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PREFACE 

A wide variety of different methods of structural analysis exist 
although many of them are designed for the solution of particular 
types of problem. Two procedures, however, are generally ap
plicable; these are the method of virtual work and energy methods. 
In essence, the two methods are equivalent since, although the 
arguments used in establishing the governing equations differ, the 
equations themselves are identical. 

In the author's experience, students studying virtual work find 
some difficulty in coming to terms with the idea of hypothetical 
forces or deformations whereas they quickly grasp the more obvious 
physical interpretations of the energy approach. One additional 
advantage that energy methods have over virtual work is their 
application to the approximate solution of complex problems for 
which exact solutions may not exist. 

Energy methods have not received the consideration they 
deserve in the literature and it is for this reason that this book 
has been written. The few acceptable textbooks which treat the 
subject are at a level which is not easily accessible to under
graduates. It is a matter of regret that most undergraduate text
books which do deal with energy methods generally reveal a hazy 
understanding of the principles and fail to take full advantage of 
their potential. 

Energy methods have applications in almost every branch of 
structural analysis, as well as in many other fields. It is there
fore essential that the undergraduate engineer should be fully 
conversant with their use. At the same time, it must be remembered 
that there are certain alternative specialised methods of analysis 
which might be quicker or easier for the solution of particular 
problems; it is the reader's responsibility to ensure that he does 
not put all his eggs in one basket. 

This book is intended for second and third-year undergraduates 
in university or polytechnic degree courses. It should also prove 
useful as a source of reference to designers in practice. The 
format follows that of the author's previous book in this series, 
Essential Solid Mechanics; the theory, in concise form, is followed 
by a number of worked examples chosen to illustrate all the 
principles involved. Each chapter (except the first) ends with a 
selection of problems with answers which the reader may use for 
practice. The examples and problems are typical of those set in 
examinations at the end of the second or third years of a degree 
course. In some cases the precise origin of the questions is 
unknown but general acknowledgement is given here. The author alone 
is responsible for the solutions and answers. 

One feature which will be of particular interest to both final
year undergraduates and practising designers is the design example 
which completes each of the three main chapters. Here an attempt 
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has been made to create real-life design problems which may be 
solved by the application of energy methods. These examples must 
not be confused with the examination type of question. 

B. W. YOUNG 
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1 PRELIMINARIES 

Consideration of the energy stored in a structural system and the 
variation of this energy with force or deformation provides a power
ful method of structural analysis. 

A group of energy theorems are derived which apply to the general 
case of a structure made up of members having a non-linear (or linear) 
elastic stress-strain relationship. A further group of auxiliary 
theorems are then obtained for linear elastic behaviour as a special 
case. 

To help with understanding the derivation and application of 
energy theorems, attention will be confined initially to pin-jointed 
plane frames which may be statically determinate or indeterminate. 
Later, applications of the theorems to a wider range of structural 
systems will be investigated. 

1.1 DEFINITIONS OF STRAIN ENERGY AND COMPLEMENTARY ENERGY 

The axial force-deformation curve for a non-linear elastic bar which 
is the qth member of a pin-jointed plane frame consisting of m 
members is shown in figure 1.1. The datum for the measurement of 
deformation is taken to be the initial, unstressed length of bar L. 

The area uq under the force-deformation curve represents the 

energy stored in the member by the action of the force as it 
increases from zero to its final value, F. If the member is ideally 
elastic (exhibiting no hysteresis) all this energy is recoverable 
when the member is released from the structure. 

Force 
1 1 1 F·~---t:============i:.::JJ-~>~F 

L L JS lr 

Deformation 

Figure 1.1 



The area c to the left of the curve has no direct physical 
q 

meaning, but it can be seen that the total energy, (u + c ) 
q q 

represents the work done on the member by a constant force F acting 
through the deformation o. Thus 

u + c Fa 
q q 

The areas u and c have the dimensions of work or energy; u is 
q q q 

defined as the strain energy of the member and c as the complementary 
q energy. 

1.2 THE BASIC ENERGY THEORE~~ 

We now examine a typical frame of which the bar of figure 1.1 might 
be a member. This frame is shown in figure 1.2 and is subjected to 
a set of external forces represented by loads P1 , P2 , .•• ,Pn at the 

joints (only the first two loads and the last are shown in the figure 
for reasons of clarity). The displacement at the joints caused by 
the loads alone are ~1. ~ 2 , ... , ~n· These displacements are 

measured in the line of action of the corresponding load. 

Figure 1.2 

Figure 1.3 shows the relationship between one of the loads P. and 
J 

particular joint. To maintain its corresponding deflexion, ~. at a 
J 

generality the load-deflexion relationship is assumed to be non
linear elastic. The datum from which joint displacements are 
measured is taken to be the joint position prior to the application 
of any of the loads. 
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External Load 

!J.. De flexion 
1 

Figure 1.3 

The areas u. and c. are defined as before and represent the 
J J 

contribution made by the load, P. and the corresponding deflexion, 
J 

~- to the total energy in the structure. The total work done by the 
J 

loads, which is stored as an amount of strain energy UL' is therefore 

given by 

u = 
L 

n 

l: uJ. 
j =1 

(i) 

Similarly the total complementary energy CL, stored by virtue of the 

action of the loads is given by 

c = 
L 

n 
l: 

j=l 
c. 

J 

where the summations extend over all the loaded joints. 

(ii) 

The total strain energy, Urn and the complementary energy, em 

stored in the members can be expressed as 

m 
u l: u m q=l q (iii) 

m 
and c l: c m q=l q 

(i v) 

3 



where the summations extend over all m members in the frame. By 
consideration of the principle of conservation of energy it follows 
that 

UL urn u (v) 

n 
and, since UL + CL u + c E p/'j' we have 

m m j=l 

c = c = L m c (vi) 

Imagine now that all save one of the joints in the frame of 
figure 1.2 are held in rigid clamps. If the load Pj acting at the 
free joint is increased by a small amount 6P j there will be a 

corresponding small increase, 66. in the joint deflexion. The work 
J 

done in producing this additional displacement is equal to 
increase 6U in the total strain energy of the system. Thus 
figure 1.3 and ignoring the product of the small quantities 

Mj, we have 

P.66. 
J J 

an 
from 
6P. and 

J 

(vii) 

Noting that the rate of change of strain energy in the system 
with respect to a particular deflexion 6. is given by the partial 

J 
derivative aU/o6., where U is a function of all the deflexions, we 

J 
have the alternative expression for the change in strain energy given 
by 

Since the right-hand sides of equations (vi) and (viii) are 
identical, we have 

(j = 1, ..• n) 

(viii) 

(1.1) 

This equation is a statement of Castigliano's first theorem (part 1). 
Carlo Alberto Castigliano was an Italian engineer who derived the 
result in a book published in 1879. 

Similarly, if all the loads but one are kept constant, the 
complementary work done during the resultant displ~cement is equal 
to an increase, 6C in the total complementary stra1n energy of the 
system. Again if the product of the small quantities is neglected, 
we have, from figure 1.3 
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oc = oP.t.. 
J J 

(ix) 

The rate of change of complementary strain energy in the system 
with respect to a particular load P. is given by the partial 

J 
derivative 3C/3P., where Cis a function of all the loads, hence 

J 

(x) 

Since the right-hand sides of equations (ix) and (x) are identical, 
we have 

ac ""· <lP. = J 
J 

(j 1, ... n) (1. 2) 

Equation 1.2 is a statement of the first theorem of complementary 
energy, usually attributed to Friedrich Engesser, a German engineer 
who derived the theorem in 1889. In fact, an Italian railway 
engineer, Francesco Crotti, had already obtained this result ten 
years earlier. 

Equations 1.1 and 1.2 are perfectly general and apply to any 
elastic structural system. Castigliano's first theorem (part I), 
(equation 1.1) gives equations for the loads and requires the strain 
energy to be written in terms of the deformations. Its application 
is thus an example of the equilibrium approach to structural 
analysis. The first theorem of complementary energy (equation 1. 2) 
on the other hand provides equations for the deformations and 
requires the energy to be expressed as a function of the loads. The 
application of this theorem is an example of the compatibility 
approach. 

1.3 POTENTIAL ENERGY 

To understand, in physical terms, the meaning of potential energy, 
it is useful to look again at figure 1.2 which represents a typical 
elastic structure deformed by a set of loads, P.(j = l, ... n). The 

J 
deformation of the structure is compatible with the displacements, 
t..(j = l, ... n) of the loads. The total work done by the loads as 

J 
they increase from zero to their full value is stored in the 
structure as an amount of strain energy, U. 

Suppose that, in imagination, we now apply an appropriate set of 
external forces (denoted by P) to the loaded structure in order to 
return it to the original undeformed configuration. At the end of 
this process (during which the loads P. remain at their full value) 

J 
the set of forces Pare in equilibrium with the original loads P. 

J 
and the structure itself is unstressed. It is important that this 
operation be carried out in a slow and controlled manner in order to 
eliminate inertia effects. 
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The potential energy of a deformed structure is defined as the 
total work done by the external force system, P. This is not simply 
equal to the work done in moving the loads P. through their corres-

J 
ponding displacements ~.; 

J 
amount of strain energy U 
which does not have to be 

for an ideal system (no hysteresis), an 

is released in the form of useful work 
supplied by the force system P. 

Using the normally accepted sign convention, the work done 
against the loads P. (negative) is given by 

J 

(Wd) 1 
n 
z: 

j =1 
P.~. 

J J 

while the amount of work given up by the structure (positive) is 

(Wd)2 = U 

(i) 

(ii) 

Hence, from the definition above, the potential energy of the system 
is given by 

v (Wd)2 + (Wd)l 
n 

u - z: 
j=l 

P.~. 
J J 

If the strain energy is expressed in terms of characteristic 
displacements such as ~- we have, from equation 1.3 

J 

(1. 3) 

(iii) 

but from Castigliano's first theorem (part I) (equation 1.1), for a 
structural system in equilibrium 

P. au 
J a~j 

(iv) 

thus from equations (iii) and (iv) 

av 
0 a~. = (1.4) 

J 

This result is an expression of the principle of stationary potential 
energy which states that a structural system is an equilibrium if the 
displacements are such that the potential energy assumes a 
stationary value. The idea of a stationary value of the potential 
energy was first used by the German physicist, Gustav Kirchhoff in a 
paper published in 1850. 

For stable equilibrium, V is a minimum, while for unstable 
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equilibrium V has a maximum value. For further discussion of 
stability, see chapter 4. 

The principle of stationary potential energy applies to any 
elastic system (linear and non-linear) since it was derived solely 
by reference to Castigliano's first theorem (part I). 

1.4 STATIONARY COMPLEMENTARY ENERGY 

Consideration of complementary energy is particularly useful in 
determining forces in the redundant members of statically 
indeterminate systems. 

Figure 1.4a shows a panel, ABCD which is part of a frame 
subjected to external loads. 

a) 

b) 
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c) 

Force 

R 
c 

d) 

Figure 1.4 

u 
De flexion 

X+5 r 

Suppose BC is taken to be the redundant member in the panel and 
let the unknown tensile force in BC be R. This member may therefore 
be replaced by a pair of equal and opposite forces R acting at B and 
C as shown in figure 1.4b. 

If c 1 is the complementary energy of the whole frame, excluding 

member BC, we have from equation 1.2 that 

(i) 

where 6r is the amount B and C approach each other due to the action 

of all the forces on the frame. If L is the original distance 
between B and C in the unloaded frame, then the distance between B 
and C in the loaded frame becomes (L- 6 ). 

r 

Now consider member BC, shown in figure 1.4c. The nominal length 
of BC is L, but due to a manufacturing error or a deformation 
brought about by a local t~mperature change, it has an actual length 
L +A. Figure 1.4d shows the force-deformation diagram for member 
BC in which the nominal length L is taken as the datum. If the 
complementary energy in BC is c, from equation 1.2 we have 

(ii) 
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where or is the elastic deformation of BC due to the force R. The 

total length of BC is thus L + A + or. 

The loaded member BC must fit into the loaded frame, thus the two 
lengths determined above are equal and we have L ~r L + A + or' 

or 

~ + o + A = 0 
r r (iii) 

From equations (i), (ii) and (iii) it follows that 

ac 1 
--+ 
aR 

But (C1 + c) is the total complementary energy, C, in the frame, 
thus for the general case where there are k redundancies 

ac 0 
aR. = 

l 

(i 1, 2, ..•.• k) (1. 5) 

Equation 1.5 is an expression of the second theorem of 
complementary energy which states that the complementary energy of 
an initially unstressed, statically indeterminate structural system 
has a stationary value if the redundant forces are such as to ensure 
compatibility. 

The presence of an initial lack of fit, A, will produce forces in 
the members of a statically indeterminate structure even when no 
external forces act. This effect is known as 'self-straining'. By 
definition, no self-straining can occur in a statically determinate 
structure. 

1.5 AUXILIARY ENERGY THEOREMS 

Three further theorems involving strain energy may be derived for 
linearly elastic systems, for then (referring to figures 1.1 and 1.3), 
we have 

c 
q 

u. 
J 

and from equations (i) to (vi) of section 1.2, equation 1.2 becomes 

1,2, ... ,n) (1. 6) 

This result is a statement of Castigliano's first theorem (part 
II). 

An equation similar to 1.5 can be derived in terms of strain 
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energy. In this case, however, it must be remembered that no strain 
energy is stored until the elastic deformation or occurs (see figure 

1.4d). Thus the strain energy equivalent of equation (ii) in section 
1.4 is 

au = 6 
aR r 

and the resulting general equation is 

au 
ClR. 

1 

>... (i 
1 

1' 2, ... ' k) 

which is sometimes referred to as Castigliano's second theorem. 

Finally for no self-straining 0i = 0) in a linear elastic, 

statically indeterminate system, we have from equation 1.7 that 

au 
oR. 

1 
0' (i 1' 2' ... ' k) 

(1. 7) 

(1. 8) 

This equation expresses the principle of stationary strain energy. 
It is sometimes referred to as the principle of least work. 

Since the auxiliary theorems are not applicable in general, their 
use is not encouraged. 
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2 FORCE AND DEFORMATION ANALYSIS OF PIN
JOINTED FRAMES 

The force analysis of a statically determinate pin-jointed frame is 
relatively simple. Sufficient equations for the unknown member 
forces may be obtained merely by satisfying the requirements of 
equilibrium. The treatment of statically indeterminate frames, on 
the other hand, is more difficult since more equations are required 
than are available from satisfaction of the equilibrium conditions. 

One approach to the force analysis of statically indeterminate 
structural systems is the compatibility method, in which the first 
step is to derive equilibrium equations in terms of the unknown 
forces; the additional equations required as a result of the 
statical indeterminacy of the system are then obtained by satisfying 
the requirements of compatibility using the first or second theorems 
of complementary energy (equations 1.2 and 1.5). 

An alternative approach is the equilibrium method in which the 
requirements of compatibility in the structure are first established. 
Extra equations are then obtained by satisfying the conditions of 
equilibrium using Castigliano's first theorem (part I) (equation 1.1). 

Once the force analysis of a structure has been completed, it is 
a relatively straightforward matter to determine deflexions by 
application of the first theorem of complementary energy (equation 
1. 2). 

The pin-jointed frame is, of course, an idealisation. In 
practice, joints will possess some degree of rigidity giving rise to 
bending moments having maximum values (for a given loading) in the 
case of perfectly rigid joints. These moments, however, are of 
secondary importance since the internal forces in the structure will 
arrange themselves in such a way that the strain energy is a minimum. 
For a given external force system, the least strain energy is stored 
if the internal forces cause axial rather than bending deformations 
(assuming gross deformations do not occur as in a collapsing strut). 

2.1 ENERGY DUE TO AXIAL FORCES 

Since this chapter is concerned solely with axial forces in members, 
it is useful to start by deriving appropriate expressions for strain 
energy and complementary energy. 

Figure 2.la shows a bar of cross-sectional area A and length L. 
The bar is subjected to an axial force F which produces a 
deformation~. It will be assumed that the resulting stress is 
uniform and that deformations are small. Figure 2.lb shows the 
force-deformation curve for the bar. As we have already seen in 
chapter 1, the area under the curve represents the strain energy, U, 
stored in the bar, while the area above the curve represents the 
complementary energy, C, thus 
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U = IF dll 

but F = aA and ll = £L where a and £ are respectively the stress and 
strain in the bar. Hence 

U ALia d£ 

or u = fa d£ (2.1) 

where u is the strain energy per unit volume. 

Similarly, the complementary energy per unit volume, c, is given 
by 

c=hda (2. 2) 

+"------=L-----+~~L~-~=EL 
T 1 1 

F ~,...-------;[~F a) 

Force 

b) 

Def/exion 

Figure 2.1 

2.2 CONVERSION OF STATICALLY INDERTERMINATE SYSTEMS 

The first step in the analysis of a statically indeterminate 
structure is to convert it into a number of statically determinate 
systems for which the force analysis is straightforward. The total 
forces in the original structure can then be obtained by application 
of the principle of superposition which, in the application below, 
is valid for both linear and non-linear elastic systems. 
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As an illustration, consider the redundant pin-jointed plane frame 
shown in figure 2.2. 

5kN 

Figure 2.2 

There are seven members (m), five joints (j) and five independent 
reactions (r). Thus m + r- 2j = 2 is the number of redundant forces 
in the frame (see Essential Solid Mechanics). It is convenient, 
though not obligatory, to take these redundant forces as the vertical 
reaction R at C and the force S in member AD. 

A statically indeterminate system with N redundants may be 
converted into one statically determinate system carrying the 
external load with all the redundant forces set to zero and N 
statically determinate systems each subjected to only one of the 
redundant forces, all the other redundant forces being zero. 

To simplify the calculation, it is usual to consider a unit value 
of the redundant force. 

The statically determinate components of the frame in figure 2.2 
are shown in figure 2.3. 

c 

13 

SY.stem 1 

Forces, F (kN) 



c 
Figure 2.3 

SY.stem 2 

Forces, r 

..§Y.stem 3 

Forces,s 

The total force, FT, in any member of the original frame is 

obtained by superposition, thus 

FT = F + rR + sS 

where r and s are the forces in the structure induced by unit values 
of the redundancies R and S respectively. Further discussion of 
this problem appears later in example 2.3. 

2.3 CHOICE OF METHOD OF ANALYSIS 

In the theoretical introduction (chapter 1), two fundamental methods 
for the analysis of structures were discussed. These were referred 
to as the equilibrium approach (Castigliano's first theorem (part I) 
and the principle of stationary potential energy) and the 
compatibility approach (first and second theorems of complementary 
energy). Either method may be used for a particular problem but as 
a general rule the compatibility approach is more efficient than the 
equilibrium method if the number of degrees of freedom of the 
structure is greater than the number of redundancies and vice versa. 

2.4 THE COMPATIBILITY METHOD 

Most redundant plane frames have more degrees of freedom than the 
number of redundancies, thus they are normally more amenable to the 
compatibility approach. We will consider here a number of examples 
of the use of this method starting with a simple problem in which 
the number of redundancies is equal to the number of degrees of 
freedom. In section 2.5, this same problem will be solved using the 
equilibrium approach to allow the reader to compare the two methods. 
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Example 2.1 

Four linearly elastic rods made of the same material and having the 
same cross-sectional area are pin-jointed together at 0. Their far 
ends are pinned to rigid supports at A, B, C and D as shown in 
figure 2.4. All the rods have the same length, L. If horizontal 
and vertical forces of 10 kN and 5 kN respectively, are applied to 
the joint 0, determine the forces in the rods. 

5kN 

Figure 2.4 

The frame has two redundant members which we will assume to be 
members OB and OD, thus we must consider the three statically 
determinate systems shown in figure 2.5. 

c SY.stem 1 

Forces, F (kN) 

0 
10kN 

5kN 

.§ystem 2 

Forces, r 
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1 

Figure 2.5 

SY.stem 3 

Forces, s 

Let the force in OB be R and in OD be S. Then the total force, 
FT' in a member of the original frame is given by 

FT = F + rR + sS (i) 

The complementary energy for the whole frame is obtained from 
equation 2.2 as 

(ii) 

thus from the second theorem of complementary energy (equation 1.5) 
we have 

and 

But L, A and E are the same for all four members and from equation 
(i) we have 

4 
thus ~ (F + rR + sS)r 

l 

4 
and ~ (F + rR + sS)s 0 

l 

4 4 4 
or ~ Fr + R ~r2 + s ~rs 

l l l 

4 4 4 
and ~ Fs + R ~rs + s ~52 

l l l 

0 (iii) 

0 (i v) 
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Equations (iii) and (iv) are a pair of simultaneous equations for R 
and S. The coefficients of which are best obtained from a table 
showing the results of the force analysis of the systems shown in 
figure 2. 5 - see table 2.1. 

TABLE 2.1 

Member F(kN) r s r2 52 rs Fr Fs 

OA +10 -1/12 +1/12 1/2 1/2 -1/2 -10;/2 +10/12 
OB 0 1 0 1 0 0 0 0 
oc + 5 -1/12 -1/12 1/2 1/2 +1/2 - 5/12 - 5/12 
OD 0 0 1 0 1 0 0 0 

2: -2- -2- -0- -15/h +5772 

Substitution of the summations from table 2.1 into equations (iii) 
and (iv) leads to 

-15 
----;'[ + 2R = 0 

and +5 72 + 2S = 0 

thus R 15/212 kN 

and S -5/212 kN 

From the table and equation (i) it is possible to calculate the 
individual member forces as follows 

FOA +5 kN 

FOB +15/2/2 kN 

Foe +5/2 kN 

FOD = -5/212 kN 

the negative sign denotes compression. 

Problems involving frames with non-linear elastic members may 
also be dealt with effectively as the next example shows. 

Example 2.2 

The three identical rods shown in figure 2.6 are pinned together at 
0 and to rigid supports at A, B and C. The joint 0 carries a 
vertical load of 10 kN. 
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The rods are made from a non-linear elastic material which has a 
relationship between stress, a, and strain, E, given by 

3 
a = BE 

where B is a constant 

Determine the forces in the rods. 

tOkN 

Figure 2.6 

The frame has one redundancy and two degrees of freedom (the 
horizontal and vertical displacements of the joint 0), thus the 
compatibility method of analysis is used here. (A solution by the 
equilibrium method is investigated in section 2.5.) 

If OB is taken to be the redundant member, the frame may be 
converted into the two statically determinate systems shown in 
figure 2.7. 

tOkN 

0 
Figure 2.7 
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From equation 2.2 we have the complementary energy per unit 
volume as 

crT 
c = J e: dcr 

0 

cr 3 

thus crod = AL~T ~ dcr 
cr '+ 

T AL 
-4- 8 

since the volume of each rod is AL. 

