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Preface to the
Seventh Edition

The tabular format used in the fifth and sixth editions is continued in
this edition. This format has been particularly successful when imple-
menting problem solutions on a programmable calculator, or espe-
cially, a personal computer. In addition, though not required in
utilizing this book, user-friendly computer software designed to
employ the format of the tabulations contained herein are available.

The seventh edition intermixes International System of Units (SI)
and United States Customary Units (USCU) in presenting example
problems. Tabulated coefficients are in dimensionless form for conve-
nience in using either system of units. Design formulas drawn from
works published in the past remain in the system of units originally
published or quoted.

Much of the changes of the seventh edition are organizational, such
as:

m Numbering of equations, figures and tables is linked to the parti-
cular chapter where they appear. In the case of equations, the
section number is also indicated, making it convenient to locate
the equation, since section numbers are indicated at the top of each
odd-numbered page.

m In prior editions, tables were interspersed within the text of each
chapter. This made it difficult to locate a particular table and
disturbed the flow of the text presentation. In this edition, all
numbered tables are listed at the end of each chapter before the
references.

Other changes/additions included in the seventh addition are as
follows:

m Part 1 is an introduction, where Chapter 1 provides terminology
such as state properties, units and conversions, and a description of
the contents of the remaining chapters and appendices. The defini-
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tions incorporated in Part 1 of the previous editions are retained in
the seventh edition, and are found in Appendix B as a glossary.

m Properties of plane areas are located in Appendix A.

m Composite material coverage is expanded, where an introductory
discussion is provided in Appendix C, which presents the nomen-
clature associated with composite materials and how available
computer software can be employed in conjunction with the tables
contained within this book.

m Stress concentrations are presented in Chapter 17.

m Part 2, Chapter 2, is completely revised, providing a more compre-
hensive and modern presentation of stress and strain transforma-
tions.

m Experimental Methods. Chapter 6, is expanded, presenting more
coverage on electrical strain gages and providing tables of equations
for commonly used strain gage rosettes.

m Correction terms for multielement shells of revolution were
presented in the sixth edition. Additional information is provided
in Chapter 13 of this edition to assist users in the application of
these corrections.

The authors wish to acknowledge and convey their appreciation to
those individuals, publishers, institutions, and corporations who have
generously given permission to use material in this and previous
editions. Special recognition goes to Barry J. Berenberg and Universal
Technical Systems, Inc. who provided the presentation on composite
materials in Appendix C, and Dr. Marietta Scanlon for her review of
this work.

Finally, the authors would especially like to thank the many dedi-
cated readers and users of Roark’s Formulas for Stress & Strain. It is
an honor and quite gratifying to correspond with the many individuals
who call attention to errors and/or convey useful and practical
suggestions to incorporate in future editions.

Warren C. Young
Richard G. Budynas



Preface to
the First Edition

This book was written for the purpose of making available a compact,
adequate summary of the formulas, facts, and principles pertaining to
strength of materials. It is intended primarily as a reference book and
represents an attempt to meet what is believed to be a present need of
the designing engineer.

This need results from the necessity for more accurate methods of
stress analysis imposed by the trend of engineering practice. That
trend is toward greater speed and complexity of machinery, greater
size and diversity of structures, and greater economy and refinement
of design. In consequence of such developments, familiar problems, for
which approximate solutions were formerly considered adequate, are
now frequently found to require more precise treatment, and many
less familiar problems, once of academic interest only, have become of
great practical importance. The solutions and data desired are often to
be found only in advanced treatises or scattered through an extensive
literature, and the results are not always presented in such form as to
be suited to the requirements of the engineer. To bring together as
much of this material as is likely to prove generally useful and to
present it in convenient form has been the author’s aim.

The scope and management of the book are indicated by the
Contents. In Part 1 are defined all terms whose exact meaning
might otherwise not be clear. In Part 2 certain useful general princi-
ples are stated; analytical and experimental methods of stress analysis
are briefly described, and information concerning the behavior of
material under stress is given. In Part 3 the behavior of structural
elements under various conditions of loading is discussed, and exten-
sive tables of formulas for the calculation of stress, strain, and
strength are given.

Because they are not believed to serve the purpose of this book,
derivations of formulas and detailed explanations, such as are appro-
priate in a textbook, are omitted, but a sufficient number of examples

Xi



xii Preface to the First Edition

are included to illustrate the application of the various formulas and
methods. Numerous references to more detailed discussions are given,
but for the most part these are limited to sources that are generally
available and no attempt has been made to compile an exhaustive
bibliography.

That such a book as this derives almost wholly from the work of
others 1s self-evident, and it is the author’s hope that due acknowl-
edgment has been made of the immediate sources of all material here
presented. To the publishers and others who have generously
permitted the use of material, he wishes to express his thanks. The
helpful criticisms and suggestions of his colleagues, Professors E. R.
Maurer, M. O. Withey, J. B. Kommers, and K. F. Wendt, are gratefully
acknowledged. A considerable number of the tables of formulas have
been published from time to time in Product Engineering, and the
opportunity thus afforded for criticism and study of arrangement has
been of great advantage.

Finally, it should be said that, although every care has been taken to
avoid errors, it would be oversanguine to hope that none had escaped
detection; for any suggestions that readers may make concerning
needed corrections the author will be grateful.

Raymond J. Roark
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Chapter

Introduction

The widespread use of personal computers, which have the power to
solve problems solvable in the past only on mainframe computers, has
influenced the tabulated format of this book. Computer programs for
structural analysis, employing techniques such as the finite element
method, are also available for general use. These programs are very
powerful; however, in many cases, elements of structural systems can
be analyzed quite effectively independently without the need for an
elaborate finite element model. In some instances, finite element
models or programs are verified by comparing their solutions with
the results given in a book such as this. Contained within this book are
simple, accurate, and thorough tabulated formulations that can be
applied to the stress analysis of a comprehensive range of structural
components.

This chapter serves to introduce the reader to the terminology, state
property units and conversions, and contents of the book.

1.1 Terminology

Definitions of terms used throughout the book can be found in the
glossary in Appendix B.

1.2 State Properties, Units, and Conversions

The basic state properties associated with stress analysis include the
following: geometrical properties such as length, area, volume,
centroid, center of gravity, and second-area moment (area moment of
inertia); material properties such as mass density, modulus of elasti-
city, Poisson’s ratio, and thermal expansion coefficient; loading proper-
ties such as force, moment, and force distributions (e.g., force per unit
length, force per unit area, and force per unit volume); other proper-
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TABLE 1.1 Units appropriate to structural analysis

Property SI unit, symbol USCU unit,” symbol
(derived units) (derived units)

Length meter, m inch, in

Area square meter (m?) square inch (in%

Volume cubic meter (m?) cubic inch (in®)

Second-area moment (m?) (in%

Mass kilogram, kg (Ibf-s?/in)

Force Newton, N (kg-m/s?) pound, lbf

Stress, pressure Pascal, Pa (N/m?) psi (Ibf/in?%)

Work, energy Joule, J (N-m) (Ibf-in)

Temperature Kelvin, K degrees Fahrenheit, °F

"In stress analysis, the unit of length used most often is the inch.

ties associated with loading, including energy, work, and power; and
stress analysis properties such as deformation, strain, and stress.

Two basic systems of units are employed in the field of stress
analysis: SI units and USCU units.” SI units are mass-based units
using the kilogram (kg), meter (m), second (s), and Kelvin (K) or
degree Celsius (°C) as the fundamental units of mass, length, time,
and temperature, respectively. Other SI units, such as that used for
force, the Newton (kg-m/s?), are derived quantities. USCU units are
force-based units using the pound force (Ibf), inch (in) or foot (ft),
second (s), and degree Fahrenheit (°F) as the fundamental units of
force, length, time, and temperature, respectively. Other USCU units,
such as that used for mass, the slug (Ibf-s?/ft) or the nameless Ibf-
s%/in, are derived quantities. Table 1.1 gives a listing of the primary SI
and USCU units used for structural analysis. Certain prefixes may be
appropriate, depending on the size of the quantity. Common prefixes
are given in Table 1.2. For example, the modulus of elasticity of carbon
steel is approximately 207 GPa = 207 x 10% Pa = 207 x 10? N/m? Pre-
fixes are normally used with SI units. However, there are cases where
prefixes are also used with USCU units. Some examples are the kpsi
(1 kpsi = 107 psi = 103 Ibf/in?), kip (1 kip = 1 kilopound = 1000 Ibf), and
Mpsi (1 Mpsi = 108 psi).

Depending on the application, different units may be specified. It is
important that the analyst be aware of all the implications of the units
and make consistent use of them. For example, if you are building a
model from a CAD file in which the design dimensional units are given
in mm, it is unnecessary to change the system of units or to scale the
model to units of m. However, if in this example the input forces are in

"SI and USCU are abbreviations for the International System of Units (from the
French Systéme International d’Unités) and the United States Customary Units,
respectively.
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TABLE 1.2 Common prefixes

Prefix, symbol Multiplication factor

Giga, G 10°
Mega, M 106
Kilo, k 10°
Milli, m 1073
Micro, p 1076
Nano, n 107

Newtons, then the output stresses will be in N/mm?, which is correctly
expressed as MPa. If in this example applied moments are to be
specified, the units should be N-mm. For deflections in this example,
the modulus of elasticity E should also be specified in MPa and the
output deflections will be in mm.

Table 1.3 presents the conversions from USCU units to SI units
for some common state property units. For example, 10 kpsi =
(6.895 x 10%) - (10 x 10%) = 68.95 x 108 Pa = 68.95 MPa. Obviously, the
multiplication factors for conversions from SI to USCU are simply the
reciprocals of the given multiplication factors.

TABLE 1.3 Multiplication factors to convert from
USCU units to Sl units

To convert from USCU to SI Multiply by
Area:

ft? m? 9.290 x 1072

in? m? 6.452 x 1074
Density:

slug/ft® (Ibf-s%/ft*) kg/m? 515.4

Ibf-s?/in* kg/m? 2.486 x 1072
Energy, work, or moment:

ft-1bf or 1bf-ft J or N-m 1.356

in-1bf or lbf-in J or N-m 0.1130
Force:

Ibf N 4.448
Length:

ft m 0.3048

in m 2.540 x 1072
Mass:

slug (Ibf-s%/ft) kg 14.59

Ibf-s?/in kg 1.216
Pressure, stress:

Ibf/ft? Pa (N/m?) 47.88

Ibf/in? (psi) Pa (N/m?) 6.895 x 103
Volume:

ft3 m? 2.832 x 102
in® m? 1.639 x 107°
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1.3 Contents

The remaining parts of this book are as follows.

Part 2: Facts; Principles; Methods. This part describes important
relationships associated with stress and strain, basic material
behavior, principles and analytical methods of the mechanics of
structural elements, and numerical and experimental techniques in
stress analysis.

Part 3: Formulas and Examples. This part contains the many applica-
tions associated with the stress analysis of structural components.
Topics include the following: direct tension, compression, shear, and
combined stresses; bending of straight and curved beams; torsion;
bending of flat plates; columns and other compression members; shells
of revolution, pressure vessels, and pipes; direct bearing and shear
stress; elastic stability; stress concentrations; and dynamic and
temperature stresses. Each chapter contains many tables associated
with most conditions of geometry, loading, and boundary conditions for
a given element type. The definition of each term used in a table is
completely described in the introduction of the table.

Appendices. The first appendix deals with the properties of a plane
area. The second appendix provides a glossary of the terminology
employed in the field of stress analysis.

The references given in a particular chapter are always referred to
by number, and are listed at the end of each chapter.



Part

2

Facts; Principles; Methods



Chapter

Stress and Strain: Important
Relationships

Understanding the physical properties of stress and strain is a
prerequisite to utilizing the many methods and results of structural
analysis in design. This chapter provides the definitions and impor-
tant relationships of stress and strain.

2.1 Stress

Stress is simply a distributed force on an external or internal surface
of a body. To obtain a physical feeling of this idea, consider being
submerged in water at a particular depth. The “force” of the water one
feels at this depth is a pressure, which is a compressive stress, and not
a finite number of “concentrated” forces. Other types of force distribu-
tions (stress) can occur in a liquid or solid. Tensile (pulling rather than
pushing) and shear (rubbing or sliding) force distributions can also
exist.

Consider a general solid body loaded as shown in Fig. 2.1(a). P; and
p; are applied concentrated forces and applied surface force distribu-
tions, respectively; and R; and r; are possible support reaction force
and surface force distributions, respectively. To determine the state of
stress at point @ in the body, it is necessary to expose a surface
containing the point @. This is done by making a planar slice, or break,
through the body intersecting the point . The orientation of this slice
is arbitrary, but it is generally made in a convenient plane where the
state of stress can be determined easily or where certain geometric
relations can be utilized. The first slice, illustrated in Fig. 2.1(), is
arbitrarily oriented by the surface normal x. This establishes the yz
plane. The external forces on the remaining body are shown, as well as
the internal force (stress) distribution across the exposed internal



10 Formulas for Stress and Strain [cHAP. 2

(b) Isolated section

Figure 2.1

surface containing . In the general case, this distribution will not be
uniform along the surface, and will be neither normal nor tangential
to the surface at @. However, the force distribution at @ will have
components in the normal and tangential directions. These compo-
nents will be tensile or compressive and shear stresses, respectively.

Following a right-handed rectangular coordinate system, the y and z
axes are defined perpendicular to x, and tangential to the surface.
Examine an infinitesimal area AA, = AyAz surrounding @, as shown
in Fig. 2.2(a). The equivalent concentrated force due to the force
distribution across this area is AF,, which in general is neither
normal nor tangential to the surface (the subscript x is used to
designate the normal to the area). The force AF, has components in
the x, y, and z directions, which are labeled AF,,, AF,,, and AF,,
respectively, as shown in Fig. 2.2(b). Note that the first subscript
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(a) Force on the AA surface (b) Force components

Figure 2.2

denotes the direction normal to the surface and the second gives the
actual direction of the force component. The average distributed force

per unit area (average stress) in the x direction is'
- AF,
O_xx — XX
AA

X

Recalling that stress is actually a point function, we obtain the exact
stress in the x direction at point @ by allowing AA, to approach zero.
Thus,

or,

dF,,
o= gp (2.1-1)

Stresses arise from the tangential forces AF,, and AF,, as well, and
since these forces are tangential, the stresses are shear stresses.
Similar to Eq. (2.1-1),

dF,

Ty = dAj (2.1-2)
dF,,

e =g (2.1-3)

"Standard engineering practice is to use the Greek symbols ¢ and t for normal (tensile
or compressive) and shear stresses, respectively.
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Figure 2.3 Stress components.

Since, by definition, ¢ represents a normal stress acting in the same
direction as the corresponding surface normal, double subscripts are
redundant, and standard practice is to drop one of the subscripts and
write o, as g,. The three stresses existing on the exposed surface at
the point are illustrated together using a single arrow vector for each
stress as shown in Fig. 2.3. However, it is important to realize that the
stress arrow represents a force distribution (stress, force per unit
area), and not a concentrated force. The shear stresses t,, and t,, are
the components of the net shear stress acting on the surface, where the
net shear stress is given by’

(Tx)net = T?cy + T32cz (21'4)

To describe the complete state of stress at point @ completely, it
would be necessary to examine other surfaces by making different
planar slices. Since different planar slices would necessitate different
coordinates and different free-body diagrams, the stresses on each
planar surface would be, in general, quite different. As a matter of
fact, in general, an infinite variety of conditions of normal and shear
stress exist at a given point within a stressed body. So, it would take an
infinitesimal spherical surface surrounding the point @ to understand
and describe the complete state of stress at the point. Fortunately,
through the use of the method of coordinate transformation, it is only
necessary to know the state of stress on three different surfaces to
describe the state of stress on any surface. This method is described in
Sec. 2.3.

The three surfaces are generally selected to be mutually perpendi-
cular, and are illustrated in Fig. 2.4 using the stress subscript notation

T Stresses can only be added as vectors if they exist on a common surface.
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Figure 2.4 Stresses on three orthogonal surfaces.

as earlier defined. This state of stress can be written in matrix form,
where the stress matrix [o] is given by

[0-] = Tyx Gy Tyz (21'5)

Except for extremely rare cases, it can be shown that adjacent shear
stresses are equal. That is, t,, =1, 7., = 7,;, and t,, = 7,,, and the
stress matrix is symmetric and written as

[O]=| Ty 0y Ty (2.1-6)

Plane Stress. There are many practical problems where the stresses
in one direction are zero. This situation is referred to as a case of plane
stress. Arbitrarily selecting the z direction to be stress-free with
0, =1, =1,, = 0, the last row and column of the stress matrix can
be eliminated, and the stress matrix is written as

Txy Oy

[o] = [ax Txy} (2.1-7)

and the corresponding stress element, viewed three-dimensionally and
down the z axis, is shown in Fig. 2.5.

2.2 Strain and the Stress—Strain Relations

As with stresses, two types of strains exist: normal and shear strains,
which are denoted by ¢ and 7, respectively. Normal strain is the rate of
change of the length of the stressed element in a particular direction.
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oy ?
Try
——
Ty
o‘X
- Ay | | —» —»
Oy X
Txy
Ax
—
Ty
Oy
(a) (b)

Figure 2.5 Plane stress.

Shear strain is a measure of the distortion of the stressed element, and
has two definitions: the engineering shear strain and the elasticity
shear strain. Here, we will use the former, more popular, definition.
However, a discussion of the relation of the two definitions will be
provided in Sec. 2.4. The engineering shear strain is defined as the
change in the corner angle of the stress cube, in radians.

Normal Strain. Initially, consider only one normal stress ¢, applied to
the element as shown in Fig. 2.6. We see that the element increases in
length in the x direction and decreases in length in the y and z
directions. The dimensionless rate of increase in length is defined as
the normal strain, where ¢,, ¢,, and ¢, represent the normal strains in

Figure 2.6 Deformation attributed to o,.
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the x, y, and z directions respectively. Thus, the new length in any
direction is equal to its original length plus the rate of increase
(normal strain) times its original length. That is,

Ax' = Ax + ¢, Ax, Ay = Ay + e Ay, AZ =Az+e,Az  (2.2-1)

There is a direct relationship between strain and stress. Hooke’s law
for a linear, homogeneous, isotropic material is simply that the normal
strain is directly proportional to the normal stress, and is given by

& = %[ox —v(o, + ;)] (2.2-2a)
&y = %[oy —v(o,+ 0,)] (2.2-2b)
&, = %[oz —v(o, + )] (2.2-2¢)

where the material constants, E and v, are the modulus of elasticity
(also referred to as Young’s modulus) and Poisson’s ratio, respectively.
Typical values of E and v for some materials are given in Table 2.1 at
the end of this chapter.

If the strains in Eqgs. (2.2-2) are known, the stresses can be solved for
simultaneously to obtain

E

e = Ay = oy [ Ve ey )] (2.2-3a)
E

% = Ay = o [ Ve et )] (2.2-3b)
E

0, = m[(l — Ve, + (e, + &) (2.2-3c)

For plane stress, with o, = 0, Egs. (2.2-2) and (2.2-3) become

&, = %(ax —va,) (2.2-4a)
1
&y = E(Uy —va,) (2.2-4b)

&, = — %(ax +a,) (2.2-4c¢)
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and

E
Oy = m(ex + vey) (2.2-5a)

oy = 1_—EV2(8y + ve,) (2.2-5b)

Shear Strain. The change in shape of the element caused by the shear
stresses can be first illustrated by examining the effect of 7,, alone as
shown in Fig. 2.7. The engineering shear strain y,, is a measure of the
skewing of the stressed element from a rectangular parallelepiped. In
Fig. 2.7(b), the shear strain is defined as the change in the angle BAD.
That is,

Yy =/ BAD — / BA'D’
where y,, is in dimensionless radians.

For a linear, homogeneous, isotropic material, the shear strains in
the xy, yz, and zx planes are directly related to the shear stresses by

=)

Yoy = (2.2-62)
Tyz

=G (2.2-6b)

Vo = 2 (2.2-6¢)
G

where the material constant, G, is called the shear modulus.

(a)

Figure 2.7 Shear deformation.
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It can be shown that for a linear, homogeneous, isotropic material
the shear modulus is related to Poisson’s ratio by (Ref. 1)

E

2.3 Stress Transformations

As was stated in Sec. 2.1, knowing the state of stress on three
mutually orthogonal surfaces at a point in a structure is sufficient to
generate the state of stress for any surface at the point. This is
accomplished through the use of coordinate transformations. The
development of the transformation equations is quite lengthy and is
not provided here (see Ref. 1). Consider the element shown in Fig.
2.8(a), where the stresses on surfaces with normals in the x, y, and z
directions are known and are represented by the stress matrix

Ox  Txy Tax
[Oly:=| T 0y Ty (2.3-1)

Tox Tyz 0z

Now consider the element, shown in Fig. 2.8(b), to correspond to the
state of stress at the same point but defined relative to a different set of
surfaces with normals in the «/, ¥/, and 2z’ directions. The stress matrix
corresponding to this element is given by

Oy Tyy Toy
[O']x/y/z’ = | Twy Oy Tyz (2.3-2)
Ty Tyy Oy

To determine [o],,, by coordinate transformation, we need to
establish the relationship between the x'y'zZ and the xyz coordinate
systems. This is normally done using directional cosines. First, let us
consider the relationship between the x' axis and the xyz coordinate
system. The orientation of the x" axis can be established by the angles
Oy Oyy, and 0,,,, as shown in Fig. 2.9. The directional cosines for x" are

given by

l, =cosl,, m, = cos 0 n, =cosl,, (2.3-3)

X'y
Similarly, the ¥ and 2’ axes can be defined by the angles 0,,,, 0.,,, 0

y Yy ¥z
and 0,,, 0,,, 0,,, respectively, with corresponding directional cosines

ly, = cos O, m,
[, =cos0,,, m, = cos 0

= cos0,,, ny, =cos0,, (2.3-4)

s n, =cosl,, (2.3-5)
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(b) Stress element relative to x'y'z" axes

Figure 2.8 The stress at a point using different coordinate systems.

It can be shown that the transformation matrix

l,. my n,
[T]=|1 my n, (2.3-6)

l, my, n,
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Figure 2.9 Coordinate transformation.

transforms a vector given in xyz coordinates, {V},,., to a vector in x'y'z’
coordinates, {V},, by the matrix multiplication

{V}x’y’z’ = [T] {V}xyz (23'7)

Furthermore, it can be shown that the transformation equation for the
stress matrix is given by (see Ref. 1)

[0]y2 = [Tl[0],,.[T]" (2.3-8)

where [T]T is the transpose of the transformation matrix [T], which is
simply an interchange of rows and columns. That is,

l L, 1,

r x 'y 2
[T]" =| my m, my, (2.3-9)
Ny Ny Ny

The stress transformation by Eq. (2.3-8) can be implemented very
easily using a computer spreadsheet or mathematical software. Defin-
ing the directional cosines is another matter. One method is to define
the x'y'Z’ coordinate system by a series of two-dimensional rotations
from the initial xyz coordinate system. Table 2.2 at the end of this
chapter gives transformation matrices for this.
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EXAMPLE

The state of stress at a point relative to an xyz coordinate system is given by
the stress matrix

-8 6 -2
[0]y.=| 6 4 2| MPa
-2 2 -5

Determine the state of stress on an element that is oriented by first rotating
the xyz axes 45° about the z axis, and then rotating the resulting axes 30°
about the new x axis.

