMETRIC SECTIONS

TRAPEZOID Axis of moments through centre of gravity	$\begin{aligned} & A=\frac{d\left(b+b_{1}\right)}{2} \\ & c=\frac{d\left(2 b+b_{1}\right)}{3\left(b+b_{1}\right)} \\ & I=\frac{d^{3}\left(b^{2}+4 b b_{1}+b_{1}^{2}\right)}{36\left(b+b_{1}\right)} \\ & S=\frac{d^{2}\left(b^{2}+4 b b_{1}+b_{1}^{2}\right)}{12\left(2 b+b_{1}\right)} \\ & r=\frac{d}{6\left(b+b_{1}\right)} \sqrt{2\left(b^{2}+4 b b_{1}+b_{1}^{2}\right)} \end{aligned}$
CIRCLE Axis of moments through centre	$\begin{aligned} & \mathrm{A}=\frac{\pi \mathrm{d}^{2}}{4}=\pi \mathrm{R}^{2} \\ & \mathrm{c}=\frac{\mathrm{d}}{2}=\mathrm{R} \\ & \mathrm{I}=\frac{\pi \mathrm{d}^{4}}{64}=\frac{\pi \mathrm{R}^{4}}{4} \\ & \mathrm{~S}=\frac{\pi \mathrm{d}^{3}}{32}=\frac{\pi \mathrm{R}^{3}}{4} \\ & \mathrm{r}=\frac{\mathrm{d}}{4}=\frac{\mathrm{R}}{2} \\ & \mathrm{Z}=\frac{\mathrm{d}^{3}}{6} \end{aligned}$
HOLLOW CIRCLE Axis of moments through centre	$\begin{aligned} & A=\frac{\pi\left(d^{2}-d_{1}^{2}\right)}{4} \\ & c=\frac{d}{2} \\ & I=\frac{\pi\left(d^{4}-d_{1}^{4}\right)}{64} \\ & S=\frac{\pi\left(d^{4}-d_{1}^{4}\right)}{32 d} \\ & r=\frac{\sqrt{d^{2}+d_{1}^{2}}}{4} \\ & Z=\frac{1}{6}\left(d^{3}-d_{1}^{3}\right) \end{aligned}$
HALF CIRCLE Axis of moments through centre of gravity	$\begin{aligned} & A=\frac{\pi R^{2}}{2} \\ & C=R\left(1-\frac{4}{3 \pi}\right) \\ & I=R^{4}\left(\frac{\pi}{8}-\frac{8}{9 \pi}\right) \\ & S=\frac{R^{3}}{24} \frac{\left(9 \pi^{2}-64\right)}{(3 \pi-4)} \\ & r=R \frac{\sqrt{9 \pi^{2}-64}}{6 \pi} \end{aligned}$

PROPERTIES OF GEOMETRIC SECTIONS

* HALF ELLIPSE $\begin{aligned} & A=\frac{1}{2} \pi a b \\ & m=\frac{4 a}{3 \pi} \\ & I_{1}=a^{3} b\left(\frac{\pi}{8}-\frac{8}{9 \pi}\right) \\ & I_{2}=\frac{1}{8} \pi a b^{2} \\ & I_{3}=\frac{1}{8} \pi a^{3} b \end{aligned}$
* QUARTER ELLIPSE $\begin{array}{ll} A=\frac{1}{4} \pi a b & I_{1}=a^{3} b\left(\frac{\pi}{16}-\frac{4}{9 \pi}\right) \\ m=\frac{4 a}{3 \pi} & I_{2}=a b^{3}\left(\frac{\pi}{16}-\frac{4}{9 \pi}\right) \\ n=\frac{4 b}{3 \pi} & I_{3}=\frac{1}{16} \pi a^{3} b \\ I_{4}=\frac{1}{16} \pi a b^{3} \end{array}$
ELLIPTIC COMPLEMENT $\begin{aligned} & A=a b\left(1-\frac{\pi}{4}\right), m=\frac{a}{6\left(1-\frac{\pi}{4}\right)}, n=\frac{b}{6\left(1-\frac{\pi}{4}\right)} \\ & I_{1}=a b\left(\frac{1}{3}-\frac{\pi}{16}-\frac{1}{36\left(1-\frac{\pi}{4}\right)}\right) \\ & I_{2}=a b^{3}\left(\frac{1}{3}-\frac{\pi}{16}-\frac{1}{36\left(1-\frac{\pi}{4}\right)}\right) \end{aligned}$

[^66]
PROPERTIES OF GEOMETRIC SECTIONS AND STRUCTURAL SHAPES

$A=2 b t+(d-2 t) w$
$\mathrm{I}=\frac{1}{12}\left[b d^{3}-(b-w)(d-2 t)^{3}\right]$
$S=\frac{1}{6 d}\left[b d^{3}-(b-w)(d-2 t)^{3}\right]$
$r=\sqrt{\frac{1}{A}}$
$Z=\frac{1}{4}\left[b d^{2}-(b-w)(d-2 t)^{2}\right]$
$J=\frac{1}{3}\left[2 b t^{3}+(d-t) w^{3}\right]$
$C_{w}=\frac{1}{24}(d-t)^{2} b^{3} t$

$A=d w+2(b-w) t$
$I=\frac{1}{12}\left[b d^{3}-(b-w)(d-2 t)^{3}\right]$
$S=\frac{1}{6 d}\left[b d^{3}-(b-w)(d-2 t)^{3}\right]$
$r=\sqrt{\frac{1}{A}}$
$e=\frac{3 t(b-w / 2)^{2}}{6 t(b-w / 2)+(d-t) w}-\frac{w}{2}$

$A=b t+w(d-t)$
$y=\frac{1}{2}\left(\frac{b d t}{A}+d-t\right)$
$I=\frac{1}{12}\left[b t^{3}+w(d-t)^{3}+\frac{3 b w d^{2}(d-t)}{A}\right]$
$S_{1}=\frac{1}{y} ; \quad S_{2}=\frac{1}{d-y}$
$r=\sqrt{\frac{I}{A}}$
$J=\frac{1}{3}\left[b t^{3}+\left(d-\frac{t}{2}\right) w^{3}\right]$
$C_{w}=\frac{b^{3} t^{3}}{144}+\frac{\left(d-\frac{t}{2}\right)^{3} w^{3}}{36}$

PROPERTIES OF GEOMETRIC SECTIONS AND STRUCTURAL SHAPES

$A=d w+2(b-w) t$
$x=\frac{1}{2 A}\left[(d-2 t) w^{2}+2 t b^{2}\right]$
$I=\frac{1}{3}\left[d x^{3}+2 t(b-x)^{3}-(d-2 t)(x-w)^{3}\right]$
$S_{i}=\frac{1}{b-x} ;$
$S_{2}=\frac{1}{x}$
$r=\sqrt{\frac{1}{A}}$
$A=b t+(d-t) w$

$x=b / 2$
$I=\frac{1}{12}\left[\mathrm{tb}^{3}+(\mathrm{d}-\mathrm{t}) \mathrm{w}^{3}\right]$
$S=\frac{21}{b}$
$r=\sqrt{\frac{1}{A}}$
$J=\frac{1}{3}\left[b t^{3}+\left(d-\frac{t}{2}\right) w^{3}\right]$
$C_{w}=\frac{b^{3} t^{3}}{144}+\frac{\left(d-\frac{t}{2}\right)^{3} w^{2}}{36}$

PROPERTIES OF GEOMETRIC SECTIONS AND STRUCTURAL SHAPES

PROPERTIES OF GEOMETRIC SECTIONS AND STRUCTURAL SHAPES

PROPERTIES OF THE CIRCLE

PROPERTIES OF PARABOLA AND ELLIPSE

When $\mathrm{H} \div \mathrm{B}=0.1$ or less, approximate

RECTANGULAR PARALLELEPIPED

Volume $=a b c$
Surface area $=2(a b+a c+b c)$

PARALLELEPIPED

Volume $=A h=a b c \sin \theta$

PYRAMID

Volume $=\frac{1}{3} A h$
The centroid of a pyramid is located y-distance from the base on the line joining the centre of gravity of area A and the apex.
$y=\frac{h}{4}$

FRUSTUM OF PYRAMID
$V=\frac{h}{3}\left(A_{1}+A_{2}+\sqrt{A_{1} A_{2}}\right)$
The centroid is located y-distance up from area A_{1} on the line joining the centres of gravity of areas A_{1} and A_{2}.
$y=\frac{h\left(A_{1}+2 \sqrt{A_{1} A_{2}}+3 A_{2}\right)}{4\left(A_{1}+\sqrt{A_{1} A_{2}}+A_{2}\right)}$

WEDGE

$\mathrm{V}=\frac{(2 \mathrm{a}+\mathrm{c}) \mathrm{bh}}{6}$
The centroid is located y-distance from the base on the line joining the centre of gravity of the base area and the mid point of edge, c.
$y=\frac{h(a+c)}{2(2 a+c)}$

PROPERTIES OF SOLIDS

RIGHT CIRCULAR CYLINDER

Volume $=\pi r^{2} h$
Lateral surface area $=2 \pi r h$
$y=\frac{h}{2}$

RIGHT CIRCULAR CONE

Volume $=\frac{1}{3} \pi r^{2} h$
Lateral surface area $=\pi r \sqrt{r^{2}+h^{2}}=\pi r \mid$
$y=\frac{h}{4}$

FRUSTUM OF RIGHT CIRCULAR CONE
Volume $=\frac{1}{3} \pi h\left(\mathrm{a}^{2}+a b+b^{2}\right)$
Lateral surface area $=\pi(a+b) \sqrt{h^{2}+(b-a)^{2}}$

$$
=\pi(a+b)
$$

$y=\frac{h\left(b^{2}+2 a b+3 a^{2}\right)}{4\left(b^{2}+a b+a^{2}\right)}$

SPHERE

Volume $=\frac{4}{3} \pi r^{3}$
Surface area $=4 \pi r^{2}$

TRIGONOMETRIC FORMULAE

BRACING FORMULAE

LENGTH OF CIRCULAR ARCS FOR UNIT RADIUS

By the use of this table, the length of any arc may be found if the length of the radius and the angle of the segment are known.
Example: Required the length of arc of segment $32^{\circ} 15^{\prime} 27^{\prime \prime}$ with radius of 8000 mm .
From lable: Length of arc (Radius 1) for

$$
\begin{aligned}
32^{\circ} & =.5585054 \\
15^{\prime} & =.0043633 \\
27^{\prime \prime} & =\frac{0001309}{.5629996}
\end{aligned}
$$

5629996×8000 (length of radius) $=4504 \mathrm{~mm}$
For the same arc but with the radius ex jressed as 24 feet 3 inches, the length of arc would be $0.5629996 \times 24.25=13.65$ feet

