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Preface

Back in the days when I had a lot more energy and a lot less sense, I wrote
the first edition of this book. I had just finished writing Microwave Mixers,
and friends kept asking me, “Well, are you going to write another one?”
Sales of Mixers were brisk, and the feedback from readers was
encouraging, so it was easy to answer, “Sure, why not?” After a year of
painful labor, Nonlinear Microwave Circuits was born. 

The first edition of Nonlinear Microwave Circuits was published in
1988. It was well received and continued to sell well, even in a reprint
edition, for the next 13 years. Now, it is out of print, and properly so:
nonlinear circuit technology has advanced well beyond the material in the
first edition of that book. In 1988, general-purpose harmonic-balance
simulators had just become available, a workstation computer with an 8-
MHz processor and 12 megabytes of memory was the state of the art, cell
phones were the size of a shoebox, and the term microwave bipolar
transistor was an oxymoron. My point isn’t that we’ve come a long way;
you know that. My point is that the book was clearly due to be updated. 

Nonlinear Microwave Circuits has been almost completely rewritten,
mainly to update its specific technical information. The general
organization of the book, with the first half presenting theory, and the
second design information, is unchanged. A couple of chapters, notably
Chapters 4 and 5, are essentially unchanged, for obvious reasons. Chapter
2, on device modeling, is almost twice as long as in the original edition,
and I easily could have made it longer. Chapter 3, on harmonic-balance
analysis, is likewise much longer. The last seven chapters, which are design
oriented, are completely new. In particular, design examples have been
modernized, so they show how modern circuit-analysis software can best
be exploited to produce first-class components. 
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Nonlinear Microwave Circuits has become Nonlinear Microwave and
RF Circuits, a telling change. A large component of the evolution of high-
frequency technology, since the first edition, is the importance of RF,
wireless, and cellular systems. These depend strongly on heterojunction
bipolar transistors, also a technology that has grown to maturity since the
publication of the first edition. Similarly, power MOS devices, VHF/UHF
transistors in 1988, are extremely important for power applications in the
lower end of the microwave region. Finally, while in 1988 the MESFET
was the only real option for microwave transistors, now we have high
performance HEMT devices for both power and small-signal applications.
These new technologies deserve, and have received, a place in this book. 

I have many people to thank for their tolerance and assistance in this
project. At the top of the list is my wife of 30 years, Julie, who never once
has complained about my late nights in my office. My sons, David and
Benjamin, also helped enormously, if only by growing up and leaving
home. The whole gang at Applied Wave Research also deserve mention and
thanks for discussions that clarified many of the dirty little details of
making a nonlinear circuit simulator work the way it should. Finally, I am
indebted to my colleagues in the nonlinear circuits business, far too many
to list, for sharing the benefits of their hard-won experience. 

Steve Maas
Long Beach, California

January 2003
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Chapter  1

Introduction, Fundamental Concepts, 
and Definitions

Before we can describe the unique properties of nonlinear microwave
circuits and the analytical methods necessary to understand them
quantitatively, the author and reader must be certain that they both are
speaking the same language. This is no small problem, because many of the
terms and concepts inherent in nonlinear circuit theory are completely
foreign to linear circuits, and many engineers harbor preconceived ideas
about these circuits, ideas that are often not altogether correct.
Accordingly, in order to establish a common basis for the following
discussions, we begin by folding a few important definitions into an
heuristic introduction to microwave nonlinearity. 

1.1 LINEARITY AND NONLINEARITY 

All electronic circuits are nonlinear: this is a fundamental truth of
electronic engineering. The linear assumption that underlies most modern
circuit theory is in practice only an approximation. Some circuits, such as
small-signal amplifiers, are only very weakly nonlinear, however, and are
used in systems as if they were linear. In these circuits, nonlinearities are
responsible for phenomena that degrade system performance and must be
minimized. Other circuits, such as frequency multipliers, exploit the
nonlinearities in their circuit elements; these circuits would not be possible
if nonlinearities did not exist. In these, it is often desirable to maximize (in
some sense) the effect of the nonlinearities, and even to minimize the
effects of annoying linear phenomena. The problem of analyzing and
designing such circuits is usually more complicated than for linear circuits;
it is the subject of much special concern. 
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The statement that all circuits are nonlinear is not made lightly. The
nonlinearities of solid-state devices are well known, but it is not generally
recognized that even passive components such as resistors, capacitors, and
inductors, which are expected to be linear under virtually all conditions, are
nonlinear in the extremes of their operating ranges. When large voltages or
currents are applied to resistors, for example, heating changes their
resistances. Capacitors, especially those made of semiconductor materials,
exhibit nonlinearity, and the nonlinearity of iron- or ferrite-core inductors
and transformers is legendary. Even RF connectors have been found to
generate intermodulation distortion at high power levels; the distortion is
caused by the nonlinear resistance of the contacts between dissimilar
metals in their construction. Thus, the linear circuit concept is an
idealization, and a full understanding of electronic circuits, interference,
and other aspects of electromagnetic compatibility requires an under-
standing of nonlinearities and their effects. 

Linear circuits are defined as those for which the superposition
principle holds. Specifically, if excitations x1 and x2 are applied separately
to a circuit having responses y1 and y2, respectively, the response to the
excitation ax1 + bx2 is ay1 + by2, where a and b are arbitrary constants,
which may be real or complex, time-invariant or time-varying. This
criterion can be applied to either circuits or systems. 

This definition implies that the response of a linear, time-invariant
circuit or system includes only those frequencies present in the excitation
waveforms. Thus, linear, time-invariant circuits do not generate new
frequencies. (Time-varying circuits generate mixing products between the
excitation frequencies and the frequency components of the time
waveform; we’ll examine this special case later in greater detail.) As
nonlinear circuits usually generate a remarkably large number of new
frequency components, this criterion provides an important dividing line
between linear and nonlinear circuits. 

Nonlinear circuits are often characterized as either strongly nonlinear
or weakly nonlinear. Although these terms have no precise definitions, a
good working distinction is that a weakly nonlinear circuit can be described
with adequate accuracy by a Taylor series expansion of its nonlinear
current/voltage (I/V), charge/voltage (Q/V), or flux/current (φ/I) charac-
teristic around some bias current or voltage. This definition implies that the
characteristic is continuous, has continuous derivatives, and, for most
practical purposes, does not require more than a few terms in its Taylor
series. (The excitation level, which affects the number of terms required,
also must not be too high.) Additionally, we usually assume that the
nonlinearities and RF drive are weak enough that the dc operating point is
not perturbed. Virtually all transistors and passive components satisfy this



 Introduction, Fundamental Concepts, and Definitions 3

definition if the excitation voltages are well within the components’ normal
operating ranges; that is, well below saturation. Examples of components
that do not satisfy this definition are strongly driven transistors and
Schottky-barrier diodes, because of their exponential I/V characteristics;
digital logic gates, which have input/output transfer characteristics that
vary abruptly with input voltage; and step-recovery diodes, which have
very strongly nonlinear capacitance/voltage characteristics under forward
bias. If a circuit is weakly nonlinear, relatively straightforward techniques,
such as power-series or Volterra-series analysis, can be used. Strongly
nonlinear circuits are those that do not fit the definition of weak
nonlinearity; they must be analyzed by harmonic balance or time-domain
methods. These circuits are not too difficult to handle if they include only
single-frequency excitation or comprise only lumped elements. The most
difficult case to analyze is a strongly nonlinear circuit that includes a mix
of lumped and distributed components, arbitrary impedances, and multiple
excitations. 

Another useful concept is quasilinearity. A quasilinear circuit is one
that can be treated for most purposes as a linear circuit, although it may
include weak nonlinearities. The nonlinearities are weak enough that their
effect on the linear part of the circuit’s response is negligible. This does not
mean that the nonlinearities themselves are negligible; they may still cause
other kinds of trouble. A small-signal transistor amplifier is an example of
a quasilinear circuit, as is a varactor-tuned filter. 

Two final concepts we will employ from time to time are those of two-
terminal nonlinearities and transfer nonlinearities. A two-terminal
nonlinearity is a simple nonlinear resistor, capacitor, or inductor; its value
is a function of one independent variable, the voltage or current at its
terminals, called a control voltage or control current. A transfer
nonlinearity is a nonlinear controlled source; the control voltage or current
is somewhere in the circuit other than at the element’s terminals. It is
possible for a circuit element to have more than one control, one of which
is usually the terminal voltage or current. Thus, many nonlinear elements
must be treated as combinations of transfer and two-terminal
nonlinearities. An example of a transfer nonlinearity is the nonlinear
controlled current source in the equivalent circuit of a field-effect transistor
(FET), where the drain current is a function of the gate voltage. Real
circuits and circuit elements often include both types of nonlinearities. An
example of the latter is the complete FET equivalent circuit described in
Section 2.5.4, including nonlinear capacitors with multiple control
voltages, transconductance, and drain-to-source resistance. 

The need to distinguish between the two types of nonlinearities can be
illustrated by an example. Consider a nonlinear resistor, Figure 1.1(a), and
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a nonlinear but otherwise ideal transconductance amplifier, Figure 1.1(b).
Both are excited by a voltage source having some internal impedance Rs.
The amplifier’s output current is a function of the excitation voltage and
the nonlinear transfer function; the current can be found simply by
substituting the voltage waveform into the transfer function. In the two-
terminal nonlinearity, however, the excitation voltage generates current
components in the nonlinear resistor at new frequencies. These components
circulate in the rest of the circuit, generating voltages at those new
frequencies across Rs and therefore across the nonlinear resistor. These
new voltage components generate new current components, and current
and voltage components at all possible frequencies are generated. 

1.2 FREQUENCY GENERATION 

The traditional way of showing how new frequencies are generated in
nonlinear circuits is to describe the component’s I/V characteristic by a
power series, and to assume that the excitation voltage has multiple
frequency components. We will repeat this analysis here, as it is a good
intuitive introduction to nonlinear circuits. However, our heuristic

Figure 1.1 (a) Two-terminal nonlinearity; (b) transfer nonlinearity.
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examination will illustrate some frequency-generating properties of
nonlinear circuits that are sometimes ignored in the traditional approach,
and will introduce some analytical techniques that complement others we
will introduce in later chapters. 

Figure 1.2 shows a circuit with excitation Vs and a resulting current I.
The circuit consists of a two-terminal nonlinearity, but because there is no
source impedance, V = Vs, and the current can be found by substituting the
source voltage waveform into the power series. Mathematically, the
situation is the same as that of the transfer nonlinearity of Figure 1.1(b). 

The current is given by the expression 

(1.1)

where a, b, and c are constant, real coefficients. We assume that Vs is a
two-tone excitation of the form 

(1.2)

Substituting (1.1) into (1.2) gives, for the first term, 

(1.3)

After doing the same with the second term, the quadratic, and applying the
well-known trigonometric identities for squares and products of cosines,
we obtain

(1.4)

and the third term, the cubic, gives 

I aV bV 2 cV 3+ +=

Vs vs t( ) V1 ω1t( )cos V2 ω2t( )cos+= =

ia t( ) avs t( ) aV1 ω1t( )cos aV2 ω2t( )cos+= =

ib t( ) bvs
2 t( ) b

2
---{V1

2 V2
2 V1

2 2ω1t( )cos V2
2 2ω2t( )cos+ + += =

2V1V2 ω1 ω2+( )t( )cos ω1 ω2–( )t( )cos+[ ]}    +
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(1.5)

The total current in the nonlinear element is the sum of the current
components in (1.3) through (1.5). This is the short-circuit current in the
element; it consists of a remarkable number of new frequency components,
each successive term in (1.1) generating more new frequencies than the
previous one; if a fourth- or fifth-degree nonlinearity were included, the
number of new frequencies in the current would be even greater. However,
in this case, there are only two frequency components of voltage, at ω1 and
ω2, because the voltage source is in parallel with the nonlinearity. If there
were a resistor between the voltage source and the nonlinearity, even more
voltage components would be generated via the currents in that resistor,
those new voltage components would generate new current components,
and the number of frequency components would be, theoretically, infinite.
In order to have a tractable analysis, it then would be necessary to ignore
all frequency components beyond some point; the number of components
retained would depend upon the strength of the nonlinearity, the magnitude
of the excitation voltage, and the desired accuracy of the result. The
conceptual and analytical complexity of even apparently simple nonlinear
circuits is the first lesson of this exercise. 

A closer examination of the generated frequencies shows that all occur
at a linear combination of the two excitation frequencies; that is, at the
frequencies

ic t( ) cvs
3 t( ) c

4
---{V1

3 3ω1t( )cos V2
3 3ω1t( )cos+= =

3V1
2V2 2ω1 ω2+( )t( )cos 2ω1 ω2–( )t( )cos+[ ]+

3V1V2
2 ω1 2ω2+( )t( )cos ω1 2ω2–( )t( )cos+[ ]+

3 V1
3 2V1V2

2+( ) ω1t( )cos+

3 V2
3 2V1

2V2+( ) ω2t( )}cos+

Figure 1.2 Two-terminal nonlinear resistor excited directly by a voltage source.
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(1.6)

where m, n = ..., –3, –2, –1, 0, 1, 2, 3, ... . The term ωm, n is called a mixing
frequency, and the current component at that frequency (or voltage
component, if there were one) is called a mixing product. The sum of the
absolute values of m and n is called the order of the mixing product. For the
m, n to be distinct, ω1 and ω2 must be noncommensurate; that is, they are
not both harmonics of some single fundamental frequency. We will usually
assume that the frequencies are noncommensurate when two or more
arbitrary excitation frequencies exist. 

An examination of (1.3) through (1.5) shows that a kth-degree term in
the power series (1.1) produces new mixing frequencies of order k or
below; those mixing frequencies are kth-order combinations of the
frequencies of the voltage components at the element’s terminals. This does
not, however, mean that m + n < k in every nonlinear circuit. In the above
example, the terminal voltage components were the excitation voltages, so
only two frequencies existed. However, if the circuit of Figure 1.2 included
a resistor in series with the nonlinear element, the total terminal voltage
would have included not only the excitation frequencies, but higher-order
mixing products as well. The nonlinear element then would have generated
all possible kth-order combinations of those mixing products and the
excitation frequencies. Thus, in general, a nonlinear element can generate
mixing frequencies involving all possible harmonics of the excitation
frequencies, even those where m + n is greater than the highest power in
the power series. It does this by generating kth-order mixing products
between all the frequency components of its terminal voltage.

Another conclusion one may draw from (1.3) through (1.5) is that the
odd-degree terms in the power series generate only odd-order mixing
products, and the even-degree terms generate even-order products. This
property can be exploited by balanced structures (Chapter 5). Balanced
circuits combine nonlinear elements in such a way that either the even- or
odd-degree terms in their power series are eliminated, so only even- or
odd-order mixing frequencies are generated. These circuits are very useful
in rejecting unwanted even- or odd-order mixing frequencies.

The generation of apparently low-order mixing products from the high-
degree terms in (1.1) is worth some examination; the terms at ω1 and ω2 in
(1.5) exemplify this phenomenon. The existence of these terms implies that
the fundamental current, for example, is not solely a function of the
excitation voltage and the linear term in (1.1); it is dependent on all the
odd-degree nonlinearities. Consequently, as Vs is increased, the cubic term
becomes progressively more significant, and the fundamental-frequency

ωm n, mω1 nω2+=
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current components either rise more rapidly or level off, depending on the
sign of the coefficient c. A closer inspection of these terms shows that they
can be considered to have arisen from the kth-degree term as kth-order
mixing products; for example, the ω1 terms in (1.5) arise as the third-order
combinations 

(1.7)

The presence of the negative frequencies might be more convincing if
the cosine functions were expressed in their exponential form,

. Thus, when dealing with
nonlinear circuits, one must always use a system of analysis that does not
exclude the presence of negative frequencies. 

It is worthwhile to consider some specific examples, in order to
introduce one approach to nonlinear analysis and to gain further insights
into the behavior of nonlinear circuits. Figure 1.3 shows a nonlinear circuit
consisting of a resistive nonlinearity and a voltage source. The I/V
nonlinearity includes only odd-degree terms: 

(1.8)

The 1Ω resistor complicates things somewhat, but the current can still be
found via power-series techniques. First, we use a series reversion to find
the voltage as a function of the current: 

(1.9)

ω1 ω1 ω1 ω1–+ ω1 ω2 ω2–+= =

ωt( )cos jωt( )exp jωt–( )exp+( ) 2⁄=

I f V( ) V
2
--- V 3

7
------ V 5

15
------+ += =

V f 1– I( ) 2.0I 2.286I 3– 3.570I 5 3.184I 7 …+ + += =

Figure 1.3 A nonlinear resistor, an excitation source, and a linear series resistor.
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The formula for the series reversion can be found in Abramowitz [1.1,
p. 16]. The voltage across the resistor is 1⋅I. Adding this to (1.9) (via
Kirchoff’s voltage law), we obtain

(1.10)

Performing the reversion again gives, for the current, 

(1.11)

Equation (1.11) expresses I in terms of the known excitation, Vs. It
includes only odd terms because all the circuit elements, the nonlinear and
linear resistors, have only odd terms in their power series. (We can view the
linear resistor as a special case of a nonlinear resistor, having a one-term
power “series”.) The series in (1.11) is infinite, but it has been truncated
after the seventh-degree term; the series does, in fact, include all odd
harmonics, thus all odd-order mixing products. To illustrate this point,

Vs 3.0I 2.286I 3– 3.570I 5 3.184I 7 …+ + +=

I 0.333Vs 0.02822Vs
3 0.002271Vs

5 0.001375Vs
7– …+ + +=

Figure 1.4 Voltage and current waveforms in the circuit of Figure 1.3.
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we assume that Vs = vs(t) = 1 + 2 cos(ωt); vs(t) and the resulting i(t)
waveform are shown in Figure 1.4, where the presence of harmonics in the
current waveform is evident from its obviously nonsinusoidal shape. The
actual harmonics could be found by substituting the expression
vs(t) = 1 + 2 cos(ωt) into (1.11) and by applying the same algebra as in
(1.1) through (1.5). It is also evident at a glance that the dc component of
the current is much greater than 0.364A, the current that would be
generated by the dc source alone if the ac source were zero. One must not
forget that one of the low-order mixing frequencies generated by high-
degree nonlinearities is a dc component; thus, the excitation of a nonlinear
circuit may offset its dc operating point. 

Figure 1.5 (a) I/V characteristic of the ideal square-law device; (b) I/V characteristic
of a real “square-law” device.
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As a second example, consider again the circuit of Figure 1.3 with

 (1.12)

where a is a constant, as shown in Figure 1.5. Equation (1.12) describes an
ideal square-law device. This is a strange situation at the outset, for two
reasons: first, the series reversion cannot be applied to (1.12); second,
because the squared term generates only even-order mixing products, and
the excitation frequency is a first- (i.e., odd-) order mixing product, no
excitation-frequency current is possible! It is possible that a true square-
law device could be made; however, it would be unstable, because its
incremental resistance at some bias voltage V0, df(V) / dV, V = V0, would be
negative when V0 < 0. Practical two-terminal “square-law” elements
employ solid-state devices and have I/V characteristics like that shown in
Figure 1.5(b); the current follows a square law when V > 0 but is zero when
V < 0. This characteristic still presents some analytical problems, because
its I/V characteristic has a discontinuous derivative at V = 0. The device
could, in concept, be operated in such a way that the voltage is always
greater than zero, by biasing it at a value V0 great enough that no negative
excitation peaks can drive the terminal voltage to zero. Its power series
then becomes 

(1.13)

where a, again, is a constant, and v is the voltage deviation from the bias
point. Equation (1.13) includes the linear term 2V0v. Thus, it is rarely
possible, in practice, to obtain a true square-law device, or, for that matter,
a device having only even-degree terms in its power series; practical
devices invariably have at least one odd-order term in their power series.
This generalization applies to many devices that are often claimed to be
square-law devices, such as FETs. 

Now that the pure square-law device has been ignominiously
unmasked and shown to be a banal multiterm nonlinearity in disguise, it is
interesting to see what happens to the circuit of Figure 1.3 when the
nonlinearity includes even-degree terms, plus one odd-degree term, the
linear one. By choosing the coefficients carefully, one can define the
characteristic over any arbitrary range without generating negative
resistances. We assume that 

(1.14)

f V( ) aV 2=

f v V0+( ) a v V0+( ) 2 a V0
2 2V0v v 2+ +( )= =

I f V( ) V 2V 2 3V 3+ += =
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After series reversion, and including the 1Ω resistor, we have

(1.15)

which has all powers of I. Repeating the reversion again to obtain an
expression for I in terms of Vs clearly results in a series having all powers
of Vs. Thus, even though the original series contained only one odd-degree
term (the linear one), the current contains mixing frequencies of all orders,
even and odd, including those orders greater than four, the degree of the
original power series. 

In summary, the I/V characteristic of a nonlinear circuit or circuit
element often can be characterized by a power series. The kth-degree term
in the series generates kth-order mixing products of the frequencies in its
control voltage or current. Some of these may coincide with lower-order
frequencies. Mixing products may also coincide with higher-order
frequencies; these are generated as kth-order mixing products between
other mixing products. Thus, in general a nonlinear circuit having both
even- and odd-degree nonlinearities in its power series generates all
possible mixing frequencies, regardless of the maximum degree of its
nonlinearities. 

A special case of the nonlinear circuit having two-tone excitation
occurs where one tone is relatively large, and the other is vanishingly
small. This situation is encountered in microwave mixers, where the large
tone is the local oscillator (LO), and the small one is the RF excitation.
Because the RF excitation is very small, its harmonics are negligibly small,
and we can assume that only its fundamental-frequency component exists.
The resulting frequencies are 

(1.16)

which can also be expressed by our preferred notation, 

(1.17)

where n = ..., –3, –2, –1, 0, 1, 2, 3, ... and ω0 = |ωRF – ωLO| is the mixing
frequency closest to dc; in a mixer, ω0 is often the intermediate frequency
(IF), the output frequency. In (1.16) and (1.17) the mixing frequencies are
above and below each LO harmonic, separated by ω0. 