Solution. The surface normals can be found by a series of coordinate
transformations for each rotation. From Fig. 2.10(a), the vector components
for the first rotation can be represented by

X cosf sinf 0 ][«x
y. ¢ =| —sinf cosf 0|3y (a)
2 0 0 1 z

The last rotation establishes the x’y’z’ coordinates as shown in Fig. 2.10(b), and
they are related to the x;y,z; coordinates by

x' 1 0 0 X
y =10 cosp sing |1 y; (b)
4 0 —sing cos@ 2
Substituting Eq. (a) in (b) gives
x 1 0 0 cosf sinf 0
y =10 cos¢ sing —sinf cosf O
4 |0 —sing cos¢ 0 0 1)1z
cosf sin 6 0 x
= | —sinfcos¢ cosfOcosp sing |}y (c)
sinflsing —cosfsing cosg@ z

y , Z,
N z
X y
8 ?
x s N
z, Zl xl’ X
(a) First rotation (b) Second rotation

Figure 2.10
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Equation (c) is of the form of Eq. (2.3-7). Thus, the transformation matrix is

cosf sin 0 0
[T]=| —sinfcos ¢ cosfcosg sing (d)
sinffsing —cosfsing cos@
Substituting 0 = 45° and ¢ = 30° gives
. 2V2 2/2 0
(T1=7 -v6 V6 2 (e)
V2 V2 2438
The transpose of [T] is
) 2v/2 —V/6 V2
[T]T:Z 2V/2 6 -2 (N
0 2 23
From Eq. (2.3-8),
lzﬁzﬂo —86—212J§—J€J§
[0leye =7 | V6 V6 2 64 2|/ 12v2 V6 -2
V2 =2 2v31L-2 2 -5 0 2 238

This matrix multiplication can be performed simply using either a computer
spreadsheet or mathematical software, resulting in

4 5196 -3
[0)ey. = | 5196 —4.801 2.714 MPa
-3 2.714  -8.199

Stresses on a Single Surface. If one was concerned about the state of
stress on one particular surface, a complete stress transformation
would be unnecessary. Let the directional cosines for the normal of
the surface be given by [, m, and n. It can be shown that the normal
stress on the surface is given by

o=o0,%+ oym2 +a,n%+ 2ty lm + 2t,,mn + 2t,,nl (2.3-10)
and the net shear stress on the surface is
= [(o,l + 1ym + 1,.n)° + (Tyyl +aym + 7:yzn)2
+ (Tl +7ym + o,n)? — a?]/? (2.3-11)
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The direction of 7 is established by the directional cosines
1
Zr = ;[(Gx - G)Z + Ty + szn]
1
m, = ;[rxyl + (0, —o)m +1,,n] (2.3-12)

1
n.= ?[szl + Ty, M + (Uz - G)T’L]

EXAMPLE
The state of stress at a particular point relative to the xyz coordinate system is

14 7 =7
[0],y. = 7 10 0 kpsi

-7 0 35

Determine the normal and shear stress on a surface at the point where the
surface is parallel to the plane given by the equation

20—y+3z2=9

Solution. The normal to the surface is established by the directional
numbers of the plane and are simply the coefficients of x, y, and z terms of
the equation of the plane. Thus, the directional numbers are 2, —1, and 3. The
directional cosines of the normal to the surface are simply the normalized
values of the directional numbers, which are the directional numbers divided

by /22 + (—=1)? + 32 = /14 Thus

1=2/v/14, m=-1/V/14, n=3/J/14

From the stress matrix, o, =14, 7, =17, 1,, = -7, 0,=10, 7,, =0, and o,
= 35kpsi. Substituting the stresses and directional cosines into Eq. (2.3-10)
gives

o = 14(2/v/14)% 4+ 10(—1/v/14)* + 35(3/v/14)* 4+ 2(7)(2/v14)(—1//14)
+ 2(0)(—1/v/14)(3/v/14) 4+ 2(—7)(3//14)(2//14) = 19.21 kpsi

The shear stress is determined from Eq. (2.3-11), and is

7 = {[14(2/v/14) + T(=1/v/14) + (=1)(3/v/14)?
+[7(2/7/14) + 10(=1/+/14) + (0)(3/v/14)]?
+[(=T)(2/v/14) + (0)(—1//14) + 35(3/V14)]> — (19.21)*}"/? = 14.95 kpsi
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From Eq. (2.3-12), the directional cosines for the direction of 7 are

L[(M —19.21)(2/v/14) + 1(—1//14) + (=7)(3/v/14)] = —0.687

k=1195
m, = T195[7(2Nﬁ) +(10 — 19.21)(—1/+/14) + (0)(3/+/14)] = 0.415
n, = %95[(—7)(2Nﬂ) +(0)(—1/+/14) + (35 — 19.21)(3/+/14)] = 0.596

Plane Stress. For the state of plane stress shown in Fig. 2.11(a),
0, =1, =1, =0. Plane stress transformations are normally per-
formed in the xy plane, as shown in Fig. 2.11(b). The angles relating
the x'y'z’ axes to the xyz axes are

ex/x = 9, Gx/y = 900 - 9, ex/z == 900
Hy/x = 6 + 900, Gy/y - 9, 6}”2 = 900
0., = 90°, 0., = 90°, 0..=0

Thus the directional cosines are

l, =cosf m, = sinf ny, =0
l, = —sin0 m,, = cos 0 n, =0
l,=0 my, =0 ny=1

The last rows and columns of the stress matrices are zero so the
stress matrices can be written as

0, T
[o], :[ N xy} (2.3-13)

Y Txy Oy
' Yy
i "\

- e o

—_— T /Tx’Y' oy
] —= — Yo
- - =X X
(a) Initial element (b) Transformed element

Figure 2.11 Plane stress transformations.
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and

[0]py = [ v Ty } (2.3-14)

Tx/y/ O'y/
Since the plane stress matrices are 2 x 2, the transformation matrix
and its transpose are written as

—sinf cos@ sin 6 cos 0 (2.3-15)

[T]:[ cos 6 sin0i| [T]T:[COSH —sin6i|

Equations (2.3-13)—(2.3-15) can then be substituted into Eq. (2.3-8) to
perform the desired transformation. The results, written in long-hand
form, would be

.9 .
0. =0,c08> 0+ o,sin” 0 + 21, cos0sin 0

o, =0,sin® 0+ a, cos? 0 — 2t,, cossin 0 (2.3-16)

y
Tyy = —(0, —0,)sin6cos 0 + rxy(cos2 0 — sin® 0)

If the state of stress is desired on a single surface with a normal
rotated 0 counterclockwise from the x axis, the first and third equa-
tions of Egs. (2.3-16) can be used as given. However, using trigono-
metric identities, the equations can be written in slightly different
form. Letting ¢ and 7 represent the desired normal and shear stresses
on the surface, the equations are

+ - :
o=2= 5 I 4 O 5 oycos20—|—7:xysm29
(2.3-17)
Oy — 0y .
T=— sin 20 + 7, cos 20

Equations (2.3-17) represent a set of parametric equations of a circle in
the o7 plane. This circle is commonly referred to as Mohr’s circle and is
generally discussed in standard mechanics of materials textbooks.
This serves primarily as a teaching tool and adds little to applications,
so it will not be represented here (see Ref. 1).

Principal Stresses. In general, maximum and minimum values of the
normal stresses occur on surfaces where the shear stresses are zero.
These stresses, which are actually the eigenvalues of the stress
matrix, are called the principal stresses. Three principal stresses
exist, 04, g9, and o5, where they are commonly ordered as ¢, = g4 = 0g3.
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Considering the stress state given by the matrix of Eq. (2.3-1) to be
known, the principal stresses g, are related to the given stresses by

(6y —0,)l, +1ym, +1,m, =0

Tyl +(0y —0p)m, +1,.n, =0 (2.3-18)
Touly +7,.mp + (0, — 0,)n, =0
where [,, m,, and n, are the directional cosines of the normals to the
surfaces containing the principal stresses. One possible solution to

Egs. (2.3-18) is [, = m, = n, = 0. However, this cannot occur, since

B+my+n;=1 (2.3-19)

To avoid the zero solution of the directional cosines of Eqgs. (2.3-18), the
determinant of the coefficients of /,, m,, and n, in the equation is set to
zero. This makes the solution of the directional cosines indeterminate

from Eqgs. (2.3-18). Thus,

(Gx - Gp) Txy Tox
Tyy (0y—0p) Tys =0
Tex Tyz (02 - Up)

Expanding the determinant yields

3 2 2 2 2
0, — (0, + 0y +0,)0, + (0,0, + 0,0, + 0,0, — Ty — Ty, — T2,)0,

2 2 2y _
— (00,0, + 2T,y T), T, — 04Ty, — 0y To — 0,Ty) =0 (2.3-20)

where Eq. (2.3-20) is a cubic equation yielding the three principal
stresses 0, g4, and aj.

To determine the directional cosines for a specific principal stress,
the stress is substituted into Eqgs. (2.3-18). The three resulting equa-
tions in the unknowns /,, m,, and n, will not be independent since
they were used to obtain the principal stress. Thus, only two of Eqs.
(2.3-18) can be used. However, the second-order Eq. (2.3-19) can be
used as the third equation for the three directional cosines. Instead of
solving one second-order and two linear equations simultaneously, a
simplified method is demonstrated in the following example.”

"Mathematical software packages can be used quite easily to extract the eigenvalues
(6,) and the corresponding eigenvectors (I,, m,, and n,) of a stress matrix. The reader is
urged to explore software such as Mathcad, Matlab, Maple, and Mathematica, etc.
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EXAMPLE

For the following stress matrix, determine the principal stresses and the
directional cosines associated with the normals to the surfaces of each
principal stress.

Solution. Substituting s, =3, 7,, =1,17,, =1,0,=0,1,, =2,and ¢, = 0 into
Eq. (2.3-20) gives

op — (34 0+ 0)ap + [(3)(0) + (0)(0) + (0)(3) — 2% — 1% — 1o,
—[(3)(0)(0) + (2)(2)(1)(1) — (3)(2%) — (0)(1?) — (0)(1*)] = O

which simplifies to
2 2
6, — 30, —60,+8=0 (a)

The solutions to the cubic equation are g, = 4, 1, and —2MPa. Following the
conventional ordering,

g, = 4 MPa, oy =1 MPa, g3 = —2 MPa

The directional cosines associated with each principal stress are determined
independently. First, consider ¢; and substitute ¢, = 4 MPa into Eqgs. (2.3-18).
This results in

~li+my+n; =0 )
ll — 4m1 + 2n1 =0 (C)
li+2m;—4n, =0 (d)

where the subscript agrees with that of a;.

Equations (b), (c), and (d) are no longer independent since they were used to
determine the values of g,. Only two independent equations can be used, and
in this example, any two of the above can be used. Consider Egs. (b) and (c),
which are independent. A third equation comes from Eq. (2.3-19), which is
nonlinear in [/;, m,, and n,. Rather than solving the three equations simulta-
neously, consider the following approach.

Arbitrarily, let /; = 1 in Egs. (b) and (c). Rearranging gives

my+n =1
4m,; —2n, =1
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solving these simultaneously gives m; = n, = 1. These values of [}, m;, and n,
do not satisfy Eq. (2.3-19). However, all that remains is to normalize their

values by dividing by /12 + 3)* + ())* = v/6/2. Thus,"

I, = (1)(2/v6) =V6/3
m; = (1/2)(2/v/6) = v/6/6
ny = (1/2)(2/V6) =6/6

Repeating the same procedure for o, = 1 MPa results in
l,=+3/3, my=—3/3, ny,=-+3/3
and for o3 = —2MPa
Is=0, my=+2/2, n3=-v2/2

If two of the principal stresses are equal, there will exist an infinite set
of surfaces containing these principal stresses, where the normals of
these surfaces are perpendicular to the direction of the third principal
stress. If all three principal stresses are equal, a hydrostatic state of
stress exists, and regardless of orientation, all surfaces contain the
same principal stress with no shear stress.

Principal Stresses, Plane Stress. Considering the stress element shown
in Fig. 2.11(a), the shear stresses on the surface with a normal in the z
direction are zero. Thus, the normal stress g, = 0 is a principal stress.
The directions of the remaining two principal stresses will be in the xy
plane. If 7,,,, = 0 in Fig. 2.11(b), then o,, would be a principal stress, g,
with [, = cos 0, m,, = sin0, and n, = 0. For this case, only the first two
of Egs. (2.3-18) apply, and are

0, —0,)co80+1,,sinl=0
(7= %) v (2.3-21)
Ty €080+ (0, —0,)sinb =0

As before, we eliminate the trivial solution of Egs. (2.3-21) by setting
the determinant of the coefficients of the directional cosines to zero.
That is,

(O-x - Gp) Txy

= (0, —0,)(0, —0,) — 1>
Ty (0, — a,) x — Op)Oy = Op xy

= 0—127 - (O—x + Gy)ap + (O—xo—y - Tg%y) =0 (23'22)

"This method has one potential flaw. If [, is actually zero, then a solution would not
result. If this happens, simply repeat the approach letting either m; or n; equal unity.
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Equation (2.3-22) is a quadratic equation in g, for which the two
solutions are

o, = é |:(ax +0)+ (0, —0,)" + 4%] (2.3-23)

Since for plane stress, one of the principal stresses (o,) is always zero,
numbering of the stresses (o; = g5 > 03) cannot be performed until Eq.
(2.3-23) is solved.

Each solution of Eq. (2.3-23) can then be substituted into one of Egs.
(2.3-21) to determine the direction of the principal stress. Note that if
o, =0, and 1,, = 0, then o, and ¢, are principal stresses and Eqgs.
(2.3-21) are satisfied for all values of 6. This means that all stresses in
the plane of analysis are equal and the state of stress at the point is
isotropic in the plane.

EXAMPLE

Determine the principal stresses for a case of plane stress given by the stress
matrix

[(r]:[_i _1‘11] kpsi

Show the element containing the principal stresses properly oriented with
respect to the initial xyz coordinate system.

Solution. From the stress matrix, ¢, = 5, g, = 11, and 7,, = —4 kpsi and Eq.
(2.3-23) gives

5, =1 [(5 +11)+ \/(5 —11)* + 4(—4)2] =13, 3kpsi

Thus, the three principal stresses (o4, 09, 05), are (13, 3, 0) kpsi, respectively.
For directions, first substitute g; = 13kpsi into either one of Egs. (2.3-21).
Using the first equation with 6 = 6,

(6, —01)cos 0 +1,,8in0; = (5 — 13)cos 01 + (—4)sin0; =0

or

0, = tan*(— §) = —63.4°
4
Now for the other principal stress, o, = 3kpsi, the first of Egs. (2.3-21) gives
(0, — 09)cos Uy + 1, sin Oy = (5 — 3) cos Oy + (—4) sin 0y = 0

or

0, = tan’1<§) = 26.6°
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Tll kpsi

_ Skpsi
l

4 kpsi

(@) Initial element (b) Transformed element containing the

principal stresses.

Figure 2.12 Plane stress example.

Figure 2.12(a) illustrates the initial state of stress, whereas the orientation
of the element containing the in-plane principal stresses is shown in Fig.
2.12(b).

Maximum Shear Stresses. Consider that the principal stresses for a
general stress state have been determined using the methods just
described and are illustrated by Fig. 2.13. The 123 axes represent the
normals for the principal surfaces with directional cosines determined
by Egs. (2.3-18) and (2.3-19). Viewing down a principal stress axis
(e.g., the 3 axis) and performing a plane stress transformation in the
plane normal to that axis (e.g., the 12 plane), one would find that the
shear stress is a maximum on surfaces +45° from the two principal
stresses in that plane (e.g., o1, 05). On these surfaces, the maximum
shear stress would be one-half the difference of the principal stresses
[e.g., Tmax = (01 — 05)/2] and will also have a normal stress equal to the
average of the principal stresses [e.g., 0., = (07 + 09)/2]. Viewing
along the three principal axes would result in three shear stress

0,
o, }SB\\(‘I
. ™

Figure 2.13 Principal stress state.
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maxima, sometimes referred to as the principal shear stresses. These
stresses together with their accompanying normal stresses are

Plane 1, 21 (Tga0)12 = (01 — 03)/2, (Oave)r,2 = (01 +02)/2
Plane 2, 3: (Tmax)2,3 = (03 — 03)/2, (Oave)o,3 = (02 +03)/2
Plane 1, 3: (Tmax)1.3 = (01 —03)/2, (Gave)1.3 = (01 +03)/2

(2.3-24)

Since conventional practice is to order the principal stresses by
g, = 09 = g3, the largest shear stress of all is given by the third of
Egs. (2.3-24) and will be repeated here for emphasis:

Tmax = (07 — 03)/2 (2.3-25)

EXAMPLE
In the previous example, the principal stresses for the stress matrix

[(r]:[_i _1‘11] kpsi

were found to be (01,09, 03) = (13, 3,0)kpsi. The orientation of the element
containing the principal stresses was shown in Fig. 2.12(d), where axis 3 was
the z axis and normal to the page. Determine the maximum shear stress and
show the orientation and complete state of stress of the element containing
this stress.

Solution. The initial element and the transformed element containing the
principal stresses are repeated in Fig. 2.14(a) and (b), respectively. The
maximum shear stress will exist in the 1, 3 plane and is determined by
substituting ¢; = 13 and g3 = 0 into Egs. (2.3-24). This results in

(Tmax)1,3 = (18 — 0)/2 = 6.5 kpsi, (Gave)1.3 = (13 +0)/2 = 6.5 kpsi

To establish the orientation of these stresses, view the element along the axis
containing g, = 3kpsi [view A, Fig. 2.14(c)] and rotate the surfaces +45° as
shown in Fig. 2.14(c).

The directional cosines associated with the surfaces are found through
successive rotations. Rotating the xyz axes to the 123 axes yields

1 [cos63.4° —sin63.4° 0«
2 ¢ = | sin63.4° c0s63.4° 03y
3] | o 0 1]z

[0.4472 —0.8944 0 X
=108944 04472 0[]y (@)
0 0 1 z
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y y
View A V
13 kpsi Z/

11 kpsi
.2
\  3kpsi .
5 kpsi . 26.6
~1I xS .
4 kpsi
l \ 63.4°
(a) Initial element 1 .
(b) Transformed element containing
Principal stresses
13 kpsi 65Kk .
t psi\ﬁ 5 kpsi / 6.5 kpsi
3 \ 3 A
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AN

— -—— —-—
N
——
=

(c) View A from (d) Two-dimensional transformation of
part (b) part (¢) showing the maximum shear stress

Figure 2.14 Plane stress maximum shear stress.
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A counterclockwise rotation of 45° of the normal in the 3 direction about axis 2

is represented by

x [cos45° 0 —sin45h° 1

yby=1 o 1 0 2

zZ | sin45° 0 cos 45° 3

[0.7071 0 —0.7071 1

= 0 1 0 2

| 0.7071 0O 0.7071 3

Thus,
x [0.7071 0 —0.7071 0.4472 —-0.8944 0 X
y = 0 1 0 0.8944 0.4472

P4 | 0.7071 0 0.7071 0 0 1 z

=1 0.8944 0.4472
| 0.3162 —-0.6325  0.7071

[0.3162 —0.6325 —0.7071 ‘ ’

(b)
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The directional cosines for Eq. (2.1-14c) are therefore

yx Mgy T 0.3162 —0.6325 —0.7071
Mye Nyy Ny, | =|0.8944  0.4472 0
Moy Mgy N 0.3162 —0.6325 0.7071

2y 2’z

The other surface containing the maximum shear stress can be found similarly
except for a clockwise rotation of 45° for the second rotation.

2.4 Strain Transformations

The equations for strain transformations are identical to those for
stress transformations. However, the engineering strains as defined in
Sec. 2.2 will not transform. Transformations can be performed if the
shear strain is modified. All of the equations for the stress transforma-
tions can be employed simply by replacing ¢ and 7 in the equations by ¢
and y/2 (using the same subscripts), respectively. Thus, for example,
the equations for plane stress, Eqs. (2.3-16), can be written for strain
as

£y = &, o8> 0 + &y sin® 0 + Vxy €OS 08I 0
&y = & sin” 0 + &y cos? 0 — Vxy COS 08I0 0 (2.4-1)
Ywy = —2(¢; —¢,)sin0cos 0 + yxy(cos2 0 — sin® 0)

2.5 Reference

1. Budynas, R. G.: “Advanced Strength and Applied Stress Analysis,” 2nd ed., McGraw-
Hill, 1999.
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2.6 Tables
TABLE 2.1 Material properties’
Thermal
Modulus of expansion
elasticity, £ coefficient, o
Poisson’s
Material Mpsi GPa ratio, v u/°F u/°C
Aluminum alloys 10.5 72 0.33 13.1 23.5
Brass (65/35) 16 110 0.32 11.6 20.9
Concrete 4 34 0.20 5.5 9.9
Copper 17 118 0.33 9.4 16.9
Glass 10 69 0.24 5.1 9.2
Iron (gray cast) 13 90 0.26 6.7 12.1
Steel (structural) 29.5 207 0.29 6.5 11.7
Steel (stainless) 28 193 0.30 9.6 17.3
Titanium (6 A1/4V) 16.5 115 0.34 5.2 9.5

"The values given in this table are to be treated as approximations of the true behavior of an
actual batch of the given material.

TABLE 2.2 Transformation matrices for positive

rotations about an axis’

Axis Transformation matrix
X axis:
z
23 X1 1 0 0 X
y yy¢=10 cos sinf |y
! 2 0 —sinf cos ||z
0
X, X1 Y
y axis:
X1
0
N X X cos@ 0 —sinf |[x
Y14 = 0 1 0 y
2 sinf 0 cosl || z
z !
z axis:
Y1 y
X X cos) sinf 0 ][x
¥y ¢ =| —sinf cosO 0|y
0 z 0 0 1]]z
X
2,31

A positive rotation about a given axis is counterclockwise about

the axis (as viewed from the positive axis direction).
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TABLE 2.3 Transformation equations

General state of stress

[0],y> = [Tlo],,.[T]"

0-ﬂc’y’z’ O‘xyz

where
Oy Tyy Tow l. my ny Ox  Txy Tox

[U]x'y'z' = | Ty Oy Tyz |, [T] = ly’ my  ny |, [O']xyz: Tyy Oy Tyz
Tox Ty’z’ Oy lz’ my ny Tox Tyz 0z

Stresses on a single surface (I, m, n are directional cosines of surface normal)

c=0l+ o-ym2 +o,n?+ 2ty Im + 2t,mn + 2t,,nl

t=[(o L+t ym+ 1,.n)% + (tyyl+o,m+ ryzn)2 + (Tl +1om + a,n)? — %2

1

I, ==[(0, — )+t ym+1,n]
T
1

me = [toyl + (0, — a)m +7,1]

1
n,= ; [szl + TyzM + (az - O')TL]

I., m,, and n, are directional cosines for the direction of 7.

Plane stress (0 is counterclockwise from x axis to surface normal, x')

0 =1%(0,+0,)+3(0, — g,)cos 20 + 1, sin 20

1= —4(0, — 0,)sin 20 + 1, cos 20

Principal stresses (general case)

3 2 2 2 2
0, = (0 + 0y +0,)0, + (0,0, + 0,0, + 0,0, — Ty — Ty, — T2,)0p

2 2 2\ _
= (0400, + 2T, T, Top — 04Ty, — 0T, — 0,T3) =0

Directional cosines (I,, m,, n,) are found from three of the following equations:

(05 — o), + Tymy, + 1,0, =0

Tylp + (0, —a,)m, +1,,n, =0 select two independent equations

Toulp +1.m, + (0, —a,)n, =0

2 2 2 _
L+my+n;=1

Principal stresses (plane stress) One principal stress is zero and the remaining two are

given by

0p=3 [(ax +a,)£,/(0, — o'y)2 + 4r%yi|

Angle of surface normal relative to the x axis is given by

fop—0
0, = tan ( d . x)
xy




Chapter

The Behavior of Bodies
under Stress

This discussion pertains to the behavior of what are commonly
designated as structural materials. That is, materials suitable for
structures and members that must sustain loads without suffering
damage. Included in this category are most of the metals, concrete,
wood, composite materials, some plastics, etc. It is beyond the scope of
this book to give more than a mere statement of a few important facts
concerning the behavior of a stressed material. Extensive literature is
available on every phase of the subject, and the articles contained
herein will serve as an introduction only.

3.1 Methods of Loading

The mechanical properties of a material are usually determined by
laboratory tests, and the commonly accepted values of ultimate
strength, elastic limit, etc., are those found by testing a specimen of
a certain form in a certain manner. To apply results so obtained in
engineering design requires an understanding of the effects of many
different variables, such as form and scale, temperature and other
conditions of service, and method of loading.

The method of loading, in particular, affects the behavior of bodies
under stress. There are an infinite number of ways in which stress
may be applied to a body, but for most purposes it is sufficient to
distinguish the types of loading now to be defined.

1. Short-time static loading. The load is applied so gradually that at
any instant all parts are essentially in equilibrium. In testing, the
load is increased progressively until failure occurs, and the total
time required to produce failure is not more than a few minutes. In

35
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service, the load is increased progressively up to its maximum
value, is maintained at that maximum value for only a limited
time, and is not reapplied often enough to make fatigue a consid-
eration. The ultimate strength, elastic limit, yield point, yield
strength, and modulus of elasticity of a material are usually
determined by short-time static testing at room temperature.

2. Long-time static loading. The maximum load is applied gradually
and maintained. In testing, it is maintained for a sufficient time to
enable its probable final effect to be predicted; in service, it is
maintained continuously or intermittently during the life of the
structure. The creep, or flow characteristics, of a material and its
probable permanent strength are determined by long-time static
testing at the temperatures prevailing under service conditions.
(See Sec. 3.6.)

3. Repeated loading. Typically, a load or stress is applied and wholly
or partially removed or reversed repeatedly. This type of loading is
important if high stresses are repeated for a few cycles or if
relatively lower stresses are repeated many times; it is discussed
under Fatigue. (See Sec. 3.8.)

