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ABSTRACT
This monograph describes the Reaction Wheel Pendulum, the newest inverted-pendulum-like
device for control education and research. We discuss the history and background of the reaction
wheel pendulum and other similar experimental devices. We develop mathematical models of
the reaction wheel pendulum in depth, including linear and nonlinear models, and models of the
sensors and actuators that are used for feedback control. We treat various aspects of the control
problem, from linear control of the motor, to stabilization of the pendulum about an equilibrium
configuration using linear control, to the nonlinear control problem of swingup control. We
also discuss hybrid and switching control, which is useful for switching between the swingup
and balance controllers. We also discuss important practical issues such as friction modeling
and friction compensation, quantization of sensor signals, and saturation. This monograph can
be used as a supplement for courses in feedback control at the undergraduate level, courses in
mechatronics, or courses in linear and nonlinear state space control at the graduate level. It can
also be used as a laboratory manual and as a reference for research in nonlinear control.

KEYWORDS
feedback control, inverted pendulum, modeling, dynamics, nonlinear control, stabilization,
friction compensation, quantization, hybrid control.
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1

C H A P T E R 1

Introduction

“I THINK,” shrilled Erjas, “that this is our most intriguing discovery on any of the worlds we have yet visited!”

— PENDULUM by Ray Bradbury and Henry Hasse, Super Science Stories, 1941

1.1 THE REACTION WHEEL PENDULUM
This monograph is concerned with modeling and control of a novel inverted pendulum device,
called the Reaction Wheel Pendulum, shown in Figure 1.1. This device, first introduced in [18],
is perhaps the simplest of the various pendulum systems in terms of its dynamic properties,
consequently, its controllability properties. At the same time, the Reaction Wheel Pendulum
exhibits several properties, such as underactuation and nonlinearity,1 that make it an attractive
and useful system for research and advanced education. As such, the Reaction Wheel Pendulum
is ideally suited for educating university students at virtually every level, from entering freshman
to advanced graduate students.

From a mechanical standpoint, the Reaction Wheel Pendulum is a simple pendulum
with a rotating wheel, or bob, at the end. The wheel is attached to the shaft of a 24-Volt,
permanent magnet DC-motor and the coupling torque between the wheel and pendulum can
be used to control the motion of the system. The Reaction Wheel Pendulum may be thought
of as a simple pendulum in parallel with a torque-controlled inertia (and therefore a double
integrator).

This monograph can be used as a supplemental text and laboratory manual for
either introductory or advanced courses in feedback control. The level of background knowl-
edge assumed is that of a first course in control, together with some rudimentary knowledge
of dynamics of physical systems. Familiarity with Matlab is also useful, as Matlab is used
throughout as a programming environment. In subsequent chapters, we describe the dy-
namic modeling, identification, and control of the Reaction Wheel Pendulum and include
suggested laboratory exercises illustrating important concepts and problems in control. Some

1We will define these terms and discuss them in detail in subsequent chapters.
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FIGURE 1.1: The reaction wheel pendulum.

examples of the problems that can be easily illustrated using the Reaction Wheel Pendulum
are

� Modeling
� Identification
� Simple motor control experiments: velocity and position control
� Nonlinear control of the pendulum
� Stabilization of the inverted pendulum
� Friction compensation
� Limit Cycle Analysis
� Hybrid control—swingup and balance of the pendulum.

1.2 THE PENDULUM PARADIGM
Taking its name from the Latin pendere, meaning to hang,2 the pendulum is one of the most
important examples in dynamics and control and has been studied extensively since the time
of Galileo. In fact, Galileo’s empirical study of the motion of the pendulum raised important
questions in mechanics that were answered only with Newton’s formulation of the laws of
motion and later work of others. Galileo’s careful experiments noted that a pendulum nearly
returns to its released height and eventually comes to rest with lighter ones coming to rest

2Other cognates include suspend (literally, to hang below) and depend (literally, to hang from).
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FIGURE 1.2: The simple pendulum.

faster. He discovered that the period of oscillation of a pendulum is independent of the bob
weight, depending only on the pendulum length, and that the period is nearly independent of
amplitude (for small amplitudes). All of these properties are now easily derived from Newton’s
laws and the equations of motion, discussed below.

In physics courses, therefore, the simple pendulum is often introduced to illustrate basic
concepts like periodic motion and conservation of energy, while more advanced concepts like
chaotic motion are illustrated with the forced pendulum and/or double pendulum.

1.2.1 The Simple Pendulum
To begin, let us consider a simple pendulum as shown in Figure 1.2 and discuss some of its
elementary properties. Here, θ represents the angle that the pendulum makes with the vertical,
� and M are the length and mass, respectively, of the pendulum and g is the acceleration of
gravity (9.8 m/sec2 at the surface of the earth). The equation of motion of the simple pendulum
is3

θ̈ + g
�

sin(θ ) = 0 (1.1)

Notice that the ordinary differential equation (1.1) is nonlinear due to the term sin(θ ). If we
approximate sin(θ ) by θ , which is valid for small values of θ , we obtain the linear system

θ̈ + ω2θ = 0 (1.2)

where we have defined ω2 := g/�. Equation (1.2) is called the simple harmonic oscillator. One
can verify by direct substitution that the above equation has the general solution

θ (t) = A cos(ωt) + B sin(ωt) (1.3)

3Consult any introductory physics text.
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FIGURE 1.3: Phase portrait of the simple harmonic oscillator.

where A and B are constants determined by the initial conditions. In fact, it is an easy exercise to
show that A = θ (0) and B = θ̇ (0)/ω. Moreover, the rate of change (velocity) of the harmonic
oscillator is given by

θ̇ (t) = Bω cos(ωt) − Aω sin(ωt) (1.4)

and a directly calculation shows that

θ2(t) + 1
ω2

θ̇2(t) = r 2 (1.5)

where r 2 = A2 + B2. Equation (1.5) is the equation of an ellipse parameterized by time. This
parameterized curve is called a trajectory of the harmonic oscillator system (see Figure 1.3). The
totality of all such trajectories, one for each pair of initial conditions (A, B), is called the phase
portrait of the system. Note that the period of oscillation of the simple harmonic oscillator
(ω) is independent of the amplitude. It is surprising that, unlike the equation for the simple
harmonic oscillator, which we easily solved, there is no closed form solution of the simple
pendulum equation (1.1) analogous to Equation (1.3). A solution can be expressed in terms of
so-called elliptic integrals but that subject is beyond the scope of this text. The phase portrait
of the simple pendulum can be generated by numerical simulation as shown in Figure 1.4. We
can gain added insight into this phase portrait by considering the scalar function

E = 1
2
θ̇2 + g

�
(1 − cos(θ )) (1.6)
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FIGURE 1.4: Phase portrait of the simple pendulum.

The function E is, in fact, proportional to the total energy, kinetic plus potential, of the simple
pendulum. Computing the derivative of E yields

Ė = θ̇ θ̈ + g
�

sin(θ )θ̇ (1.7)

= θ̇
(
θ̈ + g

�
sin(θ )

)
(1.8)

It follows that Ė = 0 along solutions of the simple pendulum equation. This means that the
function E is constant along solution trajectories, i.e., the level curves of E are trajectories.
In classical mechanics, such a function is called a first integral of the motion. Each trajectory in
Figure 1.4 is, therefore, a level curve of the function E. This is intuitively clear as we know
from elementary physics that, without friction, the energy of the pendulum is constant. We will
have much more to say about the pendulum dynamics in the chapters that follow. Since angles
are typically given modulo 2π we obtain a nice representation by introducing cuts at ±π and
glueing the parts together to form a cylinder. Such a representation, which is called a manifold,
is useful when we do not have to take the number of rotations into account explicitly. Notice
that for the particular implementation where the encoder is connected to wires it may be of
interest to keep track of the number of revolutions so that we are not tearing the wires.

1.2.2 The Pendulum in Systems and Control
The simple pendulum system is interesting in its own right to study problems in dynamics
and control. However, its importance is more than academic as many practical engineering
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Thrust Mg

Heading

FIGURE 1.5: Liftoff of the Apollo 11 lunar mission. The rocket acts like an inverted pendulum balanced
at the end of the thrust vectored motor.

systems can be approximately modeled as pendulum systems. In this section, we discuss several
interesting examples and applications that can be modeled as pendulum systems.

Figure 1.5 shows the liftoff of a Saturn V rocket.4 Active control is required to maintain
proper attitude of the Saturn V rocket during ascent. Figure 1.5 also shows a diagram of a
rocket whose pitch angle � can be controlled during ascent by varying the angle, �, of the
thrust vector. The pitch dynamics of the rocket can be approximated by a controlled simple
pendulum.

In Biomechanics, the pendulum is often used to model bipedal walking. Figure 1.6 shows
the Honda Asimo humanoid robot. In bipedal robots the stance leg in contact with the ground
is often modeled as an inverted pendulum while the Swing Leg behaves as a freely swinging
pendulum, suspended from the hip. In fact, studies of human postural dynamics and locomotion
have found many similarities with pendulum dynamics. Measurements of muscle activity during
walking indicate that the leg muscles are active primarily during the beginning of the swing
phase after which they shut off and allow the leg to swing through like a pendulum. Nature
has thus taught us to exploit the natural tendency of the leg to swing like a pendulum during
walking, which may partially accounts for the energy efficiency of walking.

Likewise, quiet standing requires control of balance. So-called Postural Sway results from
stretch reflexes in the muscles, which are a type of local feedback stabilization of the inverted
pendulum dynamics involved in standing.

4This particular photo is of the Apollo 11 launch carrying astronauts Neil Armstrong, Buzz Aldrin, and Michael
Collins on their historic journey to the moon.
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(Inverted pendulum)
Stance leg Swing leg

(Hanging pendulum

FIGURE 1.6: The Honda Humanoid Asimo. The swing and stance legs can be modeled as coupled
pendula.

The Segway Human Transporter, shown on the left in Figure 1.7, is a recent invention that
has achieved commercial success. The Segway is, in fact, a controlled inverted pendulum. Based
on sensory input from gyros mounted in the base of the Segway, a computer control system
maintains balance as the human rides it. The right side of Figure 1.7 shows an autonomous
segway, designed to maintain balance and to locomote without human intervention. Such

FIGURE 1.7: The segway human transporter (left) and an autonomous self-balancing segway (right).
Photos courtesy of the University of Illinois at Urbana–Champaign.
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systems have been built at a number of research laboratories to investigate research issues in
control, autonomous navigation, group coordination, and other issues.

There are many other examples of control problems in engineering systems where pen-
dulum dynamics provides useful insight, including stabilization of overhead (gantry) cranes, roll
stabilization of ships and trucks, and slosh control of liquids. Thus a study of the pendulum and
pendulum-like systems is an excellent starting point to understand issues in nonlinear dynamics
and control.

1.3 PENDULUM EXPERIMENTAL DEVICES
There have been several devices used to illustrate the dynamics of pendula and to facilitate
control system design and implementation. The oldest of these ideas is the so-called Cart-Pole
system shown in Figure 1.8. In this system, the pivot point of the pendulum is moved linearly
in order to control the pendulum motion.

Later innovations of this idea were the Pendubot and the Rotary or Furuta Pendulum,
shown in Figure 1.9. In both of these latter devices the second (or distal) link is a simple
pendulum whose motion is controlled by the rotational motion (rather than linear motion) of

FIGURE 1.8: Cart-Pole system.

FIGURE 1.9: The pendubot (left) and the furuta pendulum (right).



book Mobk073 May 30, 2007 7:38

INTRODUCTION 9

the first (or proximal) link. The Pendubot is designed so that the axes of rotation of the two
links are parallel while in the Rotary Pendulum, the axes of rotation are perpendicular.

The Reaction Wheel Pendulum is the newest and the simplest of the various pendulum
experiments due to the symmetry of the wheel attached to the end of the pendulum. As we shall
see in the next chapter on Modeling, this symmetry results in fewer coupling nonlinearities in
the dynamic equations of motion and hence a simpler system to analyze, simulate, and control.
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C H A P T E R 2

Modeling

The first step in any control system design problem is to develop a mathematical model of
the system to be controlled. In this section, we develop mathematical models for the Reaction
Wheel Pendulum from first principles and we then perform some experiments to validate these
models and to determine the parameters. A nonlinear model will first be derived using the
Lagrangian approach. This model will later be linearized and the linear model used to design
control strategies. In later sections, we will return to the nonlinear model and investigate the
application of more advanced nonlinear control strategies for the problem of swingup control.

2.1 ANGLE CONVENTION AND SENSORS
A schematic diagram of the Reaction Wheel Pendulum is shown in Figure 2.1. The angle θ

is the angle of the pendulum measured counterclockwise from the vertical when facing the
system and θr is the wheel angle measured likewise. We have chosen the angles as in Figure 2.1
because it is natural to use gravity to line up the pendulum hanging down.

The Reaction Wheel Pendulum is provided with two optical encoders. These encoders
are Relative as opposed to Absolute encoders and thus measure only the relative angle between

Pendulum

Rotating disk

FIGURE 2.1: Schematic diagram of the Reaction Wheel Pendulum.
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their (fixed) stator and (movable) rotor. Their values are initialized to zero at the start of any
experiment. One encoder is attached to the fixed mounting bracket with its rotor shaft attached
to the pendulum link. It thus provides a measure of the relative angle between the pendulum
and the fixed base. The other encoder is attached to the motor fixed at the end of the pendulum.
Its rotor shaft is attached to the rotating wheel and thus provides the relative angle between the
pendulum and wheel. If we denote the encoder angles as ϕ and ϕr , respectively, then we see that

θ = ϕ (2.1)

θr = ϕ + ϕr (2.2)

Later we will discuss various issues, such as noise and quantization associated with the digital
measurement of these angles and also the problem of estimating the angular velocities from
the encoder values.

2.2 EQUATIONS OF MOTION
A convenient way to derive the equations of motion for mechatronic systems like the Reaction
Wheel Pendulum is the so-called Lagrangian method. The Lagrangian method allows one to
deal with scalar energy functions rather than vector forces and accelerations as in the Newtonian
method and is, in many case, simpler.

The Reaction Wheel Pendulum has two degrees of freedom and we take as generalized
coordinates the angles θ of the pendulum and θr of the rotor as shown in Figure 2.1. We
introduce the following variables

m p = mass of the pendulum
mr = mass of the rotor
m = m p + mr = combined mass of rotor and pendulum
J p = moment of inertia of the pendulum about its center of mass
Jr = moment of inertia of the rotor about its center of mass
�p = distance from pivot to the center of mass of the pendulum
�r = distance from pivot to the center of mass of the rotor
� = distance from pivot to the center of mass of pendulum and rotor

and, for later convenience, we define the following quantities

m = m p + mr

m� = m p�p + mr �r

J = J p + m p�
2
p + mr �

2
r

(2.3)
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Lagrange’s Equations

The Lagrangian method begins by defining a set of generalized coordinates,
q1, . . . , qn, to represent an n-degree-of-freedom system. These generalized co-
ordinates are typically position coordinates (distances or angles).
In terms of these generalized coordinates, one then must compute the kinetic energy,
T, and the potential energy, V . In general, the kinetic energy is a positive definite
function of the generalized coordinates and their derivatives, while the potential
energy is typically a function of only the generalized coordinates (and not their
derivatives).
In a multi-body system, the kinetic and potential energies can be computed for
each body independently and then added together to form the energies of the
complete system. This is an important advantage of the Lagrangian method and
works because energy is a scalar valued, as opposed to vector valued, function.
Once the kinetic and potential energies are determined, the Lagrangian,
L(q1, . . . , qn, q̇1, . . . , q̇n), is then defined as the difference between the kinetic
and potential energies. The Lagrangian is, therefore, a function of the generalized
coordinates and their derivatives.
The equations of motion are then expressed in terms of the Lagrangian in the
following form,

d
dt

(
∂L
∂ q̇k

)
− ∂L

∂qk
= τk, k = 1, . . . , n

The variable τk represents the generalized force (force or torque) in the qk direction.
These equations are called Lagrange’s equations. For the class of systems considered
here, Lagrange’s equations are equivalent to the equations derived via Newton’s
second law.

The kinetic energy, T, of the system is the sum of the pendulum kinetic energy and the
rotor kinetic energy and can be written in terms of the above quantities as

T = 1
2

J θ̇2 + 1
2

Jr θ̇
2
r (2.4)

We assume that the potential energy, V , of the system is due only to gravity. Elasticity of the
motor shaft or pendulum link would result in additional potential energy terms but we will
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assume that these effects are negligible. Thus the potential energy is

V = mg�(1 − cos θ ) (2.5)

where we have chosen to define the potential energy as being zero when the pendulum is
hanging in the downward equilibrium. It is interesting to note that the potential energy does
not depend on the rotor position since the mass of the rotor is distributed symmetrically about
its axis of rotation.