If the total small-signal voltage v(t) is much smaller than the LO
voltage VL(t), the circuit can be assumed to be linear in the RF voltage. The

Vs 2I 2I 2– 8I 3 43I 4– 260I 5 …+ + +=

ω ωRF nωLO+=

ωn ω0 nωLO+=
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total large-signal and small-signal current I(t) in the nonlinearity of (1.1) is
given by 

(1.18)

Separating the small-signal part of (1.18), and assuming that v2(t) << v(t),
we find the small-signal current i(t) to be

(1.19)

This is a linear function of v, even though many of the current components
in (1.19) are at frequencies other than the RF. Thus, a microwave mixer,
which has an input at RF and output at, for example, ω0, is a quasilinear
component in terms of its input/output characteristics under small-signal
excitation.

1.3 NONLINEAR PHENOMENA

The examination of new frequencies generated in nonlinear circuits does
not tell the whole story of nonlinear effects, especially the effects of
nonlinearities on microwave systems. Many types of nonlinear phenomena
have been defined; the foregoing power series techniques can show how
these arise from the nonlinearities in individual components or circuit
elements. The phenomena described in this section are often considered to
be entirely different; we shall see, however, that they are simply mani-
festations of the same nonlinearities. 

1.3.1 Harmonic Generation 

One obvious property of a nonlinear system is its generation of harmonics
of the excitation frequency or frequencies. These are evident as the terms in
(1.3) through (1.5) at mω1, mω2. The mth harmonic of an excitation
frequency is an mth-order mixing frequency. In narrow-band systems,
harmonics are not a serious problem because they are far removed in
frequency from the signals of interest and inevitably are rejected by filters.
In others, such as transmitters, harmonics may interfere with other
communications systems and must be reduced by filters or other means. 

I t( ) a v t( ) VL t( )+( ) b v t( ) VL t( )+( )2 c v t( ) VL t( )+( )3+ +=

i t( ) av t( ) 2bVL t( )v t( ) 3cVL
2 t( )v t( ) …+ + +≈
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1.3.2 Intermodulation Distortion 

All the mixing frequencies in (1.3) through (1.5) that arise as linear
combinations of two or more tones are often called intermodulation (IM)
products. IM products generated in an amplifier or communications
receiver often present a serious problem, because they represent spurious
signals that interfere with, and can be mistaken for, desired signals. IM
products are generally much weaker than the signals that generate them;
however, a situation often arises wherein two or more very strong signals,
which may be outside the receiver’s passband, generate an IM product that
is within the receiver’s passband and obscures a weak, desired signal.
Even-order IM products usually occur at frequencies well above or below
the signals that generate them, and consequently are often of little concern.
The IM products of greatest concern are usually the third-order ones that
occur at 2ω1 – ω2 and 2ω2 – ω1, because they are the strongest of all odd-
order products, are close to the signals that generate them, and often cannot
be rejected by filters. Intermodulation is a major concern in microwave
systems.

1.3.3 Saturation and Desensitization 

The excitation-frequency current component in the nonlinear circuit
examined in Section 1.2 was a function of power series terms other than the
linear one; recall that (1.5) included components at ω1 and ω2 that varied as
the cube of signal level. Such components are responsible for gain
reduction and desensitization in the presence of strong signals. 

In order to describe saturation, we refer to (1.1) to (1.5). From (1.3)
and (1.5), and with V2 = 0, we find the current component at ω1, designated
i1(t), to be

(1.20)

If the coefficient c of the cubic term is negative, the response current
saturates; that is, it does not increase at a rate proportional to the increase
in excitation voltage. Saturation occurs in all circuits because the available
output power is finite. If a circuit such as an amplifier is excited by a large
and a small signal, and the large signal drives the circuit into saturation,
gain is decreased for the weak signal as well. Saturation therefore causes a
decrease in system sensitivity, called desensitization. 

i1 t( ) aV1
3
4
---cV1

3+
 
  ω1t( )cos=
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1.3.4 Cross Modulation 

Cross modulation is the transfer of modulation from one signal to another
in a nonlinear circuit. To understand cross modulation, imagine that the
excitation of the circuit in Figure 1.1 is 

(1.21)

where m(t) is a modulating waveform; |m(t)| < 1. Equation (1.21) describes
a combination of an unmodulated carrier and an amplitude-modulated
signal. Substituting (1.21) into (1.1) gives an expression similar to (1.5) for
the third-degree term, where the frequency component in ic(t) at ω1 is 

(1.22)

where a distorted version of the modulation of the ω2 signal has been
transferred to the ω1 carrier. This transfer occurs simply because the two
signals are simultaneously present in the same circuit, and its seriousness
depends most strongly upon the magnitude of the coefficient c and the
strength of the interfering signal ω2. Cross modulation is often encountered
on an automobile AM radio when one drives past the transmission antennas
of a radio station; the modulation of that station momentarily appears to
come in on top of every other received signal. 

1.3.5 AM-to-PM Conversion 

AM-to-PM conversion is a phenomenon wherein changes in the amplitude
of a signal applied to a nonlinear circuit cause a phase shift. This form of
distortion can have serious consequences if it occurs in a system in which
the signal’s phase is important; for example, phase- or frequency-
modulated communication systems. The response current at ω1 in the
nonlinear circuit element considered in Section 1.2 is, from (1.3) and (1.5),

(1.23)

where i1(t) is the sum of first- and third-order current components at ω1.
Suppose, however, these components were not in phase. This possibility is
not predicted by (1.1) through (1.5) because these equations describe a

Vs vs t( ) V1 ω1t( )cos 1 m t( )+( ) ω2t( )cos+= =

ic' t( ) 3
2
--- cV1V2

2 1 2m t( ) m2 t( )+ +( ) ω1t( )cos=

i1 t( ) aV1
3
4
---cV1

3+
 
  ω1t( )cos=
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memoryless nonlinearity. In a circuit having reactive nonlinearities,
however, it is possible for a phase difference to exist. The response is then
the vector sum of two phasors, 

(1.24)

where θ is the phase difference. Even if θ remains constant with amplitude,
the phase of I1 changes with variations in V1. It is clear from comparing
(1.24) to (1.20) that AM-to-PM conversion is most serious as the circuit is
driven into saturation. 

1.3.6 Spurious Responses 

At the end of Section 1.2 we saw that a mixer, with an RF input at ωRF and
an LO at ωLO, has currents at the frequencies given by (1.16) or (1.17). It is
easy to see that, if the RF is applied at any of those mixing frequencies,
currents at all the rest are generated as well. Thus the mixer has some
response at a large number of frequencies, not just the one at which it is
designed to work. In fact, if the applied signal is very strong, its harmonics
are generated and the mixer has spurious responses at any frequency that
satisfies the relation

(1.25)

where m and n can both be either positive or negative integers. Comparing
(1.25) to (1.6) shows that spurious responses are a form of two-tone
intermodulation wherein one of the tones is the LO. In microwave
technology the concept of spurious responses is used only in reference to
mixers. 

1.3.7 Adjacent Channel Interference

In many communications systems, especially those used for cellular
telephones and other forms of telecommunications, modulated signals are
squeezed into narrow, contiguous channels. Nonlinear distortion can
generate energy that falls outside the intended channel. This is called
adjacent-channel interference, spectral regrowth, or sometimes co-channel
interference. 

Adjacent-channel interference is fundamentally odd-order intermod-
ulation distortion, and, like most odd-order IM, it is dominated by third-

I1 ω1( ) aV1
3
4
---cV1

3+ jθ( )exp=

ωIF mωRF nωLO+=
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order effects, although higher-order nonlinearities may also contribute. The
phenomenon is easy to understand. Volterra analysis (Chapter 4) of a
weakly nonlinear, third-order system shows that the output is simply the
sum of all possible third-order intermodulation products involving any
three-fold combination of excitation frequency components. Like simple
third-order intermodulation involving two excitation tones, many of these
components fall close to the original excitation spectrum. These
components cause adjacent-channel interference. Many components can
also fall within the excitation channel as well, distorting the modulated
signal. 

1.4 APPROACHES TO ANALYSIS 

One of the delights of the last decade or two has been the development of a
theoretically sound approach to the analysis of nonlinear microwave
circuits, and computer software that implements those methods. Previous
techniques were questionable attempts to bend linear theory to nonlinear
applications, were highly approximate, or were attempts at “black box”
characterizations that did not include everything necessary to obtain correct
results. Because some of these older methods (and the ideas they are based
on) are still in use, it’s worthwhile to take a brief look at some of the
dominant methods, and to examine their validity. 

1.4.1 Load Pull

One straightforward way to characterize a large-signal circuit, such as an
amplifier, is to plot on a Smith chart the contours of its load impedances
that result in prescribed values of gain and output power. These
approximately circular contours can then be used to select an output load
impedance that represents the best trade-off of gain against output power.
The contours are generated empirically by connecting various loads to the
amplifier and by measuring the gain and output power at each value of load
impedance. This process, called load pulling, has many limitations; the
most serious practical one is the difficulty of measuring the load
impedances at the device terminals. Load pulling has a major theoretical
problem as well: the load impedance at harmonics of the excitation
frequency can significantly affect circuit performance, but load pulling is
concerned primarily with the load impedance at the fundamental frequency.
Furthermore, load pulling is not useful for determining other important
properties of nonlinear or quasilinear circuits, for example, harmonic levels
or the effects of multitone excitation. 
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Modern load-pull systems have overcome many of these limitations.
Accurate calibration methods have been developed, as have been
“harmonic load-pull” systems that account for harmonic tuning as well as
fundamental frequency. Such systems can be valuable tools for designing
and characterizing power devices. Still, there is need of a design process
that does not require, at the outset, the user to make complicated and
expensive measurements on his power transistors. 

1.4.2 Large-Signal Scattering Parameters

Another approach to the analysis of large-signal, nonlinear circuits is to
measure a set of two-port parameters, usually Scattering parameters (called
S parameters), at the large-signal excitation level. The standard small-
signal equations for S-parameter design are then used to predict the
performance characteristics of the circuit. This approach may have limited
success if the circuit or device is not very strongly nonlinear, and if it is not
applied where it is obviously unsuited; for example, to frequency
multipliers. Two-port parameters are fundamentally a linear concept,
however, so the large-signal S-parameter approach represents a futile
attempt to force nonlinear circuits to obey linear circuit theory. 

In order to see just one example of the problems that arise from
bending linear concepts to fit nonlinear problems, consider the meaning of
the output reflection coefficient, S22, of a FET or bipolar transistor. For
large-signal S-parameter analysis, S22 is measured by applying an incident
wave to the output port at a power level comparable to that at which the
device is used. Now imagine that the device is driven hard at its input, and
that the output reflection coefficient is again measured (ignore for a
moment the obvious practical difficulties of making such a measurement).
If the amplifier is significantly nonlinear, which in all likelihood it will be,
one can hardly expect the reflection coefficient to be the same under these
conditions, or over the wide range of incident power levels the device is
likely to encounter. However, the S-parameter concept is based on the
assumption at the that it will be the same.

Nevertheless, it is possible to define a large-signal driving point
impedance that is valid for matching a source to the input of a nonlinear
circuit. It is defined in the same manner as a linear impedance:

(1.26)Zin ω( ) V ω( )
I ω( )
-------------=
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where V(ω) and I(ω) are the voltage and current components at the device
terminals and at the excitation frequency ω. Other harmonics or mixing
products are ignored in determining Zin(ω). Because the circuit is
nonlinear, Zin(ω) is, in general, a function of the excitation level. We shall
use this concept to determine port impedances in the design of many kinds
of components described in later chapters. 

1.4.3 Time-Domain (Transient) Analysis

An intermediate approach, which is theoretically valid and is frequently
used for low-frequency analog and digital design, is to use time-domain
techniques. It is a straightforward matter to write time-domain differential
equations that describe a nonlinear circuit. Those differential equations are
nonlinear, but they can be solved numerically. Although time-domain
techniques are most practical for analyzing lumped-element circuits, a
limited variety of distributed elements can be used as well. Time-domain
analysis is not well suited when components are characterized in the
frequency domain. The two major limitations of time-domain analysis are
its inability to handle frequency-domain quantities (in particular, S
parameters) in any practical way, its difficulty in dealing with transmission
lines, and the difficulty of applying it to circuits having multiple
noncommensurate excitation frequencies. 

1.4.4 Frequency-Domain Methods

Many frequency-domain techniques for analyzing microwave circuits have
become popular in recent years. The two most important are called
harmonic-balance analysis and Volterra-series analysis. Harmonic-balance
analysis is applicable primarily to strongly nonlinear circuits excited by a
single large-signal source; it can be applied to such circuits as transistor
power amplifiers, mixers, and frequency multipliers using either diodes or
transistors. Volterra-series analysis is applicable to the opposite problem:
weakly driven, weakly nonlinear circuits having multiple small-signal
excitations at noncommensurate frequencies. As such, it is most useful for
evaluating intermodulation characteristics and other nonlinear phenomena
in small-signal receiver circuits, especially in amplifiers. With some
modifications, the Volterra series can also be used to determine the IM
properties of time-varying circuits such as mixers; similarly, harmonic-
balance can be extended to certain situations involving noncommensurate
signals. Demystifying the theory and practical use of these two techniques
is the primary subject of this book. 
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Figure 1.6 Circuit having a matched source and load, illustrating the concept of
available power. 

1.4.5 The Quasistatic Assumption

All three methods—time-domain analysis, harmonic-balance analysis, and
the Volterra series—require a circuit model consisting of lumped
components and, for the latter two, impedance elements or multiports.
Solid-state device models must consist of linear or nonlinear capacitors,
inductors, resistors, and voltage or current sources (nonlinear inductors can
be accommodated, although they are rarely encountered in solid-state
microwave devices or circuits). Underlying all the nonlinear models
described in this book is the quasistatic assumption, whereby all nonlinear
elements are assumed to change instantaneously with changes in their
control voltages. This assumption is also implicit in linear circuit theory; it
requires, for example, the charge on a capacitor to be a function solely of
the voltage at its terminals. If the capacitor is nonlinear, its incremental
capacitance, as well as its charge, must change instantaneously with control
voltage. A quasistatic circuit is not necessarily memoryless; a memoryless
circuit is one in which no charge or magnetic flux storage elements (no
capacitors or inductors) exist, so voltages and currents at any instant do not
depend upon previous values of voltage or current. In a quasistatic circuit,
the network voltages and currents may depend upon previous values of
other voltages or currents, but the capacitances, inductances, resistances,
and controlled sources do not depend directly upon their own histories. 

The quasistatic assumption is critical to the entire business of both
linear and nonlinear circuit analysis. It allows one, for example, to devise
equivalent circuits for solid-state devices using only lumped linear and
nonlinear elements, and makes many of the techniques of linear circuit
theory applicable to at least the linear parts of nonlinear circuits. One of the
nicest things about the quasistatic assumption is its range of validity.
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Figure 1.7 Circuit having an unmatched source and load. 

Theoretical and experimental studies of silicon and gallium arsenide
semiconductors and devices show that time-delay phenomena are usually
on the order of picoseconds, or are short compared to the inverse of the
highest frequency at which any sensible person would attempt to use the
device. Furthermore, the prohibition of time delays is not absolute; in some
cases they can still be managed, although with considerably greater
difficulty.

1.5 POWER AND GAIN DEFINITIONS 

Although it is customary to speak loosely of gain and power in microwave
circuits, these quantities can be defined in several different ways. The
different definitions of gain are related to the concepts of available and
dissipated power. These concepts are important in both linear and
nonlinear circuits, although they are particularly important in nonlinear
circuits, where a waveform may have components at many frequencies that
may or may not be harmonically related. 

Available or transferable power is the maximum power that can be
obtained from a source. The concept of available power is illustrated in
Figure 1.6, in which a sinusoidal voltage source having a peak value Vs has
an internal impedance of R1 + jX1 (unless we state otherwise, all
frequency-domain voltages and currents in this book are phasor quantities;
thus, their magnitudes are equal to peak sinusoidal quantities, not RMS).
The maximum power is obtained from this source if the load impedance
equals the conjugate of the source impedance, ZL = Zs* = R1 – jX1. Under
these conditions, 



 Nonlinear Microwave and RF Circuits22

Figure 1.8 Unmatched circuit having a nonsinusoidal voltage-source excitation. 

Figure 1.9 Unmatched circuit having a nonsinusoidal current-source excitation.

(1.27)

where I is the peak value of the current, i(t). The power dissipated in the
load, Pd, is

(1.28)

which is the maximum available from the source, Pav . Dissipated, or
transferred power is the power dissipated in a load that may or may not be
matched to the source. In Figure 1.7, the load is not conjugate-matched to
the source, so the dissipated power is somewhat less than that given in
(1.28). In this case,

I
Vs

2R1
---------=

Pd Pav
1
2
---I 2R1

1
2
--- I 2Re Zs{ }

Vs
2

8Re Zs{ }
-----------------------= = = =
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(1.29)

and the power dissipated in the load is

(1.30)

 In a nonlinear circuit the voltage source may contain many frequency
components, and the source or load impedance may not be the same at each
frequency. An example of this situation is the output circuit of a diode
frequency multiplier. The multiplier generates many harmonics, all but one
of which is undesired, so it has an output filter that allows only the desired
harmonic to reach the output port. Thus, the impedance presented to the
diode at the desired output frequency is the load impedance, but at all other
harmonics it is the out-of-band impedance of the filter. The current in the
loop is a function of frequency, as shown in Figure 1.8. Because the load
and source are linear, each frequency component can be treated separately
without concern for the others. Then the available and transferred power
are

(1.31)

I
Vs

R1 R2+( )2 X1 X2+( )2+( )0.5
------------------------------------------------------------------------=

Pd
1
2
---I 2R2

Vs
2R2

2 R1 R2+( )2 X1 X2+( )2+( )
---------------------------------------------------------------------= =

Pav ω( )
Vs ω( ) 2

8Re Zs ω( ){ }
--------------------------------=

Figure 1.10 Model of a voltage source and load, where the excitation has a number of
discrete frequency components.
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(1.32)

An equivalent representation uses a current source and admittances as
shown in Figure 1.9. Similarly, the available and dissipated powers are
found to be

(1.33)

(1.34)

Figure 1.10 shows a model often used when a voltage (or current) source
has many discrete frequency components. The load impedance at each
frequency is represented by an impedance in series with a filter. The filters
F1, F2, ..., FN are ideal series-resonant circuits; that is, they are short
circuits at their resonant frequencies and open circuits at all other
frequencies. Thus, the current component at only one frequency circulates
in each branch. One of these branches is the output circuit; the rest may be
arbitrary impedances that represent the combined effects of out-of-band
filter or matching circuit terminations, package or other circuit parasitics,
or in some cases resonances (called idlers) that are purposely introduced to
optimize performance. The terminations at intermediate frequencies may
have a strong effect upon the circuit’s performance, so the design of the
output network may have to account for those terminations as well as the
one at the output frequency.

The gain of a two-port network can be defined in terms of available and
dissipated powers. The two most important gain definitions are transducer
gain and maximum available gain. When a microwave engineer speaks
loosely of “gain,” he usually means (whether he knows it or not) transducer
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delivered to the load divided by the power available from the source. This
is precisely the definition of transducer gain. Thus,

(1.35)

where Gt is the transducer gain. 
Transducer gain is a very useful concept because, in microwave

systems, it is most important to know how much more or less power a
circuit delivers to a standard load (e.g., a 50 coaxial termination),
compared to the power that could have been obtained from the source
alone. This is precisely what transducer gain tells us. Furthermore,
transducer gain is almost always a defined quantity, because it requires
only that the source and output powers be finite, and real sources always
have finite available power. Thus, the concept is handy in nonlinear circuits
where, as our earlier discussion of large-signal S parameters illustrated, it
is often impossible to define input and output impedances or reflection
coefficients. 

Other gain definitions are often useless because they do not tell the
engineer what he wants to know, or occasionally result in meaningless or
undefined quantities. One such concept is power gain, Gp, defined as
power delivered to the load divided by power delivered to the two-port’s
input; thus, 

(1.36)

We find that the power gain of a low-frequency MESFET amplifier, for
example, is meaninglessly high: the FET’s output power is modest, but its
input impedance is highly reactive, so the input power is close to zero. This
result tells nothing about the way the amplifier works in a system. The
concept of power gain can give even more bizarre results when applied to
other circuits, such as a negative-resistance amplifier without a circulator.
The input power of a negative-resistance device is difficult to define, but
one could justifiably say that it is negative and equal to the output power.
Thus, the power gain of a negative-resistance amplifier is always –1. Even
with these strange results, however, the concept of power gain has some
limited usefulness; one of these uses the design of linear amplifiers that
have prescribed values of transducer gain. This technique is described in
Section 8.1. 

Gt
Pd  at output
Pav  at input
------------------------------=

Gp
Pd   at output
Pd  at input
------------------------------=
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Available gain, Ga, is defined as the power available from the output
divided by the power available from the source; thus, 

(1.37)

Available gain is intrinsically not a very useful concept (although it will co-
star with power gain in Section 8.1), but its maximum value, called the
maximum available gain, which occurs when the input of the two-port is
conjugate-matched to the source, is very useful. The maximum available
gain is, therefore, the highest possible value of the transducer gain, which
occurs when both the input and output ports are conjugate-matched.
Maximum available gain is defined only if the two-port is unconditionally
stable; that is, if the input and output impedances always have positive real
parts when any passive load is connected to the opposite port. 

1.6  STABILITY 

The fundamental definition of a stable electrical network is that its
response is bounded when the excitation is bounded. In the case of a linear
two-port having a sinusoidal steady-state excitation, this definition leads to
a stability criterion: the network’s poles must all be in the left half of the
complex plane. A stable linear network can be made unstable through an
unfortunate choice of source or load impedance; much of the “stability
theory” of microwave circuits deals with this possibility, rather than the
inherent stability of the circuit itself. 

The situation is more complicated in the case of nonlinear circuits.
Because the kinds of interactions that can occur in nonlinear circuits are
more complex than in linear ones, such circuits often exhibit transient and
steady-state phenomena other than sinusoidal oscillation, which, although
bounded, are loosely classed as instability. These include parasitic
oscillations; spurious outputs that occur only under large-signal excitation;
“snap” phenomena, in which the output level or bias conditions change
abruptly as input level is varied; chaotic behavior; and the exacerbation of
normal noise levels. These may depend on initial conditions; some initial
conditions may result in a stable response, others not, so it is strictly
correct to speak only of a stable solution, not a stable circuit. Of course,
plain, old-fashioned oscillation is also a possibility. Consequently, it is
extremely difficult to devise a meaningful and practical stability criterion
for nonlinear circuits. 