4. Dynamic loading. The circumstances are such that the rate of
change of momentum of the parts must be taken into account. One
such condition may be that the parts are given definite accelera-
tions corresponding to a controlled motion, such as the constant
acceleration of a part of a rotating member or the repeated accel-
erations suffered by a portion of a connecting rod. As far as stress
effects are concerned, these loadings are treated as virtually static
and the inertia forces (Sec. 16.2) are treated exactly as though they
were ordinary static loads.

A second type of quasi-static loading, quick static loading, can be
typified by the rapid burning of a powder charge in a gun barrel.
Neither the powder, gas, nor any part of the barrel acquires appreci-
able radial momentum; therefore equilibrium may be considered to
exist at any instant and the maximum stress produced in the gun
barrel is the same as though the powder pressure had developed
gradually.

In static loading and the two types of dynamic loading just
described, the loaded member is required to resist a definite force. It
is important to distinguish this from impact loading, where the loaded
member is usually required to absorb a definite amount of energy.

Impact loading can be divided into two general categories. In the
first case a relatively large slow-moving mass strikes a less massive
beam or bar and the kinetic energy of the moving mass is assumed to
be converted into strain energy in the beam. All portions of the beam
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and the moving mass are assumed to stop moving simultaneously. The
shape of the elastic axis of the deflected beam or bar is thus the same
as in static loading. A special case of this loading, generally called
sudden loading, occurs when a mass that is not moving is released
when in contact with a beam and falls through the distance the beam
deflects. This produces approximately twice the stress and deflection
that would have been produced had the mass been “eased” onto the
beam (see Sec. 16.4). The second case of impact loading involves
the mass of the member being struck. Stress waves travel through
the member during the impact and continue even after the impacting
mass has rebounded (see Sec. 16.3).

On consideration, it is obvious that methods of loading really differ
only in degree. As the time required for the load to be applied
increases, short-time static loading changes imperceptibly into long-
time static loading; impact may be produced by a body moving so
slowly that the resulting stress conditions are practically the same as
though equal deflection had been produced by static loading; the
number of stress repetitions at which fatigue becomes involved is
not altogether definite. Furthermore, all these methods of loading may
be combined or superimposed in various ways. Nonetheless, the
classification presented is convenient because most structural and
machine parts function under loading that may be classified definitely
as one of the types described.

3.2 Elasticity; Proportionality of Stress and Strain

In determining stress by mathematical analysis, it is customary to
assume that material is elastic, isotropic, homogeneous, and infinitely
divisible without change in properties and that it conforms to Hooke’s
law, which states that strain is proportional to stress. Actually, none of
these assumptions is strictly true. A structural material is usually an
aggregate of crystals, fibers, or cemented particles, the arrangement of
which may be either random or systematic. When the arrangement is
random the material is essentially isotropic if the part considered is
large in comparison with the constituent units; when the arrangement
is systematic, the elastic properties and strength are usually different
in different directions and the material is anisotropic. Again, when
subdivision is carried to the point where the part under consideration
comprises only a portion of a single crystal, fiber, or other unit, in all
probability its properties will differ from those of a larger part that is
an aggregate of such units. Finally, very careful experiments show
that for all materials there is probably some set and some deviation
from Hooke’s law for any stress, however small.

These facts impose certain limitations upon the conventional meth-
ods of stress analysis and must often be taken into account, but
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formulas for stress and strain, mathematically derived and based on
the assumptions stated, give satisfactory results for nearly all
problems of engineering design. In particular, Hooke’s law may be
regarded as practically true up to a proportional limit, which, though
often not sharply defined, can be established for most materials with
sufficient definiteness. So, too, a fairly definite elastic limit is deter-
minable; in most cases it is so nearly equal to the proportional limit
that no distinction need be made between the two.

3.3 Factors Affecting Elastic Properties

For ordinary purposes it may be assumed that the elastic properties of
most metals, when stressed below a nominal proportional limit, are
constant with respect to stress, unaffected by ordinary atmospheric
variations of temperature, unaffected by prior applications of moder-
ate stress, and independent of the rate of loading. When precise
relations between stress and strain are important, as in the design
or calibration of instruments, these assumptions cannot always be
made. The fourth edition of this book (Ref. 1) discussed in detail the
effects of strain rate, temperature, etc., on the elastic properties of
many metals and gave references for the experiments performed. The
relationships between atomic and molecular structure and the elastic
properties are discussed in texts on materials science.

Wood exhibits a higher modulus of elasticity and much higher
proportional limit when tested rapidly than when tested slowly. The
standard impact test on a beam indicates a fiber stress at the propor-
tional limit approximately twice as great as that found by the standard
static bending test. Absorption of moisture up to the fiber saturation
point greatly lowers both the modulus of elasticity and the propor-
tional limit (Ref. 2).

Both concrete and cast iron have stress-strain curves more or less
curved throughout, and neither has a definite proportional limit. For
these materials it is customary to define E as the ratio of some definite
stress (for example, the allowable stress or one-fourth the ultimate
strength) to the corresponding unit strain; the quantity so determined
is called the secant modulus since it represents the slope of the secant
of the stress-strain diagram drawn from the origin to the point
representing the stress chosen. The moduli of elasticity of cast iron
are much more variable than those of steel, and the stronger grades
are stiffer than the weaker ones. Cast iron suffers a distinct set from
the first application of even a moderate stress; but after several
repetitions of that stress, the material exhibits perfect elasticity up
to, but not beyond, that stress. The modulus of elasticity is slightly less
in tension than in compression.
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Concrete also shows considerable variation in modulus of elasticity,
and in general its stiffness increases with its strength. Like cast iron,
concrete can be made to exhibit perfect elasticity up to a moderate
stress by repeated loading up to that stress. Because of its tendency to
yield under continuous loading, the modulus of elasticity indicated by
long-time loading is much less than that obtained by progressive load-
ing at ordinary speeds.

3.4 Load-Deformation Relation for a Body

If Hooke’s law holds for the material of which a member or structure is
composed, the member or structure will usually conform to a similar
law of load-deformation proportionality and the deflection of a beam or
truss, the twisting of a shaft, the dilation of a pressure container, etc.,
may in most instances be assumed proportional to the magnitude of
the applied load or loads.

There are two important exceptions to this rule. One is to be found
in any case where the stresses due to the loading are appreciably
affected by the deformation. Examples of this are: a beam subjected to
axial and transverse loads; a flexible wire or cable held at the ends and
loaded transversely; a thin diaphragm held at the edges and loaded
normal to its plane; a ball pressed against a plate or against another
ball; and a helical spring under severe extension.

The second exception is represented by any case in which failure
occurs through elastic instability, as in the compressive loading of a
long, slender column. Here, for compression loads less than a specific
critical (Euler) load, elastic instability plays no part and the axial
deformation is linear with load. At the critical load, the type of
deformation changes, and the column bends instead of merely short-
ening axially. For any load beyond the critical load, high bending
stresses and failure occurs through excessive deflection (see Sec. 3.13).

3.5 Plasticity

Elastic deformation represents an actual change in the distance
between atoms or molecules; plastic deformation represents a perma-
nent change in their relative positions. In crystalline materials, this
permanent rearrangement consists largely of group displacements of
the atoms in the crystal lattice brought about by slip on planes of least
resistance, parts of a crystal sliding past one another and in some
instances suffering angular displacement. In amorphous materials,
the rearrangement appears to take place through the individual
shifting from positions of equilibrium of many atoms or molecules,
the cause being thermal agitation due to external work and the result
appearing as a more or less uniform flow like that of a viscous liquid. It



40 Formulas for Stress and Strain [cHAP. 3

should be noted that plastic deformation before rupture is much less
for biaxial or triaxial tension than for one-way stress; for this reason
metals that are ordinarily ductile may prove brittle when thus
stressed.

3.6 Creep and Rupture under Long-Time Loading

More materials will creep or flow to some extent and eventually fail
under a sustained stress less than the short-time ultimate strength.
After a short time at load, the initial creep related to stress redis-
tribution in the structure and strain hardening ceases and the steady
state, or viscous creep, predominates. The viscous creep will continue
until fracture unless the load is reduced sufficiently, but it is seldom
important in materials at temperatures less than 40 to 50% of their
absolute melting temperatures. Thus, creep and long-time strength at
atmospheric temperatures must sometimes be taken into account in
designing members of nonferrous metals and in selecting allowable
stresses for wood, plastics, and concrete.

Metals. Creep is an important consideration in high-pressure steam
and distillation equipment, gas turbines, nuclear reactors, supersonic
vehicles, etc. Marin, Odqvist, and Finnie, in Ref. 3, give excellent
surveys and list references on creep in metals and structures. Conway
(Refs. 4 and 5) discusses the effectiveness of various parametric
equations, and Conway and Flagella (Ref. 6) present extensive
creep-rupture data for the refractory metals. Odqvist (Ref. 7) discusses
the theory of creep and its application to large deformation and
stability problems in plates, shells, membranes, and beams and
tabulates creep constants for 15 common metals and alloys. Hult
(Ref. 8) also discusses creep theory and its application to many
structural problems. Penny and Marriott (Ref. 9) discuss creep
theories and the design of experiments to verify them. They also
discuss the development of several metals for increased resistance to
creep at high temperatures as well as polymeric and composite
materials at lower temperatures. Reference 10 is a series of papers
with extensive references covering creep theory, material properties,
and structural problems.

Plastics. The literature on the behavior of the many plastics being
used for structural or machine applications is too extensive to list here.

Concrete. Under sustained compressive stress, concrete suffers
considerable plastic deformation and may flow for a very long time
at stresses less than the ordinary working stress. Continuous flow has
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been observed over a period of 10 years, though ordinarily it ceases or
becomes imperceptible within 1 or 2 years. The rate of flow is greater
for air than for water storage, greater for small than for large speci-
mens, and for moderate stresses increases approximately as the
applied stress. On removal of stress, some elastic recovery occurs.
Concrete also shows creep under tensile stress, the early creep rate
being greater than the flow rate under compression (Refs. 11 and 16).

Under very gradually applied loading concrete exhibits an ultimate
strength considerably less than that found under short-time loading;
in certain compression tests it was found that increasing the time of
testing from 1s to 4h decreased the unit stress at failure about 30%,
most of this decrease occurring between the extremely quick (1 or 2s)
and the conventional (several minutes) testing. This indicates that the
compressive stress that concrete can sustain indefinitely may be
considerably less than the ultimate strength as determined by a
conventional test. On the other hand, the long-time imposition of a
moderate loading appears to have no harmful effect; certain tests show
that after 10 years of constant loading equal to one-fourth the ultimate
strength, the compressive strength of concrete cylinders is practically
the same and the modulus of elasticity is considerably greater than for
similar cylinders that were not kept under load (Ref. 15).

The modulus of rupture of plain concrete also decreases with the
time of loading, and some tests indicate that the long-time strength in
cross-breaking may be only 55 to 75% of the short-time strength (Ref.
12).

Reference 17 is a compilation of 12 papers, each with extensive
references, dealing with the effect of volumetric changes on concrete
structures. Design modifications to accommodate these volumetric
changes are the main thrust of the papers.

Wood. Wood also yields under sustained stress; the long-time (several
years) strength is about 55% of the short-time (several minutes)
strength in bending; for direct compression parallel to the grain the
corresponding ratio is about 75% (Ref. 2).

3.7 Criteria of Elastic Failure and of Rupture

For the purpose of this discussion it is convenient to divide metals into
two classes: (1) ductile metals, in which marked plastic deformation
commences at a fairly definite stress (yield point, yield strength, or
possibly elastic limit) and which exhibit considerable ultimate elonga-
tion; and (2) brittle metals, for which the beginning of plastic deforma-
tion is not clearly defined and which exhibit little ultimate elongation.
Mild steel is typical of the first class, and cast iron is typical of the
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second; an ultimate elongation of 5% has been suggested as the
arbitrary dividing line between the two classes of metals.

A ductile metal is usually considered to have failed when it has
suffered elastic failure, i.e., when marked plastic deformation has
begun. Under simple uniaxial tension this occurs when the stress
reaches a value we will denote by o,,, which represents the yield
strength, yield point, or elastic limit, according to which one of these is
the most satisfactory indication of elastic failure for the material in
question. The question arises, when does elastic failure occur under
other conditions of stress, such as compression, shear, or a combina-
tion of tension, compression, and shear?

There are many theories of elastic failure that can be postulated for
which the consequences can be seen in the tensile test. When the
tensile specimen begins to yield at a tensile stress of g, the following
events occur:

1. The maximum-principal-stress theory: the maximum principal
stress reaches the tensile yield strength, o,,.

2. The maximum-shear-stress theory (also called the Tresca theory):
the maximum shear stress reaches the shear yield strength, 0.5 o,,.

3. The maximum-principal-strain theory: the maximum principal
strain reaches the yield strain, o,,/E.

4. The maximum-strain-energy theory: the strain energy per unit

volume reaches a maximum of 0.5 aﬁs/E.

5. The maximum-distortion-energy theory (also called the von Mises
theory and the Maxwell-Huber—Hencky—von Mises theory): the
energy causing a change in shape (distortion) reaches
[(1+v)/(BE)]o%,.

6. The maximum-octahedral-shear-stress theory: the shear stress
acting on each of eight (octahedral) surfaces containing a hydro-
static normal stress, o, = (61 + 05+ 03)/3, reaches a value of
ﬁays /3. It can be shown that this theory yields identical conditions
as that provided by the maximum-distortion-energy theory.

Of these six theories, for ductile materials, the fifth and sixth are the
ones that agree best with experimental evidence. However, the second
leads to results so nearly the same and is simpler and more conserva-
tive for design applications. Thus, it is more widely used as a basis for
design.

Failure theories for yield of ductile materials are based on shear or
distortion. The maximum-distortion-energy theory equates the distor-
tion energy for a general case of stress to the distortion energy when a
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simple tensile specimen yields. In terms of the principal stresses the
distortion energy for the general case can be shown to be (see Ref. 59)

1+

d= W[(fﬁ — 09)* + (064 — 63)° + (05 — 01)*] (3.7-1)

u

For the simple tensile test, yielding occurs when o; =0, and

g9 = 05 = 0. From Eq. (3.7-1), this gives a distortion energy at yield of

1+v
(ud)y = S—EU§S (37-2)

Equating the energy for the general case, Eq. (3.7-1), to that for yield,
Eq. (3.7-2), gives

VO5l(01 — 02)? + (03 — 03 + (05 — )] = 0y (3.7-3)

For yield under a single, uniaxial state of stress, the stress would be
equated to o,,. Thus, for yield, a single, uniaxial stress equivalent to
the general state of stress is equated to the left-hand side of Eq. (3.7-3).
This equivalent stress is called the von Mises stress, o, and is given
by

oot =\ 0.5l(0r — 02 + (03— 03 + (03— 0] (3.7-4)

Therefore, the maximum-distortion-energy theory predicts elastic fail-
ure when the von Mises stress reaches the yield strength.

The maximum-octahedral-shear-stress theory yields identical
results to that of the maximum-distortion-energy theory (see Ref.
59). Through stress transformation, a stress element can be isolated
in which all normal stresses on it are equal. These normal stresses are
the averages of the normal stresses of the stress matrix, which are also
the averages of the principal stresses and are given by

UaveZ%(0x+ay+az)=%(0'1+02+0'3) (3.7-5)

The element with these normal stresses is an octahedron where the
eight surfaces are symmetric with respect to the principal axes. The
directional cosines of the normals of these surfaces, relative to the
principal axes, are eight combinations of +1/+/3 (e.g., one set is 1/4/3,
1/4/3, 1/4/3; another is 1/4/3, —14/3, 1/4/3; etc.). The octahedron is as
shown in Fig. 3.1. The shear stresses on these surfaces are also equal,
called the octahedral shear stresses, and are given by

Toct = %\/(0-1 - 62)2 + (02 - O'3)2 + (03 — 0'1)2 (37-6)



44 Formulas for Stress and Strain [cHAP. 3

Figure 3.1 Octahedral surfaces containing octa-
hedral shear stresses (shown relative to the
principal axes, with only one set of stresses

displayed).
Again, for the simple tensile test, yield occurs when ¢, = g, and g, =
a5 = 0. From Eq. (3.7-6), this gives an octahedral shear stress at yield of
V2
(Toct)y = ? Oys (3.7-7)

Equating Eqgs. (3.7-6) and (3.7-7) results in Eq. (3.7-3) again, proving
that the maximum-octahedral-shear-stress theory is identical to the
maximum-distortion-energy theory.

The maximum-shear-stress theory equates the maximum shear
stress for a general state of stress to the maximum shear stress
obtained when the tensile specimen yields. If the principal stresses
are ordered such that o, > 05 > 05, the maximum shear stress is given
by 0.5(c; — g3) (see Sec. 2.3, Eq. 2.3-25). The maximum shear stress

obtained when the tensile specimen yields is 0.5 o,. Thus, the
condition for elastic failure for the maximum-shear-stress theory isf
01— 03 =0y (3.7-8)

The criteria just discussed concern the elastic failure of material.
Such failure may occur locally in a member and may do no real damage
if the volume of material affected is so small or so located as to have

+ Plane stress problems are encountered quite often where the principal stresses are
found from Eq. (2.3-23), which is

o,+0 0, — 0\ 2
J":<x2 y)i (F57) +

This yields only two of the three principal stresses. The third principal stress for plane
stress is zero. Once the three principal stresses are determined, they can be ordered
according to o; = 0y = 03 and then Eq. (3.7-8) can be employed.
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only negligible influence on the form and strength of the member as a
whole. Whether or not such local overstressing is significant depends
upon the properties of the material and the conditions of service.
Fatigue properties, resistance to impact, and mechanical functioning
are much more likely to be affected than static strength, and a degree of
local overstressing that would constitute failure in a high-speed
machine part might be of no consequence whatever in a bridge member.

A brittle material cannot be considered to have definitely failed until
it has broken, which can occur either through a tensile fracture, when
the maximum tensile stress reaches the ultimate strength, or through
what appears to be a shear fracture, when the maximum compressive
stress reaches a certain value. The fracture occurs on a plane oblique
to the maximum compressive stress but not, as a rule, on the plane of
maximum shear stress, and so it cannot be considered to be purely a
shear failure (see Ref. 14). The results of some tests on glass and
Bakelite (Ref. 26) indicate that for these brittle materials either the
maximum stress or the maximum strain theory affords a satisfactory
criterion of rupture while neither the maximum shear stress nor the
constant energy of distortion theory does. These tests also indicate
that strength increases with rate of stress application and that the
increase is more marked when the location of the most stressed zone
changes during the loading (pressure of a sphere on a flat surface)
than when this zone is fixed (axial tension).

Another failure theory that is applicable to brittle materials is the
Coulomb—Mohr theory of failure. Brittle materials have ultimate
compressive strengths ¢,. greater than their ultimate tensile
strengths o,,, and therefore both a uniaxial tensile test and a uniaxial
compressive test must be run to use the Coulomb—Mohr theory. First
we draw on a single plot both Mohr’s stress circle for the tensile test at
the instant of failure and Mohr’s stress circle for the compressive test
at the instant of failure; then we complete a failure envelope simply by
drawing a pair of tangent lines to the two circles, as shown in Fig. 3.2.

Failure under a complex stress situation is expected if the largest of
the three Mohr circles for the given situation touches or extends
outside the envelope just described. If all normal stresses are tensile,
the results coincide with the maximum stress theory. For a condition
where the three principal stresses are gy, 0, and o, as shown in Fig.
3.2, failure is being approached but will not take place unless the
dashed circle passing through ¢4 and o, reaches the failure envelope.

The accurate prediction of the breaking strength of a member
composed of brittle metal requires a knowledge of the effect of form
and scale, and these effects are expressed by the rupture factor (see
Sec. 3.11). In addition, what has been said here concerning brittle
metals applies also to any essentially isotropic brittle material.

Thus far, our discussion of failure has been limited to isotropic
materials. For wood, which is distinctly anisotropic, the possibility of
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failure in each of several ways and directions must be taken into
account, viz.: (1) by tension parallel to the grain, which causes
fracture; (2) by tension transverse to the grain, which causes fracture;
(3) by shear parallel to the grain, which causes fracture; (4) by
compression parallel to the grain, which causes gradual buckling of
the fibers usually accompanied by a shear displacement on an oblique
plane; (5) by compression transverse to the grain, which causes
sufficient deformation to make the part unfit for service. The unit
stress producing each of these types of failure must be ascertained by
suitable tests (Ref. 2).

Another anisotropic class of material of consequence is that of the
composites. It is well known that composite members (see Secs. 7.3,
8.2, and Appendix C), such as steel reinforced concrete beams, more
effectively utilize the more expensive, higher-strength materials in
high-stress areas and the less expensive, lower-strength materials in
the low-stress areas. Composite materials accomplish the same effect
at microstructural and macrostructural levels. Composite materials
come in many forms, but are generally formulated by embedding a
reinforcement material in the form of fibers, flakes, particles, or
laminations, in a randomly or orderly oriented fashion within a base
matrix of polymeric, metallic, or ceramic material. For more detail
properties of composites, see Ref. 60.

3.8 Fatigue

Practically all materials will break under numerous repetitions of a
stress that is not as great as the stress required to produce immediate
rupture. This phenomenon is known as fatigue.
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Over the past 100 years the effects of surface condition, corrosion,
temperature, etc., on fatigue properties have been well documented,
but only in recent years has the microscopic cause of fatigue damage
been attributed to cyclic plastic flow in the material at the source of a
fatigue crack (crack initiation) or at the tip of an existing fatigue crack
(crack propagation; Ref. 20). The development of extremely sensitive
extensometers has permitted the separation of elastic and plastic
strains when testing axially loaded specimens over short gage lengths.
With this instrumentation it is possible to determine whether cyclic
loading is accompanied by significant cyclic plastic strain and, if it is,
whether the cyclic plastic strain continues at the same level, increases,
or decreases. Sandor (Ref. 44) discusses this instrumentation and its
use in detail.

It is not feasible to reproduce here even a small portion of the fatigue
data available for various engineering materials. The reader should
consult materials handbooks, manufacturers’ literature, design
manuals, and texts on fatigue. See Refs. 44 to 48. Some of the more
important factors governing fatigue behavior in general will be
outlined in the following material.

Number of cycles to failure. Most data concerning the number of cycles
to failure are presented in the form of an S—N curve where the cyclic
stress amplitude is plotted versus the number of cycles to failure. This
generally leads to a straight-line log—log plot if we account for the
scatter in the data. For ferrous metals a lower limit exists on the stress
amplitude and is called the fatigue limit, or endurance limit. This
generally occurs at a life of from 10° to 107 cycles of reversed stress,
and we assume that stresses below this limit will not cause failure
regardless of the number of repetitions. With the ability to separate
elastic and plastic strains accurately, there are instances when a plot
of plastic-strain amplitudes versus N and elastic-strain amplitudes
versus N will reveal more useful information (Refs. 44 and 45).

Method of loading and size of specimen. Uniaxial stress can be
produced by axial load, bending, or a combination of both. In flat-
plate bending, only the upper and lower surfaces are subjected to the
full range of cyclic stress. In rotating bending, all surface layers are
similarly stressed, but in axial loading, the entire cross section is
subjected to the same average stress. Since fatigue properties of a
material depend upon the statistical distribution of defects throughout
the specimen, it is apparent that the three methods of loading will
produce different results.

In a similar way, the size of a bending specimen will affect the
fatigue behavior while it will have little effect on an axially loaded
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specimen. Several empirical formulas have been proposed to represent
the influence of size on a machine part or test specimen in bending.
For steel, Moore (Ref. 38) suggests the equation

(. 0016\ (. 0016
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where ¢/, is the endurance limit for a specimen of diameter d’ and o) is
the endurance limit for a specimen of diameter d”. This formula was
based on test results obtained with specimens from 0.125 to 1.875
inches in diameter and shows good agreement within that size range.
Obviously it cannot be used for predicting the endurance limit of very
small specimens. The few relevant test results available indicate a
considerable decrease in endurance limit for very large diameters
(Refs. 22—-24).

Stress concentrations. Fatigue failures occur at stress levels less than
those necessary to produce the gross yielding which would blunt the
sharp rise in stress at a stress concentration. It is necessary, therefore,
to apply the fatigue strengths of a smooth specimen to the peak
stresses expected at the stress concentrations unless the size of the
stress-concentrating notch or fillet approaches the grain size or the
size of an anticipated defect in the material itself (see Factor of stress
concentration in fatigue in Sec. 3.10). References 40 and 41 discuss the
effect of notches on low-cycle fatigue.

Surface conditions. Surface roughness constitutes a kind of stress
raiser. Discussion of the effect of surface coatings and platings is
beyond the scope of this book (see Refs. 28 and 36).

Corrosion fatigue. Under the simultaneous action of corrosion and
repeated stress, the fatigue strength of most metals is drastically
reduced, sometimes to a small fraction of the strength in air, and a
true endurance limit can no longer be said to exist. Liquids and gases
not ordinarily thought of as especially conducive to corrosion will often
have a very deleterious effect on fatigue properties, and resistance to
corrosion is more important than normal fatigue strength in determin-
ing the relative rating of different metals (Refs. 24, 25, and 31).