The Lagrangian function, L, is then given by

L = T − V = 1
2

J θ̇2 + 1
2

Jr θ̇
2
r + mg�(cos θ − 1) (2.6)

Taking the required partial derivative of the Lagrangian we find

∂L
∂θ̇

= J θ̇ ,
∂L
∂θ

= −mg� sin θ

∂L
∂θ̇r

= Jr θ̇r ,
∂L
∂θr

= 0

In our case the torque produced by the motor results in a torque τ acting on the rotor and
−τ acting on the pendulum. These are the two generalized forces in the θr and θ directions,
respectively. Neglecting friction forces and the electrical dynamics of the DC-motor, the torque
is given by

τ = k I (2.7)

where k is the torque constant of the motor and I is the motor current. Lagrange’s equations
are therefore

J θ̈ + mg� sin θ = −k I

Jr θ̈r = k I
(2.8)

The system given by Eq. (2.8) is characterized by four parameters: J , Jr , mg�, and k.
However, dividing through by the moments of inertia, J and Jr , respectively, gives

θ̈ + mg�

J
sin θ = − k

J
I

θ̈r = k
Jr

I
(2.9)

Thus the equations of motion are actually characterized by three parameters mg�/J =: ω2
p ,

k/J , and k/Jr . Notice that the parameter ωp is the frequency of small oscillations of the system
around the hanging position.
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2.3 MODEL VALIDATION
Physical system modeling always involves trade-offs between accuracy and simplicity. That is,
we would like the simplest model that still captures all of the important dynamic effects in
the system. To derive the above model of the Reaction Wheel Pendulum we made several
simplifying assumptions, for example, that elasticity in the pendulum link and motor shaft was
negligible and that friction could be ignored.

Our first experiments are designed to investigate the validity of these modeling assump-
tions and to determine the parameters appearing in the equations of motion. We will first
investigate the system when there is no control torque. It then follows from Eq. (2.9) that

θ̈ + mg�

J
sin θ = 0

θ̈r = 0
(2.10)

Notice that the first equation is the equation for a pendulum with mass m, moment of inertia
J , and center of mass at a distance � from the pivot. Thus, if the pendulum is initialized at
an angle θ0 it will oscillate with constant amplitude. For small amplitudes the frequency of
oscillation is ωp = √

mg�/J . The second equation is simply a double integrator. If the angle
θr and its derivative are zero the angle will remain zero for all times. One way to explore these
equations is to investigate the motion when the pendulum is initialized at a given angle θ0 with
zero velocity and to investigate if θ will be periodic and θr will remain zero.

Experiment 1 (Simple Experiment with Free Swinging Pendulum). Initialize
the pendulum at an angle of about 20◦ let it swing and measure the pendulum and
the rotor angles. Determine the frequency of the oscillation.

Figure 2.2 shows the measured pendulum angle θ and rotor angle θr for one such
experiment. The behavior of the pendulum angle appears to be in reasonable agreement with
the model. The rotor angle, however, is nearly identical to the pendulum angle, which is not
predicted by the model. The reason for this is that there is friction between the pendulum and
rotor. In effect, the rotor “sticks” to the pendulum and oscillates along with the pendulum.

To get more insight into what happens, we introduce the friction torques explicitly in
the equations of motion. Equation (2.8) then becomes

J θ̈ + mg� sin θ = −k I − Tp + Tr

Jr θ̈r = k I − Tr

(2.11)
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FIGURE 2.2: Free motion of the pendulum (top) and wheel (bottom) when no control is applied.

where Tp is the friction torque on the pendulum axis and Tr is the friction torque on the rotor
axis. The torque Tp depends on the θ and θ̇ and the torque Tr depends on θr − θ and θ̇r − θ̇ .
The curves in Figure 2.2 indicate that the friction on the rotor axis is so large that the rotor
is practically stuck to the pendulum. This implies that θr = θ . Adding the equations above we
find

( J + Jr )θ̈ + mg� sin θ = −Tp

Notice that the friction torque on the rotor axis vanishes. This is very natural since there is no
motion of the rotor relative to the pendulum. Also notice that, when the rotor and pendulum
are stuck together and oscillate as a single mass, the frequency of small oscillations is

ω′
p =

√
mg�

J + Jr

instead of ωp .
More insight into the friction torque can be obtained by plotting the energy of the

pendulum as a function of time. Expressions for the kinetic energy Eq. (2.4) and potential
energy Eq. (2.5) were already obtained when deriving the equations of motion. If the rotor is
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FIGURE 2.3: Total energy versus time for the data in Figure 2.2.

fixed to the pendulum the energy becomes

E = 1
2

( J + Jr )θ̇2 + mg�(1 − cos θ )

Figure 2.3 shows the total energy as a function of time for the data in Figure 2.2. The energy
decay due to friction Tp at the pendulum axis is quite small. Figure 2.3 indicates a time constant
of nearly 1 min. For this reason we will ignore the pendulum friction in the subsequent modeling
but we will model the rotor friction since it has a significant influence on the system. Before
doing this we will go ahead and make estimates of the parameters of the model.

2.4 THE MOTOR DYNAMICS
The dynamics of the permanent-magnet DC motor can be written as

L
d I
dt

+ RI = V − kω (2.12)

where L and R are the armature inductance and resistance, respectively, k is the motor back
EMF constant (which is identical to the torque constant in mks-units) and V is the applied
voltage. The electrical time constant of the motor is L/R = 0.0005.
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With a current-controlled DC motor the applied voltage is changed to compensate for
the back EMF. It follows from the above equation that the compensation required increases
with the velocity. There are, however, physical limits to what can be achieved. If the maximum
voltage of the drive amplifier is Vmax it follows from the above equation that the current feedback
will cease to function if the rotor velocity is sufficiently large. Neglecting dynamics in Eq. (2.12)
we find that to obtain a positive current we must require that ω ≤ Vmax/k and similarly that
a negative current can be generated only if ω ≥ −Vmax/k. The drive amplifier with current
feedback will thus only function as intended if

−Vmax

k
≤ ω ≤ Vmax

k
(2.13)

No torque is generated if this inequality is not satisfied.
The current I , which we have taken as the control input, is thus filtered by the motor

with a time constant of 0.0005 s. There may be additional dynamics due to the current feedback
loop.

2.5 THE DRIVE AMPLIFIER
The motor current is generated by a pulse width modulation system. The basic cycle is 20 kHz.
Each cycle is divided into 500 segments and the control signal sets the duty cycle. The pulse
width modulator is controlled from the computer. Because of the current feedback, the current
is proportional to the control command, u, from the computer. The control variable used in
the computer is scaled so that 10 units correspond to maximum current. Therefore we can
write

k I = kuu ; |u| ≤ 10 (2.14)

where the proportionality constant ku satisfies

ku = k Imax

10
= 0.00493

An independent calibration of the torque constant ku can be made using a mechanical
torque meter and plotting the torque as a function of the current.

Experiment 2 (Determination of Static Torque Characteristics). For this ex-
periment you need a torque meter. Connect this to the rotor axis. Use the computer
to apply a current to the rotor amplifier. Measure the torque for different values of
the control signal and plot the results.
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FIGURE 2.4: Measured values of torque as a function of the control signal u. Maximum torque
corresponds to u = 10.

The results of such an experiment are shown in Figure 2.4. Notice that the curve has a
dead-zone at the origin because of friction. Fitting straight lines to the linear portions of the
curve we get ku = 0.00494 which agrees well with the value computed above.

2.6 DETERMINATION OF PARAMETERS
Having found that the model is reasonable even if it is not perfect we will now determine
the parameters. The parameters can be determined from physical construction data and
by direct experiments on the system. It is useful to combine both methods to make cross
checks.

Since the friction torque on the pendulum axis is small we will neglect it. The brushes in
the motor are the main contributors to the friction torque on the motor axis. To start with it
will be assumed that it can be modeled as Coulomb friction, i.e., a constant torque that is in the
opposite direction of the motion. From the curve in Figure 2.4 we find that approximately one
unit of control is required to make the system to move. This means that the Coulomb friction
torque is approximately 0.005 Nm. It follows from the data sheet for the motor that this is
twice the friction torque of the motor without load.
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Having obtained an estimate of the friction torque on the rotor axis we will now proceed
to determine the parameters of the system. It is convenient to use the normalized representation
given by Eq. (2.9) which is close to physics and has few parameters. The input will, however,
be chosen as the variable u in the computer that represents the control signal. The model then
becomes.

d 2θ

dt2
+ a sin θ = −b p(u − F)

d 2θr

d t2
= br (u − F)

(2.15)

where F represents the friction torque on the motor axis, a := mgl
J

, b p := ku

J
= k Imax

10J
,

br := ku

Jr
.

Note that the friction torque depends on the motion of the rotor relative to the pendulum.
It is convenient, however, to express it as in Eq. (2.15) because the friction torque is then
expressed in the same units as the control signal. If we want to convert it to Nm we simply
multiply by the value by ku . The value of F is approximately 1. Later we will show that F
depends on the angular velocity.

By measuring the dimensions of the components, weighing them and computing mo-
ments of inertia using simplified formulas we find.

m p = 0.2164 kg J p = 2.233 10−4 kg m2 �p = 0.1173 m

mr = 0.0850 kg Jr = 2.495 10−5 kg m2 �r = 0.1270 m

From these values we obtain

m = 0.3014 kg

� = 0.1200 m

J = 4.572 10−3 kg m2

ωp =
√

mg�

J
= 8.856 rad/s

ω′
p =

√
mg�

J + Jr
= 8.832 rad/s
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The data sheet for the motor, Pittman LO-COG 8 × 22, gives the following values

k = 27.4 × 10−3 Nm/A Motor Torque Constant
R = 12.1 Armature Resistance
Imax = 1.8 A Maximum Motor Current
L = 0.00627 Armature Inductance
Tpeak = 38.7 × 10−3 Nm Maximum Motor Torque
Te = 0.5 ms Electrical Time Constant
ωmax = 822 rad/s Maximum Motor Speed
Vmax = 22 V Maximum Motor Voltage

Performing the indicated calculations, we find that the parameters of the model are

a = ω2
p = 78.4

b p = 1.08

br = 198

The controller parameters can be computed with the Matlab program shown at the end of
this chapter. We can obtain a cross check by determining the parameters experimentally. The
parameter a was already obtained in the model validation. The parameters b p and br can be
obtained from the following experiment. Apply a control signal u0 for a short time h . If h is
sufficiently small the sinusoidal term in Eq. (2.15) can be neglected and the equation becomes

θ̈ = −b p(u − F)
θ̈r = br (u − F)

Both angles will then change quadratically during the interval 0 ≤ t ≤ h with rates given by
the parameters b p and br . At time t = h we have

θ̇ (h) ≈ −b p(u0 − F)h
θ̇r (h) ≈ br (u0 − F)h

where F is the control signal required to compensate for friction. The velocities will then
remain constant. It is useful to repeat the experiment for different values of the control signal
to investigate if the system is linear. To make sure that the sinusoidal term is negligible the
pulse width should be chosen so that ωp h is small.

Experiment 3 (Applying a Torque Pulse to the System). Apply a torque pulse to
the system as described above. Measure the pendulum and rotor angles as functions
of time. Use the results to determine the coefficients b p and br .
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Summary
In this chapter, we have found that the Reaction Wheel Pendulum can be described
by the model (2.15)

θ̈ + a sin θ = −b p(u − F)
θ̈r = br (u − F)

The angles are given in radians, the control signal u is the control signal used in the
computer and is constrained to lie in the range ±10. One unit of u corresponds to
a torque of 0.0005 Nm. The variable F represents the friction torque on the rotor
axis. The friction F is in the range of 1 to 2 torque units.
The parameters have the values

a = 78
b p = 1.08
br = 198

There are additional dynamics because of the motor time constant which is of the
order of 0.5 ms. There is also an additional delay in the sensing, which depends on
the sampling period used in the computer. This will be discussed more in the next
chapter.
We note that the system is nonlinear, but approximately linear for small values of
θ . In addition to the nonlinear gravitational force acting on the pendulum there
are additional nonlinearities in the system caused by friction and saturation of the
amplifiers. The effects of friction will be discussed later. The saturation effects are
caused by the limited voltage of the drive amplifier and the back EMF. The net
effect is that no torque will be generated by the rotor if the inequality (2.13) is
violated.
It follows from Eq. (2.12) that the maximum motor velocity is given by

ωmax = Vmax

km
= 22.7

0.00274
= 828 rad/s.

An alternative would be to include the dynamics of the motor current given by
Eq. (2.12) with the current feedback in the model and introduce a limit on the
voltage. This would make the model more complicated. Since we are interested in
controlling the pendulum which has a natural frequency of about 9 rad/s and the
electrical time constant of the motor is of the order of 0.5 ms we have chosen to
use the simple model and treat (2.12) as unmodeled dynamics.
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%MATLAB Program that enters the system parameters

%and computes the model parameters

g=9.91

mp=0.2164

mr=0.0850

lp=0.1173

lr=0.1270

Jp=2.233e-4

Jpe=mp*lp*lp/12

Jr=2.495e-5

%Derived data

J=Jp+mp*lp*lp+mr*lr*lr

m=mp+mr

l=(mp*lp+mr*lr)/m

wp=sqrt(m*g*l/J)

wp1=sqrt(m*g*l/(J+Jr))

%Pittman LO-COG 8X22

km=27.4e-3

Imax=1.8

R=12.1

L=6.27e-3

Vmax=22.7

Te=L/R

wmax=Vmax/km

ke=0.00494 %Nm per unit

kee=Imax*km/10

kt=0.00494

b1=km/J

b2=km/Jr

a=wp2

bp=ke/J

br=ke/Jr
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C H A P T E R 3

Controlling the Reaction Wheel

We will begin our study of control by first controlling only the reaction wheel. To do this
we will reconfigure the system by removing the pendulum and attaching the motor and wheel
directly to the mounting bracket as shown in Figure 3.1.

The equation of motion of the rotor is

d 2θr

d t2
= br (u − F) (3.1)

This model is just a double integrator and therefore easy to control. The model (3.1) is a
standard model used in velocity and position control of many mechatronic systems.

3.1 POSITION SENSING
The control of the wheel is complicated by the fact that we have only a digital measurement of
position available. In other words, the optical encoder on the motor provides a measurement of
the wheel angle at a resolution of 4000 counts/revolution. This means that the smallest change

FIGURE 3.1: Configuration of the system used to make experiments with wheel control.
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FIGURE 3.2: Uncertainty introduced by sampling.

in angle that can be sensed is


θ = 2π

4000
= 0.00157 radians

or about 0.900◦. As the wheel rotates, there will be a ripple in the angle signal corresponding
to this value. This effect is known as the Quantization Error and limits the achievable accuracy
in control. Obviously, we cannot hope to reduce the error in the wheel angle below that which
we can measure, i.e., below the sensor resolution.

An additional source of uncertainty in our knowledge of the wheel position results
from Sampling Error. Since position measurements are recorded only at discrete instants of
time, once during every sampling interval, we have no measurement of what happens between
sample times. Figure 3.2 illustrates the effect of discrete sampling of a continuous quantity. In
this figure, two different signals lead to exactly the same set of digital measurements. Although
we will not discuss it further here, it is well known that one must sample at least as fast as
the so-called Nyquist Frequency in order to reconstruct uniquely a continuous, band-limited
signal. (The Nyquist frequency is twice the maximum frequency present in the signal.) In our
experiments we will sample sufficiently fast, relative to the maximum speed of the motor, that
this phenomenon, known as Aliasing, will not pose a significant problem for us.

3.2 VELOCITY ESTIMATION
Since there is no direct measurement of the wheel velocity, we will have to estimate or compute
the velocity from the position measurements. This will introduce error and uncertainty into
the velocity. In this section, we discuss different ways to estimate the velocity from discrete
measurements of position.

The simplest way to estimate the velocity from position measurements is just to compute
the angle difference over the sample interval by taking the difference between consecutive angle
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measurements.

ωk = θk − θk−1

h
(3.2)

where θk represents the kth encoder sample (in radians) and h is the sampling interval.
The resolution in velocity is thus


ω = 
θ

h
= 0.00157

h

Note that the resolution increases with decreasing sampling period. With h = 0.001, the
velocity resolution is 1.57 rad/s. When the velocity changes there will also be a ripple in the
velocity signal corresponding to 
ω. This ripple will be amplified by the control signal.