Ga
Pav  at output
Pav  at input

---------------------------------=
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Even without the academic advantage of a stability criterion, it is
usually possible, with care, to design nonlinear or quasilinear circuits that
are well-behaved. For example, if a harmonic-balance analysis of a
proposed circuit design converges without incident to a solution, one can
be confident that it is, by all practical definitions of the term, stable. (It is
also stable in theory, because harmonic-balance analysis is a process of
perturbing the voltages across the nonlinear elements. If these
perturbations do not cause larger perturbations, the circuit must be locally
stable. The idea that a circuit is stable if such perturbations do not cause
greater perturbations is equivalent to the concept of stability defined
earlier.) The converse may not be true, however, because the failure of an
iterative technique such as harmonic balance to converge may be caused by
numerical problems, not by inherent instability. 

In oscillators, we have yet another concept of stability. At start-up, an
oscillator is an unstable, linear circuit; it must have poles in the right half
plane. However, once the oscillation is established, it must be stable, in the
sense that it remains in a steady state and returns to that steady state after
any small perturbation. This is a loose description of a concept known as
Liapunov stability. 

Reference 

[1.1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, New
York: Dover, 1970.
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Chapter  2

Solid-State Device Modeling
for Quasistatic Analysis

Inherent in nonlinear circuit analysis is the quasistatic assumption—the
assumption that the current, charge, or flux in a nonlinear element is an
algebraic function of one or more control voltages or currents. Thus, when
the control voltage changes, the controlled quantity changes instan-
taneously. As the dominant nonlinearities in a microwave circuit are
inevitably those of its solid-state devices, it is important to have quasistatic
models for those devices. Models consisting of lumped linear and nonlinear
elements are usually most practical. Determining the current-voltage (I/V)
or charge-voltage (Q/V) expressions for the nonlinear elements of the
equivalent circuit is the key to characterizing the device. 

This chapter does not attempt a survey of specific models (which could
easily be a book in itself), but instead addresses the theory underlying
quasistatic device models and various considerations in their implemen-
tation. 

2.1 NONLINEAR DEVICE MODELS 

Because they are fundamentally linear concepts, impedance and multiport
circuit theory cannot describe a nonlinear circuit. Accordingly, the most
popular means for characterizing transistors—S, Y, or other multiport
parameters—cannot be used to model nonlinear solid-state devices.
Instead, the most successful (but by no means the only) method of
characterizing such devices is to use a lumped circuit model that includes a
mix of linear and nonlinear resistors, capacitors, and controlled sources
(nonlinear inductors can also be included, but they are rarely encountered
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in microwave circuits). The nonlinear elements are invariably assumed to
be quasistatic; for microwave FETs and diodes, the quasistatic assumption
is valid to at least 100 GHz. The nonlinear elements in transistor and diode
models are invariably voltage controlled, usually having one or two control
voltages. 

Quasistatic modeling is usually not applicable to devices whose
operation is dominated by time effects. These include transit-time devices,
such as IMPATTs, and Gunn (also called transferred-electron) devices.
Such devices are so strongly nonlinear that they are rarely used in circuits
that have amplitude-modulated or multiple CW excitations, and are usually
used as oscillators or amplifiers of CW or constant-amplitude signals.
Conversely, the models developed in this chapter are particularly useful in
nonlinear and quasilinear circuits commonly employed in communications
and radar systems; such components include small-signal amplifiers, linear
power amplifiers, and harmonic generators. 

An obvious requirement of a good device model is that it be
sufficiently accurate and that it maintain its accuracy over a wide frequency
range. Solid-state devices, however, are not simply lumped-element
circuits, so any such model is necessarily an approximation. Although
complex models may be more accurate than simple ones (or may not be;
see Section 2.3.12), the natural desire to minimize computational difficulty
often dictates that the simplest adequate model be used. Concern for
computational difficulty is crucial because many nonlinear analyses require
many—perhaps tens or hundreds of thousands—of evaluations of the
circuit equations. Thus, the use of unnecessarily complex models may
involve excessive computational cost. Unnecessary complexity also may
introduce convergence difficulties in harmonic-balance analysis. 

Another requirement is that it must be reasonably easy to extract the
model’s parameters from straightforward measurements. The nonlinear
characterization of any solid-state device usually requires a number of
measurements. If the number and difficulty of these measurements are
excessive, the design cost of the resulting circuit is increased and accuracy
may suffer, if only because of the greater chance of error. A nonlinear
design technique that requires laborious measurements is not likely to be
widely accepted and will always tempt the designer to shortcut the process.
The result might be that a more complex technique, which is theoretically
very accurate, may be less accurate in practice than a simpler one properly
executed. In any case, accuracy is constrained by the device process: there
is no sense in creating a model having 1% accuracy if the device process
tolerances are 10%. 
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2.2 NONLINEAR LUMPED CIRCUIT ELEMENTS AND 
CONTROLLED SOURCES 

The nonlinear device models we consider are equivalent circuits, consisting
of resistors, capacitors, and controlled sources. In the rare cases where
nonlinear inductors occur, they can also be accommodated (Section 2.2.8).
The circuit elements can be described by one of two kinds of charac-
teristics: the large-signal, global characteristic, or by an incremental, small-
signal characteristic. The former describes the overall I/V or Q/V relation-
ship and is used for modeling large-signal circuits; the latter describes the
deviation of voltage and current or charge in the vicinity of a bias point and
is used for modeling small-signal, quasilinear circuits or for Volterra
analysis. In the large-signal case, the circuit element is effectively treated
as a “black box” having the prescribed I/V or Q/V characteristic; in the
small-signal case, it is a linear or nonlinear small-signal resistor, capacitor,
or controlled source having a resistance, capacitance, or small-signal
current that is a function of a dc (or occasionally time-varying) control
voltage. In this section we examine the relationship between the large-
signal and small-signal characterizations, and in particular show how the
small-signal characterization can be derived from the large-signal one. 

Three concepts critical to the modeling of nonlinear solid-state devices
are voltage control, current control, and incremental quantities. A voltage-
controlled element is dependent upon a voltage that either may be applied
to its terminals or may exist elsewhere in the circuit. The element’s value
(usually its current, voltage, charge, capacitance, or conductance) must be a
single-valued function of the control voltage. For example, it is usually
natural to express a diode junction capacitance as a single-valued function
of the junction voltage. Conversely, a current-controlled element is one
whose value is a single-valued function of a current. 

In theory, many elements can be treated as either current- or voltage-
controlled. For example, the small-signal junction conductance of a
Schottky-barrier diode can be expressed as an exponential function of
voltage or as a linear function of current. Either way, the function is single-
valued, and a choice of expressing the device as current- or voltage-
controlled depends primarily on convenience. In contrast, the current in
some types of diodes rises with junction voltage, then drops as voltage is
further increased. Such nonlinearities must be treated as voltage-controlled,
because the junction voltage is not a single-valued function of current. In
practice, most microwave devices are voltage-controlled nonlinearities. 

An important question involves the precise definitions of the small-
signal resistance and capacitance of nonlinear elements. For example, the
global I/V characteristic of a linear resistor is given by Ohm’s law, V = RI.
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But suppose a current-controlled nonlinear resistor were used in an
application where a small-signal ac current is applied, and a dc control
current I0 exists. The ac component of its voltage should be given by
v(t) = r(I0) i(t), where v(t) and i(t) are the small-signal voltage and current,
respectively. Figure 2.1 illustrates this case, and it is clear that 

(2.1)

so

(2.2)

Of course, (2.1) is exact only as the magnitude of i(t) approaches zero. This
definition of resistance is called the incremental resistance and is valid in
small-signal quasilinear analysis. The same idea applies to controlled
sources, such as those described by a linear transconductance; thus, in
FETs,

v t( )
Id

dV

I I0=

i t( )=

r I0( )
Id

dV

I I0=

=

Figure 2.1 Incremental resistance of a nonlinear resistor at the dc bias point, I0. 
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(2.3)

in which we assumed the drain current Id to be a function of the gate
voltage Vg only. Vg0 is the gate-bias voltage. 

2.2.1 The Substitution Theorem

The expressions (2.1) through (2.3), or the more complete ones that follow,
can describe either a single element or a controlled source. In a nonlinear
conductance, the control voltage is applied to the element’s terminals; in a
controlled source, the control voltage is somewhere else in the circuit. This
point can be clarified via the substitution theorem, which defines an
equivalence between a circuit element and a controlled source. 

Figure 2.2(a) shows a linear voltage-controlled current source
connected to a network, N. Its current is G V, where V, the control voltage,
is the voltage at its terminals. The current is clearly unchanged if a
conductance of value G is substituted for the controlled source. The same is
true if the I/V relationship of the source is a more complicated nonlinear
function of voltage: a conductance having the same I/V characteristic can
be substituted, and the representations are equivalent. We now can state the
substitution theorem precisely: a linear or nonlinear resistive circuit
element having the characteristic I = f (V) is equivalent to a controlled
current source having the same characteristic, wherein V is the terminal
voltage. Although this definition refers to large-signal V and I, the
substitution theorem is equally applicable to a small-signal incremental
characteristic. Also, it is applicable by analogy to capacitive elements or
current-controlled elements. 

One important application of the substitution theorem is shown in
Figure 2.2(b), where the I/V characteristic of a nonlinear conductance is
described by the power series I = f(V) = G1V + G2V 2+ G3V 3+ ... . The
nonlinear element can be described by an equivalent circuit that includes a
linear conductance G1 and controlled current sources representing the
higher-degree terms in the series. Of course, the linear component G1V
could also be represented by a current source if it were more convenient to
do so. 

gm Vg0( )
Vgd

dId

Vg Vg0=

=
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2.2.2 Large-Signal Nonlinear Resistive Elements

A nonlinear resistive element, whether a controlled source or two-terminal,
can be described either by an I/V function having the form 

(2.4)

or as a current-controlled element, 

(2.5)

Most microwave devices are best described as voltage-controlled current
sources, so (2.5) is rarely used. Indeed, we shall see in Chapter 3, when we

Figure 2.2 The substitution theorem: (a) source-conductance equivalence; (b) non-
linear element equivalence. 

I fV V1 V2 …, ,( )=

V fI I1 I2 …, ,( )=
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discuss harmonic-balance analysis, that using only voltage-controlled non-
linearities simplifies the description of the linear subcircuit considerably,
and a gyrator can be used in the rare cases when a current-controlled
element cannot be avoided. 

The form of fV (or fI ) for a particular device requires careful
consideration. The obvious requirement is that the function reproduce the
measured I/V characteristic of the nonlinearity. However, there are a
number of additional considerations, most of which are not obvious. These
will be addressed in Section 2.3.

2.2.3 Small-Signal Nonlinear Resistive Elements

An element described by the I/V characteristic I = f (V), as shown in Figure
2.3, is a voltage-controlled conductance. We assume that it has a dc control
voltage V0, which in practice could be a bias voltage, and a small-signal ac
voltage v(t). We can expand the current in a Taylor series around V0 to
determine its ac part: 

(2.6)

Figure 2.3 A voltage-controlled nonlinear resistive element.

f V0 v+( ) f V0( )
Vd

d f V( )
V V0=

v 1
2
---

V 2

2

d

d f V( )
V V0=

v 2+ +=

1
6
---

V 3

3

d

d f V( )
V V0=

v 3 …+ +



 Nonlinear Microwave and RF Circuits36

where the indication of time dependence, “(t)”, has been deleted from v(t)
for simplicity [the “(t)” will be deleted from all the small-signal voltage,
current, and charge waveforms in all the equations in this section]. We can
assume that v << V0 and that the nonlinearity is weak enough so that the
series converges. Then the small-signal current i is

(2.7)

In (2.7) the current i is the total small-signal current, including dc as
well as ac components. Thus, i has dc components even though v has only
ac components because the even-degree terms in (2.7) introduce them.
Under the stated assumptions, the change in the dc operating point is small
compared to f(V0), so the dc components resulting from v2, v4, ... are
usually negligible. In the quasilinear case, the terms of degree greater than
one are assumed to be negligible, so 

(2.8)

where g(V0) is the incremental conductance at V0. In the nonlinear case,
(2.7) can be expressed as 

(2.9)

and, with the help of the substitution theorem, the nonlinear element can be
modeled as shown in Figure 2.4. The linear term, g1, in (2.9) is the
incremental conductance. 

Often a nonlinear circuit element is controlled by more than one
current or voltage. An example of such a situation is the simplified FET
equivalent circuit shown in Figure 2.5, in which the drain current I is a
function of both the gate voltage V1 and the drain voltage V2; thus,
I = f (V1, V2). In this case, V2 is applied to the current source and V1 is a
node voltage elsewhere in the circuit. In most practical nonlinear elements
that have multiple control voltages, at least one of the voltages is the

i f V0 v+( ) f V0( )–
Vd

d f V( )
V V0=

v 1
2
---

V 2

2

d

d f V( )
V V0=

v 2+= =

1
6
---

V 3

3

d

d f V( )
V V0=

v 3 …+ +

i
Vd

d f V( )
V V0=

v g V0( ) v= =
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applied voltage, but the theory makes no such requirement. The function
f (V1, V2 ) can be expanded in a two-dimensional Taylor series, and the dc
current component subtracted, giving the rather sticky expression 

(2.10)

In (2.10) the notation has been streamlined somewhat, and it is
understood that the derivatives are evaluated at the bias points of V1 and
V2, V1, 0 and V2, 0, respectively. In the small-signal, quasilinear case, the
high-degree terms are neglected and

(2.11)

Figure 2.4 Small-signal nonlinear equivalent circuit of the nonlinear conductance. 

Figure 2.5 A multiply controlled nonlinear element.
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The extension of (2.6) through (2.11) to resistances or current-
controlled voltage sources is trivial: one need only interchange I and V, and
i and v, in (2.6) through (2.11). The same expressions can be used for
voltage-controlled voltage sources or current-controlled current sources by
substituting the control voltage or current for V, the small-signal excitation
for v, and the response for i. 

A distressingly common error is to assume that an expression for the
small-signal current can be found by expanding the nonlinear conductance
in a power series. Specifically, the approach is to find g(V) from (2.8) and
to say 

(2.12)

with g(V0) given by (2.8), 

(2.13)

which is clearly not the same as (2.7). There is no reason why (2.12) should
be equivalent to (2.7); g(V0 + v) is just the linear conductance at a slightly
different control voltage. This error is particularly insidious, because the
linear terms in (2.13) and (2.7) are fortuitously the same. The correct
incremental I/V characteristic can be obtained from the g(V) characteristic;
the method is described in Section 2.2.6. 

2.2.4 Large-Signal Nonlinear Capacitance

A nonlinear capacitor’s large-signal charge, Qc, is described by 

(2.14)

The considerations for the functional form of fQ are identical to those of the
resistive element, described in Section 2.2.2. The current in the nonlinear
capacitor is 
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(2.15)

For a simple nonlinear capacitor having one control voltage, we have

(2.16)

where we define 

(2.17)

C(V) is the incremental capacitance, which we shall study in more
detail in Section 2.2.5. C(V) is the capacitance that would be measured if
the nonlinear element were biased at dc voltage V, and a small ac voltage
were applied to it. Equation (2.17) implies that fQ can be measured
indirectly, by first measuring C(V) and then integrating it to obtain charge.
Another method is to differentiate fQ to obtain C(V), and to fit the
parameters of C(V) to the measured capacitance. One of these approaches
is almost always necessary, as it is usually impossible to measure charge
directly. 

2.2.5 Small-Signal Nonlinear Capacitance

Initially, we assume that the voltage V = V0 is the sole dc control voltage
and that it is applied to the capacitor’s terminals. By expanding the charge
function in a Taylor series, as with the conductance, and subtracting the dc
component of the charge, we obtain the small-signal component of the
charge: 
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(2.18)

Again, for simplicity, in (2.18) the small-signal voltage v(t) is written as v
and q(t) as q. The small-signal current is the time derivative of the charge:

(2.19)

Equation (2.19) can be expressed as 

(2.20)

which is the series form of the incremental capacitance. For the quasilinear
case, this expression reduces to a simple linear capacitance,

(2.21)

where 

(2.22)
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Equation (2.22) is the standard definition of capacitance of a Schottky-
barrier or pn junction device. It is the same as the incremental capacitance
given in (2.17).

In both the small-signal capacitance and conductances, we assumed
that the element is biased at some dc voltage and that a much smaller ac
voltage is superimposed. This situation is common in many nonlinear
microwave problems; for example, in calculating intermodulation
distortion in small-signal amplifiers. However, in many circuits a large ac
signal may also exist, such as the LO waveform in a mixer or a saturating
signal in a small-signal amplifier. If the nonlinearity is strong, or if the
signal is very large (or, as in a diode mixer, both), a large number of terms
must be used in the series expansion to give adequate computational
accuracy. Carrying expressions like (2.10) to a high number of terms is
difficult enough, but, as we shall see in Chapter 4, the task of analyzing
even a relatively simple nonlinear circuit by such a long series is nearly
impossible. It is possible, however, to circumvent these difficulties by
expanding the Q/V or I/V characteristic in a Taylor series and using the
large ac voltage (plus any dc bias voltage, of course) as the central “point.”
This expansion allows the small-signal voltage at any instant to be treated
as a small deviation from the central value, so the minimum number of
Taylor series terms can be used. The trade-off in this approach is that the
Taylor series coefficients are time-varying, and thus must be differentiated
along with the small-signal voltage in such expressions as (2.19). This
approach, which is examined further in Chapter 3, allows an accurate and
tractable analysis of such phenomena as intermodulation distortion in
mixers, which appears at first to be an extraordinarily difficult problem. 

2.2.6 Relationship Between I/V, Q/V and G/V, C/V Expansions

The series expansions developed in the previous section, describing the
incremental conductances and capacitances, were derived from static I/V
and Q/V characteristics. Sometimes, however, it is more convenient to
begin with incremental C/V or G/V data (i.e., the linear capacitance or
conductance as a function of bias voltage). This situation arises often in the
modeling of solid-state devices, in which C/V or G/V characteristics are
often the easier ones to measure. In this case, we must find the Taylor-
series expansions of the I/V or Q/V characteristics from a series expansion
of the C/V or G/V characteristic. The Taylor-series expansion of the
characteristic I = f(V) is, from (2.6),
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(2.23)

and the expansion of G(V) is

(2.24)

We note that 

(2.25)

and after substituting (2.25) into (2.24) and comparing the result to (2.23),
we see immediately that

(2.26)

We can do the same with the Taylor-series expansion of the Q/V
characteristic and the expansion of the C/V characteristic. The Q/V
expansion has the form 
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(2.27)

and the C/V characteristic has the expansion 

(2.28)

Comparing their Taylor-series terms as in (2.23) through (2.26) gives the
identical result,

(2.29)

Having said all this, we should note that determining the gn or Cn
coefficients from an expansion of the G(V) or C(V) function is not always
practical. Many devices are very linear so these coefficients are small, and
small variations in the measured G (V) or C (V) function can cause large
errors in the high-degree terms. In this case, it is better to extract these
values from indirect measurements; for example, from measurements of
harmonics generated by the device. 

2.2.7 Multiply Controlled Nonlinear Capacitors

Capacitors, like conductances, can be controlled by more than one voltage.
Capacitors having multiple control voltages are found in many solid-state
device models. Modeling capacitances in such devices is a tricky business;
done incorrectly, it can result in nonconservation of charge, or in such
bizarre phenomena as dc currents in capacitors. We first consider the easier
problem of weakly nonlinear capacitances, and then address the greater
problem of large-signal nonlinear capacitances. 

2.2.7.1 Small-Signal Case

In this case the large-signal Q/V characteristic is 

(2.30)

It is rarely necessary to consider more than two control voltages, so we can
limit our discussion to the expression Qc = fQ(V1, V2). As before, we
expand this function in a two-dimensional Taylor series about the bias

Q V0 v+( ) fQ V0( ) C1v C2v 2 C3v 3 …+ + + +=

C V0 v+( ) γ1v γ2v 2 γ3v 3 …+ + +=

Cn γn 1– n⁄=

Qc fQ V1 V2 …, ,( )=
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points V1, 0 and V2, 0. After subtracting the dc charge components to obtain
the small-signal charge, we have 

(2.31)

where the partial derivatives are evaluated at the dc bias voltages V1, 0 and
V2, 0. The current is obtained by taking the derivative with respect to time.

Fortunately, the dependence of Qc on one voltage is often less strong
than on the other, and in those cases (2.31) can be simplified considerably.
However, before deleting terms wildly, one should be careful not to throw
out the baby with the bathwater. The terms in (2.31) generate different
frequency components under sinusoidal steady-state conditions, so deleting
certain terms, even if they are very small, may delete the intermodulation
component of interest. One of the advantages of working in the frequency
domain with capacitive nonlinearities is that much of the complexity
evident in (2.31) is circumvented; in Chapter 3 we shall show that the
process of taking the derivative in the time domain can be performed in the
frequency domain merely by multiplying a matrix by a diagonal matrix. 

2.2.7.2 Large-Signal Case

Equations (2.14) and (2.15) give expressions for the current in a multiply
controlled nonlinear capacitor under large-signal excitation. We saw that
the current in the capacitor is

(2.32)

In the usual case, (2.32) describes a capacitor whose charge is a function of
its terminal voltage and one or more voltages elsewhere in the circuit.
Terms involving voltages other than the capacitor’s terminal voltages are
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sometimes called transcapacitances, a term that was first used in [2.1]. For
example, if V1 is the terminal voltage,  is a transcapacitance. The
concept is analogous to transconductance; the transcapacitance represents a
dependence of charge upon a remote voltage. 

Determining the charge function from small-signal measurements can
be difficult. For example, consider (2.31) and (2.32) with only two control
voltages, V1 and V2. The small-signal current is given by 

(2.33)

where 

(2.34)

That is, we need to find one capacitance, C1, and one transcapacitance, C2.
If these can be found, it is a simple matter to integrate them to obtain fQ , or
even easier to differentiate a given expression for fQ and to fit its
parameters to these capacitances. Unfortunately, it is usually difficult to
separate these two terms. For this reason, other approaches to modeling
multiply controlled capacitances are often used. This situation arises most
frequently in modeling microwave FETs, and is discussed further in
Section 2.5.7. 