Range of stress. Stressing a ductile material beyond the elastic limit
or yield point in tension will raise the elastic limit for subsequent
cycles but lower the elastic limit for compression. The consequence of
this Bauschinger effect on fatigue is apparent if one accepts the
statement that fatigue damage is a result of cyclic plastic flow; 1.e.,
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if the range of cyclic stress is reduced sufficiently, higher peak stresses
can be accepted without suffering continuing damage.

Various empirical formulas for the endurance limit corresponding to
any given range of stress variation have been suggested, the most
generally accepted of which is expressed by the Goodman diagram or
some modification thereof. Figure 3.3 shows one method of construct-
ing this diagram. In each cycle, the stress varies from a maximum
value g,,,, to a minimum value o,,;,, either of which is plus or minus
according to whether it is tensile or compressive. The mean stress is

_1
Om = 9 (O-max + O-min)
and the alternating stress is
_1
Ogq = Q(amax - Gmin)

the addition and subtraction being algebraic. With reference to rectan-
gular axes, a,, is measured horizontally and ¢, vertically. Obviously
when ¢,, = 0, the limiting value of ¢, is the endurance limit for fully
reversed stress, denoted here by o,. When ¢, = 0, the limiting value of
0,, 1s the ultimate tensile strength, denoted here by ¢,. Points A and B
on the axes are thus located.

According to the Goodman theory, the ordinate to a point on the
straight line AB represents the maximum alternating stress ¢, that
can be imposed in conjunction with the corresponding mean stress o,),.
Any point above AB represents a stress condition that would even-
tually cause failure; any point below AB represents a stress condition
with more or less margin of safety. A more conservative construction,
suggested by Soderberg (Ref. 13), is to move point B back to o,
the yield strength. A less conservative but sometimes preferred
construction, proposed by Gerber, is to replace the straight line by
the parabola.
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The Goodman diagrams described can be used for steel and for
aluminum and titanium alloys, but for cast iron many test results fall
below the straight line AB and the lower curved line, suggested by
Smith (Ref. 21), is preferred. Test results for magnesium alloys also
sometimes fall below the straight line.

Figure 3.3 represents conditions where o, is tensile. If ¢, 1is
compressive, o, is increased; and for values of o,, less than the
compression yield strength, the relationship is represented approxi-
mately by the straight line AB extended to the left with the same
slope. When the mean stress and alternating stress are both torsional,
g, 1s practically constant until g,, exceeds the yield strength in shear;
and for alternating bending combined with mean torsion, the same
thing is true. But when ¢,, is tensile and ¢, is torsional, ¢, diminishes
as 0, increases in almost the manner represented by the Goodman
line. When stress concentration is to be taken into account, the
accepted practice is to apply K; (or K, if K; is not known) to ¢, only,
not to ¢, (for K, and K, see Sec. 3.10).

Residual stress. Since residual stresses, whether deliberately intro-
duced or merely left over from manufacturing processes, will influence
the mean stress, their effects can be accounted for. One should be
careful, however, not to expect the beneficial effects of a residual stress
if during the expected life of a structure it will encounter overloads
sufficient to change the residual-stress distribution. Sandor (Ref. 44)
discusses this in detail and points out that an occasional overload
might be beneficial in some cases.

The several modified forms of the Goodman diagram are used for
predicting the stress levels which will form cracks, but other more
extensive plots such as the Haigh diagram (Ref. 45) can be used to
predict in addition the stress levels for which cracks, once formed, will
travel, fatigue lives, etc.

Combined stress. No one of the theories of failure in Sec. 3.7 can be
applied to all fatigue loading conditions. The maximum-distortion-
energy theory seems to be conservative in most cases, however.
Reference 18 gives a detailed description of an acceptable procedure
for designing for fatigue under conditions of combined stress. The
procedure described also considers the effect of mean stress on the
cyclic stress range. Three criteria for failure are discussed: gross
yielding, crack initiation, and crack propagation. An extensive discus-
sion of fatigue under combined stress is found in Refs. 27, 31, and 45.

Stress history. A very important question and one that has been given
much attention is the influence of previous stressing on fatigue
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strength. One theory that has had considerable acceptance is the
linear damage law (Miner in Ref. 27); here the assumption is made
that the damage produced by repeated stressing at any level is directly
proportional to the number of cycles. Thus, if the number of cycles
producing failure (100% damage) at a stress range o; is IV;, then the
proportional damage produced by N cycles of the stress is N/N; and
stressing at various stress levels for various numbers of cycles causes
cumulative damage equal to the summation of such fractional values.
Failure occurs, therefore, when Y N/N; = 1. The formula implies that
the effect of a given number of cycles is the same, whether they are
applied continuously or intermittently, and does not take into account
the fact that for some metals understressing (stressing below the
endurance limit) raises the endurance limit. The linear damage law
is not reliable for all stress conditions, and various modifications have
been proposed, such as replacing 1 in the formula by a quantity x
whose numerical value, either more or less than unity, must be
determined experimentally. Attempts have been made to develop a
better theory (e.g., Corten and Dolan, Freudenthal and Gumbel, in
Ref. 32). Though all the several theories are of value when used
knowledgeably, it does not appear that as yet any generally reliable
method is available for predicting the life of a stressed part under
variable or random loading. (See Refs. 19 and 39.) See Refs. 44 and 45
for a more detailed discussion.

A modification of the foil strain gage called an S—N fatigue life gage
(Refs. 33 and 34) measures accumulated plastic deformation in the
form of a permanent change in resistance. A given total change in
resistance can be correlated with the damage necessary to cause a
fatigue failure in a given material.

3.9 Brittle Fracture

Brittle fracture is a term applied to an unexpected brittle failure of a
material such as low-carbon steel where large plastic strains are
usually noted before actual separation of the part. Major studies of
brittle fracture started when failures such as those of welded ships
operating in cold seas led to a search for the effect of temperature on
the mode of failure. For a brittle fracture to take place the material
must be subjected to a tensile stress at a location where a crack or
other very sharp notch or defect is present and the temperature must
be lower than the so-called transition temperature. To determine a
transition temperature for a given material, a series of notched speci-
mens is tested under impact loading, each at a different temperature,
and the ductility or the energy required to cause fracture is noted.
There will be a limited range of temperatures over which the ductility
or fracture energy will drop significantly. Careful examination of the
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fractured specimens will show that the material at the root of the
notch has tried to contract laterally. Where the fracture energy is
large, there is evidence of a large lateral contraction; and where the
fracture energy is small, the lateral contraction is essentially zero. In
all cases the lateral contraction is resisted by the adjacent less
stressed material. The deeper and sharper cracks have relatively
more material to resist lateral contraction. Thicker specimens have
a greater distance over which to build up the necessary triaxial tensile
stresses that lead to a tensile failure without producing enough shear
stress to cause yielding. Thus, the term transition temperature is
somewhat relative since it depends upon notch geometry as well as
specimen size and shape. Since yielding is a flow phenomenon, it is
apparent that rate of loading i1s also important. Static loading of
sufficient intensity may start a brittle fracture, but it can continue
under much lower stress levels owing to the higher rate of loading.
The ensuing research in the field of fracture mechanics has led to the
development of both acceptable theories and experimental techniques,
the discussion of which is beyond the scope of this book. Users should
examine Refs. 49-58 for information and for extensive bibliographies.

3.10 Stress Concentration

The distribution of elastic stress across the section of a member may be
nominally uniform or may vary in some regular manner, as illustrated
by the linear distribution of stress in flexure. When the variation is
abrupt so that within a very short distance the intensity of stress
increases greatly, the condition is described as stress concentration. It
is usually due to local irregularities of form such as small holes, screw
threads, scratches, and similar stress raisers. There is obviously no
hard and fast line of demarcation between the rapid variation of stress
brought about by a stress raiser and the variation that occurs in such
members as sharply curved beams, but in general the term siress
concentration implies some form of irregularity not inherent in the
member as such but accidental (tool marks) or introduced for some
special purpose (screw thread).

The maximum intensity of elastic stress produced by many of the
common kinds of stress raisers can be ascertained by mathematical
analysis, photoelastic analysis, or direct strain measurement and is
usually expressed by the stress concentration factor. This term is
defined in Appendix B, but its meaning may be made clearer by an
example. Consider a straight rectangular beam, originally of uniform
breadth b and depth D, which has had cut across the lower face a fairly
sharp transverse V-notch of uniform depth A, making the net depth of
the beam section at that point D — A. If now the beam is subjected to a
uniform bending moment M, the nominal fiber stress at the root of the
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notch may be calculated by ordinary flexure formula ¢ = Mc/I, which
here reduces to o = 6M/[b(D — h)?]. But the actual stress ¢ is very
much greater than this because of the stress concentration that occurs
at the root of the notch. The ratio ¢’/o, actual stress divided by
nominal stress, is the stress concentration factor K, for this particular
case. Values of K, for a number of common stress raisers are given in
Table 17.1. The most complete single source for numerical values of
stress concentration factors is Peterson (Ref. 42). It also contains an
extensive bibliography.

The abrupt variation and high local intensity of stress produced by
stress raisers are characteristics of elastic behavior. The plastic yield-
ing that occurs on overstressing greatly mitigates stress concentration
even in relatively brittle materials and causes it to have much less
influence on breaking strength than might be expected from a consid-
eration of the elastic stresses only. The practical significance of stress
concentration therefore depends on circumstances. For ductile metal
under static loading it is usually (though not always) of little or no
importance; for example, the high stresses that occur at the edges of
rivet holes in structural steel members are safely ignored, the stress
due to a tensile load being assumed uniform on the net section. (In the
case of eyebars and similar pin-connected members, however, a reduc-
tion of 25% in allowable stress on the net section is recommended.) For
brittle material under static loading, stress concentration is often a
serious consideration, but its effect varies widely and cannot be
predicted either from K, or from the brittleness of the material (see
Ref. 35).

What may be termed the stress concentration factor at rupture, or
the strength reduction factor, represents the significance of stress
concentration for static loading. This factor, which will be denoted
by K, is the ratio of the computed stress at rupture for a plain
specimen to the computed stress at rupture for the specimen contain-
ing the stress raiser. For the case just described, it would be the ratio
of the modulus of rupture of the plain beam to that of the notched
beam, the latter being calculated for the net section. K, is therefore a
ratio of stresses, one or both of which may be fictitious, but is none-
theless a measure of the strength-reducing effect of stress concentra-
tion. Some values of K, are given in Table 17 of Ref. 1.

It is for conditions involving fatigue that stress concentration is
most important. Even the most highly localized stresses, such as those
produced by small surface scratches, may greatly lower the apparent
endurance limit, but materials vary greatly in notch sensitivity, as
susceptibility to this effect is sometimes called. Contrary to what
might be expected, ductility (as ordinarily determined by axial testing)
is not a measure of immunity to stress concentration in fatigue; for
example, steel is much more susceptible than cast iron. What may be



54 Formulas for Stress and Strain [cHAP. 3

termed the fatigue stress concentration factor K; is the practical
measure of notch sensitivity. It is the ratio of the endurance limit of
a plain specimen to the nominal stress at the endurance limit of a
specimen containing the stress raiser.

A study of available experimental data shows that K; is almost
always less, and often significantly less, than K,, and various methods
for estimating K; from K, have been proposed. Neuber (Ref. 37)
proposes the formula

K -1
K =1+ L
f 1+ np/p/(n — )

where o is the flank angle of the notch (called 6 in Table 17.1), p is the
radius of curvature (in inches) at the root of the notch (called r in Table
17.1), and p’ is a dimension related to the grain size, or size of some
type of basic building block, of the material and may be taken as
0.0189 in for steel.

All the methods described are valuable and applicable within
certain limitations, but none can be applied with confidence to all
situations (Ref. 29). Probably none of them gives sufficient weight to
the effect of scale in the larger size range. There is abundant evidence
to show that the significance of stress concentration increases with
size for both static and repeated loading, especially the latter.

An important fact concerning stress concentration is that a single
isolated notch or hole has a worse effect than have a number of similar
stress raisers placed close together; thus, a single V-groove reduces the
strength of a part more than does a continuous screw thread of almost
identical form. The deleterious effect of an unavoidable stress raiser
can, therefore, be mitigated sometimes by juxtaposing additional form
irregularities of like nature, but the actual superposition of stress
raisers, such as the introduction of a small notch in a fillet, may result
in a stress concentration factor equal to or even exceeding the product
of the factors for the individual stress raisers (Refs. 30 and 43).

(3.10-1)

3.11 Effect of Form and Scale on Strength;
Rupture Factor

It has been pointed out (Sec. 3.7) that a member composed of brittle
material breaks in tension when the maximum tensile stress reaches
the ultimate strength or in shear when the maximum compressive
stress reaches a certain value. In calculating the stress at rupture in
such a member it is customary to employ an elastic-stress formula;
thus the ultimate fiber stress in a beam is usually calculated by the
ordinary flexure formula. It is known that the result (modulus of
rupture) is not a true stress, but it can be used to predict the strength
of a similar beam of the same material. However, if another beam of
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the same material but of different cross section, span/depth ratio, size,
or manner of loading and support is tested, the modulus of rupture will
be found to be different. (The effect of the shape of the section is often
taken into account by the form factor, and the effects of the span/depth
ratio and manner of loading are recognized in the testing procedure.)
Similarly, the calculated maximum stress at rupture in a curved beam,
flat plate, or torsion member is not equal to the ultimate strength of
the material, and the magnitude of the disparity will vary greatly with
the material, form of the member, manner of loading, and absolute
scale. In order to predict accurately the breaking load for such a
member, it is necessary to take this variation into account, and the
rupture factor (defined in Appendix B) provides a convenient means of
doing so. Values of the rupture factor for a number of materials and
types of members are given in Table 18 of Ref. 1.

On the basis of many experimental determinations of the rupture
factor (Ref. 35) the following generalizations may be made:

1. The smaller the proportional part of the member subjected to high
stress, the larger the rupture factor. This is exemplified by the facts
that a beam of circular section exhibits a higher modulus of rupture
than a rectangular beam and that a flat plate under a concentrated
center load fails at a higher computed stress than one uniformly
loaded. The extremes in this respect are, on the one hand, a
uniform bar under axial tension for which the rupture factor is
unity and, on the other hand, a case of severe stress concentration
such as a sharply notched bar for which the rupture factor may be
indefinitely large.

2. In the flexure of statically indeterminate members, the redistribu-
tion of bending moments that occurs when plastic yielding starts at
the most highly stressed section increases the rupture factor. For
this reason a flat plate gives a higher value than a simple beam,
and a circular ring gives a higher value than a portion of it tested as
a statically determinate curved beam.

3. The rupture factor seems to vary inversely with the absolute scale
for conditions involving abrupt stress variation, which is consistent
with the fact (already noted) that for cases of stress concentration
both K, and K; diminish with the absolute scale.

4. As arule, the more brittle the material, the more nearly all rupture
factors approach unity. There are, however, many exceptions to this
rule. It has been pointed out (Sec. 3.10) that immunity to notch
effect even under static loading is not always proportional to
ductility.

The practical significance of these facts is that for a given material
and given factor of safety, some members may be designed with a
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much higher allowable stress than others. This fact is often recognized
in design; for example, the allowable stress for wooden airplane spars
varies according to the form factor and the proportion of the stress that
is flexural.

What has been said here pertains especially to comparatively brittle
materials, 1.e., materials for which failure consists in fracture rather
than in the beginning of plastic deformation. The effect of form on the
ultimate strength of ductile members is less important, although even
for steel the allowable unit stress is often chosen with regard to
circumstances such as those discussed previously. For instance, in
gun design the maximum stress is allowed to approach and even
exceed the nominal elastic limit, the volume of material affected
being very small, and in structural design extreme fiber stresses in
bending are permitted to exceed the value allowed for axial loading. In
testing, account must be taken of the fact that some ductile metals
exhibit a higher ultimate strength when fracture occurs at a reduced
section such as would be formed in a tensile specimen by a concentric
groove or notch. Whatever effect of stress concentration may remain
during plastic deformation is more than offset by the supporting action
of the shoulders, which tends to prevent the normal “necking down.”

3.12 Prestressing

Parts of an elastic system, by accident or design, may have introduced
into them stresses that cause and are balanced by opposing stresses in
other parts, so that the system reaches a state of stress without the
imposition of any external load. Examples of such initial, or locked-up,
stresses are the temperature stresses in welded members, stresses in a
statically indeterminate truss due to tightening or “rigging” some of
the members by turnbuckles, and stresses in the flange couplings of a
pipeline caused by screwing down the nuts. The effects of such
prestressing upon the rigidity and strength of a system will now be
considered, the assumption being made that prestressing is not so
severe as to affect the properties of the material.

In discussing this subject it is necessary to distinguish two types of
systems, viz. one in which the component parts can sustain reversal of
stress and one in which at least some of the component parts cannot
sustain reversal of stress. Examples of the first type are furnished by a
solid bar and by a truss, all members of which can sustain either
tension or compression. Examples of the second type are furnished by
the bolt-flange combination mentioned and by a truss with wire
diagonals that can take tension only.

For the first type of system, prestressing has no effect on initial
rigidity. Thus a plain bar with locked-up temperature stresses will
exhibit the same modulus of elasticity as a similar bar from which
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these stresses have been removed by annealing; two prestressed
helical springs arranged in parallel, the tension in one balancing the
compression in the other, will deflect neither more nor less than the
same two springs similarly placed without prestressing.

Prestressing will lower the elastic limit (or allowable load, or
ultimate strength) provided that in the absence of prestressing all
parts of the system reach their respective elastic limits (or allowable
loads, or ultimate strengths) simultaneously. But if this relation
between the parts does not exist, then prestressing may raise any or
all of these quantities. One or two examples illustrating each condition
may make this clear.

Consider first a plain bar that is to be loaded in axial tension. If
there are no locked-up stresses, then (practically speaking) all parts of
the bar reach their allowable stress, elastic limit, and ultimate
strength simultaneously. But if there are locked-up stresses present,
then the parts in which the initial tension is highest reach their elastic
limit before other parts and the elastic limit of the bar as a whole is
thus lowered. The load at which the allowable unit stress is first
reached is similarly lowered, and the ultimate strength may also be
reduced; although if the material is ductile, the equalization of stress
that occurs during elongation will largely prevent this.

As an example of the second condition (all parts do not simulta-
neously reach the elastic limit or allowable stress) consider a thick
cylinder under internal pressure. If the cylinder is not prestressed, the
stress at the interior surface reaches the elastic limit first and so
governs the pressure that may be applied. But if the cylinder is
prestressed by shrinking on a jacket or wrapping with wire under
tension, as is done in gun construction, then the walls are put into an
initial state of compression. This compressive stress also is greatest at
the inner surface, and the pressure required to reverse it and produce
a tensile stress equal to the elastic limit is much greater than before.
As another example, consider a composite member comprising two
rods of equal length, one aluminum and the other steel, that are placed
side by side to jointly carry a tensile load. For simplicity, it will be
assumed that the allowable unit stresses for the materials are the
same. Because the modulus of elasticity of the steel is about three
times that of the aluminum, it will reach the allowable stress first and
at a total load less than the sum of the allowable loads for the bars
acting separately. But if the composite bar is properly prestressed, the
steel being put into initial compression and the aluminum into initial
tension (the ends being in some way rigidly connected to permit this),
then on the application of a tensile load the two bars will reach the
allowable stress simultaneously and the load-carrying capacity of the
combination is thus greater than before. Similarly the elastic limit and
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sometimes the ultimate strength of a composite member may be raised
by prestressing.

In a system of the second type (in which all parts cannot sustain
stress reversal) prestressing increases the rigidity for any load less
than that required to produce stress reversal. The effect of prestress-
ing up to that point is to make the rigidity of the system the same as
though all parts were effective. Thus in the case of the truss with wire
diagonals it is as though the counterwires were taking compression; in
the case of the flange-bolt combination it is as though the flanges were
taking tension. (If the flanges are practically rigid in comparison with
the bolts, there is no deformation until the applied load exceeds the
bolt tension and so the system is rigid.) When the applied load becomes
large enough to cause stress reversal (to make the counterwires go
slack or to separate the flanges), the effect of prestressing disappears
and the system is neither more nor less rigid than a similar one not
prestressed provided, of course, none of the parts has been over-
stressed.

The elastic limit (or allowable load, or ultimate strength) of a system
of this type is not affected by prestressing unless the elastic limit (or
allowable load, or ultimate strength) of one or more of the parts is
reached before the stress reversal occurs. In effect, a system of this
type is exactly like a system of the first type until stress reversal
occurs, after which all effects of prestressing vanish.

The effects of prestressing are often taken advantage of, notably in
bolted joints (flanges, cylinder heads, etc.), where high initial tension
in the bolts prevents stress fluctuation and consequent fatigue, and in
prestressed reinforced-concrete members, where the initially
compressed concrete is enabled, in effect, to act in tension without
cracking up to the point of stress reversal. The example of the
prestressed thick cylinder has already been mentioned.

3.13 Elastic Stability

Under certain circumstances the maximum load a member will
sustain is determined not by the strength of the material but by the
stiffness of the member. This condition arises when the load produces
a bending or a twisting moment that is proportional to the correspond-
ing deformation. The most familiar example is the Euler column.
When a straight slender column is loaded axially, it remains straight
and suffers only axial compressive deformation under small loads. If
while thus loaded it is slightly deflected by a transverse force, it will
straighten after removal of that force. But there is obviously some
axial load that will just hold the column in the deflected position, and
since both the bending moment due to the load and the resisting
moment due to the stresses are directly proportional to the deflection,
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the load required thus to hold the column is independent of the
amount of the deflection. If this condition of balance exists at stresses
less than the elastic limit, the condition is called elastic stability and
the load that produces this condition is called the critical load. Any
increase of the load beyond this critical value is usually attended by
immediate collapse of the member.

It is the compressive stresses within long, thin sections of a struc-
ture that can cause instabilities. The compressive stress can be elastic
or inelastic and the instability can be global or local. Global instabil-
ities can cause catastrophic failure, whereas local instabilities may
cause permanent deformation but not necessarily a catastrophic fail-
ure. For the Euler column, when instability occurs, it is global since
the entire cross section is involved in the deformation. Localized
buckling of the edges of the flange in compression of a wide-flange
I-beam in bending can occur. Likewise, the center of the web of a
transversely loaded I-beam or plate girder in bending undergoes pure
shear where along the diagonal (45°) compressive stresses are present
and localized buckling is possible.

Other examples of elastic stability are afforded by a thin cylinder
under external pressure, a thin plate under edge compression or edge
shear, and a deep thin cantilever beam under a transverse end load
applied at the top surface. Some such elements, unlike the simple
column described previously, do not fail under the load that initiates
elastic buckling but demonstrate increasing resistance as the buckling
progresses. Such postbuckling behavior is important in many
problems of shell design. Elastic stability is discussed further in
Chap. 15, and formulas for the critical loads for various members
and types of loadings are given in Tables 15.1 and 15.2.

3.14 References

1. Roark, R. J. “Formulas for Stress and Strain,” 4th ed., McGraw-Hill, 1965.
2. “Wood Handbook,” Forest Products Laboratory, U.S. Dept. of Agriculture, 1987.
3. Abramson, H. N., H. Leibowitz, J. M. Crowley, and S. Juhasz (eds.): “Applied
Mechanics Surveys,” Spartan Books, 1966.
4. Conway, J. B.: “Stress-rupture Parameters: Origin, Calculation, and Use,” Gordon
and Breach Science Publishers, 1969.
5. Conway, J. B.: “Numerical Methods for Creep and Rupture Analyses,” Gordon and
Breach Science Publishers, 1967.
6. Conway, J. B., and P. N. Flagella: “Creep-rupture Data for the Refractory Metals to
High Temperatures,” Gordon and Breach Science Publishers, 1971.
7. Odqvist, F. K. G.: “Mathematical Theory of Creep and Creep Rupture,” Oxford
University Press, 1966.
8. Hult, J. A. H.: “Creep in Engineering Structures,” Blaisdell, 1966.
9. Penny, R. K., and D. L. Marriott: “Design for Creep,” McGraw-Hill, 1971.
10. Smith, A. 1., and A. M. Nicolson (eds.): “Advances in Creep Design, The A. E. Johnson
Memorial Volume,” Applied Science Publishers, 1971.
11. Davis, R. E., H. E. Davis, and J. S. Hamilton: Plastic Flow of Concrete under
Sustained Stress, Proc. ASTM, vol. 34, part II, p. 854, 1934.



60

12.
13.
14.
15.

16.

31.
32.
33.

34.
35.

36.
317.
38.
39.
40.
41.