DEGREES						MINUTES		SECONDS	
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \end{aligned}$.0174533 .0349066 .0523599 .0698132 .0872665	$\begin{aligned} & 61 \\ & 62 \\ & 63 \\ & 64 \\ & 65 \end{aligned}$	$\begin{aligned} & 1.0646508 \\ & 1.0821041 \\ & 1.0995574 \\ & 1.1170107 \\ & 1.1344640 \end{aligned}$	$\begin{aligned} & 121 \\ & 122 \\ & 123 \\ & 124 \\ & 125 \end{aligned}$	2.1118484 2.1293017 2.1467550 2.1642083 2.1816616	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \end{aligned}$.0002909 .0005818 .0008727 .0011636 .0014544	1 2 3 4 5	$\begin{array}{r} .0000048 \\ .0000097 \\ .0000145 \\ .0000194 \\ .0000242 \end{array}$
$\begin{array}{r} 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$.1047198 .1221730 .1396263 1570796 .1745329	$\begin{aligned} & 66 \\ & 67 \\ & 68 \\ & 69 \\ & 70 \end{aligned}$	$\begin{aligned} & 1.1519173 \\ & 1.1693706 \\ & 1.1868239 \\ & 1.2042772 \\ & 1.2217305 \end{aligned}$	$\begin{aligned} & 126 \\ & 127 \\ & 128 \\ & 129 \\ & 130 \end{aligned}$	2.1991149 2.2165682 2.2340214 2.2514747 2.2689280	$\begin{array}{r} 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$.0017453 .0020362 .0023271 .0026180 .0029089	$\begin{array}{r} 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$.0000291 .0000339 .0000388 .0000436 .0000485
$\begin{aligned} & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & .1919862 \\ & .2094395 \\ & .2268928 \\ & .2443461 \\ & .2617994 \end{aligned}$	$\begin{aligned} & 71 \\ & 72 \\ & 73 \\ & 74 \\ & 75 \end{aligned}$	$\begin{aligned} & 1.2391838 \\ & 1.2566371 \\ & 1.2740904 \\ & 1.2915436 \\ & 1.3089969 \end{aligned}$	$\begin{aligned} & 131 \\ & 132 \\ & 133 \\ & 134 \\ & 135 \end{aligned}$	2.2863813 2.3038346 2.3212879 2.3387412 2.3561945	$\begin{aligned} & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \end{aligned}$.0031998 .0034907 .0037815 .0040724 .0043633	$\begin{aligned} & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & .0000533 \\ & .0000582 \\ & .0000630 \\ & .0000679 \\ & .0000727 \end{aligned}$
$\begin{aligned} & 16 \\ & 17 \\ & 18 \\ & 19 \\ & 20 \end{aligned}$.2792527 .2967060 .3141593 .3316126 .3490659	$\begin{aligned} & 76 \\ & 77 \\ & 78 \\ & 79 \\ & 80 \end{aligned}$	$\begin{aligned} & 1.3264502 \\ & 1.3439035 \\ & 1.3613568 \\ & 1.3788101 \\ & 1.3962634 \end{aligned}$	$\begin{aligned} & 136 \\ & 137 \\ & 138 \\ & 139 \\ & 140 \end{aligned}$	2.3736478 2.3911011 2.4085544 2.4260077 2.4434610	$\begin{aligned} & 16 \\ & 17 \\ & 18 \\ & 19 \\ & 20 \end{aligned}$.0046542 .0049451 .0052360 .0055269 .0058178	$\begin{aligned} & 16 \\ & 17 \\ & 18 \\ & 19 \\ & 20 \end{aligned}$	$\begin{aligned} & .0000776 \\ & .0000824 \\ & .0000873 \\ & .0000921 \\ & .0000970 \end{aligned}$
$\begin{aligned} & 21 \\ & 22 \\ & 23 \\ & 24 \\ & 25 \end{aligned}$.3665191 .383724 .4014257 .4188790 .4363323	$\begin{aligned} & 81 \\ & 82 \\ & 83 \\ & 84 \\ & 85 \end{aligned}$	$\begin{aligned} & 1.4137167 \\ & 1.4311700 \\ & 1.4486233 \\ & 1.4660766 \\ & 1.4835299 \end{aligned}$	$\begin{aligned} & 141 \\ & 142 \\ & 143 \\ & 144 \\ & 145 \end{aligned}$	2.4609142 2.4783675 2.4958208 2.5132741 2.5307274	$\begin{aligned} & 21 \\ & 22 \\ & 23 \\ & 24 \\ & 25 \end{aligned}$.0061087 .0063995 .0066904 .0069813 .0072722	21 22 23 24 25	$\begin{aligned} & .0001018 \\ & .0001067 \\ & .0001115 \\ & .0001164 \\ & .0001212 \end{aligned}$
$\begin{aligned} & 26 \\ & 27 \\ & 28 \\ & 29 \\ & 30 \end{aligned}$.4537856 .4712389 .4886922 .5061455 .5235988	$\begin{aligned} & 86 \\ & 87 \\ & 88 \\ & 89 \\ & 90 \end{aligned}$	1.5009832 1.5184364 1.5358897 1.5533430 1.5707963	$\begin{aligned} & 146 \\ & 147 \\ & 148 \\ & 149 \\ & 150 \end{aligned}$	2.5481807 2.5656340 2.5830873 2.6005406 2.6179939	$\begin{aligned} & 26 \\ & 27 \\ & 28 \\ & 29 \\ & 30 \end{aligned}$.0075631 .0078540 .0081449 .0084358 .0087266	$\begin{aligned} & 26 \\ & 27 \\ & 28 \\ & 29 \\ & 30 \end{aligned}$.0001261 .0001309 .0001357 .0001406 .0001454
$\begin{aligned} & 31 \\ & 32 \\ & 33 \\ & 34 \\ & 35 \end{aligned}$.5410521 .5585054 .5759587 .5934119 .6108652	$\begin{aligned} & 91 \\ & 92 \\ & 93 \\ & 94 \\ & 95 \end{aligned}$	$\begin{aligned} & 1.5882496 \\ & 1.6057029 \\ & 1.6231562 \\ & 1.6406095 \\ & 1.6580628 \end{aligned}$	$\begin{aligned} & 151 \\ & 152 \\ & 153 \\ & 154 \\ & 155 \end{aligned}$	2.6354472 2.6529005 2.6703538 2.6878070 2.7052603	31 32 33 34 35	.0090175 .0093084 .0095993 .0098902 .0101911	31 32 33 34 35	.0001503 .0001551 .0001600 .0001648 .0001697
$\begin{aligned} & 36 \\ & 37 \\ & 38 \\ & 39 \\ & 40 \end{aligned}$.6283185 .6457718 .6632251 .6806784 .6981317	$\begin{array}{r} 96 \\ 97 \\ 98 \\ 99 \\ 100 \end{array}$	$\begin{aligned} & 1.6755161 \\ & 1.6929694 \\ & 1.7104227 \\ & 1.7278760 \\ & 1.7453293 \end{aligned}$	$\begin{aligned} & 156 \\ & 157 \\ & 158 \\ & 159 \\ & 160 \end{aligned}$	2.7227136 2.7401669 2.7576202 2.7750735 2.7925268	36 37 38 39 40	.0104720 .0107629 .110538 .0113446 .0116355	36 37 38 39 40	.0001745 .0001794 .0001842 .0001891 .0001939
41 42 43 44 45	$\begin{aligned} & .7155850 \\ & .7330383 \\ & 7504916 \\ & .7679449 \\ & .7853982 \end{aligned}$	$\begin{aligned} & 101 \\ & 102 \\ & 103 \\ & 104 \\ & 105 \end{aligned}$	$\begin{aligned} & 1.7627825 \\ & 1.7802358 \\ & 1.7976891 \\ & 1.8151424 \\ & 1.8325957 \end{aligned}$	$\begin{aligned} & 161 \\ & 162 \\ & 163 \\ & 164 \\ & 165 \end{aligned}$	2.8099801 2.8274334 2.8448867 2.8623400 2.8797933	41 42 43 44 45	.0119264 .0122173 .0125082 .0127991 .0130900	41 42 43 44 45	$\begin{aligned} & .0001988 \\ & .0002036 \\ & .0002085 \\ & .0002133 \\ & .0002182 \end{aligned}$
46 47 48 49 50	.8028515 .8203047 .8377580 .8552113 .8726646	$\begin{aligned} & 106 \\ & 107 \\ & 108 \\ & 109 \\ & 110 \end{aligned}$	$\begin{aligned} & 1.8500490 \\ & 1.8675023 \\ & 1.8849556 \\ & 1.9024089 \\ & 1.9198622 \end{aligned}$	$\begin{aligned} & 166 \\ & 167 \\ & 168 \\ & 169 \\ & 170 \end{aligned}$	2.8972466 2.9146999 2.9321531 2.9496064 2.9670597	46 47 48 49 50	.0133809 .0136717 .0139626 .0142535 .0145444	46 47 48 49 50	$\begin{aligned} & .0002230 \\ & .0002279 \\ & .0002327 \\ & .0002376 \\ & .0002424 \end{aligned}$
$\begin{aligned} & 51 \\ & 52 \\ & 53 \\ & 54 \\ & 55 \end{aligned}$.8901179 .9075712 .9250245 .9424778 .9599311	$\begin{aligned} & 111 \\ & 112 \\ & 113 \\ & 114 \\ & 115 \end{aligned}$	$\begin{aligned} & 1.9373155 \\ & 1.9547688 \\ & 1.9722221 \\ & 1.9896753 \\ & 2.0071286 \end{aligned}$	$\begin{aligned} & 171 \\ & 172 \\ & 173 \\ & 174 \\ & 175 \end{aligned}$	2.9845130 3.0019663 3.0194196 3.0368729 3.0543262	51 52 53 54 55	.0148353 .0151262 .0154171 .0157080 .0159989	51 52 53 54 55	$\begin{array}{r} .0002473 \\ .0002521 \\ .0002570 \\ .0002618 \\ .0002666 \end{array}$
$\begin{aligned} & 56 \\ & 57 \\ & 58 \\ & 59 \\ & 60 \end{aligned}$.9773844 9948377 1.0122910 1.0297443 1.0471976	$\begin{aligned} & 116 \\ & 117 \\ & 118 \\ & 119 \\ & 120 \end{aligned}$	$\begin{aligned} & 2.0245819 \\ & 2.04200352 \\ & 2.0594885 \\ & 2.0769418 \\ & 2.0943951 \end{aligned}$	$\begin{aligned} & 176 \\ & 177 \\ & 178 \\ & 179 \\ & 180 \end{aligned}$	3.0717795 3.0892328 3.1066861 3.1241394 3.1415927	56 57 58 59 60	.0162897 .0165806 .0168715 .0171624 .0174533	56 57 58 59 60	$\begin{array}{r} .0002715 \\ .0002763 \\ .0002812 \\ .0002860 \\ .0002909 \end{array}$

SI SUMMARY

General

The following information on SI units is provided to assist those involved in the planning, design, fabrication and erection of steel structures prepared in SI units. Information related to the metric system in general is to be found in CAN3-Z234.1-79, "Canadian Metric Practice Guide" and for terms related to the steel industry in the "Industry Practice Guide for SI Metric Units in the Canadian Iron and Steel Industry". The latter is available from the Task Force for Metric Conversion in the Canadian Iron and Steel Industry, P.O. Box 4248, Station "D", Hamilton, Ontario, L8V 4L6.