3.3 FILTERING THE VELOCITY SIGNALS
The ripple in the velocity signal due to sampling generally has a significant effect on the
performance of the control system. It is therefore of interest to filter the velocity signal to try
to remove this ripple. Assume that we would like a first-order filter with the input/output
relation

Y f (s ) = 1
1 + s T

Y (s )

where Y and Y f represent the measured and filtered signals, respectively. Hence

s TY f (s ) + Y f (s ) = Y (s )

This corresponds to the differential equation

T
d y f

dt
+ y f = y

Approximating the derivative with a difference we get

T
y f (t) − y f (t − h)

h
+ y f (t) = y(t)

Hence

y f (t) = T
T + h

y f (t − h) + h
T + h

y(t)

With this filter the high-frequency error is reduced by the factor h/(T + h). Notice that the
filter will introduce additional dynamics in the loop. The ripple in the filtered velocity signal
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caused by the encoder is


y f = h
T + h


θ

h
= 0.00157

T + h
(3.3)

Assume for example that the sampling period is 0.5 ms and the filtering time constant is
T = 2.5 ms. Then the filtering equation becomes

y f (t) = 5
6

y f (t − h) + 1
6

y(t)

The ripple in the filtered velocity is


y f = 0.00157
0.003

= 0.52

Experiment 4 (Velocity Filter). Set up the motor/wheel system so that you can
apply an open loop control signal to spin the motor at various speeds. Record the
signal from the encoder. From these encoder data, compute the average velocity by
taking the difference in position divided by the sample time. Then implement the
first-order filter described in this section and experiment with various values of the
cutoff frequency. Plot the filtered velocity signals and compare with the velocity
computed by the averaging method.

Figure 3.3 shows the results of one such experiment. Note that the velocity generated from
the first-order filter is smoother because the filter has the effect of “cutting off” or attenuating
the high-frequency component of the measured signal.

3.4 VELOCITY OBSERVER
The velocity estimation methods in the previous section utilized only the encoder and timing
data but did not utilize the system model (3.1). We might conjecture that utilizing knowledge
of the system dynamics could lead to a more accurate velocity estimate. We will explore this
conjecture in this section.

Estimators that incorporate the plant dynamics to estimate the state variables are known
as Observers. To begin we write the model equations (3.1) in state space form as

ẋ1 = x2

ẋ2 = br (u − F)
(3.4)



book Mobk073 May 30, 2007 7:38

CONTROLLING THE REACTION WHEEL 29

10.4 10.5 10.6 10.7 10.8 10.9 11 11.1 11.2 11.3 11.4
384

385

386

387

388

389

14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 15 15.1 15.2
384

385

386

387

388

389
Velocity generated by ∆θ/h

Velocity generated by first-order low pass filter
T = 0.009 s 

FIGURE 3.3: Comparison of average velocity versus velocity generated by a first-order filter.

where x1 = θr and x2 = θ̇r . An observer for this system can be written as

d x̂
dt

=
(

0 1
0 0

)
x +

(
0
br

)
(u − F) +

(
k1

k2

)
(y − x̂1) (3.5)

Introducing the error e = x − x̂ and subtracting Eqs. (3.5) from (3.4) we find that the observer
error is given by

de
dt

=
(

−k1 1
−k2 0

)
e

This equation has the characteristic polynomial

s 2 + k1s + k2

The error will go to zero if the filter gains k1 and k2 are positive. Choosing the filter gains so
that the characteristic polynomial is

s 2 + 2ζωo + ω2
o

we find that the gains are given by

k1 = 2ζωo

k2 = ω2
o
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To implement the observer on the computer we simply approximate the derivatives with
differences and we get the following difference equation

x̂1(t + h) = x̂1(t) + h x̂2(t) + hk1(y(t) − x̂1(t))

x̂2(t + h) = x̂2(t) + hbr (u(t) − F(t)) + hk2(y(t) − x̂1(t))
(3.6)

The observer requires the friction torque F . Since this is unknown, we will try to neglect it by
setting F = 0 in the observer. Noticed that the filtered velocity is obtained by combining the
measured angle and the current fed to the motor. The fact that the current is used provides
phase lead.

It follows from Eq. (3.6) that the ripple in the velocity signal from the observer caused
by the encoder is


x̂2 = k2h
θ (3.7)

This can be compared with the ripple for the velocity estimate obtained from the filtered angle
differences


y f = 
θ

T + h

See Eq. (3.3). The ripple from the filters are the same if

k2 = 1
h(T + h)

with h = 0.001 and T = 0.009 we get k2 = 100000. If k2 is smaller than this value the observer
gives a velocity estimate with less ripple than the filtered angle difference.

Experiment 5 (Comparison of a Simple Velocity Filter with an Observer). Using
the data generated in Experiment 4, compute the estimated velocity using the
discrete-time observer described above. Compare with the results obtained with
the simple velocity filter.

Figure 3.4 shows the outputs of the filtered angle difference and the observer when the
motor is running at constant speed. Notice that there is a difference between the outputs. The
velocity generated by the second-order observer shows a steady state error, i.e., an offset from
the filtered velocity. The reason for this difference is that the friction force was neglected in the
design of the model-based observer. To understand this we will investigate the consequences
of neglecting the friction force.

In the experiment the input signal is constant u = u0. Assume that the model has a
constant friction force F0 but that the friction force is neglected in the observer. The error
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Velocity generated by first-order low pass filter
T = 0.009 s 

Velocity generated by second-order observer
ζ = 0.7, ω=100

FIGURE 3.4: Observer estimate (bottom) and first-order filter (top).

equation then becomes

de
dt

=
(

−k1 1
−k2 0

)
e −

(
0
br

)
F

The steady state error is given by

e =
(

−k1 1
−k2 0

)−1 (
0
br

)
F = 1

k2

(
0 −1
k2 −k1

) (
0
br

)
F = −




br

k2

br k1

k2


 F

The friction force will thus give steady state errors in the estimates. We will see later that the
friction force F at a constant motor speed of 225 rad/s is approximately 3.7 Nm. Evaluating
the numerical value of the velocity estimate in the experiment we find that

e2 = x2 − x̂2 = −br k1

k2
F = 10.36 rad/s

which agrees well with the experiments.
To obtain a good velocity estimate it is thus necessary to consider the friction torques. A

simple approach is to assume that the friction is constant and introduce br F as an extra state
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variable x3. The model (3.4) for the system then becomes.

ẋ1 = x2

ẋ2 = x3 + br u
ẋ3 = 0

(3.8)

An observer for this system is

d x̂
dt

=




0 1 0
0 0 1
0 0 0


 x +




0
br

0


 u +




k1

k2

k3


 (y − x̂1) (3.9)

Subtracting (3.9) from (3.8) gives the following equation for the estimation error e = x − x̂.

de
dt

=




−k1 1 0
−k2 0 1
−k3 0 0


 e

This equation has the characteristic polynomial

s 3 + k1s 2 + k2s + k3

Equating the coefficients of equal powers of s with the standard third-order polynomial

(s + αω0)(s 2 + 2ζω0s + ω2
0)

we find that the filter gains are given by

k1 = (α + 2ζ )ω0 k2 = (1 + 2αζ )ω2
0

k3 = αω3
0

(3.10)

It is natural to associate the mode αω0 with estimation of the friction.
A discrete-time version of the observer is obtained by replacing the derivatives by differ-

ences. This gives

x̂1(t + h) = x̂1(t) + h x̂2(t) + hk1(y(t) − x̂1(t))

x̂2(t + h) = x̂2(t) + h x̂3(t) + hbr u(t) + hk2(y(t) − x̂1(t))

x̂3(t + h) = x̂3(t) + hk3(y(t) − x̂1(t))

(3.11)

Experiment 6 (Augmented Observer). Using the data generated in Experiment 4,
compute the estimated velocity using the third-order augmented observer described
above. Compare with the results obtained with the simple velocity filter and the
experiment with the second-order observer.
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FIGURE 3.5: The third-order observer.

Figure 3.5 shows the results of one such experiment with the third-order observer. Note
that the steady state error in wheel angular velocity has been removed and that the velocity
signal is also much smoother than that generated by either the averaging filter or the first-order
filter.

3.5 VELOCITY CONTROL
We now have signals available that provide estimates of both the wheel position and velocity.
These signals can be used for feedback control. In this section, we will investigate control of
the wheel speed and later control of the wheel position.

We will first make the wheel spin at constant rate. Let the angular velocity of the wheel
be ω = dθr /dt. It follows from Eq. (3.1) that

dω

dt
= br (u − F) (3.12)

The proportional feedback

u = kdr (ωr − ω) (3.13)

gives a closed loop system characterized by

de
dt

+ kdr br e = br F

where e = ωr − ω is the error. With the chosen control law the angular velocity will follow the
reference value ωr , with a steady state error.

e s s = F
kdr

The time constant of the closed loop system is

Tω = 1
kdr br
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The response time of the system will decrease with increasing feedback gain kdr . It is interesting
to see how large the feedback gain can be made or equivalently how fast the closed loop system
can be made.

Experiment 7 (Velocity Control with Proportional Feedback). Program the
velocity control law u = kdr (ωr − ω). Investigate the step response for various
values of the gain kdr and various values of the reference speed, ωr . Notice which
values of the gains and reference values agree with the predicted response. Try to
explain any deviations from the predicted responses.

In the above experiment you should notice that there will be a limit to the speed of
response achievable as you increase the gain. To investigate this further we have to make a more
accurate model taking into account the electrical time constant of the motor, which was found
to be around 0.5 ms, and the effect of the sampling delay. Estimating the velocity by taking
differences of the encoder signal, for example, introduces a delay of half a sampling interval.
Approximating the time delay with a time constant, and lumping all dynamics into one time
constant, we find that the system has an additional time constant

Te = 0.0005 + h
2

with a sampling period of 1 ms we find that the additional time constant is 1 ms.
Taking the additional dynamics into account we find that the closed loop system has the

characteristic polynomial

s (s Te + 1) + kdr br = Te

(
s 2 + s

Te
+ kdr br

Te

)

The relative damping is

ζ = 1
2
√

br kdr Te

Requiring that the relative damping is greater than 0.707 we get the inequality

kdr bu Te < 0.5

Inserting the numerical values we get kdr < 5 for infinitely fast sampling. With a sampling
period of 1 ms we get kdr < 2.5. Notice that the admissible gain decreases with increasing
sampling period. We could try to increase the gain more by using a controller with derivative
action.
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3.6 PI CONTROL
We have found that a friction torque F gives a steady state error in the velocity of F/kdr .
To reduce the effects of friction it is, therefore, desirable to have a high gain of the velocity
controller, but we have also found that the additional dynamics gives limitations to the controller
gain. Integral action can be used to eliminate the steady state error without requiring large gains.
Introducing an integral control term, the control law becomes

u = kdr (ωr − ω) + ki

h

∫ t

0
(ωr − ω(τ ))dτ (3.14)

Inserting this control law into (2.15) gives a closed loop system with the characteristic polyno-

mial

s 2 + br kdr s + br ki

Identifying coefficients of equal powers of s with the characteristic polynomial of the standard
second-order system

s 2 + 2ζω0s + ω2
0

we find that the controller parameters can be expressed as

kdr = 2ζω0

br
(3.15)

ki = ω2
0h

br
(3.16)

Experiment 8 (PI Speed Control). Design and test a PI controller for the above
system. Parameterize the gains kdr and ki as in Eq. (3.16). Start with a fixed value
of ζ , say ζ = 1, which gives critical damping, and experiment with different values
of ω0 to give the desired response speed.

3.7 FRICTION MODELING
Friction is a complicated phenomena. The friction force depends on many factors, for example,
the relative velocity at the friction surface. Having obtained controllers for the wheel velocity the
dependence of friction on velocity can be determined. To do this we use the velocity controller
to run the wheel at constant speed. The control signal required to do this is then equal to the
friction torque.
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FIGURE 3.6: Control signal u as a function of the angular velocity of the wheel. With proper scaling
this is the friction curve of the wheel.

Experiment 9 (Determination of Friction Curve). Connect the system with PI
control of the velocity. Adjust the controller parameters to give a good response.
Determine the average control signal for a given velocity. Repeat the experiment
for different velocities, both positive and negative, and plot the control signal as a
function of the velocity.

Figure 3.6 shows the results of such an experiment. The figure shows that the friction
torque has a Coulomb friction component and a component which is linear in the velocity.
Fitting straight lines to the data in the figure gives the following model for the friction.

F =
{

0.99 + 0.0116ω, if ω > 0

−0.97 + 0.0117ω, if ω < 0
(3.17)

3.8 FRICTION COMPENSATION
Having obtained a reasonable friction model we can now attempt to compensate for the friction.
This is done simply by measuring the velocity and adding a term given by the friction model
(3.17) to the control signal.
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Experiment 10 (Friction Compensation). Use the results of Experiment 9 to
design a control strategy that compensates for friction. Implement this control law
in such a way that it can be switched on and off. Spin the wheel manually with and
without the friction compensator and observe the differences.

3.9 CONTROL OF THE WHEEL ANGLE
We next consider control of the wheel angle. To do this we introduce the controller

u = k pr (θr e f − θr ) − kdr θ̇r (3.18)

Substituting this controller into the linearized equation of motion of the system (3.1) we find
that the closed loop system is described by

θ̈r + kdr br θ̇r + k pr br θr = k pr br θr e f − br F (3.19)

Comparing this with the equation for a mass, spring, damper system

m
d 2x
dt2

+ d
d x
dt

+ kx = kx0

we find that the damping term and the stiffness term can be set directly by the feedback. Using
feedback it is thus possible to obtain behavior equivalent to that obtained by adding springs
and dampers. Feedback is more convenient because it gives great flexibility in modifying the
apparent damping and stiffness parameter values.

The closed loop system has the characteristic polynomial

s 2 + kdr br s + k pr br

Identifying the coefficients of equal powers of s with the standard second-order polynomial

s 2 + 2ζω0s + ω2
0

we find

k pr = ω2
0

br

kdr = 2ζω0

br

Large values of ω0 give high controller gains. Small disturbances and sensor noise will then be
amplified and they will generate large control signals. The model we have used is only valid
in a certain frequency range. For higher frequencies there are other phenomena that must be
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accounted for. It is interesting to investigate experimentally how fast the system can be made.
This is easily done by observing the behavior of the system when ω0 is increased.

Experiment 11 (Control of Wheel Angle). Implement the controller (3.18) in
such a way that the controller is parameterized in ζ and ω0. Determine experimen-
tally how large the value of ω0 can be made. Compare the results with the time
constant of the filtering and other neglected time constants. Also, investigate the
effect of sensor noise.

Summary
In this chapter, we have investigated the control of the wheel without consideration
of the pendulum. We first considered the problem of sensing. We studied three
ways to estimate the wheel velocity using the position data from the optical encoder
attached to the motor

1. by computing the Average Velocity over a sample period

2. by a First-Order Low Pass Filter

3. by a model-based Observer

We found that the Observer did a better job of filtering out noise from the velocity
estimate but resulted in a steady state error in the velocity estimate unless friction
was included in the plant model. We then implemented a Third-Order Observer
which included the friction as an additional state variable and showed how this
eliminated the steady state error in the observer.
We then considered Proportional, Derivative, and Integral Feedback for controlling
the wheel speed and position.
We also experimentally determined the Coulomb and Viscous components of the
friction model.
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C H A P T E R 4

Stabilizing the Inverted Pendulum

In this chapter, we discuss the problem of stabilizing the pendulum in the inverted position.
Linearizing Eq. (2.15) around θ = π gives

θ̈ − aθ = −b p(u − F)

θ̈r = br (u − F)
(4.1)

where θ denotes deviations from the value π . To begin with we will also neglect the friction
torques. To stabilize the pendulum we can use the control law

u = −k ppθ − kd p θ̇ (4.2)

which is a PD controller. Neglecting friction and inserting this control law in the Eq. (4.1) we
find that the closed loop system is given by

θ̈ − b pk pp θ̇ − (b pk pp + a)θ = 0

Requiring that the closed loop system has the characteristic polynomial

A(s ) = s 2 + 2ζω0s + ω2
0

we find that the controller coefficients are given by

k pp = −ω2
0 + a

b

kd p = −2ζω0

b

(4.3)
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Experiment 12 (Simple Stabilization). Try to stabilize the pendulum in the
upright position with the control law (4.2). A reasonable parameter choice is k pp =
145 and kd p = 16.4. Observe the behavior of the system. You may have to support
the pendulum manually to keep it stabilized. Explain what happens. Note: Be sure
that you start the controller each time with the pendulum at rest in the hanging position.
After starting the controller, move the pendulum up to the inverted position manually.
Explain why this is necessary to begin with the pendulum at rest in the downward
position.