The complementary strain energy for the whole frame is therefore 
given by 

3 F 4L 
C E T 

1 4A 3B 

where FT AcrT. Thus from the second theorem of complementary 

energy we have 

where FT = F + rR. Hence 

0 

Since L, A and B are the same for all members. 
(i), we obtain the following cubic equation for 

3 3 3 3 
EF3r + 3REF2r 2 + 3R2EFr3 + R3Er4 = 0 
1 1 1 1 

(i) 

Expanding equation 
R 

(ii) 

The coefficients of this equation are obtained from table 2.2, which 
shows the results of the force analysis of the two statically 
determinate systems of figure 2.7. 

TABLE 2.2 

Member F r F3r F2r2 Fr 3 r'+ 

OA 7.320 -0.732 -287.2 28.72 -2.872 0.2872 
OB 0 1 0 0 0 1 
oc 8.966 -0.897 -646.2 64.62 -6.462 0.6462 

E -933.4 93.34 -=9. 334 1. 9334 
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After substitution of the summations into equation (ii) and re
arrangement, we have 

R3 - 14.483R2 + 144.83R - 482.8 = 0 (iii) 

Equation (iii) has only one real root and solution by trial gives 

R = 4.94 kN 

thus FOA +3.70 kN 

+4.94 kN 

+4.53 kN 

~fure general non-linear elastic problems usually lead to 
equations for the redundancies which are more difficult to solve 
than equation (iii) above. Had the above problem involved more than 
one redundancy for example, it would have been necessary to solve a 
set of simultaneous cubic equations. 

It is of interest to compare the results of the force analysis 
for this problem with those which would have been obtained had the 
rod material been linearly elastic. The reader may wish to confirm 
that in this case the forces in the rods are 

FOA +3.13 kN 

FOB +5.73 kN 

Foe = +3.83 kN 

The determination of the deflexions of the load point will be 
found in section 2.5 when the equilibrium approach to this problem 
is considered. 

Example 2.3 

Determine the forces in the frame shown in figure 2.2. The bar 
material is linearly elastic and the ratio of bar length to cross
sectional area is a constant. 

The conversion of this frame into three statically determinate 
systems has already been discussed in section 2.2. The total member 
force is (see figure 2.3) 

F + rR + sS (i) 

where F is the force in a member due to external loading alone, R is 
the vertical reaction at C and S is the force in AD. r and s are 
the member forces produced by unit values of RandS respectively. 
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The complementary energy stored in the frame is obtained, for 
linearly elastic members, from equation 2.2 

(ii) 

By application of the second theorem of complementary energy 
(equation 1.5) we have 

(iii) 

(i v) 

From equations (i), (iii) and (iv) and noting that L/AE is a 
constant we obta.in 

7 7 7 
l:Fr + RL:r2 + SL:rs 0 (v) 
1 1 1 
7 7 7 

and L:Fs + RL:rs + SL:s 2 0 (vi) 
1 1 1 

The force analysis of the three statically determinate systems 
shown in figure 2.3 is straight forward. The results are given in 
table 2.3 together with the product terms. 

TABLE 2.3 

Member F(kN) r s Fr Fs rs 

AB 5 -2 -1/12 -10 -5/12 h 
BC 0 -12 0 0 0 0 
CD 0 1 0 0 0 0 
DE 0 1 -1/12 0 0 -1/12 
AD 0 0 1 0 0 0 
BE -512 12 1 -10 -5/z 12 
BD 0 0 -1/12 0 0 0 

l: = -20 -15/12 3/12 

Substitution of the summations into equations (v) and 
to the following simultaneous equations for R and S 

1012R + 3S 2012 

and 312R + 7S 1512 

thus R = 95 kN 61 

and S = 63012 kN 427 
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4 1/2 
2 0 
1 0 
1 1/2 
0 1 
2 1 
0 1/2 

TO 7/2 

(vi) leads 

(vii) 

(viii) 



From equation (i) and the tabulated values of F, r and s we have 

FAB +0.41 kN 

FBC -2.20 kN 

FCD = +1.56 kN 

FOE = +0.08 kN 

FAD +2.09 kN 

FBE -2.78 kN 

F80 -1.47 kN 

2.4.1 Lack of fit 

Problems involving a lack of fit produced by manufacturing errors or 
by deliberate mechanical means (the turnbuckle) may be solved by 
application of the second theorem of complementary energy (section 
1.4). 

Example 2.4 

The cross-sectional area of each member of the truss in figure 2.8 
is 500 mm2 and the elastic modulus, E, is 50 GN m-2. The turnbuckle 
along AC is tightened so that its two ends are brought 5 mm closer to 
each other. Determine the load in AC induced by this operation. 

(Southampton) 

2·5m 

2·5m 

Figure 2.8 
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The effect of tightening the turnbuckle is to make AC too short to 
fit into the frame without inducing self-straining. The lack of fit, 
A, of AC is therefore given by 

A = -0.005 m 

where the negative sign is in accordance with the convention adopted 
in section 1.4. 

By reference to figure 1.4d it is possible to derive an expression 
for the complementary strain energy stored in a frame consisting of 
linearly elastic members subject to initial lack of fit, A. Thus 

If AC in figure 2.8 is taken to be the redundant member, we have from 
the second theorem of complementary energy 

~ = ~ (FTL + A) aFT = 0 
8R 1 AE aR 

where R is the force in AC. 

There are no member forces due to external loads, thus 

therefore, since AE is a constant for all members, equation (i) 
becomes 

(i) 

0 (ii) 

where r is the force in a member produced by unit force in AC. 

The values of r are calculated and shown in table 2.4 together 
with the products r 2L and rA. 

TABLE 2.4 

Member r L(m) A (m) r 2L(m) rA (m) 

AB -1/ V'2 2.5 0 1. 25 0 
BC -1/12 2.5 0 1.25 0 
CD -1/12 2.5 0 1. 25 0 
DA -1/12 2.5 0 1.25 0 
BD 1 2.512 0 2.512 0 
AC 1 2.512 -0.005 2.512 -0.005 

l.: 5(l+Vlz) -0.005 

23 



Substituting the summations into equation (ii) and noting that 
AE 25000 kN, we have 

5R(l + 

thus R 

12) -25,000 X 0.005 

25 
(l + 12 ) = 10.35 kN 

0 

Had the turnbuckle been tightened still further so that C 
approached A by 5 mm, it would be possible to determine the new 
force in AC from equation (i) of section 1.4, for then 

where the summation excludes member AC. Thus 

hence 

The summation of the products r 2L may be obtained from the first 
five rows of table 2.4. Noting also that ~R = 0.005 m, we have 

2.512(1 + 12)R = 25 000 X 0.005 

hence 

R 
2512 

(l + 12 ) = 14.64 kN 

The reader may wish to verify that in the first case, where the 
lack of fit in AC was 5 mm, C would have approached A by 3.53 mm. 
Similarly an initial lack of fit of 7.07 mm in AC would account for 
C approaching A by 5 mm. The differences in the two sets of figures 
is due to the elastic extension of AC; this being 1.47 mm in the 
first case and 2.07 mm in the second. 

Unfortunately, there is some ambiguity in this problem as stated. 
If the turnbuckle is closed by 5 mm before AC is inserted into the 
frame, then the first set of solutions applies. If, however, the 
member AC is initially joined to the frame with the turnbuckle loose 
and subsequently the latter is tightened until the distance between 
A and C is reduced by 5 mm, the second set of solutions applies. 

The initial lack of fit need not necessarily be in the redundant 
member alone. Suppose that in example 2.4, all the members were too 
short by 5 mm, then 

6 
~rA 0.01011(2) - l]m 
1 
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and from equation (ii) 

R = 

Example 2.5 

50[1(2)-1] 
[1(2) + 1] -8.58 kN 

Determine the force in member AC of example 2.4 if all the members 
are made of a material whose stress-strain relationship is given by 

where B 

The expression for the complementary strain energy may be obtained 
by reference to examples 2.2 and 2.4 as 

thus by application of the second theorem of complementary energy, we 
have 

hence 

0 

since FT rR. Using the information in table 2.4 we have 

~r4 L ~(1 + 212) m 
l 2 

6 
and LrA 

l 

also A3B 

-0.005 m as before 

Substituting these values in equation (i) we obtain 

or R = 8.05 kN 

The negative root may be rejected by inspection. 

Example 2.6 

The pin-jointed frame shown in figure 2.9 is composed of members 
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each having a cross-sectional area of 500 mm 2 , the modulus of 
elasticity being 200 GN m-2. Find: (a) The force in member BD, 
assuming that there is no initial lack of fit in any of the members, 
for the particular loading shown. (b) the initial lack of fit in 
member BD that would double the force in BD found in (a). (Leeds) 

20kN 

2m 

Figure 2.9 

The frame has one redundant member and may therefore be converted 
into the two statically determinate systems shown in figure 2.10. 

20kN 

~Y.stem 1 

Forces,F 
Figure 2.10 
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Assuming an initial lack of fit,A, in member BD we have, from 
equation (i) of example 2.4 

where R is the force in BD, and 

FT F + rR 

7 7 7 
thus LFrL + RLr2L + AELrA = 0 

l l l 

Carrying out the force analysis for systems 1 and 2 in figure 
2.10 and tabulating the relevant results, we have table 2.5. 

TABLE 2.5 

(i) 

Member F(kN) r L(m) A(m) FrL(kNm) r 2L(m) rA(m) 

AB -2013 0 13 0 0 0 0 
AD 40 0 2 0 0 0 0 
BC -4013 1(3)/2 13 0 -6013 31(3)/4 0 
BE 2017 -1(7)/2 17 0 -7017 71(7)/4 0 
DC 0 -1 2 0 0 2 0 
DE 40 1 2 0 80 2 0 
BD 0 1 1 A 0 1 A 

L -209.12 43.72 A 

Substitution of the summations into equation (i) and noting that 
AE 105 kN gives 

43.72R + 105A = 209.12 kN m 

For case (a) we have A = 0, thus 

R = 4.78 kN 

For case (b), R = 9.56 kN, thus 

209.12 - 0.0021 m 

2.1 mm 

The negative sign indicates that in case (b) member BD is initially 
too short. 

2.4.2 Temperature effects 

A rise or fall in temperature causing a change in the length of a 
member in a structural system will have no effect on the internal 
forces if the structure is statically determinate. A statically 
indeterminate structure, however, will usually suffer an alteration 
of its internal force system. 
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An exception to this rule concerns the statically indeterminate 
structure made from a single material which is statically determinate 
with respect to its supports, (the reactions being independent of the 
redundant forces). If such a structure is subjected to a uniform 
temperature change, no additional internal forces will be generated. 

It is not difficult to see that this should be so, since all the 
members change their length in proportion. The temperature change 
simply applies a length scaling factor to the structure. Provided 
the supports are free to move in order to accommodate this overall 
change of size, no additional internal forces can be produced. 

The temperature change in length of a bar in a pin-jointed frame 
may be conveniently treated as an initial lack of fit given by 

>. = Lae 

where L is the original length of the bar, a is the temperature 
coefficient of expansion (K- 1) and e is the temperature change (K). 

Example 2.7 

The pin-jointed plane frame ABCDEF shown in figure 2.11 consists of 
nine aluminium bars (E = 70 GN m-2) each having a cross-sectional 
area of 120 mm2 and a length of 2 m. A vertical load of 1 kN is 
applied at F. 

If members AB, BC, CD and DE undergo an increase in temperature of 
20 K relative to the other members, determine the force in member CF. 
The coefficient of linear expansion for aluminium is 23 x 10-6 K-1. 

c 

1kN 

Figure 2.11 

The frame has one redundancy which we will assume to be the 
horizontal thrust at E. Conversion of the statically indeterminate 
frame into two statically determinate systems is illustrated in 
figure 2.12. 
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c 

SY-stem 1 

Forces,F 

Figure 2.12 

c 

~ystem 2 

Forces, r 

The complementary strain energy for a linearly elastic system with 
initial lacks of fit A , is given by 

From the second complementary energy theorem (equation 1.5) we have 

.!£ = I:( FTL + A) aFT = 0 (i) 
aR AE aR 

Now FT = F + rR and L/AE constant, thus from equation (i) we have 

0 (ii) 

but A = Lae, thus equation (ii) becomes 

9 9 9 
I:Fr + ru:r2 + aAEI:re = 0 (iii) 
1 1 1 

since all members have the same length and coefficient of expansion. 

The force analysis of systems 1 and 2 in figure 2.12 gives forces 
F and r which are given in table 2.6 together with the product terms 
needed for equation (iii). 
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Table 2.6 

Member F(kN) r 8 (K) Fr(kN) r2 re (K) 

AB -1/2 1/13 20 -1/213 1/3 20/l3 
BC -1/2 1/13 20 -1/2/3 1/3 20//3 
CD -1/2 1/13 20 -1/2/3 1/3 20//3 
DE -1/2 1/13 20 -1/2/3 1/3 20/13 
AF 0 -2/13 0 0 4/3 0 
BF 1/2 -1/13 0 -1/2/3 1/3 0 
CF 1/2 -1/13 0 -1/213 1/3 0 
DF 1/2 -1/13 0 -1/2/3 1/3 0 
EF 0 -2/13 0 0 4/3 0 

~ -7/2/3 -5- 80/13 

Substituting the summations from table 2.6 into equation (iii) and 
noting that aAE = 0.1932 kN K-1, we have 

7 80 - 273 + sR + o.l932 x 73 = o 

hence 

R = - 1.38 kN 

and FCF = ! 1 - 73( -1. 38) 1. 30 kN 

Example 2.8 

Determine the force in member DC of the plane, pin-jointed frame 
ABCDEF shown in figure 2.13. Find the new force in this member if 
the temperature of the whole frame is raised by 2 K. What 
temperature rise will result in zero force in member DC? All 
members are linearly elastic with AE/L = 105 kN m-1 and 
a = 12 x 10-6 K-1 . 

8 D 

/ 

Figure 2.13 
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There are two redundant forces in this frame. We shall assume 
that they are the force R in DC and the horizontal reaction S at F. 
The three statically determinate systems to be considered are shown 
in figure 2.14. 

Figure 2.14 

SY.stem 1 

Forces.F 

.§Y.stem 2 

Forces,r 

~stem 3 

Forces,s 

1 

From the expression for the complementary strain energy given in 
example 2.8 and by application of the second complementary energy 
theorem, (equation 1.5) we obtain the governing equations for this 
problem as 

10 10 10 aAEe 10 
L Fr + RL r 2 + SL rs + -- L rL = 0 
1 1 1 L 1 

(i) 

10 10 10 aAEe 10 
and L Fs + RL rs + SL s2 + - 1- ~ sL = 0 

1 1 1 
(ii) 

since A= La8 and a and 8 are the same for all members. Table 2.7 
gives the results. 
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Table 2. 7 

Member F(kN} r s L(m) Fr(kN)Fs(kN) r2 s2 rs rL(m) sL(m) 
AB -lz 0 0 12 0 0 0 0 0 0 0 
AC 1 0 -1 1 0 -1 0 1 0 0 -1 
BD -1 -1/lz 0 1 1/12 0 1/2 0 0 -1/12 0 
BE 0 1 0 12 0 0 1 0 0 12 0 
BC 1 -1/12 0 1 -1/lz 0 1/2 0 0 -1/12 0 
DC 0 1 0 12 0 0 1 0 0 12 0 
CE 1 -1/12 -1 1 -1/12 -1 1/2 1 1/12 -1/12 -1 
DE 1 -1/12 0 1 -1/12 0 1/2 0 0 -1/12 0 
DF -12 0 0 12 0 0 0 0 0 0 0 
EF 1 0 -1 1 0 -1 0 1 0 0 -1 

E = :-;t2 -=3 -4- 3 lR2 -0-- -=3 

After substitution of the calculated quantities into equations (i) 
and (ii) and noting that aAE/L = 1.2 kN m- 1 K- 1 we obtain 

-12 + 4R + ~ 0 

1 and - 3 + ~ + 3S - 3.66 = 0 

Solving equations (iii) and (iv) for R alone, we have 

R = 312 (1 - 1.26) kN 23 

(iii) 

(iv) 

Now R is the force in member DC which we are required to find, thus 

and 

for 6 312 0, R = --z! = 0.184 kN 

for 6 = 2K, R = - 4·;;2 = -0.258 kN 

1 for R = 0, 6 = l. 2 = 0.833 K 

2.4.3 Flexible Supports 

In practice, no structural support is truely rigid. It is often 
necessary to take account of this fact by considering the supports 
as stiff springs. When carrying out the force analysis of a system 
with flexible supports these springs may be treated as additional 
members. Two examples will suffice to illustrate the approach. 

Example 2.9 

The pin-jointed structure shown in figure 2.15 carries a vertical load 
load of 80 kN at C. The structure is hinged to unyielding supports 
at A and D. Additional support is given to the structure by the 
roller bearing at E, but this support yields 0.01 mm/kN reaction. 
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Determine the forces in members AE and DE for the given loading. 
For all members, AE/L = 6 x 104 kN m-1. (Strathclyde) 

Figure 2.15 

The force R in member AE and the vertical reaction S provided by 
the flexible support at E will be taken as the redundant forces for 
the frame. The three statically determinate systems to be considered 
are shown in figure 2.16. 

Figure 2.16 
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The support at E is treated as an additional member of flexibility 
1/100 mm kN-1. The flexibility, L/AE, of all other members is given 
as 1/60 mm kN- 1. 

The total force, FT, in all the members including the support 

spring is given by 

FT = F + rR + sS 

All members are linearly elastic so that the complementary energy 
for the system is given by 

8(FT2L) c =I:--
1 2AE 

where the summation includes the flexible support at E. Since 
aC/aR = ac;as = o, aFT/aR = r, and aFT/as = s, we have, as the 

governing equations for the problem 

8FrL Br2L s~rsL = 0 I AE + RI:- + 
1AE 1 AE 

(i) 

and 
8FsL 8rsL 8s2L 

0 I:-+ ru:- + SI:- = 1AE 1AE lAE 
(ii) 

Table 2.8 shows the results of the force analysis of the three 
systems in figure 2.16 together with the product terms needed for 
equations (i) and (ii). 

Table 2.8 

Mem- F(kN) 
ber r s L/AE r; ~L(mm) ~L(mm) r 2L (mm~ 

AE 1kN 
s 2L (mmJ 
AE [kN 

rsL(; 
AE kN 

AB +160 -1//2 -1 1/60 -4/(2)/3 -8/3 1/120 1/60 1/6012 
BD -8012 1 12 1/60 -41(2)/3 -8/3 1/60 1/30 1(2)/60 
DE -80 -1/12 0 1/60 +21(2)/3 0 1/120 0 0 
AE 0 1 0 1/60 0 0 1/60 0 0 
BE +80 -1/12 -1 1/60 -21(2)/3 -4/3 1/120 1/60 1/6012 
CE -soh 0 0 1/60 0 0 0 0 0 
BC +80 0 0 1/60 0 0 0 0 0 
Supp- 0 0 1 1/100 0 0 0 1/100 0 ort,E I: -81(2) I 3 -20/3 +7/120 +23/300 +1(2)/30 

Substituting the summations into equations (i) and (ii) we have 

slz 7 slz 
- -3- + R:l20 + w = 0 

and 
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From which 

R = - 44~~;2 = -11.17 kN 

7600 and S = ---gr- = +93. 83 kN 

Hence 

F R = -11.17 kN ae 

R and Fde = -80 - 72 = -72.1 kN 

As an extension of this problem, the reader is invited to show 
that: (a) if Eisa rigid support, R = -37.7 kN and S = +126.7 kN. 
(b) For no support at E, R = +64.65 kN and S = 0. (c) If the 
flexibility of the support at E is relaxed to 1/60 mrn kN- 1, R = 0 
and S = 80 kN. 

Example 2.10 

The extremity of the cantilever bracket shown in figure 2.17a carries 
a vertical load of 20 kN. In order to limit the deflexion of the 
load point, support is provided in the form of a vertical rod joining 
the load point to the tip of a cantilever beam of length l. 2m and 
flexural rigidity EI. The beam, the members of the bracket and the 
vertical rod are all of steel and have the same cross-sectional area. 
Determine the force in the vertical rod if the radius of gyration of 
the beam cross-section is 0.2 m. 

1-2m flexibility, (s 
/ 

a) 20kN b) 20kN 

Figure 2.17 

The cantilever beam provides flexible support to the top of the 
vertical rod and can be treated as the linear spring DE' shown in 
figure 2.17b. 
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The relationship between end load, R and end deflexion, ~ for a 
cantilever beam is given by (see Essential Solid Mechanics) 

where L is the span and EI is the flexural rigidity. Thus the 
flexibility f of the equivalent spring DE' in figure 2.17b is s 

L3 
fs = 3EI 

But L 1.2 m and I = (cross-sectional area) x (radius of gyration) 2, 
thus 

f = ~-3- - 14.4 kN-1 
s 3AE(0.2) 2 - 1\E m 

if AE is in kN. 

The equivalent system in figure 2.17b has one redundant force 
which we will take to be the force, R in the spring. The two 
statically determinate systems to be considered are shown in figure 
2.18. 

D / D 

Forces,F 
2DkN 

Forces, r 

Figure 2.18 

By now the reader should be familiar with the setting up of the 
governing equation for this type of problem, which is found to be. 

4 4 
Urf + REr2f = 0 
1 1 

where f is the member flexibility. 

Table 2.9 gives the results of the force analysis for the two 
systems in figure 2.18, together with the product terms. 
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Table 2.9 

Member F (kN) r L (m) f (m/kN) Frf (m) r 2f (m/kN) 

AC 2012 -12 1.2'12 1. 21(2) I AE -481(2)/AE 2.41(2)/AE 
BC -20 1 1.2 1. 2/ AE -24/AE 1. 2/ AE 
DC 0 1 1.8 1. 8/ AE 0 1. 8/ AE 
DE' 0 1 14.4/AE 0 14.4/AE 

l: - 24(1+212)(17.4+2.4/2) 
AE AE 

After substituting the summations into equation (i) we obtain 

R = 24 (l + 212) = 4.42 kN 
17.4 + 2.4/2 

2.5 THE EQUILIBRIUM METHOD 

At the beginning of section 2.4 it was pointed out that most 
redundant plane frames are more efficiently dealt with by the 
compatibility approach since there are usually more degrees of 
freedom in the system than redundant forces. There are, however, a 
few examples of redundant plane frames where this is not so and for 
these frames the equilibrium method may usefully be applied. 

The first step in the analysis of a frame by the compatibility 
method was the determination of an equilibrium set of forces. In an 
analogous fashion, when applying the equilibrium approach, we start 
by finding a compatible set of member and joint displacements. 

Example 2.1 will now be solved by the equilibrium approach to 
allow the reader to compare the two methods. 

Example 2.11 

Solve example 2.1 by the equilibrium method. 