The eleventh General Conference of Weights and Measures, in 1960, adopted the name International System of Units for a coherent system which includes the metre as the base unit of length and the kilogram as the base unit of mass. The international abbreviation of the name of this system, in all languages, is SL.

Canada is a signatory to the General Conference on Weights and Measures, and in 1970, the Canadian government stated that the eventual conversion to the metric system is an objective of Canadian policy. Since that time, metric conversion activity in Canada has developed to the point where material and design standards, building codes and technical literature are available in SI units.

The SI system is based on the seven base units listed in Table 7-1. Decimal multiples and sub-multiples of the SI base units are formed by the addition of the prefixes given in Table 7-2.

SI BASE UNITS
Table 7-1

Quantity	Name	Symbol
length	metre	m
mass	kilogram	kg
time	second	s
electric current	ampere	A
thermodynamic temperature	kelvin	K
amount of substance	mole	mol
luminous intensity	candela	cd

SI PREFIXES
Table 7-2

Multiplying Factor		Prefix	Symbol
1000000000000	$=10^{12}$		
1000000000	$=10^{9}$	giga	T
1000000	$=10^{6}$	mega	M
1000	$=10^{3}$	kilo	k
100	$=10^{2}$	hecto	h
10	$=10^{1}$	deca	da
0.1	$=10^{-1}$	deci	d
0.01	$=10^{-2}$	centi	c
0.001	$=10^{-3}$	milli	m
0.000001	$=10^{-6}$	micro	H
0.000000001	$=10^{-9}$	nano	n
0.000000000001	$=10^{-12}$	pico	p
0.000000000000001	$=10^{-15}$	femto	F
0.000000000000000001	$=10^{-18}$	atto	a

In choosing the appropriate decimal
multiple or sub-multiple, the Canadian Metric Practice Guide recommends the use of prefixes representing 10 raised to a power that is a multiple of 3 , a ternary power. Thus, common structural steel design units would be:

Force - newton (N), kilonewton (kN)
Stress - pascal (Pa), kilopascal (kPa), megapascal (MPa)
Length - millimetre (mm), metre (m)
Mass - kilogram (kg), megagram (Mg)
The tonne is a special unit, equal to 1000 kg (or 1 Mg) that will be used in the basic steel industry, but should not be used in structural design calculations.

Designers using SI units must transform loads given in mass (kilograms) to forces, using the relationship force = mass times acceleration. In the design of structures on earth, acceleration is the acceleration due to gravity, designated by " g " and established as 9.80665 metres per second per second at the third General Conference on Weights and Measures in 1901.

The unit of force to be used in design is the newton (N) (or multiples thereof) where a newton is defined as the force that, when applied to a body having a mass of one kilogram (kg), gives the body an acceleration of one metre (m) per second squared (s^{2}). The unit of stress is the pascal (Pa), which is one newton per square metre $\left(\mathrm{m}^{2}\right)$. Since this is a very small unit, designers of steel structures will generally use megapascals (MPa), where one megapascal is one million pascals and equals one newton per square millimetre ($\mathrm{N} / \mathrm{mm}^{2}$). See also "Structural Loads, Mass and Force".

Properties and dimensions of steel sections are given, in this book, in millimetre units, tabulated to an appropriate ternary power of 10 , and millimetres should be used for dimensioning steel structures. Some relationships and values of interest to steel designers are shown below:

SI PREFIXES

Table 7-3

			7850
Density of Steel	kg/m		
Modulus of Elasticity	G	200000	MPa
Shear Modulus of Steel		77000	MPa
Coefficient of Thermal Expansion	g	$11.7 \times 10^{\circ 68} /{ }^{\circ} \mathrm{C}$	
Acceleration due to Earth's Gravity		9.80685	$\mathrm{~m} / \mathrm{s}^{2}$

For a more complete description of SI, the Canadian Metric Practice Guide should be consulted; however, Table 7-4 provides a convenient summary listing selected SI units, the quantity represented, the unit name and typical application.

Structural Loads, Mass and Force

Since most civil engineers have been accustomed to designing structures on earth to withstand loads more variable than the acceleration due to gravity, the pound-force and the kilogram-force have been used as standard units of force. These units were assumed to be numerically equal to their mass counter-parts, the pound-mass and the kilo-gram-mass respectively.

In SI, the units of mass and force, the kilogram and the newton respectively, are distinctly different both in name and in value. The two are related through the famous Newtonian equation, force $=$ mass times acceleration, or

$$
\mathrm{F}=\mathrm{ma}
$$

Thus a newton (N) is defined as the force required to give one kilogram (kg) mass an acceleration of one metre (m) per second (s) squared, or

$$
1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}
$$

The standard international value of acceleration due to gravity is $9.80665 \mathrm{~m} / \mathrm{s}^{2}$. However, for hand calculations in Canada a value of

$$
\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}
$$

may be more acceptable as it retains three significant figures (adequate for most structural design) and produces a numerical value of force distinctly different from the value of mass. Thus, whether or not the mass has been converted to a force will be readily apparent, and errors will tend to be reduced.

SELECTED SI UNITS
Table 7-4

Quantity	Preferred Units	Unit Name	Typleal Appileations	Remarks
Area	mm^{2}	square millimatre	Area of cross section for structural sections	Avoid cm^{2}
	m^{2}	square metre	Areas in general	
Bending Moment	$\mathrm{kN} \cdot \mathrm{m}$	killonewton metre	Bending moment in structural sections	
Coating mass	$\mathrm{g} / \mathrm{m}^{2}$	gram per square metre	Mass of zinc coating on steel deck	
Coeflicient of Thermal Expansion	$1 /{ }^{\circ} \mathrm{C}{ }^{\text {a }}$	reciprocal (ol) degree Celsius	Expansion of materials subject to temperature change (generally expressed as a ratio per degree Celsius)	$11.7 \times 10^{3} /{ }^{\circ} \mathrm{C}$ for sleel
Density, mass	$\mathrm{kg} / \mathrm{m}^{3}$	kilogram per cubic metre	Density of materials in general; mass per unit volume	$7850 \mathrm{~kg} / \mathrm{m}^{2}$ for stael
Force	N	newton	Unit of force used in struclural calculations	$1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$
	kN	kilonewton	Force in structural elements such as columns; concentrated forces; axial lorces; reactions; shear force; gravitational torce	
Force per Unit Length	N / m	newton per matre	Unit for use in calculations	$\begin{aligned} & 1 \mathrm{~kg} / \mathrm{m} \times 9.81 \mathrm{~m} / \mathrm{s}^{2} \\ & =\left(9.81 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}\right) \times \frac{1}{\mathrm{~m}} \\ & =9.81 \mathrm{~N} / \mathrm{m} \end{aligned}$
	kN / m	kilonewton per metre	Transverse force per unit length on a beam, column etc.; dead load of a beam for stress calculations	$\begin{aligned} & \left(1 \mathrm{~kg} / \mathrm{m} \times 9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \times \frac{1000}{1000} \\ & =\left(9.81 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}\right) \times \frac{1}{\mathrm{~m}} \times \frac{1000}{1000} \\ & =(9.81 \mathrm{~N} / \mathrm{m}) \times \frac{1000}{1000} \\ & =8.81 \mathrm{kN} / \mathrm{m} \times 11 / 1000 \\ & =0.00981 \mathrm{kN} / \mathrm{m} \end{aligned}$
Force per Unit Area (See Pressure)				
Frequency	Hz	hertz	Frequency of vibration	$1 \mathrm{~Hz}=1 / \mathrm{s}=\mathrm{s}^{-}$(eplacos cycle per second (cps)
Impact energy	J	loule	Charpy V-notch test	$1 \mathrm{~N} \cdot \mathrm{~m}=1 \mathrm{~d}$
Length	mm	millimatre	Dimensions on all drawings; dimensions of sections, spans, dellection, elongations, eccentricity	
	m	metre	Overall dimensions; in calculations; contours; surveys	
	km	kilometre	Distances for transportation purposes	
	$\mu \mathrm{m}$	micrometre	Thickness of coatings (paint)	
Mass	kg	kilogram	Mass of materials, structural elements and machinery	A metric tonne, 1 $\mathrm{t}=10^{1} \mathrm{~kg}=1 \mathrm{Mg}=1000 \mathrm{~kg}$
Mass per Unit Length	kg/m	Kilogram per metre	Mass per unit length of section, bar, or similar items of uniform cross section.	Also known as "linear density"
Mass per Unit Area	$\mathrm{kg} / \mathrm{m}^{2}$	kilogram per square matre	Mass per unil aree of plates, slabs, or similar items of unitorm thickness: rating for load-carrying capacitiss on floors (display on notices only)	DO NOT USE IN STRESS CALCULATION
Mass Density	$\mathrm{kg} / \mathrm{m}^{2}$	kilogram per cubjc matre	Density of materials in general; mass per unit volume	$7850 \mathrm{~kg} / \mathrm{m}^{2}$ lor steel
Modulus of Elasticity (Young's)	MPa	megapascal	Modulus of elasticity; Young's modulus	200000 MPa tor carbon, high-strength low alloy and low-alloy wrought steels
Modulus, Shear	MPa	megapascal	Shear Modulus	77000 MPa assumed for steal
Modulus, Section	$\mathrm{mm}{ }^{2}$	millimetre to third power	First moment of area of cross saclion of structural section, such as plastic section modulus, slastic section modulus	

[^67]
SELECTED SI UNITS

Table 7-4

Quantity	Praferred Unita	Unit Name	Typical Applications	Rembika
Moment of inertia	$\mathrm{mm}{ }^{+1}$	millimetre to tourth power	Second moment of area; moment of inertia of a saction; torsional constant of cross section	
Moment of Force	$\mathrm{kN} \cdot \mathrm{m}$	kilonewton metre	Bending moment (in structural sections); overturning moment	
Pressure (see also Strass)	$\mathrm{N} \cdot \mathrm{m}$ Pa	newton metre pascal	Unit used in calculation	$1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}$
	kPa	kilopascal	Unilormly distributed loads on floors; soil pressure, wind loads; snow loads; dead loads: live loads.	$1 \mathrm{kPa}=1 \mathrm{kN} / \mathrm{m}^{2}$
Section Modulus (see Modulus)				
Stress	MPs	megapascai	Siress (yleld, uftimate, permitted, calculated) in structural steel	$\begin{aligned} 1 \mathrm{MPa} & =1 \mathrm{MN} / \mathrm{m}^{2} \\ & =1 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$
Siructural Load (see Force)				
Temperature	${ }^{\circ} \mathrm{C}$	degree Celsius	Amblant lemperature	$0^{\circ} \mathrm{C}=273.15 \mathrm{~K}$ Howeyer, lor temperature intervals $1^{\circ} \mathrm{C}=1 \mathrm{~K}$
Thickness	mm	millimetre	Thickness of Web, flange, plate, etc.	
	$\mu \mathrm{m}$	micrometre	Thickness of paint	
Torque	$\mathrm{kN} \cdot \mathrm{m}$	kilonewion matre	Torsional moment on a cross section	
Volume	m^{3}	cubio matre	Volume; volume of earthworks, excavation, concrete, sand, all bulk materials.	$1 \mathrm{~m}^{3}=1000 \mathrm{~L}$ The pubic metre is the prelested unic of volume for engineering purposes
	L	litie	Volume of fluids and containers for fluids	
Work, Energy	J	joule	Energy absorbed in impact testing of materials; energy in general	$1 \mathrm{kWh}=3.6 \mathrm{M}$.$) where$ kWh is a kilowalt hour.