To understand what happens in the experiment we will analyze the complete system.
Assume that the pendulum initially has the angle θ0 and that there is a disturbance torque d
acting on the pendulum. The system is then described by the equations

θ̈ − b pkd p θ̇ − (b pk pp + a)θ = d (4.4)

θ̈r + br kd p θ̇ + br k ppθ = 0 (4.5)

where d represents disturbance torque on the pendulum. Assume that the pendulum is initially
at rest at the angle θ0 and that the control signal also is zero initially. Taking Laplace transforms
and solving the equations we find the following expressions for the pendulum and rotor angles.

�(s ) = s − b pkd p

s 2 − b pkd ps − a − b pk pp
θ0 + 1

s 2 − b pkd ps − a − b pk pp
D(s )

�r (s ) = − br (kd ps + ak pp)(s − b pkd p)
s 2(s 2 − b pkd ps − a − b pk pp)

θ0 − br b p(kd ps + k pp)
s 2(s 2 − b pkd ps − a − b pk pp)

D(s )

(4.6)

It follows from these equations that an initial offset in the angle in steady state the pendulum
will result in the rotor having constant speed

θ̇r = b pbr akd pk pp

a + b pk pp
θ0

It also follows that a constant disturbance torque d0 in steady state will give a constant acceler-
ation

θ̈r = br b pk pp

a + b pk pp
d0

A small disturbance torque from the cables will thus easily make the rotor velocity reach the
saturation limit. This means that the PD controller will fail after a short time. To obtain a
practical system it is therefore necessary to introduce feedback from the rotor velocity.
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The Up-Down Transformation
It is difficult to make experiments with the inverted pendulum since the system
is open loop unstable. If you make a slight error in programming or in choice of
gains, the pendulum will fall down and the motion may be quite violent. Here,
we will demonstrate a neat transformation that allows you to determine controllers
to stabilize the inverted position but test them with the pendulum hanging down.
Linearizing Eq. (2.15) around θ = 0 gives

θ̈ + aθ = −b p(u − F)
θ̈r = br (u − F)

(4.7)

The key idea is based on the fact that the only difference in the model of the
system is the sign of the coefficient a of the term θ in the system equation, compare
Eqs. (4.7) and (4.1). We illustrate this with an example.
Assume that we design control laws so that the closed loop system has the charac-
teristic polynomial

s 2 + 2ζω0s + ω2
0

The controller parameters are given by

kdown
pp = −ω2

0 − a
b p

kdown
d p = −2ζω0

b p

when the pendulum is hanging down and

kup
pp = −ω2

0 + a
b

= kdown
pp − 2a

b p

kup
d p = −2ζω0

b
= kdown

d p

when the pendulum is standing upright. In this particular case, the up–down
transformation is simply to increase proportional gain by 2a/b and to keep the
derivative gain.

4.1 CONTROLLABILITY
To avoid that the rotor velocity reaches the saturation limit it would be desirable to attempt
to control both the pendulum angle and the rotor velocity. An even more ambitious scheme
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would be to also control the angle of the rotor. The first question we have to answer is if it
is possible to do this with only one control variable. For that purpose we will investigate the
controllability of the system. Introduce the state variables

x1 = θ, x2 = θ̇ , x3 = θr , x4 = θ̇r

Neglecting the friction force, Eq. (4.7) can then be written as

d x
dt

=




0 1 0 0
a 0 0 0
0 0 0 1
0 0 0 0


 x +




0
−b p

0
br


 u = Ax + Bu (4.8)

The controllability matrix is

Wc =
(

B AB A2 B A3 B
)

=




0 −b p 0 −ab p

−b p 0 −ab p 0
0 br 0 0
br 0 0 0




This matrix is full rank and the system is thus controllable. This means that the dynamics of
the closed loop system can be shaped arbitrarily using only one control variable.

4.2 CONTROL OF THE PENDULUM AND THE WHEEL
VELOCITY

Since the pendulum is influenced by the acceleration of the wheel, it may happen that the wheel
velocity saturates after a while. It is thus desirable to try to achieve the dual goals of stabilizing
the pendulum and to keep the wheel velocity small. To achieve this we will use the control law

u = −k ppθ − kd p θ̇ + kdr (ωr e f − ω) (4.9)

Inserting this control into Eq. (4.1) we find that the closed loop system is described by

θ̈ − b pkd p θ̇ − (a + b pk pp)θ − b pkdr ω = −b pkdr ωr e f + d

br (kd p θ̇ + k ppθ ) + ω̇ + br kdr ω = br kdr ωr e f
(4.10)

The closed loop system has the characteristic polynomial

A(s ) = s 3 + (−b pkd p + br kdr )s 2 − (a + b pk pp)s + abr kdr

The characteristic polynomial for a standard third-order system is

(s + αω0)(s 2 + 2ζω0s + ω2
0) = s 3 + (α + 2ζ )ω0s 2 + (1 + 2αζ )ω2

0s + αω3
0
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Identifying coefficients of equal powers of s in these polynomials we find that the controller
parameters are given by

k pp = − (1 + 2αζ )ω2
0 + a

b p

kd p = − (α + 2ζ )ω0a + αω3
0

ab p

kdr = −αω3
0

abr

(4.11)

The controller parameters can be computed using the following Matlab program.

function [kpp,kdp,kdr]=pddcontrol(w0,zeta,alpha,a,bp,br)

%Computation of feedback gains for stabilization of pendulum

%and control rotor speed

kpp=-((1+2*alpha*zeta)*w0^2+a)/bp;

kdp=-((alpha+2*zeta)*w0*a+alpha*w0^3)/a/bp;

kdr=-alpha*w0^3/a/br

It remains to select suitable closed loop poles. Choosing ω0 = 1.5ωp , ζ = 0.707 and α = 0.2
gives k pp = −282, kd p = −25.4 and kdr = −0.0302. If we instead choose ω0 = 2 ∗ ωp we get
instead k pp = −444, kd p = −39.6 and kdr = −0.0716 and ω0 = 2.5 ∗ ωp gives k pp = −654,
kd p = −59.8 and kdr = −0.1405.

Experiment 13 (Stabilization and Control of Wheel Velocity). Try to stabilize
the pendulum in the upright position with the control law (4.9). Find suitable
values of the parameters k pp , kd p , and kdr . Investigate the behavior of controller
with different closed loop poles. Explore the system by tapping the pendulum with
a ruler or a metal rod. Investigate the behavior of the pendulum and the wheel.
Explain your findings theoretically.

Figures 4.1, 4.2, and 4.3 show results from experiments with these controllers. In the
experiments a disturbance has been introduced by hitting the pendulum with a pencil. Three
controllers with the parameters given previously have been investigated. The closed loop poles
have the same pattern, ζ = 0.707 and α = 0.2, but the magnitudes of the poles are different,
ω0 = ωp , ω0 = 1.5ωp , and ω0 = 2ωp .

The figures show that all controllers behave well. The pendulum angle returns quickly to
the upright position. Notice that there is an offset in the pendulum in several of the experiments,
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FIGURE 4.1: Results of experiment with stabilization of a pendulum using PD control of pendulum
and control of wheel speed. The controller was designed to give ω0 = ωp , ζ = 0.707, and α = 0.2. The
controller parameters are k pp = −282, kd p = −24.5, and kdr = −0.0302.
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FIGURE 4.2: Results of experiment with stabilization of a pendulum using PD control of pendulum
and control of wheel speed. The controller was designed to give ω0 = 1.5ωp , ζ = 0.707, and α = 0.2.
The controller parameters are k pp = −444, kd p = −39.6, and kdr = −0.0716.
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FIGURE 4.3: Results of experiment with stabilization of a pendulum using PD control of pendulum
and control of wheel speed. The controller was designed to give ω0 = 2.0ωp , ζ = 0.707, and α = 0.2.
The controller parameters are k pp = −654, kd p = −59.8, and kdr = −0.1405.

indicating that the pendulum angle was not zero when the system was initialized. The pendulum
is actually standing upright in spite of this as predicted by the theory. There are small steady
state fluctuations around the steady state. The wheel spins at approximately constant speed
after the disturbance. The wheel velocity is not zero because of disturbance torques from the
cables and the offset in the angle measurement. The quantization of the angle sensor is clearly
seen in the figures.

The closed loop system has an oscillatory mode with undamped natural frequency ω0 and
damping ζ = 0.707 and a real mode −αω0 with α = 0.2. The oscillatory mode decays at the
rate e−ζω0t and the real mode decays at the rate e−αω0t . An inspection of the figures shows that
the oscillatory mode dominates the response of the pendulum and that the real mode dominates
the response of the wheel. It is thus possible to associate the different modes to the pendulum
and the wheel. It is necessary to move the wheel in order to stabilize the pendulum, but it is
also desired to keep the wheel speed limited to avoid saturation. It is, therefore, natural to make
the wheel pole slower in the design. We did this by choosing a small value of α.

There is a slight difference between Figure 4.1 and Figures 4.2 and 4.3 because the real
mode is larger in the last two figures. The reason for that is that the disturbance was larger and
the controller hit the saturation limit in Figures 4.2 and 4.3. There is an oscillation in Figure 4.2
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which is not noticeable in the other figures. This is due to a vibrational mode of the pendulum
which was excited when the disturbance was introduced.

The trade-offs in the design can be judged from Figures 4.1, 4.2, and 4.3. The speed of
recovery increases with higher bandwidths and higher controller gains but the fluctuations in
the control signal also increases. The fluctuations in the control signal in Figure 4.1 are about
10% of the span of the control signal but they are about 25% in Figure 4.3.

4.3 LOCAL BEHAVIOR
We will now take a closer look of the stabilizing controller when there are no disturbances.
Figures 4.4, 4.5, and 4.6 show the behavior of the system in three experiments using the same
controllers as in the tapping experiment.

The figures show that all controllers are able to control the pendulum angle with a
precision corresponding to the resolution of the angle sensor and that the behavior of the
system is nonlinear. The pendulum error occasionally jumps with one resolution. These jumps
cause large jumps in the estimated angular velocity of the pendulum and in turn jumps in the
control signal. The jumps in the velocity are the same in all cases but the jumps in the control
signal are larger for systems with larger values of the control gain kd p . Also, notice that the
angular velocity of the wheel does not have the jumps noticeable in the other signals.
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FIGURE 4.4: Results of experiment with stabilization of a pendulum using PD control of pendulum and
control of wheel speed. The controller parameters are k pp = −282, kd p = −24.5, and kdr = −0.0302.



book Mobk073 May 30, 2007 7:38

STABILIZING THE INVERTED PENDULUM 47

18.6 18.8 19 19.2 19.4 19.6 19.8
−2

0

2
x 10

−3 kpp=−444, kdp=−39.6, kdr=−0.0716, Tf =20 ms

18.6 18.8 19 19.2 19.4 19.6 19.8
−0.1

0

0.1

18.6 18.8 19 19.2 19.4 19.6 19.8
−25

−20

−15

18.6 18.8 19 19.2 19.4 19.6 19.8
−5

0

5

FIGURE 4.5: Results of experiment with stabilization of a pendulum using PD control of pendulum and
control of wheel speed. The controller parameters are k pp = −444, kd p = −39.6, and kdr = −0.0716.
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FIGURE 4.6: Results of experiment with stabilization of a pendulum using PD control of pendulum and
control of wheel speed. The controller parameters are k pp = −654, kd p = −59.8, and kdr = −0.1405.
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A simple calculation shows the order of magnitude. The resolution of the angle sensor is


θ = 2π

4000
≈ 0.00157

When the velocity is filtered by the filter

G(s ) = s
1 + s T

it follows that the jump in the velocity signal caused by an angle change of one increment of
the encoder is


θ̇ = 
θ

T
≈ 0.0785

The jumps in the signal θ̇ in all figures have this value. The jump in the control signal is then


u = |k pp |
θ + |kd p |
θ̇ =
(

k pp + kd p

T

)

θ (4.12)

For the controller with the lowest gains we have 
u = 2.37 which corresponds to 12% of the
span of the control signal. For the other controllers the corresponding values are 
u = 3.81
and 
u = 5.72, or 19% and 29% of the span of the control signal. These values agree very well
with the results of the experiments shown in Figures 4.4, 4.5, and 4.6.

In summary, we have found that all controllers keep the pendulum angle close to the
upright position within the resolution of the angle sensor. The main difference is in the
fluctuations in the control signal, which can be estimated by Eq. (4.12). Notice in particular
the role of the filtering time constant T in (4.12).

4.4 STABILIZATION OF PENDULUM AND CONTROL
OF WHEEL ANGLE

Next, we will attempt to keep tighter control of the wheel by having feedback from the wheel
angle. The control strategy then becomes

u = k pp(θ0 − θ ) − kd p θ̇ − k pr θr − kdr θ̇r (4.13)

Inserting this control into Eq. (4.1) we find that the closed loop system is described by

θ̈ − b pkd p θ̇ + (a − b pk pp)θ − b p(kdr θ̇r + k pr θr ) = −b pk pr θr r e f + d

br (kd p θ̇ + k ppθ ) + θ̈r + br kdr θ̇r + br k pr θr = br k pr θr r e f
(4.14)

The closed loop system has the characteristic polynomial

A(s ) = s 4 + (−b pkd p + br kdr )s 3 − (a + b pk pp + br k pr )s 2 − abr kdr s − abr k pr
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The characteristic polynomial for a fourth-order system can be written as

(s 2 + 2ζ1ω1s + ω2
1)(s 2 + 2ζ2ω2s + ω2

2) = s 4 + 2(ζ1ω1 + ζ2ω2)s 3

+ (ω2
1 + 4ζ1ζ2ω1ω2 + ω2

2)s 2 + 2(ζ1ω2 + ζ2ω1)ω1ω2s + ω2
1ω

2
2

Identification of coefficients of equal powers of s with the characteristic polynomial gives the
following equations.

−b pkd p + br kdr = 2(ζ1ω1 + ζ2ω2)

−a − b pk pp + br k pr = (ω2
1 + 4ζ1ζ2ω1ω2 + ω2

2)

−abr kdr = 2(ζ1ω2 + ζ2ω1)ω1ω2

−abr k pr = ω2
1ω

2
2

Solving these equations with we find that the controller parameters are thus given by

k pp = −a(ω2
1 + 4ζ1ζ2ω1ω2 + ω2

2) + ω2
1ω

2
2 + ω4

p

ab p

kd p = −2a(ζ1ω1 + ζ2ω2) + 2(ζ1ω2 + ζ2ω1)ω1ω2

ab p

k pr = −ω2
1ω

2
2

abr

kdr = −2(ζ1ω2 + ζ2ω1)ω1ω2

abr

(4.15)

gives a closed loop system with the characteristic polynomial

(s 2 + 2ζ1ω1s + ω2
1)(s 2 + 2ζ2ω2s + ω2

2) = s 4 + 2(ζ1ω1 + ζ2ω2)s 3

+ (ω2
1 + 4ζ1ζ2ω1ω2 + ω2

2)s 2 + 2(ζ1ω2 + ζ2ω1)ω1ω2s + ω2
1ω

2
2

The controller parameters can be computed with the following Matlab function

function [kpp,kdp,kpr,kdr]=pdpdcontrol(w1,zeta1,w2,zeta2,a,bp,br)

%Computation of feedback gains for stabilization of pendulum

%and control wheel angle

kpp=-(a*(w1^2+4*zeta1*zeta2*w1*w2+w2^2)+w1^2*w2^2+a^2)/a/bp;

kdp=-(2*a*(zeta1*w1+zeta2*w2)+2*(zeta1*w2+zeta2*w1)*w1*w2)/a/bp;

kpr=-w1^2*w2^2/a/br;

kdr=-2*(zeta1*w1+zeta2*w1)*w1*w2/a/br;
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Choosing ω1 = ω2 = ωp , ζ1 = 0.707, and ζ2 = 1 gives k pp = −496, kd p = −56.0, k pr =
−0.396, and kdr = −0.153. With ω1 = ωp , ω2 = 0.5ωp , ζ1 = 1, and ζ2 = 0.707 we get
k pp = −284, kd p = −32.0, k pr = −0.0990, and kdr = −0.0763.

Experiment 14 (Stabilization of Pendulum and Control of Wheel Angle).
Choose reasonable parameters for the controller (4.13) based on the calculations
above. Run the controller and observe what happens when the reference value is
changed. Also, investigate what happens when a disturbance torque is applied to
the pendulum.