2.2.7.3 Multiterminal Capacitance

Although the capacitors considered in this section may be controlled by
multiple voltages, the charge itself resides on a two-terminal element (or, if
you wish, a single branch of a circuit). In many cases, especially FET gate
capacitances, the capacitor may have more than two terminals. Such
capacitors are often approximated as a set of two-terminal, multiply
controlled capacitances, but this simplification invariably leads to
problematical behavior [2.2, 2.3]. 

Multiterminal capacitors appear frequently in linear circuits. For
example, in the analysis of coupled strip transmission lines, we define a
capacitance matrix 
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(2.35)

where Qi are the charges on the K strips and Vj are the voltages. The Cij
have the predictable definition, 

(2.36)

If there were only K – 1 strips and one of the Qi represented the charge on
the ground plane (which usually is not included in the charge vector), we
would have

(2.37)

that is, charge neutrality would apply, as it does when we consider the
charges on both plates of a simple parallel-plate capacitor. 

In many nonlinear models, especially those describing modern metal
oxide-semiconductor (MOS) devices, we follow a similar approach. The Qi
are called pin (or terminal) charges, which are functions of the terminal
voltages. We then use a vector of functions to describe those charges:

(2.38)

In most solid-state devices, charge neutrality applies, so 
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(2.39)

for all combinations of voltages. The current in each terminal is 

(2.40)

and, clearly, 

(2.41)

When the device is dc biased, (2.38) can be converted to a small-signal,
incremental capacitance matrix. Its elements are 

(2.42)

which is evaluated at the dc values of all the controlling voltages, V1
through VK. 

2.2.8 Nonlinear Inductance

A nonlinear inductance is described by its flux-current characteristic, 

(2.43)

where Φ is its magnetic flux. We shall see in later chapters that a nodal
formulation is most convenient to describe the linear part of a circuit
containing nonlinear elements. The nodal formulation, however, cannot
accommodate current as an independent variable. Other methods, such as
the modified nodal formulation, can do so, but they involve additional
complexity.

A simple solution is to use a gyrator. A gyrator is a two-port element
that has the admittance matrix
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(2.44)

where R is called the gyrational resistance. If we set R = 1, the gyrator
converts current at either port to voltage at the other, and therefore converts
a capacitance at one port to an inductance at the other. To realize the
nonlinear inductor, we simply connect a gyrator to the circuit and terminate
it with a nonlinear capacitor having the charge characteristic, 

(2.45)

The Φ/V characteristic at its input port is then given by (2.43). Gyrators can
also be used to realize controlled voltage sources, current-controlled
sources, circulators, and transformers. 

2.3 NUMERICAL AND HUMAN REQUIREMENTS FOR 
DEVICE MODELS

Solid-state device models are used in circuit simulators, operated by human
beings. As such, models must satisfy requirements imposed by the
limitations of both of these entities. The methods used in circuit simulators
are well known and their requirements can be clearly enumerated; the
methods used by human beings are less easily categorized. Still, a model
that does not conform to those methods, however arbitrary, is not
particularly useful. 

The dominant method of nonlinear circuit simulation is harmonic
balance analysis (Chapter 3). Because the dominant implementations of
both harmonic-balance and transient analysis use Newton iteration in their
solutions, the requirements imposed by both methods are similar. We
consider some of the necessary requirements in this section. 

2.3.1 Continuous Derivatives in I/V or Q/V Expressions

Convergence of both harmonic-balance analysis and transient analysis
requires continuous first and second derivatives of the I/V or Q/V
expression. If this requirement is not satisfied, convergence robustness is
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degraded. Certain kinds of analysis may require more derivatives to be
reproduced accurately by the model. 

Newton-based harmonic-balance analysis is an iterative method. It
estimates a solution and uses the derivatives of the I/V expressions at each
iteration to improve the estimate. If a derivative has a “kink” in it (i.e., the
second derivative is discontinuous), it may not point to an improved
solution. In some cases, satisfying this requirement may actually make the
nonlinearity stronger, and convergence is more reliable than with a weaker
nonlinearity. The diode junction I/V characteristic described in Section
2.4.2.4 is an example. 

Discontinuities in derivatives are likely to occur when different
expressions are used for different ranges of control voltage. When this
practice is followed, it is essential that derivatives be matched at the
boundaries of the ranges. 

2.3.2 Accuracy of Derivatives

For accurate nth-order IM simulations, the function must reproduce
accurately not only the I/V characteristic, but also its first n derivatives.
The reason for this requirement can be clarified by Volterra-series theory,
but previous discussions hint at the reason. We saw in Chapter 1 that the
nth power of a polynomial dominated in generating nth-order mixing
products, and in Section 2.2.3 we saw that the coefficient of the nth degree
term is the nth derivative multiplied by a constant. Other types of analysis
place accuracy requirements on particular derivatives; for example, even-
order derivatives are necessary for dc quantities, which are necessary for
accurate calculations of efficiency. 

2.3.3 Range of Expressions

The I/V function must be well-behaved far outside of the range of voltages
or currents that the device experiences in practice. Harmonic-balance
analysis is an iterative method, and it is common, during intermediate
iterations, for extraordinarily large or small voltages to exist. 

A wide variety of numerical difficulties can be introduced simply by
the form of the equations. For example, it is extraordinarily easy to
generate numerical underflow or overflow in the computation of
logarithmic or exponential functions, especially in diode I/V
characteristics. In C or C++ compilers, the range limits of standard
functions can be found in the header file float.h. Limits on integers are
given in limits.h. 
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2.3.4 Transient-Analysis Models in Harmonic-Balance Analysis

Many common harmonic-balance models have been copied directly from
transient-analysis programs, mainly SPICE [2.4]. Transient-analysis
models are sometimes not well-suited for use in harmonic-balance analysis.
Transient analysis uses iterative methods to solve the circuit equations at
each time point in the transient response; these time points are closely
spaced, so the circuit voltages and currents change little between solutions.
This is not the case in harmonic-balance analysis, where huge changes are
not only possible, but very likely. Many models used in transient simulators
take advantage of the fact that changes, from iteration to iteration, are
usually small, so little regard is given for their numerical performance far
outside of the voltage and current ranges they are expected to experience.
When such models are used in harmonic-balance analysis, their defi-
ciencies quickly become apparent. 

2.3.5 Matrix Conditioning

As with most circuit-simulation methods, harmonic-balance analysis
requires the solution of large systems of linear equations. Most importantly,
at each iteration a large Jacobian matrix must be factored. A large
admittance matrix for the linear subcircuit must also be created, a process
that requires considerable matrix manipulation. 

The Jacobian is used to estimate an improved solution at each
harmonic-balance iteration. In theory, it is possible for the Jacobian to be
singular, so it has no solution. In practice, however, it is more likely for the
Jacobian to be technically nonsingular, but so close to singular that the
solution is inaccurate. We say that such matrices are ill conditioned. The
main effect of ill conditioning is to lose numerical precision in the
solutions. In extreme cases, virtually all precision is lost, and the result is
best described by the well-known computer-science term, garbage. 

Ill conditioning can be caused in many ways. One frequent cause is
unusually large or small entries in the Jacobian. For example, when a linear
differentiator is used in a model having a division-by-capacitance scheme
(Section 2.5.7.1), the Jacobian has large, off-diagonal terms. Because they
include terms of the form jkω0, where k is a large harmonic and ω0 is the
fundamental excitation frequency, strongly nonlinear capacitances of any
type can create an ill conditioned Jacobian. Disconnected or unilateral
circuits are also causes of ill conditioning. 

Perhaps the easiest way to have an inaccurate (although not necessarily
ill conditioned) Jacobian is to have an ill conditioned admittance matrix of
the linear subcircuit. These occur when a node in the linear subcircuit is
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disconnected, often by partitioning the circuit into the linear and nonlinear
parts, or by connecting two nodes by a low impedance. See Sections 3.3.7.4
and 3.3.9.6 for further information. 

2.3.6 Limiting the Range of Control Voltages

Occasionally it is necessary to limit the range of control voltages. Such
limits must be applied in a numerically acceptable way. Perhaps the worst
way to limit a variable’s range is simply by truncating it to a maximum or
minimum of the allowable range, because the truncation introduces a
discontinuity that is difficult for harmonic-balance analysis to handle. The
result is poor convergence. 

A number of functions can be used to limit voltage range without
creating discontinuities. For example, 

(2.46)

returns 

(2.47)

with a smooth but rather gradual transition around Vlim = Vmin.
Unfortunately, this method is subject to numerical overflow or underflow
in the exp function. A better formula is 

(2.48)

The parameter δ controls the shape of the Vlim(V) curve near Vmin. To limit
the maximum excursion, use

(2.49)

Even with these functions, one must be careful. Equation (2.49), for
example, could be written

(2.50)

Vlim Vmin V Vmin–( )exp 1+( )ln+=

Vlim V= V Vmin»

Vlim Vmin= V Vmin«

Vlim Vmin 0.5 V Vmin– V Vmin–( )2 δ++[ ]+=

Vlim Vmax 0.5 Vmax V– Vmax V–( )2 δ++[ ]–=

Vlim V 0.5 V Vmax– V Vmax–( )2 δ++[ ]–=
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but this evaluates to zero, not Vmax, when V is so large that limited
numerical precision causes V – Vmax to be evaluated as V. Similarly, (2.49)
evaluates as zero, not V, when Vmax is very large and V is small. 

2.3.7 Use of Polynomials

The idea of using polynomials to model difficult I/V or Q/V expressions is
seductive. After all, well-known numerical techniques are available for
fitting a polynomial to an arbitrary function, and, if the process fails,
simply increasing the degree of the polynomial usually does the trick. The
derivatives of polynomials are also devoid of discontinuities, so they
satisfy this important requirement for device modeling, explained in
Section 2.3.1. 

Unfortunately, polynomials have significant disadvantages, some of
which we list below:

1. High-degree polynomial functions often have small-scale ripple that
may not be visible in a plot of the I/V or Q/V characteristic, but
becomes quite clearly evident in the derivatives. 

2. The normal equation, used to fit polynomials to measured data, is
notoriously ill conditioned, so small variations in the data can result in
large changes in the polynomial coefficients and in the quality of the
fit. (Singular-value decomposition can sometimes minimize this
problem.) 

3. Outside the range of the data used to generate the polynomial
approximation, the polynomial can have undesirable behavior; for
example, there may be regions of negative incremental resistance,
which can prevent convergence. It is also possible to obtain spurious
solutions, which may be nonphysical. 

4. Finally, polynomials restrict numerical range. For example, double-
precision arithmetic limits positive real numbers to the range (10–307,
10+308). If a tenth-degree polynomial is used, the range of the
independent variable is limited to approximately (10–30, 10+30) or
numerical overflow or underflow results. This may seem like a minor
point, but, in fact, numbers outside the latter range occur frequently in
nonlinear circuit analysis. 

In spite of these caveats, occasionally it may be best to express a
quantity by a polynomial. In such cases, it is most efficient to calculate the
polynomial 
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(2.51)

as

(2.52)

Also, it is a poor practice to use the C or C++ pow() function for raising a
real number to an integer power; (2.52) is far more efficient. 

2.3.8 Loops of Control Voltages

In both harmonic-balance and transient analysis, the circuit simulator
attempts to determine the values of a set of control voltages or,
occasionally, currents. This process can be successful only if those
quantities are (1) independent, and (2) adequate to define the state of the
system. In circuit-theory terminology, they must be state variables. If,
however, a loop of three control voltages exists, only two of those voltages
are independent; the third is linearly dependent on the other two. If that
third quantity is treated in the simulator as an independent variable,
successful convergence is unlikely. 

One solution is to break the loop with a low-value resistor or some
other component that does not affect the simulation results. This expedient
sometimes works, but it usually creates an ill-conditioned Jacobian matrix
(Sections 2.3.5 and 3.3.7.4). A better solution is to reformulate the problem
to use only independent quantities. Figure 2.6 illustrates how this can be
accomplished. This process generally works well, but occasionally it can
create additional solutions to the nonlinear circuit equations. 

2.3.9 Default Parameters 

Inconsistencies in default parameters frequently cause errors in porting
models between simulators. In netlist versions of SPICE, for example, not
all model parameters need be provided; if they are not, a default value is
used, or some other behavior ensues. Clearly, if such models are ported
from SPICE to another simulator, the default behavior must be the same, or
all parameters must be listed. 

In some cases, a parameter depends on whether another one was
“provided,” that is, entered in the MODEL statement of the netlist. This
type of behavior can be difficult to port to a schematic-capture simulator,
where all parameters are listed in the parameter-entry dialog box and,

f V( ) a0 a1v a2v2 a3v 3 …+ + + +=

f V( ) a0 v a1 v a2 v a3 …+( )+( )+( )+=
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therefore, provided. The user should be aware of the way the schematic-
capture simulator handles this situation. 

In SPICE, a number of parameters are interpreted as infinity (in
practice, a very high value) if zero is entered. Clearly, the simulator
receiving such models must behave identically, or an appropriate nonzero
parameter value must be provided. 

2.3.10 Error Trapping

Models are used in circuit simulators; circuit simulators are used by
humans. Human imperfections cause many errors in circuit simulation, and
these imperfections are often exacerbated by poor model design.
Unfortunately, it is difficult to anticipate and trap all possible errors in
parameter entry, but still, an attempt to include comprehensive error
trapping must be made. Often, it is easy to design models in such a way that
errors are unlikely.

As a simple example, consider an I/V function with terms of the form,

(2.53)

where k1 is a user-supplied model parameter. If a naive user enters k1 = 0,
an error occurs. It is a simple matter to use instead

+    v1    –

f1(v1)

+    v2    –

f2(v2)

f3(v1 + v2) f3(v1 + v2)

+    v1    –

f1(v1)

+    v2    –

+    v3    –

f2(v2)f3(v3)

(a) (b)

Figure 2.6 Conversion of three linearly dependent control voltages to two
independent ones: (a) v3 depends on v1 and v2; (b) the troublesome
branch, f3, has been converted to two elements in parallel with the f1 and
f2 branches. 

I V( ) … V
k1
----- …+ +=
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(2.54)

where c1 = 1 / k1. The problem is solved, and no special error trapping is
necessary. 

Many users of nonlinear circuit simulators attempt to copy parameter
sets between different simulators. Unless the models, parameter names, and
default behavior are identical in the two simulators, errors can result. For
example, in many simulators illegal zero entries are automatically changed
to a reasonable value. If one implementation of a model performs this
modification, but another doesn’t, an error is certain to occur. 

It is almost impossible to list the number of ways in which models can
ambush an unsuspecting user. It is essential, however, for model designers
to be aware of this problem and to anticipate it as best they can. 

2.3.11 Lucidity of Models and Parameters

The underlying logic of a model, and the effect of its parameters, must be
clear. A model that confuses the user is unlikely to be used properly, and it
is unlikely that sensible parameters will be found for it. 

For example, it is logical to formulate a model for FET channel current
as 

(2.55)

where fG is a function of the gate voltage, Vg , and fD is a function of the
drain voltage, Vd . Even if fG is modified to allow some degree of
dependence on Vd , and fD on Vg , this type of formulation is consistent with
users’ understanding of FET I/V characteristics and therefore is
comprehensible. It is unlikely that such a model will be misused. On the
other hand, a complex expression mixing Vg and Vd in an incomprehensible
way is much more likely to create problems. 

2.3.12 Does Complexity Improve a Model?

Most designers intuitively accept the idea that a complex model is more
likely to be accurate than a simple one. This idea is correct, within limits.
At some point, however, additional complexity does not improve a model,
because the increased likelihood of error, which comes with complexity,
tends to cancel progressively more minor improvements in accuracy.
Unfortunately, the response to this situation is often to increase the model’s

I V( ) … c1V …+ +=

Id Vg Vd,( ) fG Vg( ) fD Vd( )⋅( )=
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complexity further, in the hope that the additional complexity will solve the
problem. 

Excessive complexity often results from an attempt to make a device
model that gives highly accurate results for all kinds of analyses. Another
cause is an attempt to model every possible phenomenon, without
considering whether it has any significant effect on the results of the
analysis. For example, the requirements for a model used in inter-
modulation analysis are very different from those for calculating the
conversion loss of a mixer or the output power of an amplifier. By focusing
on the important characteristics and ignoring minor ones, one can create
models that are both simple and accurate. 

2.4 SCHOTTKY-BARRIER AND JUNCTION DIODES 

Virtually all microwave mixer diodes and many varactors use Schottky
(metal-to-semiconductor) junctions instead of pn junctions or point
contacts. pn junction diodes are never used in microwave circuits as
resistive diodes, although they are often used as varactors. A Schottky-
barrier diode consists of a metal contact deposited on a semiconductor;
such contacts can be made with far better uniformity than point contacts,
and they do not have the recombination-time limitations of pn junctions.
Inexpensive silicon Schottky-barrier diodes are capable of good
performance as mixers at frequencies well into the millimeter-wave region.
Gallium arsenide diodes, which are somewhat more expensive, can realize
mixers at terahertz frequencies. Gallium arsenide Schottky-barrier
varactors, which generally have higher Q factors than silicon varactors, are
commonly used in millimeter-wave frequency multipliers. 

The Schottky-barrier diode is perhaps the simplest modern solid-state
microwave device in existence and the easiest to characterize accurately.
The junction I/V and capacitance characteristics can be expressed by
simple closed-form equations that are accurate for almost all purposes;
there is little need to make a trade-off in the diode model between accuracy
and simplicity. Furthermore, the diode model developed in this section is
accurate to frequencies of at least a few hundred gigahertz and, with minor
modifications, to even higher frequencies. As a result, circuit modeling of
mixers and frequency multipliers, including noise, intermodulation, and
conversion efficiency, has been highly successful and can now be con-
sidered a mature practice. 
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2.4.1 Structure and Fabrication

Figure 2.7 shows the general structure of a Schottky-barrier diode; most
Schottky devices are similar. The diode is fabricated on a high-conductivity
n-type (n+) substrate; because the electron mobilities of all practical n
dopants are much greater than those of p materials, n materials are used
almost exclusively in microwave Schottky devices. A very pure, high-
conductivity n+ buffer layer is grown on top of the substrate to assure low
series resistance and to prevent impurities in the substrate from diffusing
into the epitaxial layer during processing. The buffer is usually a few
microns thick, and the buffer and substrate are doped as heavily as
possible, usually on the order of 1018 atoms/cm3 for GaAs, somewhat
higher for silicon. An n epitaxial layer (sometimes called the epilayer or,
simply, the epi) is grown on top of the buffer. In GaAs mixer diodes, the
epilayer is doped to 1⋅1017 to 2⋅1017 cm–3 and is usually 1,000Å to 1,500Å
thick. 

The contact of the metal anode to the epitaxial layer forms the
rectifying junction. Platinum and titanium are the most common anode
materials for GaAs diodes. A gold layer is usually plated onto the metal
anode to prevent corrosion and to facilitate a bond wire, ribbon, air bridge,
or whisker connection. The anode metal rarely covers the entire top surface
of the chip; the size and shape of the anode are selected to give the
appropriate combination of junction capacitance and series resistance for
the intended application. The circular anodes of microwave diodes vary in

Figure 2.7 Cross section of a Schottky-barrier diode. 
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diameter from 1.5 microns for millimeter-wave devices to 10 to 20 microns
for use at lower frequencies. For practical reasons, in many diodes a large
number of anodes are defined on the top surface of a single chip and are
isolated from each other by an oxide (SiO2) layer. An ohmic contact to the
substrate must be made; alloyed gold-germanium is commonly used on
GaAs. The ohmic contact is usually formed on the bottom of the substrate,
but it can be formed on the top of the diode (e.g., for beam-lead devices) if
appropriate means are used to isolate the anode from the cathode and to
minimize the parasitic capacitance that arises from their proximity. 

2.4.2 The Schottky-Barrier Diode Model 

2.4.2.1 Junction Capacitance

The physics of conduction and capacitance in Schottky barriers will not be
covered here; the interested reader should consult [2.5 – 2.7]. For present
purposes it is enough to note that the contact of the metal to the
semiconductor allows some of the free electrons in the semiconductor to
collect on the surface of the metal. The semiconductor immediately under
the anode (imaginatively called the depletion region) is depleted of
electrons and contains only positively charged donor ions. Because of these
ions, an electric field, which opposes further movement of electrons, is set
up between the anode and the semiconductor, and a state of equilibrium is
reached. Also because of this electric field, a potential difference, called
the diffusion potential or built-in voltage, exists between the neutral
semiconductor and the anode. 

The width of the depletion region can be found from the doping density
and material parameters of the semiconductor. The depletion width d of an
ideal junction having uniform epitaxial doping is

(2.56)

where φ is the diffusion potential; Nd is the doping density, assumed to be
uniform throughout the epilayer; εs is the electric permittivity of the
semiconductor; and q is the electron charge, 1.6⋅10–19 coul. If a dc voltage
V is applied to the junction, the depletion width changes. The width of the
biased depletion region becomes

d
2φεs
qNd
-----------=
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 (2.57)

If the junction is reverse-biased, the depletion region becomes wider and
more electrons move to the anode, leaving behind more positive charge in
the form of ionized donor atoms. Conversely, if the diode is forward-
biased, the depletion region narrows and less charge is stored. Thus, a
negative voltage stores more negative charge on the anode, and a positive
voltage reduces it. The junction, therefore, operates as a nonlinear
capacitor. 

As the forward bias is increased, the electric field in the junction
becomes weaker and presents less of a barrier to electrons. More electrons
have sufficient thermal energy to cross the barrier, and forward conduction
occurs. The current is proportional to the number of electrons having
energy greater than the barrier energy; that number is an exponential
function of barrier height. Thus, the I/V characteristic is an exponential
function, one of the strongest nonlinear functions found in solid-state
devices. Because conduction occurs almost entirely as the result of thermal
emission of electrons—majority carriers—over a barrier, the Schottky-
barrier diode is often called a majority carrier device. 