There are two common areas where the designer of a structure must be alert to the distinction between mass and force:

1. dead loads due to the mass of the structural elements, permanent equipment etc.,
2. superimposed, or live loads due to storage of materials.

In these and other cases where mass is well known since it is the unit of commerce, the designer must convert mass to force by multiplying by g.

COMMON CONVERSION FACTORS
 Table 7-5

Item	Imperial - Si	SI - Imperial
Acceleration	$1 \mathrm{ft} / \mathrm{s}^{2}=0.3048 \mathrm{~m} / \mathrm{s}^{2}$	$1 \mathrm{~m} / \mathrm{s}^{2}=3.2808 \mathrm{ft} / \mathrm{s}^{2}$
Area	$\begin{aligned} 1 \text { acre } & =0.4046856 \mathrm{ha} \\ 1 \mathrm{ft.}^{2} & =0.09290304 \mathrm{~m}^{2} \\ 1 \mathrm{in.}^{2} & =645.16 \mathrm{~mm}^{2} \\ 1 \mathrm{mi.}^{2} & =2.589988 \mathrm{~km}^{2} \\ 1 \mathrm{yd.}^{2} & =0.8361274 \mathrm{~m}^{2} \end{aligned}$	$\begin{aligned} 1 \mathrm{ha} & =2.471 \text { acres } \\ 1 \mathrm{~m}^{2} & =10.764 \mathrm{ft}^{2} \\ 1 \mathrm{~mm}^{2} & =1.55 \times 10^{-3} \mathrm{in.}^{2} \\ 1 \mathrm{~km}^{2} & =0.3861 \mathrm{mi.}^{2} \\ 1 \mathrm{~m}^{2} & =1.20 \mathrm{yd.}^{2} \end{aligned}$
Capacity (Canadian Legal Units)	$\begin{array}{ll} 1 \mathrm{oz} . & =28.413062 \mathrm{~mL} \\ 1 \mathrm{gal} . & =4.546090 \mathrm{~L} \\ 1 \mathrm{pt.} & =0.568261 \mathrm{~L} \\ 1 \mathrm{qt.} & =1.136522 \mathrm{~L} \end{array}$	$\begin{aligned} 1 \mathrm{~mL} & =35.2 \times 10^{-3} \mathrm{oz} . \\ 1 \mathrm{~L} & =0.220 \mathrm{gal} . \\ 1 \mathrm{~L} & =1.76 \mathrm{pt} . \\ 1 \mathrm{~L} & =0.880 \mathrm{qt} . \end{aligned}$
Density, Mass	$\begin{aligned} & 1 \mathrm{lb} . / \mathrm{ft} .=1.48816 \mathrm{~kg} / \mathrm{m} \\ & 1 \mathrm{lb} . / \mathrm{yd} .=0.496055 \mathrm{~kg} / \mathrm{m} \\ & 1 \mathrm{oz} . / \mathrm{ft} .^{2}=305.152 \mathrm{~g} / \mathrm{m}^{2} \\ & 1 \mathrm{lb} . / \mathrm{ft}{ }^{2}=4.88243 \mathrm{~kg} / \mathrm{m}^{2} \\ & 1 \mathrm{lb} . / \mathrm{in.} .^{2}=703.0696 \mathrm{~kg} / \mathrm{m}^{2} \\ & 1 \mathrm{lb} . / \mathrm{ft} .^{3}=16.01846 \mathrm{~kg} / \mathrm{m}^{3} \\ & 1 \mathrm{lb} . / \mathrm{in} .^{3}=27.67990 \mathrm{Mg} / \mathrm{m}^{3} \end{aligned}$	$\begin{aligned} 1 \mathrm{~kg} / \mathrm{m} & =0.672 \mathrm{lb} . / \mathrm{ft} . \\ 1 \mathrm{~kg} / \mathrm{m} & =2.016 \mathrm{lb} . / \mathrm{yd} . \\ 1 \mathrm{~g} / \mathrm{m}^{2} & =3.277 \times 10^{-3} \mathrm{oz} . / \mathrm{ft} .^{2} \\ 1 \mathrm{~kg} / \mathrm{m}^{2} & =0.205 \mathrm{lb} . / \mathrm{ft} .^{2} \\ 1 \mathrm{~kg} / \mathrm{m}^{2} & =1.42 \times 10^{-3} \mathrm{lb} . / \mathrm{in}^{2} \\ 1 \mathrm{~kg} / \mathrm{m}^{3} & =62.4 \times 10^{3} \mathrm{lb} . / \mathrm{ft}^{3} \\ 1 \mathrm{Mg} / \mathrm{m}^{3} & =0.0361 \mathrm{lb} . / \mathrm{in} .^{3} \end{aligned}$
Force	$1 \mathrm{kip}=4.448222 \mathrm{kN}$	$1 \mathrm{kN}=0.225 \mathrm{kip}$
Length	$\begin{array}{ll} 1 \mathrm{ft} . & =0.3048 \mathrm{~m}=304.8 \mathrm{~mm} \\ 1 \mathrm{in} . & =25.4 \mathrm{~mm} \\ 1 \mathrm{mile} & =1.609344 \mathrm{~km} \\ 1 \mathrm{yd} . & =0.9144 \mathrm{~m} \end{array}$	$\begin{aligned} 1 \mathrm{~m} & =3.28 \mathrm{ft} . \\ 1 \mathrm{~mm} & =0.0394 \mathrm{in} . \\ 1 \mathrm{~km} & =0.622 \mathrm{mi} . \\ 1 \mathrm{~m} & =1.09 \mathrm{yd} . \end{aligned}$
Mass	$1 \mathrm{lb} . \quad=0.45359237 \mathrm{~kg}$ 1 ton (2000 lb.) $=0.90718474 \mathrm{Mg}$	$\begin{aligned} 1 \mathrm{~kg} & =2.205 \mathrm{lb} . \\ 1 \mathrm{Mg} & =1.10 \mathrm{ton}=2205 \mathrm{lb} . \end{aligned}$
Mass per Unit Area	$1 \mathrm{lb} . / \mathrm{ft} .^{2}=4.88243 \mathrm{~kg} / \mathrm{m}^{2}$	$1 \mathrm{~kg} / \mathrm{m}^{2}=0.205 \mathrm{lb} . / \mathrm{ft} .^{2}$
Mass per Unit Length	$1 \mathrm{lb} . / \mathrm{ft} .=1.48816 \mathrm{~kg} / \mathrm{m}$	$1 \mathrm{~kg} / \mathrm{m}=0.672 \mathrm{lb} . / \mathrm{ft}$.
Moment of Inertia a) Second Moment of Area b) Section Modulus	$\begin{aligned} & 1{\mathrm{in} . .^{4}}=416231.4 \mathrm{~mm}^{4} \\ & 1 \mathrm{in} .^{3}=16387.064 \mathrm{~mm}^{3} \end{aligned}$	$\begin{aligned} 1 \mathrm{~mm}^{4} & =2.4 \times 10^{-6} \mathrm{in}^{4} \\ 1 \mathrm{~mm}^{3} & =0.061 \times 10^{-3} \mathrm{in}^{3} \end{aligned}$
Pressure or Stress	$\begin{aligned} 1 \mathrm{ksi} & =6.894757 \mathrm{MPa} \\ 1 \mathrm{psi} & =47.88026 \mathrm{~Pa} \\ 1 \mathrm{psi} & =6.894757 \mathrm{kPa} \end{aligned}$	$\begin{aligned} 1 \mathrm{MPa} & =0.145 \mathrm{ksi} \\ 1 \mathrm{~Pa} & =0.0209 \mathrm{psi} \\ 1 \mathrm{kPa} & =0.145 \mathrm{psi} \end{aligned}$
Torque or Moment of Force	$1 \mathrm{ft} \cdot \mathrm{kipf}=1.355818 \mathrm{kN} \cdot \mathrm{m}$	$1 \mathrm{kN} \cdot \mathrm{m}=0.738 \mathrm{ft} \cdot \mathrm{kipf}$
Volume	$\begin{aligned} & 1 \mathrm{in}^{3}=16387.064 \mathrm{~mm}^{3} \\ & 1{\mathrm{ft} .^{3}}=28.31685 \mathrm{dm}^{3} \\ & 1 \mathrm{yd} .^{3}=0.764555 \mathrm{~m}^{3} \end{aligned}$	$\begin{aligned} 1 \mathrm{~mm}^{3} & =0.061 \times 10^{.3} \mathrm{in}^{3} \\ 1 \mathrm{dm}^{3} & =0.0353 \mathrm{ft}^{3} \\ 1 \mathrm{~m}^{3} & =1.308 \mathrm{yd}^{3} \end{aligned}$
Costs	$\begin{array}{ll} 1 \$ / \mathrm{ft.} & =3.28 \$ / \mathrm{m} \\ 1 \$ / \mathrm{ft}^{2} & =10.764 \$ / \mathrm{m}^{2} \\ 1 \$ / \mathrm{yd}^{2} & =1.20 \$ / \mathrm{m}^{2} \\ 1 \$ / \mathrm{ft}^{3} & =35.34 \$ / \mathrm{m}^{3} \\ 1 \$ / \mathrm{yd} .^{3} & =1.307 \$ / \mathrm{m}^{3} \end{array}$	$\begin{aligned} & 1 \$ / \mathrm{m}=0.305 \$ / \mathrm{ft} . \\ & 1 \$ / \mathrm{m}^{2}=0.0929 \$ / \mathrm{ft}^{2} \\ & 1 \$ / \mathrm{m}^{2}=0.836 \$ / \mathrm{yd} .^{2} \\ & 1 \$ / \mathrm{m}^{3}=0.0283 \$ / \mathrm{ft}^{3}{ }^{3} \\ & 1 \$ / \mathrm{m}^{3}=0.765 \$ / \mathrm{yd} .^{3} \end{aligned}$