Taking Laplace transform of Eq. (4.14) and solving for the transforms of the angles we
find

�(s ) = −b pk pr s 2

A(s )
�r r e f (s ) + s 2 + br kdr s + br k pr

A(s )
D(s )

�r (s ) = br k pr (s 2 − a)
A(s )

�r r e f (s ) − br (kd ps + k pp)
A(s )

D(s )

A(s ) = s 4 + (−b pkd p + br kdr )s 3 + (−b pk pp + br k pr − a)s 2 − abr kdr s − abr k pr

(4.16)

4.5 EFFECT OF OFFSET IN ANGLE AND DISTURBANCE
TORQUES

It is easy to initialize the angle sensor so that it gives the right signal when the pendulum
hangs down. It is more difficult to get the correct calibration when the pendulum stands up.
If the pendulum is calibrated in the down position and the up position is calculated there may
be calibration errors. We will now investigate the effects of such errors. At the same time we
will also investigate the effect of a disturbance torque on the pendulum. We will start with an
experiment.

Experiment 15 (Effect of a Disturbance Torque). Stabilize the pendulum in the
upright position with the controller (4.9). Apply a small disturbance torque to the
pendulum, e.g., by using a rubber band or an elastic rod. Observe the behavior of
the system.

Assume that the control law is

u = k pp(δ − θ ) − kd p θ̇ − k pr θr − kdr θ̇r
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where δ is a constant offset. Notice that we have included a term proportional to wheel angle.
We can obtain the results for feedback with wheel rate only by setting k pr = 0. Inserting this
control law into Eq. (4.1) we get

θ̈ − b pkd p θ̇ − (a + b pk pp)θ − b p(kdr θ̇r + k pr θr ) = −b pk ppθ0 + b pd

br (kd p θ̇ + k ppθ ) + θ̈r + br kdr θ̇r + br k pr θr = br k ppθ0

The closed loop system has the characteristic polynomial

A(s ) = s 4 + (−b pkd p + br kdr )s 3 + (−a − b pk pp + br k pr )s 2 − abr kdr s − abr k pr

Taking Laplace transforms and solving the equations we get

�(s ) = −b pk pps
A(s )

δ + b p(s 2 + br kdr s + br k pr )
A(s )

D(s )

�r (s ) = br k pp(s 2 − a)
s A(s )

δ − br b p(kd ps + k pp)
A(s )

D(s )

(4.17)

A calibration error δ in the pendulum angle gives no steady state error in the pendulum angle
but it gives a steady state drift of the wheel with rate δk pp/k pr . A constant disturbance torque
d0 gives a steady state pendulum error b pd0/a and a drift of the wheel with rate b pk ppd0/ak pr .

4.6 FEEDBACK OF WHEEL RATE ONLY
We can obtain the effects of calibration error and disturbance torque on the pendulum for the
case of wheel rate feedback only by setting k pr = 0 in Eq. (4.16). This gives

�(s ) = −b pk pp

A(s )
δ + b p(s + br kdr )

A(s )
D(s )

�r (s ) = br k pp(s 2 − a)
s 2 A(s )

δ − br b p(kd ps + k pp)
s A(s )

D(s )

A(s ) = s 3 + (−b pkd p + br kdr )s 2 − (b pk pp + a)s − abr kdr

(4.18)

A calibration error δ in the pendulum angle gives non steady state error in the pendulum angle
but a steady state drift of the wheel with rate δk pp/kdr . A constant disturbance torque d0 also
gives a steady state error −b pd0/a in the pendulum angle and a steady state drift of the wheel
with rate b pk ppd0/akdr . Notice that a positive torque gives a negative steady state error in the
pendulum angle. This explains the counterintuitive behavior seen in Experiment 15 where the
pendulum moves in the direction opposite to the applied torque.
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4.7 A REMARK ON CONTROLLER DESIGN
We have used pole placement to design the controllers. This means that we have specified
the closed loop poles and computed the controller parameters that give the desired closed loop
poles. The particular technique we used was straightforward. The control law was combined
with the process model and we derived the closed loop characteristic polynomial and matched
it with the desired characteristic polynomial. This method is simple and direct and it gives
analytic expressions for the controller gains. This means that it is easy to see how controller
gains are influenced by system parameters and specifications. The method is very easy to use
for systems of low-order like the pendulum. An alternative which is particularly useful for more
complex systems is to use state space methods. There are algorithms in Matlab that perform
compute the state feedback directly from a state model. We illustrate this by an example.

Example [Computing Feedback Gains Using Matlab]
A state model for the system is given by Eq. (4.8). The feedback gains that gives a closed loop
system with the characteristic equation

(s 2 + 1.414ω0s + ω2
0)((s 2 + 2ω0s + ω2

0)

where ω0 = ωp = 8.8557 can be computed by the following Matlab program.

%State space computation of controller gains

systpar %Get system parameters

A=[0 1 0 0;a 0 0 0;0 0 0 1;0 0 0 0]

B=[0;-bp;0;br]

P=roots([1 2*zeta1*w1 w1^2]);

P=[P;roots([1 2*zeta2*w2 w2^2])]

K=acker(A,B,P)

K=place(A,B,P)

Running this program we get the following result

Warning: Pole locations are more than 10% in error.

K = -495.5568 -55.9593 -0.3961 -0.1527

??? Error using ==> place

Can’t place poles with multiplicity greater than rank(B).

The error message indicates that numerical difficulties are encountered in the program acker

and that the program place is unable to solve the problem. The results can be compared with
the results of the direct calculation of the controller parameters by the program.



book Mobk073 May 30, 2007 7:38

STABILIZING THE INVERTED PENDULUM 53

function [kpp,kdp,kpr,kdr]=pdpdcontrol(w1,zeta1,w2,zeta2,a,bp,br)

%Computation of feedback gains for stabilization of pendulum

%and control rotor angle

kpp=-(a*(w1^2+4*zeta1*zeta2*w1*w2+w2^2)+w1^2*w2^2+a^2)/a/bp;

kdp=-(2*a*(zeta1*w1+zeta2*w2)+2*(zeta1*w2+zeta2*w1)*w1*w2)/a/bp;

kpr=-w1^2*w2^2/a/br;

kdr=-2*(zeta1*w1+zeta2*w1)*w1*w2/a/br;

This program gives

K = -495.5568 -55.9593 -0.3961 -0.1527

The parameters are identical with the results obtained using acker. An analysis of Eq. (4.15)
shows that there are no real numerical difficulties in computing the gains. The method used
in acker is, however, inherently poorly conditioned. Considering the precision in the model
parameters it is not reasonable to give controller parameters with more than three significant
digits.

Summary
In this chapter, we investigated the control of the pendulum and wheel together.
For the problem of stabilizing the pendulum in the inverted position, we linearized
the nonlinear equations about θ = π and considered the resulting fourth-order
linear system.
We saw that feedback of the pendulum states is not sufficient to control the
system because the wheel velocity “runs away.” Incorporating feedback of the wheel
velocity, it is possible to stabilize the pendulum and simultaneously regulate the
wheel velocity.
We then considered the problem of controlling all four states. We showed that
the fourth-order system is controllable from the single input available and we
considered the effect of disturbances on the system response.
The controllers in this chapter are local in the sense that the initial conditions must
be sufficiently close to the equilibrium point for the closed loop system to be stable.
For initial conditions too far away from the equilibrium, or for large disturbances
which move the system too far away from the equilibrium the pendulum will fall
down. In the next chapter, we consider the problem of starting the pendulum
and wheel in arbitrary initial conditions. This problem requires consideration of
nonlinear control theory.
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C H A P T E R 5

Swinging Up the Pendulum

5.1 NONLINEAR CONTROL
So far we have discussed the identification of the parameters needed in the dynamic description
of the Reaction Wheel Pendulum, we have discussed stabilization of the motor position and
velocity, and stabilization of the pendulum angle in both the downward and the inverted
positions using the linear approximation of the nonlinear dynamics. In this chapter, we will
introduce some ideas from nonlinear control theory and show how these ideas may be used
to control large angular movements of the pendulum. As an illustration we will discuss the
interesting problem of swingup control. The swingup problem is to move the pendulum from
the downward hanging position up into the inverted position. Since the angle of the pendulum
must change by 180◦, the assumption that sin(θ ) can be well approximated by θ is no longer
a good one and we must deal with the nonlinear equations of motion directly. In the next
chapter, we will combine the swingup control from this chapter with the stabilization control
from the previous chapter as an illustration of so-called Switching Control to design a controller
that swings the pendulum up and catches it.

5.2 SOME BACKGROUND ON NONLINEAR CONTROL
This section provides some background on nonlinear control theory for completeness. The
reader already familiar with these notions may safely skip this section and move directly to
Section 5.3.

5.2.1 State Space, Equilibrium Points, and Stability
The concepts of transfer functions, poles and zeros, and frequency response do not extend to
systems described by nonlinear differential equations. We must, therefore, look elsewhere for
concepts and techniques that we can use for analysis and design. In this section, we will discuss
the notion of Passivity which, as we shall see, is related to energy dissipation and provide us with
an elegant and powerful method for designing nonlinear controllers to control the Reaction
Wheel Pendulum, particularly for the swingup control problem.
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H
u y

FIGURE 5.1: Input/output system.

Let a system be described by an input/output relationship H(u, y) as shown in Figure 5.1.
The function H is just meant to represent the “rule” that the system uses to produce an output
y in response to an input u. For a linear system, of course, H may be represented as a transfer
function giving the ratio of the Laplace transforms of the input and output. For a nonlinear
system, one may think of the “operator” H as a shorthand way to denote a set of differential
equations

ẋ = f (x) + g (x)u (5.1)

y = h(x) (5.2)

relating the input and output, where x ∈ 	n is the system state vector. The functions f (x) and
g (x) are vector fields on 	n and h(x) is the output function.

Definition 5.1. An Equilibrium or Fixed Point of a system

ẋ = f (x) (5.3)

is a vector x̄ such that f (x̄) = 0.

If the initial condition for the system (5.3) satisfies x(t0) = x̄ then the function x(t) ≡ x̄
for t > t0 can be seen to be a solution of (5.3). In other words, if the system (5.3) starts initially
at the equilibrium, then it remains at the equilibrium thereafter.

Example 5.1. The simple pendulum equation

θ̈ + sin θ = 0 (5.4)

is written in the state space form (5.3) by setting

x =
(

x1

x2

)
=

(
θ

θ̇

)

Then the second-order system (5.4) is equivalent to the two first-order equations

ẋ1 = x2

ẋ2 = − sin x1



book Mobk073 May 30, 2007 7:38

SWINGING UP THE PENDULUM 57

and the vector field f (x) is given by

f (x) =
(

x2

− sin x1

)

Equating f (x) to zero to find the equilibrium points leads to the condition that

x2 = 0, x1 = nπ, n = 0, 1, 2, . . .

Thus the equilibrium solutions of the simple pendulum equation correspond to initial conditions
where the velocity is zero and the pendulum is straight down (n = even) or straight up (n =
odd). This corresponds to our intuitive notion of an equilibrium configuration for the simple
pendulum.

The question of stability deals with the solutions of the system for initial conditions away
from the equilibrium. Intuitively, the equilibrium should be called stable if, for initial conditions
close to the equilibrium, the solution remains close thereafter, as in the vertically downward
equilibrium of the pendulum, and unstable if nearby solutions diverge from the equilibrium, as
in the vertically upward equilibrium of the pendulum. We can formalize this notion into the
following.

Definition 5.2. The equilibrium solution x(t) = x̄ is said to be

i) stable if and only if, for any ε > 0 there exist δ(ε) > 0 such that

‖x(t0)‖ < δ implies ‖x(t)‖ < ε for all t > t0 (5.5)

ii) asymptotically stable if and only if it is stable and there exists δ > 0 such that

‖x(t0)‖ < δ implies ‖x(t)‖ → 0 as t → ∞ (5.6)

iii) exponentially stable if and only if there exist constants k > 0, γ > 0 such that

x(t) < k‖x(t0)‖e−γ (t−t0) for t ≥ t0

iv) unstable if it is not stable

The situation is illustrated by Figure 5.2 and says that the system is stable if the solution
remains within a ball of radius ε around the equilibrium, so long as the initial condition lies in
a ball of radius δ around the equilibrium. Notice that the required δ will depend on the given ε.
To put it another way, a system is stable if “small” perturbations in the initial conditions, results
in “small” perturbations from the equilibrium solution. For a stable system, the trajectory will
remain within the ball of radius δ for all time. For an asymptotically (or exponentially) stable
system, the trajectory will, in addition, return to the equilibrium point as t → ∞, while for an
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FIGURE 5.2: Illustrating the definition of stability.

unstable system, no matter how small δ is chosen, the trajectory will eventually leave the ball
of radius ε. The above notions of stability are local in nature, that is, they may hold for initial
conditions “sufficiently near” the equilibrium point but may fail for initial conditions farther
away from the equilibrium. Stability (respectively, asymptotic stability) is said to be global if
it holds for arbitrary initial conditions. Note that global stability can never hold in the quite
common case that the nonlinear system has multiple equilibrium points.

5.2.2 Linearization of Nonlinear Systems
We know that a linear system

ẋ = Ax (5.7)

is globally exponentially stable provided that all eigenvalues of the matrix A lie in the open
left half of the complex plane and unstable if any eigenvalue of A has positive real part. For
nonlinear systems, local stability can often be determined from the linear approximation of the
nonlinear equations about the equilibrium point, in other words, by examining the system

δẋ = Ax̄δx where δx = x − x̄ and Ax̄ = ∂ f
∂x

|x=x̄ (5.8)

Theorem 5.1. Consider the nonlinear system (5.3) with f (x̄) = 0. Let Ax̄ = ∂ f
∂x |x=x̄ . Then

i) the matrix Ax̄ has all its eigenvalues in the open left half plane if and only if the equilibrium
x̄ of the nonlinear system (5.3) is locally exponentially stable
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ii) if the matrix Ax̄ has one or more eigenvalues with positive real part, the equilibrium x̄ of the
nonlinear system (5.3) is unstable

iii) if the matrix Ax̄ has no eigenvalue with positive real part but one or more eigenvalues on the
jω-axis, then stability of the equilibrium of the nonlinear system, (5.3), cannot be determined
from the linear approximation

In the latter case, we cannot say whether the equilibrium of the nonlinear system is stable,
asymptotically stable, or unstable. We can say however, it cannot be exponentially stable.

Performing the indicated calculations for the simple pendulum equation (5.4) yields

A0 =
[

0 1
−1 0

]
Aπ =

[
0 1
1 0

]

with respect to the two equilibrium configurations (0, 0) and (0, π ), respectively. The matrix
Aπ has eigenvalues at ±1 which confirms our intuition that the inverted equilibrium is unstable.
However, since the matrix A0 has both eigenvalues on the imaginary axis at ± j , we cannot
conclude that the downward equilibrium is stable by examining only the linear approximation
of the nonlinear equations. We will next state, but not prove two fundamental results, due to
Lyapunov and LaSalle, respectively, that are among the most useful results for stability analysis
and control design for nonlinear systems. The interested reader should refer to the material
on Lyapunov Stability Theory and LaSalle’s Invariance Principle in [8] for the complete details.
We first need some additional background on the notions of Positive Definite Functions and
Invariant Sets for nonlinear systems.

Definition 5.3. A scalar function V : 	n → 	 is said to be

i) Positive Semi-Definite if and only if V (0) = 0 and V (x) ≥ 0 for x �= 0

ii) Positive Definite if and only if V (0) = 0 and V (x) > 0 for x �= 0

iii) Negative (Semi)-Definite if and only if −V (x) is Positive (Semi)-Definite

As in all such notions one may attach the adjective local or global to the above definitions
as the case may be. Locally, the level surfaces of a positive definite function V , given as solutions
of V (x) = C , where C is a positive constant, are ellipsoids in 	n (see Figure 5.3).

A positive definite function is like a norm. In fact, given the usual norm ‖x‖ on Rn, the
function V (x) = xT x = ‖x‖2 is positive definite. More generally, given a symmetric matrix
P = (pi j ) the scalar function

V (x) = xT P x =
n∑

i, j=1

pi j xi xi

is positive definite if and only if the matrix P has all eigenvalues positive.
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Level sets of V

X

Y

FIGURE 5.3: Level sets of a positive definite function.

Definition 5.4.

i) Let V (x) : 	n → 	 be a continuous, positive definite, function with continuous first partial
derivatives in a neighborhood of the origin in 	n. Then V is called a Lyapunov Function
Candidate (for the system (5.3)).

ii) By the derivative of V along trajectories of (5.3), or the derivative of V in the direction of
the vector field defining (5.3), we mean

V̇ (t) = ∇V T f (x) = ∂V
∂x1

f1(x) + · · · + ∂V
∂xn

fn(x). (5.9)

Suppose that we evaluate the Lyapunov function candidate V at points along a solution
trajectory x(t) of (5.3) and find that V (t) is decreasing for increasing t. Intuitively, since V acts
like a norm, this must mean that the given solution trajectory must be converging toward the
origin. This is the idea of Lyapunov stability theory.