In conventional Schottky diodes, the epitaxial layer is never fully
depleted of charge in normal operation, even at the highest reverse
voltages. Consequently there is always some undepleted epitaxial material
between the depletion region and the buffer layer, especially under forward
bias, when the depletion region is narrow. Because this material has a
relatively high resistivity, especially compared to the substrate, it
represents a parasitic resistance in series with the diode junction. In mixers
and frequency multipliers, series resistance is an important loss mechan-
ism. 

Figure 2.8 shows the equivalent circuit of a Schottky-barrier diode. The
diode consists of three elements, two of which, the junction capacitance
and conductance, are nonlinear. The third element, the parasitic series
resistance Rs, is also nonlinear, but because it varies only slightly under
forward bias, it is usually treated as a linear resistance. The series resis-
tance of a varactor diode, which is operated with reverse bias and rarely
experiences forward conduction, varies somewhat more with junction
voltage. However, even in that case Rs is usually approximated as a linear
element. 

A remarkably accurate junction charge function can be derived from a
simple analysis. It is 

d
2 φ V–( )εs

qNd
--------------------------=
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(2.58)

The small-signal incremental junction capacitance is

(2.59)

where φ is the diffusion potential and Cj0 is the zero-voltage junction
capacitance. If the junction is uniformly doped, γ is 0.5. V is the junction
voltage shown in Figure 2.8; that is, excluding the voltage dropped across
the series resistance. It is defined as positive if the junction is forward
biased. Equations (2.58) and (2.59) are strictly valid only if the epilayer is
never completely depleted. It is interesting to note that the reverse-biased
junction has the same capacitance as a parallel-plate capacitor whose plate
spacing equals the depletion width, and whose dielectric constant equals
that of the semiconductor. 

If the doping is nonuniform, (2.59) may not describe the capacitance
adequately over a wide voltage range. In this case (2.59) may be used
piecewise, with different γ parameters for different voltage ranges, or an
entirely empirical expression may be used (see Section 2.3.2 for warnings

Figure 2.8 Equivalent circuit of a Schottky-barrier diode. 
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about the pitfalls of this practice). Occasionally a diode’s doping profile is
purposely designed to maximize or to minimize its capacitive nonlinearity.
In varactor diodes, the capacitive nonlinearity is made as strong as
possible, to increase their usefulness as voltage-controlled tuning elements
or as efficient frequency multipliers. One of the most extreme cases is that
of the hyperabrupt varactor, in which the doping concentration actually
decreases with distance from the junction. Hyperabrupt varactors can have
γ = 1.5 or even γ = 2.0 over at least part of their reverse voltage ranges.
These varactors usually have relatively high series resistance, because the
undepleted part of the epitaxial layer is very lightly doped, and are
consequently unsuited for use in frequency multipliers. They are most
useful in tuning applications, especially in voltage-controlled oscillators,
where the strong, controlled nonlinearity can be used to achieve a wide and
nearly linear frequency/voltage characteristic. 

2.4.2.2 Harmonic-Balance Capacitance Model

Equation (2.58) has an obvious problem as V → φ: its derivative, (2.59),
becomes infinite. This characteristic in real devices is not particularly
important, because virtually all diodes conduct strongly at V << φ, so the
junction voltage is clamped to a value well below φ. In the circuit
simulator, however, there is no such limitation, and  can easily occur. 

One solution, first used in SPICE, is to define a quantity Fc and to
approximate the charge function as a quadratic at voltages above Fcφ. As
long as the derivatives are matched at V = Fcφ, the first and second
derivatives are continuous at . Fcφ should be set to a value larger than
the maximum junction voltage, of course, which is determined by the
circuit and the I/V characteristic. Note that a linear extension of the charge
function is not adequate, as it results in a discontinuous second derivative
(see Section 2.3); the extension must be quadratic. 

The charge function, thus modified, is 

(2.60)

where
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(2.61)

Equations (2.60) and (2.61) apply at V > Fcφ; at V < Fcφ, (2.59) applies. A
problem still occurs when γ = 1. This problem is easy to trap, but model
developers should be mindful of it. 

This modification improves the performance of the model for more
subtle reasons. In computer circuit analysis, we work with finite increments
of voltage, and use the derivative to estimate the change in charge over
each increment. The derivative of (2.58), Equation (2.59), is accurate near
φ only as those increments approach zero, but for the finite increments used
in simulation, the derivative is often a poor estimate of the change in
charge. Thus, the derivative of the modified charge function may actually
do a better job of finding the solution than the correct one. Similarly, when
the derivative is large, a numerical estimate of the derivative (∆I / ∆V) may
work better than an analytical one. 

2.4.2.3 I/V Characteristic 

The I/V characteristic of a Schottky diode can be expressed by a simple
relation, which is derived under the assumption that conduction occurs
primarily via the thermionic emission of electrons over a barrier. Other
mechanisms, such as tunneling, occur as well, but for Schottky diodes of
moderate doping densities, operated close to room temperature, the
thermionic-emission assumption is valid and agrees remarkably well with
measurements. The I/V characteristic of the junction of a Schottky-barrier
diode (i.e., not including the voltage drop across the series resistance) has
the same general form as that of a pn junction diode, 

(2.62)

where q is the electron charge, K is Boltzmann’s constant, 1.37⋅10–23

J/K, and T is absolute temperature. The ideality factor η accounts for
unavoidable imperfections in the junction and for other secondary
phenomena that thermionic emission theory can not predict. η is always
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greater than 1.0 and, in a well-made diode, should be less than 1.20. Isat,
a proportionality constant, is called the current parameter, or, because
(2.62) implies I(V) = Isat as V → –∞, the reverse-saturation current. An
expression for Isat is 

(2.63)

where A** is the modified Richardson constant; Wj is the junction area; and
φb is the barrier height in volts, a constant usually approximately 0.1 V
greater than the diffusion potential. A** is approximately 96 A cm–2 K–2

for silicon and 4.4 A cm–2 K–2 for GaAs.1 One should be careful about
taking (2.63) too seriously; because of such secondary effects as charge
generation and surface imperfections in the junction, Isat can differ
significantly from the value given by (2.63). Equation (2.63) can be used,
however, to draw some general conclusions. For example, the value of the
Richardson constant in GaAs is lower than in silicon, which implies that
the knee of the I/V characteristic occurs at a higher voltage for GaAs diodes
than for silicon diodes. It also implies that the device is highly sensitive to
temperature. 

Figure 2.9(a) shows the I/V characteristic of a Schottky diode in
Cartesian coordinates, and Figure 2.9(b) shows the same characteristic
graphed on semilog axes. The semilog graph is a straight line having a
slope of one decade of current per 58.5η mV of junction-voltage change at
low current levels and at 295K. Imperfections in the diode design or
fabrication can be identified readily by deviations from that straight line.
For example, excessive tunneling current at low voltages reduces the slope
to nearly half the usual value, as does junction damage due to electrical
overstress. The curve deviates from a straight line at the high current end
because of the voltage dropped across the parasitic series resistance, Rs. 

At high reverse voltages, junction breakdown results from avalanching.
Avalanche breakdown voltage increases as doping density is reduced, but
series resistance also increases. Thus, there is a trade-off in diode design
between low Rs and high reverse-breakdown voltage. GaAs diodes
generally have greater reverse-breakdown voltages than silicon, partly
because the higher electron mobility in GaAs allows lower series resistance
to be achieved with lighter doping. In many types of balanced mixers,
breakdown voltage is irrelevant, because the diodes are connected in

1.  It is impossible to provide a precise value for this parameter. See [2.7] for more
information.

Isat A**T2Wj
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parallel but reversed (a so-called antiparallel connection). In such an
arrangement the reverse voltage on any diode never exceeds the diode’s
forward voltage drop. 

2.4.2.4 Harmonic-Balance I/V Model 

Equation (2.62) is subject to numerical overflow during computation when
V is large. In many compilers, for example, the maximum argument of the
exp function in IEEE standard double-precision arithmetic is 709; since
q/ηKT ~ 40, V is limited to a little less than 18V. 

The solution to this problem, as with the capacitance, is a quadratic
extension of the exp function above some threshold value, Vt . The first and
second derivatives must be matched at the threshold, and the threshold
should be much greater than the expected maximum junction voltage. 

The new expression, at V > Vt , is 

(2.64)

where δ = qV/ηKT. As with capacitance, the function must be quadratic. A
linear extension avoids numerical overflow but introduces a discontinuity
in the second derivative. 

One must also be careful of numerical underflow at large negative
values of V. In diode or BJT I/V characteristics, we often calculate terms of

Figure 2.9 I/V characteristic of a Schottky-barrier diode: (a) in Cartesian
coordinates; (b) on semilogarithmic axes.
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the form exp(δV) – 1. Double-precision arithmetic has at most 15 digits of
precision, so any value of exp(δV) < 10–15 is indistinguishable from zero in
that expression. Thus, it is usually acceptable simply to approximate
exp(δV) – 1 ≈ –1 when δV < ln(10–15) or V < –35/δ. 

2.4.3 Mixer Diodes 

Because they have virtually no minority-carrier effects, Schottky-barrier
diodes are very fast-switching devices. As such, they are ideal for use in a
diode mixer, which is often idealized as a high-frequency switch. Very
high-quality silicon Schottky diodes are available at low cost, and for
applications requiring the best possible conversion loss and noise figure,
GaAs diodes can be obtained at only slightly greater expense. Diode
technology today is sufficiently mature to allow mixers at frequencies
above 1,000 GHz to be fabricated. 

Figure 2.10 shows the cross section of a mixer diode chip. The vertical
structure of the diode is identical to that shown in Figure 2.7, but the area
of the junction is defined precisely; the anode is formed as a circular dot.
Chips usually have a number of these, to facilitate connection of the anode
wire, or to allow for the selection of an anode of the desired size. 

In operation, the mixer diode operates as a variable-resistance diode or
as a switch, which in many respects is the same thing. The incremental

Figure 2.10 Cross section of a chip diode. The dimensions are typical for high-
performance mixers. 
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small-signal conductance of the junction can be found by differentiating
(2.62):

(2.65)

The junction conductance is proportional to the large-signal junction
current. Virtually all high-frequency Schottky-barrier mixer diodes are
uniformly doped, so (2.59), with γ = 0.5, describes the junction capacitance
accurately. However, it is often not valid to assume that the dc series
resistance, which can be found from Figure 2.9(b), represents the series
resistance at millimeter-wave frequencies. Skin effect causes the high-
frequency series resistance to be greater than the dc value because the high-
frequency current forms a thin sheet at the surface of the chip and is nearly
zero in the bulk substrate. The increased path length and reduced cross-
sectional area of this thin current sheet increase the series resistance of the
diode. 

The cutoff frequency fc is a figure of merit for a mixer diode. The
cutoff frequency is traditionally calculated from dc quantities (thus the
common misnomer dc cutoff frequency), without regard to skin-effect
enhancement of the series resistance. The cutoff frequency is defined as

(2.66)

Cutoff frequencies of mixer diodes often can be very high, on the order of
several thousand gigahertz. Such high cutoff frequencies do not imply that
a diode can be used in terahertz mixers; fc is valid only as a figure of merit.
For good performance, a mixer diode’s cutoff frequency should be at least
10 times the mixer’s operating frequency. 

2.4.4 Schottky-Barrier Varactors 

Frequency-multiplier varactors are often realized as p+ structures on n
substrates in both GaAs and silicon. Because the diodes’ p+ regions are
difficult to fabricate uniformly in the small anode sizes necessary for very
high-frequency operation, these diodes are limited to the lower microwave
and perhaps millimeter-wave regions. Furthermore, at high frequencies the
importance of minimizing series resistance and maximizing capacitance
variation becomes progressively greater, and Schottky-barrier varactors are
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generally superior in these respects. Frequency multipliers having input
frequencies above approximately 50 GHz usually employ Schottky-barrier
varactors; often such multipliers generate output power at frequencies of
several hundred gigahertz . High-performance Schottky-barrier varactors
for such applications are invariably realized in GaAs. 

The structure of a Schottky-barrier varactor is qualitatively the same as
that of a mixer diode, shown in Figure 2.10. In order to achieve both good
efficiency and high output power, varactors require higher breakdown
voltages than mixer diodes; accordingly, the doping density in a varactor’s
epilayer is very low (typically 1016 to 1017 atoms/cm3) and its junction area
is relatively large. 

The large junction area provides greater capacitance than would be
tolerable in a mixer diode, usually approximately 0.1 pF for operation near
50 GHz. The large area also facilitates heat dissipation, an important
consideration; most of the multiplier’s input power is dissipated in the
diode. Because of the low doping level, the series resistance of the
Schottky varactor is greater than that of a mixer diode of the same size, and
the cutoff frequency is significantly lower. The mixer-diode equivalent
circuit, shown in Figure 2.8 and described by (2.58) through (2.62), is
generally valid for Schottky-barrier varactors, as long as the parameters,
especially Cj0 and γ, are appropriately modified. The diffusion potential is
usually around 1V, higher than that of a mixer diode, and because of
second-order effects, γ is often somewhat lower (approximately 0.45). Isat
also differs; however, in normal operation, the diode is usually not driven
into forward conduction, so the forward I/V characteristic is of secondary
concern. 

Several figures of merit can be defined for varactors. One of the most
important is the dynamic cutoff frequency, fcd:

(2.67)

where S is elastance, or inverse capacitance. Smin is the minimum
elastance, which occurs as the junction voltage approaches φ . Smin is often
negligible, so (2.67) becomes

(2.68)
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where Smax is the elastance at reverse breakdown or at some other standard
reverse voltage, often –6V. Infrequently Smax = 1/Cj0. Clearly, one should
always determine precisely how the fcd of a particular varactor is defined. 

Dynamic cutoff frequency is an important quantity. It is possible to
create varactors having very high static cutoff frequencies, as defined by
(2.66), but poor nonlinearity. Such devices are inefficient and have low fcd. 
Another figure of merit is the dynamic Q, Qδ:

(2.69)

where f0 is the frequency at which Qδ is evaluated. 
Schottky-barrier varactors have very high Qδ , allowing good efficiency

to be achieved at high frequencies. However, Schottky varactors are limited
in power handling capability; they can be driven only to the point at which
the junction begins to conduct. If the input level is increased beyond this
point, efficiency suffers, and output power saturates; this phenomenon is
illustrated in Chapter 7. Although limited to lower frequencies, p+n
junction varactors largely circumvent this problem. 

2.4.5 p+n Junction Varactors 

At microwave frequencies, silicon or GaAs p+n junction varactors are
preferred. The dc I/V characteristic of a p+n junction has the same general
form as that of a Schottky barrier (2.62), and the depletion capacitance
expression (2.59) is also generally applicable, although γ ≠ 0.5. p+n diodes
have greater capacitance variation, and thus provide greater efficiency, at
high drive levels. These properties are the result of the long minority-
carrier lifetimes that obviate the use of pn junction diodes in mixers. When
the junction is forward-biased during the positive part of a high-frequency
RF cycle, charge is injected into the junction region. Most of that charge
(which consists of holes from the p+ region injected into the n region) does
not have time to recombine with electrons, so it is stored momentarily and
removed when the RF current swings negative. This injected charge is
stored, not conducted, and thus increases the capacitance variation of the
diode. This phenomenon is called diffusion charge storage. 

The amount of stored diffusion charge can be very great, so the
forward-bias capacitance is substantial. When the varactor is driven so that
the voltage peaks at φ and its reverse-breakdown voltage, the varactor is
said to be nominally driven. If it is driven harder, the junction conducts,
causing diffusion charge storage, and the varactor is said to be overdriven.

Qδ
Smax
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This charge-storage phenomenon is also used in the step-recovery diode
(also called the SRD or snap diode), described in Section 2.4.7. The main
functional difference between the varactor and step-recovery diode is that
the SRD obtains its capacitance variation almost entirely by diffusion
charge storage, while the p+n varactor’s operation depends less on high
diffusion capacitance than on a gradual capacitance variation over its entire
forward and reverse-voltage range. 

A disadvantage of the p+n structure is the p-diffusion step required in
its fabrication. The diffusion process limits the minimum size of the p+

region, so the minimum capacitance of the diode is limited as well. The p+

region also has higher series resistance than the metal anode of a Schottky
diode, so p+n varactors have lower fcd than Schottky varactors. These
properties limit p+n varactors to frequencies below approximately 50 GHz. 

A cross section of a p+n junction varactor is shown in Figure 2.11. The
initial part of the varactor’s fabrication is much like that of a mixer diode:
an n epitaxial layer is grown on an n+ substrate. A p+ region is then
diffused into the epitaxial layer, and ohmic contacts are formed on the p+

and n+ regions for the anode and cathode, respectively. An oxide-isolated
anode like the structure used in Schottky-barrier diodes is not optimum for
the p+n varactor, because in oxide-isolated diodes the junction’s electric
field is stronger near the edge of the anode. The nonuniform electric field
would cause avalanche breakdown to occur near the anode’s edge, at a
relatively low voltage, much lower than if the field were uniform. In the
p+n varactor, the anode area is formed by etching a mesa, making the
electric field more uniform over the junction, thereby increasing the
breakdown voltage. Diodes fabricated in this manner are called diffused
epitaxial varactors. 

Figure 2.11 Cross section of a p+n varactor. The mesa structure provides a higher
breakdown voltage than a planar design. 
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A variant of the diffused epitaxial varactor is the punch-through
varactor. The epitaxial layer of this device is so thin that it is completely
depleted at a modest reverse voltage, usually a little more than half the
breakdown voltage. The varactor has the reverse-bias capacitance
characteristic of (2.59) at low reverse voltage; at higher voltage, the epi is
fully depleted, or punched through, and, like the Mott diode, the C/V
characteristic is nearly flat. The advantage of this structure is reduced
sensitivity to changes in input power level, compared to a multiplier using
a conventional varactor. The disadvantage is the reduced capacitance
range, which results in a lower dynamic Q and therefore lower efficiency. 

Most microwave-frequency p+n varactors are realized in silicon. The
minority-carrier lifetime in silicon is greater than in GaAs, so for lower-
frequency operation (i.e., at output frequencies below about 20 GHz),
charge-storage properties of silicon diodes are better than those of GaAs
devices. At higher frequencies, GaAs has the advantage of lower series
resistance and consequently higher Qδ. Because of the additional series
resistance of the p+ region and its ohmic contact, both silicon and GaAs
p+n diodes have lower Q than comparable Schottky diodes. 

2.4.6 Varactor Modeling

2.4.6.1 Capacitance

The above discussion indicates that the simple capacitance expression of
(2.58) does not hold well for most types of varactor diodes. Devices having
p+n structure may have decidedly nonuniform doping, and thus very differ-
ent C/V characteristics from the ideal. Even Schottky-barrier varactors may
not follow (2.58) well, as the capacitance variation decreases rapidly at the
point where the reverse voltage depletes the epilayer. Because the structure
of such devices can differ dramatically, precise modeling must be largely
ad hoc, and capacitance functions must be designed for the particular de-
vice. 

2.4.6.2 Series Resistance

The greater capacitance variation of varactor diodes implies that their
depletion widths vary considerably over their ranges of junction voltage.
Since the series resistance consists largely of the undepleted epilayer, the
series resistance likewise varies significantly. The assumption that series
resistance is linear, in the model shown in Figure 2.8, may not be valid for
such devices. 
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In lightly doped varactors, electrons may approach saturated drift
velocity in the resistive epilayer. This phenomenon increases the
incremental resistance in a nonlinear manner. One approach to modeling
saturation in the series resistance is by the function

(2.70)

where Rs0 is the low-current value of the series resistance and Is is the
saturation current. Another expression [2.8] is 

(2.71)

This expression provides a softer saturation characteristic. Unfortunately, it
is more difficult to invert to obtain the I(V) form, which usually is required
by circuit simulators. 

2.4.6.3 Substrate Impedance

Diodes used in submillimeter mixers and frequency multipliers are subject
to additional phenomena that can affect their performance. At high
frequencies, the inertia of the electrons in the substrate cannot be
neglected, and it gives rise to an inductive impedance component.
Similarly, the lossy substrate is subject to dielectric relaxation effects,
which create a capacitive reactance. These combined effects create a
parallel resonance in the terahertz range, adding a high impedance in series
with the diode. A detailed treatment of these effects is beyond the scope of
this book; they are discussed more completely in [2.8, 2.9].

2.4.7 Step-Recovery Diodes 

Like a varactor, a step-recovery diode (SRD; also called a snap diode) uses
capacitance variation to generate harmonics. However, it does so by storing
charge under forward bias and by switching very rapidly to a high-
impedance state when the diode is discharged. The multiplier is adjusted so
that the diode switches at the instant the reverse current is maximum, thus
generating a large and very short-lived voltage pulse during each excitation
cycle. The resulting pulse train is rich in harmonic content, so it need
only be filtered to obtain harmonic output. An SRD multiplier is used
primarily for high-harmonic multiplication at high power levels. A typical
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application of an SRD is to multiply an input frequency of a few hundred
megahertz to an output of several gigahertz. Step-recovery diodes are also
used as pulse generators anywhere that short pulses (on the order of tens of
picoseconds) are needed. Examples of such applications are fast sampling
gates (e.g., for sampling oscilloscopes), time-domain reflectometers, and
low-cost pulse-radar sensors. 

An SRD must have high charge storage in the forward direction, low
capacitance in the reverse direction, low series resistance, and, for power
applications, high reverse-breakdown voltage. Its switching time must also
be short, because switching speed establishes its high-frequency limit of
operation. To meet these requirements, an SRD must have a relatively long
charge storage time (long recombination time), and the charge that is
injected into the junction while it is forward-biased must not travel so far
that it cannot be removed during the reverse-bias interval. Finally, the
depletion region must not be too wide, or transit-time effects reduce the
multiplier’s efficiency at high frequencies. 

SRDs have the pin structure shown in Figure 2.12, in which the i region
is a layer of undoped (intrinsic) or lightly doped semiconductor. The i
region is formed by the overlap of the p and n regions, both of which have
steep doping profiles. Such profiles create a narrow depletion region and a
strong built-in electric field, which opposes the diffusion of charge into the
junction. During forward conduction, holes and electrons are injected into
the i region, where they recombine very slowly; the i layer thus becomes a
region in which charge is stored. When the SRD is reverse-biased, the i
layer is fully depleted; because of the wide depletion width, which includes
the entire i layer, reverse capacitance is very low. The i region also
provides a high reverse-breakdown voltage. 