The system (see figure 2.4) has two degrees of freedom, the 
vertical and horizontal displacements of the load point 0. Figure 
2.19a shows the system subjected to the horizontal displacement (~H) 

alone. In figure 2.19b the system is subjected to the vertical 
displacement C~v) alone. 
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a) 

A 

b) 

Figure 2.19 

For small deflexions, the extension of member BO due to the single 
joint displacement, 1'\H is 0' 01 • Since triangle 00 '01 is approximate-

ly right-~<gled at O' we have 

~'~so = o'o1 = l'lH cos 45° 

Similarly 

A A 450 uDO = -uH COS 

where the negative sign denotes a contraction. 

The extension of AO is clearly equal to l'lH while CO suffers no 

change in length provided 1'\H is small. 

These results are recorded in table 2.10 together with those 
obtained by applying the single joint displacement ~'~v· 
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Table 2.10 

b.AO b.BO t:.co b. DO 

b.H alone b.H t:.i12 0 -t::.H/12 

b.y alone 0 t:.y!12 t:.v t:.yll2 

Total(~) ~ b.H + t:.v t:.v t:.v - b.H 
12 12 

The equilibrium method makes use of Castigliano's first theorem, 
part I, (equation 1.1) in which the strain energy must be expressed 
in terms of displacements. 

An expression for the strain energy in each rod may be determined 
from the stress-strain relationship. The strain-energy per unit 
volume (u) is obtained from equation 2.1 as 

u = jra dE 
0 

For a linear elastic material (cr EE) this becomes 

E /rE dE 
0 

u = 

or 

Since the volume of each rod is AL, the strain energy for the whole 
frame is given by 

4 EM 2 
U ~ T (1") ='i2L 

Applying Castigliano's first theorem, part I, we have 

aU 4 EMT at:.T 
and - E 5 kN at:.v - 1 -L- at:.v 

But L, A and E are the same for all four members thus 

4 at:.T lOL 
l:b.T M = EA 
1 H 
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and (iii) 

It should be noted that the right-hand sides of equations (ii) and 
(iii) are in units of length. To evaluate the summations, the form 
of calculation shown in table 2.11 is adopted. 

Table 2.11 

Member "'T 
3L'IT 3L'IT a"'r 3L'IT 

3L'IH 'dl'ly "'TM "'TM v v 
AO L'IH 1 0 L'IH 0 

BO 
"'H + "'v 

1/12 1/12 
L'IH + "'v L'IH + "'v --,z- 2 2 

co "'v 0 1 0 "'v 

00 
"'v - L'IH 

-1/12 1/12 
-~'~v + "'H "'v - L'IH 

'12 2 2 

E 2L'IH 2~'>v 

After substituting the summations into equations (ii) and (iii) 
we obtain the deformations 

"'H=~ and "'v = ~~ 
If we require the numerical values of these deformations, L, A 

and E must be known, but if it is only the member forces that are 
required, this information is not necessary. To calculate the 
individual forces in the members, the member strains are first 
calculated from 

then, since cr EE and FT crA, we have 

From the results above 

FOA = +5 kN 

1 5 
12 (5 + 2) +15/212 kN 

Foe +5/2 kN 
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1 5 .; F00 = .f2 Cz - 5) = -512 2 kN 

the negative sign denotes compression. 

To show how the equilibrium method can be applied to non-linear 
elastic problems, example 2.2 will now be re-worked. 

Example 2.12 

Solve example 2.2 by the equilibrium method. 

Referring to figure 2.6, we see that if the common joint 0 is 
moved an amount t.H to the right and fly downwards, the total member 

deformations (t.T) are given by 

(~)OB = t.V 

(t.T)OC = (t.V - t.H)I/2 

The strain energy per unit volume is obtained from 

e:T 

u =Jade: 
0 

since a3 = Be:, we have 

e:T I I I I 381 3 413 u = 81 3e:1 3 de: = -4- e:T 
0 

or 

Hence the total strain energy in the frame is given by 

413 
3 3AB113 t.T 
I:------
1 4 L1l 3 

u 

Applying Castigliano's first theorem, part I, we have 

113 
au iA(Bt.T) at.T = 0 
a% = 1 L at.H 

and au 
at.v = 

3 Bt. 1/3 at. 
r.A(____!) ____.! = 10 kN 
1 L at.v 
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Since A, B and L are the same for all three members, we have 

3 113 at.T 
I:t.T ~ = 0 
1 H 

3 1f3 at.T - 10 (LJ1/3 
and I:t.T ~ - A B 

1 v 

The partial differentials of liT are shown in table 2.12. 

Table 2.12 

Member 
at.T at.T 

liT at.H at.v 

AO Ct.v + 1(3)t.H)/2 1(3)/2 1/2 

BO av 0 1 

co (t.V - t.H) I 12 -1/12 1/12 

Substitution in equation (ii) gives 

I 1/3 1/3 
( t.v + C3)t.H) /3 _ (t.v - t.H) 1 _ 

7 /2 12 - 0 

hence 

I 313 
Ct.v + v C3)t.H) -4- = Ct.v - t.H) 

or ll - ( 4 - 313) tJ 
H - l3 V 

(ii) 

(iii) 

The total member deflexions may now be obtained in terms of llv 
as follows 

(liT) OB = l>V 

(l>T)OC = 313 (1 + l3)t>yf1312 

After substitution in equation (iii) we obtain 

ll1/3{.!_ [2(1 + /3) ]1/3 + 1 + 1 [3/3(1 + 13) ]1/ 3} = .!Q (~)1/3 
V 2 13 1:2 1312 A B 
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hence 

11.111 and t.H = -

To obtain the member forces, the individual strains are first 
obtained from 

then since the stress-strain relationship is given hy 

a3 = BE and a = FT/A we have 

FT A(~T) 1j3 

( 120. 73 2- 11.11/3 )113 
thus FOA = 

FOB (120.73) 1 / 3 = 4.94 kN 

3.70 kN 

The deformations of the load point 0 are downwards and to the left. 
It is of interest to note that if the rod had been made of linear 
elastic material, these deformations would have been downwards and 
to the right. The reader is invited to confirm that, in this case 

t. = 0.311 
H AE 

and t. = 5 . 7 31 
V AE 

2.5.1 Lack of fit and temperature effects 

The equilibrium method may also be used to deal with problems 
involving a lack of fit or temperature effects. 

Figure 2.20 shows the force-deformation relationship for a linear
elastic, axially loaded bar of nominal length L and lack of fit A. 
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Force F_ = EA( /1 _ '\ } 
T L T 1\ ' 

F,-+-------------;;1' /1T~A. 

c 
u 

Deformation 
~----~~--------~------

/1T 

Figure 2.20 

The strain energy (U) stored in the bar is represented by the area 
under the force-deformation curve. From Figure 2.20 we have 

or (2. 3) 

This expression could have been derived from the integral for 
strain energy per unit volume (see example 2.11), the upper limit of 
integration being ET = c~T - A)/L. 

The following example illustrates the method of solution for this 
type of problem. 

Example 2.13 

A plane truss consisting of three pin-ended bars all of equal cross
sectional area, modulus of elasticity 200 GN m- 2 and coefficient of 
thermal expansion 10 x 10- 6 K- 1 as shown in figure 2.21, is subjected 
to a uniform temperature rise of 100 K. 

Assuming that supports for the pin-joints at B, C and D are 
infinitely rigid, calculate the stresses induced in the bars and the 
displacements of point A. (Brune!) 
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BOmm 

Figure 2.21 

Let the horizontal and vertical displacements of point A be ~H 

and ~V respectively. The individual bar deformations are obtained 

in terms of these displacements and entered in table 2.13 together 
with the total deformations, ~T" 

Table 2.13 

~a ~ ~da ca 

~H alone ~H/2 1(3) ~H/2 ~ 
~v alone l(3)~yl2 ~yl2 0 

~T ~H + 1(3) ~v 1(3)~H + ~v ~H 
2 2 

From equation 2.3 above and Castigliano's first theorem, Part I, 
(equation 1.1) we have 

au i E\~ - A) 
a~T 

(i) a~H = a~H = 0 
1 L T 

and au £ EA(~ - A) 
a~T 

0 (ii) a~v = 1 L T a~v = 
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The change in length of each member caused by the increase in 
temperature may be interpreted as a lack of fit A, where A = Lae. 
The coefficient of thermal expansion (a) and the temperature change 
(6) are given, thus for each member 

Substituting for A in equations (i) and (ii) and noting that EA is 
the same for all members, we have 

3 llT allT 
10- 3 

3 allT 
0 (iii) I:--- I:-= 

1 L dllH 1 allH 

and 
3 llT allT 

10- 3 
3allT 

0 (iv) I:--- I:-= 
1 L allv 1 allv 

The summations in these equations may be obtained from table 2.14. 

Substitution from the table into equations (iii) and (iv) gives 

1(3) (1 + 13) 
(3llH + llv) = 10-3 X ~~ (1 

640 2 

1 and 1(3) (1 + 13) (ll + ll ) = 10-3 X-
640 H V 2 

which simplify to 

3~ + llv = o.32 mm 

and llH + 
ll _ 0.32 mm 
v -73 

hence 

llH = 0.068 mm 

and llv = 0.117 mm 

The member forces are obtained from 

thus the member stresses are given by 

c; = FT = E (llT - ae) 
T A L 

ll 
or crT= 200 x 1o 3(LT - 10-3) MN m- 2 
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Evaluating the strains, ~T/1 from table 2.14 we have 

For BA: 
~T 

2 (1 - ~) X lQ- 3 y:-= 

For CA: 
~T 

1(3)(13 - 1) X 10-3 y:-= 

For DA: 
~T - 2(1-~)xl0-3 y:--

Hence 

crT BA 200 (1 ~) = -30.9 MN m- 2 

crT CA 200(2 13) = +53.6 MN m-2 

crT DA 200 (1 ~)= -30,9 MN m-2 

Non-linear elastic frames incorporating lack of fit of a member or 
members present no difficulties, as the next example shows. 

Example 2.14 

Determine the amount by which member CO in the frame of example 2.2 
(figure 2.6) must be shortened so that, on loading, there is no 
horizontal deflexion of the load point, 0. 

From equation (i) of example 2.12 we may derive an expression for 
strain energy in the frame which in this case consists of non-linear 
elastic members having an initial lack of fit A. Since the total 
strain is given by 

~T - A 
£T --L-

we have 

3 1/3 
u = I: 3A(~) (~ _ A)4/3 (i) 

1 4 L T 

Applying Castigliano's first theorem, part I, and noting that A 
is independent of ~H and ~V' we have 

J l/3<l~T_ A) a~H - 0 

and au - ~1A[~c~T - A)J 113 a~T = 10 kN 
a~v - a~v 
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Since A, B and L are the same for all members 

3 1/3 aL'.T 
l:(L'.T /..) -= 0 (ii) 
1 aL'lH 

3 1/3 aL'.r 10 L 1/ 3 
and fC~'~r - A) ally = x-Cs) (iii) 

From table 2.15 we obtain the terms to be substituted in these 
equations (refer to table 2.12). Notice that although L'.H is 

eventually to be set to zero, we still need to take account of it 
here (as a dummy deflexion) in order to evaluate aL'.T/aL'lH. 

Table 2.15 

(L'.T - A) 
aL'.T aL'lT 

aL'.H aL'.v 
Member 

AO 
~'~v + 1(3)L'lH 13 1 

2 2 2 
BO ~'~v 0 1 

~'~v - L'lH 
- A 1 1 

l2 -/'I 12 co 

Thus in equations (ii) and (iii) and setting L'lH equal to zero, we 
have 

(~vr3~f- (7z- A )1/3A = 0 

and (~vr/3 i + L'l//3 + (~v - A) 1j3 A= lo(i )1/3 

From equation (iv) we obtain 

L'l _ 41(2) A 
v - 4 - 313 

Substituting for ~'~v in equation (v) we have 

( A 1/3(1 + 13 + 24/3) = .!Q(~)1/3 
4 - 3l73J 12 A B 
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from which 

212 (313 - 4) 

or -23.35 

thus ~v = 110.45 ~ 
A3B 

To determine the member forces we note that 

(B)1/3 1/3 
FT = A L (~T - A) 

3.81 kN 

(110.45) 1/ 3 = 4.80 kN 

These member forces should be compared with those found in examples 
2.2 and 2.12 where no lack of fit was involved. The negative sign 
found for A indicates that the unstressed length of member CO is 
shorter than L by this amount. 

2.6 DEFLEXIONS IN PIN-JOINTED FRAMES 

The first theorem of complementary energy (equation 1.2) may be used 
to determine deflexions in any type of structure. The complementary 
energy is a function of the loads and it must be remembered that the 
partial differential coefficient of the complementary energy with 
respect to the load P. gives the deflexion at, and in the direction 

J 
of, the load P .. It is often necessary to determine a deflexion at 

J 
some point where 
or dummy load is 
ial coefficient. 

no external load exists: in this case, a fictitious, 
introduced in order to obtain the partial different
Thereafter, the dummy load is set to zero. 

With one exception, it is possible to make direct use of strain 
energy for the special case of a single external load (W) acting on 
a statically determinate or indeterminate structure where the only 
deflexion (~) required is that of the load itself. The strain energy 
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(U) stored is then equal to the external work done, thus, for linear 
elastic materials 

or 

U = !Wt:, 

A - 2U 
u- w 

The exceptional circumstance.arises in statically indeterminate 
structures due to the presence of self-straining brought about by the 
initial lack of fit of the members or the effect of temperature 
changes. 

Although the direct use of strain energy is a trivial instance of 
the application of energy methods to the determination of deflexions 
it may occasionally be of value in the solution of certain problems. 

In any structure, a complete force analysis is normally the first 
step to determining deflexions. An exception is where the equilibrium 
method (section 2.5) is used. This gives deflexions directly but is 
limited in its application since, in practice, most structures have 
many more degrees of freedom than redundant forces. This is certainly 
so in the case of pin-jointed frames with which this section is 
concerned. 

To illustrate the process of obtaining deflexions using the dummy 
load we consider the following elementary example. 

Example 2.15 

The plane pin-jointed cantilever frame ABC shown in figure 2.22a is 
subjected to a vertical load of 10 kN at C. Determine the vertical 
and horizontal deflexions at C if the bar material is linear elastic 
and EA is 10 MN. 

a) 

p 

l 1m 10kN 
.,...,--~"-----.,!<-

Figure 2.22 
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Since we require both displacements at C it is necessary to ensure 
that external forces are present at this point acting in the 
direction of the desired displacements. These forces are shown in 
figure 2.22b where W = 10 kN and P = 0. It is essential to deal with 
these forces in symbolic form since only then is it possible to 
identify the partial differential coefficients of the complementary 
strain energy. 

From figure 2.22b we obtain the values of the member forces as 

1(2)W 

The complementary strain energy in the frame is given by 

2 FT2L 
C = ~ 2EA 

(i) 

(ii) 

and from the first theorem of complementary strain energy (equation 
1.2) we have 

ac 2 FTL aFT 
w= l: EA aF = t,H (iii) 

1 

and ac 2 FTL aFT 
(iv) aw = t EA aw- = 6v 

From equations (i) and (ii) 

aFTl aFT2 
ap-= 1, ap-= 0 

Substituting these values in equations (iii) and (iv) and noting that 
L1 = 1 m, L2 12 m, we obtain 

EMH = (P - 1'1) X 1 X 1 + 1(2)W X 12 X 0 

and EMy = (P - W) x 1(- 1) + 1(2)W x 12 x 12 

but P = 0, W = 10 kN and EA = 104 kN, thus 

t,H -l.Q_ m = -1 mm 
104 
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10 + 2012 
and D.y = m = 3. 83 mm 

104 

If the vertical deflexion alone is required, the direct strain 
energy approach could be used, for then 

or 

2U 2 2 FlL 
D.v = w- = w ! "2EA 

/:J. = _!__ (100 X 1 + 2 X 100/z J m 
v 10 104 ) 

= ( 1 + 212 ) m = 3.83 mm 
10 3 

The negative sign for the horizontal deflexion indicates that the 
movement of C is in a direction opposite to that assumed for P. 

Settlement of supports can be treated as a deflexion problem as 
the next example shows-

Example 2.16 

The pin-jointed structure shown in figure 2.23 represents a swing 
bridge carrying a 10 kN load at H. It is supported on rollers at A 
and G and a hinge at J. 

If the support at J settles 6 mm, calculate the reaction at J due 
to the load and settlement together. The structure is made of linear 
elastic bars for which EA = 10 MN. (Strathclyde) 

4m 4m 4m 4m 

Figure 2. 23 
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This structure has 17 members, 10 joints and there are 4 
independent reactions. The structure is thus statically 
indeterminate with one redundant force which we will take to be the 
vertical reaction R3 at J. 

By resolving forces and taking moments about A we have 

5 - R3 
Rl -2--

R2 0 

15 - R3 
~ 2 

If FT represents the total axial force in each member, the 

complementary strain energy for the whole frame is 

Applying the first theorem of complementary energy for the 
vertical settlement at J, we have 

(i) 

Since the settlement at J is opposite in direction to that assumed 
for the reaction R3 

-0.006 m 

also EA 10 000 kN, thus equation (i) becomes 

(ii) 

The force analysis for the frame may now be carried out in the 
normal way giving FT in terms of R3. The results are given in table 

2.16 together with other relevant data. 
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Table 2.16 

Member FT L (m) aFTiaR3 
aFT 

FTL aR3 

AB (R3-5)12 3 112 3(R3-5)14 
BK 5(5-R3)16 5 -516 125(R3-5)I36 
BC 2(R3-5)13 4 213 16(R3-5)19 
AK 0 4 0 0 

CK 0 3 0 0 

CD 2(R3-5)13 4 213 16(R3-5)I9 
DK 0 5 0 0 

KJ 5(5-R3)16 5 -516 125(R3-5)I36 
DJ -5 6 0 0 

DE 2(R3-15)13 4 213 16(R3-15)I9 

DH 2513 5 0 0 

ID 5(5-R3)16 5 -516 125 (R3-5) I 36 

HE 0 3 0 0 

EF 2(R3-15)I3 4 213 16(R3-15)19 
FH 5(15-R3)6 5 -516 125 (R3-15) I 36 

HG 0 4 0 0 

FG (R3-15)12 3 112 3(R3-15)14 

405R3-3425 
I: 18 

After substitution in equation (ii) we have 

R3 = 5. 8 kN 

This result may be compared with the value of R3 which would have 
been obtained for no settlement, for then the right-hand side of 
equation (ii) is zero and 

3425 R3 = 405 = 8.46 kN 

Similarly, the settlement required to make R3 zero is obtained from 
equation (ii) as 
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A final example in this section will illustrate the procedure for 
obtaining deflexions in statically indeterminate frames of non-linear 
elastic material. 

Example 2.17 

The cantilever frame shown in figure 2.24 carries loads of 10 kN at 
C and 20 kN at B. The bars are made from a material having a 
relationship between stress (cr) and strain (£) given by 

The cross-sectional area of each bar is A and BA3 = 7 GN. 

Determine the wall reactions at A, D and F and the vertical de
flexion at joint C. 

10kN 

+-Ta~--~~----~c 

1m 

1m 

1m 1m 

Figure 2.24 

The cantilever frame has 7 members, 6 joints and there are 6 
independent reactions; it is therefore statically indeterminate with 
one redundancy. We shall take this redundancy to be the force in 
member AE and proceed to examine the three structural systems shown 
in figure 2. 25. 
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20kN 10kN 

~~---o:=-----oc 

SY.stem 1 
Forces,F 

B C 

Figure 2.25 
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From figure 2.25, the total force in each member is 

FT = F + rR + pP 

where R is the force in member AE and P is a dummy vertical load at 
c. 

By referring back to example 2.2, we obtain the complementary 
strain energy for an assemblage of bars having the non-linear 
elastic relationship given, as 

7 F 4L 
C E _T_ 

1 4BA3 

Making use of the first and second theorems of complementary 
energy (equations 1.2 and 1.6) we have 

(i) 

(ii) 

hence 

7 
FF + rR) 3 pL = BA3llc 

7 
and I:(F+ rR)3 rL = 0 

1 

since the dummy load, P is zero. 

Expanding equations (iii) and (iv) we obtain 

(iii) 

(iv) 

7 7 7 7 
I:F3pL + 3RI:F2rpL + 3R2Efr2pL + R3Er3pL = BA3ll (v) 
1 1 1 1 c 
7 7 7 7 

and I:F3rL + 3RI:F2r2L + 3R2Efr3L + R3Er4L = 0 (vi) 
1 1 1 1 

Table 2.17 lists values ofF, r, and p obtained from the force 
analyses of the three structural systems shown in figure 2.25. 
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Table 2.17 

Member L (m) F (kN) r p 

AB 1 +10 0 1 
BC 1 +10 0 1 
AE 12 0 1 0 
BE 1 -20 0 0 
CE 12 -10/2 0 -12 
DE 1 +20 -12 0 
EF 12 -3012 1 -12 

From the table we obtain the following summations needed for 
equations (v) and (vi) 

7 
I:F'\JL = 2000 (1 + 5612) 160.4 x 103 J<N3 m 
1 
7 
I:F2rpL = -3600 J<N2 m 
1 

7 
I:Fr2pL = 6012 = 84.85 kN m 
1 
7 
I:r3pL = -2 m 
1 
7 
I:F3rL = -4000 (27 + 212) = -119.3 x 103 J<N3 m 
1 

7 
I:F2r2L = 200 (4 + 912) = 3345.6 J<N2 m 
l 

7 
I:Fr3L = -20 (3 + 212) = -116.6 kN m 
1 
7 
I:r'+L = 2 (2 +12) = 6.83 m 
1 

Substitution of the summations into equations (v) and (vi) gives 

BA3liC 
"ZOOO = 80.2 - 54 (-k) + 12.7 (-fur - (~or (vii) 

and t~or- 5.1 t~or + 14.7 (~ - 17.47 = 0 (viii) 

Equation (viii) has only one real root and, by trial, this is found 
to be 2.074, thus 

R = 20.74 kN 

After substituting for R and BA3 in equation (vii) we obtain 

llc = 4 mm 
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The final member forces are given below. The wall reactions 
derived from these forces are shown in figure 2.26. 

(FT)AB +10.0 kN 

(FT)BC +10.0 kN 

(FT) AE +20.7 kN 

(FT)BE -20.0 kN 

(FT) CE -14.1 kN 

(FT) DE -9.4 kN 

(FT)EF -21.7 kN 

14·7kN 20kN 10kN 

c 

Figure 2.26 

2.7 DESIGN EXAMPLE 

Although this book is concerned with analysis rather than design, it 
is useful to examine a practical problem which draws together the 
various concepts covered in this chapter. The problem is, of course, 
much more complex than would be expected for an examination question. 
The design element is introduced by requiring a search for the most 
economical section. 