Theorem 5.2. The equilibrium solution of (5.3) is stable if there exists a Lyapunov function
candidate V such that V̇ is negative semi-definite along solution trajectories of (5.3), that is, if

V̇ = ∇V T f (x) ≤ 0. (5.10)

Equation (5.10) says that the derivative of V computed along solutions of (5.3) is non-
positive, which says that V itself is nonincreasing along solutions. Since V is a measure of
how far the solution is from the origin, Eq. (5.10) says that the solution must remain near the
origin. If a Lyapunov function candidate V can be found satisfying (5.10) then V is called a
Lyapunov Function for the system (5.3). Note that Theorem 5.2 gives only a sufficient condition
for stability of (5.3). If one is unable to find a Lyapunov function satisfying (5.10) it does not
mean that the system is unstable. However, an easy sufficient condition for instability of (5.3) is
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for there to exist a Lyapunov function candidate V such that V̇ > 0 along at least one solution
of the system.

Theorem 5.3. The equilibrium of (5.3) is asymptotically stable if there exists a Lyapunov function
candidate V such that V̇ is strictly negative definite along solutions of (5.3), that is,

V̇ (x) < 0. (5.11)

The inequality (5.11) means that V is actually decreasing along solution trajectories of
(5.3) and hence the trajectories must be converging to the equilibrium point.

The strict inequality in (5.11) may be difficult to obtain for a given system and Lyapunov
function candidate. We, therefore, discuss LaSalle’s Invariance Principle which can be used to
prove asymptotic stability even when V is only negative semi-definite.

Definition 5.5. A subset D of 	n is said to be (Positively) Invariant for the system (5.3) if

x(t0) ∈ D => x(t) ∈ D for t > t0

Sets consisting of equilibrium points are clearly invariant according to the above definition
as are trajectories themselves.

Theorem 5.4. [8] Let D ⊂ 	n be a compact set that is positively invariant for the system (5.3).
Let V be a continuously differentiable function such that V̇ ≤ 0 in D. Let � be the set of points in D
where V̇ = 0. Let M be the largest invariant set in �. Then every solution starting in D approaches
M as t → ∞.

The above theorem is known as LaSalle’s Theorem and will prove extremely useful in
our subsequent analysis. To illustrate the above concepts, we will consider again the simple
pendulum example

θ̈ + sin θ = 0 (5.12)

and investigate the stability properties of the equilibrium x1 = θ = 0, x2 = θ̇ = 0. We recall
that the analysis based on the linear approximation of the nonlinear equations was inconclusive
even though we know intuitively that this equilibrium is stable. Indeed, we know that all
solutions that start near this equilibrium are periodic. Furthermore, we know that in practice,
any amount of friction will cause the oscillations to eventually decay to zero so that, in this case,
the equilibrium is asymptotically stable.

To confirm our intuition, we let E be the total energy of the pendulum, i.e.,

E = 1
2
θ̇2 + 1 − cos θ
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It is easy to see that E is positive definite near the downward equilibrium since the cosine
function is less than one in absolute value and hence qualifies as a Lyapunov function candidate.
Computing Ė along trajectories of (5.12) yields

Ė = θ̇ θ̈ + sin θ θ̇

= 0

where the latter equality follows by substituting θ̈ from (5.12). Thus we have shown that the
equilibrium is stable. If we include viscous friction in the model

θ̈ + b θ̇ + sin θ = 0

then the same calculation gives us

Ė = −b θ̇2

However, we can still conclude only stability and not asymptotic stability because Ė is still
only negative semi-definite (because Ė is zero when θ̇ is zero for any value of θ ). We cannot
rule out the possibility that the pendulum will “become stuck” at a configuration where the
velocity is zero but the angle is not zero. Using LaSalle’s Theorem, we compute the set Ė = 0,
which gives us θ̇ = 0. Suppose then that a trajectory satisfies θ̇ (t) = 0 for all t. This implies
that θ̈ (t) = 0, whence, from (5.13), we must have sin(θ ) = 0 and we conclude from LaSalle’s
Theorem that the largest invariant set contained in the set where V̇ = 0 consists only of the
two equilibrium points. Therefore the downward configuration of the pendulum is (locally)
asymptotically stable.

5.2.3 Passivity
We now wish to investigate the Input/Output system (5.1). To do this it is useful to introduce
the notion of Passivity.

Definition 5.6. We shall say that the system H described by (5.1) is Passive if there exists a (locally)
positive definite scalar function S, called a Storage Function, such that

Ṡ ≤ uT y → S(T) − S(0) ≤
∫ T

0
uT(s )y(s )ds (5.13)

For example, in a circuit made up of passive elements (resistors, capacitors, and inductors),
the (effort) variable u represents current and the (flow) variable y represents voltage. The
product uT y is thus the instantaneous power and the integral is the energy. Equation (5.13)
says, therefore, that in a passive system the change in system energy is not greater than that
supplied by the input.
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Since we assume that the storage function is positive definite1 it follows that a passive
system is open loop stable since S qualifies as a Lyapunov function with u = 0.

Example 5.2. Consider the mass–spring–damper system

M

B

X
K

U

with equation of motion

Mẍ + Bẋ + K x = u

The total energy of the system is

H = 1
2

Mẋ2 + 1
2

K x2

Then Ḣ satisfies

Ḣ = Mẋẍ + K xẋ

= ẋ(Mẍ + K x)

= ẋu − Bẋ2 ≤ ẋu

Therefore, the mass–spring–damper system is passive if we take as input the force u on the
mass and as output y the velocity of the mass v = ẋ, but it is not passive if we take the position
y = x as output.

In fact, it can be shown that a linear system must have relative degree ≤ 1 in order to be
passive. Since the transfer function from u to x, i.e.,

G1(s ) = X(s )
U (s )

= 1
Ms 2 + Bs + K

has relative degree two, it cannot be passive.

1A more complete treatment of passivity would assume that the storage function S is only positive semi-definite
rather than positive definite. See [8] for details.
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An advantage of passive systems is that they can be easily stabilized by proportional
feedback of the passive output.

y
H

k

u

Setting u = −ky we see that the Storage Function S satisfies

Ṡ ≤ uT y = −ky T y ≤ 0

for any value of the gain k. This implies that S will continually decrease as long as the output
is not zero. LaSalle’s Theorem can then be used to investigate the asymptotic behavior of the
system, as determined by the particular output function.

The above “infinite gain margin” is an important feature of passive systems. There are
other properties of passive systems that can be exploited in control systems design, such as
the fact that Parallel and Feedback interconnections of Passive (PR) systems are Passive (see
Figures 5.4 and 5.5).

5.3 SWINGUP CONTROL OF THE REACTION WHEEL
PENDULUM

Now, we return to the consideration of the Reaction Wheel Pendulum with dynamics given,
as before, by

J θ̈ + mg� sin(θ ) = −ku

Jr θ̈r = ku

u y

y

y

H

H

1

2

1

2

FIGURE 5.4: Parallel interconnection.
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FIGURE 5.5: Feedback interconnection.

1

s2

Pendulum

U

Y

Y

Y2

1

FIGURE 5.6: Reaction wheel system as a parallel interconnection.

We have noted that this system can be thought of as a parallel interconnection of the pendulum
subsystem and the wheel subsystem (double integrator) with input u. If we write this system as
shown in Figure 5.6 then the immediate task at hand is to define output functions y1 and y2 in
such a way that this parallel interconnection is passive.

For the double integrator subsystem we can choose as output y1 = θ̇r and storage function
S1 = 1

2 θ̇
2
r . We note that the disk subsystem cannot be passive from input u to output θr since

the double integrator system has relative degree two.
How shall we define y2 so that the pendulum subsystem is passive? Let us return to the

energy equation for the pendulum

E = 1
2

J θ̇2 + mg�(1 − cos(θ )) (5.14)

A similar calculation as before shows that

Ė = −ku θ̇ (5.15)

We thus recover the previous result that the energy is constant along trajectories if u = 0 and
show, in addition, that the pendulum subsystem is passive from −ku to θ̇ with the energy E as
storage function.
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However, instead of taking the energy E as the storage function, we shall take

S2 = 1
2

(E − Er e f )2

where Er e f represents a (constant) reference energy. Then

Ṡ2 = (E − Er e f )Ė = −k θ̇ (E − Er e f )u (5.16)
= y2u (5.17)

where we have taken as the output function y2 = −k θ̇ (E − Er e f ). The reason for this choice
of output y2 and storage function S2 will become evident shortly. It follows that the parallel
interconnection is passive with output

y = kv y1 + ke y2

and storage function

S = kv S1 + ke S2

= 1
2

kvθ̇
2
r + 1

2
ke (E − Er e f )2

We have chosen a linear combination of the storage function S1 and S2 with weights kv and ke ,
respectively, to allow extra design freedom in the controller. As we shall see, the constants kv

and ke play the role of adjustable gains that can be designed to influence the transient response
of the system.

Computing Ṡ along trajectories of the system yields

Ṡ = (kvθ̇r − ke k(E − Er e f )θ̇ )u = yu

We then choose the control input u as

u = −ku y = −ku(kvθ̇r − ke k(E − Er e f )θ̇ ) (5.18)

and we have

Ṡ = −ku y2 ≤ 0 (5.19)

Therefore, the system is stable and LaSalle’s Invariance Principle can now be used to determine
the asymptotic behavior of the system. Setting y2 ≡ 0 yields

u = ku(ke k(E − Er e f )θ̇ − kvθ̇r ) ≡ 0 (5.20)

It follows that the derivative u̇ ≡ 0 from which we get

ku(ke k Ėθ̇ + ke k(E − Er e f )θ̈ − kvθ̈r ) = 0
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Since u = 0, θ̈r = ku, Ė = −ku θ̇ , and θ̈ = −mgl
J sin θ − ku, all of this reduces to

(E − Er e f ) sin θ = 0

This equation is very important and says that the closed loop system trajectories will converge
to either E = Er e f or sin θ = 0.

Therefore, for all initial conditions away from the equilibrium points, it follows that
E − Er e f → 0. In addition, it follows from (5.20) that θ̇r = 0.

Remark 5.1 (The Effect of Saturation). An extremely important advantage of the Passivity-
Based Control approach to the problem of swingup is that the analysis remains unchanged if,
instead of using the control law (5.18), we use the saturated control

u = −sat(ku y) = −sat(ku(kvθ̇r − ke k(E − Er e f )θ̇ )) (5.21)

where sat(·) denotes the saturation function. The Storage Function S, given by (5.18) then
satisfies

Ṡ = −ysat(y) ≤ 0 (5.22)

We leave it to the reader to verify that the analysis based on LaSalle’s Theorem produces the
identical invariant set to which the trajectories of the closed loop system converge.

Experiment 16. Implement the above energy/passivity controller on the Reaction
Wheel Pendulum. What is the appropriate value of Er e f to use for swingup?
Experiment with different values for the gains ke , kv, and ku . Note: It is better to do
this in simulation before you try it out on the real system. Plot the energy, pendulum
angle, pendulum velocity, and disk velocity. How close do the actual values match
the predicted values? Note also, that you may have to give the pendulum a slight
push to get it started. Explain the reason for this. Explain why the pendulum comes
close to the inverted position but does not balance there.

5.3.1 Some Experimental Results
The following plots (Figures 5.7–5.10) show the results of one such experiment on swingup
control. We set the reference energy, Er e f , equal to the rest energy of the system in the inverted
configuration. From the expression for the energy, we see that this corresponds to Er e f = 2mg�.
With this value for Er e f the response of the system is shown below. The gains, ke , kv, and ku

were chosen as

ke = 4000 kv = 4 ku = 0.4
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FIGURE 5.7: Pendulum response.
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FIGURE 5.8: Disk velocity.
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FIGURE 5.9: Pendulum energy.
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FIGURE 5.10: Pendulum phase portrait.
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Summary
In this chapter, we have investigated the application of nonlinear control theory
to the problem of swinging the pendulum up from the downward position to the
inverted position. The concept of Passivity was shown to be a powerful design tool
for the design of controllers for nonlinear systems.
Using Passivity together with LaSalle’s Invariance Principle allowed us to present
a complete analysis of the behavior of the closed loop system. We saw that, for
almost all initial conditions, the pendulum trajectory would approach the inverted
position and the wheel velocity would approach zero.
This control method can swing up the pendulum but cannot be used to balance it
about the inverted configuration. For that we must combine the swingup control
with a separate balance (or stabilization) control. The problem of how to switch
between different controllers is considered next.
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C H A P T E R 6

Switching Control

6.1 SWINGUP COMBINED WITH STABILIZATION
So far we have designed linear control strategies to control the pendulum hanging down and
standing up. These strategies also keep the wheel speed or wheel angle close to desired values.
We have also designed nonlinear strategies for swinging up the pendulum. In this section, we
will combine the different strategies. This leads to Switching Controls. The goal is to find a
control strategy that keeps the pendulum upright. Since a large disturbance can always make
the pendulum to swing down the strategy should have the property that it can recover even
from large disturbances.

The energy control strategy has the form

u = ku(ke θ̇ (Er e f − E) − kvθ̇r ) (6.1)

where E is the scaled energy defined as

E = 1 − cos θ + 1
2

(
θ̇

ωp

)2

(6.2)

the reference energy Er e f is zero when the pendulum is hanging down and 2mg� when the
pendulum is upright. This energy control strategy brings the energy of the pendulum to the
reference value Er e f . At the same time it also brings the wheel speed to zero.

The linear control strategies all have the form

u = −k ppθ − kd p θ̇ − k pr θr − kdr θ̇r (6.3)

where θr e f is the desired orientation of the pendulum, θr e f = 0 when the pendulum is down,
and θr e f = π when it is up.

The energy controller moves the pendulum near the inverted configuration for (almost
all!) initial conditions but cannot balance it there. The linear control strategies can stabilize the
pendulum at the inverted position with zero wheel velocity but are only local. Clearly, then, a
good strategy is to use the energy control until the pendulum is “close” to the inverted position
and the “switch” control to the local stabilizing control. It turns out that this is not as easy as
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it may appear at first glance and there are a number of interesting issues associated with such
switching controllers.

6.2 AVOIDING SWITCHING TRANSIENTS
It is desirable to avoid transients when switching between the controllers. To do this we will
choose the stabilizing controller so that the vector field of the closed loop system with the
stabilizing controller matches the homoclinic orbit when the pendulum is upright.

The energy controller drives the pendulum to a homoclinic orbit given by E = 2, which
implies that

1
2

(
θ̇

ωp

)2

+ 1
2

(1 − cos θ ) = 2

Solving for θ̇ gives

θ̇ = ωp

√
2(1 − cos(θ − π )) ≈ ±(θ − π )

The pendulum thus approaches the upright position along the straight line

θ̇

ωp
= −θ − π

In addition, the energy control strategy drives the wheel velocity to zero.
We will now investigate the vector field of the closed loop system obtained with the

stabilizing strategy and determine the conditions required for the vector field to line up with
the homoclinic orbit close to the upright position. Since energy control has feedback from E,
θ̇ , and θ̇r , it is natural to have a stabilizing strategy of the form

u = −k ppθ − kd p θ̇ − kdr θ̇r

The linearized equation for the closed loop system with this control law is

d x
dt

=




0 1 0
b pk pp + a b pkd p b pkdr

−br k pp −br kd p −br kdr


 x = Ax

The trajectories of this system will match the homoclinic orbit if the matrix A has an eigenvalue
ωp associated with the eigenvector

e =




1
−ωp

0
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Notice that the swing up strategy ideally comes in with zero wheel velocity. Hence

−ωp = λ

b pk pp + a − b pkd pωp = −λωp

−br k pp + br kd pωp = 0

This implies that λ = −ωp and that k pp = −ωpkd p .
We have thus found that the condition required for patching the vector fields obtained

with energy control and stabilization is that

k pp = −ωpkd p (6.4)

This condition implies that the eigenvalue of the closed loop system which is lined up with
the homoclinic orbit is −ωp . This means that the pendulum will approach the equilibrium
exponentially with rate −ωp . Also, notice that the condition (6.4) implies that the control
signal is zero along the eigenvector.

The homoclinic orbit is curved but the orbit of the closed loop system with the stabilizing
strategy is a straight line, namely the eigen-subspace. Figure 6.1 shows the orbit for the
homoclinic orbit and the lines where the control signal is zero and at the saturation limits. To
ensure that the trajectories with energy control and stabilization line up we thus have to impose

−1.5 −1 −0.5 0
0

0.5

1

1.5

x

y

FIGURE 6.1: Trajectory for energy control (solid) and stabilizing control (dashed) with controller
parameter chosen to patch the vector fields close to the origin. The dashed curves show the limits of the
region where the stabilizing controller saturates.
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the condition

|θ − π | < θs (6.5)

The figure shows that the trajectories are quite close for deviations from the upright position
less than 0.5 rad, and we therefore choose θs = 0.5. Notice that to get a fast swing up it is
desirable to switch from the homoclinic orbit as soon as possible because the motion along the
homoclinic orbit becomes very slow as it approaches the upright position.