Figure 2.12 A step-recovery diode uses a pin structure on an n+ substrate. 
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The forward I/V characteristic of the SRD obeys (2.62) under dc bias.
Because the depleted region includes the i region, the reverse-capacitance
characteristic can usually be treated as a constant. Under forward bias, the
diode can be modeled as a pn junction in parallel with the diffusion
capacitance. The stored diffusion charge is 

(2.72)

where τ is the recombination time, or minority-carrier lifetime, of the
material. Although a depletion charge exists in forward conduction, it is
invariably negligible in comparison to Qs. The reverse-bias junction
capacitance of the SRD is 

(2.73)

where A is the area of the junction and d is the depletion width. The largest
part of d is the width of the i region, which is large and independent of
voltage. Consequently, when the SRD is reverse-biased, its capacitance is
very low and nearly constant. In an SRD frequency multiplier or pulse
generator, it is important that all the charge injected into the junction
during the positive excursion of the excitation cycle be removed during the
negative excursion. Recombination of charge during that time reduces
efficiency, because the recombined charge is lost as conduction current.
Minimizing charge recombination requires that the minority-carrier
lifetime be long compared to the period of an excitation cycle; because of
its longer minority-carrier lifetime, silicon is invariably used for SRDs
instead of GaAs. Like other diodes, the SRD has parasitic series resistance.
This resistance arises in the ohmic contacts to the p and n regions, and in
the undepleted parts of those regions. Because series resistance introduces
loss and reduces multiplier efficiency, it is as important to minimize series
resistance in an SRD as in any other type of diode. 

2.5 FET DEVICES 

It is no overstatement to say that the GaAs MESFET and its variants,
including the high electron-mobility transistor (HEMT) have revo-
lutionized low-noise microwave electronics and microwave systems. FETs
also make excellent mixers, having low noise figures, broad bandwidths,

Qs τI=

Cs
εs A
d

--------=



 Nonlinear Microwave and RF Circuits74

and conversion gains, and as frequency multipliers they exhibit high
efficiency, gain, and output power. FETs are commonly used in quasilinear
applications, especially as small-signal and medium-power amplifiers,
where an understanding of their nonlinearities is critical in minimizing the
less attractive aspects of their performance, primarily intermodulation
distortion and saturation. 

Silicon metal oxide-semiconductor field-effect transistor (MOSFET)
technology has progressed to the point where such devices can be used at
microwave frequencies. New technologies are making MOSFETs attractive
for use in a wide variety of RF applications. Laterally diffused MOSFETs
(LDMOS) are attractive for high-power amplifiers at frequencies up to a
few gigahertz, and submicron lithography has produced silicon MOSFETS
with cutoff frequencies of tens of gigahertz. Interestingly, in spite of their
maturity, these devices continue to improve. 

Virtually all types of FET devices are highly symmetrical; they can be
operated with negative drain-to-source voltage and current. This allows
them to be used as resistive elements in switches, attenuators, and mixers. 

2.5.1 MESFET Operation 

Figure 2.13 shows a cross section of a GaAs metal epitaxial-semiconductor
field effect transistor (MESFET). The MESFET is fabricated by first
growing a very pure, semi-insulating buffer layer on a semi-insulating
GaAs substrate, then growing an n-doped epitaxial layer that is used to
realize the FET’s active channel. Three connections are made to the
channel: the source and drain ohmic contacts and, between them, the

N+ GaAs Ohmic
N GaAs Epi
SI GaAs Buffer

SI GaAs Substrate

DrainSource Gate

Figure 2.13 Cross section of a GaAs MESFET. Modern FETs all use the recessed
channel T-shaped gate. The T gate minimizes gate resistance while
retaining a short gate length. 
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Schottky-barrier gate. The epilayer is made thicker than necessary for the
channel and is etched to the correct channel thickness in the gate region.
This recessed gate structure allows the layer of epitaxial material under the
source and drain ohmic contacts to be quite thick, much thicker than the
channel, minimizing the parasitic source and drain resistances. Reducing
the source resistance is especially important for low-noise devices; it is
also important for achieving good conversion efficiency in FET mixers,
frequency multipliers, and power amplifiers. 

The MESFET is biased by the two sources: Vds , the drain-to-source
voltage, and Vgs, the gate-to-source voltage. These voltages control the
channel current by varying the width of the gate-depletion region and the
longitudinal electric field. In order to develop a qualitative understanding
of MESFET operation, imagine first that Vgs = 0 and Vds is raised from
zero to some low value, as shown in Figure 2.14(a). When Vgs = 0, the
depletion region under the Schottky-barrier gate is relatively narrow, and as
Vds is increased, a longitudinal electric field and current are established in
the channel. Because of Vds , the voltage across the depletion region is
greater at the drain end than at the source end, so the depletion region
becomes wider at the drain end. The narrowing of the channel and the
increased Vds increase the electric field near the drain, causing the electrons
to move faster; although the channel’s conductive cross section is reduced,
the net effect is increased current. When Vds is low, the current is
approximately proportional to Vds . If, however, the gate reverse bias is
increased while the drain bias is held constant, the depletion region widens
and the conductive channel becomes narrower, reducing the current. When
Vgs = Vt, the turn-on (or threshold) voltage, the channel is fully depleted
and the drain current is zero, regardless of the value of Vds .2 Thus, both Vgs
and Vds control the drain current. When the FET is operated in this manner
(i.e., when both Vgs and Vds have a strong effect on the drain current), it is
said to be in its linear, or voltage-controlled resistor region. 

If Vds is increased further, as in Figure 2.14(b), the channel current
increases, the depletion region becomes even wider at the drain end, and
the conductive channel becomes narrower. The current clearly must be
constant throughout the channel, so as the conductive channel near the
drain becomes narrower, the electrons must move faster. However, the
electron velocity cannot increase indefinitely; the average velocity of the

2.  In fact, the current does not turn off abruptly, in part because the conductivity of the
buffer layer is not zero and the edge of the depletion region is not distinct. Thus, the
threshold voltage is somewhat indistinct as well. It can be defined, for example, as the
point where the drain current decreases to some particular fraction of its zero-voltage
value. 
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electrons in GaAs can not exceed a velocity called their saturated drift
velocity, approximately 1.3⋅107 cm/s. If Vds is increased beyond the value
that causes velocity saturation (usually only a few tenths of a volt), the
electron concentration rather than velocity must increase to maintain
current continuity throughout the channel. Accordingly, a region of
electron accumulation forms near the drain end of the gate. Conversely,
after the electrons transit the channel and move at saturated velocity into
the wide area between the gate and drain, an electron depletion region is
formed. That depletion region is positively charged because of the positive
donor ions remaining in the crystal. As Vds continues to increase, Figure

Figure 2.14 GaAs MESFET operation: (a) very low Vds (i.e., a few tenths of a volt);
(b) Vds at the saturation point; (c) current saturation. 
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2.14(c), progressively more of the voltage increase is dropped across this
region, called a dipole layer, and less is dropped across the unsaturated part
of the channel. Eventually a point is reached where further increases in Vds
are dropped entirely across the charge domain and do not substantially
increase the drain current; at this point the electrons move at saturated drift
velocity over a large part of the channel length. When the FET is operated
in this manner, which is the normal mode of operation for small-signal
devices, it is said to be in its saturation region, or in saturated operation.
All FET amplifiers and most FET mixers and frequency multipliers are
biased into saturation. One notable exception is the FET resistive mixer,
which we shall examine in Chapter 11. 

It is important to recognize that the charge domain begins to form at
drain-to-source voltages well below those corresponding to the horizontal
portion of the drain I/V characteristic, so the charge domain affects the I/V
characteristic throughout almost the entire range of Vds. 

The terms linear region and saturation region are unfortunate, because
they seem to indicate exactly the opposite of their true meaning: small-
signal, quasilinear operation takes place in the FET’s saturation region, not
in its linear region. Further confusion arises because the same terms are
used, with opposite meaning, to describe the operating regions of bipolar
transistors: a bipolar transistor is said to be in saturation when the
collector/emitter voltage is very low. For better or worse, this terminology
is widely accepted, so even with some misgivings we will use it throughout
the rest of this book. 

As in the Schottky-barrier diode, the Schottky-barrier gate depletion
region represents a capacitance. At low drain voltages, the gate-to-channel
capacitance has nearly the ideal Schottky-barrier voltage dependence of
(2.58), but as Vds increases, the situation becomes more complex. At
Vds ≈ 0 (and notwithstanding the arguments made in Section 2.2.7.3), the
gate capacitance is distributed along the channel, but it frequently is
modeled approximately as two equal capacitors, one between the gate and
source, and the other between the gate and drain. These capacitances are
related to the change in gate-depletion charge with changes in gate-to-
source voltage Vgs and gate-to-drain voltage Vgd, respectively. As Vds is
increased and the FET begins saturated operation, however, drain-voltage
changes are shielded from the gate depletion region by the dipole layer.
Further changes in Vds no longer increase the charge in the depletion
region, so the gate-to-drain capacitance drops to a point where it consists of
little more than stray capacitance between metallizations. In saturation the
gate-to-source capacitance represents the full gate-depletion capacitance,
so the gate-to-source capacitance increases to approximately twice the
value it had in linear operation. 
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2.5.2 HEMT Operation 

A HEMT differs from a conventional MESFET in that the channel is
formed by a heterojunction instead of a simple epitaxial layer. Because the
channel is not doped, impurity scattering is minimized and high electron
mobilities result. The mobility increases as temperature decreases, so
substantial improvement in gain and noise figure can be achieved at low,
even cryogenic, temperatures. 

Figure 2.15 shows a simple HEMT. Instead of a doped epilayer, the
device has an n+ AlGaAs layer and a very thin undoped InGaAs layer
immediately underneath it. (Not shown in the figure is an extremely thin,
undoped AlGaAs spacer layer between the AlGaAs and InGaAs layers.
This spacer is on the order of 50Å thick and prevents scattering by ions in
the AlGaAs layer.) Because of the band structure of the semiconductors,
electrons from the AlGaAs layer accumulate in the InGaAs layer near the
interface; the charge density of this electron layer is controlled by the gate
voltage. The charge density is generally very low, making such devices
difficult to use as power amplifiers and, to some degree, frequency
multipliers. The high transconductance, however, provides a high cutoff
frequency and very low noise figure. These characteristics makes HEMTs
ideal for low-noise amplifiers and active mixers at frequencies well into the
millimeter wave range. 

The AlGaAs-InGaAs device is usually called a pseudomorphic HEMT,
or pHEMT,3 because of the lattice mismatch between the AlGaAs and
InGaAs layers. Other types of pHEMTs are possible, as well as devices
with multiple heterojunctions. The latter provide greater channel charge
density, and thus are useful as power amplifiers. The wide variety of
materials, layer thicknesses, and device geometries in modern HEMT
technology provides many degrees of freedom for optimizing the device’s
channel; in contrast, the only degrees of freedom in MESFET channel
design are thickness and doping density. 

Models of HEMTs are not very different from those of MESFETs. One
of the greater differences between MESFETs and HEMTs is in the shape of
the transconductance curve, as a function of gate voltage. In MESFETs, the
transconductance usually increases monotonically with gate voltage,
possibly with a peak at positive Vgs; in HEMTs, it often has a pronounced
peak. 

3.  Pronounced “pee-hemt.” An affected acronym, to be sure, but such things are beloved of
engineers. It may have been written this way to prevent people from pronouncing it as
“femt.” 
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2.5.3 MOSFET Operation

The operation of MOSFETs has been so thoroughly described in previous
books that we review it only briefly here. It is important to note, however,
that advances in semiconductor technology and submicron lithography
have resulted in MOSFETs that are useful at RF and microwave
frequencies. MOS technologies, especially complementary MOS (CMOS)
can be very useful, especially for low-power, low-cost RF ICs. 

All RF and microwave devices are enhancement mode, n channel
silicon devices. They consist of a lightly doped p substrate and a gate,
which can be either metal or semiconductor, insulated from the substrate by
a very thin oxide (SiO2) layer. At low gate voltages, no channel exists, so
no conduction is possible. When the gate voltage exceeds a positive
threshold voltage, Vt , an inversion layer of electrons is formed under the
gate, and that layer acts as a channel. (This is similar in some ways to a
HEMT, and, in fact, HEMTs have been compared in their operation to
MOSFETs.) Simple analysis gives an expression for the charge density in
the channel when Vd = 0 and Vg ≥ Vt:

(2.74)

where Lg is the gate length, Wg is the gate width, and Cox is the oxide
capacitance, the parallel-place capacitance, per area, between the gate and
channel. We use Vd and Vg instead of Vds  and Vgs , to represent the internal

N+ GaAs
N+ AlGaAs

GaAs Buffer

SI GaAs Substrate

Undoped InGaAs

DrainSource Gate

Electron layer

Figure 2.15 Cross section of a simple AlGaAs-InGaAs-GaAs HEMT. 

Qch Wg LgCox Vg Vt–( )=
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voltages, which do not include voltage drop across the source and drain
contact resistances, Rs and Rd , respectively. 

A number of effects can complicate (2.74). One of the most important
is called backgating, the effect of the voltage between the substrate and the
channel, which acts as a kind of second gate. Others are oxide and interface
charges, short- and narrow-channel effects, weak inversion (or subthresh-
old effects), and nonuniform substrate doping. 

As in other types of FETs, application of drain bias causes the voltage
between the gate and channel to be lower (i.e, more negative) at the drain
end. The charge disappears at the drain end when 

(2.75)

and this condition represents the onset of current saturation, much as the
completely depleted channel, from a combination of velocity saturation and
pinch-off, causes saturation in MESFETs. Velocity saturation, however,
plays only a minor role in the operation of silicon devices. 

One of the more interesting developments is the laterally diffused
MOSFET, or LDMOS, device. These are used primarily for power
amplifiers at frequencies from VHF to a few gigahertz . Figure 2.16 shows a
cross section of an LDMOS device. An advantage of this structure is the
direct electrical connection of the source to the mounting surface; in
contrast, other power FETs have the drain connected to the substrate. This
eliminates the need for wire bonds or insulators between the chip and
mounting surface, thus minimizing source inductance and resistance. It

Vg Vd– Vt≤
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Figure 2.16 Cross section of an LDMOS device. 
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also provides better cooling. Other advantages are a low-resistance gate
and a long, lightly doped area between the channel and drain contacts,
which minimizes gate-to-drain capacitance and provides a high breakdown
voltage. 

2.5.4 MESFET Modeling 

Figure 2.17 shows a lumped-element equivalent circuit of the MESFET
that can be used either in a small-signal or a large-signal analysis. Rg is the
ohmic resistance of the gate, and Rs and Rd are the source and drain ohmic
contact resistances, respectively. R1 is the resistance of the semiconductor
region under the gate (called the intrinsic resistance, Ri, in some texts)
between the source and channel; R2 is a similar resistance, which is
negligible in ordinary, current-saturated operation. It may be significant
when the FET is operated in its linear region or in inverse mode. Cds is the
drain-to-source capacitance, which is dominated by metallization
capacitance, and is therefore often treated as a constant. Cgs and Cgd are the
gate-to-channel capacitances; by expressing these as capacitances instead
of charges we imply the use of a division-by-capacitance model (see
Section 2.5.7.1), although many MESFET models use a division-by-charge
characterization. Id is the nonlinear channel-current source. The diodes in
parallel with Cgs and Cgd account for forward or reverse (avalanche) gate
conduction. Id, Cgs, and Cgd are functions of the gate voltage Vg and either

Figure 2.17 Equivalent circuit of a GaAs MESFET. Essentially the same circuit can
be used for HEMTs. 
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the drain voltage Vd or the gate-to-drain voltage, Vgd . Vg and Vd are called
the internal gate and drain voltages, to distinguish them from the voltages
at the FET’s terminals, Vgs and Vds , called the external voltages. Vgd
represents the internal quantity; we do not use the external gate-to-drain
voltage. Vg and Vd are related to Vgs and Vds  as follows: 

(2.76)

and 

(2.77)

Rds, f and Ci require explanation. In silicon devices, the drain-to-source
conductance is accurately represented by the partial derivative of Id w.r.t.
Vd . In III-V devices, that derivative is valid only at very low frequencies, at
most a few megahertz. At higher frequencies, the resistance is a factor of
three to ten lower than at dc; this phenomenon is sometimes called drain
dispersion. The combination of Rds, f and Ci models this effect. Because of
the low transition frequency, Ci is often remarkably large, on the order of
microfarads. 

Modeling drain dispersion is a difficult task, complicated by the
nonlinearity of the drain-to-source resistance. The use of Rds, f and Ci is
actually a rather poor approach to the problem as it has several undesirable
characteristics; for example, a linear Rds, f does not pinch off properly at
Vg = Vt. It is important, in this formulation, that Rds, f be a linear element;
making Rds, f nonlinear invariably produces dc currents that are open-
circuited by Ci. 

In virtually all models, Cgs and Cgd are treated as distinct, nonlinear
capacitors. In fact, the FET’s gate-to-channel capacitance should best be
treated as a multiterminal capacitor (Section 2.2.7.3). The subject of FET
capacitance models is subtle; we address it further in Section 2.5.7.
However, for now, we will limit ourselves to a discussion of customary
practices for modeling these elements. 

In spite of many attempts to produce “physical” models, ones that are
based on the physical operation of the FET device, empirical models have
been by far the most successful. The expressions that model the nonlinear
circuit elements in empirical models are chosen only to reproduce the
measured I/V or Q/V characteristics of the device. Indeed, most physical
models include significant empirical elements, turning them, funda-
mentally, into empirical models. For these reasons this book is concerned

Vg Vgs RsId–=

Vd Vds Rs Rd+( )Id–=
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exclusively with empirical, equivalent-circuit models of all the devices it
describes. 

2.5.4.1 MESFET Channel Current

The current in the drain-current source is the “heart” of a MESFET model.
Many widely used models are, primarily, drain-current models. To follow
tradition, we designate the channel current as Id, although Id is equal to the
drain-terminal current only at dc. 

The drain current is a function of internal gate and drain voltages, Vg
and Vd . It can be expressed satisfactorily via an empirical expression. The
advantage of an empirical expression is that the expression and its
derivatives (in particular, the transconductance, ) usually can be
evaluated with less computation—hence less computer time—than a
physical model. The greatest advantage of a physical model (i.e., one in
which the current is calculated from the physical parameters and
dimensions of the device) is in its use to relate the device structure and
physical characteristics directly to the performance of the circuit. Although
it is sometimes assumed that physical models are inherently more accurate
than empirical ones, this has not been the case in practice. 

The considerations listed in Section 2.3 are particularly important for
modeling MESFET channel current. Additional caveats are presented
below. 

Multiquadrant Operation

In the past, it was often considered adequate for a model to allow only “one
quadrant” operation; that is, one quadrant of the Id / Vd plane, Id > 0 and
Vd > 0. In fact, in many large-signal circuits, Vd not only drops into the
linear region, but can momentarily become negative. In other circuits,
especially such passive circuits as FET resistive mixers, switches, and
attenuators, the FET is biased at Vd = 0. In these cases, the model must
operate properly near zero drain bias. 

Many models do not do well under these conditions. For example,
many use a hyperbolic tangent to model the dependence on Vd; that is, they
have the form 

 (2.78)

where fG (Vg) is a function describing the gate-voltage dependence. This
expression causes the current to be an odd function of drain voltage and

Id∂ Vg∂⁄

Id Vg Vd,( ) fG Vg( ) αVd( )tanh=
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creates an inflection point (zero second derivative) at Vd = 0. The current of
the real device, however, does not behave this way; it has a finite second
derivative at Vd = 0 and –Id increases monotonically with –Vd . 

Because a MESFET is a highly symmetrical device, it is a common
practice to use a one-quadrant model and to reverse its voltages, when Vd
goes negative, so the drain voltage in the model is always positive. The
calculated Id is then reversed at exit; some SPICE MOSFET models, for
example, do this. Unfortunately, it is easy, in such models, to have
discontinuous derivatives at Vd = 0. These can lead to poor convergence in
analyses of active circuits and to erroneous analyses of passive circuits. 

Pinch-off Considerations

Making the drain current pinch off at Vg = Vt is not enough; the trans-
conductance and its first derivative must also be zero at Vg = Vt . In an
expression having the form of (2.78), fG (Vg) must satisfy these require-
ments. For example, it is common to use 

(2.79)

Imposing the obvious requirements that (1) Id = 0 at Vg = Vt, (2) Gm = 0 at
Vg = Vt, and (3) Id = Idss at Vg = 0 defines three of the four an coefficients,
even without imposing the derivative constraint on fG (Vt). Thus, we really
have at most only one coefficient for adjusting the shape of fG (Vg). Similar
problems exist in other types of functions. 

External and Internal Voltages

Both the physical and empirical I/V models describe only the I/V
dependence on the internal voltages Vg and Vd . Usually we wish to know
the I/V dependence upon the external voltages Vgs and Vds , because these
are observable. The dc values of these quantities differ because the voltage
drops across Rs and Rd; there is no dc voltage drop across Rg, so it need not
be considered. 

It is desirable, for easiest fitting of an I/V function to measured data, to
use points on a rectangular grid; that is, where Vg is held constant while Vd
is varied, and Vd is held constant while Vg is varied. When the voltages
across the parasitic resistances are subtracted, however, those points are no
longer on the desired grid. Two-dimensional interpolation is then needed to

fG Vg( ) a0 a1Vg a2Vg
2 a3Vg

3+ + +=
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return the points to a rectangular grid. Such methods are standard material
in books on numerical methods. 

Drain Dispersion

In silicon junction FETs, it is accurate to assume that the transconductance,
Gm, and the drain-to-source conductance, Gds, are given by the expressions

(2.80)

(2.81)

In FETs, (2.80) is reasonably accurate, but (2.81) is not accurate above, at
most, a few megahertz. The increase in Gds at high frequencies is called
drain dispersion. Drain dispersion is a difficult phenomenon to model. The
traditional method, using the combination of Rds, f and Ci, shown in Figure
2.17, is often inadequate; it allows drain current when the device is pinched
off and does not account for bias dependence of Gds . Because of the
theoretical difficulty of modeling this phenomenon, it is usually treated
heuristically. 