The example concerns the design of a mounting for a special test
ing machine. The mounting is in the form of the pin-jointed plane 
frame ABCDE shown in figure 2.27. The support at D offers restraint 
in both horizontal and vertical directions whilst the support at A 
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is free to slide in the vertical direction. The forces transmitted 
to the mounting consist of 5 kN vertically and 10 kN horizontally at 
both B and C. 

The mounting is to be constructed, as economically as possible, 
using aluminium alloy tube of the same section throughout. The 
testing machine and its mounting are normally operated in a 
temperature controlled environment, but the mounting must be 
designed to accommodate a temperature drop of up to 25 K in members 
AB, BC and CD. Under no circumstances is the vertical deflexion at 
joint B to exceed 1.2 mm. 

2m 

Figure 2.27 

As a first step, the member forces (F) in the statically 
determinate mounting of figure 2.27 are obtained in the usual way. 
The values are shown in table 2.19 and compared with corresponding 
maximum allowable loads selected from the safe load table. 
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Table 2.18 shows the safe loads which may be carried by aluminium 
alloy tubes of diameter D and wall thickness t. 

Table 2.18 

Max. Max. axial compression in kN 
D t A axial for effective length in m 

(mm) (mm) (mm2) te~:RMn 2.0 2.5 3.0 4.0 4.5 

42 3 394 51 10 6.5 4.5 2.5 2.0 
4 483 63 11 7.5 5.5 3.0 2.5 

48 3 453 59 15 9.5 7.0 3.8 3.0 
4 557 72 17 11 8.0 4.5 3.6 
5 680 88 21 13 9.5 5.5 4.2 

60 4 707 92 35 23 16 9.5 7.5 
5 869 113 42 27 19 11 8.5 

76 4 906 118 68 47 33 19 15 
5 1120 146 82 56 40 23 18 

For aluminium alloy, E 70 GN m- 2, a = 23 X 10- 6 K-l 

Table 2.19 

Member F (kN) L (mm) Max. allowable load (kN) 

D=48 mm D-60 mm D-60 mm 
t=5 mm t= 4 mm t= 5 mm 

AB - 7. 70 2 -21 -35 --42 
BC - 6.11 2.65 -12 -21 - 24 
CD -15.40 3 - 9.5 -16 - 19 
DE - 2.30 3 - 9.5 -16 - 19 
AE + 3.85 2 +88 +92 +113 
BE - 6.15 2 -21 -35 - 42 
CE + 6.15 3 +88 +92 +113 

The negative sign denotes compression 

It is evident that the most heavily loaded member is CD, and from 
table 2.19 the smallest section that is adequate has D = 60 mm and 
t = 4 mm. 

The second step is to check the vertical deflexion at B, not only 
under the action of the applied loads but also due to the 
temperature change (6) in members AB, BC and CD. To do this, we 
remove the applied loads and place a dummy vertical load P at B. 
For c~1venience, we determine the member forces p due to a unit 
value of the dummy load. 

The total member force is then given by 

FT = F + pP 
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The complementary strain energy in the frame is now 

where A = LaS 

From the first theorem of complementary strain energy (equation 
1.2) we have 

where aFT/aP = p, thus 

Since P is a dummy load and is therefore zero, we have 

Table 2.20 lists the values ofF, p and L for each of the members 
and gives the product terms necessary for calculating ~B. Note that 
a= 23 x lo-G K-1. 

Table 2.20 

Member F (kN) p L (m) FpL (kN m) pLa8 (m) 

AB - 7.7 0.4 2 - 6.16 18.48 X 10-6 
BC - 6.11 -0.53 2.65 + 8.55 -32.28 X 10-6 
CD -15.40 -0.4 3 +18.48 -27.68 X 10-G 

DE - 2.30 -0.8 3 + 5.52 0 
AE + 3.85 -0.2 2 - 1.54 0 
BE - 6.15 -0.6 2 + 7.38 0 
CE + 6.15 +0.6 3 +11.07 0 

7 
l: = +43.3, -41.48 X lQ-6 

Hence 1 

~B 
43.3 -41.48 X 10- 6 m =~ 

The deflexion at B is thus compounded of two factors, one which 
is dependent on the material and the cross-sectional area (A) and one 
which is dependent on the material only. 

On a strength criterion alone, the section chosen for the frame 
had D = 60 mm, t = 4 mm and A= 707 mm2 . Since E is 70 x 106 kN m-z, 
we have EA = 49490 kN and so 

~B = 0.875 - 0.04148 mm 
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Under normal operating conditions, 6 = 0 and ~B = 0.875 mm, which 
is well within the specified limiting deflexion of 1.2 mm. However, 
when members AB, BC and CD suffer a temperature drop of 25 K we have 

~B = 0.875 - 0.0414(-25) = 1.91 mm 

This deflexion is unacceptable, but one way in which the deflexion 
at B could be brought down to the limiting value of 1.2 mm is to 
increase the cross-sectional area. From the general expression for 
~B above with e = -25 K and ~B = 1.2 mm we have 

hence 

EA = 262.5 X 103 kN 

from which 

A = 3750 ll1ln2 

The use of such a large section simply to control deflexions 
would clearly be uneconomical, thus the alternative solution of 
inserting an additional member between B and D will be adopted. The 
presence of this member makes the frame statically indeterminate and 
it is therefore necessary to make use of the second theorem of 
complementary energy (equation 1.6) in order to carry out the force 
analysis. 

If the force in the redundant member BD is R then the total member 
forces due to the external loads, the dummy load P at B and the force 
in the redundant member are given by 

FT = F + pP + rR 

where r is the member force due to a unit force in the redundant 
n1ember. 

For completeness we shall suppose that member BD is inserted into 
the frame with an initial lack of fit of am. Then the complementary 
strain energy for the frame is given by 

8 F 2L 

C i (2~A + FTA) 

where A r.ae for members AB, BC and CD and A a for member BD. Thus 

ac s(TL 
A) r 0 aR "' ! EA + 

and ac s(TL ) 
~B av= YEA +Ap 
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Since P = 0, these equations become 

8 8 8 
I:FrL + ru:r2L + EALrt. 0 (i) 
1 1 1 

8 8 8 
and lFpL + RYrpL + E~p/. = EMB (ii) 

Table 2.21 lists the values of r and gives the additional product 
terms required for equations (i) and (ii). 

Table 2.21 

Member r FrL r2L (m) A X 106 rt. x 106 rpL (m) 
(kN m) (m) (m) 

AB 0 0 0 +468 0 0 
BC -0.61 + 9.81 +0.975 +60.88 -378 +0.855 
CD -0.46 +21.19 +0.632 +698 -31.76 +0.552 
DE -0.69 + 4.76 +1.421 0 0 +1.656 
AE 0 0 0 0 0 0 
BE -0.69 + 8.47 +0.947 0 0 +0.828 
CE +0.69 +12. 71 +1.421 0 0 +1. 242 
BD 1 0 +4.359 a/106 a/106 0 

I: +56.94 +9.755 a/106 +5.133 
-68.78 

and I:FpL = +43.3 obtained previously 

After substitution of the product terms into equations (i) and 
Cii) we obtain 

56.94 + 9.755R + EA(a -68.78 x lO-G) = 0 

and 43.3 + 5.133R - EA x 41.46 x 10-6 = EM 
B 

pA X 

(m) 

+18.~ 

-32. ~ 
-27 .( 

0 
0 
0 
0 
0 

-41.£ 

As a first trial solution of these equations, we shall choose the 
original section (D = 60 mm, t = 4 mm, A= 707 mm2), then 

5.84 + R + 5073.3a- 0.3488 0 (iii) 

and 8.43 + R- 0.406 = 9641.5~B (iv) 

After eliminating R between equations (iii) and (iv) we obtain, 
for a in mm 

~B = 0.27 - 5.46 x 10-3 - 0.526a mm 

from which 

a= 0.512 - 10.256 x 10- 3 - 1.9~8 mm 
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Since 6B is not to exceed 1.2 mm when 6 = -25 K we find that a is 
negative and should not be greater than 1.5 mm. It is discovered 
later that this lack of fit produces a value of R at 6 = 0 K, which 
is just too large for the section chosen. For this reason, we take 
a= -1.4 mm, then 

1.14 mm when e -25 K 

and ~B = 1.00 mm when 6 = 0 K 

Substitution for a and 6 in equation (iii) gives 

R = -7.44 kN when 6 -25 K 

and R = +1.26 kN when e 0 K 

The final member forces are given in table 2.22 together with the 
allowable loads for the section D = 60 mm, t = 4 mm. 

Table 2. 22 

FT (kN) Max. allowable load 
Member e = 0 K e = -25 K (kN) for 

D = 60 mm, t = 4mm 

AB - 7. 70 - 7. 70 -35 
BC - 6.88 - 1.57 -21 
CD -15.97 -11.98 -16 
DE - 3.17 + 2.83 -16/+92 
AE + 3.85 + 3.85 +92 
BE - 7.02 - 1.02 -35 
CE + 7.02 + 1.02 +92 
BD + 1.26 - 7.44 +92/-8 

Thus the mounting frame in figure 2.27 may be fabricated from 
aluminium alloy tube of diameter 60 mm and wall thickness 4 mm, 
provided an additional member is placed between B and D to act as a 
prop under low-temperature conditions. The prop should be inserted 
with a tensile preload of 15.9 kN which may be achieved by making the 
member initially too short by 1.4 mm. 

Under these circumstances both strength and deflexion checks are 
satisfactory. 

PROBLEMS 

1. The three linearly elastic bars shown in figure 2.28 are pinned 
together at 0 and to rigid supports at A, B and C. Determine the 
forces in each of the bars, when there is no initial lack of fit. 

[FOA = FOG = +29.3 kN, FOB = +58.6 kN] 
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Figure 2.28 

2. The frame ABCD shown in figure 2.29 is subjected to a horizontal 
load of 10 kN at C. Which member is carrying the greater force? 
What is the magnitude and sense of this force? If the roller support 
at D were replaced by a pinned support, what would be the new force 
in BD? Assume linear elastic behaviour. [AC, +8.54 kN, -6.26 kN] 

1m 

1m 

Figure 2.29 

3. The pin-jointed plane frame shown in figure 2.30 is statically 
determinate. It is found, however, that due to unforeseen service 
loading, additional bracing is required between A and C and C and F 
to reduce the frame deflexion. Compare the forces in member CD 
before and after bracing. The members are made from a linearly 
elastic material for which EA is constant. [+10 kN, +18 kN) 
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10kN 
3m 

10kN 

5m 

5m 5m 

Figure 2.30 

4. Determine the maximum values of tensile and compressive force in 
the plane pin-jointed frame shown in figure 2.31. Assume linear 
elastic behaviour. [+9.75 kN, -20.84 kN] 

15kN 

6m 

6m 

6m 
" " 

Figure 2.31 
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5. The member DE of the pin-jointed frame shown in figure 2.32 had 
to be compressed by 2.5 mm in order to be fitted into the frame. 
Find the force in member DE caused by this initial lack of fit and by 
the application of a 30 kN load at C. The cross-sectional area and 
modulus of elasticity of all the members are 775 mm2 and 200 GN m-2 
respectively. [+7 .6 kN) 
[Leeds] 

Figure 2.32 

6. Each member of the truss shown in figure 2.33 has a cross
sectional area of 500 mm2 and a Young's modulus of 200 GN m-2. The 
turnbuckle T on diagonal member AC is tightened so that the ends of 
the two bars at the turnbuckle are brought 2 mm closer to each other. 
Determine the forces induced in each member by this operation. 
Assume linear elastic behaviour throughout. 

[FAB = FBC = FeD= -10.9 kN, FBD = FAC = +15.4 kN, FAD= 0] 
[Leicester] 

3m 

Figure 2.33 
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7. The pin-jointed linear elastic plane frame shown in figure 2.34 
is pinned to rigid supports at A and B. The cross-sectional area of 
each member is A and the span AB is 2L. If the member DC is inserted 
so as to produce a thrust R at D and C, without external loading, 
show that the lack of fit of the member DC is 

where E is the elastic modulus 
!Leeds] 

Figure 2.34 

8. If the stiffness, AE/L is the same for all members of the pin
jointed frame shown in figure 2.35, show that the force in member EF 
due to the loads P is 9P/22. What initial lack of fit of EF would 
be necessary for there to be no force in AE when the loads P are 
applied? [-2PL/3AE] 
[Leeds] 

F 

Pt L tP 
~,------~----~, 

Figure 2.35 
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9. The pin-jointed structure shown in figure 2.36 is hinged to 
supports A and D and supported on a roller at E. All supports are 
unyielding and the support at E, although shown conventionally, is 
capable of providing an upward or a downward reaction. 

Members BC and CF together undergo a temperature increase of 20 K 
relative to the temperature in the other members. For this effect 
alone, determine the members with the greatest force and the 
magnitude and nature of this force. (For all members: 
AE/L = 5 x 104 kN m- 1 and a = 10-s K- 1 • 
JStrathclyde] [BF and CE, +14.6 kN] 

Figure 2.36 

10. Member BC of the frame shown in figure 2.2 (see section 2.2) 
has its temperature raised by 20 K relative to the other members. 
Determine the total force in this member, if bars AB, CD and DE have 
cross-sectional areas of 200 mm2 and all other bars have cross
sectional areas of 100 mm2• (E = 200 GN m-2 and a= 11 x 10-6 K-1.) 

[-4.06 kN] 

11. The pin-jointed steel frame shown in figure 2.37 was originally 
designed to have a roller support at G. On erection, however, the 
roller support was omitted so that both A and G are simple pin 
supports. The frame is part of a structure used in desert conditions 
where the temperature variation between day and night can be as much 
as 30 K. If the support G was finally tied down in the late after
noon, when the temperature was mid-way between extremes, determine 
the largest member force induced by this erection error. (Members 
AB, AC, GF and GE have cross-sectional areas of 200 mm2. All other 
~embers have cross-sectional areas of 100 mm2. E = 200 GN m-2 and 
a=. ll x 10-6 K-1.) [±1.12 kN in CE] 
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5m 

Figure 2.37 

12. The pin-jointed frame ABCD shown in figure 2.38 is supported 
at A and D. The hinge at A is unyielding in both horizontal and 
vertical directions. The support at D is unyielding in the vertical 
direction but deflects in the horizontal direction at the rate of f 
m per kN of horizontal reaction. All members of the frame have the 
same cross-sectional area, A m2 and are made from a material with a 
modulus of elasticity, E kN m- 2 • Show that for the given loading, 
the horizontal reaction at D is approximately 

7.93 kN 
0.9+n 

where n = AEf/L. 

Lm 

Lm 

f m kN-1 

I 

Figure 2.38 

13. The frame ABC shown in figure 2.39 is supported on a hinge at A 
and a roller support at B. The horizontal movement (6) of B is 
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constrained by a non-linear elastic spring whose characteristic is 
given by 

~ = lOf(O.l + H)H 

where H is the horizontal reaction at B in kN and f is the flexibility 
of member AB (L/AE). 

If the members of the frame behave in a linearly elastic manner 
and have the same cross-sectional area and modulus of elasticity, 
determine the force (H) in the spring when a 6 kN load is applied 
vertically at C. [0.63 kN] 

Figure 2.39 

14. If the bars of the frame in problem 7 are made of a non-linear 
elastic material having a stress-strain relationship given by 

show that the lack of fit (A) in member DC required to produce a 
thrust R at D and C is given by 

A = 9 R 3L ( 1 + /3) 
8BA3 

15. Repeat problem 2 assuming that the bar material has a stress
strain relationship given by 

cr 3 = B£ 

[AC, +7.4 kN, -6.9 kN] 

16. The pin-jointed plane frame ABCO shown in figure 2.40 consists 
of three bars of linearly elastic material and equal cross-sectional 
area ~· The frame is subjected to an in-plane force of 50 kN 

applied at the joint 0 and inclined at 30° to the horizontal, as 
shown. Using the relationship 

P. 
J 

au 
r;-: 

J 
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where the symbols have their usual meanings, determine the horizontal 
and vertical displacements of the joint 0 and the forces in each of 
the three bars. Take EA0 = 20 MN, where E is the modulus of 
elasticity. 

[Sussex] 
[~v = 1.8 mm, ~H = 1.3 mm, FAD = 25.4 kN, 

F80 = 30.4 kN, F00 = 5.0 kN) 

Figure 2.40 

17. The pin-jointed plane frame ABCO shown in figure 2.41 consists 
of three straight rods all of cross-sectional area Ao· The frame is 
loaded with a vertical force V applied at the joint 0. Members AO 
and BO are made of a non-linear elastic material for which the 
tension and compression relationship between stress (a) and strain 
(e:) is given by 

a = 5000 Ee:3 

Member CO is made of a linear elastic material having a stress-strain 
relationship in tension and compression given by 

a = Ee: 

Using the relationship 

where the symbols have their usual meanings, determine the magnitude 
and sense (towards or away from 0) of the applied force V if, due to 
this force, the horizontal deflexion of joint 0 is 30 mm to the right. 
Take EAn as 1 kN and note that strain energy (u) per unit volume due 
to dire~t stress is given by 

u = fa de: 
(75.3 N downwards] 

[Sussex] 
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line of action of 
applied force, V 

~I 

B 

3m 

Figure 2.41 

3m 

3m 

3m 

18. The pin-jointed plane frame ABCDO shown in figure 2.42 consists 
of four rods of linearly elastic material (cr = EE) and equal cross
sectional area A0 . Determine the horizontal and vertical displace-

ments of the load point 0 due to a vertical load of 10 N. 
E~ = 1 kN. [0.1 mm, 7.8 mm] 

[Sussex] 

Figure 2.42 
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19. In the frame of problem 18, members BO and DO are replaced by 
rods of non-linear elastic material having the stress-strain 
relationship 

An additional horizontal load H is applied at 0 of sufficient 
magnitude to eliminate any horizontal movement of the load point. 

Determine the new vertical displacement of the load point and the 
value of H. [11.4 mm, 0.27 N] 
[Sussex] 

20. The pin-jointed plane frame ABCO shown in figure 2.43 consists 
of three straight rods of equal cross-sectional area and length. 
The frame is loaded at 0 with vertical and horizontal forces V and H 
respectively. All three members AO, BO and CO are made of a non
linear elastic material for which the relationship between tensile 
stress (cr) and strain (£) is given by 

Using the relationship P. = au;a~. where the symbols have their usual 
J J 

meanings, show that V = 31H/59 if the horizontal deflexion of 0 is to 
be twice the vertical deflexion. Note that the strain energy (u) 
per unit volume due to direct stress is given by u = fa d£. 
[Sussex] 

Figure 2.43 

21. A load of 40 kN is suspended between two vertical walls as shown 
in figure 2.44 by five pin-jointed members in a vertical plane having 
the same axial rigidity AE = 10 MN. Calculate the horizontal and 
vertical displacements of the load and the force in member AF. 
[London] [2.55, 13.42 mm, 9.72 kN] 
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Figure 2.44 

22. Two views of a pin-jointed space frame ABCDO are shown in 
figure 2.45. If the supports for the pin-joints at A, B, C and D 
are infinitely rigid, determine the components of the deflexion of 
the common joint 0 due to a uniform temperature rise of 50 K. The 
bar material is linear elastic and has a coefficient of thermal 
expansion of 12 x 10-6 K-1,.EA is 6000 MN. 

[6 = 0.9 mm, 6 -1.14 mm, 6 = 3.0 mm] 
X y Z 

B 

4m L X 
L z 

2m 

Figure 2.45 

23. Show that the effect of the bracing in problem 3 is to reduce 
the vertical deflexion at C by approximately 16 per cent. 
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24. The plane truss shown in figure 2.46 is pin-jointed and all 
members have the same cross-sectional area, equal to 650 mm2 • 

Determine the force in member FC when a load of 10 kN is applied 
at D and also the vertical component of the deflexion at this ~oint. 
The bar material is linear elastic with a modulus of 200 GN m- . 
[Sheffield] [+3.21 kN, 7.1 mm] 

6m 

Figure 2.46 

25. Calculate the vertical deflexion of the loaded point of the 
plane pin-jointed truss shown in figure 2.47, if the diagonals have 
a load-deformation relationship given by P = 44e - 8e 2 for e>3 mm, 
where P is the force in kN and e is the deformation in mm. All 
other members have constant axial rigidity EA = 80 MN. (Hint: Use 
direct strain energy.) 
[London] [ 4 .1 mm] 

3m 

Figure 2.47 
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26. The Warren girder shown in figure 2.48 consists of members all 
having the same length and cross-sectional area. Determine the cross
sectional area so that the mid-span deflexion, when the girder is 
subjected to the loads shown, is not greater than 1/1000 of the span. 
E = 200 GN m- 2 • [1750 mm2 ] 

100 kN ' 100 kN 100 kN 

Figure 2.48 
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3 FORCE AND DEFORMATION ANALYSIS OF 
BEAMS, CURVED MEMBERS AND RIGID

JOINTED FRAMES 

In the previous chapter we saw that, as the result of the application 
of external loads, only axial forces are produced in the members of 
pin-jointed plane and space frames. In a rigid-jointed plane frame, 
however, each member may be subjected to three internal forces 
consisting of an axial force, a shear force and a bending moment. 
In a rigid-jointed space frame there are six possible internal 
forces for each member: an axial force, two shear forces, two 
bending moments and one torque. The rigid-jointed space frame is 
outside the scope of this book, thus we shall confine our attention 
to plane frames subjected to in-plane loading. 

It is found that unless the members of the frame are particularly 
short and stocky, by far the greater proportion of the work done on 
this type of frame is stored as bending strain energy. The 
contribution of axial and shear forces to the total strain energy 
can therefore be neglected for most conventional rigid-jointed 
structural systems. 

Since the derivation of bending energy expressions for frames 
having non-linear elastic members can be extremely complex, the 
discussion here will be limited to frames of linear elastic material. 

It should be understood that the remarks above apply equally to 
beams and to continuous, plane curved members. 

3.1 COMPLEMENTARY ENERGY DUE TO BENDING 

Figure 3.1 shows a small element ABCD of an initially straight 
member of linear elastic material subject solely to a uniform 
bending moment M. Since the material is linear elastic, the 
complementary energy stored in the element is equal to the work done 
by the moment as it increases from zero to its final value of M, 
thus 

dC = ~M d<P (i) 

where dcp is the rotation of face BD with respect to face AC. 

From simple bending theory (see Essential Solid Mechanics) we have 

(ii) 

where EI is the flexural rigidity of the member and R is the radius 
of curvature. 