MILLIMETRE EQUIVALENTS DECIMALS AND EACH 64TH OF AN INCH

FRACTIONS	INCHES mm
1/64	. 015625 - . 397
	. $03125-.794$
	. 03937 - - 1
3/64	. $046875-1.191$
	$.0625-1.588$
5/64	. $078125-1.984$
	. 07874 - (2)
3/32	. $09375-2.381$
7/64	. $109375-2.778$
	. 11811 - (3)
1/8	$.125-3.175$
9/64	$.140625-3.572$
5/32	$.15625-3.969$
	$.15748-4$
11/64	. $171875-4.366$
3/16	$.1875-4.763$
	. 19685 - (5)
13/64	. $203125-5.159$
7/32	. $21875-5.556$
15/64	. $234375-5.953$
	$.23622-6$
(14)	$.25-6.350$
17/64	. $265625-6.747$
	$.27559-7$
9/32	. $28125-7.144$
19/64	. $296875-7.541$
5/16	$.3125-7.938$
21/64	$.31496-8$
	. $328125-8.334$
11/32	$.34375-8.731$
	$.35433-9$
23/64	. $359375-9.128$
	. 375 - 9.525
25/64	. $390625-9.922$
	. 3937 - (10)
13/32	$.40625-10.319$
27/64	$.421875-10.716$
	$.43307-11$
7/16	$.4375-11.113$
29/64	$.453125-11.509$
15/32	. $46875-11.906$
	$.47244-12$
31/64	. 484375 - 12.303
(1/2)	$.5-12.700$

MISCELLANEOUS CONVERSION FACTORS

Area

1 acre

1 hectare
1 legal subdivision (40 acres)
1 section (1 mile square, 640 acres)
1 square foot
1 square inch
1 square mile
1 square yard
1 township (36 sections)
Linear Density (Mass per Unit Length)
1 pound per inch
1 pound per foot
1 pound per yard
Area Density (Mass per Unit Area)
1 ounce per square foot
1 pound per square foot
1 pound per square inch
Mass Density (Mass per Unit Volume)
1 pound per cubic foot
1 pound per cubic inch
1 ton (long) per cubic yard
1 ton (short) per cubic yard

Energy

1 British thermal unit (Btu) (International Table)
1 foot pound-force
1 horsepower hour
1 kilowatt hour

Force

1 kilogram-force
1 kip (thousand pounds force)
1 pound-force

Heat

1 Btu "foot per (square foot hour ${ }^{\circ} \mathrm{F}$)
1 Btu per (square foot hour ${ }^{\circ} \mathrm{F}$)
1 square foot hour ${ }^{\circ} \mathrm{F}$ per Btu

* Based on the Btu IT.

Length
1 chain (66 feet)
1 foot
1 inch
1 microinch
1 micron
1 mil (0.001 inch)
1 mile
1 mile (International nautical)
1 mile (UK nautical)
1 mile (US nautical)
1 yard

$$
\begin{aligned}
& =0.4046856 \text { ha } \\
& =1 \mathrm{hm}{ }^{2} \\
& =0.1618742 \mathrm{~km}^{2} \\
& =2.589988 \mathrm{~km}^{2} \\
& =929.0304 \mathrm{~cm}^{2} \\
& =645.16 \mathrm{~mm}^{2} \\
& =2.589988 \mathrm{~km}^{2} \\
& =0.8361274 \mathrm{~m}^{2} \\
& =93.23957 \mathrm{~km}^{2} \\
& =17.858 \mathrm{~kg} / \mathrm{m} \\
& =1.48816 \mathrm{~kg} / \mathrm{m} \\
& =0.496055 \mathrm{~kg} / \mathrm{m} \\
& =305.152 \mathrm{~g} / \mathrm{m}^{2} \\
& =4.88243 \mathrm{~kg} / \mathrm{m}^{2} \\
& =703.0696 \mathrm{~kg} / \mathrm{m}^{2} \\
& =16.01846 \mathrm{~kg} / \mathrm{m}^{3} \\
& =27.67990 \mathrm{Mg} / \mathrm{m}^{3} \\
& =1.328939 \mathrm{Mg} / \mathrm{m}^{3} \\
& =1.186553 \mathrm{Mg} / \mathrm{m}^{3} \\
& =1.055056 \mathrm{~kJ} \\
& =1.355818 \mathrm{~J} \\
& =2.68452 \mathrm{MJ} \\
& =3.6 \mathrm{MJ} \\
& =9.80665 \mathrm{~N} \\
& =4.448222 \mathrm{kN} \\
& =4.448222 \mathrm{~N} \\
& =1.73074 \mathrm{~W} /\left(\mathrm{m}^{3} \cdot \mathrm{~K}\right) \quad \mathrm{k} \text {-value } \\
& =5.67829 \mathrm{~W} /\left(\mathrm{m}^{2} \cdot \mathrm{~K}\right) \quad \mathrm{U} \text {-value } \\
& =0.176109 \mathrm{~m}^{2} \cdot \mathrm{k} / \mathrm{W} \quad \text { R-value }
\end{aligned}
$$

$$
\begin{aligned}
& =20.1168 \mathrm{~m} \\
& =0.3048 \mathrm{~m} \\
& =25.4 \mathrm{~mm} \\
& =25.4 \mathrm{~nm} \\
& =1 \mu \mathrm{~m} \\
& =25.4 \mu \mathrm{~m} \\
& =1.609344 \mathrm{~km} \\
& =1.852 \mathrm{~km} \\
& =1.853184 \mathrm{~km} \\
& =1.852 \mathrm{~km} \\
& =0.9144 \mathrm{~m}
\end{aligned}
$$

MISCELLANEOUS CONVERSION FACTORS

Mass	
1 hundredweight (100 lb)	$=45,359237 \mathrm{~kg}$
1 hundredweight (long) ($112 \mathrm{lb}, \mathrm{UK}$)	$=50.802345 \mathrm{~kg}$
1 pennyweight	$=1.555174 \mathrm{~g}$
1 pound (avoirdupois)	$=0.45359237 \mathrm{~kg}$
1 ton (long, 2240 lb, UK)	$=1.0160469088 \mathrm{Mg}$
1 ton (short, 2000 lb)	$=0.90718474 \mathrm{Mg}$
Mass Concentration	
1 pound per cubic foot	$=16.01846 \mathrm{~kg} / \mathrm{m}^{3}$
Second Moment of Area (Moment of Inertia)	
1 inch 4	$=0.4162314 \times 10^{8} \mathrm{~mm}^{4}$
Section Modulus	
1 inch 3	$=16.387064 \times 10^{3} \mathrm{~mm}^{3}$
Momentum	
1 pound foot per second	$=0.138255 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$
Power. See also Energy,	
1 Btut (IT)* per hour	$=0.293072 \mathrm{~W}$
1 foot pound-force per hour	$=0.3766161 \mathrm{~mW}$
1 foot pound-force per minute	$=22.59697 \mathrm{~mW}$
1 foot pound-force per second	$=1.355818 \mathrm{~W}$
1 horsepower ($550 \mathrm{ft} \cdot \mathrm{lbt} / \mathrm{s}$)	$=745.6999 \mathrm{~W}$
- International Tables.	
Pressure or Stress (Force per Area)	
1 atmosphere, standard	$=101.325 \mathrm{kPa}$
1 inch of mercury (conventional, $32^{\circ} \mathrm{F}$)	$=3.38639 \mathrm{kPa}$
1 inch of water (conventional)	$=249.089 \mathrm{~Pa}$
$1 \mathrm{ksi}\left(1000 \mathrm{lbf} / \mathrm{in}^{2}\right)$	$=6.894757 \mathrm{MPa}$
1 mm mercury (conventional, $0^{\circ} \mathrm{C}$)	$=133.322 \mathrm{~Pa}$
1 pound-force per square foot	$=47.88026 \mathrm{~Pa}$
1 pound-force per square inch (psi)	$=6.894757 \mathrm{kPa}$
1 ton-force per square inch	$=13.789514 \mathrm{MPa}$
1 ton-force (UK) per square inch	$=15.4443 \mathrm{MPa}$
Temperature	
Scales	
Celsius * temperature	= temperature in kelvins - 273.15
Fahrenheit temperature	$=1.8$ (Celsius temperature) +32
Fahrenheit temperature	$=1.8$ (temperature in kelvins) -459.67
Rankine temperature	$=1.8$ (temperature in kelvins)
Intervals	
1 degree Celsius*	$=1 \mathrm{~K}$
1 degree Fahrenheit	$=5 / 9 \mathrm{~K}$
1 degree Rankine	$=5 / 9 \mathrm{~K}$

*"Celsius" replaced "Centigrade" in 1948 to eliminate confusion with the word centigrade, associated with centesimal angular measure.

MISCELLANEOUS CONVERSION FACTORS

Time

1 day (mean solar)	$=86.4 \mathrm{ks}$
1 hour (mean solar)	$=3.6 \mathrm{ks}$
1 minute (mean solar)	$=60 \mathrm{~s}$
1 month (mean calendar, 365/12 days)	$=2.628 \mathrm{Ms}$
1 year (calendar, 365 days)	$=31.536 \mathrm{Ms}$

Torque (Moment of Force)
1 pound-force foot
$=1.355818 \mathrm{~N} \cdot \mathrm{~m}$
1 pound-force inch
$=0.112985 \mathrm{~N} \cdot \mathrm{~m}$
Volume
1 acre foot.
$=1233.482 \mathrm{~m}^{3}$
1 barrel (oil, 42 US gallons)
1 board foot*
1 cubic foot
1 cubic inch
1 cubic yard
1 gallon
1 gallon (UK) §
$=0.1589873 \mathrm{~m}^{3}$

1 gallon (US)

- The board foot is nominally
$1 \times 12 \times 12=144$ in 3.
However, the actual volume of wood is about
$2 / 3$ of the nominal quantity.
§ Also referred to as the "imperial gallon."