2.5.4.2 Modeling Cgs and Cgd 

The nonlinear capacitances Cgs and Cgd account for the displacement
current through the gate depletion region; they are large-signal
capacitances.4 These capacitances are logically functions of Vg and Vgd ;
however, for simplicity we would like them to have the same control
voltages as Id . Thus, they are usually treated as functions of Vg and Vd . 

If the FET remains in saturation, Cgs is usually modeled successfully as
a Schottky-barrier capacitance, as long as Vg > Vt . Below Vt, the depletion
region cannot expand further, so the capacitance decreases rapidly. In
saturation, Cgs is usually not very sensitive to Vd . When Vd  drops so low
that the FET enters its linear region, Cgs must be reduced to approximately
half its saturation value. 

4.  We view the capacitances in the division-by-capacitance sense; see Section 2.5.7.

Gm Vg∂
∂Id=

Gds Vd∂
∂Id=
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It is almost always valid to assume Cgd to be constant in saturation.
However, in large-signal operation, the FET’s drain voltage waveform may
reach low values, so the FET drops periodically into linear operation. At
this point Cgd increases significantly and depends on both Vg and Vd ; at
Vd = 0, Cgs = Cgd . This phenomenon has important implications for the
design and analysis of passive FET components. 

2.5.4.3 Extrinsic Capacitances

In both discrete and integrated devices, the capacitances of contact pads
and interconnection metal are small but not negligible; in fact, in most
devices Cgd consists almost entirely of intermetallic capacitance. The
extrinsic parts of Cgs and Cds are usually treated as capacitances between
their respective terminals and the FET’s source. In fact, they are
capacitances between the pads and mounting surface, which may or may
not be connected to the source. Both users and designers of models should
be mindful of such details. 

2.5.5 HEMT Modeling

Although the operation of HEMTs is qualitatively similar to that of
MESFETs, they are sufficiently different in detail that most MESFET
models do not work well for HEMTs. For this reason, specific HEMT
models have been developed. As HEMTs continue to supplant MESFETs in
most microwave and even RF applications, these models become
progressively more important. 

From a modeling perspective, the main differences between MESFETs
and HEMTs are the following:

1. The transconductance of a HEMT shows a pronounced peak, usually
well short of the maximum gate voltage. In extreme cases, the
transconductance can decrease, at high gate voltages, to half its
maximum value. 

2. As gate voltage increases from threshold, the device turns on much
more abruptly than a MESFET. This is, to a large degree, a conse-
quence of its higher transconductance. 

3. The threshold voltage is often much higher (i.e., more positive) than in
MESFETs. It is possible for it to be close to or even greater than zero,
creating enhancement mode devices. 
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4. The knee voltage of the gate-to-channel junction is usually greater.
Consequently, the maximum gate-to-source voltage is greater, and the
Isat value of the gate-to-channel diodes is greater. 

5. The drain-to-source resistance of HEMTs is generally lower than that
of MESFETs, and this tends to mask dispersion effects. (Additionally,
HEMTs use a high-quality buffer layer that introduces fewer traps and
thus less dispersion.) The low resistance is probably more a
consequence of the short gate lengths used in modern devices, not so
much an inherent characteristic of the device.

6. Although the capacitance behaves qualitatively as described in
Section 2.5.4, it differs in detail. For example, it is not unusual for Cgs,
as a function of Vg , to exhibit a peak, while in MESFETs it usually
varies monotonically. Also, because of the disappearance of the
channel charge layer, HEMT capacitances decrease more rapidly than
MESFETs at low (i.e., more negative) gate voltages. 

The MESFET equivalent circuit in Figure 2.17 is valid for HEMTs.
Similarly, considerations related to FET capacitances in Section 2.5.7
apply fully to HEMTs. 

The peaked transconductance can be surprisingly difficult to model.
One elegant approach is that of Angelov [2.10, 2.11] who uses the
expression

(2.82)

where

(2.83)

and pi, α, γ, and λ are empirically determined parameters of the model. Vpk0
and Ipk are the gate voltage and drain current, respectively, at peak
transconductance. This model does not require clipping of Id below some
user-specified pinch-off voltage; pinch-off is implicit in the model, and it is
much better behaved near pinch-off than, for example, (2.79).

Id Vg Vd,( ) Ipk 1 ψ( )tanh+( ) αVd( )tanh 1 λVd+( )=

ψ Vg Vd,( ) pi Vg Vpk–( ) i

i 1=

3

∑= Vpk Vpk0 γVd–=
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2.5.6 MOSFET Modeling

The earliest MOSFET models, such as the SPICE Level 1 model, were
based on a primitive, one-dimensional analysis. These were simple square-
law I/V models whose deficiencies became clear almost immediately. The
result was a continual stream of “improvements,” resulting in a cottage
industry devoted to the development of ever newer models. At this writing,
one popular simulator actually includes more than 50 MOSFET models! 

Some of the problems addressed by modern MOSFET models are the
following: 

1. Effective gate width and length. The length of a FET’s gate has a
strong effect on its performance. Because of processing limitations,
the length of a MOSFET’s gate is never precisely what was intended.
There is always some overlap with the source and drain diffusions,
and especially in short-gate devices, a number of physical effects
make the gate behave as if it were longer than it is. The same is
roughly true of the width, but the gate width is much less critical. 

2. Short-channel effects. Much MOSFET theory is based on an
assumption that the gate is long compared to the channel dimensions.
This is clearly not the case in modern MOSFETs, where gate length
may be only a small fraction of one micrometer. 

3. Subthreshold effects. As with other types of FETs, MOSFETs do not
pinch off precisely. The indistinct threshold voltage is caused by weak
inversion in the channel. 

4. Mobility variation and velocity saturation. Simple models treat
electron mobility as a constant quantity. Electron mobility is constant
only in relatively weak electric fields. In high fields, mobility
decreases and electrons eventually reach a limiting velocity, called the
saturation velocity. 

5. Drain effects. Early models considered only pinch-off at the drain end
of the channel. This is clearly an oversimplification. 

6. Substrate current. Silicon substrates generally do not have high
resistivity, and substrate current can also be generated by impact
ionization. 

Much of the complication in MOSFET models arises from a perceived
need to have “physical models” of the devices, so the models attempt to
reproduce as many physical phenomena as possible. This situation
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contrasts strongly with other devices, especially microwave MESFET and
HEMT models, which use empirical equations almost exclusively. The
need for physical MOSFET models comes largely from digital electronics,
where development speed is critical and circuits are often designed in
parallel with process development. In such an environment, devices are not
available for measurement and empirical modeling, so physical models
become necessary. In RF design, however, there is far less commercial
pressure to improve chip performance rapidly, and adequate time is
available to generate models from measured devices. Empirical MOSFET
models, for RF devices, probably would be simpler and much more
practical. 

Early in the development of MOSFET models, the problem of charge
(or capacitance) partitioning became visible. It is clear that the gate-to-
channel capacitance of a MOSFET is largely the parallel-plate capacitance
of the gate; however, the best way to divide it between the gate-to-source
capacitance, Cgs, and the gate-to-drain capacitance, Cgd , is not clear. In
normal, saturated operation, the entire capacitance probably should be
assigned to Cgs , but in linear operation, it must be divided in some manner
between Cgs and Cgd . 

One of the earliest MOSFET capacitance models that attempted to deal
with this problem came from Meyer [2.12]. The Meyer model is
implemented in the Level 1 Berkeley SPICE model but was eventually
recognized to violate charge conservation. This characteristic is par-
ticularly troublesome in a transient simulator, as charge nonconservation
can result in numerical overflow; in harmonic balance analysis, charge
nonconservation affects accuracy but rarely causes numerical difficulties.
Interestingly, the Ward-Dutton model [2.13], a far superior model, was
implemented in the SPICE Level 2 model, but Meyer was again used in the
Level 3. Nevertheless, the Ward-Dutton model is included in many other
simulators’ implementations of the Level 3 model. Whatever its
deficiencies, the SPICE Level 3 MOSFET model has been a de facto
standard for many years. 

More recently the BSIM model was developed at the Berkeley campus
of the University of California to be an industrywide standard MOSFET
model. BSIM itself has undergone considerable evolution; at this writing,
the “standard” version is BSIM3, and BSIM4 is under development.
BSIM3 is a very complex model. It offers a number of options for the
mobility models, charge models, and charge partitioning (using a division-
by-charge approach; see Section 2.5.7.2). 

See [2.14] for a good description of the Meyer model and the problems
of charge nonconservation. Section 2.5.7 provides for further information
on the capacitance problem in FET devices. The author also suggests that
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users of highly complex MOSFET models, especially BSIM3, consider the
points raised in Section 2.3.12. 

2.5.7 FET Capacitances

FET devices have both a gate-to-drain and gate-to-source capacitance.
These are usually controlled by at least two voltages. As such, it is
tempting to treat them simply as a pair of multiply controlled capacitances.
Traditionally, this is exactly what is done. 

As long as the FET remains in normal, forward, current-saturated
conduction, this type of model usually presents few problems. However, in
many circuits, the FET is forced into its linear region and sometimes even
into inverse operation. In such cases, the two-capacitance models are rarely
satisfactory. It is well known, for example, that such models can create an
impulse of current when the FET switches from forward to inverse
operation [2.3]. 

There are two ways to convert the single gate depletion charge into two
individual capacitances: one is to divide the depletion charge into two
parts, the gate-to-drain and gate-to-source charges, and the other is to
divide the capacitance in two. These two approaches are, surprisingly, quite
different. We call these, respectively, division by charge and division by
capacitance. 

2.5.7.1 Division by Capacitance

The FET’s reactive gate current Ig is 

(2.84)

where Qg is the total gate depletion charge, which we assume to be
controlled by both Vg and Vgd. It seems reasonable to assume that 

(2.85)
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∂Qg
td

dVg
Vgd∂

∂Qg
td

dVgd+= =

Is Vg∂
∂Qg

td

dVg
=

Id Vgd∂
∂Qg

td

dVgd
=



 Solid-State Device Modeling for Quasistatic Analysis 91

where Is and Id are the reactive parts of the source and drain current,
respectively, and clearly . (To avoid confusion with multiple
minus signs, we define the reference direction for Is and Id pointing out of
the device terminals.) This is a convenient treatment, since it defines two
capacitances,

(2.86)

whose currents depend only on the time derivatives of their own terminal
voltages, and not on changes in any remote voltage. The resulting small-
signal equivalent circuit consists, simply, of these capacitances, evaluated
at the dc bias voltages. The small-signal circuit is completely consistent
with the large-signal, and it requires no transcapacitances. 

This approach is not convenient for harmonic-balance analysis. To
obtain Is and Id, either (2.85) must be evaluated, which requires time-
domain differentiation, or charge increments of Qg must be accumulated,
which requires storage of previous values. (In harmonic-balance analysis, it
is much more convenient to calculate charge waveforms and to
differentiate them in the frequency domain by multiplying by jω.) In
transient analysis, time derivatives are readily available, so implementing
this type of model involves no special difficulties. 

It is important to note that there is no strong theoretical justification for
the division by capacitance. Equation (2.85) is largely a conjecture,
justified by its intuitive reasonableness and analytical convenience. 

2.5.7.2 Division by Charge

Another option is to divide Qg into two independent charges. Then 

 (2.87)

In general, both Qgs and Qgd are functions of Vg and Vgd . Differentiating
(2.87) with respect to time confirms that 

 (2.88)

Ig Is Id+=

Cgs Vg∂
∂Qg=

Cgd Vgd∂
∂Qg=

Qg Qgs Qgd+=

Ig Is Id+=
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As with (2.85), we have 

 (2.89)

and in this case the reactive source and drain currents result from both
capacitances and transcapacitances. Substituting (2.89) into (2.88) gives 

(2.90)

Clearly, 

(2.91)

and (2.90) has the same form as (2.84). 
Now, consider the first term of (2.90). In (2.85), this term represented

Is. However, it comprises terms that, in (2.89), represent parts of both Is
and Id. Thus, the division by capacitance and the division by charge are not
equivalent and, in fact, are contradictory. Indeed, (2.87) does not solve the
problems of fictitious source or drain currents. It also introduces another
serious problem, charge nonconservation, because it is possible for a
periodic excitation that conserves Qg to result in nonperiodic Qgs and Qgd
[2.3]. 

A consequence of (2.87) is that, if Vg  and Vgd change in such a way that
Qg does not change, there may still be a reactive drain-to-source current.
This is not entirely unreasonable, since any change in Vg and Vgd involves a
change in the shape of the gate depletion region, which may in turn create a
displacement current in Is and Id. However, the fictitious reactive current is
not simply a displacement current; it is caused by the artificial transfer of
“ownership” of charge from Qgs to Qgd or from Qgd to Qgs. 
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It is difficult to decide which of these representations is preferable.
Division by capacitance seems intuitively to be more consistent with the
behavior of real devices, but those intuitive assumptions are difficult to
justify rigorously. Division by charge is much more suitable for harmonic-
balance analysis, as well as for other frequency-domain methods, but
predicts phenomena that do not occur in real devices and requires the
disturbing use of quantities that are not state variables. In practice, division
by capacitance is frequently used for transient analysis and division by
charge for harmonic-balance and other frequency-domain methods. This
results in inconsistencies between transient and harmonic-balance analyses
of the same circuit. 

A serious problem in the division-by-charge approach is the difficulty
in determining the transcapacitances. Often these are ignored, and the
resulting small-signal equivalent circuit is inconsistent with the large-
signal. 

The lack of transcapacitances is an advantage of the division-by-capac-
itance formulation. Theoretically, the capacitances and transcapacitances
could be separated by repeated measurements with Vgd = 0 and Vgd = 0, but
because of the parasitic resistances Rg, Rs, and Rd, these conditions are al-
most impossible to create. Measurement of transcapacitances is a subject of
great research interest. 

2.5.7.3 Harmonic-Balance Simulation of FET Capacitances

To determine the current in a nonlinear capacitor, a harmonic-balance
simulator first calculates the large-signal charge waveform, Q(tn), where tn
are time increments. It then Fourier transforms Q(tn) and finally multiplies
each harmonic in the frequency domain by jω. In effect, for the gate-to-
source reactive current, it calculates 

(2.92)

where ∆t is the difference between two time points. This formulation is
clearly valid only when Qgs represents a division-by-charge model. For
division by capacitance, the simulator must calculate

(2.93)

Is t( )
Qgs Vg ∆Vg+ Vd ∆Vd+,( ) Qgs Vg Vd,( )–

∆t
-----------------------------------------------------------------------------------------------------=

Is t( )
Qg Vg ∆Vg+ Vd,( ) Qg Vg Vd,( )–

∆t
--------------------------------------------------------------------------------=
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where Qg is the gate charge. The author has never seen this formulation
included in a harmonic-balance simulator, although it would not be
impossible to do so. A simpler approach is to generate the time derivative
of Vg, a linear operation, and to form

(2.94)

where Cgs is defined by (2.86).
It is sometimes assumed, incorrectly, that a division-by-charge model

can be generated by extracting Cgs from a linear, small-signal FET
equivalent circuit and integrating as

(2.95)

The charge expression generated in this manner corresponds to (2.93), not
(2.92), and is thus invalid for a division-by-charge model. It happens,
however, that (2.95) is valid for a division-by-charge model if Cgs is the
equivalent circuit’s gate-to-source capacitance, extracted from an
equivalent circuit that includes transcapacitances. 

2.5.7.4 MOSFET Capacitance and Terminal Charges

Models using a terminal capacitance formulation, discussed in Section
2.2.7.3, are rare in HEMTs and MESFETs, but in MOSFETs such models
are largely the standard. They are used, for example, in some
implementations of the SPICE Level 3 and BSIM3 models [2.15]. The
Ward-Dutton capacitance model, included in many MOSFET models,
serves as an example [2.13]. The BSIM3 implementation is far too complex
to be described here; the reader should see instead [2.14] or [2.15]. 

The charge in the active region of a MOSFET consists of the gate
charge, QGATE; the inversion charge in the channel, QINV ; and the depletion
charge in the substrate under the inversion layer, QDEP . (Capacitances
associated with the source and drain diffusions, and gate overlay, are
treated separately.) For charge neutrality, we have 

(2.96)

Ig t( ) Cgs Vg Vd,( )
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dVg
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Clearly, we need determine only two of these quantities; the third can be
found from the neutrality condition. 

The Ward-Dutton model provides expressions for QDEP and QGATE;
QINV is found from (2.96). The form of these expressions is not important
for our purposes; it is available, in any case, in [2.14]. The inversion charge
is connected to the drain and source terminals, so it realizes those terminal
charges; however, it is not entirely clear how it should be divided between
those terminals. In the linear region, it is assumed that the inversion charge
is divided equally between the drain and source: 

(2.97)

where QD and QS are the drain and source pin charges, respectively. In
saturation, the model leaves the charge-partitioning problem on the user’s
doorstep and steals away silently into the night. It uses the expressions, 

(2.98)

where XQC is a user-selected constant, between zero and one, that defines
the charge partitioning between the terminals. 

The advantage of this model, as in any properly formulated terminal-
charge model, is its assurance of charge conservation. A difficulty is the
obviously arbitrary division of charge between the source and drain. Even
the more modern BSIM3 model does not solve this problem, and indeed
offers the user a selection of three charge partitions: 0%/100%; 40%/60%;
and 50%/50%. It would be useful to have a theoretically sound criterion for
making this division. 

2.6 BIPOLAR DEVICES

Two types of bipolar transistors are used in microwave and RF circuits:
bipolar junction transistors (BJTs) and heterojunction bipolar transistors
(HBTs). BJTs are sometimes called homojunction transistors, to
distinguish them from heterojunction devices. Bipolar devices have higher
gain than FETs at low frequencies and lower levels of low-frequency noise.
Unlike FETs, they require only a single bias polarity and can operate at
very low supply voltages; these are significant advantages in battery-

QS QD
1
2
---QI= =

QD XQC QINV⋅=

QS 1 XQC–( ) QINV⋅=
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powered circuits. They are often preferred for RF integrated circuits
(RFICs), and especially for low-noise oscillators. 

2.6.1 BJT Operation

As both BJTs and HBTs operate in a similar manner, we begin by
describing BJTs and then address the differences between them and HBTs. 

Figure 2.18 shows a schematic cross section of a BJT, and Figure 2.19
shows how they are implemented in ICs. Discrete devices are similar;
however, they are built on an n+ conductive substrate, instead of a p
substrate, so the collector connection is made directly to the substrate’s
bottom surface. This structure reduces collector resistance, compared to the
IC, and facilitates heat removal. Microwave BJTs are exclusively npn
devices, although pnp devices are occasionally used in low-frequency parts
of RFICs. 

When the transistor’s base-to-emitter (BE) junction is forward-biased,
electrons are injected into the base. The base, however, is very thin and
lightly doped, so the probability of an electron recombining with a hole in
the base is small. Instead, the electrons pass into the collector. In this way,
a voltage applied to the BE junction controls a large current in the collector. 

To achieve high current gain, base current must be minimized. Base
current consists primarily of hole injection from the base into the emitter;
this process is minimized by light base doping and heavy emitter doping.
The base must also be kept thin, to minimize transit time and charge-
storage capacitance. The resulting high base resistance presents a
fundamental limitation to the high-frequency performance of a BJT. 

Since the BJT current is essentially that of the base-to-emitter pn
junction, it should be no surprise that the current in a BJT is given by an
exponential function:

n Collector n+ Emitterp
Base

++ VbeVbc

+        Vce = Vbe – Vbc        –

Figure 2.18 Structure and biasing of a BJT. 
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(2.99)

where Icf is the forward collector current, Ie is the emitter current, and Vbe
is the base-to-emitter voltage. α is a coefficient close to 1.0, which
accounts for base current. More frequently, the forward current gain βf  is
used, where

(2.100)

and Ibe is base-to-emitter current. The remaining quantities are the same as
those in a Schottky-barrier diode (Section 2.4.2). 

Figure 2.20(a) shows a model that describes this behavior. The BE
diode determines the emitter current, and the controlled source provides the
collector current, which is on the order of 1% less. The base provides the
remaining current. This circuit, however, does not account for the base-to-
collector (BC) junction, which creates a similar reverse current. Its current,
Icr, is 

(2.101)
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Figure 2.19 Cross section of a BJT used in an integrated circuit. 
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where Vbc is the base-to-collector voltage. A reverse current gain, β r,
analogous to (2.100), can also be defined. In Figure 2.20(b)5 we have
modified the equivalent circuit to include the reverse current. This structure
is the core of virtually all BJT and HBT models. 

The reverse current is negligible at collector voltages used in normal
operation, but not at low voltages. The total collector current, Ict , is the
difference between (2.101) and (2.99): 

(2.102)

If we assume that η f ~ηr ~1, and note that the collector-to-emitter voltage
Vce = Vbe – Vbc , we obtain 

5.  Some references and texts show a different circuit that uses two current sources. The
circuit in Figure 2.20 is equivalent to those. The configuration in our figure is used in
most circuit simulators because it avoids spurious incorrect solutions to the circuit
equations. 

+ Vbc –– Vbe +

– Vbe +

Figure 2.20 (a) An equivalent circuit describing (2.99); (b) the complete
equivalent circuit including both forward and reverse conduction. 
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(2.103)

The inclusion of reverse conductance thus causes the collector I/V
characteristic to have a familiar 1 – exp(–x) shape, with amplitude
controlled by an exponential function of Vbe . 

Differentiating (2.103) with large Vce  gives the transconductance: 

(2.104)

Since  at room temperature, the transconductance of a BJT is
quite high. This gives a BJT very high low-frequency gain, compared to
most FETs. However, because the BE capacitance is also high, the cutoff
frequencies of conventional homojunction BJTs are considerably lower
than those of microwave FETs. Although a few advanced BJTs can be used
at frequencies of tens of gigahertz, it is unusual to see BJTs used above
approximately 10 GHz. Heterojunction bipolar transistors (Section 2.6.2)
can operate at much higher frequencies. 