42.
. Vicentini, V.: Stress-Concentration Factors for Superposed Notches, Exp. Mech., vol.

44.

Formulas for Stress and Strain [cHAP. 3

Report of Committee on Materials of Construction, Bull. Assoc. State Eng. Soc., July
1934.

Soderberg, R.: Working Stresses, ASME Paper A-106, J. Appl. Mech., vol. 2, no. 3,
1935.

N4dai, A.: Theories of Strength., ASME Paper APM 55-15, J. Appl. Mech., vol. 1,
no. 3, 1933.

Washa, G. W,, and P. G. Fluck: Effect of Sustained Loading on Compressive Strength
and Modulus of Elasticity of Concrete, J. Am. Concr. Inst., vol. 46, May 1950.
Neville, A. M.: “Creep of Concrete: Plain, Reinforced, and Prestressed,” North-
Holland, 1970.

. Designing for Effects of Creep, Shrinkage, Temperature in Concrete Structures, Am.

Concr. Inst. Publ. SP-27, 1971.

. “Fatigue Design Handbook,” Society of Automotive Engineers, Inc., 1968.

. Structural Fatigue in Aircraft, ASTM Spec. Tech. Publ. 404, 1965.

. Fatigue Crack Propagation, ASTM Spec. Tech. Publ. 415, 1966.

. Smith. J. O.: The Effect of Range of Stress on Fatigue Strength, Univ. Ill., Eng. Exp.

Sta. Bull. 334, 1942.

. Horger, O. dJ., and H. R. Neifert: Fatigue Strength of Machined Forgings 6 to 7 Inches

in Diameter, Proc. ASTM, vol. 39, 1939.

. Eaton, F. C.: Fatigue Tests of Large Alloy Steel Shafts; Symposium on Large Fatigue

Testing Machines and their Results, ASTM Spec. Tech. Publ. 216, 1957.

. Jiro, H., and A. Junich: Studies on Rotating Beam Fatigue of Large Mild Steel

Specimens, Proc. 9th Jap. Natl. Congr. Appl. Mech., 1959.

. Gould, A. J.: Corrosion Fatigue (in Ref. 32).
. Weibull, W.: Investigations into Strength Properties of Brittle Materials, Proc. B.

Swed. Inst. Eng. Res., no. 149, 1938.

. Sines, George, and J. L. Waisman (eds.): “Metal Fatigue,” McGraw-Hill, 1959.
. Heywood, R. B.: “Designing against Fatigue of Metals,” Reinhold, 1962.
. Yen, C. S., and T. J. Dolan: A Critical Review of the Criteria for Notch Sensitivity in

Fatigue of Metals, Univ. Ill., Exp. Sta. Bull. 398, 1952.

. Mowbray, A. Q., Jr.: The Effect of Superposition of Stress Raisers on Members

Subjected to Static or Repeated Loads, Proc. Soc. Exp. Stress Anal, vol. 10, no. 2,
1953.

Forrest, P. G.: “Fatigue of Metals,” Pergamon Press, Addison-Wesley Series in
Metallurgy and Materials, 1962.

International Conference on Fatigue of Metals, Institution of Mechanical Engineers,
London, and American Society of Mechanical Engineers, New York, 1956.

Harting, D. R.: The -S/N- Fatigue Life Gage: A Direct Means of Measuring Cumu-
lative Fatigue Damage, Exp. Mech., vol. 6, no. 2, February 1966.

Descriptive literature, Micro-Measurements, Inc., Romulus, Mich.

Roark, R. J., R. S. Hartenberg, and R. Z. Williams: The Influence of Form and Scale on
Strength, Univ. Wis. Exp. Ste. Bull. 84, 1938.

Battelle Memorial Institute: “Prevention of Fatigue of Metals,” John Wiley & Sons,
1941.

Neuber, H.: “Theory of Notch Stresses,” J. W. Edwards, Publisher, Incorporated,
1946.

Moore, H. F.: A Study of Size Effect and Notch Sensitivity in Fatigue Tests of Steel,
Proc. Am. Soc. Test. Mater., vol. 45, 1945.

Metal Fatigue Damage: Mechanism, Detection, Avoidance, and Repair, ASTM Spec.
Tech. Publ. 495, 1971.

Cyclic Stress-Strain Behavior: Analysis, Experimentation, and Failure Prediction,
ASTM Spec. Tech. Publ. 519, 1973.

Effect of Notches on Low-Cycle Fatigue: A Literature Survey, ASTM Spec. Tech. Publ.
490, 1972.

Peterson, H. E.: “Stress Concentration Factors,” John Wiley & Sons, 1974.

7, no. 3, March 1967.
Sandor, B. I.: “Fundamentals of Cyclic Stress and Strain,” The University of
Wisconsin Press, 1972.



Sec. 3.14] The Behavior of Bodies under Stress 61

45.
46.
47.

48.

55.
56.
57.

58.
. Budynas, R. G.: “Advanced Strength and Applied Stress Analysis,” 2nd ed., McGraw-

60.

Fuchs, H. O., and R. I. Stephens: “Metal Fatigue in Engineering,” John Wiley & Sons,
1980.

“Fatigue and Microstructure,” papers presented at the 1978 ASM Materials Science
Seminar, American Society for Metals, 1979.

Pook, L. P.: “The Role of Crack Growth in Metal Fatigue,” The Metals Society,
London, 1983.

Ritchie, R. O., and J. Larkford (eds.): “Small Fatigue Cracks,” Proceedings of the
Second Engineering Foundation International Conference/Workshop, Santa
Barbara, Calif., Jan. 5-10, 1986, The Metallurgical Society, Inc., 1986.

. “Int. J. Fracture,” Martinus Nijhoff.

. Eng. Fracture Mech., Pergamon Journals.

. Journal of Reinforced Plastics and Composites, Technomic Publishing.

. Liebowitz, H. (ed.): “Fracture,” Academic Press, 1968.

. Sih. G. C.: “Handbook of Stress Intensity Factors,” Institute of Fracture and Solid

Mechanics, Lehigh University, 1973.

. Kobayashi, A. S. (ed.): “Experimental Techniques in Fracture Mechanics, 1 and 2,”

Towa State University Press, 1973 and 1975.

Broek, D.: “Elementary Engineering Fracture Mechanics,” 3d ed., Martinus Nijhoff,
1982.

Atluri, S. N. (ed): “Computational Methods in the Mechanics of Fracture,” North-
Holland, 1984.

Sih. G. C., E. Sommer, and W. Dahl (eds.): “Application of Fracture Mechanics to
Materials and Structures,” Martinus Nijhoff, 1984.

Kobayashi, A. S. (ed.): “Handbook on Experimental Mechanics,” Prentice-Hall, 1987.

Hill, 1999.
Schwartz, M. M.: “Composite Materials Handbook,” 2nd ed., McGraw-Hill, 1992.



Chapter

Principles and Analytical Methods

Most of the formulas of mechanics of materials express the relations
among the form and dimensions of a member, the loads applied
thereto, and the resulting stress or deformation. Any such formula is
valid only within certain limitations and is applicable only to certain
problems. An understanding of these limitations and of the way in
which formulas may be combined and extended for the solution of
problems to which they do not immediately apply requires a knowl-
edge of certain principles and methods that are stated briefly in the
following articles. The significance and use of these principles and
methods are illustrated in Part 3 by examples that accompany the
discussion of specific problems.

4.1 Equations of Motion and of Equilibrium

The relations that exist at any instant between the motion of a body
and the forces acting on it may be expressed by these two equations:
(1) F, (the component along any line x of all forces acting on a
body) = ma, (the product of the mass of the body and the x component
of the acceleration of its mass center); (2) T, (the torque about any line
x of all forces acting on the body) = dH,/dt (the time rate at which its
angular momentum about that line is changing). If the body in
question is in equilibrium, these equations reduce to (1) F, =0 and
@ T, =0.

These equations, Hooke’s law, and experimentally determined
values of the elastic constants E, G, and v constitute the basis for
the mathematical analysis of most problems of mechanics of materials.
The majority of the common formulas for stress are derived by
considering a portion of the loaded member as a body in equilibrium
under the action of forces that include the stresses sought and then
solving for these stresses by applying the equations of equilibrium.

63
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4.2 Principle of Superposition

With certain exceptions, the effect (stress, strain, or deflection)
produced on an elastic system by any final state of loading is the
same whether the forces that constitute that loading are applied
simultaneously or in any given sequence and is the result of the
effects that the several forces would produce if each acted singly.

An exception to this principle is afforded by any case in which some
of the forces cause a deformation that enables other forces to produce
an effect they would not have otherwise. A beam subjected to trans-
verse and axial loading is an example; the transverse loads cause a
deflection that enables the longitudinal load to produce a bending
effect it would not produce if acting alone. In no case does the principle
apply if the deformations are so large as to alter appreciably the
geometrical relations of the parts of the system.

The principle of superposition is important and has many applica-
tions. It often makes it possible to resolve or break down a complex
problem into a number of simple ones, each of which can be solved
separately for like stresses, deformations, etc., which are then alge-
braically added to yield the solution of the original problem.

4.3 Principle of Reciprocal Deflections

Let A and B be any two points of an elastic system. Let the displace-
ment of B in any direction U due to force P acting in any direction V at
A be u; and let the displacement of A in the direction V due to a force @
acting in the direction U at B be v. Then Pv = Qu.

This is the general statement of the principle of reciprocal deflec-
tions. If P and @ are equal and parallel and u and v are parallel, the
statement can be simplified greatly. Thus, for a horizontal beam with
vertical loading and deflection understood, the principle expresses the
following relation: A load applied at any point A produces the same
deflection at any other point B as it would produce at A if applied at B.

The principle of reciprocal deflections is a corollary of the principle
of superposition and so can be applied only to cases for which that
principle is valid. It can be used to advantage in many problems
involving deformation. Examples of the application of the principle are
given in Chaps. 8 and 11.

4.4 Method of Consistent Deformations
(Strain Compatibility)

Many statically indeterminate problems are easily solved by utilizing
the obvious relations among the deformations of the several parts or
among the deformations produced by the several loads. Thus the
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division of load between the parts of a composite member is readily
ascertained by expressing the deformation or deflection of each part in
terms of the load it carries and then equating these deformations or
deflections. For example, the reaction at the supported end of a beam
with one end fixed and the other supported can be found by regarding
the beam as a cantilever, acted on by the actual loads and an upward
end load (the reaction), and setting the resultant deflection at the
support end equal to zero.

The method of consistent deformations is based on the principle of
superposition; it can be applied only to cases for which that principle is
valid.

4.5 Principles and Methods Involving Strain Energy

Strain energy is defined as the mechanical energy stored up in an
elastically stressed system; formulas for the amount of strain energy
developed in members under various conditions of loading are given
in Part 3. It is the purpose of this article to state certain relations
between strain energy and external forces that are useful in the
analysis of stress and deformation. For convenience, external forces
with points of application that do not move will here be called
reactions, and external forces with points of application that move
will be called loads.

External work equal to strain energy. When an elastic system is
subjected to static loading, the external work done by the loads as
they increase from zero to their maximum value is equal to the strain
energy acquired by the system.

This relation may be used directly to determine the deflection of a
system under a single load; for such a case, assuming a linear
material, it shows that the deflection at the point of loading in the
direction of the load is equal to twice the strain energy divided by the
load. The relationship also furnishes a means of determining the
critical load that produces elastic instability in a member. A reason-
able form of curvature, compatible with the boundary conditions, is
assumed, and the corresponding critical load found by equating the
work of the load to the strain energy developed, both quantities being
calculated for the curvature assumed. For each such assumed curva-
ture, a corresponding approximate critical load will be found and the
least load so found represents the closest approximation to the true
critical load (see Refs. 3 to 5).

Method of unit loads. During the static loading of an elastic system the
external work done by a constant force acting thereon is equal to the
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internal work done by the stresses caused by that constant force. This
relationship is the basis of the following method for finding the
deflection of any given point of an elastic system: A unit force is
imagined to act at the point in question and in the direction of the
deflection that is to be found. The stresses produced by such a unit
force will do a certain amount of internal work during the application
of the actual loads. This work, which can be readily found, is equal to
the work done by the unit force; but since the unit force is constant,
this work is equal to the deflection sought.

If the direction of the deflection cannot be ascertained in advance, its
horizontal and vertical components can be determined separately in
the way described and the resultant deflection found therefrom.
Examples of application of the method are given in Sec. 7.4.

Deflection, the partial derivative of strain energy. When a linear elastic
system 1is statically loaded, the partial derivative of the strain energy
with respect to any one of the applied forces is equal to the movement
of the point of application of that force in the direction of that force.
This relationship provides a means of finding the deflection of a beam
or truss under several loads (see Refs. 3, 5, and 7).

Theorem of least work.i When an elastic system is statically loaded,
the distribution of stress is such as to make the strain energy a
minimum consistent with equilibrium and the imposed boundary
conditions. This principle is used extensively in the solution of stati-
cally indeterminate problems. In the simpler type of problem (beams
with redundant supports or trusses with redundant members) the first
step in the solution consists in arbitrarily selecting certain reactions or
members to be considered redundant, the number and identity of
these being such that the remaining system is just determinate. The
strain energy of the entire system is then expressed in terms of the
unknown redundant reactions or stresses. The partial derivative of the
strain energy with respect to each of the redundant reactions or
stresses is then set equal to zero and the resulting equations solved
for the redundant reactions or stresses. The remaining reactions or
stresses are then found by the equations of equilibrium. An example of
the application of this method is given in Sec. 7.4.

T By theorem of least work is usually meant only so much of the theorem as is
embodied in the first application here described, and so understood it is often referred to
as Castigliano’s second theorem. But, as originally stated by Castigliano, it had a
somewhat different significance. (See his “Théoréme de I'équilibre des systémes
élastiques et ses applications,” Paris, 1879, or the English translation “Elastic Stresses
in Structures,” by E. S. Andrews, Scott, Greenwood, London. See also R. V. Southwell,
Castigliano’s Principle of Minimum Strain-energy, Proc. Roy. Soc. Lond., Ser. A, vol. 154,
1936.) The more general theory stated is called theorem of minimum energy by Love
(Ref. 1) and theorem of minimum resilience by Morley (Ref. 2).

%
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As defined by this procedure, the theorem of least work is implicit in
Castigliano’s theorem: It furnishes a method of solution identical with
the method of consistent deflections, the deflection used being zero and
expressed as a partial derivative of the strain energy. In a more
general type of problem, it is necessary to determine which of an
infinite number of possible stress distributions or configurations
satisfies the condition of minimum strain energy. Since the develop-
ment of software based on the finite-element method of analysis the
electronic computer has made practicable the solution of many
problems of this kind—shell analysis, elastic and plastic buckling,
etc.—that formerly were relatively intractable.

4.6 Dimensional Analysis

Most physical quantities can be expressed in terms of mass, length,
and time conveniently represented by the symbols M, L, and ¢,
respectively. Thus velocity is Lt~' acceleration is Lt2, force is
MLt=2, unit stress is ML~'t72, etc. A formula in which the several
quantities are thus expressed is a dimensional formula, and the
various applications of this system of representation constitute dimen-
stonal analysis.

Dimensional analysis may be used to check formulas for homogen-
eity, check or change units, derive formulas, and establish the rela-
tionships between similar physical systems that differ in scale (e.g., a
model and its prototype). In strength of materials, dimensional analy-
sis 1s especially useful in checking formulas for homogeneity. To do
this, it is not always necessary to express all quantities dimensionally
since it may be possible to cancel some terms. Thus it is often
convenient to express force by some symbol, as F, until it is ascertained
whether or not all terms representing force can be canceled.

For example, consider the formula for the deflection y at the free end
of a cantilever beam of length [ carrying a uniform load per unit
length, w. This formula (Table 8.1) is

__lwl
- 8EI

To test for homogeneity, omit the negative sign and the coefficient %
(which 1s dimensionless) and write the formula

L _ /L
T (F/LALA

It 1s seen that F' cancels and the equation reduces at once to L = L,
showing that the original equation was homogeneous.
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Instead of the symbols M, L, t, and F, we can use the names of the
units in which the quantities are to be expressed. Thus the above
equation may be written

(pounds/inch)(inches®)

inches = = inches

(pounds/inches®)(inches®)

This practice is especially convenient if it is desired to change units.
Thus it might be desired to write the above formula so that y is given
in inches when [ is expressed in feet. It is only necessary to write

l(pounds/inch)(feet x 12)4
8 (pounds/inches?)inches*

inches =

and the coefficient is thus found to be 2592 instead of .

By what amounts to a reversal of the checking process described, it
is often possible to determine the way in which a certain term or terms
should appear in a formula provided the other terms involved are
known. For example, consider the formula for the critical load of the
Euler column. Familiarity with the theory of flexure suggests that this
load will be directly proportional to E and I. It is evident that the
length [ will be involved in some way as yet unknown. It is also
reasonable to assume that the load is independent of the deflection
since both the bending moment and the resisting moment would be
expected to vary in direct proportion to the deflection. We can then
write P = REIl*, where k is a dimensionless constant that must be
found in some other way and the exponent a shows how [ enters the
expression. Writing the equation dimensionally and omitting k, we
have

F = %L‘LLG or L? = L*¢
Equating the exponents of L (as required for homogeneity) we find
a = —2, showing that the original formula should be P = kEI/I?. Note
that the derivation of a formula in this way requires at least a partial
knowledge of the relationship that is to be expressed.

A much more detailed discussion of similitude, modeling, and
dimensional analysis can be found in Chaps. 15 and 8 of Refs. 6 and
7, respectively. Reference 6 includes a section where the effect of
Poisson’s ratio on the stresses in two- and three-dimensional problems
is discussed. Since Poisson’s ratio is dimensionless, it would have to be
the same in model and prototype for perfect modeling and this
generally is not possible. References to work on this problem are
included and will be helpful.
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4.7 Remarks on the Use of Formulas

No calculated value of stress, strength, or deformation can be regarded
as exact. The formulas used are based on certain assumptions as to
properties of materials, regularity of form, and boundary conditions
that are only approximately true, and they are derived by mathema-
tical procedures that often involve further approximations. In general,
therefore, great precision in numerical work is not justified. Each
individual problem requires the exercise of judgment, and it is impos-
sible to lay down rigid rules of procedure; but the following sugges-
tions concerning the use of formulas may be of value.

1. For most cases, calculations giving results to three significant
figures are sufficiently precise. An exception is afforded by any
calculation that involves the algebraic addition of quantities that are
large in comparison with the final result (e.g., some of the formulas for
beams under axial and transverse loading, some of the formulas for
circular rings, and any case of superposition in which the effects of
several loads tend to counteract each other). For such cases more
significant figures should be carried throughout the calculations.

2. In view of uncertainties as to actual conditions, many of the
formulas may appear to be unnecessarily elaborate and include
constants given to more significant figures than is warranted. For
this reason, we may often be inclined to simplify a formula by dropping
unimportant terms, “rounding off” constants, etc. It is sometimes
advantageous to do this, but it is usually better to use the formula
as it stands, bearing in mind that the result is at best only a close
approximation. The only disadvantage of using an allegedly “precise”
formula is the possibility of being misled into thinking that the result
it yields corresponds exactly to a real condition. So far as the time
required for calculation is concerned, little is saved by simplification.

3. When using an unfamiliar formula, we may be uncertain as to the
correctness of the numerical substitutions made and mistrustful of the
result. It is nearly always possible to effect some sort of check by
analogy, superposition, reciprocal deflections, comparison, or merely
by judgment and common sense. Thus the membrane analogy (Sec.
5.4) shows that the torsional stiffness of any irregular section is
greater than that of the largest inscribed circular section and less
than that of the smallest circumscribed section. Superposition shows
that the deflection and bending moment at the center of a beam under
triangular loading (Table 8.1, case 2e) is the same as under an equal
load uniformly distributed. The principle of reciprocal deflections
shows that the stress and deflection at the center of a circular flat
plate under eccentric concentrated load (Table 11.2, case 18) are the
same as for an equal load uniformly distributed along a concentric
circle with radius equal to the eccentricity (case 9a). Comparison
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shows that the critical unit compressive stress is greater for a thin
plate under edge loading than for a strip of that plate regarded as an
Euler column. Common sense and judgment should generally serve to
prevent the acceptance of grossly erroneous calculations.

4. A difficulty frequently encountered is uncertainty as to boundary
conditions—whether a beam or flat plate should be calculated as freely
supported or fixed, whether a load should be assumed uniformly or
otherwise distributed, etc. In any such case it is a good plan to make
bracketing assumptions, i.e., to calculate the desired quantity on the
basis of each of two assumptions representing limits between which
the actual conditions must lie. Thus for a beam with ends having an
unknown degree of fixity, the bending moment at the center cannot be
more than if the ends were freely supported and the bending moments
at the ends cannot be more than if the ends were truly fixed. If so
designed as to be safe for either extreme condition, the beam will be
safe for any intermediate degree of fixity.

5. The stress and deflections predicted by most formulas do not
account for localized effects of the loads. For example, the stresses and
deflections given for a straight, simply-supported beam with a
centered, concentrated lateral force only account for that due to
bending. Additional compressive bearing stresses and deflections
exist depending on the exact nature of the interaction of the applied
and reaction forces with the beam. Normally, the state of stress and
deformation at distances greater than the dimensions of the loaded
regions only depend on the net effect of the localized applied and
reaction forces and are independent of the form of these forces. This is
an application of Saint Venant’s principle (defined in Appendix B).
This principle may not be reliable for thin-walled structures or for
some orthotropic materials.

6. Formulas concerning the validity of which there is a reason for
doubt, especially empirical formulas, should be checked dimensionally.
If such a formula expresses the results of some intermediate condition,
it should be checked for extreme or terminal conditions; thus an
expression for the deflection of a beam carrying a uniform load over
a portion of its length should agree with the corresponding expression
for a fully loaded beam when the loaded portion becomes equal to the
full length and should vanish when the loaded portion becomes zero.
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Chapter

Numerical Methods

The analysis of stress and deformation of the loading of simple
geometric structures can usually be accomplished by closed-form
techniques. As the structures become more complex, the analyst is
forced to approximations of closed-form solutions, experimentation, or
numerical methods. There are a great many numerical techniques
used in engineering applications for which digital computers are very
useful. In the field of structural analysis, the numerical techniques
generally employ a method which discretizes the continuum of the
structural system into a finite collection of points (or nodes) whereby
mathematical relations from elasticity are formed. The most popular
technique used currently is the finite element method (FEM). For this
reason, most of this chapter is dedicated to a general description of the
method. A great abundance of papers and textbooks have been
presented on the finite element method, and a complete listing is
beyond the scope of this book. However, some textbooks and historical
papers are included for introductory purposes.

Other methods, some of which FEM is based upon, include trial
functions via variational methods and weighted residuals, the finite
difference method (FDM), structural analogues, and the boundary
element method (BEM). FDM and BEM will be discussed briefly.

5.1 The Finite Difference Method

In the field of structural analysis, one of the earliest procedures for the
numerical solutions of the governing differential equations of stressed
continuous solid bodies was the finite difference method. In the finite
difference approximation of differential equations, the derivatives in
the equations are replaced by difference quotients of the values of the
dependent variables at discrete mesh points of the domain. After
imposing the appropriate boundary conditions on the structure, the
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discrete equations are solved obtaining the values of the variables at
the mesh points. The technique has many disadvantages, including
inaccuracies of the derivatives of the approximated solution, difficul-
ties in imposing boundary conditions along curved boundaries, diffi-
culties in accurately representing complex geometric domains, and the
inability to utilize non-uniform and non-rectangular meshes.

5.2 The Finite Element Method

The finite element method (FEM) evolved from the use of trial
functions via variational methods and weighted residuals, the finite
difference method, and structural analogues (see Table 1.1 of Ref. 1).
FEM overcomes the difficulties encountered by the finite-differ-
ence method in that the solution of the differential equations of the
structural problem are obtained by utilizing an integral formulation to
generate a system of algebraic equations with continuous piecewise-
smooth (trial) functions that approximate the unknown quantities. A
geometrically complex domain of the structural problem can be
systematically represented by a large, but finite, collection of simpler
subdomains, called finite elements. For structural problems, the
displacement field of each element is approximated by polynomials,
which are interpolated with respect to preselected points (nodes) on,
and possibly within, the element. The polynomials are referred to
as interpolation functions, where variational or weighted residual
methods (e.g. Rayleigh—Ritz, Galerkin, etc.) are applied to determine
the unknown nodal values. Boundary conditions can easily be applied
along curved boundaries, complex geometric domains can be modeled,
and non-uniform and non-rectangular meshes can be employed.

The modern development of FEM began in the 1940s in the field of
structural mechanics with the work of Hrennikoff, McHenry, and
Newmark, who used a lattice of line elements (rods and beams) for
the solution of stresses in continuous solids (see Refs. 2—4). In 1943,
from a 1941 lecture, Courant suggested piecewise-polynomial inter-
polation over triangular subregions as a method to model torsional
problems (see Ref. 5).