Volume Rate of Flow

1 cubic foot per minute
1 cubic foot per second
1 cubic yard per minute
1 gallon per minute
1 gallon (UK) per minute
1 gallon (US) per minute
1 million gallons per day

$$
\begin{aligned}
& =0.4719474 \mathrm{dm}^{3} / \mathrm{s} \\
& =28.31685 \mathrm{dm}^{3} / \mathrm{s} \\
& =12.74258 \mathrm{dm}^{3} / \mathrm{s} \\
& =75.76817 \mathrm{~cm}^{3} / \mathrm{s} \\
& =75.7682 \mathrm{~cm}^{3} / \mathrm{s} \\
& =63.0902 \mathrm{~cm}^{3} / \mathrm{s} \\
& =52.6168 \mathrm{dm}^{3} / \mathrm{s}
\end{aligned}
$$

Notes:

1. The conversion factors give the relationship between SI units and other Canadian legal units as well as commonly encountered units of measure of United Kingdom and USA origin. The yard and the pound are the same throughout the world; by definition they are specified fractions of the metre and the kilogram. The gallons of Canada and Australia, which are identical, differ by a relatively insignificant amount from the gallon of the United Kingdom, whereas that of the USA is a much smaller measure.
2. The conversion factors given in tables apply to Canadian units unless stated otherwise.
3. Conversion factors that are exact are shown in boldface type, Other factors are given to more than sufficient accuracy for most general and scientific work.
4. Conversions are those listed in CAN3-Z234.1-79