Also, from figure 3.1, we see that 

dA- _ dx 
"'- R 
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Thus from equations (i), (ii) and (iii), we have 

hence, if the member is of length L 

L 2 

C =I ~Eidx 
0 

B 

Figure 3.1 

(3.1) 

This chapter will be concerned only with the compati.bility method 
of analysis, making use of the first and second theorems of 
complementary energy. The equilibrium approach is deferred until 
Chapter 4. 

3.2 STRAIGHT BEAMS 

In order to illustrate the basic procedures for dealing with members 
subjected to bending we shall first apply the complementary energy 
theorems to obtain results for some simple beam problems. 

Example 3.1 

Determine the vertical deflexion at the free end of the uniformly 
loaded cantilever shown in figure 3.2. The flexural rigidity of the 
cantilever has a constant value EI. 

w /unit length 

\ X 
P=O 

)( 

LX 

Figure 3.2 
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Figure 3.2 also shows the dummy vertical load P which is required 
at the free end of the cantilever in order to determine the vertical 
deflexion at this point. 

The bending moment at a distance x from the free end is given by 

wx2 
~ = ---z + Px (i) 

where the convention adopted is that hogging moments are positive. 

The total complementary strain energy stored in the cantilever is 
therefore obtained from equation 3.1 as 

c -l~ dx 

Applying the first theorem of complementary energy (equation 1.2) 
in order to obtain the deflexion (6) at the free end of the canti
lever we have 

(ii) 

From equation (i) 

thus substituting in equation (ii) and setting the dummy load equal 
to zero, we obtain 

EI6 = 1 w~3 dx 
0 

from which 

Example 3.2 

Determine the slope at the free end of the cantilever of example 3.1. 

Here, instead of a dummy load, P acting through a displacement 6 
we require a dummy clockwise couple, M acting at the free end, 
through a rotation or slope, e. The moment expression for the 
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cantilever is now 

L 
ac [Mx aMx 

and aM = EI aM dx = 8 
0 

From equation (i) 

aM 
X 

aM = +l 

thus from equation (ii) and noting that M is zero, we obtain 

[
L wx2 

Eie = 
0 

- 2- dx 

from which 

wL 3 
e = 6EI 

Example 3.3 

(i) 

(ii) 

Determine the reaction R in the uniformly loaded propped cantilever 
AB shown in figure 3.3. The end B is propped to the same level as 
end A. The flexural rigidity is EI. 

wfunit length 

~~-l-- ~ ··l X 

J L X 

8 

~R 
~ 
1 

Figure 3.3 

The bending moment at XX is given by 

wx 2 
Mx = -2-- Rx 

From the expression for the complementary strain energy (equation 
3.1) and the second theorem of complementary energy (equation 1.6) 
we have 

L 
ac JMx aMx 
aR = EI aR dx = O (i) 

0 
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L 

or [ (w~2 - Rx) (-x) dx = 0 

from which we obtain 

R = 3wL 
8 

If the prop had not been rigid but was subject to settlement A, 
equation (i) becomes 

since the settlement is opposite in direction to the load. Thus 

L J (w~2 - Rx )e-x) dx = -En 
0 

from which we obtain 

Note that R = 0 when A is equal to the value of ~ obtained from 
example 3.1. 

Example 3.4 

Determine the for the 

;;' a} 
R1 R2 R1 L L 

w 

A r ro 1: B, J 
Rfx lR2 M b) 1 x1_J. x2~ 2 

Figure 3.4 
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Since the beam is symmetrical about B, we need only consider half 
the beam, AB as shown in figure 3.4b. 

Because of the nature of the supports, there is clearly no axial 
force at B and due to symmetry, the shear force at B is also zero. 
The only unknown force which remains is the moment M which is 
required to preserve continuity over the central support. 

The bending moments in lengths AD and DB of the beam are as 
follows 

L 
O<xz<2 

Since the reaction R1 may be taken as the redundant force in the 
system, we have, from the second theorem of complementary energy, 
that 

L/2 
ac f MAD aMAD 
aR I = 2 Ef aRl dxl 

0 

L/2 

L/2 a~B 
+ 2 f MDB aRl dxz 

0 

+ J [ -R1 (xz + ~) + wxz] [- (xz + ~) J dx2 = 0 

0 

0 

As both integrals are between the same limits, the subscripts for 
x may be dropped and the integral equation becomes 

RlL2 ] 2 Lx 
- W) (x + 2 ) + - 4- dx = 0 

RlL3 
SL3 

or ~(2Rl - W) + - 8- = 0 

from which 

Applying the equations of statical equilibrium to the half beam, 
we have 

Rz 
R1 + 2 = W or R2 

llW 
8 
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or M = 3WL 
16 

The final reactions and the bending moment diagram for the beam 
are shown in figure 3.5. 

5W 
16 

w 

11W 
8 

Figure 3.5 

w 

5W 
16 

3. 3 CURVED MEMBERS 

Beams may be curved and frames may consist of curved members or a 
combination of straight and curved members. Attention will be 
confined here to the type of structure in which the plane of loading 
coincides with the plane of curvature. 

The curved structural members most often encountered are the arch, 
and closed forms such as the circular ring and the chain link. It is 
essential that these curved members have a radius of curvature which 
is large in comparison with the depth of the cross-section. If this 
is not so, the simple theory of bending does not apply, nor can the 
contributions of axial and shear forces to the total strain energy be 
neglected. 

3.3.1 Statically Determinate Curved Members 

Rings, arches and links are usually statically indeterminate, but 
there are a few simpler, statically determinate, shapes which may be 
examined as an introduction to the analysis of more complex 
structures consisting of curved members. One such is the davit which 
is the subject of the next example. 

Example 3.5 

of a circular quadrant mounted on a column as shown 
Determine the vertical and horizontal deflexions of 

A davit consists 
in figure 3.6. 
the load point 
has a constant 

A when it is subjected to a vertical load W. The davit 
flexural rigidity, EI throughout. 
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Rd.o-

h 

Figure 3.6 

Figure 3.6 also shows the dummy horizontal load P which is required 
to determine the horizontal deflexion at A. 

Before we can evaluate the complementary strain energy stored in 
the davit it is necessary to determine the bending moments in the 
quadrant AB and the column BC. 

For the quadrant, at an element of arc, R de, displaced an angle 
e from A, the bending moment is given by 

Me = WR sin e + PR(l - cos e) (i) 

thus the complementary bending strain energy stored in the quadrant is 
is given by 

c quad 

Tr/2 M 2 

= J 2~ 1R de 
0 

(ii) 

For the column, at an element of length, dx, distance x from B, 
the bending moment is given by 

Mx = WR + P(R + x) (iii) 

thus the complementary bending strain energy stored in the column is 
given by 

h M 2 

ccol = J 2~1 dx 
0 
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The total complementary energy in the davit is thus 

(v) 

To determine the deflexions we make us of the first theorem of 
complementary strain energy, from which 

ac 
and aw = t,v 

where /',H and /',V are respectively the horizontal and vertical 

deflexions at A. Thus from equations (ii), (iv), (v) and (vi) 

h aM 1 Mxawx dx 
0 

(vi) 

(vii) 

(viii) 

From equations (i) and (iii) we obtain the partial differential 
coefficients of the bending moments as 

a Me 
ail = R(l - cos e), 

aM 
X ail= (R + x) 

a Me 
and aw- = R sin e , 

aM 
___!. = R 
aw 

Making the appropriate substitutions in equations (vii) and (viii) 
and noting that P is zero we obtain 

1f/2 

EBH = WR31 sin e (1 - cos e) 
0 

1f/2 

and Eit,v = WR3 j sin2e de + WR2 
0 

from which 

WR 3 h 2 
/',H = 2EI(l + R) 

and /', = WR 3 (::.._ + !!.) 
V EI (4 R 
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de + WR2 f(l + x/R) dx 
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Example 3.6 

A thin steel strip of flexural rigidity EI is formed into an 'S' 
shape consisting of two semi-circles of radius R as shown in figure 
3.7a. The lefthand end, A is pinned to a rigid base and the right
hand end, B moves horizontally between a pair of parallel guides. 
If the member is used as a spring, determine the stiffness when a 
horizontal force, H is applied at B. 

Figure 3.7 

Since there is no moment at the pinned support A, there can be 
no vertical reaction at B and the bending moment at C is therefore 
also zero. Consequently we need consider only half the member 
because of symmetry about the mid-point. Figure 3.7b shows the 
portion of the member from A to C; the force H produces a deflexion 
h/2 at C, where h is the horizontal deflexion at B. 

The bending moment in AC, at an element of arc, R de displaced an 
angle e from C is given by 

Me = HR sin e 

but from the first theorem of complementary energy 
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where 

11 

thus ~ = 2HR3};sin2 e de EI 
0 

or 

from which the spring stiffness is given by 

Example 3.7 

A thin strip of steel of flexural rigidity EI is formed into a 
circular ring of radius R and loaded as shown in figure 3.8a. If 
the two ends of the strip are separated by a small distance ~ when 
the ring is unloaded, what value of W is required to close the gap? 

w 

c 

w 

Figure 3.8 

Because of the symmetry of the ring and its loading about the 
horizontal diameter, it is_ sufficient to consider the half ring AC 
in figure 3.8b. To determine the vertical deflexion at A, a dummy 
load, P is applied as shown. The expression for the bending moment 
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is required in two parts since it is a discontinuous function of B. 
Thus, from A to B 

PR(l 

and from B to C 

To close the gap, the vertical deflexion at A for the half ring 
should be I:J./2. Thus from the first theorem of complementary energy, 
we have 

ac 11 
i!P = 2 = 

where 
aMel 
ap- = R(l - cos e1) 

aMez 
and ap- = R(l + sin e2 ) 

(i) 

but since P is zero, the first integral in equation (i) disappears 
and we have 

or 

hence 

1f/z 
2WR3 I A = ~ 

0 
(sin Sz + sin2 e2 ) de 2 

2WR 3 (l + .:!!:.) 
EI 4 

w 2EIA 

An alternative approach to this problem is to note that since 
there is no complementary strain energy stored in the quadrant AB, 
only the quadrant BC need be considered. The vertical deflexion at 
A can now be expressed as 

A 2 = o + R<j> (ii) 

where o and <j> are respectively the vertical deflexion and the slope 
at B. 
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For the quadrant BC we have 

~= 0 aw 
ac 

and aM = 4> 

where M is a dummy couple acting at B as shown in figure 3.8c. 

The bending moment in BC is therefore given by 

hence 

ac 
aw = 0 

ac 
and aM = 4> 

where 

aM92 

aw = R sin 82 

12 WR 3 1rWR 3 
thus o -- sin2 92 d92 = 4EI EI 

0 

1f/ 2 

and 4> 
WR21 . 62 d62 WR2 
8 o sm =m 

Substituting for o and 4> in equation (ii) we have, as before 

or W 2EI 

3.3.2 Statically Indeterminate Curved Members 

The principles involved in dealing with statically indeterminate 
curved members are no different from those already encountered in the 
investigation of redundant pin-jointed plane frames and beams. The 
unknown forces are obtained from equations, derived from the second 
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theorem of complementary energy, which express the compatibility 
conditions in the structure. Deflexions and rotations, when required, 
may be obtained by application of the first theorem of complementary 
energy. 

The statically indeterminate arch is often used for spanning large 
spaces and may be of circular form or, more often, of parabolic form. 
This type of arch is a continuous structure which is either pinned, 
or built-in at the abutments. One example of the force analysis of 
each arch form is given below. 

Example 3.8 

The uniform, two-pinned arch of flexural rigidity EI shown in figure 
3.9a has a constant radius of curvature (R) when carrying no load. 
The abutments A and B are pinned to a rigid foundation at the same 
level and the angle AOB is 120°, where 0 is the centre of curvature 
for the arch. 

The arch carries a concentrated load (W) at mid-span and a further 
load (W) which may be assumed to be uniformly distributed horizontally 
across the whole span. Taking account of energy due to bending only, 
determine the horizontal thrust at the supports and sketch the 
bending moment diagram showing principal values. [Sussex] 

totalload,W\ w 

./3R/2 L 

Figure 3.9 
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Because of the symmetry of the arch, it is sufficient to consider 
the half span AC shown, together with the forces acting on it, in 
figure 3. 9b. 

For equilibrium of the half span, we have 

M ! 1(3)R ! 1(3)R _ HR 
+ 2 2 + 2 4 - 2 

or 8M + 31(3)WR = 4HR (i) 

If we now consider an element of arc R de , at an angular distance 
a from C, the bending moment at this point is given by 

W W R sin a 2 
M + ZR sin a + 1(3)R 2 - HR(l - cos e) 

or M9 = M + ~R sin a (1 + s~~ 9 ) - HR(l - cos e) (ii) 

Either M or H may be considered as the redundancy for this system. 
If we choose M, the working is slightly simpler. From the second 
theorem of complementary energy we have 

1r/3.M aM 
ac J a a aM = 2 0 EI aM R de 0 

where, from equation (ii), aM6/aM = 1. Hence 

1T/3 

Ia [M + ~R sin ( sin a) J a 1 + ~ - HR(l - cos e) de 0 

1T/ 3 

thus [(M- HR)9 
WR 2 cos 9 WR (a sin 26) +2732--4-- + HR sin aJ 0 

0 

or 161TI(3)M + 81(3)HR[31(3) - 21T] + WR[91(3) + 411] = 0 (iii) 

From equations (i) and (iii) we may solve for M and H, giving 

- w (1411 - 913) 
H - 81(3) [31(3) - 1r] 0.997W "' w 

and M = WR (631~3) - 321T) = -0.151WR 
16 1T (3) - 9 

The bending moments in the arch are obtained by substituting for 
Hand Min equation (ii), then 

M9 = WR tsi~ 9 (1 + s~~ 9) + cos a - 1. 15 J 
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from which the bending moment diagram shown in figure 3.10 is 
obtained. 

w 

W/2 

-r-~~~~Mw 
o-tswg 

lo.--""'1'-21· 5 
41·4° 

Figure 3.10 

The maximum positive value of the bending moment occurs at a 
value of 6 given by 

dMe WR (cos e + sin 26 sin e)= 0 ere = -2- --m- -
or sin 26 2 cos 6 + ~ = sin 6 

By making the substitutions 

-- _1-t 2 2t cos 6 and sin 6 = ---
1 + t 2 1 + t 2 

where t = tan 6/2, we obtain a quartic in t which may be solved by 
trial to give the desired root in the range 0<6<~/3 as 

t 0.378 

hence 

6 = 0.723 rad or 41.4° 

The bending moment in the arch is zero when 

sin 6 (1 sin e) 6 = 1 _15 - 2- +~+cos 

Substituting for sin 6 and cos 6 as above we obtain another 
quartic in t which is solved by trial. There are two roots in the 
range, 0<6<~/ 3 

t 1 = 0.577 and t 2 0.1896 

from which 

61 = 1.05 rad or 60° as expected 
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and 

62 = 0.375 rad or 21.5° 

The analysis of parabolic arches of uniform cross-section requires 
the evaluation of quite complex integrals because of the need to 
integrate along the centre-line of the arch. Since this evaluation 
can be time-consuming, examination questions on this type of arch 
usually deal with a non-uniform cross-section which permits 
integration to be carried out along the chord of the arch. The 
following example is typical of this sort of problem. 

Example 3.9 

The symmetrical parabolic arch of span L and height L/4 has a second 
moment of area given by 

I = Io sec a 

where a is the slope of the arch centre line and Io is the second 
moment of area at the crown. 

One abutment is pinned and the other is built-in. If the loading 
consists of a single concentrated load W at the crown, determine the 
bending moment diagram for the complete arch. 

w 

L/2 
a) 

21~ /dx b) 

Figure 3.11 
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Figure 3.lla shows the loaded arch and the reactions at the 
abutments. Although the arch itself is symmetrical about the crown, 
the boundary conditions are not and we must consider the complete 
arch when applying the second theorem of complementary energy. 

The equation of the arch centre-line is given by 

X 
y = L(L - x) (i) 

where y is the height at a horizontal distance x from the left-hand 
abutment A. 

For an element ds of the arch centre-line at x and y from A, we 
have 

MAC Hy - Vx 
L 

O<x<z-

L 
and MCB = Hy - Vx + W(x - z) L 

z<X<L 

There are two redundant forces, H and V. From the second theorem 
of complementary energy we have 

S/2 
ac [ MAc aMAc 

and av = o E! ---av ds + 

s f MBC a~C 
E!3Hds 

S/2 

s 

0 

f MBC a~C _ 
EI """""'W"" ds - 0 

S/2 

where S is the length of the arch centre-line. 

(ii) 

(iii) 

Since the moments above are functions of x, it is necessary to 
express the element ds in terms of an equivalent horizontal element 
dx. We note from figure 3.llb that a relationship between ds and dx 
is given by 

ds = sec a dx 

But the cross-section of the arch is such that 

I = Io sec a 

thus ds = .!_ dx 
Io 

where Io is a constant. 

Substituting for ds in equations (ii) and (iii) above and changing 
the limits of integration, we obtain 
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1 ClMBC 
~c aH dx = o 

L/2 

(iv) 

(v) 

From the bending moment expressions 

ClMAC a~C 
and ---ay- = ---ay- = - x 

thus from equations (iv) and (v) we obtain 

L/2 

j( (Hy - Vx)y dx + r [Hy - Vx + W(x - fJlY dx = 0 

A/2 
(vi) 

Jt';.y- Vx)(-x) dx + ~;'y- Vx + W(x- fJJ(-x) dx" 0 (v;;j 

After making the substitution for y from equation (i) and 
integrating, equations (vi) and (vii) become 

H V W 
IT- 6 + 32 = 0 

sw and H - 4V + '4" = 0 

From which 

H = SW 
6 

and V = 2SW 
48 

The bending moments in AC and BC are now given by 

MAC = :~L {[) [ 3 - 8 {[] J 

and ~c - ~i [24- 63(r) + 4o(rt] 
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These expressions are used to draw the non-dimensionalised bending 
moment diagram shown in figure 3.12. 

48M 
WL 

Figure 3.12 

The maximum positive bending moments are 1.41 (WL/48) and 0.81 
(WL/48) and occur at 0.19L and 0.79L from A. 

The largest negative moment is 2.5 (WL/48) and occurs at the crown. 

The bending moment is zero at x = 0, 0.37SL, 0.645L and 0.93L. 

Closed rings and links, although not often used as structural 
members, are included here for completeness. A classic problem of 
this type concerns the circular ring loaded across a diameter. 

Example 3.10 

Determine the distribution of bending moment in the thin ring of 
uniform section and radius R shown in figure 3.13a. The ring is 
loaded by a pair of equal and opposite tensile forces acting across 
a diameter. Determine also the increase in the ring diameter in the 
line of action of the load and the decrease in the diameter at right
angles to this direction. 
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D B 

a) 

2W 
Figure 3.13 

Since the ring has two-fold symmetry, it is sufficient to consider 
the quadrant AB shown in figure 3.13b. The external forces and the 
internal reactions are also shown in the figure, together with the 
dummy load P at B needed to determine the decrease in the horizontal 
diameter. Again because of symmetry, the axial force at A and the 
shear force at Bare both zero (although P must be added as shown). 
The only redundancy in the quadrant is either the moment at A or the 
moment at B. 

Choosing ~ as the redundancy we find that the moment at an angle 

e from B is given by 

Me = MB + WR(l - cos e) + PR sin e (i) 

From the second theorem of complementary energy we have 

n/2 
ac J Me aMe 
aM = 4 TI aM R de 

B o B 
0 

then, since P is zero 

n/2 £ [ M8 + WR(l - cos e) J x 1 x R de o 

or [c~~ + WR)e- WR sin eJ:12 
= o 
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hence 

M8 = - WR (1 - ~) 

The negative sign indicates that ~ is a moment tending to decrease 

the curvature at B. 

The distribution of bending moment in the ring may now be obtained 
by substituting for ~ in equation (i) noting that P is zero, thus 

M8 = WR (~ - cos e) 
Figure 3.14 shows the moments in the quadrant determined from 

equation (ii) • 

Figure 3.14 

The increase, ~AC in the diameter, AB is given by 

where oA is the vertical deflexion at A in the quadrant AB. 

Similarly the decrease, ~BD in the horizontal diameter BD is 

where o8 is the horizontal deflexion at B in the quadrant AB. 

(ii) 

From the first theorem of complementary energy we have, for the 
quadrant 

ac 
aw = 

Tr/ 2 M aM f e e 
Ef aw R de 

0 

(iii) 

101 



ac 
and ap = 

where 

11 / 2 M ClM 1 6 6 
ETW R de 

0 

aM6 
and aP = R sin 6 

therefore, since P is zero, equations (iii) and (iv) become 

11/2 

o = WR3 J (I - cos e) 2 de 
A EI 11 

0 

11/2 

0 = WR3 J (I - cos a) sin a de 
B EI 11 

0 

and 

hence 

Thus the changes in the diameters are 

8AC 
WR3 2 
211El ( 11 - 8) = 

WR 3 
+0.30 E! 

and 8BD 
WR\4 - 11) 

WR 3 

TIEl -0.27 E! 

(iv) 

The next example is a little more difficult because of the need 
to determine the bending moment due to pressure acting on a curved 
surface. 

Example 3.11 

A tube having a uniform thickness of 100 mm has a cross-section as 
shown in figure 3.1Sa. If the maximum tensile stress in the tube 
wall is not to exceed 120 MN m- 2 determine the maximum internal 
pressure which may be applied to the tube. Ignore end effects and 
take account of bending energy only. 
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t=100mm 

-+----'1<-internal---
pressure,p 

Figure 3.15 

The tube has two-fold symmetry, thus it is sufficient to consider 
a quarter of the tube represented by the davit shape ABC shown in 
figure 3.1Sb. If unit length of tube is considered, the pressure p 
may be treated as a uniformly distributed load. Notice also that due 
·to symmetry, there are no shear forces at A or C. 

In the portion of the tube wall from C to B the bending moment is 
given by 

n..-2 
Mx = Me - ~ (i) 

and from B to A the moment is 
6 

6)-I pr2 sin (e - 4>) dcj> 

The last term in this expression represents the bending moment due 
to the pressure on the curved part of the tube. It may be derived by 
reference to figure 3.1Sc. 