With the advent of digital computers in the 1950s, it became
practical for engineers to write and solve the stiffness equations in
matrix form (see Refs. 6-8). A classic paper by Turner, Clough, Martin,
and Topp published in 1956 presented the matrix stiffness equations
for the truss, beam, and other elements (see Ref. 9). The expression
finite element is first attributed to Clough (see Ref. 10).

Since these early beginnings, a great deal of effort has been
expended in the development of FEM in the areas of element formula-
tions and computer implementation of the entire solution process. The
major advances in computer technology includes the rapidly expand-
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ing computer hardware capabilities, efficient and accurate matrix
solver routines, and computer graphics for ease in the preprocessing
stages of model building, including automatic adaptive mesh genera-
tion, and in the postprocessing stages of reviewing the solution results.
A great abundance of literature has been presented on the subject,
including many textbooks. A partial list of some textbooks, introduc-
tory and more comprehensive, is given at the end of this chapter. For a
brief introduction to FEM and modeling techniques, see Chapters 9
and 10, respectively, of Ref. 11.

FEM is ideally suited to digital computers, in which a continuous
elastic structure (continuum) is divided (discretized) into small but
finite well-defined substructures (elements). Using matrices, the
continuous elastic behavior of each element is categorized in terms
of the element’s material and geometric properties, the distribution of
loading (static, dynamic, and thermal) within the element, and the
loads and displacements at the nodes of the element. The element’s
nodes are the fundamental governing entities of the element, since it
is the node where the element connects to other elements, where
elastic properties of the element are established, where boundary
conditions are assigned, and where forces (contact or body) are
ultimately applied. A node possesses degrees of freedom (dof’s).
Degrees of freedom are the translational and rotational motion that
can exist at a node. At most, a node can possess three translational
and three rotational degrees of freedom. Once each element within a
structure is defined locally in matrix form, the elements are then
globally assembled (attached) through their common nodes (dof’s) into
an overall system matrix. Applied loads and boundary conditions are
then specified, and through matrix operations the values of all
unknown displacement degrees of freedom are determined. Once
this is done, it i1s a simple matter to use these displacements to
determine strains and stresses through the constitutive equations of
elasticity.

Many geometric shapes of elements are used in finite element
analysis for specific applications. The various elements used in a
general-purpose commercial FEM software code constitute what is
referred to as the element library of the code. Elements can be placed
in the following categories: line elements, surface elements, solid
elements, and special purpose elements. Table 5.1 provides some, but
not all, of the types of elements available for finite element analysis.

Since FEM is a numerical technique that discretizes the domain of a
continuous structure, errors are inevitable. These errors are:

1. Computational errors. These are due to round-off errors from
the computer floating-point calculations and the formulations of the
numerical integration schemes that are employed. Most commercial
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TABLE 5.1 Sample finite element library

[cHAP. 5

nodes

Element Number
type Name Shape of nodes Applications
Line Truss -— 00— 2 Pin-ended bar in tension or
compression
Beam q P 2 Bending
Frame 2 Axial, torsional, and bending.
«-_Cf (A With or without load stiffening
Surface 4 Noded 4 Plane stress or strain,
quadri- D axisymmetry, shear panel, thin
lateral flat plate in bending
8 Noded 8 Plane stress or strain, thin
quadri- D plate or shell in bending
lateral
3 Noded 3 Plane stress or strain,
triangular A axisymmetry, shear panel, thin
flat plate in bending. Prefer
quad where possible. Used for
transitions of quads
6 Noded 6 Plane stress or strain,
triangular ﬁ; axisymmetry, thin plate or shell
in bending. Prefer quad where
possible. Used for transitions of
quads
Solidf 8 Noded 8 Solid, thick plate (using mid-
hexagonal side nodes)
(brick)
6 Noded 6 Solid, thick plate (using mid-
Pentagonal A side nodes). Used for
(wedge) B transitions
4 Noded g 4 Solid, thick plate (using mid-
tetrahedron A side nodes). Used for
(tet) o : transitions
Special Gap o—| |- 2 Free displacement for
purpose prescribed compressive gap
Hook (—") 2 Free displacement for
prescribed extension gap
Rigid b%< Variable Rigid constraints between

+ These elements are also available with mid-size nodes.

finite element codes concentrate on reducing these errors and conse-
quently the analyst generally is concerned with discretization factors.

2. Discretization errors.

The geometry and the displacement distri-

bution of a true structure vary continuously. Using a finite number of
elements to model the structure introduces errors in matching geo-
metry and the displacement distribution due to the inherent limita-
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tions of the elements. For example, consider the thin plate structure
shown in Fig. 5.1(a). Figure 5.1(b) shows a finite element model of the
structure where three-noded, plane stress, triangular elements are
employed. The plane stress triangular element has a flaw, which
creates two basic problems. The element has straight sides, which
remain straight after deformation. The strains throughout the plane
stress triangular element are constant. The first problem, a geometric
one, is the modeling of curved edges. Note that the surface of the
model with a large curvature appears reasonably modeled, whereas
the surface of the hole is very poorly modeled. The second problem,
which is much more severe, is that the strains in various regions of the
actual structure are changing rapidly, and the constant strain element
will only provide an approximation of the average strain at the center
of the element. So, in a nutshell, the results predicted using this model
will be relatively poor. The results can be improved by significantly
increasing the number of elements used (increased mesh density).
Alternatively, using a better element, such as an eight-noded quad-
rilateral, which is more suited to the application, will provide the
improved results. Due to higher-order interpolation functions, the
eight-noded quadrilateral element can model curved edges and
provides for a higher-order function for the strain distribution.

5.3 The Boundary Element Method

The boundary element method (BEM), developed more recently than
FEM, transforms the governing differential equations and boundary
conditions into integral equations, which are converted to contain

L

(a) Structural part

, L

(b) Finite element
model representation

N

Figure 5.1 Discretization of a continuous structure.
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surface integrals (see Refs. 12-16). Because only surface integrals
remain, surface elements are used to perform the required integra-
tions. This is the main advantage that BEM has over FEM, which
requires three-dimensional elements throughout the entire volumetric
domain. Boundary elements for a general three-dimensional solid are
quadrilateral or triangular surface elements covering the surface area
of the component. For two-dimensional and axisymmetric problems,
only line elements tracing the outline of the component are necessary.

Although BEM offers some modeling advantages over FEM, the
latter can analyze more types of engineering applications and is much
more firmly entrenched in today’s computer-aided-design (CAD) envir-
onment. Development of engineering applications of BEM are proceed-
ing however, and more will be seen of the method in the future.
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Chapter

Experimental Methods

A structural member may be of such a form or may be loaded in such a
way that the direct use of formulas for the calculation of stresses and
strain produced in it is ineffective. One then must resort either to
numerical techniques such as the finite element method or to experi-
mental methods. Experimental methods can be applied to the actual
member in some cases, or to a model thereof. Which choice is made
depends upon the results desired, the accuracy needed, the practical-
ity of size, and the cost associated with the experimental method.
There has been a tremendous increase in the use of numerical
methods over the years, but the use of experimental methods is still
very effective. Many investigations make use of both numerical and
experimental results to cross-feed information from one to the other
for increased accuracy and cost effectiveness (see Chap. 17 in Ref. 27).
Some of the more important experimental methods are described
briefly in Sec. 6.1 of this chapter. Of these methods, the most popular
method employs electrical resistance strain gages, and is described in
more detail in Sec. 6.2. Only textbooks, reference books, handbooks,
and lists of journals are referenced, since there are several organiza-
tions (see Refs. 1, 25, and 26) devoted either partially or totally to
experimental methods, and a reasonable listing of papers would be
excessive and soon out of date. The most useful reference for users
wanting information on experimental methods is Ref. 27, the “Hand-
book on Experimental Mechanics,” edited by A. S. Kobayashi and
dedicated to the late Dr. M. Hetenyi, who edited Ref. 2. Reference 27
contains 22 chapters contributed by 27 authors under the sponsorship
of the Society for Experimental Mechanics. Experimental methods
applied specifically to the field of fracture mechanics are treated
extensively in Refs. 13, 15, 17, 19, 22, and Chaps. 14 and 20 of Ref. 27.
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6.1 Measurement Techniques

The determination of stresses produced under a given loading of a
structural system by means of experimental techniques are based on
the measurement of deflections. Since strain is directly related to (the
rate of change of) deflection, it is common practice to say that the
measurements made are that of strain. Stresses are then determined
implicitly using the stress—strain relations. Deflections in a structural
system can be measured through changes in resistance, capacitance,
or inductance of electrical elements; optical effects of interference,
diffraction, or refraction; or thermal emissions. Measurement is
comparatively easy when the stress is fairly uniform over a consider-
able length of the part in question, but becomes more difficult when
the stress is localized or varies greatly with position. Short gage
lengths and great precision require stable gage elements and stable
electronic amplification if used. If dynamic strains are to be measured,
a suitable high-frequency response is also necessary. In an isotropic
material undergoing uniaxial stress, one normal strain measurement
is all that is necessary. On a free surface under biaxial stress condi-
tions, two measured orthogonal normal strains will provide the stres-
ses in the same directions of the measured strains. On a free surface
under a general state of plane stress, three measured normal strains
in different directions will allow the determination of the stresses in
directions at that position (see Sec. 6.2). At a free edge in a member
that is thin perpendicular to the free edge, the state of stress is
uniaxial and, as stated earlier, can be determined from one normal
strain tangent to the edge. Another tactic might be to measure the
change in thickness or the through-thickness strain at the edge. This
might be more practical, such as measuring the strain at the bottom
of a groove in a thin plate. For example, assume an orthogonal xyz
coordinate system where x is parallel to the edge and z is in the
direction of the thickness at the edge. Considering a linear, isotropic
material, from Hooke’s law, ¢, = —vo,/E. Thus, o, = —E¢,/v.

The following descriptions provide many of the successful instru-
ments and techniques used for strain measurement. They are listed
in a general order of mechanical, electrical, optical, and thermal
methods. Optical and thermal techniques have been greatly enhanced
by advances in digital image processing technology for computers (see
Chap. 21 of Ref. 27).

1. Mechanical measurement. A direct measurement of strain can be
made with an Invar tape over a gage length of several meters or with a
pair of dividers over a reasonable fraction of a meter. For shorter gage
lengths, mechanical amplification can be used, but friction is a
problem and vibration can make them difficult to mount and to
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read. Optical magnification using mirrors still requires mechanical
levers or rollers and is an improvement but still not satisfactory for
most applications. In a laboratory setting, however, such mechanical
and optical magnification can be used successfully. See Ref. 3 for more
detailed descriptions. A scratch gage uses scratches on a polished
target to determine strain amplitudes, and while the scratches are in
general not strictly related to time, they are usually related to events
in such a way as to be extremely useful in measuring some dynamic
events. The scratched target is viewed with a microscope to obtain
peak-to-peak strains per event, and a zero strain line can also be
scratched on the target if desired (Ref. 3). The use of lasers and/or
optical telescopes with electronic detectors to evaluate the motion of
fiduciary marks on distant structures makes remote-displacement
measurements possible, and when two such detectors are used, strains
can be measured. While the technique is valuable when needed for
remote measurement, generally for environmental reasons, it is an
expensive technique for obtaining the strain at a single location.

2. Brittle coatings. Surface coatings formulated to crack at strain
levels well within the elastic limit of most structural materials provide
a means of locating points of maximum strain and the directions of
principal strains. Under well-controlled environmental conditions and
with suitable calibration, such coatings can yield quantitative results
(Refs. 2, 3, 7, 9, 20, 21, and 27). This technique, however, is not
universally applicable, since the coatings may not be readily available
due to environmental problems with the coating materials.

3. Electrical strain and displacement gages. The evolution of electrical
gages has led to a variety of configurations where changes in resis-
tance, capacitance, or inductance can be related to strain and displace-
ment with proper instrumentation (Refs. 2-5, 20, 21, 23, 24, and 27).

(a) Resistance strain gage. For the electrical resistance strain
gages, the gage lengths vary from less than 0.01in to several inches.
The gage grid material can be metallic or a semiconductor. The gages
can be obtained in alloys that are designed to provide minimum output
due to temperature strains alone and comparatively large outputs due
to stress-induced strains. Metallic bonded-foil gages are manufactured
by a photoetching process that allows for a wide range of configura-
tions of the grid(s). The semiconductor strain gages provide the largest
resistance change for a given strain, but are generally very sensitive to
temperature changes. They are used in transducers where proper
design can provide temperature compensation The use of electrical
resistance strain gages for stress analysis purposes constitute the
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majority of experimental applications. For this reason, Sec. 6.2
provides further information on the use of these gages.

(b) Capacitance strain gage. Capacitance strain gages are larger
and more massive than bonded electric resistance strain gages and are
more widely used for applications beyond the upper temperature
limits of the bonded resistance strain gages.

(¢) Inductance strain gages. The change in air gap in a magnetic
circuit can create a large change in inductance depending upon the
design of the rest of the magnetic circuit. The large change in
inductance is accompanied by a large change in force across the gap,
and so the very sensitive inductance strain gages can be used only on
more massive structures. They have been used as overload indicators
on presses with no electronic amplification necessary. The linear
relationship between core motion and output voltage of a linear
differential transformer makes possible accurate measurement of
displacements over a wide range of gage lengths and under a wide
variety of conditions. The use of displacement data as input for work in
experimental modal analysis is discussed in Chap. 16 of Ref. 27 and in
many of the technical papers in Ref. 24.

4. Interferometric strain gages. Whole-field interferometric techniques
will be discussed later, but a simple strain gage with a short length
and high sensitivity can be created by several methods. In one, a
diffraction grating is deposited at the desired location and in the
desired direction and the change in grating pitch under strain is
measured. With a metallic grid, these strain gages can be used at
elevated temperatures. Another method, also useable at high tempera-
tures, makes use of the interference of light reflected from the inclined
surfaces of two very closely spaced indentations in the surface of a
metallic specimen. Both of these methods are discussed and referenced
in Ref. 27.

5. Photoelastic analysis. When a beam of polarized light passes
through an elastically stressed transparent isotropic material, the
beam may be treated as having been decomposed into two rays
polarized in the planes of the principal stresses in the material. In
birefringent materials the indexes of refraction of the material
encountered by these two rays will depend upon the principal stresses.
Therefore, interference patterns will develop which are proportional to
the differences in the principal stresses.

(@) Two-dimensional analysis. With suitable optical elements—
polarizers and wave plates of specific relative retardation—both the
principal stress differences and the directions of principal stresses
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may be determined at every point in a two-dimensional specimen
(Refs. 2-6, 10, 14, 18, 27, and 28). Many suitable photoelastic plastics
are available. The material properties that must be considered are
transparency, sensitivity (relative index of refraction change with
stress), optical and mechanical creep, modulus of elasticity, ease of
machining, cost, and stability (freedom from stresses developing with
time). Materials with appropriate creep properties may be used for
photoplasticity studies (Ref. 16).

(b) Three-dimensional analysis. Several photoelastic techniques
are used to determine stresses in three-dimensional specimens. If
information is desired at a single point only, the optical polarizers,
wave plates, and photoelastically sensitive material can be embedded
in a transparent model (Ref. 2) and two-dimensional techniques used.
A modification of this technique, stress freezing, is possible in some
biphase materials. By heating, loading, cooling, and unloading, it is
possible to lock permanently into the specimen, on a molecular level,
strains proportional to those present under load. Since equilibrium
exists at a molecular level, the specimen can be cut into two-
dimensional slices and all secondary principal stress differences deter-
mined. The secondary principal stresses at a point are defined as the
largest and smallest normal stresses in the plane of the slice; these in
general will not correspond with the principal stresses at that same
point in the three-dimensional structure. If desired, the specimen can
be cut into cubes and the three principal stress differences deter-
mined. The individual principal stresses at a given point cannot be
determined from photoelastic data taken at that point alone since the
addition of a hydrostatic stress to any cube of material would not be
revealed by differences in the indexes of refraction. Mathematical
integration techniques, which start at a point where the hydrostatic
stress component is known, can be used with photoelastic data to
determine all individual principal stresses.

A third method, scattered light photoelasticity, uses a laser beam
of intense monochromatic polarized light or a similar thin sheet of
light passing through photoelastically sensitive transparent models
that have the additional property of being able to scatter uniformly a
small portion of the light from any point on the beam or sheet. The
same general restrictions apply to this analysis as applied to the
stress-frozen three-dimensional analysis except that the specimen
does not have to be cut. However, the amount of light available for
analysis is much less, the specimen must be immersed in a fluid with
an index of refraction that very closely matches that of the specimen,
and in general the data are much more difficult to analyze.

(¢) Photoelastic coating. Photoelastic coatings have been sprayed,
bonded in the form of thin sheets, or cast directly in place on the
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surface of models or structures to determine the two-dimensional
surface strains. The surface is made reflective before bonding the
plastics in place so the effective thickness of the photoelastic plastic is
doubled and all two-dimensional techniques can be applied with
suitable instrumentation.

6. Moiré techniques. All moiré techniques can be explained by optical
interference, but the course-grid techniques can also be evaluated on
the basis of obstructive or mechanical interference.

(@) Geometric moiré. Geometric moiré techniques use grids of
alternate equally wide bands of relatively transparent or light-colored
material and opaque or dark-colored material in order to observe the
relative motion of two such grids. The most common technique (Refs.
2, 5, 8, and 11) uses an alternate transparent and opaque grid to
produce photographically a matching grid on the flat surface of the
specimen. Then the full-field relative motion is observed between the
reproduction and the original when the specimen is loaded. Similarly,
the original may be used with a projector to produce the photographic
image on the specimen and then produce interference with the
projected image after loading. These methods can use ordinary
white light, and the interference is due merely to geometric blocking
of the light as it passes through or is reflected from the grids.

Another similar technique, shadow moiré, produces interference
patterns due to motion of the specimen at right angles to its surface
between an alternately transparent and opaque grid and the shadow
of the grid on the specimen.

(b) Moiré interferometry. Interferometry provides a means of
producing both specimen gratings and reference gratings. Virtual
reference gratings of more than 100,000 lines per inch have been
utilized. Moiré interferometry provides contour maps of in-plane
displacements, and, with the fine pitches attainable, differentiation
to obtain strains from this experimental process is comparable to
that used in the finite-element method of numerical analysis where
displacement fields are generally the initial output. See Chap. 7 in
Ref. 27.

7. Holographic and laser speckle interferometry. The rapid evolution of
holographic and laser speckle interferometry is related to the devel-
opment of high-power lasers and to the development of digital compu-
ter enhancement of the resulting images. Various techniques are used
to measure the several displacement components of diffuse reflecting
surfaces. Details are beyond the scope of this book and are best
reviewed in Chap. 8 of Ref. 27.
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8. Shadow optical method of caustics. The very simple images created
by the reflection or refraction of light from the surface contours of
high-gradient stress concentrations such as those at the tips of cracks
make the use of the shadow optical method of caustics very useful for
dynamic studies of crack growth or arrest. Chapter 9 of Ref. 27 gives a
detailed discussion of this technique and a comparison to photoelastic
studies for the same loadings.

9. X-ray diffraction. X-ray diffraction makes possible the determination
of changes in interatomic distance and thus the measurement of
elastic strain. The method has the particular advantages that it can
be used at points of high stress concentration and to determine
residual stresses without cutting the object of investigation.

10. Stress-pattern analysis by thermal emission. This technique uses
computer enhancement of infrared detection of very small tempera-
ture changes in order to produce digital output related to stress at a
point on the surface of a structure, a stress graph along a line on the
surface, or a full-field isopachic stress map of the surface. Under cyclic
loading, at a frequency high enough to assure that any heat transfer
due to stress gradients is insignificant, the thermoelastic effect
produces a temperature change proportional to the change in the
sum of the principal stresses. Although calibration corrections must
be made for use at widely differing ambient temperatures, the tech-
nique works over a wide range of temperatures and on a variety of
structural materials including metals, wood, concrete, and plain and
reinforced plastics. Tests have been made on some metals at tempera-
tures above 700°C. Chapter 14 of Ref. 27 describes and surveys work
on this technique.

6.2 Electrical Resistance Strain Gages

General. The use of electrical resistance strain gages is probably the
most common method of measurement in experimental stress analy-
sis. In addition, strain gage technology is quite important in the design
of transducer instrumentation for the measurement of force, torque,
pressure, etc.

Electrical resistance strain gages are based on the principal that the
resistance R of a conductor changes as a function of normal strain e.
The resistance of a conductor can be expressed as

R= p% (6.2-1)

where p is the resistivity of the conductor (chms-length), and L and A
are the length and cross-sectional area of the conductor respectively. It
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can be shown that a change in R due to changes in p, L and A is given
by

AR A
= (420 +—p (6.2-2)

where v is Poisson’s ratio, and assuming small strain on the conductor,
¢, which i1s given by AL/L. If the change in the resistance of the
conductor is considered to be only due to the applied strain, then
Eq. (6.2-2) can be written as

% =S¢ (6.2-3)
where
S,=1+2v+2PF p/p (6.2-4)

S, is the sensitivity of the conductor to strain’. The first two terms
come directly from changes in dimension of the conductor where for
most metals the quantity 1 + 2v varies from 1.4 to 1.7. The last term in
Eq. (6.2-4) is called the change in specific resistance relative to strain,
and for some metals can account for much of the sensitivity to strain.
The most commonly used material for strain gages is a copper—nickel
alloy called Constantan, which has a strain sensitivity of 2.1. Other
alloys used for strain gage applications are modified Karma, Nichrome
V, and Isoelastic, which have sensitivities of 2.0, 2.2, and 3.6, respec-
tively. The primary advantages of Constantan are:

1. The strain sensitivity S, is linear over a wide range of strain and
does not change significantly as the material goes plastic.

2. The thermal stability of the material is excellent and is not greatly
influenced by temperature changes when used on common struc-
tural materials.

3. The metallurgical properties of Constantan are such that they can
be processed to minimize the error induced due to the mismatch in
the thermal expansion coefficients of the gage and the structure to
which it is adhered over a wide range of temperature.

T When using a commercial strain indicator, one must enter the sensitivity provided by
the gage manufacturer. This sensitivity is referred to the gage factor of the gage, S,. This
is defined slightly differently than S,, and will be discussed shortly.
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Isoelastic, with a higher sensitivity, is used for dynamic applica-
tions. Semiconductor gages are also available, and can reach sensitiv-
ities as high as 175. However, care must be exercised with respect to
the poor thermal stability of these piezoresistive gages.

Most gages have a nominal resistance of 120o0hm or 350ohm.
Considering a 120-ohm Constantan gage, to obtain a measurement
of strain within an accuracy of +5 p, it would be necessary to measure
a change in resistance within +1.2 mohm. To measure these small
changes in resistance accurately, commercial versions of the Wheat-
stone bridge, called strain gage indicators, are available.

Metallic alloy electrical resistance strain gages used in experimental
stress analysis come in two basic types: bonded-wire and bonded-foil
(see Fig. 6.1). Today, bonded-foil gages are by far the more prevalent.
The resistivity of Constantan is approximately 49 yohm - cm. Thus if a
strain gage is to be fabricated using a wire 0.025 mm in diameter and
is to have a resistance of 120o0hm, the gage would require a wire
approximately 120 mm long. To make the gage more compact over a
shorter active length, the gage is constructed with many loops as
shown in Fig. 6.1. Typical commercially available bonded-foil gage
lengths vary from 0.20mm (0.008in) to 101.6 mm (4.000in). For
normal applications, bonded-foil gages either come mounted on a
very thin polyimide film carrier (backing) or are encapsulated between
two thin films of polyimide. Other carrier materials are available for
special cases such as high-temperature applications.

The most widely used adhesive for bonding a strain gage to a test
structure 1is the pressure-curing methyl 2-cyanoacrylate cement.
Other adhesives include epoxy, polyester, and ceramic cements.

Wire Foil

Figure 6.1 Forms of electrical resistance strain gages.
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Extreme care must be exercised when installing a gage, since a good
bond and an electrically insulated gage are necessary. The installation
procedures can be obtained from technical instruction bulletins
supplied by the manufacturer. Once a gage is correctly mounted,
wired, resistance tested for continuity and insulation from the test
structure, and waterproofed (if appropriate), it is ready for instrumen-
tation and testing.

Strain Gage Configurations. In both wire or foil gages, many config-
urations and sizes are available. Strain gages come in many forms for
transducer or stress-analysis applications. The fundamental config-
urations for stress-analysis work are shown in Fig. 6.2.

A strain gage is mounted on a free surface, which in general, is in a
state of plane stress where the state of stress with regards to a specific
xy rectangular coordinate system can be unknown up to the three
stresses, o,, g,, and t,,. Thus, if the state of stress is completely
unknown on a free surface it 1s necessary to use a three-element
rectangular or delta rosette since each gage element provides only one
piece of information, the indicated normal strain at the point in the
direction of the gage.