PART EIGHT
 GENERAL INDEX

Amplification factors
U. 4-107
U_{1} 1-66
U_{2} 1-47
Anchor rods 1-122, 2-108, 4-158
ASTM F1554 4-158, 4-159
hole sizes 4-158
washers 4-158
Angles, double
beam connections 3-62
properties and dimensions 6-124
struts, factored compressive resistance 4-128
struts, information. 4-115
Angles, single
availability 6-23
beam connections 3-72
design 1-57
designations 6-24, 6-30
gauge distances 6-173
permissible variations in sectional dimensions. 6-19
properties and dimensions 6-68
shape size groupings 6-8
struts, factored compressive resistance 4-116
struts, information. 4-115
Architecturally exposed structural steel (AESS). 7-52
Arcs of circles, length for unit radius 7-97
Areas
cross-section of rolled shapes (see tables for specific shapes in Part Six) effective net area 3-108
effective net area, reduced for shear lag 3-108, 3-112
gross and net 1-52
hole diameters, specified and for net area 3-113
pull-out pyramid 5-80
surface of structural shapes (see tables for specific shapes in Part Six)
ASTM
A1085 2-8, 4-6, 4-16, 6-13, 6-2I, 6-96
F3125 3-5, 6-171
steel grades availability 6-13
chemical composition 6-14
mechanical properties 6-13
Availability
steel grades for building construction 6-13
structural sections 4-13, 5-3, 6-23, 6-24
W-shapes, yellow highlights 4-13, 5-3, 6-23
Bars
designations vii
general information 6-152
Base plates, columns 1-122, 4-153
Beams
beam-columns (see Beam-columns)
bearing plates 5-71
bending, laterally supported and laterally unsupported. 1-61
camber 1-42, 6-16
class of sections in bending $1-51,5-5$
composite (see Composite beams)connections (see Connections)continuous.5-143
copes 1-78, 3-63, 5-11
deflections. 1-42, 5-126
diagrams and formulas. 5-130
factored resistance 5-9
general information 5-3
load tables 5-10
W-shapes, ASTM A992, A572 Grade 50 5-30
selection tables 5-9
W-shapes, ASTM A992, A572 Grade 50 5-14
S-shapes, ASTM A992, A572 Grade 50 5-26
C-shapes, G40.21-350W 5-28
shear 1-59, 5-11
stiffeners (see Stiffeners)
web crippling and yielding 1-74, 5-12
web openings 1-74, 5-51
Beam-columns 1-62
amplification factors $(\mathrm{U}),\left(\mathrm{U}_{1}\right)$. 4-107
bending coefficient $\left(\omega_{1}\right)$. 4-106
biaxial bending 1-65, 4-111
class of sections 4-103
factored moment resistance of columns 4-101
Bearing 1-67
factored resistances accurately cut or fitted parts 1-67
bolted connections 1-68, 3-7, 3-9
expansion rollers or rockers 1-67
joints in compression members 1-114, 1-157, 1-162
open-web steel joists 1-85
piles (see HP-shapes)
plates, beams 5-71
stiffeners 1-75
Bending coefficient (ω_{1}) 1-66, 4-106
Biaxial bending 1-65
Block shear. $1-68,2-53,3-61,3-63,3-65,3-92$
coefficients 3-65
values of U_{1} 2-53
Bolts (see also Connections) 6-162
ASTM A307 1-120, 6-170
ASTM A325 and A490 1-117, 6-165, 6-168
ASTM A325M and A490M $1-117,6-176,6-178,6-180$
clearances, installation 6-174
data 3-5
direct tension indicators 3-16, 3-113
erection clearances 6-182
grips 6-167
holes. 1-118, 3-113
inspection 1-121, 2-107
installation 1-120, 2-105
markings 6-164
metric fastener data 6-175
pretensioned 1-117, 2-104
resistances
factored bearing (for connected material) 1-67, 3-9
factored shear 1-68, 3-8
factored tension 1-69, 3-8
slip 1-69, 3-16
shear and tension (combined), bearing-type connections 1-69, 3-14
shear and tension (combined), slip-critical connections 1-70, 3-18
slots 1-118, 6-180
snug-tightened 1-116, 2-104
tension and prying action 1-69, 2-54, 3-20
tension-control 2-105, 3-16, 3-113, 6-164, 6-171
twist-off 2-105, 3-16, 3-113, 6-164, 6-171
Bracing assemblies 4-160
Bracing formulae 7-96
Bracing requirements 1-47, 1-64, 4-160
Building information modelling, BIM 7-58
Building materials, mass and forces 7-68
Built-up members 1-107, 2-95, 6-123, 6-136
C-shapes (see Channels)
Camber 1-42, 6-16
Changes, steel products 6-191
Channels
cold-formed channels 6-140
properties and dimensions 6-142
designations 6-24, 6-29
double channels, properties and dimensions 6-132
miscellaneous (MC), properties and dimensions 6-64
permissible variations in sectional dimensions 6-18
shape size grouping 6-8
standard (C), properties and dimensions 6-62
W-shape and channel, properties and dimensions 6-134
Checklist for design drawings 7-78
Chemical composition (heat analysis), structural steels 6-10, 6-14
Circle, properties 7-91
Circular arcs, length for unit radius 7-97
CISC Commentary on standard CSA S16-14 2-1
Class of sections $1-51,1-164,1-166,2-24,4-5,4-102$
beam-columns. 4-103
bending 5-5
biaxial bending and axial compression, I-sections 2-26
major-axis bending and axial compression 2-25
minor-axis bending and axial compression, I-sections 2-26
Clearances, installation 6-174
Code of Standard Practice for Structural Steel 7-3
Coefficients
bending $\left(\omega_{1}\right)$ 1-66, 4-106
thermal expansion 7-76
Cold-formed sections 6-140
C-sections, properties and dimensions 6-142
Z-sections, properties and dimensions. 6-150
Colour code, steel marking 6-11
Columns
anchor rods 1-122, 2-108, 4-158
axially loaded columns 4-13
base plates 1-122, 4-153
beam-columns (see Beam-columns) biaxial bending 1-65, 4-111
class of sections 4-103
compression and bending (see Beam-columns)
effective lengths 1-50
Euler buckling load per unit area 4-12
resistances, factored axial compressive 1-55, 4-13
single-angle struts, G40.21-350W 4-116
double-angle struts, G40.21-350W 4-128
HSS, ASTM A500 Grade C 4-80
HSS, G40.21-350W, Class C 4-32
HSS, G40.21-350W, Class H 4-56
W-shapes, ASTM A992, A572 Grade 50 4-17
W-shapes, ASTM A913 Grade 65 4-28
resistances, factored moment 4-101
W-shapes, ASTM A992, A572 Grade 50 4-108
W-shapes, ASTM A913 Grade 65 4-110
resistances, unit factored compressive 4-6
resistances, unit factored compressive for Class H HSS 4-11
stability 1-47
stiffeners 1-114, 3-88
width-thickness limits. 1-51, 4-4
Combinations, load 1-44
Composite beams 2-86, 5-74
CSA S16-14 1-91
effective width of concrete slab 1-94, 5-74
deflections 5-76
shear connectors 1-95, 5-75
shear studs 5-77
shrinkage strain 1-93, 1-197
trial selection tables
75 mm deck +65 mm slab, $25 \mathrm{MPa}, 2350 \mathrm{~kg} / \mathrm{m}^{3}$ concrete 5-86
75 mm deck +75 mm slab, $25 \mathrm{MPa}, 2350 \mathrm{~kg} / \mathrm{m}^{3}$ concrete 5-96
75 mm deck +90 mm slab, $25 \mathrm{MPa}, 2350 \mathrm{~kg} / \mathrm{m}^{3}$ concrete 5-106
75 mm deck +85 mm slab, $25 \mathrm{MPa}, 1850 \mathrm{~kg} / \mathrm{m}^{3}$ concrete 5-116
Composite columns 1-100, 2-91
Compression and bending (see Beam-columns)
Compression members (see Columns)
Connections (see Bolts, Welds)
bearing-type 1-68, 3-7
CSA S16-14 1-113
eccentric loads bolted. 3-28
welded 3-46
framed beam shear connections 3-60
double-angle 3-62
end-plate 3-70
seated 3-80
seated, stiffened 3-84
shear tabs 3-76
single-angle 3-72
tee. 3-78
hollow structural section connections 3-98
moment 3-87
pin-connected 1-54
resistances
bolted $3-8,3-9,3-10,3-15,3-17,3-19$
welded 3-41
slip-critical 1-69, 3-16
tension and prying action, bolts 1-69, 3-20
Continuous spans, formulas and flexure diagrams. 5-142, 5-143
Conversion factors, imperial-SI-imperial 7-102
Crane rails 6-157
Crane-supporting structures 1-21
CSA S16-14, Annex C 1-185
Crippling, web 1-74
CSA G40.20 and G40.21 6-5
availability 6-13
chemical composition, steel grades 6-10
mechanical properties, steel grades 6-9
CSSBI (Canadian Sheet Steel Building Institute) standards 7-66
Cutting tolerances 6-17
Dead load of materials 7-69
Deflections $1-42,5-126$
graphs 5-128
recommended maximum values 1-187
table 5-129
Designations vii, 6-24
Digital modelling (see Building information modelling)
Dimensions (see the specific shapes)
Direct tension indicators (see Bolts, direct tension indicators)Distances (diagonal), between staggered fasteners6-172
Double-angle struts 4-115
factored axial compressive resistances 4-128
Double angles beam connections 3-62
properties and dimensions 6-124
Double channels
back-to-back 6-133
toe-to-toe 6-132
Drawings, checklist for design 7-78
Dynamic effects 1-42
Eccentric loads
on bolt groups 3-28
on weld groups 3-46
Effective concrete slab width 1-94, 5-74
Effective lengths of compression members 1-50, 1-191, 1-193
Effective net area 1-53, 3-108
shear lag 1-53, 3-108, 3-111
Ellipse, properties 7-92
End distance 1-118
End-plate connections 3-70
Equal-leg angles (see Angles)
Equivalent uniform bending coefficient 4-106
Erection 1-160, 2-155
clearances (bolts) 6-182
tolerances 1-161
Euler buckling load per unit area 4-12
Expansion, coefficients of thermal 7-76
Fabrication 1-156, 2-154
Factored resistances
bearing
accurately cut or fitted parts 1-67
bolted connections 1-68, 3-7, 3-9
expansion rollers or rockers 1-67
bolts
shear 1-68, 3-8
shear and tension (combined) $1-69,1-70,3-14,3-18$
tension 1-69, 3-8
compression
columns 1-55, 4-13
single-angle struts 4-116
double-angle struts 4-128
unit compressive resistances 4-6
moment
beams 1-61, 1-62, 5-9
columns 4-101
composite beams 1-97, 5-86
girders with thin webs 1-75
shear 1-59, 5-11
girder webs, factored ultimate shear stress 5-66
shear studs 5-77
tension. 1-55, 3-108
welds 1-70, 3-41
Factors
effective length (K) 1-50, 1-191, 1-193
importance (I) $1-28,1-42$
load 1-44
resistance (definition, $\phi, \phi_{\mathrm{b}}, \phi_{\mathrm{w}}, \phi_{\mathrm{sc}}, \phi_{\mathrm{c}}$) $1-28,1-55,1-68,1-70,1-95,1-97$
Fasteners (see Bolts, Welds)
Fatigue 1-125, 1-171, 2-109
Fire conditions 1-44
CSA S16-14, Annex K 1-207
Flexural members (see Beams, Girders)
Floor vibrations 1-43, 1-189
Formulas
beam 5-130
bracing 7-96
properties of geometric sections 7-80
trigonometric 7-95
Fracture, brittle 1-44
CSA S16-14, Annex L 1-219
Framed beam shear connections 3-60
Friction-type connections (see Connections, slip-critical) Gauge distances, usual 6-173
General nomenclature viii
Geometric sections, properties 7-80
Girders
CSA S16-14 1-73
design 2-61, 5-68
factored shear stress in web 5-66
shear and moment (combined) 1-77
stiffeners (see Stiffeners)
web crippling and yielding 1-74, 2-61
web openings 1-74, 2-63, 5-51
Grip, bolts 6-167, 6-177
HP-shapes
designations 6-24, 6-29
permissible variations in sectional dimensions 6-17
properties and dimensions 6-54
High-strength bolts (see Bolts)
Holes 1-118
diameters, specified and for net area 3-113
staggered holes 3-114, 6-172
Hollow structural sections (HSS) 6-94
ASTM, A1085 2-8, 4-6, 4-16, 6-13, 6-21, 6-96
Class C and Class H definitions 6-20
connections 3-98
corner radii 6-21
designations 6-24, 6-31
factored compressive resistances ASTM A500 Grade C 4-80
CSA G40.21-350W, Class C 4-32
CSA G40.21-350W, Class H 4-56
permissible variations in sectional dimensions. 6-20
properties and dimensions 6-97
unit factored compressive resistances
Class C 4-6
Class H 4-11
welding details 3-106
I-shapes (see S-shapes)
Impact energy, notch-tough steels. 6-12
Imperial designations 6-24
Importance factor (I) 1-28, 1-42
Index for:
CISC Code of Standard Practice 7-5
CSA S16-14 1-1
compression members 4-1
connections and tension members 3-1
flexural members 5-1
properties and dimensions 6-1
Industrial structures
seismic design, CSA S16-14, Annex M 1-225
Initial out-of-straightness 4-160, 6-16
Inspection 1-162, 2-156
Interaction equations, beam-columns. 1-65
Joists, open-web steel 1-80
Junior beams (see M-shapes)
Junior channels (see Channels, miscellaneous)
K factors 1-50, 1-191, 1-193
L-shapes (see Angles)
Lateral bracing $1-47,1-64,4-160$
Length of circular arcs for unit radius 7-97
Lengths of members, design 1-49
Limit states 1-28, 1-41
Load combinations 1-45
Load factors 1-45
M-shapes6-24, 6-29
properties and dimensions 6-56
Mass of materials 7-68
Materials, mass and forces 7-68
MC-shapes (see Channels) M/D ratios 7-70
Mechanical, properties summary 6-9, 6-13
Metric conversion (see SI summary; Conversion factors)
Metric designations 6-24
Metric fastener data 6-175
Mill practice, standard. 6-15
Miscellaneous channels (see Channels)
Moment connections 1-113, 3-87
seismic, CSA S16-14, Annex J 1-205
Moment diagrams for beams 5-130, 5-143
Moment resistances, factored beams 1-61, 5-14
columns. 4-101
composite beams 1-97, 5-86
girders with thin webs 1-75
Moving concentrated loads 5-141
Multi-orientation fillet welds, strength reduction factor, M_{w} 3-45
Net area of tension members 1-52, 3-108
hole diameters for 3-113
Nomenclature, general viii
Notch-tough steels, impact energy 6-12
Nuts 6-164, 6-166
dimensions, high-strength bolts 6-165
dimensions, A307 6-170
dimensions, A325M and A490M 6-176
rotation 1-170
Open-web steel joists 1-80, 2-70
Parabola, properties. 7-92
Parallel bracing formulae 7-96
Piles (see HP-shapes)
Pin-connected connections. 1-54
Pipe 6-119
properties and dimensions 6-120
Plastic analysis 1-46
Plate girders
CSA S16-14 1-73
design 2-61, 5-68
factored shear stress in web 5-66
stiffeners 2-65, 5-69
Plate walls 1-110, 2-96
Plates
beam bearing 5-71
column base 4-153
designation vii
general information 6-152
mass 6-154
Properties and dimensions (see the specific shapes)
Properties of geometric sections 7-80
Properties of sections, definitions 7-80
Prying action and tension, bolts 2-54, 3-20
Pull-out area 5-80
P- Δ effects 1-47
$\mathrm{P}-\delta$ effects 1-66
Rectangular hollow structural sections (see Hollow structural sections) Reduction of area for shear lag 3-108
Resistance factors (definition, $\phi, \phi_{\mathrm{b}}, \phi_{\mathrm{w}}, \phi_{\mathrm{sc}}, \phi_{\mathrm{c}}$) $1-28,1-55,1-68,1-70,1$ 1-97
Resistances (see Factored resistances)
Rolled structural shapes 6-34
Roof deck, steel 7-65
Round bars, dimensions and mass 6-150
Round hollow structural sections (see Hollow structural sections)
S-shapes
designations 6-24, 6-29
permissible variations in sectional dimensions 6-18
properties and dimensions 6-58
Seated beam shear connections 3-80
Seated beam shear connections, stiffened 3-84
Section properties, definitions 7-80
Seismic design 1-127, 2-112
CSA S16-14, design requirements 1-127
industrial structures, CSA S16-14 Annex M 1-225
moment connections, CSA S16-14 Annex J 1-205
Selection tables
beams 5-14
composite beams 5-86
Shape size groupings 6-8
Shear 1-59, 5-11
bolts, bearing-type connections 1-68, 3-8
girder webs, factored ultimate shear stress 5-66
shear connectors 1-95, 5-75
shear studs 5-77
single-angle, all-bolted beam connection 3-75
walls (see Plate walls)
Shear and moment (combined) in girders 1-77
Shear and tension (combined) in bolts bearing-type connections 1-69, 3-14
slip-critical connections 1-70, 3-18
Shear connectors for composite beams $1-95$
Shear lag. 1-53, 3-108
design aids 3-115
Sheet steel products, structural 7-65
SI summary 7-98
Single-angle beam connections 3-72
all-bolted, shear connection 3-75
Single-angle struts 4-115
factored axial compressive resistances 4-116
Slenderness ratios 1-50
Slip-resistant connections (see Connections, slip-critical)
Slots, bolt 1-118, 6-180
Sources, principal, of sections. 6-22
Square bars, dimensions and mass 6-150
Square hollow structural sections (see Hollow structural sections) Stability 1-47
Staggered holes in tension members 3-114
Standard beams (see S-shapes)
Standard channels (see Channels)
Standard mill practice 6-15
Standard practice, Code of 7-3
Starred angles, factored axial compressive resistances 4-144
Steel, grade, types, strength levels 6-8
Steel marking colour code 6-11
Steel products - record of changes. 6-191
Steels, historical 6-7
Stiffeners 5-69
bearing 1-75, 2-65
intermediate 1-76, 2-65
moment connection 1-113, 3-87
Structural shapes
availability 6-13, 6-22
general information 6-15
Structural sheet steel products. 7-65
Structural steels 6-5
Structural tees (see Tees)
Struts
factored axial compressive resistances 4-115
single-angle 4-116
double-angle 4-128
Sweep 1-30, 6-16
Symbols, welds 6-188
Tee-type beam connections 3-78
Tees, properties and dimensions 6-80
Temperature, coefficients of thermal expansion 7-76
Tensile strengths (mechanical properties) 6-9, 6-13
Tension and prying action, bolts 3-20
Tension and shear (combined) in bolts (see Shear and tension (combined) in bolts)
Tension-control bolts (see Bolts, tension-control)
Tension members 3-108
hole diameters, specified and for net area 1-52, 3-113
resistance, factored axial 1-55
shear lag 1-53, 3-108, 3-115
staggered holes 3-114
tension and bending (combined) 1-67
Thermal expansion, coefficients 7-76
Thicknesses, comparison of imperial gauges and SI. 6-156
Tolerances
erection 1-161
fabrication 1-I58
Torsion 1-78
Transverse stiffeners 1-76
Truss connections (HSS) 3-103
Twist-off bolts (see Bolts, twist-off)
Two angles (see Angles, double)
Two channels, properties and dimensions 6-132
Unequal-leg angles (see Angles)
U_{t} values for block shear 2-53
Vibrations
floor. 1-189
W-shapes
availability, yellow highlights v, 6-23
beam load tables, ASTM A992, A572 Grade 50 5-30
beam selection tables, ASTM A992, A572 Grade 50 5-14
class of sections, combined axial compression and major-axis bending 4-103
designations 6-24, 6-27
factored axial compressive resistance ASTM A992, A572 Grade 50 4-17
ASTM A913 Grade 65 4-28
permissible variations in sectional dimensions. 6-17
properties and dimensions 6-36
W-shape and channel, properties and dimensions 6-134
WRF shapes 6-24
WWF shapes v, 6-24
manufacturing tolerances 6-16, 6-17
Walls, plate 1-110
Washers 6-169
Web crippling and yielding 1-74, 5-12
Web openings 1-74, 5-51
Weight of materials (see Mass of materials, Dead load of materials)
Welded reduced-flange shapes (see WRF shapes)
Welded wide-flange shapes (see WWF shapes)
Welds (see also Connections)
eccentric loads on weld groups (in-plane) 3-46
eccentric loads on weld groups, shear and moment (out-of-plane) 3-57
electrodes, matching 1-168
factored resistance of welds 1-70, 3-41
factored shear resistance of fillet welds 3-43
general information 2-108, 6-183
hollow structural sections 3-106
multi-orientation fillet welds, strength reduction factor, M_{w} 3-45
unit factored weld resistance 3-42
symbols 6-188
Width (or diameter)-to-thickness limits $1-51,2-24,4-4$
elements in axial compression 1-164, 2-25, 4-5
elements in flexural compression 1-166, 2-25, 4-102
elements in biaxial bending and axial compression, I-sections 2-26
elements in major-axis bending and axial compression 2-25
elements in minor-axis bending and axial compression, I-sections. 2-26
Wire gauges, comparisons with SI sizes 6-155
Yield strengths, mechanical properties 6-9, 6-13
Z-sections, cold-formed 6-150