6.3 FINDING PARAMETERS OF THE STABILIZING STRATEGY
Patching the vector fields of the energy controlled and the stabilized systems gives the condition
(6.4). We will now discuss how the controller parameters should be chosen to satisfy this
condition and to give other desirable properties. The characteristic polynomial of the system
matrix A of the closed loop system is

A(s ) = s 3 + (−b pkd p + br kdr )s 2 + (a − b pk pp)s + abr kdr

With k pp = −ωpkd p the polynomial A(s ) has a root s = −ωp , and we have

A(s ) = (s − ωp)(s 2 + (−b pkd p + br kdr − ωp)s − br kdr ωp)

Requiring that the second factor equals the standard second-order polynomial

s 2 + 2ζω0s + ω2
0

we find

−b pkd p + br kdr − ωp = 2ζω0

br kdr ωp = −ω2
0

This gives

k pp = −ω2
0 + 2ζω0ωp + ω2

p

b p

kd p = −ω2
0 + 2ζω0ωp + ω2

p

b pωp

kdr = − ω2
0

br ωp
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The controller parameters can be computed by the following Matlab program

function [kpp,kdp,kdr]=pddcontrolwpatch(w0,zeta,a,bp,br)

%Computation of feedback gains for stabilization of pendulum

%and control rotor speed for system with patching of energy

%and stabilization control

wp=sqrt(a);

kpp=-(w0^2+2*zeta*w0*wp+wp^2)/bp;

kdp=-(w0^2+2*zeta*w0*wp+wp^2)/bp/wp;

kdr=-w0^2/br/wp;

Choosing ω0 = ωp and ζ = 0.707 gives k pp = −248, kd p = −28.0, and kdr = −0.0447.
The choice ω0 = 1.5 ∗ ωp gives k pp = −389, kd p = −44.0, and kdr = −0.101 and ω0 = 2 ∗ ωp

gives k pp = −568, kd p = −64.1, and kdr = −0.179.

6.4 SWITCHING CONDITIONS
So far we have given conditions for switching from energy control to stabilization. We must
also give conditions for switching from stabilization to energy control. To do this we will first
discuss when the saturated linear strategy can stabilize the pendulum. Assuming that the linear
model is sufficiently accurate and assuming that the wheel velocity is sufficiently small it can be
shown that a linear strategy that is patched to the homoclinic orbit will stabilize the system if

−b pumax

ωp
− ωpθ < θ̇ <

b pumax

ωp
− ωpθ (6.6)

where umax is the largest control signal. Notice that the region of linear operation

−umax

|kd p | − ωpθ < θ̇ <
umax

|kd p | − ωpθ (6.7)

is much smaller. When the state goes outside the region (6.6) the pendulum will quickly fall
down.

We will, therefore, simply switch to energy control when the pendulum angle deviates
from the upright position by more than θ0 = 0.5 rad.

To illustrate that the conditions are reasonable, Figure 6.2 shows the projection of the
trajectories on the θ-θ̇ plane for the tapping experiments in Figures 4.1 and 4.3. In the figure
we have also shown the regions where the controller operates linearly and where it is able to
maintain stability. Notice that the linear region is smaller for the controller with larger gains
but that the regions where stability can be maintained is the same for both controllers. The
figure indicates that the simple switching criteria is quite reasonable.
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FIGURE 6.2: Results of tapping experiment with stabilization of a pendulum using PD control of
pendulum and control of wheel speed. The controller was designed to give ω0 = ωp , ζ = 0.707, and
α = 0.2. The controller parameters are k pp = −282, kd p = −24.5, and kdr = −0.0302.

6.5 EXPERIMENTS WITH SWINGUP AND CATCHING
Figure 6.3 shows results of one experiment with swingup and catching of the pendulum. The
catching strategy is designed to match the homoclinic orbit. Figure 6.4 shows the energy, the
angular velocity of the pendulum, and the control signal. Notice that the energy does not
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Swingup kpp=−389, kdp=−44, kdr=−0.101, Tf =10 ms, 30 deg
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FIGURE 6.3: Experiment with swingup based on energy control and stabilization with a linear strategy
which is matched to the homoclinic orbit, the controller gains for the linear strategy are k pp = −389,
kd p = −44, and kdr = −0.101. The angular velocity of the pendulum is filtered with a first-order filter
having a time constant of 10 ms.
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FIGURE 6.4: Plot of the energy of the pendulum in Figure 6.3. The curves given from above are scaled
energy E, θ̇ , and u.

decrease monotonically because the energy control strategy also attempts to keep the wheel
velocity small. Figure 6.5 shows the projection of the trajectory on the θ̇-θ plane. The figure
shows that the system behaves as intended and that the trajectories seem to match quite well
during the switching. A more detailed picture which shows the catching phase is shown in
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FIGURE 6.5: Projection of trajectories on the θ̇-θ plane for the data in Figure 6.3.
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FIGURE 6.6: Projection of trajectories on the θ̇-θ plane for the data in Figure 6.3 zoomed at the
catching zone.

Figure 6.6. In this figure, we have also shown the switching condition. The figure indicates
that it is possible to catch the pendulum earlier than θs = 0.5.

Summary
In this chapter, we have considered the problem of Switching Control in order to
switch between swingup and stabilization for the problem of swinging the pendulum
up to the inverted position and catching it there. We showed, by matching the
trajectories of the swingup and balance controllers, how to eliminate the transient
resulting from the switching.
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C H A P T E R 7

Additional Topics

7.1 AN OBSERVER FOR THE PENDULUM VELOCITY
We have found that the limited resolution of the encoder for the pendulum angle causes jumps
in the control signal. We will now investigate if we can reduce the jumps by introducing an
observer for the pendulum velocity. Since the only coupling between the pendulum and the
wheel is via the control signal we can design an observer for the pendulum separately. The
nonlinear equations of motion of the pendulum can be written in standard state space form as

d x1

dt
= x2

d x2

dt
= a sin x1 − b p(u − F)

y1 = x1

where x1 = θ and x2 = θ̇ . The system is nonlinear but this is not serious since the signal x1 is
measured. An observer for the system is

d x̂1

dt
= x̂2 + k1(y − x̂1)

d x̂2

dt
= a sin y − b p(u − F̂) + k2(y − x̂1)

where F̂ is an estimate of the friction torque. This estimate can be obtained from the static
friction model given by Eq. (3.17) or from the observer for the wheel angle, see Section 3.4.
The observer error e = x − x̂ is given by the equation

de1

dt
= −k1e1 + e2

de2

dt
= −k2e1

This equation is linear and its characteristic polynomial is

s 2 + k1s + k2
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Identifying this with the standard second-order polynomial

s 2 + 2ζωo + ω2
o

we find

k1 = 2ζωo

k2 = ω2
o

The design of the observer is thus straightforward.

7.1.1 Sampling the Observer
A controller defined by a differential equation cannot be implemented directly using a computer.
A difference equation is needed for computer implementation. To obtain this we approximate
the derivative by a forward difference and we find that the observer can be described by

x̂1(t + h) = x̂1(t) + h
(
x̂2(t) + k1(y(t) − x̂1(t))

)

x̂2(t + h) = x2(t) + h
(
a sin y(t) − b p(u(t) − F̂(t)) + k2(y(t) − x̂1(t))

) (7.1)

It now remains to find a reasonable value of the parameter ωo that determines the bandwidth
of the observer. The trade-offs are that a small value gives good filtering but slower response
and vice versa. It is essential to have a reasonably fast observer during the swing up when the
pendulum velocity can be quite large. In experiments with filtering of the velocity we found
that a time constant T = 10 ms was reasonable. With this time constant we found that the
jump in the filtered velocity caused by one encoder increment is


θ̇ = 
θ

T
= 100
θ

With the observer the equivalent jump in the estimate is


θ̇ = hk2
θ = hω2
o 
θ

To have the same jump as with the velocity filter we must require that k2 < 1/hT = 100000.
With the values h = 0.001 and T = 0.01 we get ω0 < 316, smaller values of ωo gives less ripple
that with the filtered velocity difference.

Experiment 17 (Stabilization Using an Observer). Program the observer and
make an experiment with feedback from the observed pendulum velocity. Inves-
tigate the properties of the system for different specifications on the observer, for
example, by changing ωo . Test the system by tapping it. Compare with the results
where the pendulum velocity is determined using the filtered velocity difference.
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FIGURE 7.1: Stabilization of the pendulum with a linear controller having parameters k pp = −389,
kd p = −44, and kdr = −0.101. The angular velocity of the pendulum is determined using an observer
with ωo = 100 and ζ = 0.7.

Figure 7.1 shows results of an experiment with stabilization with feedback and an observer.
The parameters of the observer were chosen as ζ = 0.707 and ωo = 100. Using the formulas
given above we find that the jumps in the velocity caused by the limited encoder resolution
have the magnitude hω2

o 
θ = 0.016. Figure 7.1 also shows that the jumps are not noticeable
in the velocity estimate and in the control signal. Compare with Figure 4.1 where the velocity
was determined by filtering the velocity difference. As a result the control signal is also much
smoother. There is, however, a limit cycle which is caused by the quantization of the rotor
angle.

The observer with ωo = 100 gives a smoother control signal. The price of this is that the
controller does not react as aggressively to disturbances. This can be investigated by tapping
the pendulum.

7.1.2 Estimation of Friction
In Section 3.4, it was shown that the friction force can be determined using an observer. In
Section 3.7, it was shown that the friction could be determined from the velocity difference of
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the wheel and the pendulum. Since friction influences both the pendulum and the wheel it is
natural to make an observer that estimates all states jointly. To do this we introduce the state
variables

x1 = θ, x2 = θ̇

ωp
, x3 = θr , x4 = θ̇r

ωp
, x5 = F

Notice that the derivatives of the states have been scaled with ωp , this gives dimension free
variables and a system that is better conditioned numerically. The state equations then become

d x
dt

=




0 ωp 0 0 0
ωp 0 0 0 b p/ωp

0 0 0 ωp 0
0 0 0 0 −br /ωp

0 0 0 0 0




x +




0
−b p/ωp

0
br /ωp

0




u = Ax + Bu

y =
(

1 0 0 0 0
0 0 1 0 0

)
x = Cx

(7.2)

The observer for this system can be written as

d x̂
dt

= Ax̂ + Bu + K (y − Cx̂) (7.3)

where K is a 5 × 2 matrix. This case is borderline for analytical calculation and we will, therefore,
use Matlab to compute the controller gains. To use pole placement we have to determine suitable
poles for the observer. It is reasonable to have similar dynamics for estimation of the angular
velocities and we therefore choose the characteristic polynomial of the observer as

(s 2 + 2ζωo s + ω2
o )(s 2 + 2ζωo s + ω2

o )(s + αωo )

The observer gains are then given by the following Matlab program

%Full state observer

%Computes the observer gains for an observer that estimates

%all states including friction

%systpar %Get system parameters

%A=[0 wp 0 0 0;wp 0 0 0 0;0 0 0 wp 0;0 0 0 0 -br/wp;0 0 0 0 0]

A=[0 wp 0 0 0;wp 0 0 0 bp/wp;0 0 0 wp 0;0 0 0 0 -br/wp;0 0 0 0 0];

B=[0;-bp/wp;0;br/wp;0];

C=[1 0 0 0 0;0 0 1 0 0];

P=roots([1 2*zeta*wo wo^2]);
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P=[P;P;-alpha*wo];

K=place(A’,C’,P);

Kapprox=[2*zeta*wo wp+wo^2/wp 0 0 0;

0 0 (alpha+2*zeta)*wo (1+2*alpha*zeta)*wo^2/wp -alpha*wo^3/br];

Choosing ωo = 100, ζ = 0.707, and α = 1 we get

K’ = 1.0e+003 *

0.1414 1.1381 -0.0005 -0.0087 0.0276

-0.0005 -0.0087 0.2414 2.7259 -5.0505

Kapprox’ = 1.0e+003 *

0.1414 1.1381 0 0 0

0 0 0.2414 2.7259 -5.0506

Notice that several gains we have are very small

K’(1,3:5) = -0.5457 -8.7137 27.5624

K’(2,1:2) = -0.5457 -8.7137

The specifications ωo = 100, ζ = 0.707, and α = 0.2 imply that the estimation of friction is a
little slower. With these data we get

K’ = 1.0e+003 *

0.1414 1.1381 -0.0001 -0.0017 0.0055

-0.0001 -0.0017 0.1614 1.4486 -1.0101

Kapprox’ = 1.0e+003 *

0.1414 1.1381 0 0 0

0 0 0.1614 1.4486 -1.0101

The specifications ωo = 300, ζ = 0.707, and α = 1 give

K’ = 1.0e+005 *

0.0042 0.1017 -0.0000 -0.0008 0.0074

-0.0000 -0.0008 0.0072 0.2453 -1.3636

Kapprox’ = 1.0e+005 *

0.0042 0.1017 0 0 0

0 0 0.0072 0.2453 -1.3637
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The specifications ωo = 300, ζ = 0.707, and α = 0.2 give

K’ = 1.0e+004 *

0.0424 1.0172 -0.0000 -0.0016 0.0149

-0.0000 -0.0016 0.0484 1.3037 -2.7272

Kapprox’ = 1.0e+004 *

0.0424 1.0172 0 0 0

0 0 0.0484 1.3037 -2.7273

In the expressions above, we have also given the approximate filter gains obtained when the
coupling between the systems have been neglected. The figures indicate that it is not necessary
to consider the interaction between the systems when designing the observer. We can thus
conclude that it is sufficient to use the simple observer given by Eq. (7.1) where the estimate
of the friction is taken from the observer for the wheel. The performance can be improved by
combining the friction observer with the friction model (3.17), which is particularly important
in balancing where the friction changes sign frequently.

7.1.3 Swingup with an Observer
A nice property of the nonlinear observer (7.1) is that it works for the whole range of pendulum
angles. It can, therefore, be used both in stabilization and swingup. We illustrate this with an
experiment.

Experiment 18 (Swingup with an Observer). Program the observer and make a
swingup experiment when the velocities of the pendulum and the wheel are taken
from the observer.

Figure 7.2 shows the results of an experiment with swingup of the pendulum where the
observer is used to estimate the angular velocity of the pendulum. A comparison with Figure 6.3
shows that the observer gives a smoother control signal. In Figure 7.3, we show the projection
of the trajectory on the θ̇-θ plane. The figure shows that the system behaves as intended
and that the trajectories seem to match quite well during the switching. A comparison with
the corresponding figure for the experiment when the velocity is determined by filtering the
angular difference shows that the observer gives smoother trajectories. In Figure 7.4, we show
the estimate of the pendulum velocity from the observer and from the filter. The estimates are
quite similar but the figure shows that the estimate from the observer leads the filtered angle
difference as can be expected. The difference is largest when the acceleration is the largest.
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FIGURE 7.2: Experiment with swingup based on energy control and stabilization with a linear strategy
which is matched to the homoclinic orbit, the controller gains for the linear strategy are k pp = −389,
kd p = −44, and kdr = −0.101. The angular velocity of the pendulum is determined using an observer
with ωo = 100 and ζ = 0.707.
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FIGURE 7.3: Projection of trajectories on the θ̇-θ plane for the data in Figure 7.2.
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FIGURE 7.4: The upper curve shows the estimates of the velocity from the observer (solid) and the
filtered difference (dashed). The middle curve is an enlargement of the upper curve and the lowest curve
shows the difference x̂2 − x2 f .

7.2 MORE ABOUT FRICTION AND FRICTION COMPENSATION
When stabilizing the inverted pendulum we have so far neglected the friction force on the
motor axis. We will now investigate the effects of the friction torque on the motor axis. The
effects are most noticeable if the motor reverses direction frequently. We will start with an
experiment using the control law

u = −k ppθ − kd p θ̇ − k pr θr − kdr θ̇r

Experiment 19 (Limit Cycles Generated by Friction). Stabilize the pendulum
with the control law given by Eq. (4.13) with feedback from angles and velocities
of pendulum and wheel. Observe the motion of the wheel. Explain qualitatively
what happens. Record the motion of the wheel and characterize it.