To understand how the rosettes are used, consider the three-element
rectangular rosette shown in Fig. 6.3(a), which provides normal strain
components in three directions spaced at angles of 45°.

If an xy coordinate system is assumed to coincide with gages A
and C, then ¢, = ¢4 and ¢, = ¢¢c. Gage B in conjunction with gages A
and C pr0v1des 1nformat10n necessary to determlne 71y Recalling the
first of Eqs. (2.4-1), &, = ¢, cos? 0+e, sin® 0+ 7y, cos 0 sin 0, with
0 = 45°

ep =&, cos® 45° + &y sin® 45° + 74y cOs 45 sin 45°

= %(‘cx + &y + ny) = %(‘OA +éc+ yxy)
Solving for y,, yields
Yy = 28B —és—¢&c

Once ¢,, ¢,, and 7,, are known, Hooke’s law [Egs. (2.2- 5) and (2.2-6a)]
can be used to determine the stresses o, , Oy , and Tyy
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r 1SR4 = o

O T | I.n.l - o

(a) Uniaxial (b) Two-element, (c) Two-element,
90° planar rosette 90° planar (shear) rosette

S
<>

1

2
L v .J
(d) Three-element, 45° (e) Three element, (f) Three-element, 60°
planar rectangular rosette 60° delta rosette stacked delta rosette

Figure 6.2 Examples of commonly used strain gage configurations. (Source: Figures
a—c courtesy of BLH Electronics, Inc., Canton, MA. Figures d—f courtesy of Micro-
Measurements Division of Measurements Group, Inc., Raleigh, NC.) Note: The letters
SR-4 on the BLH gages are in honor of E. E. Simmons and Arthur C. Ruge and their two
assistants (a total of four individuals), who, in 1937-1938, independently produced the
first bonded-wire resistance strain gage.

The relationship between ¢4, ¢g, and ¢- can be seen from Mohr’s
circle of strain corresponding to the strain state at the point under
investigation [see Fig. 6.3(b)].

The following example shows how to use the above equations for an
analysis as well as how to use the equations provided in Table 6.1.

EXAMPLE

A three-element rectangular rosette strain gage is installed on a steel speci-

men. For a particular state of loading of the structure the strain gage readings
il

are

6y =200,  e5=900p &= 1000 g

¥ The strain gage readings are typically corrected due to the effect of transverse
strains on each gage. This will be discussed shortly.
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> X
- €4 =€, >
S— Ep—
900/ RA
¢ 2 > €
T
2.y
O e ]
€C= 8‘,
e
2 \ (b) Mohr's circle for strain

Figure 6.3 Three-element strain gage rosette.
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Determine the values and orientations of the principal stresses at the point.
Let E = 200 GPa and v = 0.285.

Solution. From above,
&, =4 = 200 g, &, = &c = 1000 p
Ty = 265 — &4 — &¢ = (2)(900) — 200 — 1000 = 600 u

The stresses can be determined using Egs. (2.2-5) and (2.2-6a):

Oy = m(gx + ve,)

200(10°) B . ;
= W[QOO + (0.285)(1000)](107°) = 105.58(10°) N/m* = 105.58 MPa

E
o, = m(ay + ve,)

200(10°) -6 6 2
= ————_[1000 + (0.285)(200)(10~¢) = 230.09(10%) N/m* = 230.09 MPa
1 —(0.285)
E 200(10°)

- v = -6y _ 6 2 _
Ty = 2T+ ) Vxy 21+ 0.285) 600(107°) = 46.69(10°) N/m” = 46.69 MPa

Figure 6.4(a) shows the stresses determined in the x and y directions as
related to the gage orientation shown in Fig. 6.3(a).
For the principal stress axes, we use Eq. (2.3-23) given by

o,=1 |:(ax +0,)£,/(0, + ay)z + 4132@]

! [105.58 +230.09 + \/ (105.58 + 230.09) + 4(46.67)2]

245.65, 90.01 MPa

For the orientation of the principal stress axes, using the first of Egs. (2.3-21)

gives
_1[%p — Ox
0, =tan™' <pr—> (@)
xy
For the principal stress, g; = 245.65 MPa, Eq. (a) gives

0, — t31][1,1(245.65 - 105.58) e

P 46.69

For the other principal stress, g4 = 90.01 MPa

L= tan_1(90.01 — 105.58) — _18.4°

0 46.69

D

Recalling that 6, is defined positive in the counterclockwise direction, the
principal stress state at the point relative to the xy axes of the strain gage
rosette correspond to that shown in Fig. 6.4(b).
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i i
245.65 MPa
230.09 MPa
46.69 MPa ] 1.6
105 58 MPa
1840

/ 90.01 MPa

(@) Stresses in the .x and y directions (b) Principal stresses

Figure 6.4 (a) Stresses in the x and y directions. (b) Principal stresses.

Using the equations given in Table 6.1 at the end of the chapter,

6a+&c 200+ 1000
1-v  1-0285

= 1678.3

1
1—+v\/(3A —0)* + (265 — 64 — £0)°

1 9 2
=———1/(200 — 1000 2(900) — 200 — 1000]* = 778.2
1+0285J( ) + [2(900) ] p

Thus,

~200(10)°
2

Op1 = (1678.3 + 778.2) = 245.65 MPa

200(10)°

G = (1678.3 — 778.2) = 90.01 MPa

The principal angle is

= % tan~! (2(900) — 200 1000) _1 tan’l(ﬂ) = %(143.13°) =716

0 200 — 1000 2 —800

p

counterclockwise from the x axis (A gage) to ¢,,; = 245.65 MPa. T Note that this
agrees with Fig. 6.4(b).

T When calculating 0,, do not change the signs of the numerator and denominator in
the equation. The tan~! is defined from 0° to 360°. For example, tan~!(4/4) is in the
range 0°-90°, tan~!(+/—) is in the range 90°-180°, tan~'(—/—) is in the range
180°-270°, and tan~'(—/+) is in the range 270°-360°. Using this definition for 0,, the
calculation will yield the counterclockwise angle from the x axis to ¢,,;, the greater of the
two principal stresses in the plane of the gages.



SEC. 6.2] Experimental Methods 95

Strain Gage Corrections. There are many types of corrections that may
be necessary to obtain accurate strain gage results (see Refs. 27 and
28). Two fundamental corrections that are necessary correct the
indicated strain errors due to strains on the specimen perpendicular
(transverse) to the longitudinal axis of the gage and changes in
temperature of the gage installation. With each strain gage, the
manufacturer provides much information on the performance of the
gage, such as its sensitivity to longitudinal and transverse strain and
how the sensitivity of the gage behaves relative to temperature
changes.

(b) Transverse sensitivity corrections. The strain sensitivity of a
single straight uniform length of conductor in a uniform uniaxial
strain field ¢ in the longitudinal direction of the conductor is given
by Eq. (6.2-3), which is S, = (AR/R)/¢. In a general strain field, there
will be strains perpendicular to the longitudinal axis of the conductor
(transverse strains). Due to the width of the conductor elements and
the geometric configuration of the conductor in the gage pattern, the
transverse strains will also effect a change in resistance in the
conductor. This is not desirable, since only the effect of the strain in
the direction of the gage length is being sought.

To further complicate things, the sensitivity of the strain gage
provided by the gage manufacturer is not based on a uniaxial strain
field, but that of a uniaxial siress field in a tensile test specimen. For a
uniaxial stress field let the axial and transverse strains be ¢, and ¢,
respectively. The sensitivity provided by the gage manufacturer, called
the gage factor S,, is defined as S, = (AR/R)¢,, where under a uniaxial
stress field, ¢, = —vg¢,. Thus

A
fR = Sgéq with & = —Vo&q, (6.2-5)

The term v, is Poisson’s ratio of the material on which the manufac-
turer’s gage factor was measured, and is normally taken to be 0.285. If
the gage i1s used under conditions where the transverse strain is
& = —Ve,, then the equation AR/R = S,¢, would yield exact results.
If ¢ # —vge,, then some error will occur. This error depends on the
sensitivity of the gage to transverse strain and the deviation of the
ratio of ¢/e, from —vy,. The strain gage manufacturer generally
supplies a transverse sensitivity coefficient, K,, defined as S,/S,,
where S, is the transverse sensitivity factor. One cannot correct the
indicated strain from a single strain reading. Thus it is necessary to
have multiple strain readings from that of a strain gage rosette. Table
6.2 at the end of the chapter gives equations for the corrected strain
values of the three most widely used strain gage rosettes. Corrected
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strain readings are given by ¢, whereas uncorrected strains from the
strain gage indicator are given by &.

EXAMPLE

In the previous example the indicated strains are &4 = 200 u, &5 = 900 p, and
gc = 1000 p. Determine the principal stresses and directions if the transverse
sensitivity coefficient of the gages are K4 = K, = 0.05 and K,z = 0.06.

Solution. From Table 6.2,
(1 = voKia)es — Kin(1 — voK0)ec

s 1- KK
_[1— (0.285)(0.05)](200) — (0.05)[1 — (0.285)(0.05)}(1000)
= 1—(0.05)(0.05)
— 148.23 1
R K, . .
(1 —voKip)ep — ﬁ[(l —voKi)(1 — K;0)eq + (1 —voKyo)(1 — Ky 0)ec]
SB — tADMC
1-Kp
0.06
_ ([1 ~(0.285)(0.06)(900) — 7 — s
x {[1 — (0.285)(0.05)][1 — 0.05)](200) + [1 — (0.285)(0.05)][1 — 0.05](1000)}>
x (1 —0.08)7"
—869.17 i
and

_(d- voKic)ec — Kio(1 — voKip)ey
1-KisKic
[1 — (0.285)(0.05)](1000) — (0.05)[1 — (0.285)(0.05)](200)
- 1— (0.05)(0.05)

éc

—=978.34

From Table 6.1,}
eA+ec  148.23+978.34

- = 1575.62
1—v 1-0.285 H
1
Ty \/(SA —0)? + (265 — &4 — £0)°
1 2 2
=~ /(14823 — 978.34)? 4+ [2(869.17) — 148.23 — 978.34]% = 802.48
— oV Y2+ [2(869.17) ] u

+ Note that if v for the specimen was different from v, = 0.285, it would be used in the
equations of Table 6.1 but not for Table 6.2.
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and
200(10)°
Oy = #(1575.62 + 802.48)(107%) = 237.8(10°) N/m? = 237.81 MPa
200(10)°
Tpy = w(lms.ﬁz — 802.48)(107%) = 90.01(10°) N/m? = 77.31 MPa
g L a1 (2(869.17) —148.23 —978.34\ 1 (61177
P 148.23 — 978.34 T2 —830.11

= %(143.61”) =718

The principal stress element is shown in Fig. 6.5 relative to the xy coordinate
system of the gage rosette as shown in Fig. 6.3(a).

(b) Corrections due to temperature changes. Temperature changes on
an installed strain gage cause a change in resistance, which is due to a
mismatch in the thermal expansion coefficients of the gage and the
specimen, a change in the resistivity of the gage material, and a
change in the gage factor, S,. This effect can be compensated for by
two different methods. The first method of temperature compensation
is achieved using an additional compensating gage on an adjacent arm
of the Wheatstone bridge circuit. This compensating gage must be
identical to the active gage, mounted on the same material as the
active gage, and undergoing an identical temperature change as that
of the active gage.

The second method involves calibration of the gage relative to
temperature changes. The gage can be manufactured and calibrated
for the application on a specific specimen material. The metallurgical
properties of alloys such as Constantan and modified Karma can be
processed to minimize the effect of temperature change over a limited
range of temperatures, somewhat centered about room temperature.
Gages processed in this manner are -called self-temperature-
compensated strain gages. An example of the characteristics of a

3
? 237.81 MPa

~_ / i713°
X

18.2°
/ 77.31 MPa

Figure 6.5 Principal stress element corrected for transverse sensitivity.
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BLH self-temperature-compensated gage specifically processed for use
on a low-carbon steel is shown in Fig. 6.6. Note that the apparent
strain is zero at 22°C and 45°C and approximately zero in the vicinity
of these temperatures. For temperatures beyond this region, compen-
sation can be achieved by monitoring the temperature at the strain
gage site. Then, using either the curve from the data sheet or the fitted
polynomial equation, the strain readings can be corrected numerically.
Note, however, that the curve and the polynomial equation given on
the data sheet are based on a gage factor of 2.0. If corrections are
anticipated, the gage factor adjustment of the strain indicator should
be set to 2.0. An example that demonstrates this correction is given at
the end of this section.

The gage factor variation with temperature is also presented in the
data sheet of Fig. 6.6. If the strain gage indicator is initially set at
(Sg);» the actual gage factor at temperature 7 is (S,)7, and the
indicator registers a strain measurement of &,.,qing, the corrected
strain is

Eactual = S 8I‘eading ( (e )
( g)T
BLH Electronics - Sensor Quality Control A158-31B-IL-S6
Gage Family: FAE, FAB
Temperature Induced Apparent Strain Specimen: 1018 Steel
50 . . +1.75%
0} - 1.50%
1 i

/ ; 711.25%
c
E 11.00% .2
E ®
3 | =
= ] £0.75% @
£ | >
2 L0.50% 5
2 | o B
g S R O 10.25% L
- (]
S 0.00% &
2 (O]

.............................................................. +-0.25%

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, £-0.50%

; ottt —+--0.75%

50 100 150 200
Temperature (°C)
—— Apparent Strain — Gage Factor Variation
~Apparent Strain = 48.85 +3.86 T - 7.85E-02 T2 + 4.05E-04 T° - 5.28E-07 T4 04/24/97

Figure 6.6 Strain gage temperature characteristsics. (Source: Data sheet courtesy BLH
Electronics, Inc., Canton, MA.)
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where

AS,(%)

(Sg)r = <1 + W) (Sg); (6.2-7)

and AS,(%) being the percent variation in gage factor given in Fig. 6.6.
If a simultaneous correction for apparent strain and gage factor
variation is necessary, the corrected strain is given by

(Sy);
€actual = ﬁ ('greading - 8apparent) (6.2-8)
8

EXAMPLE

A strain gage with the characteristics of Fig. 6.6 has a room-temperature gage
factor of 2.1 and is mounted on a 1018 steel specimen. A strain measurement of
—1800 u is recorded during the test when the temperature is 150°C. Deter-
mine the value of actual test strain if:

(a) the gage is in a half-bridge circuit with a dummy temperature compensat-
ing gage and prior to testing, the indicator is zeroed with the gage factor set
at 2.1.

(b) the gage is the only gage in a quarter-bridge circuit and prior to testing,
the indicator is zeroed with the gage factor set at 2.0.

Solution. From Fig. 6.6, the gage factor variation at 150°C is
ASg(%) = 1.18%. Thus, from Eq. (6.2-7), the gage factor at the test tempera-
ture is

1.13

(a) Since in this part, a dummy gage is present that cancels the apparent
strain, the only correction that is necessary is due to the change in the gage
factor. From Eq. (6.2-6),

2.1

€actual = (m)(—1800) =—-1780 u

which we see is a minor correction.

(b) In this part, we must use Eq. (6.2-8). Using the equation given in Fig. 6.6,
the apparent strain at the test temperature is

Eapparent = — 48.85 + (3.86)(150) — (7.85E-02)(150)°
+ (4.05E-04)(150)* — (5.28E-07)(150)* = —136.5
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Substituting this into Eq. (6.2-8), with (S,); = 2.0, gives

2.0

Cactunl = <m>[—1800 — (~136.5)] = —1566 4

which is not a minor correction.

6.3 Detection of Plastic Yielding

In parts made of ductile metal, sometimes a great deal can be learned
concerning the location of the most highly stressed region and the load
that produces elastic failure by noting the first signs of plastic yield-
ing. Such yielding may be detected in the following ways.

Observation of slip lines. If yielding occurs first at some point on the
surface, it can be detected by the appearance of slip lines if the surface
is suitably polished.

Brittle coating. If a member is coated with some material that will
flake off easily, this flaking will indicate local yielding of the member.
A coating of rosin or a wash of lime or white portland cement, applied
and allowed to dry, is best for this purpose, but chalk or mill scale will
often suffice. By this method zones of high stress such as those that
occur in pressure vessels around openings and projections can be
located and the load required to produce local yielding can be deter-
mined approximately.

Photoelastic coatings. Thin photoelastic coatings show very character-
istic patterns analogous to slip lines when the material beneath the
coating yields.

6.4 Analogies

Certain problems in elasticity involve equations that cannot be solved
but that happen to be mathematically identical with the equations
that describe some other physical phenomenon which can be investi-
gated experimentally. Among the more useful of such analogies are the
following.

Membrane analogy. This is especially useful in determining the
torsion properties of bars having noncircular sections. If in a thin
flat plate holes are cut having the outlines of various sections and over
each of these holes a soap film (or other membrane) is stretched and
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slightly distended by pressure from one side, the volumes of the
bubbles thus formed are proportional to the torsional rigidities of
the corresponding sections and the slope of a bubble surface at any
point is proportional to the stress caused at that point of the corre-
sponding section by a given twist per unit length of bar. By cutting in
the plate one hole the shape of the section to be studied and another
hole that is circular, the torsional properties of the irregular section
can be determined by comparing the bubble formed on the hole of that
shape with the bubble formed on the circular hole since the torsional
properties of the circular section are known.

Electrical analogy for isopachic lines. Isopachic lines are lines along
which the sums of the principal stresses are equal in a two-
dimensional plane stress problem. The voltage at any point on a
uniform two-dimensional conducting surface is governed by the
same form of equation as is the principal stress sum. Teledeltos
paper is a uniform layer of graphite particles on a paper backing
and makes an excellent material from which to construct the electrical
analog. The paper is cut to a geometric outline corresponding to the
shape of the two-dimensional structure or part, and boundary poten-
tials are applied by an adjustable power supply. The required bound-
ary potentials are obtained from a photoelastic study of the part where
the principal stress sums can be found from the principal stress
differences on the boundaries (Refs. 2 and 3). A similar membrane
analogy has the height of a nonpressurized membrane proportional to
the principal stress sum (Refs. 2 and 3).
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6.5 Tables

TABLE 6.1 Strain gage rosette equations applied to a specimen of a linear,
isotropic material

The principal strains and stresses are ?-\’ ’
given relative to the xy coordinate
€pl, Opl
axes as shown. /1
== i : j %
x
/ €p2, Op2

45°

Three-element rectangular rosette

45°
X
Principal strains N
gqt¢ 1
&p1 = 4 5 € +§\/(8A —e0)® +(2ep—eq —20)?
g4+ e 1
Epg = A B) & *Q\/(CA —e0)’ +(2ep—eq —e¢)°

Principal stresses

Efey+¢ 1 ;
=—[A C+m\/(3A_SC)2+(283_3A_SC)Z:|

T Ty
Eleq+ec 1
“pZ:E[q_vc*1+V\/(8A*EC)2+(2EB*UA*Ec)zj|

Principal angle
Treating the tan~" as a single-valued function,” the angle counterclockwise from gage A

to the axis containing ¢,, or o, is given by

0, = 1 tan-1 <21:B — 4 — .':C>
2 &4 — EC

f See Example in Sec. 6.2.
(continued)



SEC. 6.5] Experimental Methods 103

TABLE 6.1 Strain gage rosette equations applied to a specimen of a linear,
isotropic material (Continued)

120°

120° Three-element delta rosette

X 4

120°
Principal strains
Ep1 = W + g\/(SA —ep)* + (g — &) + (6c — £a)”
Epg = % - \g\/(% — &) + (e — &)’ + (6c — &)

Principal stresses

_Eleytegtec
=g 1—v

2 ;
+ %\/(SA —ep)” + (e — &c)’ + (¢ — SA)2:|

\/(SA —ep)’ + (g —ec) + (¢ — 1)’

‘2 =g 1—v 1+v

E |:8A +eptec V2
Principal angle

Treating the tan~' as a single-valued function' the angle counterclockwise from gage A
to the axis containing ¢,; or o), is given by

0 1 tan’1|: V3(ec — ¢p) i|

L) 24 — &g — &C

T See Example (as applied to a rectangular rosette) in Sec. 6.2.
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TABLE 6.2 Corrections for the transverse sensitivity of electrical resistance strain
gages

¢ refers to corrected strain value, whereas & refers to the strain read from the strain
indicator. The K, terms are the transverse sensitivity coefficients of the gages as supplied
by the manufacturer. Poisson’s ratio, vy, is normally given to be 0.285.

y
s
|

|
A
. g Two-element rectangular rosette
B

(1 =voKip)eq — Kiu(1 — voKip)ip

& =
1-KisKp

. = (1 — voKip)ep — Kip(1 — voKip)ea

Y 1-KKip

45° Three-element rectangular rosette

_ (= voKin)és — Kin(1 = voKic)éc

4 1-KKc
(1= voKiplip = 7 711 = voKia)(1 = Kie)ea + (1= voKie)(1 = Kplic]
ep = tATMC
1-Kp

e — (1- VOKtC)éc - Kyc(1— VOKtA)éA
T 1-KuaKic
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120°

A
120° Three-element delta rosette
120°
eq = kK{(1 = voK4)3 — Kip — K¢ — KipKi0)es — 2K,4[(1 — voKip)(1 — Ky0)ep
+ (1 = voKy0)(A — Kip)ecl)
eg = K{(1 = voKyp)(B — Kyo — Ky — KyoKia)ep — 2Kp[(1 — voKi0)(1 — Kip)éce
+ (1 = voKa)(1 — Ki0)eal)
ec = K{(1 =K 0)(3 — Ky — Kip — KiaKip)ec — 2K, cl(1 — voKiy)(1 — Kip)eg
+ (1 = voK;p)(1 — Kip)égl}
where

K= (SKtAKtBKtC - KtAKtB - KtBKtC - KLAKtC - Kt - KtB - KtC + 3)71
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Part

Formulas and Examples

Each of the following chapters deals with a certain type of
structural member or a certain condition of stress. What may
be called the common, or typical, case is usually discussed
first; special cases, representing peculiarities of form,
proportions, or circumstances of loading, are considered
subsequently. In the discussion of each case the underlying
assumptions are stated, the general behavior of the loaded
member is described, and formulas for the stress and
deformation are given. The more important of the general
equations are numbered consecutively throughout each section
to facilitate reference, but, wherever possible, formulas
applying to specific cases are tabulated for convenience and
economy of space.

In all formulas which contain numerical constants having
dimensions, the units are specified.

Most formulas contain only dimensionless constants and
can be evaluated in any consistent system of units.



Chapter

Tension, Compression, Shear,
and Combined Stress

7.1 Bar under Axial Tension (or Compression);
Common Case

The bar is straight, of any uniform cross section, of homogeneous
material, and (f under compression) short or constrained against
lateral buckling. The loads are applied at the ends, centrally, and in
such a manner as to avoid nonuniform stress distribution at any
section of the part under consideration. The stress does not exceed
the proportional limit.

Behavior. Parallel to the load the bar elongates (under tension) or
shortens (under compression), the unit longitudinal strain being ¢ and
the total longitudinal deflection in the length [ being 6. At right angles
to the load the bar contracts (under tension) or expands (under
compression); the unit lateral strain ¢ is the same in all transverse
directions, and the total lateral deflection ¢ in any direction is
proportional to the lateral dimension d measured in that direction.
Both longitudinal and lateral strains are proportional to the applied
load. On any right section there is a uniform tensile (or compressive)
stress o; on any oblique section there is a uniform tensile (or compres-
sive) normal stress ¢, and a uniform shear stress 5. The deformed
bar under tension is represented in Fig. 7.1(a), and the stresses in
Fig. 7.1(b).

109
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Formulas. Let

P = applied load

A = cross-sectional area (before loading)
[ = length (before loading)

E = modulus of elasticity

v = Poisson’s ratio

Then
P
A
P 2 o
0y = 4 Cos 0, max gy = g (when 6 = 0°)
_P in 20 max —1(hn9—45 r 135°)
=548 , ax 7y = go(when § =450
8—£
E
Pl
5—ZS—E
g = —ve
0 =¢d

. . 102
Strain energy per unit volume U = 5%

Total strain energy U = 16—2 Al = 1P(S
YV EoE M T

[cHAP. 7

(7.1-1)

(7.1-2)

(7.1-3)

(7.1-4)
(7.1-5)

(7.1-6)

(7.1-7)

For small strain, each unit area of cross section changes by (—2v¢)
under load, and each unit of volume changes by (1 — 2v)e under load.

In some discussions it is convenient to refer to the stiffness of a
member, which is a measure of the resistance it offers to being
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deformed. The stiffness of a uniform bar under axial load is shown by
Eq. (7.1-3) to be proportional to A and E directly and to [ inversely, i.e.,
proportional AE/I.