NOTES

NOTES

[^0]: S136.1-12
 Commentary on North American specification for the design of cold-formed steel structural members

 S304-14
 Design of masonry structures

 S850-12
 Design and assessment of buildings subject to blast loads

 W47.1-09
 Certification of companies for fusion welding of steel

 W48-14
 Filler metals and allied materials for metal arc welding
 W55.3-08 (R2013)
 Certification of companies for resistance welding of steel and aluminum
 W59-13
 Welded steel construction (metal arc welding)
 W178.1-14
 Certification of welding inspection organizations
 W178.2-14
 Certification of welding inspectors
 ASTM International (American Society for Testing and Materials)
 A27/A27M-10
 Standard Specification for Steel Castings, Carbon, for General Application
 A108-07
 Standard Specification for Steel Bar, Carbon and Alloy, Cold-Finished
 A148/A148M-08
 Standard Specification for Steel Castings, High Strength, for Structural Purposes
 A216/A216M-12
 Standard Specification for Steel Castings, Carbon, Suitable for Fusion Welding, for High-Temperature
 Service

 A307-12
 Standard Specification for Carbon Steel Bolts, Studs, and Threaded Rod 60000 PSI Tensile Strength
 A325-10e1
 Standard Specification for Structural Bolts, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength

 A325M-13
 Standard Specification for Structural Bolts, Steel, Heat Treated 830 MPa Minimum Tensile Strength (Metric)

[^1]: *Gas-cut edges shall be smooth and free from notches. The edge distance in this column may be decreased by 3 mm when the hole is at a point where calculated stress under factored loads is not more than 0.3 of the yield stress.

 + At the ends of beam-framing angles, this distance may be 32 mm .

[^2]: * Nut rotation is rotation relative to a bolt regardless of whether the nut or bolt is turned, The tolerance on rotation is 30" aver or under: This Table applies to coarse-thread heavy-hex structural bolts of all sizes and lengths used with heavy-hex semifinished nuts.
 + Bolt length is measured from the underside of the head to the extreme end of point.
 \ddagger Bevelled washers are necessary when A490, A490M, or F2280 bolts are used.

[^3]: ＊Structures shall meet the requirements of this Clause，including the applicable factors R_{d} and R_{o} ．
 ＋NP＝system is not permittedNL＝system is permitted and not limited in height as an SFRS，Numbers in this Table are maximum height limits in m ．The most stringent requirement governs．
 \ddagger Earthquake effects shall be determined with $R_{d} R_{o}=1.0$ when the height exceeds 40 m ．

[^4]: Notes: See Table 3-1 for specified minimum tensile strengths, F_{u}.
 *Maximum bolt diameter for ASTM F1852 and F2280 is $11 / 4 \mathrm{in}$. See Table 3-48.

[^5]: Note: Only single weld orientations are considered $\left(\mathrm{M}_{\mathrm{w}}=1\right)$. For loads on specific weld patterns, see Tables 3-26 to 3-33.

[^6]: When over-matched electrodes are used, the base metal capacity should also be checked (S16-14 Clause 13.13.2.2)

[^7]: When over-matched electrodes are used, the base metal capacity should also be checked (S16-14 Clause 13.13.2.2).

[^8]: * The design hole sizes include allowance for punched holes as given in Table 3-47 and S16-14, Clause 12.3.2.

 Coefficient C_{2} was calculated using $d_{h}=24 \mathrm{~mm}$ for $3 / 4-\mathrm{in}$. bolts, 26 mm for $7 / \mathrm{s}-\mathrm{in}$. bolts and 29 mm for 1 -in. bolts.

[^9]: * Coefficients account for reduction of bolt group resistance due to eccentricities; other possible connection failure modes must also be considered.

[^10]: Note: For slip-critical connections, see CSA S16-14 Table 3.
 'As referenced by CSA S16-14
 ${ }^{2}$ Maximum bolt diameter for F1852 and F2280 in ASTM F3125-15 is $11 / 2$ in. Prior to F3125-15, the limit was $11 / 6$ in.

[^11]: See CSA S16-14 Clause 12.3.3.4

[^12]: ${ }^{5}$ See S16-14 Clause 27,1.7 for seismic applications.

[^13]: ${ }^{5}$ See S16-14 Clause 27.1.7 for seismic applications.

[^14]: ${ }^{5}$ See S16-14 Clause 27.1.7 for seismic applications.

[^15]: ${ }^{5}$ See S16-14 Clause 27,1.7 for seismic applications.
 Sections highlighted in yellow are generally readily available.

[^16]: ${ }^{5}$ See S16-14 Clause 27.1.7 for seismic applications. Sections highlighted in yellow are generally readily available.

[^17]: ${ }^{5}$ See S16-14 Clause 27.1.7 for seismic applications.
 ${ }^{\wedge},{ }^{y}$ See "Bending Resistances" in the previous section.

 Sections highlighted in yellow are generally readily available.
 $\dagger \dagger$ Class 3 in bending about either axis due to flange

[^18]: ${ }^{5}$ See S16-14 Clause 27.1.7 for seismic applications.
 Sections highlighted in yellow are generally readily available.

[^19]: ${ }^{5}$ See S16-14 Clause 27.1 .7 for seismic applications.
 A^{y} See "Bending Resistances" in the previous section.
 Sections highlighted in yellow are generally readily available.
 \ddagger Class 4. See "Bending Resistances".

[^20]: \ddagger Class 4

[^21]: ${ }^{\wedge} M_{r x}$ decreases for C_{r} values above the number in bold. Check the class of section.

[^22]: ${ }^{5}$ See S16-14 Clause 27.1.7 for seismic applications

[^23]: ${ }^{5}$ See S16-14 Clause 27.1.7 for seismic applications
 \ddagger Class 4

[^24]: ${ }^{5}$ See S16-14 Clause 27.1.7 for seismic applications

[^25]: ${ }^{5}$ See S16-14 Clause 27.1.7 for seismic applications

[^26]: ${ }^{5}$ See S16-14 Clause 27.1.7 for seismic applications

[^27]: ${ }^{5}$ See S16-14 Clause 27.1.7 for seismic applications

[^28]: ${ }^{5}$ See S16－14 Clause 27．1．7 for seismic applications
 ${ }^{\wedge} \mathrm{M}_{r}$ decreases for C_{t} values above the number in bold．Check the class of section．

[^29]: ${ }^{5}$ See S16-14 Clause 27.1.7 for seismic applications
 ${ }^{\wedge} \mathrm{M}_{\mathrm{rx}}$ decreases for C_{r} values above the number in bold. Check the class of section.

[^30]: ${ }^{5}$ See S16-14 Clause 27.1.7 for seismic applications

[^31]: ${ }^{5}$ See S16-14 Clause 27.1.7 for seismic applications

[^32]: ${ }^{5}$ See S16-14 Clause 27.1.7 for seismic applications

[^33]: ${ }^{5}$ See S16-14 Clause 27.1.7 for seismic applications

[^34]: ${ }^{5}$ See S16-14 Clause 27.1.7 for seismic applications

[^35]: ${ }^{5}$ See S16-14 Clause 27.1.7 for seismic applications

[^36]: This table applies to major-axis bending. For seismic applications, see CSA S16-14 Clause 27.1.7. $\quad F_{y}=345 \mathrm{MPa}$

[^37]: Note: For unbraced beam segments loaded above the shear centre, see CSA S16-14 Clause 13.6.

[^38]: ${ }^{+}$Imported section

[^39]: *a/H plus $6(2 \mathrm{H} / \mathrm{d})$ exceeds 5.6 .

[^40]: Sections highlighted in yellow are commonly used sizes and are generally readily available.

[^41]: Sections highlighted in yellow are commonly used sizes and are generally readily available.

[^42]: Sections highlighted in yellow are commonly used sizes and are generally readily available.

[^43]: $\mathrm{F}_{\mathrm{y}}=345 \mathrm{MPa}$

[^44]: This table may also be used with a concrete density of $2000 \mathrm{~kg} / \mathrm{m}^{3}$.
 Readily available sizes are shown in yellow.

[^45]: This table may also be used with a concrete density of $2000 \mathrm{~kg} / \mathrm{m}^{3}$.

[^46]:

[^47]: - See lext, Historical Remarks, above.

[^48]: ${ }^{1}$ 410-590 MPa for HSS
 ${ }^{2}$ 450-620 MPa for HSS
 ${ }^{3}$ Available in angles and bars only
 ${ }^{4}$ For thickness $t>100 \mathrm{~mm}$, see CSA G40.21
 ${ }^{5}$ The maximum yield strength is 450 MPa , and the maximum yield-to-tensile strength ratio is 0.85 .
 For structural shapes that are required to be tested from the web location, a maximum yield strength
 of 480 MPa and a maximum yield-to-tensile strength ratio of 0.87 are permitted.
 ${ }^{6} 450-620 \mathrm{MPa}$ for rolled shapes and sheet piling
 ${ }^{7}$ 480-650 MPa for rolled shapes and sheet piling

[^49]: * Not available from Canadian mills

[^50]: - Not available from Canadian mills

[^51]: * Not available from Canadian mills
 + This section had no known producer at time of printing.

[^52]: * Not available from Canadian mills

[^53]: *Not available from Canadian mills

[^54]: - Not available from Canadian mills

[^55]: * Not available from Canadian mills

[^56]: - Imported section

[^57]: - Imported section

[^58]: * Imported section

[^59]: * Weight Class: Standard Weight - STD, Extra Strong - XS, Double Extra Strong - XXS

[^60]: See Rolled Structural Shapes for further information on the properties of angles.

[^61]: - Not available from Canadian mills

[^62]: *From CAN3-G312.2-M76

[^63]: * Does not include transition thread length.
 *- Strength requirements are based on ASTM Specifications A325M and A490M. See page 3-5.
 Bolt dimensions conform to those listed in ANSI B18.2.3.7M-1979 (R2001) "Metric Heavy Hex Structural Bolts", and the nut dimensions conform to those listed in ANSI B18.2.4.6M-1979 (R1998) "Metric Heavy Hex Nuts".

[^64]: * Pennant points away from arrow.

[^65]: ${ }^{1}$ For other types of contracts, it is desirable for the contract documents to be as complete as possible.

[^66]: * To obtain properties oi half circle, quarter circle and circle complement substitute $a=b=A$.

[^67]: *The preferred unit is $1 / \mathrm{K}$, however $1 / \mathrm{c}$. is an acceptable unit for the construction industry