After evaluating the integral, we find that the second and last 
terms in the expression for Me cancel, thus 

Me = Me - pa(~ + r sin e) (ii) 
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The second theorem of complementary energy may now be applied to 
determine the unknown moment Me in equations (i) and (ii). Thus 

0 

where 

hence 

0 

or M = E!. (4a2 + 61rar + 24r2 ) 
e 12 2a + 1rr 

Evaluating the bending moments in terms of the pressure p for the 
values of r and a given, we have 

Me = o.994p 

M (0.994 
x2 

= - 2 )p 
X 

and M = e (0.212 - 1.25 sin e)p 

These expressions may be used to draw the bending moment diagram 
for the quarter tube shown in figure 3.16. The units for the moments 
are MN m if the pressure is in MN m- 2 • 

Figure 3.16 
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Also shown in figure 3.16 are the tensile forces per unit length 
of tube acting at A and C. These forces are in MN if p is in MN m- 2 • 

The greatest tensile stress in the tube wall will clearly occur on 
the inner surface at A, hence 

cr max 1.038p ~ + ~ MN m- 2 
t2 t 

where t is the wall thickness in m; but crmax is not to exceed 

120 MN thus 

120 - 2 Pmax = 645 . 3 MN m = 1.86 bar 

(iii) 

If, for example, the tube had been required to withstand a maximum 
internal pressure of 2 bar, equation (iii) could be used to determine 
that the minimum wall thickness required is 104 mm. 

3.4 RIGID-JOINTED PLANE FRAMES 

If the analysis of forces in rigid-jointed plane frames is required, 
application of the second theorem of complementary energy will provide 
as many equations as there are redundant forces in the structure. If 
the structure is a complex multi-storey, multi-bay frame the number 
of equations for the redundants are likely to be too great for 
solution by hand and the resources of a computer may have to be 
called upon. However, there is no fundamental difference in the 
procedure for setting up these equations whatever the number of 
redundancies. Thus for the purposes of illustration, it will be 
sufficient to examine frames with not more than three redundancies. 
Once forces have been obtained, the first theorem of complementary 
energy may be used to determine each deflexion associated with the 
structure. 

It must be recognised that there are a number of alternative 
methods for the analysis of rigid-jointed frames such as moment 
distribution or the use of slope-deflexion equations, but these 
methods are not our concern here. It is possible, however, that these 
alternatives might be more efficient for the solution of a particular 
problem. The reader is advised to become conversant with these other 
methods and to make a careful choice of the procedures available 
before embarking on a solution. 

Since there are no new principles involved, we may proceed 
directly to illustrating the energy method of analysis for rigid
jointed frames by means of a number of examples. 

Example 3.12 

A closed frame ABCDE of uniform cross-section is shown in figure 
3.17a. The frame is constructed from a straight length of bar which 
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is bent into shape and the ends pin-connected at A. The support at D 
can resist horizontal and vertical forces only. The support at C, 
being a roller bearing, can only provide a vertical reaction. 

Determine the bending moment at the centre of the span DC when a 
horizontal load W is applied at F as shown. 

2L 2L 

E t-----o"'""A __ ;=B~ 

3L 

w F + 

3L 

H G 

a} 
v 

~1 
R A 8 

s y1 

F b) c) 

Figure 3.17 
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The frame is statically determinate with respect to the reactions, 
thus 

H=W and V=3W 
4 

There is no axis of symmetry for the loading, thus the whole frame 
must be considered. We note that since there is a pin joint at A 
there can only be shear and axial forces acting at this point. If 
the frame is separated at the vertical centre-line, the equilibrium 
of each half may be maintained by applying a shear force and an axial 
force at A and a shear force, an axial force and a moment at G. The 
moment at G may be expressed in terms of the axial force at A, thus 
the redundant forces in the system are the forces S and R at A. 
Figures 3.17b and c show the forces acting on each half of the frame. 

The moment M at the centre of the span DC may be obtained from 
either of figures 3.17b or c and is given by 

3L 
M = z-CW - 4R) 

The bending moments in each section of the frame may be obtained 
from figures 3.17b and c as follows. 

MAB XlS O<x1<2L 

~c 2LS nR O<y1<6L 

MCG (2L x2)S 6RL + Vx2 

MAE -x3S O<x3<2L 

~F -2LS Ry2 O<y2<3L 

~o= -2LS - R(3L + Y3) + Wy3 

MoG = -(2L - x~)S - 6RL + 3WL - Vx~ O<x~<2L 

Appling the second theorem of complementary energy to the whole 
frame, we have 

thus 

ac ac 
aR = as= 0 

2L M 

f /t 
0 

aMAB 
--air"" dx1 
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and 

+ 

3L ~ a~ 3L ~D a~D +1 _E __ F dyz + 1 --- dy3 EI aR EI aR 
0 0 

2L 

+ 1 MDG a~G dx4 = 0 
EI aR 

0 

ZL M aM f AB AB ill~ dxl + 
0 

2L 

GL 
~C aMBC f ET ~ dyl 

0 

ZL M aM 
MCG a~G f AE AE + f ill~dxz + ill~ dx3 

0 0 

3L ~F a~F 3L 
MFD a~D 

+ f ill~dyz + f ill~dY3 
0 0 

where 

aMAB aMAB 
--= 0 ~= Xl aR 

oMBC a~c 
2L ----a'R = Y1 ~-

oMCG 
-6L 

oMCG 
(2L - x 2) ----aR = ~= 

oMAE 
0 

oMAE 
---aR = ~= -X3 

a~F a~F 
-2L ---aR = -yz ~= 
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After substituting these values in equation (i) and integrating, 
we find that S cancels and 

R = 13W 
64 

Since the desired moment M is independent of the shear force S, there 
is no need to make use of equation (ii) and we have 

M = 9WL 
32 

Example 3.13 

A rigidly jointed plane frame ABCD, loaded as shown in figure 3.18, 
is pinned to the foundations and is constructed from members having a 
flexural rigidity, EI of 500 kN m- 2 

The horizontal force H applied at joint B prevents the frame from 
swaying. Determine the magnitude of H and sketch the bending moment 
diagram for the frame showing the principle moment values and also 
the horizontal and vertical reactions at the feet. 

What would have been the horizontal deflexion of joint B if the 
force H had not been present? [Sussex] 

5m 

4m 

Figure 3.18 
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From the equations of statical equilibrium 

and 2Bu - 5H + BVD = 24 kN m 

or 
5H - 2H0 

VD = 3 + ---:8:---.....:;;.. 

(i) 

(ii) 

(iii) 

There are a total of five unknown forces, thus we require two 
additional equations to be provided by the compatibility conditions 
at B and D. From the first and second theorems of complementary 
energy we have 

ac ac 
ClH = t.B and ClHD = O 

where H and H0 are chosen as the redundant forces. 

The bending moments in the frame are 

Xl 
~C = (3H0 - 4VD)!5 O<x1 <5 m 

From equation (iv) we have 

5 4 5 

(iv) 

& ClMDC r ~B a~c I~A a~A 
t.B = JoE!- ---air dxl + Jo 8 ---rn- dx2 + o 8 ~ dyl (v) 

and 0 

From the moment expressions and equation (iii) we obtain 

a~c 4x1 av0 x1 
~ - - -5- aH = - 2 

ClMCB ClVD 5 
~ = -(4 + X2) ClH = - S(4 + X2) 
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aMDC 3x1 4x1 av0 4x 1 

and aH0 = S - -5- aH0 = -5-

aMCB av0 x2 
aHD = 3 - ( 4 + xz) a~ = 4 + 4 

After substituting these values in equations (v) and (vi) and 
integrating we finally obtain 

304H0 - 265H - 456 = lZEI~ 
5 B 

and 449H0 - 380H - 768 = 0 

(vii) 

(viii) 

Initially the sway deflexion (~8) is zero, thus from equations 

(vii) and (viii) 

304H0 - 265H = 456 

and 449H0 - 380H = 768 

hence 

H = 8.27 kN and H0 = 8.71 kN 

If His zero, equation (viii) gives H0 = 1.71 kN and from equation 

(vii) we obtain 

t.B 
80 

- 3EI m 

but EI 500 kN m2 , thus 

t.B -0.0533 m = -53.3 mm 

The last exru,~le in this section examines the effect of temperature 
changes in rigidly jointed frames. This type of calculation is 
particularly important when the stress analysis is required of pipe 
lines carrying fluids at extreme temperatures. 
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Example 3.14 

The plane pipework system shown in figure 3.19a is of uniform cross
section. Assuming the joints are rigid and the ends are fixed 
against translation and rotation, calculate the magnitude of the 
maximum bending moment produced by a temperature rise e. The 
material of the pipe has a coefficient of expansion a and an elastic 
modulus E. [Cambridge] 

D 
L 

C ~-....::2=L::.----.B 

L a) 

A 

D 
L X 

Jr--+ 
b) y C 2L B c;---------- --181 

L I 

y A : 2LO/J 

Ht#;-:1 
2La.~ljM 

a.{}<< 1 

Figure 3.19 

If the restraints at A are released, a temperature rise e will 
cause A to move to A1 as shown in figure 3.19b. Also shown in the 
figure are the forces required to restore A1 to A. The deflexions 
caused by the horizontal shear H and the thrust V are both equal to 
2Lae. The moment M is such that no rotation at A is permitted. 
Therefore, from the first theorem of complementary energy we have 

ac ac aH = av = 2Lae 

ac 
and aM = o 
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The bending moment expressions for AB, BC and CD are 

MAB = - M + Hy O<y<L 

~C = - M + HL - Vx O<x<2L 

and ~D = - M + H(L + y) - 2VL O<y<L 

a~c aMsc a~c 
--aH""" = L, --w = -X, --aM= -1 

a~D a~D a~D 
and --aif""= (L + y), ---ay= -2L,-w= -1 

From the foregoing we obtain the displacement equations 

ac 1 iL 2 L 12L 
aH = Ef (Hy - My) dy + EI (HL - M - Vx) dx 

0 0 

L 

+~I i[H(L + y) 2 - M(L + y) - 2VL(L + y)] dy = 2La6 

and 

hence 

:~ = - ~I 1 (ffLx - Mx - Vx2 ) dx 

L 

- ~~ i[H(L + y) 

2La6 

ac 1 tL 1 I2L 
aM = - EI (Hy - M) dy - Ef (HL - M - Vx) dx 

0 0 

L 

- ~r" r[H(L + y) - M - 2VL] dy = 0 
}o' 

14HL - 12M - lSVL = ~6 
L 

lSHL - 12M - 20VL = - ~6 
L 
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(i) 

(ii) 



and HL - M - VL = 0 

and 

Equations (i) and (iii) are solved to give 

H 

M = 36 !!.ae 
7 L 

(iii) 

The bending moment diagram for the pipework is shown in figure 
3.20 from which the maximum bending moment, which occurs at A and D, 
is seen to be equal to M. 

Figure 3.20 

3.5 DESIGN EXAMPLE 

At a certain point in a structure subjected to long-term testing, the 
maximum applied load in compression is not to exceed 200 kN. The 
load is applied horizontally using a screw-jack driven by an electric 
motor through gearing. The motor speed and the gear ratios are 
chosen so that full load is reached between 80 and 100 hours after 
the start of a test. 

A load cell, placed between the platen of the screw-jack and the 
structure, provides an output which is converted, electronically, 
into a continuous record of the applied load. At the same time a 
linear transducer is used to record the displacement of the load 
point. The whole testing procedure is thus fully automatic once 
started. 
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It is required that the test should stop automatically as soon as 
the load reaches 200 kN. One way of achieving this is to use the 
amplified signal from the load cell to switch off the motor driving 
the screw-jack. However, this method is found to be unreliable 
because the calibration of the circuitry tends to drift over a long 
period of time and it is also affected by temperature changes in the 
laboratory. 

It is decided that a mechanical device with a positive action 
would be more reliable and the design office is requested to offer 
a solution. After some thought, the designer came up with the basic 
idea of using a horizontal circular ring placed between the screw
jack and load cell so that a diameter of the ring coincides with the 
line of action of the load. The change in this diameter can there
fore be used as a measure of the load. In itself, this idea is not 
new, in fact it is the principle behind the proving ring. It is also 
difficult to see how this deflexion can be used directly to shut off 
the screw-jack motor. However, the designer is aware that as the 
ring diameter in the direction of the load decreases, so the diameter 
at right-angles increases. He realises that if a pre-stressed bar 
were to be inserted inside the ring and across the transverse 
diameter it would drop out under its own weight when the compressive 
applied load reached a certain critical value. If one end of the bar 
is hinged to the ring, the other end can be used to operate a cut-off 
switch as it falls. Furthermore, if the ring and bar are made of the 
same material, the operation of the device is unaffected by changes 
in the ambient temperature. The designer adopted the following 
procedure for proportioning the bar and the ring. 

There are two extreme loading conditions. The first is when the 
load transmitted to the structure is zero and the bar is under 
maximum pre-stress. The second occurs when the load transmitted to 
the structure reaches the critical value and the force in the bar is 
zero. Figure 3.21 shows the ring and bar in the first loading 
condition. The force in the bar is Fm' the mean radius of the ring 

is R and its thickness is t. Diameter AC is in the line of action of 
the applied load. 

A 

D B F...!II4c:;;::====:::::JIJI:-:F....um 
,....-'*f.=' ~ 0 I •. J 

Bar .,. 

Figure 3.21 
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Referring to example 3.10, the inside diameter of the ring BD 
under the action of the forces Fm in the bar is given by 

F R3 2 

BD = (2R- t) + ~I (~ 4~ 8 ) 

where EI is the flexural rigidity of the ring cross-section. 

If the initial length of the bar is (2R - t) + A, under the action 
of the axial compressive force Fm the new length B'D' is given by 

2F R 
B'D' = (2R - t) + A - E~ 

where A is the cross-sectional area of the bar and 2R is assumed to 
be large in comparison with A - t. 

Since the bar is to fit inside the ring we have BD B'D' or 

Figure 3.22 shows the ring and bar in the second loading condition, 
We is the critical, or tripping load for the device. 

0 Bar 

l 
" 

Figure 3.22 

There is no load in the bar when the ring diameter BD is equal to 
its initial length, (2R - t) + A. From example 3.10, the diameter BD 
is given by 

BD 
W R3 

c (~' (2R - t) + -EI I 
2~ J 
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hence 

W =ED (~) 
c R 3 \4 - 7f 

(ii) 

Steel, Grade 55 to British Standard 4360: Part 2: 1969 Weldable 
Structural Steels, is selected as the material for the ring and bar. 
E may therefore be taken as 200 x 106 kN m- 2 . The cross-section of 
the ring is chosen to be rectangular, of breadth b and thickness, t. 
The radius, R is taken to be 10 times the thickness. 

From equations (i) and (ii) we have 

F 
m 

0.918W 
c 

(1 + K) 

K = O.Oll2bt/A 

and Ab = 8.2W mm2 
c 

if W is in kN. 
c 

(iii) 

(iv) 

(v) 

If the bar is made of solid circular section of diameter d, the 
maximum axial compressive stress is obtained from equation (iii) as 

a 
m 

F m _ 1.169 
A- (1 + K) 

(vi) 

Since the bar is under axial compression, the possibility of 
buckling must be considered. In order to determine safe loads for 
what is effectively a pin-ended strut, it is necessary to calculate 
the slenderness ratio (L/r) for the bar. The length L is approximate
ly 2R and the radius of gyration r for a circular cross-section of 
diameter d is 0.25d, thus 

L 8R SOt r-=Ci=----r (vii) 

From the bending moment diagram of example 3.10 and noting from 
equation (iii) that W is always greater than F , we find that the 

c m 
greatest bending stress in the ring occurs at A and C under the 
second loading condition. This stress is given by 

w 
c 

crb = ± 19.2 bt 

Also acting at A and C is a shear stress having a maximum value 
given by 
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w c 
'm 0.75 bt 

The equivalent maximum stress a at A and C due to combined 
e 

bending and shear is obtained from Clause 14c of British Standard 449: 
Part 2: 1969 The Use of Structural Steel in Building, as 

(viii) 

From Table 1 of the same British Standard, the allowable 
equivalent stress for plates, sections and bars of Grade 55 steel 
having a thickness in excess of 40 mm is 360 MN m-2. If W in 

c 
equation (viii) is in kN and b and t are in m, we have 

w 
ae 360 x 10 3 = 19.25 b~ kN m- 2 

or bt 53.5W mm2 
c (ix) 

Suppose that the ratio of the cross-sectional areas of the ring 
and the bar is n, then 

bt (x) 

From equations (ix) and (x) we have 

also from equation (iv) 

K = 0.0112n 

Substituting these values in equation (vi) we obtain the maximum 
stress in the bar as 

or a m 

0.01716n kN mm- 2 
1 + 0.0112n 

17.16n N mm- 2 
1 + 0.0112n (xi) 

From equations (vii) and (x), the slenderness ratio of the bar is 
given by 

L - = r 
d 

20TTn b 
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After a number of trials it is found that a convenient value of 
the ratio d/b is 0.2 thus 

.!::. = 41Tn 
r (xii) 

Now equation (xi) gives the actual maximum compressive stress in 
the bar, while the slenderness ratio obtained from equation (xii) can 
be used to determine allowable stresses (pc) from Table 17c of BS 449. 

The results of some of the calculations for a and P with varying n m c 
are shown in table 3.1. 

Table 3.1 

am L/r 
p 

n c 
(N mm- 2) (N mm- 2) 

7.0 111.4 88.0 123.0 
7.1 112.9 89.2 120.4 
7.2 114.3 90.5 117.0 
7.3 115.8 91.7 114.6 
7.4 117.3 93.0 112.0 
7.5 118.7 94.2 109.6 

The greatest value that n can have therefore lies between 7.2 and 
7.3. Further calculation gives 7.26 as a better estimate. This 
value corresponds to an actual stress of 115.2 N mm- 2 and an allow
able stress of 115.6 N mm- 2• 

Substituting n = 7.26 and b 5d in equation (x) we obtain 

t 1.14d or d = 0.877t 

thus b 4. 38t 

Substituting for b in equation (ix) we have 

t 2 = 12.2W mm 2 
c 

but W c 200 kN, thus 

t = 49.4 mm 

hence 

d 43.3 mm 

b 216.4 mm 
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R = 494 mm 

Fo = 169.8 kN 

and A = 7.6 mm 

The proportions of the ring and bar are now established for 
operation at a maximum screw-jack load of 200 kN. Since the tripping 
load is directly proportional to A, the device can be operated at 
any load W, less than 200 kN, by setting the bar length to give 

A = 0.038W mm 

if W is in kN. 

The ring would be made by cutting a strip from plate of suitable 
thickness, forging into a ring and welding the ends. Final finishing 
to the required dimensions would be carried out on the lathe. 

There are a number of refinements which could be added to improve 
the performance. For example, spring-loading the bar would permit the 
device to be used for vertical forces. 

PROBLEMS 

1. Derive expressions for the deflexions in a straight beam of span 
L and flexural rigidity EI resting on simple supports if the loading 
is: (a) a concentrated load W at mid-span; (b) a uniformly distributed 
load of intensity w per unit length. 

Hence show that the mid-span deflexions are 

and 

respectively. 

2. A beam of uniform section rests on four simple supports A, B, C 
and D at the same level. AB = BC = CD= L. There is a load W at the 
middle of each span. Find the greatest bending moment in the beam 
assuming elastic behaviour. 
[Cambridge] [?WL/40] 

3. A cantilever of span 2L and flexural rigidity EI carries a uniform! 
distributed load of intensity w per unit length over the whole span 
and a couple M at the free end. If the mid-point of the span is 
propped to the same level as the built-in end, show that the vertical 
deflexion at the free end is wL3/lSEI. 

4. The davit shown in figure 3.23 is built-in at the foot and is 
made of solid circular section steel bar of diameter 100 mm. What is 
the greatest value that the load W can have if the maximum bending 
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stress in the davit is not to exceed 160 m- 2 and if the vertical 
deflexion at C is not to exceed 30 mm. E = 200 GN m-2. 
[Sussex] [12. 9 kN] 

8 

100mm 
1·5m 

A 

Figure 3.23 

5. The beam ABC of uniform section shown in figure 3.24 consists of 
a straight portion (AB) of length R and a quadrant (BC) of radius R. 
End A is built into a wall and end C is pinned to a roller support. 
Determine the maximum bending moment in the beam if a clockwise couple 
of 120 kN m is applied at B. 
[Sussex] [67 kN m] 

R 

Figure 3.24 
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6. The frame ABCD shown in figure 3.25 is built-in at A and a 
horizontal force H is applied at D. The joints at B and C are rigid. 
AB =CD= hand BC = 1.6h. The second moments of area are !1 for BC 
and 12 for AB and CD. Show that if the path of point D under load 
is to make an angle of 45° with the horizontal, 11 = 2.41 2 . 

1·6h 
B c ._____ 

11 

h 12 12 

A D ... H 
'/,.-: '// 

,. 

Figure 3.25 

7. Figure 3.26 shows a flat ring fabricated from steel strip 25 mm 
wide and 8 mm thick. If the ring supports a load of 600 N as shown, 
determine the maximum bending moment and the relative deflexion of 
the load points. [38.7 N m, 3.8 mm] 

150 150 Dimns. in mm 

Figure 3.26 

8. Figure 3.27 shows a ring of mean radius R made from a bar with 
the two ends at C connected by a frictionless pin-joint. The ring 
is subjected to three radial forces arranged in equilibrium as shown. 
show that the force on the pin is 
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6W 

Figure 3.27 

9. A semi-circular steel arch of mean radius R and flexural 
rigidity EI is shown in figure 3.28. The ends of the arch are 
built-in and a single concentrated vertical load W is carried at mid 
span. Determine the greatest bending moment in the arch and the 
deflexion at the load point. [O.lSWR, WR3/86EI] 

Figure 3.28 

10. The parabolic arch shown in figure 3.29 is pinned at the foot
ings A and B. With the origin at A (as shown) the equation of the 
parabola is 

X y = 20(40 - x) 

If the second moment of area of the arch cross-section varies 
directly as the secant of the slope of the arch, show that the 
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horizontal thrust, H due to a unit vertical load acting at a 
distance x from A is given by 

H = 48~00 (2 7000 - 60x2 + x3) 

[Sussex] 

Figure 3.29 

11. If end A of the spring in example 3.6 is built-in, determine 
the new stiffness. [0.37EI/R3] 

12. The link shown in figure 
which are small compared with 
moment for the loading shown. 
[Southampton] 

3.30 has cross-sectional dimensions 
R. Determine the maximum bending 

[0. 39WR] 

2R 

Figure 3.30 

13. The planar structure shown in figure 3.31 consists of a semi
circular arch of radius 2 m which is supported through pinned 
connexions to two columns of height 4 m whose feet are built into 
the ground. Both the arch and the columns have the same in-plane 
flexural rigidity. If a concentrated vertical load of 10 kN is 
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applied to the top of the arch, determine the force and moment 
reactions at the foot of each column. [5 kN, 0.72 kN, 2.9 kN m] 
[Sussex] 

10kN 

4m 

Figure 3.31 

14. The rigidly jointed, plane rectangular loading frame shown in 
figure 3.32 is made of the same material throughout. The frame 
consists of two uprights of height 3 m having second moments of area 
I and two beams of length 5 m whose second moments of area are 2.5!. 
Show that the relative deflexion (~) of the load points A and B under 
the load W is given by 

35W 
~ = 24EI 

[Sussex] 

I 

" 

A!w 
I 

2·5I 

I I 

I 2·5I 

3m 

1----,f-

BTw 
2·5m ~ 2·5m l 

Figure 3.32 
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15. Figure 3. 33 shows a square portal frame of height and span L. 
All members have the same uniform cross-section. The columns are 
both pin-jointed to the rigid base. A uniformly distributed 
horizontal load of w per unit length is applied to the left-hand 
column over its whole length. Find the position and value of the 
bending moment of greatest magnitude in the frame. Assume that the 
frame remains linear-elastic and that only deflexions due to bending 
need be considered. [Top right-hand joint, M = llwL2 /40] 
[Cambridge] 

w/unit 
length 

L 

Figure 3. 33 

L 

16. The frame ABCD shown in figure 3.34 is made of three different 
steel sections. The feet are pinned to the foundations at A and 
built-in at D. The beam, BC carries a uniformly distributed load of 
3 kN m- 1 and a concentrated horizontal load of 12 kN is applied at 
joint B. Determine the greatest moment in the frame and the 
horizontal deflexion at B. [31.7 kN m, 132.3/EI] 

12kN B 
, 

4m I 

A 
'//_r t'/ 

.I 

L3kN m-1 
21 c 

31 Bm 
4m 

D 
/////// --,fFigure 3. 34 
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17. The plane frame ABCD shown in figure 3.35 has rigid joints at B 
and C and is pinned to the foundations at A and D. The horizontal 
member BC carries a uniformly distributed load of intensity 6 kN m-1. 
Determine the maximum moment in the frame and the reactions at A and D. 
(Sussex] [24.7 kN m, 12.3 and 14.7 kN, 12.3 and 21.3 kN] 

Figure 3.35 
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4 POTENTIAL ENERGY METHODS 

The application of potential energy methods is primarily directed 
towards the determination of sets of unknown deflexions and, as such, 
is an equilibrium approach to structural analysis. We saw in section 
1.3 that the fundamental theorem of potential energy is the principle 
of stationary potential energy which states that, for a structural 
system in equilibrium 

~= 0 at.. 
J 

(equation 1.5) where the potential energy V (defined in section 1.3) 
is expressed in terms of the displacements of the system. 