EXAMPLE

A cylindrical rod of steel 4in long and 1.5in diameter has an axial compres-
sive load of 20,0001b applied to it. For this steel v=0.285 and E =
30,000,000 lb/inZ. Determine (a) the unit compressive stress o; (b) the total
longitudinal deformation, J; (c) the total transverse deformation &'; (d) the
change in volume, AV; and (e) the total energy, or work done in applying the
load.

Solution
P 4P  4(—20,000) 2
oAb _A=20.09) 14 3901
@ = = 2@ ™ a1 920 Tb/n
s —11,320 6
® =% =30000.000 ~ >0

8 =el = (—=377)(107%)(4) = —1.509(107?) in (=" means shortening)
(©) & = —ve = —0.285(—377)(1075) = 107.5(10~%)

8 =¢d=(107.5)(107%)(1.5) = 1.613(107*) in ("+” means expansion)
(d) AV/V = (1 —2v)e =[1 — 2(0.285))(—377)(1076) = —162.2(107F)

AV = —162.2(10°%)V = —162.2(10’6)gd21 - —162.2(10’6)2(1.5)2(4)

= —1.147(107%) in® ("—" means decrease)
(e) Increase in strain energy,

U= %Pb‘ = %(—20,000)(—1.509)(10*3) = 15.09 in-Ib

7.2 Bar under Tension (or Compression);
Special Cases

If the bar is not straight, it is subject to bending; formulas for this case
are given in Sec. 12.4.

If the load is applied eccentrically, the bar is subject to bending;
formulas for this case are given in Secs. 8.7 and 12.4. If the load is
compressive and the bar is long and not laterally constrained, it must
be analyzed as a column by the methods of Chapters 12 and 15.

If the stress exceeds the proportional limit, the formulas for stress
given in Sec. 7.1 still hold but the deformation and work done in
producing it can be determined only from experimental data relating
unit strain to unit stress.
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If the section is not uniform but changes gradually, the stress at any

section can be found by dividing the load by the area of that section;
o g . .. P

the total longitudinal deformation over a length [ is given by J —dx
) P2 0 AE

and the strain energy is given by [ S AR dx, where dx is an infinite-
Jo

simal length in the longitudinal direction. If the change in section is
abrupt stress concentration may have to be taken into account, values
of K, being used to find elastic stresses and values of K, being used to
predict the breaking load. Stress concentration may also have to be
considered if the end attachments for loading involve pinholes, screw
threads, or other stress raisers (see Sec. 3.10 and Chap. 17).

If instead of being applied at the ends of a uniform bar the load is
applied at an intermediate point, both ends being held, the method of
consistent deformations shows that the load is apportioned to the two
parts of the bar in inverse proportion to their respective lengths.

If a uniform bar is supported at one end in a vertical position and
loaded only by its own weight, the maximum stress occurs at the
supported end and is equal to the weight divided by the cross-sectional
area. The total elongation is half as great and the total strain energy
one-third as great as if a load equal to the weight were applied at the
unsupported end. A bar supported at one end and loaded by its own
weight and an axial downward load P (force) applied at the unsup-
ported end will have the same unit stress ¢ (force per unit area) at all
sections if it is tapered so that all sections are similar in form but vary
in scale according to the formula

o Ao

where y is the distance from the free end of the bar to any section, A is
the area of that section, and w is the density of the material (force per
unit volume).

If a bar is stressed by having both ends rigidly held while a change
in temperature is imposed, the resulting stress is found by calculating
the longitudinal expansion (or contraction) that the change in
temperature would produce if the bar were not held and then calculat-
ing the load necessary to shorten (or lengthen) it by that amount
(principle of superposition). If the bar is uniform, the unit stress
produced is independent of the length of the bar if restraint against
buckling is provided. If a bar is stressed by being struck an axial blow
at one end, the case is one of impact loading, discussed in Sec. 16.3.

EXAMPLES

1. Figure 7.2 represents a uniform bar rigidly held at the ends A and D and
axially loaded at the intermediate points B and C. It is required to determine
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Figure 7.2

the total force in each portion of the bar AB, BC, CD. The loads are in newtons
and the lengths in centimeters.

Solution. Each load is divided between the portions of the bar to right and
left in inverse proportion to the lengths of these parts (consistent deforma-
tions), and the total force sustained by each part is the algebraic sum of the
forces imposed by the individual loads (superposition). Of the 9000 N load,
therefore, %, or 7000 N, is carried in tension by segment AB, and %, or 2000 N, is
carried in compression by the segment BD. Of the 18,000 N load, %, or 8000 N,
is carried in compression by segment AC, and 8, or 10,000 N, is carried in
tension by segment CD. Denoting tension by the plus sign and compression by
the minus sign, and adding algebraically, the actual stresses in each segment

are found to be

AB: 7000 — 8000 = —1000 N
BC: —2000 — 8000 = —10,000 N
CD: —2000 + 10,000 = +8000 N

The results are quite independent of the diameter of the bar and of E provided
the bar is completely uniform.

If instead of being held at the ends, the bar is prestressed by wedging it
between rigid walls under an initial compression of, say, 10,000N and the
loads at B and C are then applied, the results secured above would represent
the changes in force the several parts would undergo. The final forces in the
bar would therefore be 11,000 N compression in AB, 20,000 N compression in
BC, and 2000N compression in CD. But if the initial compression were less
than 8000N, the bar would break contact with the wall at D (no tension
possible); there would be no force at all in CD, and the forces in AB and BC,
now statically determinate, would be 9000 and 18,000 N compression, respec-
tively.

2. A steel bar 24in long has the form of a truncated cone, being circular
in section with a diameter at one end of 1in and at the other of 3in. For this
steel, E = 30,000,000 lb/in2 and the coefficient of thermal expansion is
0.0000065/°F. This bar is rigidly held at both ends and subjected to a drop
in temperature of 50°F. It is required to determine the maximum tensile stress
thus caused.

Solution. Using the principle of superposition, the solution is effected in
three steps: (a) the shortening 6 due to the drop in temperature is found,
assuming the bar free to contract; (b) the force P required to produce an
elongation equal to J, that is, to stretch the bar back to its original length, is
calculated; (¢) the maximum tensile stress produced by this force P is
calculated.

(a) 6 =50(0.0000065)(24) = 0.00780in.
(b) Let d denote the diameter and A the area of any section a distance x in
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from the small end of the bar. Then

d=1+2 A:f(lJri)2

12° 4 12
and
p 24 4P 4P (-12)
o= —dzj - _dx= = 3.395(10"")P
J, 2z =], (REX1+ <127 T 2BOA0%) (1 + x/12)] (107

Equating this to the thermal contraction of 0.007801n yields
P =2229701b

(¢) The maximum stress occurs at the smallest section, and is

4P 4(22,970)

ndy, (1)
The result can be accepted as correct only if the proportional limit of the steel
is known to be as great as or greater than the maximum stress and if the
concept of a rigid support can be accepted. (See cases 8, 9, and 10 in Table
14.1.)

o = 29,250 1b/in?

7.3 Composite Members

A tension or compression member may be made up of parallel
elements or parts which jointly carry the applied load. The essential
problem is to determine how the load is apportioned among the several
parts, and this is easily done by the method of consistent deformations.
If the parts are so arranged that all undergo the same total elongation
or shortening, then each will carry a portion of the load proportional to
its stiffness, i.e., proportional to AE/[ if each is a uniform bar and
proportional to AE if all these uniform bars are of equal length. It

follows that if there are n bars, with section areas A;,A,, ..., A,,
lengths /4,1y, ...,1,, and moduli E;, E,, ..., E,, then the loads on the
several bars P, P,, ..., P, are given by
AE,
_ L
Pr=P i 5 4,E, Az, (7.3-1)
L Ly L,
AyEy
Ly
P, = PAlEl A7, AT, (7.3-2)
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A composite member of this kind can be prestressed. P;, P,, etc., then
represent the increments of force in each member due to the applied
load, and can be found by Eqgs. (7.3-1) and (7.3-2), provided all bars can
sustain reversal of stress, or provided the applied load is not great
enough to cause such reversal in any bar which cannot sustain it. As
explained in Sec. 3.12, by proper prestressing, all parts of a composite
member can be made to reach their allowable loads, elastic limits, or
ultimate strengths simultaneously (Example 2).

EXAMPLES

1. A ring is suspended by three vertical bars, A, B, and C of unequal lengths.
The upper ends of the bars are held at different levels, so that as assembled
none of the bars is stressed. A is 4 ft long, has a section area of 0.3 in?, and is of
steel for which £ = 30,000,000 lb/ln2 B is 3ft long and has a sectlon area of
0.2 in?, and is of copper for which E = 17,000,000 lb/in?; C is 2ft long, has
a sectlon area of 0.4 in?, and is of aluminum for which E = 10,000,000 1b/1n2

A load of 10,0001b is hung on the ring. It is required to determine how much of
this load is carried by each bar.

Solution. Denoting by P,, Pg, and P, the loads carried by A, B, and C,
respectively, and expressing the moduli of elasticity in millions of pounds per
square inch and the lengths in feet, we substitute in Eq. (7.3-1) and find

(0.3)(30)
_ 1 _
Py = 10,000l Gs3m6y 0,207 (0.400) | — 180D
s T3 T

Similarly
Pp=21001b and P,=37201b

2. A composite member is formed by passing a steel rod through an aluminum
tube of the same length and fastening the two parts together at both ends. The
fastening is accomplished by adjustable nuts, which make it possible to
assemble the rod and tube so that one is under initial tension and the other
is under an equal initial compression. For the steel rod the section area is
1.5 in?%, the modulus of elasticity 30,000,0001b/in*> and the allowable stress
15,000 lb/m For the aluminum tube the section area is 2 in?, the modulus of
elast1c1ty 10,000,000 lb/ln2 and the allowable stress 10,000 lb/m2 It is desired
to prestress the composite member so that under a tensile load both parts will
reach their allowable stresses simultaneously.

Solution. When the allowable stresses are reached, the force in the steel rod
will be 1.5(15,000) = 22,5001b, the force in the aluminum tube will be
2(10,000) = 20,0001b, and the total load on the member will be
22,500 + 20,000 ; = 42,5001b. Let P; denote the initial tension or compression
in the members, and, as before, let tension be considered positive and
compression negative. Then, since Eq. (7.3-1) gives the increment in force,
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we have for the aluminum tube

(2)(d0) _
P; + 42,500m = 20,000

or
P; = +6920 1b (initial tension)
For the steel rod, we have

(1.5)(30)

Py 442,500 o 1 5)30)

= 22,500

or
P; = —-6920 1b (initial compression)

If the member were not prestressed, the unit stress in the steel would
always be just three times as great as that in the aluminum because it would
sustain the same unit deformation and its modulus of elasticity is three times
as great. Therefore, when the steel reached its allowable stress of
15,0001b/in2, the aluminum would be stressed to only 5000 lb/in2 and the
allowable load on the composite member would be only 32,5001b instead of
42,500 1Db.

7.4 Trusses

A conventional truss is essentially an assemblage of straight uniform
bars that are subjected to axial tension or compression when the truss
is loaded at the joints. The deflection of any joint of a truss is easily
found by the method of unit loads (Sec. 4.5). Let p;, p,y, ps, etc., denote
the forces produced in the several members by an assumed unit load
acting in the direction x at the joint whose deflection is to be found,
and let d;, Jq, J4, etc., denote the longitudinal deformations produced
in the several members by the actual applied loads. The deflection A,
in the direction x of the joint in question is given by

M=

A, = P10y +Pgdy +p303+ - =Y p;d; (7.4-1)

1

.
Il

The deflection in the direction y, at right angles to x, can be found
similarly by assuming the unit load to act in the y direction; the
resultant deflection is then determined by combining the x and y
deflections. Attention must be given to the signs of p and o, p is
positive if a member is subjected to tension and negative if under
compression, and J is positive if it represents an elongation and
negative if it represents a shortening. A positive value for > pd
means that the deflection is in the direction of the assumed unit
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load, and a negative value means that it is in the opposite direction.
(This procedure is illustrated in Example 1 below.)

A statically indeterminate truss can be solved by the method of least
work (Sec. 4.5). To do this, it is necessary to write down the expression
for the total strain energy in the structure, which, being simply the
sum of the strain energies of the constituent bars, is given by

1 1 1 71 n 1 /P?]
§P151 +§P252 +§P353+—§§P151—§§(E)1 (74-2)

Here P;, P,, etc., denote the forces in the individual members due to
the applied loads and 6 has the same meaning as above. It is necessary
to express each force P; as the sum of the two forces; one of these is the
force the applied loads would produce with the redundant member
removed, and the other is the force due to the unknown force (say, F)
exerted by this redundant member on the rest of the structure. The
total strain energy is thus expressed as a function of the known
applied forces and F, the force in the redundant member. The partial
derivative with respect to F of this expression for strain energy is then
set equal to zero and solved for F. If there are two or more redundant
members, the expression for strain energy with all the redundant
forces, F,, F,, etc., represented is differentiated once with respect to
each. The equations thus obtained are then solved simultaneously for
the unknown forces. (The procedure is illustrated in Example 2.)

EXAMPLES

1. The truss shown in Fig. 7.3 is composed of tubular steel members, for which
E = 30,000,000 lb/inz. The section areas of the members are given in the table
below. It is required to determine A, and A,, the horizontal and vertical
components of the displacement of joint A produced by the indicated loading.

Solution. The method of unit loads is used. The force P in each member due
to the applied loads is found, and the resulting elongation or shortening 6 is
calculated. The force p, in each member due to a load of 11b acting to the right
at A, and the force p, in each member due to a load of 11b acting down at A are
calculated. By Eq. (7.4-1), >~ p,J, then gives the horizontal and }_ p,J gives the
vertical displacement or deflection of A. Tensile forces and elongations are

1200 1b 600 Ib
/
T/ E B lA
D) ‘ ¢ {
4 4 |
600 1b
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denoted by +, compressive forces and shortenings by —. The work is
conveniently tabulated as follows:

Area, Length, (P : (P<9); ®y9);5

Member A;,in* I,in P, ““\4E);™ @), in@ () in (b)

(1) AB  0.07862 48 800  0.01628  1.000 0.01628 1.333  0.02171
(2) AC  0.07862 60 —1000 —0.02544 0 0 ~1.667  0.04240
(3) BC 0.1464 36 1200 0.00984 0 0 1.000  0.00984
(4) BE 0.4142 48 4000  0.01545 1.000 0.01545 2.667  0.04120
(5) BD 0.3318 60 —4000 —0.02411 0 0 ~1.667  0.04018
(6)CD 0.07862 48  —800 -0.01628 0 0 ~1.333  0.02171

A, =0.031731in A, =0.17704 in

A, and A, are both found to be positive, which means that the displacements
are in the directions of the assumed unit loads—to the right and down. Had
either been found to be negative, it would have meant that the displacement
was in a direction opposite to that of the corresponding unit load.

2. Assume a diagonal member, running from A to D and having a section
area 0.3318 in? and length 8.544ft, is to be added to the truss of Example 1;
the structure is now statically indeterminate. It is required to determine the
force in each member of the altered truss due to the loads shown.

Solution. We use the method of least work. The truss has one redundant
member; any member except BE may be regarded as redundant, since if any
one were removed, the remaining structure would be stable and statically
determinate. We select AD to be regarded as redundant, denote the unknown
force in AD by F, and assume F' to be tension. We find the force in each member
assuming AD to be removed, then find the force in each member due to a pull F
exerted at A by AD, and then add these forces, thus getting an expression for
the force in each member of the actual truss in terms of F. The expression for
the strain energy can then be written out, differentiated with respect to F,
equated to zero, and solved for F. F being known, the force in each member of
the truss is easily found. The computations are conveniently tabulated as
follows:

Forces in members'

Due to Due to
applied pull, F, Total forces, Actual total
loads without exerted by P;. Superposition values with
AD AD of (a) and (b) F =-10501b1in (c)
Member (a) (b) (b) (o) (d) (Ib)
(1) AB 800 —0.470 F 800 — 0470 F 1290
(2) AC —1000 —0.584 F —1000 — 0.584 F -390
3) BC 1200 0.351 F 1200+ 0.351 F 830
(4) BE 4000 0 4000 4000
(5) BD —4000 —0.584 F —4000 — 0.584 F —-3390
(6) CD —800 —0470 F —800 — 0.470 F —306
(7) AD 0 F F —1050

f + for tension and — for compression.
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1 /P2 (800 — 0.470F)2(48) (~1000 — 0.584F)X(60)
=L 5( ) 2E *

= 0.07862 0.07862
(1200 + 0.351F)%(36)  (4000)*(48)
0.1464 0.4142
(—4000 — 0.584F)%(60)  (—800 — 0.470F)*(48)
0.3318 0.07862
F2(102.5)
0.3318 ]

Setting the partial derivative of U relative to F to zero,

9U _ 1 [2(800 —0.4T0F)(~0.470)(48)  2(~1000 — 0.584F)(~0.584)(60)
9F ~ 2E 0.07862 0.07862
—-0

and solving for F' gives F = —-1050 Ib.

The negative sign here simply means that AD is in compression. A positive
value of F' would have indicated tension. Substituting the value of F' into the
terms of column (c) yield the actual total forces in each member as tabulated in
column (d).

7.5 Body under Pure Shear Stress

A condition of pure shear may be produced by any one of the methods
of loading shown in Fig. 7.4. In Fig. 7.4(a), a rectangular block of
length a, height b, and uniform thickness ¢ is shown loaded by forces
P; and Ps,, uniformly distributed over the surfaces to which they are
applied and satisfying the equilibrium equation P;b = Pya. There are
equal shear stresses on all vertical and horizontal planes, so that any
contained cube oriented like ABCD has on each of four faces the shear
stress © = P;/at = P,/bt and no other stress.

In Fig. 7.4(b) a rectangular block is shown under equal and opposite
biaxial stresses o, and o,. There are equal shear stresses on all planes
inclined at 45° to the top and bottom faces, so that a contained cube

—_

Figure 7.4
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oriented like ABCD has on each of four faces the shear stress
7 =0, = 0, and no other stress.

In Fig. 7.4(c), a circular shaft is shown under a twisting moment 7'; a
cube of infinitesimal dimensions, a distance z from the axis and
oriented like ABCD has on each of four faces an essentially uniform
shear stress t = Tz/J (Sec. 10.1) and no other stress.

In whatever way the loading is accomplished, the result is to impose
on an elementary cube of the loaded body the condition of stress
represented in Fig. 7.5, that is, shearing stress alone on each of four
faces, these stresses being equal and so directed as to satisfy the
equilibrium condition 7, = 0 (Sec. 4.1).

The stresses, oy and 1, on a transformed surface rotated counter-
clockwise through the angle 0 can be determined from the transforma-
tion equations given by Eqgs. (2.3-17). They are given by

gy =1 sin 20, Tp = T cos 20 (7.5-1)

where (69)max min = £ at 0 = £45°.

The strains produced by pure shear are shown in Fig. 7.5(b), where
the cube ABCD is deformed into a rhombohedron A’B'C'D’. The unit
shear strain, y, referred to as the engineering shear strain, is reduction
of angles /ABC and /ADC, and the increase in angles /DAB and
/BCD in radians. Letting G denote the modulus of rigidity, the shear
strain is related to the shear stress as

T
V=5 (7.5-2)

Assuming a linear material, the strain energy per unit volume for pure
shear, u,, within the elastic range is given by
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Figure 7.5 (a) Shear stress and transformation. (b) Shear strain.
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The relations between 1, g, and the strains represented in Fig. 7.5(b)
make it possible to express G in terms of E and Poisson’s ratio, v, for a
linear, homogeneous, isotropic material. The relationship is

E

“=51y

(7.5-4)

From known values of E (determined by a tensile test) and G
(determined by a torsion test) it is thus possible to calculate v.

7.6 Cases of Direct Shear Loading

By direct shear loading is meant any case in which a member is acted
on by equal, parallel, and opposite forces so nearly colinear that the
material between them is subjected primarily to shear stress, with
negligible bending. Examples of this are provided by rivets, bolts, and
pins, shaft splines and keys, screw threads, short lugs, etc. These are
not really cases of pure shear; the actual stress distribution is complex
and usually indeterminate because of the influence of fit and other
factors. In designing such parts, however, it is usually assumed that
the shear is uniformly distributed on the critical section, and since
working stresses are selected with due allowance for the approximate
nature of this assumption, the practice is usually permissible. In
beams subject to transverse shear, this assumption cannot be made
as a rule.

Shear and other stresses in rivets, pins, keys, etc., are discussed
more fully in Chap. 14, shear stresses in beams in Chap. 8, and shear
stresses in torsion members in Chap. 10.

7.7 Combined Stress

Under certain circumstances of loading, a body is subjected to a
combination of tensile and compressive stresses (usually designated
as biaxial or triaxial stress) or to a combination of tensile, compressive,
and shear stresses (usually designated as combined stress). For
example, the material at the inner surface of a thick cylindrical
pressure vessel is subjected to triaxial stress (radial compression,
longitudinal tension, and circumferential tension), and a shaft simul-
taneously bent and twisted is subjected to combined stress (longi-
tudinal tension or compression, and torsional shear).

In most instances the normal and shear stresses on each of three
mutually perpendicular planes are due to flexure, axial loading,
torsion, beam shear, or some combination of these which separately
can be calculated readily by the appropriate formulas. Normal stresses
arising from different load conditions acting on the same plane can be
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combined simply by algebraic addition considering tensile stresses
positive and compressive stresses negative. Similarly, shear stresses
can be combined by algebraic addition following a consistent sign
convention. Further analysis of the combined states of normal and
shear stresses must be performed using the transformation techniques
outlined in Sec. 2.3. The principal stresses, the maximum shear stress,
and the normal and shear stresses on any given plane can be found by
the equations given in Sec. 2.3.

The strains produced by any combination of stresses not exceeding
the proportional limit can also be found using Hooke’s law for each
stress and then combined by superposition. Consideration of the
strains caused by equal triaxial stresses leads to an expression for
the bulk modulus of elasticity given by

E

EXAMPLES

1. A rectangular block 12in long, 4in high, and 21n thick is sub]ected to a
longitudinal tensﬂe stress o, = 12,000 lb/ln a vertical compresswe stress
o, = 15,000 lb/m and a lateral compressive stress a, = 9000 lb/m The
materlal is steel, for which E = 30,000,000 lb/ln and v = 0.30. It is required
to find the total change in length.

Solution. The longitudinal deformation is found by superposition: The unit
strain due to each stress is computed separately by Egs. (7.1-2) and (7.1-4);
these results are added to give the resultant longitudinal unit strain, which is
multiplied by the length to give the total elongation. Denoting unit long-
itudinal strain by ¢, and total longitudinal deflection by ¢,, we have

12,000 —15,000 —9000
b=—p Vg Vg
= 0.000400 + 0.000150 + 0.000090 = +0.00064
d, = 12(0.00064) = 0.00768 in

The lateral dimensions have nothing to do with the result since the lateral
stresses, not the lateral loads, are given.

2. A piece of “standard extra-strong” pipe, 2 in nominal diameter, is simulta-
neously subjected to an internal pressure of p = 2000 lb/in2 and to a twisting
moment of 7" = 5000 in-1b caused by tightening a cap screwed on at one end.
Determine the maximum tensile stress and the maximum shear stress thus
produced in the pipe.

Solution. The calculations will be made, first, for a point at the outer
surface and, second, for a point at the inner surface. The dimensions of the
pipe and properties of the cross section are as follows: inner radius
r; =0.9695 in, outer radius r, =1.18751n, cross-sectional area of bore
Ay =2.9551n", cross-sectional area of pipe wall A, = 1.475 in?, and polar
moment of inertial J = 1.735 in®.



SEC. 7.7] Tension, Compression, Shear, and Combined Stress 123

We take axis x along the axis of the pipe, axis y tangent to the cross section,
and axis z radial in the plane of the cross section. For a point at the outer
surface of the pipe, ¢, is the longitudinal tensile stress due to pressure and o,
is the circumferential (hoop) stress due to pressure, the radial stress g, =0
(since the pressure is zero on the outer surface of the pipe), and t,, is the shear
stress due to torsion. Equation (7.1-1) can be used for Ty where P = pA,
and A = A,,. To calculate g,, we use the formula for stress in thick cylinders
(Table 13. 5 case 1b). Flnaﬁy, for 7,,, we use the formula for torsional stress
(Eq. (10.1-2). Thus,

pA,  (2000)(2.955)

_pay _ (2VUUN4.909) .9
0, = a, 1475 4007 Ib/in
P22 + 12) (0.9695%)(1.18752 + 1.1875%) L
- — 2000 — 7996 1b
=T (1.18752)(1.18752 — 0.96952) /n
_ Tr,  (5000)(1.1875)
Txy = 7 W = 3422 lb/ln

This is a case of 