Results of an experiment are shown if Figure 7.5. The figure shows that there is a
limit cycle oscillation caused by the friction. The oscillation in the pendulum angle has small
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FIGURE 7.5: Stabilization of the pendulum with a linear controller having parameters k pp = −496,
kd p = −56, k pr = −0.396, and kdr = −0.153. The angular velocity of the pendulum is determined by
filtering the angle difference with a filter having time constant T = 0.01. The dotted curve shows a
sinusoid with amplitude 3 and period 1.33 s.

amplitude corresponding to a few increments of the encoder. The oscillation in the pendulum
angle is more sinusoidal. To analyze the oscillations we will use the describing function.

Mini tutorial on Describing Functions: Describing functions or the method of harmonic
balance is an approximate method for determining limit cycles. It can be applied to a feedback
loop composed of a linear and a nonlinear block as in Figure 7.6. The linear block is characterized

G(s)

Nonlinear
block

FIGURE 7.6: Closed loop system with one linear and one nonlinear block.
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by its transfer function G(s ) and the nonlinear block is characterized by its describing function
N(a). The describing function characterizes the propagation of a sinusoidal signal through the
system. The value N(a) is a complex number that relates the first harmonic of the output to the
input when the input is a sinusoid with amplitude a . Neglecting higher harmonics and tracing
signals around the loop we find that an oscillation can be maintained if

G(iω)N(a) = −1 (7.4)

This is an equation in two variables which can be solved by plotting the Nyquist curve of the
transfer function G(s ) and the locus of 1/N(a). The solution is where the curves intersect. The
values give approximately the frequency and the amplitude of a possible limit cycle. The criterion
(7.4) is similar to Nyquist’s stability criterion if the critical point is replaced by −1/N(a).

It is also possible to investigate the stability of a limit cycle using describing functions.
We define the direction of the describing function as the direction of increasing amplitude a .
A point s0 in the complex plane enclosed by the Nyquist curve of G(iω) is called stable if

1
2π


�(s0 + G(s )) + P = 0

where 
� is the argument variation on the Nyquist contour � (a half circle with the imaginary
axis as diameter that encloses the right half plane) and P is the number of poles of G(s ) in
the region enclosed by �. A potential limit cycle given by the intersection of the Nyquist curve
with the describing function is stable if the direction of describing function at the intersection
is toward the stable region.

End of Mini tutorial: To understand what happens in the experiment we will analyze
the equations of the closed loop system. These equations can be written as

θ̈ = aθ − b p(u − F)
θ̈r = b p(u − F)
u = −k ppθ − kd p θ̇ − k pr θr − kdr θ̇r

where F is the friction force, which depends on the relative rate of pendulum and wheel, i.e.,
θ̇ − θ̇r . Taking Laplace transforms the equation can be written as

(
s 2 − a − br (kdr s + kd p) −b p(kdr s + k pr )

br (kdr s + kd p) s 2 − br (kdr s + k pr )

) (
�(s )
�r (s )

)
=

(
b p

−br

)
F(s )

The matrix on the left has the determinant

A(s ) = s 4 + (−b pkd p + br kdr )s 3 + (−a − b pk pp + br k pr )s 2 − abr kdr s − abr k pr
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and the equation has the solution
(

�(s )
�r (s )

)
= 1

A(s )

(
s 2 − br (kdr s + k pr ) b p(kdr s + k pr )
−br (kdr s + kd p) s 2 − a − br (kdr s + kd p)

) (
b p

−br

)
F(s )

= 1
A(s )

(
b ps 2

−br (s 2 − a)

)
F(s )

hence

�(s ) − �r (s ) = (br + b p)s 2 − abr

A(s )

The transfer function from friction force F to velocity difference θ̇ − θ̇r is then

G(s ) = (br + b p)s 3 − br as
s 4 + (−b pkd p + br kdr )s 3 + (−a − b pk pp + br k pr )s 2 − abr kdr s − abr k pr

Assuming that friction is modeled by Coulomb friction we can determine possible limit cycles by
describing function analysis. In Figure 7.7, we show the Nyquist curve of the transfer function G .
Since the describing function for Coulomb friction is the negative real axis, describing function
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FIGURE 7.7: Nyquist curve of the transfer function G for a pendulum with the controller parameters
k pp = −496, kd p = −56.0, k pr = −0.396, and kdr = −0.153.
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analysis predicts a limit cycle at the intersection. The frequencies where G(iω) intersects the
real axis are given by

ω4 + (a + b pk pp + br k pr )ω2 − abr k pr = 0

Inserting the numerical values we get ω∗ = 4.12, which corresponds to the period T = 1.5 s.
Furthermore, we have G(iω∗) = 10.2. The describing function for Coulomb friction is

N(a) = 4Fc

aπ

where Fc is the friction level and a the amplitude of the oscillation in the angular frequency.
Using the friction characteristics found in Section 3.7 we find that Fc = 1, see Figure 3.6.

The condition for oscillation is that

G(iω∗)N(a∗) = −1

We thus have the following estimate of the amplitude of the oscillation in the angular velocity

a∗ = 4Fc G(iω∗)
π

Inserting the numerical values we find a∗ = 13.0. The corresponding amplitude of the angular
oscillation is a/ω∗ = 3.14. The transfer function G(s ) is stable and the stability region is the
interior of the curve in Figure 7.7. The direction of the describing function is toward the stability
region and we can conclude that describing function theory predicts a stable limit cycle.

The describing function analysis indicates that the period of the oscillation is 1.5 s and
that the oscillation of the wheel has an amplitude 3.14. The wheel will thus make substantial
angular deviations, an oscillation with the amplitude 180◦. A comparison with Figure 7.8 shows
that the theory gives a reasonable prediction of the experimental results. A sinusoidal curve has
been fitted to the wheel angle. This oscillation has the period 1.3 and the amplitude 3. The
agreement with the describing function analysis is quite reasonable.

7.2.1 Friction Compensation
Since we have estimates of the velocity, it is straightforward to make a friction compensation
by computing the friction using Eq. (3.17) and adding the signal to the control signal. We
illustrate this by an example.

Experiment 20 (Friction Compensation). Repeat Experiment 19. Determine
the size of the limit cycle by measuring the amplitude of the oscillations of the
wheel. Switch in friction compensation and observe how much the amplitude of
the oscillations are reduced.
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FIGURE 7.8: Stabilization of the pendulum with a linear controller having parameters k pp = −496,
kd p = −56, k pr = −0.396, and kdr = −0.153. The angular velocity of the pendulum is determined
by filtering the angle difference with a filter having time constant T = 0.01. Friction compensation is
switched in at time 10.5. The dotted curve shows a sinusoid with amplitude 0.8.

Figure 7.8 shows the results obtained with friction compensation. The system is first
run with the linear controller. The friction compensation is switched in at time 10.5. Notice
that there is a substantial reduction in the amplitude of the limit cycle. Without friction
compensation the amplitude of the wheel angle is about 3 rad, with friction compensation
is reduced to 0.8 rad. The frequency of the oscillation is also increased. Compare also with
Figure 7.5. The friction characteristics will change with many factors. To be effective, friction
compensation should therefore be adaptive.

7.3 QUANTIZATION
In practical, all the experiments we have seen are effects of the encoder resolution. We will
now investigate some consequences of this in more detail. In particular, we will study the
possible limit cycles when the pendulum is stabilized in the upright position. For this purpose,
we will approximate the resolution with a quantizer. The phenomena we are looking are
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clearly nonlinear. The experiments indicate that there are differences between the cases where
the pendulum velocity is determined by filtering the angle increments and when an observer is
used. Compare the stabilization experiments in Figures 4.4 and 7.1. There is clearly a qualitative
difference between these two figures. Let us see if we can explain it.

7.3.1 Velocity Estimates by Filtered Angle Increments
We will first investigate the case when the velocity is obtained by filtering the velocity incre-
ments. Neglecting quantization and filtering, the closed loop system is described by

θ̈ = aθ − b pu
θ̈ = br u
u = −k ppθ − kd p θ̇ − kdr θ̇r

Based on the results of the experiments we will neglect the quantization in the wheel angle. We
will first consider the case when the angular velocity of the pendulum is determined by filtering
the increment in pendulum angle over a sampling interval.

To describe the filtering we introduce

V (s ) = (k pp + kd p H(s ))Y (s ) = K (s )Y (s )

where y is the encoder signal from the pendulum angle and H is the transfer function of the
filter used to generate the velocity. For a simple first-order filter we have

H(s ) = s
1 + s T

Taking Laplace transform of the above equation we find

(s 2 − a)�(s ) = b p K (s )Y (s ) + b pkdr s �r (s )

s 2�r (s ) = −br K (s )Y (s ) − br kdr s �r (s )

Eliminating �r (s ) we find

�r (s ) = b ps K (s )
(s 2 − a)(s + br kdr )

Y (s )

This nonlinear equation can be interpreted as the feedback connection of the transfer function

G(s ) = − b ps K (s )
(s 2 − a)(s + br kdr )

= −b ps (k pp + kd p H(s ))
(s 2 − a)(s + br kdr )

and a quantizer. We will investigate if the equation has a limit cycle using the approximate
describing function method.
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FIGURE 7.9: Nyquist curve of the transfer function G for a pendulum with the controller parameters
k pp = −282, kd p = −24.5, k pr = −0.0302 where the velocity is obtained by filtering the angle difference
by a first-order filter with time constant 0.02 s.

With a first-order filter we have

G(s ) = − b ps
(
(k pp T + kd p)s + k pp

)

(s 2 − a)(s + br kdr )(1 + s T)

Figure 7.9 shows the Nyquist curve of the transfer function G(s ). The Nyquist curve is generated
by the following Matlab program

%Analysis of effects of quantization for stabilizing controller

%with velocity estimate formed by filtering angle increments

systpar;

T=0.02;

kpp=-389;

kdp=-44;

kdr=-0.101;

num=-bp*[kpp*T+kdp kpp 0]

den=conv([1 0 -a],[1 br*kdr]);
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den=conv(den,[T 1])

w=0.01:0.1:200;

[re,im]=nyquist(num,den,w);

[i,j]=min(abs(im));

x=0:0.1:2;

reax=zeros(size(x));

%plot(re,im,re(j),im(j),’ro’,-x,reax,re,-im,’b--’)

%gives complete Nyquis contour

plot(re,im,re(j),im(j),’ro’,-x,reax)

axis([-2 0 -0.5 1])

rec=re(j)

imc=im(j)

wosc=w(j)

The describing function of a quantizer normally given in the literature assumes that the
input is exactly in the middle of the quantization interval. The describing function is then zero
for amplitudes less than half a quantization interval. It increases rapidly toward a maximum
of 1.27 and it then oscillates toward the value one for large values of a . If the input signal is
centered at a quantization step, the describing function is equal to the describing function for
a relay, i.e.,

N(a) = 4
aπ

The transfer function G(s ) has two poles in the right half plane. The argument variation
is zero and the drop-shaped region is thus an unstable region. The describing function points
toward the unstable region and describing function theory predicts that the potential limit cycle
is unstable. Describing function theory thus predicts that there will not be a limit cycle due to
the limited resolution of the encoder. The experiments as in Figure 7.1 indicate that there are
irregular motions in the pendulum angle but not limit cycles. The irregular motion is caused
by disturbances. Because of the sensor resolution there will be no feedback if the motion of the
pendulum is less than one encoder resolution. Disturbances combined with the instability of
the pendulum will cause the motion.

7.3.2 Velocity Estimates from an Observer
We will now investigate the case when the velocity of the pendulum is obtained form an observer.
We will make the same assumptions as in the previous case, namely that the quantization of
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the wheel angle can be neglected. The closed loop system can be described by the equations

θ̈ = aθ − b pu

θ̈r = br u

d θ̂

dt
= ˙̂θ + k1(y − θ̂ )

d ˙̂θ
dt

= aθ + b pu + k2(y − θ̂ )

u = −k pp y − kd p
ˆ̇θ − kdr θ̇r

Introducing the state variables x1 = θ , x2 = θ̇ , x3 = θr , x4 = θ̇r , x5 = θ̂ , x6 = ˙̂θ , the system
can be described by the equations

d x
dt

=




0 1 0 0 0 0
a 0 0 b pkdr 0 b pkd p

0 0 0 1 0 0
0 0 0 br kdr 0 b pkd p

0 0 0 0 −k1 1
0 0 0 b pkdr −k2 b pkd p




x +




0
b pk pp

0
−br k pp

0
a + k2 + b pk pp




y

θ = (1 0 0 0 0 0)

(7.5)

where the encoder output y is a quantization of the encoder angle. To investigate if this system
can exhibit a limit cycle we observe that Eq. (7.5) can be regarded as a feedback connection of
a quantizer and a linear system with the transfer function

G(s ) = −C(s I − A)−1 B

Figure 7.10 shows the Nyquist curve of the transfer function G(s ). The Nyquist curve is
generated by the following Matlab program

%Analysis of effects of quantization for system

%with observer for pendulum velocity

%x1=theta,x2=ptheta,x3=thetar,x4=pthetar,x5=hattheta,x6=phattheta

%systpar;

systpar

w0=1.5*wp;

zeta=0.707;

alpha=0.2;

k1=140;
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FIGURE 7.10: Nyquist curve of the transfer function G for a pendulum stabilized with a controller
having the parameters k pp = −282, kd p = −24.5, k pr = −0.0302, where the velocity is obtained by an
observer with ω0 = 100 and ζ = 0.707.

k2=10000;

[kpp,kdp,kdr]=pddcontrolwpatch(w0,zeta,a,bp,br)

%kpp=-389;kdp=-44,kdr=-0.101;

A=[0 1 0 0 0 0;

a 0 0 bp*kdr 0 bp*kdp;

0 0 0 1 0 0;

0 0 0 -br*kdr 0 -br*kdp;

0 0 0 0 -k1 1;

0 0 0 bp*kdr -k2 bp*kdp]

B=[0;bp*kpp;0;-br*kpp;k1;a+k2+bp*kpp];

C=-[1 0 0 0 0 0];

D=0;

g=ss(A,B,C,D);

w=0.01:0.05:500;

[re,im]=nyquist(g,w);

re=re(:);

im=im(:);

[vi,j]=min(abs(im(1:500)));
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[vm,m]=min(abs(im));

x=0:0.1:2;

reax=zeros(size(x));

plot(re,im,-x,reax,re(j),im(j),’ro’,re(m),im(m),’ro’)

axis([-2 0 -1 1])

gor=re(j)

goi=im(j)

wo=w(j)

Figure 7.10 shows that there are two intersections between the describing function for the relay
and the Nyquist curve corresponding to frequencies 12 and 120 rad/s. The matrix A has two
eigenvalues in the right half plane. The stable region is thus the interior of the contour and the
intersection at the higher frequency corresponds to a stable limit cycle. Notice, however, that if
the input to the describing signal is centered right between two encoder marks the describing
function has the maximum value and there is no intersection between the Nyquist curve and the
describing function. Depending on the average value of the pendulum angle describing function
theory thus predicts that there is a limit cycle when the angle is close to a mark of the encoder
but that there is no limit cycle when the angle is between two encoder marks. This explains
the behavior shown in Figure 7.1 where there are intervals with and without limit cycles.

Summary
In this chapter, we have provided further discussion on both friction and the design
of observers. We showed that a nonlinear observer for the pendulum angle can
be designed such that the equations for the observer error states are linear. This
interesting property of the Inertia Wheel Pendulum results from the fact that the
only nonlinearity in the system is a function of the pendulum angle and hence is
measurable. The observer in Section 7.1 is thus a special case of the use of so-called
Output Injection [7].
We then discussed further the effects of sampling, quantization, and friction on the
observer system and we showed the use of the observer together with the nonlinear
swingup controller. We next used Describing Functions to analyze limit cycles due to
friction. We have shown that friction can lead to limit cycle oscillations. We showed
that a friction compensation based on a simple model can give a significant reduction
of the amplitude of the limit cycle. We also discuss quantization, which is a strongly
nonlinear phenomena and which is difficult to analyze. The approximate describing
function method gives insight into the behavior of systems with quantization.
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[3] Åström, K.J., Furuta, K., Iwashiro, M., and Hoshino, T., “Energy based strategies for

swinging up a double pendulum,” 14th World Congress of IFAC, vol. M, pp. 283–288,
Beijing, P.R. China, July 1999.

[4] Chung, C.C., and Hauser, J., “Nonlinear control of a swinging pendulum,” Automatica,
vol. 31, pp. 851–862, 1995. doi:10.1016/0005-1098(94)00148-C

[5] Fantoni, I., Lozano, R., and Spong, M.W., “Energy based control of the pendubot,”
IEEE Transactions on Automatic Control, vol. AC-45, no. 4, pp. 725–729, April 2000.
doi:10.1109/9.847110
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