We now need to inquire into the nature of this equilibrium state 
since the system may be stable or unstable. It will be shown in the 
next section that, in addition to a stationary value of the potential 
energy 

(a) 

(b) 

(c) 

a4v . ---- 1s >0 for stable equilibrium 
al1_2 

J 

a2v . ---- 1s <0 for unstable equilibrium 
at.. 2 

J 

if a2v = 0 the system may be stable or unstable 
at..2 

J 

For a particular structural system, condition (a) represents a 
minimum in the function V while condition (b) is a maximum. Condition 
(c) merely indicates that a horizontal tangent exists, which may be 
the result of a minimum, a maximum or a point of inflexion. 

To illustrate these concepts, the following section investigates 
a particular problem which exhibits both stable and unstable states 
of equilibrium. 

4.1 CONDITIONS FOR EQUILIBRIUM: A CASE STUDY 

In this section we shall consider the deflexion sensitive structure 
shown in figure 4.1. Two linearly elastic rods AB and BC are pinned 
together at B and to rigid abutments at A and C. Their combined 
unstressed length, 21 is slightly greater than the span 2a between 
the abutments. The rods are arranged in the vertical plane with B 
above the chord AC. Both rods have the same cross-sectional area (A) 
and modulus of elasticity (E). A vertical load W applied at B 
causes a vertical deflexion at B of L'l. The initial height of B above 
AC is h. It will be noted that the deformation of the system is 
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completely described by the deflexion ~; we are therefore dealing with 
a system having only one degree of freedom. 

Initial position 
of rods ~ 

~:0_-_-_-__ _ h 

l a Lw 
1 1 

a 

Figure 4.1 

In the deflected position, the length of the rods is L, thus each 
rod is compressed by an amount o given by 

o = Lo - L (i) 

where 

Lo = /(h2 + a2) (ii) 

and L = l[(h - ~)2 + a2] (iii) 

If his small compared with a we have, from equations (i), (ii) and 
(iii) 

(iv) 

The strain energy (U) stored in both rods due to this deformation 
is given by 

o2AE 
U = -L- (v), 

0 

From equations (ii), (iv) and (v) and again noting that his small 
compared with a we find that 

2 

U=h:~r~rrz-~) (vi) 

From the definition given in section 1.3 (equation (i))the 
potential energy of the load (W) is given by 
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The potential energy (V) of the system is then obtained from 
equations (vi), (vii) and 1.4 as 

v = ::~ (~ r ( 2 - % r -w~ (viii) 

This equation is more conveniently expressed in the following non
dimensional fom 

- i;,2 
v = 4 c2 - t.) 2 - w~ 

where 

- ~ 
and ~ = h 

For the system to be in equilibrium we require that 

hence 

w = 6(1- 6)(2- 6) 

a2v 
also -- = V" = (2 - 66 + 3i'i2) 

ali 2 

(ix) 

(x) 

(xi) 

The load-deflexion relationship of equation (x) is shown in figure 
4.2. It can be seen that, although the system consists of linear 
elastic members, this relationship is non-linear in fom. Also 
shown in figure 4.2 is the relationship, equation (xi), between the 
second differential of the potential energy function (V") and the 
deflexion. 
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-II v 

Figure 4.2 

Examination of figure 4.2 shows that between A and B and C and D 
on the load-deflexion curve (figure 4.2a), equilibrium is stable 
because a positive value of V" denotes that V has a minimum for all 
corresponding values of W and ~. Between B and C equilibrium is 
unstable because~" is negative and V has a maximum for all 
corresponding values of Wand~. Precisely at Band C, V" is zero 
indicating that V has a minimax at these points. 

To show that a minimum in the potential energy function corresponds 
to a stable condition of the structure or, conversely, that a 
maximum corresponds to an unstable condition, we need to look at the 
effect on V of small disturbances about the equilibrium position. 

Suppose that the equilibrium position of the structure is defined 
by W and ~ in accordance with equation (x) and that small changes in 
~ of magnitude n are applied on each side of the equilibrium 
position. The change in the potential energy caused by these 
disturbances is therefore given by 

ov = vc~ + n) - V(~) (xii) 
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where n can be positive or negative. 

A positive value of oV shows that energy must be added to the 
system to move it to an adjacent equilibrium state and thus the 
system is stable. 

A negative value of oV indicates that a small disturbance in the 
equilibrium state results in a release of energy and thus the system 
must be unstable. The release of energy will continue until the 
system reaches a new, stable equilibrium position. It is assumed 
that the disturbances are not large enough to alter an inherently 
stable condition into one which is unstable. 

After writing the first term on the right of equation (xii) in a 
Taylor 1 s series and noting that v 1 (E) is zero as a requirement for 
equilibrium, we have 

2 
ov = ~4 [12V " (E) + 4nV I" (E) + n2v "" (E)] 

For small values of n, the sign of oV is clearly dominated by the 
sign of v" (K) thus confirming the assertion made earlier that 
positive values of V "(E) indicate stable equilibrium states and vice 
versa. 

When V" (K) is zero, the change in potential energy is given by 

n 3 -
ov = 24 [ 4V "' (E) + nV "" (K)] 

For a particular value of E, the sign of oV will now depend on 
whether n is positive or negative, assuming V"' (E) 'f 0. Thus a 
disturbance in one direction from the equilibrium position will 
require an input of energy to the system while a disturbance in the 
opposite direction will cause the system to jump to the next stable 
equilibrium state. Since the sign of n is arbitrary, this condition 
must be regarded as indicating an unstable equlibrium state. If 
V "'(E) = 0, then stability will depend on the sign of V "'(E) and so 
on. 

As the load W on the structure in figure 4.1 is gradually increased 
from zero, the path AB on the load-deflexion curve of figure 4.2a is 
followed. At B, where W = 2/3/3, the system becomes unstable and 
jumps to its next stable configuration at B'. This type of behaviour 
is often called 'snap-through' buckling; it is a particular feature 
of shell-type structures. The path BCB' can only be followed if the 
structure is tested in a device which is able to control the displace
ment. 

A third equilibrium state can exist, but it is not exhibited in 
the structure we have been considering. Suppose that there is a 
system in which, under a certain loading condition, all the differ
entials of the energy function vanish identically, then oV is zero 
and V is a constant. This condition is known as neutral equilibrium. 
An initially straight, pin-ended, axially loaded strut is in a 
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condition of neutral equilibrium when subjected to the Euler 
buckling load. If the strut is displaced slightly from the straight 
configuration it will remain in its new position without showing any 
tendency to return to its original position or to seek out an 
alternative stable equilibrium state. 

4. 2 STRUCTURAL SYSTEMS WITH A LIMITED NUMBER OF DEGREES OF FREEDOM 

There is no particular advantage in using the principle of stationary 
potential energy to obtain equilibrium equations for structures 
having only a few degrees of freedom unless, as in the previous 
section, we wish to examine the stability of the system. In chapter 
l, Castigliano's first theorem, part I, was used to show that a 
stationary value of the potential energy corresponded with an 
equilibrium state. Thus if exact solutions to a particular problem 
are required, the two approaches are exactly equivalent. 

For example, Castigliano's 
equation (x) of section 4.1. 
expression (equation vi) with 
the load W gives equation (x) 

first theorem can be applied to obtain 
Differentiating the strain energy 
respect to ~ and equating the result to 
directly. 

Alternatively the equilibrium equations for the various examples 
in section 2.5 could have been obtained by application of the 
principle of stationary potential energy. As an illustration, the 
potential energy expression for the pin-jointed frame of example 
2.11 is 

V = ~ L 2 - lOlL 5~ 12L ~r :h - V (i) 

For equilibrium we require that 

hence 

4EA a~T 
t"L~ra~- 10 0 

and 
4EA a~T 

5 0 I:~T~-
1 v 

as before. 

It is easy to show that both equilibrium equations describe stable 
conditions, for if we differentiate equation (i) twice with respect 
to ~H and ~v• we have 

133 



a2v 
and--= 

at. z v 

The t.Ts are linear functions of t.H and ~'~v• thus the second terms 

in the brackets are zero. Since the first terms are always positive, 
V" must also be positive. 

If we attempt to use the principle of stationary potential energy 
to obtain exact equilibrium equations for a system having many 
degrees of freedom we will quickly find that the labour of solving 
the corresponding simultaneous equations makes the approach 
impracticable. If the number @f degrees of freedom are infinite, an 
exact solution by this method is impossible and we must turn to the 
approximate procedure discussed in the next section. 

4.3 APPROXIMATE SOLUTIONS: THE RAYLEIGH-RITZ METHOD 

Certain problems in engineering are extremely difficult, if not 
impossible, to solve exactly. A relatively simple procedure for 
dealing with such intractable problems was devised originally by the 
British scientist Lord Rayleigh (1842-1919) and later extended by the 
Swiss mathematician Walter Ritz. 

The basic approach is to assume a suitable displacement or shape 
function for the elastic system under consideration. This function 
may contain one or more unknown coefficients which can be determined 
by application of the principle of stationary potential energy. 
Strictly speaking, the use of a displacement function with one un
known coefficient is referred to as the Rayleigh method. The 
contribution of Ritz was to introduce an infinite series for the 
displacement function thus permitting any desired improvement in the 
accuracy of a solution simply by considering a sufficient number of 
terms in the series. 

Although the Rayleigh-Ritz method can be applied to any linear or 
non-linear elastic structural system, attention in the following will 
be confined to beams and columns of linear elastic material. 

4.3.1 The Treatment of Beams 

The only restriction on the choice of a displacement function is that 
it must satisfy the geometric boundary conditions of the problem. 
However, the solution is likely to be much more accurate if the 
boundary curvature conditions are also satisfied. In some cases it 
might also be necessary to examine the third derivative. The follow
ing example shows how a poor choice for the displacement function 
can lead to a solution being found for an entirely different problem. 

Example 4.1 

A simply supported linear-elastic beam of span L carries a 
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concentrated load (W) at mid-span. Assume a suitable function to 
define the deflected shape and, by minimising the potential energy, 
estimate the mid-span deflexion. 

JS, ~X 
!w /-y{x} 

~ Lf-2 · l 

L 
1 l L 

'I 

Figure 4.3 

Figure 4.3 shows the beam and the assumed deflected shape. 
Suppose we choose a quadratic as the displacement function, then 

where y is the beam deflexion at distance x from one support. 

We must at least satisfy the geometric boundary conditions y 0 
at x = 0 and L, thus 

a 0 = 0 and a2 - L 

hence 

(i) 

The function y(x) now contains one unknown coefficient which may be 
determined by minimising the potential energy. 

From section 3.1 we have an expression for the complementary 
energy due to bending. Since this was derived for a linear-elastic 
beam we may use the same expression for the strain energy, thus 

u = 

but, also from section 3.1 

M _ EI 
-R 

where, for small deflexions 

(ii) 

(iii) 

(iv) 

135 



Thus, substituting for M in equation (ii) we have 

u = EI (y") 2 dx 
2 

From equation (i) , y " 

u = iL 2Eia12 2Eia 2 
--- dx = _____L 

a L2 L 

The work done by the load W is given by 

L alL 
wd = - Wy 2 = - w --4--

hence the total potential energy of the system is 

2Eia1 2 a1L 
V = -L-- - W --4-

For equilibrium, since a1 is the only variable 

av 2Eia1 WL 
aa 1 = -L-- - 4 = 0 

from which 

and the mid-span deflexion is therefore 

(.!:l = a1L = WL3 
y 2) 4 64EI 

(v) 

(vi) 

We know that the correct value (see Essential Solid Mechanics) of 
this deflexion should be WL 3/48EI, thus the result given by equation 
(vi) is by no means accurate. The reason for this is that although 
the displacement function chosen satisfies the geometric boundary 
conditions, an important statical boundary condition (that the 
curvature is zero at x = 0 and L) is violated. 

The bending moments in the beam which we are supposed to be 
investigating are zero at the ends and increase linearly to a value 
of WL/4 at mid-span. However, for the beam represented by the 
displacement function of equation (i), the bending moment is constant, 
since from equations (i), (iii) and (iv) 

M Ely" 
2Eia 1 

--L-
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where 

thus M WL 
-8 

The deflexion given by equation (vi) is therefore more likely to 
be an accurate result for a beam of span L having a constant bending 
moment produced by a pair of equal and opposite couples of magnitude 
-WL/8 acting at its ends. The negative sign denotes that the couples 
are producing a sagging moment in the beam. As it happens, the 
deflexion given by equation (vi) is exact because equation (i) is a 
correct representation of the shape of a beam subject to constant 
bending moment. 

A much better choice of displacement function for the beam of 
figure 4.3 would have been 

( ) • 1TX 
y x = a s1n L 

from which 

thus both the geometric boundary conditions (y = 0 at x = 0 and L) 
and the statical boundary conditions (y " = 0 at x = 0 and L) are 
now satisfied. 

Proceeding as before, we have 

and Wd = -Wa 

thus V 

For equilibrium, since a is the only variable 

av = 1r 4Eia -W = 0 
aa 2L3 

hence a (the mid-span deflexion) is given by 
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This result is within 1.5% of the correct answer which we know to 
be WL 3/48EI. 

Although the mid-span deflexion obtained above is a great improve
ment on that found previously (equation vi) we can do better still 
by assuming a displacement function in the form of an infinite series. 
For example, if the deflected shape of the beam is given by the odd 
terms of a sine series we have 

y(x) = ~ . n~x ,. a s1n L 
1,3,5 ..• n 

(vii) 

The even terms are not wanted because they are asymmetric with 
respect to the mid-span of the beam. 

From equation (vii) 

E n2a . n~x n s1n L 
1,3,5 •.. 

(viii) 

The required geometric and statical boundary conditions are 
therefore satisfied by y andy" from equations (vii) and (viii) and 
the strain energy is given by 

u 
L 

~4EI ]("" 2 ---- E n a 
2L4 0 1,3,5... n 

. n~x~2 
sm TJ dx 

since El is constant. 

Although the integral appears to be somewhat daunting, it should 
be noted that squaring the series produces terms of two possible forms, 
either 

or 

n4a 2 · 2 n~x 
n sm L 

n2m2a a . n~x . m~x # n m s1n L s1n L' n m 

Fortunately sine functions (in common with cosine functions and 
certain special polynomials) have the property of orthogonality which 
means that the integrals of all the mixed product terms are zero. 
Also 

L 

f sin2 ~ dx = .!:!. 
L 2 

0 

hence the expression for U may now be written as 
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The potential energy of the load (at x L/2) is given by 

W = -W E d 
. mr 

an s1n 2 
1, 3, 5 .•• 

The total potential energy is therefore 

V u4EI oo 4 2 
=--E na w I! 

4L3 1,3,5. •. n 1, 3, 5 ... 

. nu 
an s1n 2 

There are an infinite number of coefficients (an) describing the 

deflected form of the beam. The potential energy (V) must have a 
stationary value with respect to each one, therefore in general 

av u4EI 4 W . nu aa:- = -- n x 2a - sm 2 = 0 
n 4L3 n 

or 

hence 

y(x) 2WL 3 ~ 1 . nu . nux = -- ,_, - s1n - s1n --
4 4 2 L u EI 1,3,5 ... n 

(ix) 

This expression is exact since an infinite number of terms are 
involved which correspond to the infinite number of degrees of 
freedom in the system. 

The mid-span deflexion is obtained by putting x = L/2 in equation 
(ix) thus 

(L\ = 2WL 3 I; .!_ sin2 nu 
y I) 4 4 2 

u EI 1,3,5 ... n 

but, since n is odd, sin2 nu/2 = 1, therefore 

2 WL 3 oo 1 
--I: 

4 EI 4 u 1,3,5 ... n 

or 

The improvement in the estimate of the mid-span deflexion obtained 
by taking more and more terms of the series can be seen in table 4.1. 
Remember that the exact value of Ely(L/2)/WL3 is 1/48. An interesting 
conclusion from this result is in the evaluation of u from the 

infinite series {g6r n-4)1. 
~ 1,3,5 ... 
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Table 4.1 

Number of terms 
in series 1 2 3 4 5 

EI (L) 1 1 1 1 1 
WL/ "2 48.70 48.11 48.035 48.015 48.008 

The Rayleigh-Ritz method is applicable to statically indeterminate 
problems without any further complications. No compatibility 
equations for the redundancies are needed, all that is required is 
that the displacement function should satisfy as many of the boundary 
conditions as possible. The next example deals with a statically 
indeterminate problem and introduces the procedure for determining 
the work done by a uniformly distributed load. 

Example 4.2 

A cantilever AB of span L is built in to a wall at A and carries a 
uniformly distributed load of intensity w per unit length over the 
whole span. If end B is propped to the same level as A, determine 
the force in the prop by minimising the total potential energy. 
Assume a quartic polynomial for the displacement function. 

~A 
~y 
l 

7 
y(x) 

w /unit Length 

.:xA ,: 
L L 

Figure 4.4 

Figure 4.4 shows the propped cantilever and the assumed deflected 
shape. A general quartic in x has five coefficients, four of which 
may be obtained by satisfying boundary conditions. The remaining 
coefficient is found by minimising the total potential energy and 
hence establishing equilibrium conditions. For an origin at A, the 
displacement function may be written as 

The geometric boundary conditions to be satisfied are y = 0 at 
x = 0 and Landy'= 0 at x = 0. The only statical boundary 
condition known is y" = 0 at x = L. If these conditions are 
introduced into equation (i) we obtain 
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3a4 2 
a2 = -2- L 

sa,. 
and a 3 = - - L 

2 

thus y(x) = a;L
4
(rt[3- s(f) + 2(rr] 

The strain energy is given by 

L 

U = /!1(y" ) 2 dx 

and from equation (ii) 

hence 

(ii) 

(Hi) 

The potential energy of a small element of load is w dx y, thus 
the potential energy of the whole of the distributed load is 

L 
wd = - I wy dx 

thus 

wd 
3wa4L5 

--w-
and the total potential energy becomes 

To satisfy the requirement of equilibrium we have 

or 
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In this problem we are interested in forces rather than deflexions. 
To determine the prop reaction R we note that the moment at A is 
given by 

M = Ely II (0) 
A 

Substituting for a4 in equation (iii) and putting x 0 we have 

11 (O) = wL 2 
y 8EI 

wL 2 
thus MA = - 8-

but from figure 4.2 we see that 

wL 2 
MA = -RL + - 2-

h wL2 RL + wL2 
t us -8- = - 2 

or R = 3wL 
8 

As we have seen in example 3.3, this is the correct result since 
a quartic polynomial in x completely describes the displacement of a 
uniformly loaded, propped cantilever. 

Example 4.3 

The non-prismatic beam shown in figure 4.5 is built in at the ends 
and carries a single concentrated load W at mid-span. On the 
assumption that a quartic polynomial in x describes the deflected 
shape of the beam, estimate the mid-span deflexion and the end 
moments. 

w 
/ '" 2£1 1;% 
~ EI EI ~ 
./ --""X t - / 

~ 
v 
~ 

L/4 
>I 

L/4 L/4 L/4 l 

Figure 4.5 
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The displacement function to be assumed is 

y(x) = ao + a1x + a2x2 + a3x 3 + a4x4 

and the boundary conditions to be satisfied are 

y = 0, x = 0 and L 

y' = 0, X= 0 and L 

thus 

a0 a 1 = 0 

Let the mid-span deflexion be ~. then 

hence 

Since the beam is made up of three sections of constant flexural 
rigidity, the total strain energy is determined from 

L/'+ 3L/'+ L 

u = ~I f (y II) dx2+ 2~! f (y II ) 2 dx + ~I f (y II ) 2 dx 

0 L/4 3L/4 

Now (y II ) 2 

hence 

708EI~ 2 
u = -=-=-==- (i) 

The potential energy of the load is given by 

(ii) 

therefore the total potential energy is obtained from equations (i) 
and (ii) as 
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V = 708Eil12 -Wl1 
sL 3 

For equilibrium 

av 1416Eil1 -w = 0 
~ = SL3 

SWL 3 WL 3 
thus l1 = 1416EI = 0.00353 EI 

The exact answer is l1 = 0.00358WL3/EI so that the energy solution 
is in error by only about 1.4%. 

To determine the principle bending moments in the beam we note that 

M = (EI) y II 
X 

(iii) 

where (EI) represents the flexural rigidity at x from the left-hand 
X 

end (see figure 4.3); thus 

M = (EI) X ~~~~I [1 - 6 (r) • 6 (rY] 
At the ends of the beam, x = 0 and L and (EI) = EI, hence 

X 

M = M = 2107W7L = 0.113WL 
x=O X=L 

At mid-span, x = L/2 and (EI) = 2EI, thus 
X 

M -2 1107W7L = -0.113WL X= L/ 2 -

The exact results are 

SWL 
Mx = 0, L = 48'"'"" = 0. 104WL 

7WL 
and Mx = L/ 2 = - 48'"'"" = -0 .146WL 

The approximate results for the moments are thus much less accurate 
than those obtained for the deflexions. This is generally so for the 
Rayleigh-Ritz method since the moments are obtained by differentiating 
the displacement function twice. If the displacement function is 
approximate, the second differential will be even less exact. 

In this problem the error in the bending moment obtained from 
equation (iii) is particularly bad near mid-span because the second 
differential of the displacement function does not exhibit the 
discontinuity which must occur under the concentrated load. Figure 
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4.6 shows a comparison between the approximate and exact bending 
moment diagrams for the beam of figure 4. 5. 

M 
WL 

0-101. 

0-113 ---'---- --~~~ 
0·146 

Figure 4.6 

Example 4.4 

approximate 

A linearly elastic beam of non-uniform cross-section and span L is 
simply supported at each end. The beam carries a uniformly 
distributed vertical load of w per unit length. The beam has a 
horizontal centroidal axis and the second moment of area (I) for 
bending in the vertical plane is given by 

I= I 0 (1 + n sin ~x) 

the origin of the co-ordinate axes being at the left-hand support. 

If the deflected shape of the beam is assumed to be given 
approximately by 

( ) • 1TX 
y x = b. s1n L 

show, by minimising the potential energy, that 

Since y(x) = b. sin (nx/L) 

n2b. • nx 
y" = - -- s1n-

L2 L 
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The strain energy due to bending is given by 

u-! ,/,i(y") 2 dx 

where the second moment of area, I is included under the integral 
since it is a function of x. 

Substituting for I, we obtain 

u = • 1TX) • 2 1TX d + 1T S1n - S1n - X 
L L 

but 

and 

L I . 2 1TX dx L 
S1n L = 2 

0 

L I sin 3 .!!!. dx = 4L L 31T 
0 

The potential energy of the load is given by 

•• --lwy dx-
2wLl1 ---1T 

thus the total potential energy is 

For equilibrium 

from which 

Example 4.5 

The tee-section cantilever shown in figure 4.7 has a span of 4 m and 
is cut from a 914 x 305 x 253 Universal Beam (UB). The overall depth 
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varies linearly from 306 mm at the free end to 612 mm at the built-in 
end. A concentrated load of 65 kN is carried at the free end and an 
anticlockwise couple of 120 kN m is applied at mid-span. 

A good approximation of the major axis second moment of area of the 
tee-section is given by 

I = I 0 (1 + ax + bx2) O<x<4 m 

where Io = 9742 cm4, a= 0.685 m- 1, and b = 0.210 m- 2. 

Estimate the maximum deflexion ~ on the assumption that a suitable 
displacement function is 

y = ~(1 - sin ;x ) O<x<4 m 

In the expressions for I andy, x (in m) is measured from the free 
end. E = 200 GN m- 2. 

65kN 
2m 2m 

X 

120 kN m 

306mm 

612mm 

Figure 4. 7 

From the given displacement function we have 

1!!:. 1TX 
y' = - 8 cos 8 (i) 

and y" (ii) 

Since the cantilever is of non-uniform section, the bending strain 
energy is given by 

4 

U =! J(I(y" ) 2 dx 
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Substituting for I from the data given and for y'' from equation (ii) 
we have 

To evaluate the integral it is helpful to make the substitution 
rrx/8 = 6, thus 

rrl 2 

but J sin2 6 d6 

rr/2 

1 6 sin2 6 d6 

rr/ 2 

and J 62 sin2 6 d6 

hence 

64b2 
sin2 6 + --- 62 sin2 6) d6 

Tf2 

rr 2 + 4 = _1_6_ 

rr/2 

[663 _ ~46 2)- _18 cos 26] sin 26- 6---
4 0 

Inserting values for a and b and noting that Eio 
obtain 

19484 kN m2 we 

U = 2190~ 2 kN m, ~ in m (iii) 

The potential energy of the loads is given by 

Tf~ wd = -65~ -120 87:2 kN m, ~ in m 

where the second term represents the work done by the couple in 
rotating through an angle corresponding to the slope of the canti
lever at x = 2 m. Simplifying, we obtain 

Wd = -98.32~ kN m, ~in m 

From equations (iii) and (iv), the total potential energy is 
given by 

V = 2190~2 - 98.32~ kN m, ~ in m 
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For equilibrium 

av ax= 4380~'~ -98.32 o 

or 1'1 = 2 2. 4 x 10- 3 m = 2 2. 4 mm 

4.3.2 The Hffect of Axial Loads 

A member which carries both axial and transverse loads is known as a 
beam-column. 

When deriving the total potential energy in a beam-column, the 
strain energy due to direct stress is ignored since it is usually 
very small compared with the bending strain energy induced by the 
transverse loads. The expression for the total potential energy is 
therefore the same as that for a beam except that an additional 
term is required to account for the potential energy of the axial 
load. The following examples show how this term is obtained. 

Example 4.6 

The simply supported beam-column of span L and uniform cross-section 
shown in figure 4.8a is subjected to an axial load (P) together with 
a concentrated transverse (W) applied at distance c from the left
hand end. By minimising the total potential energy, determine the 
deflexion under the transverse load. 

eJi 
L 

c r ~X 

y(x} 
7 

L 

" dx dNdy 
ds "'-... 

Figure 4.8 

~ 
l 
~ 

a) 

b) 

A suitable displacement function would be the infinite sine series 
given by 

y(x) 
co . nnx 
Ea s1n - 1 1 n 

(i) 
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from which 

and 

or 

y ' = .! Ena cos nL1TX 
L 1 n 

" 1T2 00 2 n1TX 
y - I:n a sinL 

L2 1 n 

The strain energy due to bending 

L 

1r4EI /("" 2 . mrx r u = -- I:n a s1n T dx 
2L lt 1 n 

0 

(see example 4.1) 

u 1r'+EI oo '+ 2 = -- I:n a 
4L 3 1 n 

The potential energy of the loads 

Wd = -W (~an sin n~c}Ph 

is thus 

is given by 

where h is the distance moved by the axial load P. 

(ii) 

(iii) 

(iv) 

The distance h is equal to the difference between the beam length 
measured round the arc and the chord length AB. Referring to figure 
4.8b we have 

L 

h = [ (ds - dx) 
0 

but ds 2 = dx2 + dy 2, thus 

where y' = dy/dx. 

The square root term may be expanded in a binomial series. For 
small deflexions, powers of y' greater than the second may be 
neglected, thus 

L 

h ! [cY ') 2 dx (v) 
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From equations (ii) and (v) we have 

L 
n2 /J(CD nnx)2 h = - I:na cos L dx 
2L2 o 1 n 

Like the sine series. the cosine series possesses the property of 
orthogonality. hence 

L 
~ 2 nnx L 
~0cos L dx = 2 

L l nnx mnx and cos -- cos -- dx = 
L L 

0 

o. n ; m 

thus the final expression for h is 

n2 CD 
h =- I:n2a 2 

4L 1 n 

and the potential energy of the loads becomes 

CD . nne n2p CD 
Wd = -W I:a s~n -L - -- I;n2a 2 

1 n 4L 1 n 
(vi) 

The total potential en~rgy is obtained from equations (iv) and 
(vi) as 

(vii) 

From the principle of stationary potential energy we require that 
all the coefficients an satisfy the condition 

av 
aa n 

0 

thus from equation (vii) 

or 

n4EI . nne n2P 2 
-- n42a - W sm L - 4L n 2an 0 
4L3 n 

2WL 3 sin nnc/L 

n4EI n4(1 - P/n 2PE) 

where PR(= n2EI/L 2) is the first Euler critical load (see Essential 
Solid Mechanics) for the beam-column in the absence of transverse 
load. 
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The deflexion under the load W is therefore given by 

2WL 3 oo sin 2 n 7rc/L y (c) = -- E --==____:;"---"'c...::...-

7f'1:I 1 n 4(1 - P/n 2pE) 

When c = L/2 and P = 0, the expression for the coefficients 
simplifies to that found in example 4.1. When P ~ 0, the effect of 
the axial load is to increase the deflexion due to the transverse 
load by the magnifying factor (1 - P/n 2pE). As P approaches PE' 

these deflexions become large enough to nullify the assumptions of 
the small deflexion theory. 

Example 4.7 

Determine the first critical load, Pc for buckling of a pin-ended 

column of height L with a non-uniform circular cross-section whose 
second moment of area is given by 

I ( Ic 
+ 4-

I 0 

where Ic is the second moment of area at mid-height (x L/2). 

The deflected shape of the column under its lowest buckling load 
may be approximated by the first term of a sine series, thus a 
suitable displacement function would be 

( ) . 7fX 
y x = a s1n L 

from which the strain energy due to bending is given by 

Making the substitutions x/L = 6 and 4[(I /I ) - 1] = K, we have c 0 

3 2 7f 
u = 7f Eioa [(1 + K6 -

2L3 o 7f 

From example 4.5, we have 
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and 

1T 1 1T2 

0 
8 sin 2 8 d8 = 4 

1T 182 sin 2 e de = ~(21r2 - 3) 12 
0 

thus the strain energy finally becomes 

u (i) 

The potential energy of the axial load P depends only on the form 
of the displacement function, thus 

(ii) 

The total potential energy of the column is thus 

(iii) 

and for equilibrium 

(iv) 

The two possible solutions of equation (iv) are 

a = 0 

or 

These two solutions are shown graphically in figure 4.9. 

153 



Axial lo4tl, P 

Pe ---lf------------1~ 

Figure 4.9 

The point a= 0, P = Pc represents a bifurcation, or branching, 

of the equilibrium state. When the axial load reaches the value Pc, 

the column is in a state of neutral equilibrium (see section 4.1) and 
the displacement a is arbitrary. Notice that by rewriting equation 
(iii) we have 

V = 1T:~2 {[1 + K (1T26:23)]- p} 
thus Vis a constant (zero) for both solutions of equation (iv). 

Since the column has a circular cross-section we have 

where d is the diameter at the ends and D is the diameter at mid
height. 

Table 4.2 shows the first critical load for various values of the 
ratio D/d. 

Table 4.2 

D/d 1 1.1 1.2 1.3 1.4 1.5 

1.00 1.40 1.93 2.61 3.47 4.53 

4.4 DESIGN EXAMPLE 

A large travelling crane is mounted on a pair of rails each of which 
is supported on the ground through a series of transverse steel beams 
or cross-ties 10 m long. The greatest wheel load transmitted to the 
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centre of a cross-tie is estimated to be 400 kN. The ground is soft 
and reacts linearly to deformation. Investigations have shown that 
the soil modulus is approximately 1 MN/m 2. 

A suitable Grade 43 Universal Beam section is to be selected for 
the cross-ties. In order to avoid excessive sinkage of the rail it 
is decided that the mid-span deflexion of the cross-tie relative to 
its ends should not exceed l/360th of its span. 

It may be assumed that the rail is bolted to the cross-tie. Since 
the cross-tie will also sink into the ground when under load, 
sufficient lateral support is offered to eliminate the possibility 
of flexural-torsional buckling. Thus, to ensure that the section 
may safely be designed elastically, the maximum stress due to bending 
is not to exceed 165 MN/m2. 

The problem simplifies to the design of a finite beam supported by 
an elastic foundation as shown in figure 4.10. 

L/2 L/2 

Figure 4. 10 

The wheel load transmitted by the rail is represented by the 
central concentrated load W. The uniformly distributed load, w, 
arises from the self-weight of the beam. Since the beam is relatively 
short it may be assumed that, under load, the ends sink below ground 
level by an amount a0 . A suitable displacement function would 
therefore be 

( ) "' . nrrx y x = a0 + .. a s1n L 
1,3,5 .•• n 

The even sine terms are not required since they are asymmetric 
with respect to the beam centre-line. 

From equation (i) we have 

Y" = _ 112 ~ 2 . nrrx -.. an s1n L 
L2 1,3,5 •.• n 
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thus the strain energy stored in the beam is 

PL(oo 2 n11x)2 
E ann sin2 L dx 

0 1,3,5 ... 

which, by virtue of the orthogonal properties of the sine function 
becomes 

(ii) 

On a unit length of beam, the foundation exerts an upthrust q 
which is linearly dependent on the local deformation, y. If k is the 
foundation modulus, we have 

q = ky 

thus the strain energy stored in a small element of the foundation 
of length dx is given by 

dUf = !(q dx)y 

The total strain energy stored in the foundation is thus 

L 

uf = ~ } 2 dx 

Substituting for y and integrating, we have 

U = kL (ao2 + 4ao 'f an + 1'f a 2) 
f 2 l' 11 1,3,5 ... n 2 1,3,5 ..• n 

(iii) 

The potential energy of the loads is given by 

dx - W (ao + 'f a sin ~11~ 
~ 1,3,5 ... n ) 

or W =- wL fao + l); nan~ - IV(ao + l: a sin n11'\ (iv) 
d ~ 11 1 3 5 ) ~ t,3,s ... n 2) 

' ' ... 
The total potential energy is therefore, from equations (ii), 

(iii) and (i v) 

V - 114Er ~ 4 2 
---~.. na 

4L 3 1, 3, 5. . . n 
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( 
4ao a 

+ k2L ao 2 + -n z _E. + 1 Z a 2) 
1,3,5··· n 2 1,3,5 .•• n 

- wL (ao + l 'f an) 
\ 1T 1,3,5 •.• n 

~ 00 nn) - W ao + L a sin z-
1,3,5 ••• n 

For equilibrium, we require 

Hence 

~ = k2L (2ao + i ~ nan) - (wL + W) oa 0 rr 1,3,5 ••. 

2wL 1 -----
1T n 

kL 4ao 1 
+ ---- + 2 n n 

W . nn sm 2 = 0 

From equation (vi) we obtain 

_ (wL + W) 
ao - kL 

a 
2 'f n 
n 1,3,5 .•• n 

and from equation (vii) 

a 
n 

2wL + W 
nn 

. nn ~ 
S1n 2- nn 0 

kL2a 
4 n 

0 

After substituting for ao from equation (viii), this becomes 

21'/ l__) + 8 00 
a 

( . nn n 
kL 

sm 2 - ·::;-::z L nn nn 1>3•5· •• n 
a n (1 + nt; n~I) 

kL 4 

(v) 

(vi) 

(vii) 

(viii) 

(ix) 

Evaluation of the coefficients ao and an becomes tedious if more 

than one term of the sine series is included. In fact the series 
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converges very rapidly and useful results may be obtained by 
assuming that a3, as, etc., are all zero, hence 

and 

(x) 

(xi) 

The only unknown quantities in the expressions for the two 
coefficients are w and I which depend on the choice of beam section. 
After inserting values for the known quantities, we have 

153.5 
a 1 = ---=-=-=-:...::...--- mm 

1 + 0.103I X 10- 3 
(xii) 

( 
-3 

W + 40 0.103I X 10 -

0.103I X 10- 3 
and (xiii) 

where the numerical value of w is the self-weight of the beam 
expressed in kN/m and the numerical value of I is the major second 
moment of area expressed in cm4 . 

The maximum deflexion of the beam with respect to its end is a 1 
and this is not to exceed L/360 thus 

hence 

----=1--=5-=3..:... 5=---- < 2 7. 8 mm 
1 + 0.103I X 10-3 

I>44027.2 cm4 

Referring to tables (see Handbook on Structural Steelwork, 
BCSA/CONSTRADO) we find that a 533 x 210 x 92 UB is the smallest 
section to satisfy this condition with a net second moment of area 
of SO 040 cm4 • Since w = 0.9 kN/m we now have from equations (xii) 
and (xiii) that 

ao = a1 = 25 mm 

Since the second differential of the displacement function 
clearly does not have the necessary discontinuity at mid-span, a 
more accurate estimate of the bending moments in the beam is likely 
to be obtained by integration of the load diagram. 
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For one half of the beam, the total load p is given by 

(k ) k . wx O L 
p = - a 0 - w - a 1 s1n r- <x<2 (xiv) 

where downward forces are positive. 

By integrating the expression for the load, we obtain the shear 
force 

Q = !p dx 
kal wx 

- (ka0 - w)x + -;-L cos r- + C 

but Q = 0 when x = 0, thus C kalfwL and 

kal wx 
Q =- (kao- w)x- -;-L (1- cos r-), L 

O<x<2 (xv) 

The bending moment is obtained by integration of the expression for 
the shear force given by equation (xv), hence 

x2 kal L 
M = f Q dx = - (ka0 - w) Z - -;-L (x - -:;;- sin ~x) + D 

but M = 0 when x 0, thus D = 0 and 

2 kal 
X r2(~ _ . WX) (ka0 - w) 2 -~ L sm r- , 

• 
M 

L O<x<2 

The maximum bending moment occurs at x = L/2 and is given by 

(xvi) 

Mmax = - ~~ [cka0 - w) + 
4
::1 (x - 2)] (xvii) 

Substituting the values of a0 , a 1 and w corresponding to the 
533 x 210 x 92 UB section, we find that Mmax -466 kN m. The 

elastic section modulus (Z) is 2072 cm-4, thus the maximum stress due 
to bending is given by 

M 
+ max = + 215.2 MN m- 2 

0 b = - z -

Unfortunately this stress is in excess of that permitted. It is 
therefore necessary to try a larger section. For a 533 x 210 x 122 
UB we have 

I 68719 cm4 

Z 2794 cm3 

and w = 1.2 kN/m 
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hence, from equations (xii) and (xiii) 

and a0 29.1 mm 

From equation (xvii) the maximum bending moment is given by 

M = -458.6 kN m max 

thus the maximum bending stress is 

therefore this section is satisfactory. 

It is of interest to note that had the bending moment been 
calculated from M = Eiy" , the maximum value (for the 
533 x 210 x 122 UB section) would only have been -258 kN m. 

There is, of course, an exact theory for beams on elastic 
foundations but in the case of finite beams of intermediate length 
(5 m<L<l5 m for this problem) the solutions are tedious and the final 
results of great complexity. 

As a check on the accuracy of the present solution, the exact 
values of ao and a1 may be calculated (see Advanced Strength of 
Materials, Den Hartog, McGraw-Hill) for the 533 x 210 x 122 UB 
carrying a central concentrated load of 400 kN and supported by an 
elastic foundation of modulus 1 MN/m2 . The central deflexion 
(ao + a1) is found to be 47 mm and the end deflexion (ao) 28 mm. To 
correct for the effect of the beam's own weight we must add w/k 
(= 1.2 mm) to both of the above figures, thus 

a1 (exact) 19 mm 

and a0 (exact) 29.2 mm 

These results are almost identical to those found by the energy 
method. We may therefore be reasonably confident that the values 
obtained for the maximum bending moment and the corresponding bending 
stress are also close to the true values. 

A few further checks of the beam's adequacy remain (see Handbook 
on Structural Steelwork, BCSA/CONSTRADO). On the assumption that the 
web is unstiffened we require a 12 mm thick flange plate between the 
rail and the top flange of the beam in order to make full use of the 
direct bearing capacity of the web. There is no need to stiffen the 
web against buckling since with the addition of the flange plate the 
web buckling capacity is well in excess of 400 kN. 

From equation (xv) the maximum shear force is found to be 200 kN. 
If we assume that all the shear force is carried by the web, the 
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average shear stress is 31 N/mm2 . This is satisfactory since BS 449. 
The Use of Structural Steel in Building, allows an average shear 
stress of up to 100 N/mm2 for Universal Beams of thickness less than 
40 mm. 

PROBLEMS 

1. A simply supported beam of uniform cross-section and span L 
carries a concentrated vertical load at the left-hand quarter-span 
point. An additional flexible support of stiffness k is provided at 
mid-span. If the deflected shape of the beam may be approximated by 
the first term of a sine series, show that the force in the flexible 
support is 

WL3k 12 

1r4Er (1 + 2kL 3) 

1r 4EI 

2. A straight, uniform, elastic beam of flexural rigidity EI and 
length L is simply supported at its ends. 

The deflected shape of the beam under a uniformly distributed load 
of w per unit length is correctly represented by the quartic 

where y is the vertical deflexion at distance x from one end. 

By minimising the total potential eneLgy and noting that the 
quartic must satisfy the geometrical and statical boundary conditions, 
show that the maximum deflexion in the beam is given by 

SwL4 
Ymax 384EI 

[Sussex] 

3. A uniform beam of flexural rigidity EI and span L carries a 
uniformly distributed load of intensity w per unit length. The beam 
is rigidly built in at both ends in such a way that rotation and 
deflexion are fully restrained. 

It is suggested that the deflexion of the beam may be approximated 
by the expression 

y(x) = %(1 - cos 2 ~x) 

where the co-ordinate origin is taken at one end of the beam. 

Investigate whether the above expression satisfies the necessary 
geometrical boundary conditions for the beam and if so, determine an 
approximate value for the central deflexion by minimising the total 
potential energy. 161 



Show also that if the bending moment at mid-span is 
the displacement function it will be approximately 19% 
the exact value. 
[Sussex] 

derived from 
in excess of 

[wL'+/47f4EI] 

4. A cantilever of depth d and length L tapers uniformly in width 
from B at the built in end to zero at the free end. Assuming that a 
vertical load W can be applied at the free end, determine the end 
deflexion ~by minimising the total potential energy. It is 
suggested that the deflected shape of the beam be taken as 

y(x) = ~ sin 7fX 
2L 

where the co-ordinate origin is at the free end. 
[Sussex] [5.58WL 3/EBd 3; the exact answer is 6WL3/EBd3] 

5. A uniform beam of span L is simply supported at its ends. By 
minimising the total potential energy, estimate the central deflexion 
under a non-uniform distributed load w given by the relationship 

. 7fX 
w = wa s1n L 

[Sussex] 

6. A foundation pile of height L and flexural rigidity EI carrying 
axial load may be treated as a pin-ended column completely submerged 
in an elastic medium of lateral stiffness k per unit length. On the 
assumption that an infinite sine series is an appropriate displace
ment function, show tha:t minimum buckling load is independent of L 
and the buckling mode and is given by P = zi(Eik}. cr 

7. A pin-ended column carries an axial load and consists of three 
rigid bars of equal length h m connected end-to-end by elastic 
torsion springs of stiffness s kN m rad- 1 • By minimising the total 
potential energy, show that there are two values of the critical load 
given by k/h and 3k/h kN. 

8. A column in the form of a frustum of a solid circular cone of 
height h is built in at its base where the diameter is D and 
supported at the upper end (diameter d<<D) where an axial compressive 
force is applied. Assume a quartic polynomial as the displacement 
function and show, by minimising the total potential energy, that 
the critical load is SnD'+E/48h2. 
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