The largest capacitance in a BJT comes from the combination of
depletion capacitance in the BE junction and charge storage capacitance,
sometimes called diffusion capacitance. The depletion component is
modeled by the same expression as for a Schottky diode, (2.58) and (2.59).
The stored charge, Qs,be, is 

(2.105)

where τ f is called the forward base transit time. τ f actually includes several
other delay terms, especially the time required for electrons to transit the
depletion regions on both sides of the base, and for this reason it varies
somewhat with Vbe  and Vbc . The current gain-bandwidth product, ft , can be
approximated by 

(2.106)

The base-transit time is a fundamental property of the device; a narrow
base is necessary for high-speed operation. The small-signal diffusion
capacitance is found by differentiating (2.105): 
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(2.107)

In normal forward operation, the BC capacitance is a simple depletion
capacitance given by (2.59) and (2.60). Because the BC junction is strongly
reverse-biased and both sides are lightly doped, this capacitance is
relatively small. 

2.6.2 HBT Operation

The operation of an HBT is fundamentally the same as that of a BJT. An
HBT has the same npn structure as a BJT, although its implementation is
very different. An HBT uses a BE heterojunction instead of a simple pn
junction. The heterojunction employs dissimilar semiconductor materials
to provide a barrier between the emitter and base, allowing heavy base dop-
ing, which minimizes base resistance and maximizes cutoff frequency. Ad-
vanced fabrication techniques used for HBTs, which would make no
economic sense for conventional BJTs, contribute to improved perfor-
mance as well. Unlike BJTs, HBTs are rarely available as discrete devices;
almost all are used in IC technologies. 

While conventional BJTs are invariably silicon devices, HBTs are
realized in many III-V technologies. Silicon HBTs are also possible;
silicon-germanium HBTs provide high performance at lower cost than
III-V devices. 

Figure 2.21 shows the structure of a simple HBT. In contrast to the
planar BJT of Figure 2.19, its mesa structure is decidedly nonplanar.
Although more complicated (and, of course, more expensive) to fabricate
than the planar BJT, the structure provides better definition of the emitter,
lower parasitic resistances, and lower fringing capacitance. As with BJTs,
power HBTs can be fabricated by paralleling a number of devices having
long, narrow emitters. 

Equations (2.99) through (2.107) are generally applicable to HBTs as
well as BJTs. The differences in the devices are largely details and occur
mainly at the extremes of their operation. For example, the heavily doped
base makes HBTs, unlike BJTs, largely immune to high-level injection
effects. We consider these matters further when we examine HBT modeling
in Section 2.6.4. 
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2.6.3 BJT Modeling 

Ebers and Moll [2.16] created the first practical large-signal BJT model,
and Gummel and Poon [2.17] extended it to include phenomena that the
Ebers-Moll model did not. The Gummel-Poon model, in turn, was extended
somewhat and included in SPICE, and that resulting model has been
dominant for at least 35 years. More recently, advanced BJT models have
been proposed, but, because of its historical dominance and its availability
in virtually all circuit simulators, the SPICE Gummel-Poon (SGP) model
remains in wide use. It is important to examine the SGP model, as it
addresses the most important characteristics of BJT operation, and more
advanced models are arguably variations on the theme it has established. 

Figure 2.22 shows the complete large-signal equivalent circuit of a
BJT. As well as the nonlinear elements described above, it includes contact
resistances Re, Rc , and Rb, and a parasitic collector-to-substrate capa-
citance, Cjs . Cje and Cjc are the depletion components of the BE and BC
capacitances, respectively, and Cde and Cdc are the diffusion capacitances.
The model also shows an extra pair of diodes, marked with the currents Ibe, l
and Ibc, l, which model BE and BC leakage. Although it is not part of the
original model [2.17], the SPICE implementation accounts for nonlinearity
in the base resistance, Rb . The circuit is designed to model the device in
both forward and reverse operation; reverse operation is common in digital
circuits, but occurs only rarely in microwave ones. Thus, in many cases the
parameters describing reverse conduction can be ignored. 

N+ GaAs Base

Emitter

Collector
N- GaAs

N+ GaAs

P+ GaAs

Layered AlxGa1-xAs

Base

Collector

SI Substrate
Isolation

Figure 2.21 The mesa structure of a simple AlGaAs/GaAs HBT. Layered AlGaAs
provides a heterojunction.
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Two of the most important phenomena included in the SGP model are
high-level injection and the Early effect. At high BE currents, the charge
injected into the base is no longer small relative to the doping con-
centration, and the increased base charge prevents the collector current
from increasing as fast as (2.103) implies. Although (2.103) implies that
the collector-to-emitter resistance is infinite, this is clearly not the case. As
Vce  increases, the base depletion region widens on the collector side, and
the base width decreases. The resulting increased current gain creates a
slope in the I/V characteristic; this phenomenon is called the Early effect.
The SGP model accounts for both high-level injection and the Early effect
by including a term, Qb, the normalized majority base charge: 

(2.108)

At moderate Vce  and Ict , Qb → 1, and (2.108) reduces to (2.102). Qb is a
complicated expression involving the Early voltages and BE / BC voltages: 

(2.109)

Figure 2.22 Large-signal BJT equivalent circuit used in the Gummel-Poon model.
The equivalent circuit is generally applicable to HBTs as well. 
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where 

(2.110)

VA , VB are the Early voltages and IKF , IKR are parameters describing high-
level injection effects. It is important to note that (2.109) is an asymptotic
approximation of a much more complex set of expressions, so it may not be
valid in many cases; for example, when the Early voltages are low.
Unfortunately, in silicon RF BJTs, Early voltages are usually quite low, and
may violate this condition. For information on the details of this for-
mulation, see [2.6]. 

The forward and reverse base currents are modeled by the diodes Ibe
and Ibc. Their currents are given by 

(2.111)

where βf and βr are the forward and reverse current gains, respectively. The
currents in the leakage diodes, Ibe, l and Ibc, l, are significant only at low
base-to-emitter voltages. 

The forward and reverse capacitances consist of both depletion and
diffusion components. The depletion component is modeled as in (2.60)
and (2.61); the diffusion component is treated as in (2.105). In microwave
devices, the reverse diffusion component is rarely significant, but the
reverse depletion component is critical. The collector-to-base depletion
capacitance, Cjc, is a distributed capacitance; to model it as such, it is
usually split between the internal and external base nodes. 

The SGP model includes additional effects. One is the change in τf at
high Vce  and Ict ; another is the scaling of the equations with temperature.
SGP does not account for many other important phenomena; for example,
base push-out, or Kirk effect, avalanche breakdown, and self-heating.
Furthermore, its handling of voltage and current dependence of τ f do not
always work well for advanced devices, especially HBTs. τ f is especially
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important; if it is inaccurate, the BE capacitance also is inaccurate. Finally,
the lack of self-heating is a serious deficiency of the SGP model. These
phenomena are addressed in more modern BJT models, such as VBIC
[2.18], MEXTRAM [2.19], and HICUM [2.20]. 

2.6.4 HBT Modeling 

HBTs offer dramatically improved high-frequency performance compared
to BJTs. Models for HBTs, however, are not very different. Indeed, most of
the dominant BJT models, including the SGP model, are adequate for HBTs
in most ordinary types of analysis, although some redefinition of the
parameters may be necessary. 

Equation (2.111) implies that there is a broad range of collector
current, in a BJT, over which the current gain is constant. In HBTs this is
not the case; the current gain generally increases monotonically with
collector current. This effect can be modeled by setting βf and βr to large
values to turn off the base current, and using the leakage diodes to model
the complete base current. 

HBTs have much higher Early voltages than BJTs; indeed, it is usually
adequate to set VA  and VB in (2.110) to large values to turn off the Early
effect entirely. The low values of high-frequency |S22| often exhibited by
HBTs is caused by feedback effects, not low VA . Similarly, because of their
heavily doped bases, HBTs do not exhibit high-level injection effects, so
IKF and IKR in (2.110) are likewise very large. The scaling of τf  with
collector current, in the SGP model, is inaccurate for HBTs, as are some of
its thermal scaling equations. Finally, in HBTs the current gain (βf)
decreases with temperature, while in silicon BJTs it increases. 

One possible approach to an HBT model would be to retain the core of
the SGP model while adding new phenomena, such as self-heating, and
correcting things that are not well modeled for HBTs, such as τf  and βf . The
model of Anholt [2.21] does precisely that. More extensive models,
designed particularly for HBTs, are the Angelov [2.22] and the UCSD
[2.23] models. All these models, as with the advanced BJT models,
preserve the core of the Ebers-Moll model shown in Figure 2.20(b). There
is also evidence that the advanced BJT models listed in Section 2.6.3 are
versatile enough to be used for some kinds of HBTs as well. 

2.7 THERMAL MODELING

Solid-state devices are temperature sensitive, and their temperature sensi-
tivity is a nonlinear phenomenon. FETs are only moderately temperature-
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sensitive, while bipolar devices and diodes are much more so. Early device
models included thermal scaling equations, in which parameters were
functions of temperature, and the user was responsible for estimating the
temperature of the device. More modern device models include self-
heating, in which the temperature and its effects are calculated as part of
the nonlinear analysis. We consider the latter in this section. 

To account for temperature, an I/V expression like (2.4) must be
modified as

(2.112)

where Tj is the temperature of the device at the location in the chip where
its effects are significant, such as a FET channel or diode junction, so we
can loosely call it the junction temperature. Tj is usually given by 

(2.113)

where θjc is the thermal resistance between the junction and mounting
surface, Pd is the power dissipated in the device, and Tc is the temperature
of the mounting surface. 

A few details should be considered. First, Pd includes both dc and RF
power dissipation, so it is a function of time. That time function varies
instantaneously with the sinusoidal RF carrier waveform, and also with the
much longer time scale of the modulating waveform. The thermal mass of
the chip and mounting surface filter out the RF frequency temperature vari-
ations, but often do not remove all the modulation-frequency variations.
The periodic temperature variation gives rise to so-called memory effects in
power devices. 

A second consideration is that θ jc is dominated by the thermal
conductivity of the semiconductor device, which is invariably nonlinear.
Thus, we should have

(2.114)

Unfortunately, the thermal resistance must be described as a function of
temperature. It is common to write , so the thermal
nonlinearity is expressed as 

(2.115)

I fV V1 V2 … Tj, , ,( )=

Tj θjc Pd Tc+=

Tj fθ Pd( )=

θjc Tj( ) Tj Pd⁄=

Tj θ jc Tj( )Pd=
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Equation (2.115) is a pretty scary formulation. Furthermore, the temper-
ature of the device is not constant throughout the semiconductor, so (2.115)
is, in any case, invalid. A better approach is to view the problem
incrementally; thus, 

 (2.116)

where Ts is the temperature of the semiconductor at some point, dl is an
increment of length through the material, and dT is the temperature change
in that increment. Then θ(Ts ) is the thermal resistivity at temperature Ts ,
and A is the cross-sectional area of the thermally conductive region.
Equation (2.116) is best integrated numerically, by dividing the conductive
region into a number of length increments ∆ l. We begin with T 0 as the
baseplate temperature. Then, the temperature change from the nth to the
(n + 1)th point is 

 (2.117)

where we have approximated the thermal resistivity in the interval as the
average of the resistivities at the two end points. At each interval, Newton’s
method (or any one of several other numerical methods) can be used to
solve (2.117) to obtain Tn +1. The process continues interval to interval until
the complete temperature profile is obtained. This method is still imperfect,
as it is a one-dimensional integration, while the heat flow in solid-state
devices clearly has a three-dimensional structure. Still, it illustrates the
considerations necessary for correctly calculating temperature increase in
thermally nonlinear media. 

Most device models approximate θ jc as a linear quantity. In this case,
the temperature increase can be modeled by the thermoelectric equivalent
circuit shown in Figure 2.23. In this circuit, Pd is analogous to current, Tj is
analogous to voltage, and θjc is analogous to resistance. The capacitor, Cθ,
models the thermal storage of the structure, and the thermal time constant
is θjc⋅Cθ . When an electrothermal equivalent circuit is used, Tj in (2.112)
can be treated like any other control voltage. 

A third problem is that the simple thermal equivalent circuit of Figure
2.23 does not adequately describe many devices. In particular, power
transistors usually consist of multiple cells that are thermally coupled to
each other as well as to the mounting surface. In this case, a thermal

dT Pd θ Ts( ) ld
A
----=

Tn 1+ Pd
∆l
A
----- 1

2
--- θ Tn( ) θ Tn 1+( )+( ) Tn+=
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resistance matrix may be used, where the temperature increase (over the
mounting-surface temperature) ∆Tn at each of N cells is 

(2.118)

where Pn is the power dissipated in the nth cell. The thermal resistance
matrix in (2.118) is analogous to an impedance matrix; that is, 

(2.119)

In this case, using capacitors to represent the thermal mass is tricky. It is
probably best simply to use a single capacitor at each node for this purpose.
This method cannot account for nonlinearity in the thermal resistance. 

Modeling the effects of temperature on nonlinear elements is the other
half of the task, and this depends on the type of element. In diodes, for
example, the temperature dependence in (2.62) and (2.63) is clear
(although the SPICE diode model uses a somewhat different expression
for Isat). Contact resistances are often treated as linear functions of tem-
perature; for example, 

(2.120)

R = θ jc C = Cθ

+
V = ∆T

–
I = Pd

Figure 2.23 Electrothermal equivalent circuit of a single device. 
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… … … …
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…
PN
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θi j
∆Ti
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where R 0 is the resistance measured at T0 and KR is a temperature
coefficient. Such expressions are usually adequate over the range of
temperatures that a device experiences. Depending on the magnitude of KR,
the function can return a negative value for the resistance. For this reason,
R (T ) must be limited in some numerically acceptable manner (see Section
2.3) to positive values. 

2.8 PARAMETER EXTRACTION

A solid-state device that is to be used in small-signal, linear applications
can usually be characterized adequately by S or Y parameters. In order to
model a nonlinear device, however, it is necessary to measure the circuit
element values and to determine their dependence upon one or more
control voltages or currents (usually voltages) within the circuit.
Invariably, the C/V and I/V characteristics of the nonlinear elements are
needed. The process for determining the model parameters, from
measurements of the device, is called parameter extraction. 

The methods used to determine the model parameters depend,
understandably, upon the type of device. In general, however, the I/V
characteristics and sometimes certain resistances can be determined, with
good accuracy, from dc measurements. C/V characteristics naturally require
RF measurements, although occasionally measurements with a capacitance
meter are adequate. 

In the past, transistors were modeled by first measuring dc I/V
characteristics and then “fitting” the small-signal linearized equivalent
circuit to measured S parameters. S parameters were measured over a wide
range of frequencies, and the resistance and capacitance values were
adjusted by numerical optimization until the calculated S parameters of the
equivalent circuit agreed with those measured. The process was repeated
with a large set of bias voltages, and eventually a table of C/V (occasionally
I/V) characteristics was generated. Finally, the C/V or I/V expression was
fit to the tabulated data numerically. 

This process has a number of deficiencies. The most serious is that the
equivalent circuit’s set of element values, representing a particular set of S
parameters, is not unique. Thus, the element values have large variability.
Even linear elements appear variable as well, and the process often returns
such nonphysical results as negative resistances. A second problem is that
the linear equivalent circuit is sometimes not precisely equivalent to the
linearized large-signal equivalent circuit. This problem, known as the
consistency problem, occurs most often in FETs, when transcapacitances
are ignored and it is assumed that the gate-to-source and gate-to-drain
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capacitances, in the small-signal equivalent circuit, can be treated as simple
capacitors. This problem has been addressed in Section 2.5.7. A final
problem is the huge amount of data that must be taken, and the amount of
human intervention and personal skill needed to develop the model. 

Because of these problems, more recent techniques involve direct
extraction methods. In these, values of the equivalent circuit elements are
calculated directly from measurements, usually Y parameters that are
obtained by conversion from S parameters. The Y parameters may be
measured at a number of bias voltages, including cold device
measurements; that is, an unbiased device. Optimization is not used,
although occasionally statistical methods are used to select the most
meaningful data or to perform a curve fit. In some cases, quantities that are
difficult to measure, such as source and drain contact resistances in FETs,
are determined by measurement of test cells on fabrication wafers. Finally,
planar electromagnetic analysis can be used to determine intermetallic
capacitances and to model cell interconnections in large devices. The
resulting models have considerably less variability than in methods based
on optimization, and if performed carefully, are accurate even at
frequencies higher than those used for the original measurements. 

2.8.1 Diode Parameter Extraction

The important dc parameters of a diode junction, Isat, η, and Rs, can be
found very easily from a direct measurement of the I/V characteristic.
Figure 2.24 shows the measured I/V characteristic of a Schottky-barrier
diode, plotted on semilog axes. The I/V characteristic is nearly a straight
line, deviating noticeably at currents above approximately 1 mA because of
the voltage drop across the series resistance Rs. Simple manipulations of
(2.62) show that the room-temperature slope of the straight-line portion of
the curve is 58.5 mV per decade of current at 295K (22C). The diode’s
slope parameter η can be found by measuring the slope of the closest-fit
straight line, in mV/decade of current, and dividing by 58.5. The deviation
of the curve from the extrapolated straight line at its high-current end is the
voltage dropped across the series resistance. Thus, 

(2.121)

where V is the voltage deviation and I is the current at which V is
determined. Finally, Isat is found from any pair of points (I, V ) along the
straight-line portion of the curve: 

Rs
∆V
∆I
-------=
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(2.122)

Calculating the series resistance of small-diameter GaAs diodes from
dc I/V measurements requires care because junction heating at even modest
current can affect the accuracy of Rs. The thermal resistance of a chip diode
is approximately 4 C/mW, enough to shift the I/V curve slightly toward
lower voltages and thus make the series resistance appear lower than it is.
As an alternative, resistance can be extracted from on-wafer S-parameter
measurements, much as is done for transistors. 

Direct measurement of the C/V characteristic presents some practical
difficulties because the junction capacitance of many types of diodes,
especially millimeter-wave mixer diodes, is on the order of femtofarads.
One solution is to measure the capacitance of a large diode and to scale it
according to area. This process is not highly accurate because the fringing
capacitance at the edge of the anode, which does not scale in proportion to
area, is significant. On-wafer RF measurements are usually adequate for all
but the smallest millimeter-wave devices. For these, some of the old-
fashioned measurement techniques may still be best. See [2.5] for further
information. 

Id 

∆Vd 

Rs = ∆Vd / Id 

I 

V 

∆V 

I0 = I exp(-qV / ηKT) 
 

η = DV / 0.05783 
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Figure 2.24 Diode I/V characteristic, plotted on semilog axes, summarizing the
determination of its I/V parameters. 
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2.8.2 FET Parameter Extraction

2.8.2.1 Linear Elements

One of the most difficult problems in FET parameter extraction is to
separate the effects of source resistance, Rs, and transconductance, Gm.
These quantities compensate each other to a large degree; that is, one can
obtain much the same results with either high Gm and Rs or low. It is
surprisingly difficult to measure these uniquely. 

A number of approaches can be used. One is to determine Rs from dc
measurements of the forward-biased gate-to-channel junction. One of the
earliest methods, from Fukui [2.24], is still used occasionally. A better
approach is that of Yang and Long [2.25], somewhat improved by Holstrom
et al. [2.26]. This method determines both Rs and the drain parasitic
resistance, Rd. Other direct extraction methods [2.27–2.29] include
methods to separate the effects of these quantities. 

If one of the series resistances Rs, Rd, or Rg can be found or estimated
(e.g., from a test cell), the rest can be determined easily from a cold FET
with a forward-biased gate. The low-frequency equivalent circuit is shown
in Figure 2.25. A little analysis shows that 

(2.123)

In the above equations, Rj is the junction resistance and R ch is the channel
resistance, which must be determined in some other way. 

Capacitances Cgs , Cds, and Cgd, and some of the remaining resistances,
are most easily found from low-frequency Y parameters. The parameters
must be measured at a frequency low enough so the resistances in series
with them are negligible, but high enough so they can be measured
accurately in a standard 50Ω microwave measurement system. The
parasitic resistances Rs, Rd, and Rg first must be determined and their
effects removed from the Y matrices. This can be accomplished with a
circuit simulator by connecting resistances of value –Rs, –Rd, and –Rg in
series with their respective terminals and recalculating the Y matrices.
Other parasitics, such as bond-wire inductance, can be removed in a similar
manner. 

The capacitances can then be found from simple circuit analysis. We
first find Cgd from Y12: 

Rs Z12 0.5Rch–=

Rg Z11 Z12– Rj–=

Rd Z22 0.5Rch Z12––=
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(2.124)

Then, Cgs and the resistance R1 are found from Y11: 

(2.125)

Cds and the drain-to-source resistance Rds are found from Y22: 

(2.126)

and Gm, if desired, can be found from Y21: 

(2.127)

These capacitances should be measured over a wide range of frequencies,
and data in the frequency range showing the least variability should be
selected and averaged. 

It is important to note that this method does not determine the
transcapacitances, and therefore is valid only for a division-by-capacitance
model. It is not possible to obtain parameters of division-by-charge models
without assuming the existence of transcapacitances and evaluating them. 

Rg Rj Rch/2 Rd

Rch/2

Rs

DG

S

Figure 2.25 Low-frequency equivalent circuit of a FET with forward gate bias.

Y12 jω Cgd–=

Y11 jωCgd
jω Cgs

1 jω Cgs R1+
--------------------------------+=

Y22
1

Rds
-------- jω Cds+=

Y21
Gm

1 jω CgsRi+
------------------------------- jω Cgd–=



 Solid-State Device Modeling for Quasistatic Analysis 113

2.8.2.2 Nonlinear Elements

Large-signal models can be created by curve-fitting the measured I/V data
to the model’s I/V function. The parameters of charge functions are readily
determined from measured capacitances. 

It is difficult to determine the small-signal nonlinearities for Volterra
analysis by differentiating a measured I/V characteristic. In any weakly
nonlinear device, the Taylor-series coefficients are, by definition, relatively
small. (If they are not small, the device is not weakly nonlinear!) Repeated
differentiation introduces numerical noise, which quickly becomes large
relative to the nonlinearities. 

A better approach is to extract the Taylor coefficients of the gate I/V
characteristic from RF measurements. A workable method involves
exciting the device with a weak RF signal, measuring the harmonics, and
using a Volterra analysis to determine the coefficients [2.30]. Figure 2.26
shows the test setup. A 50-MHz signal, well filtered and at a level of
approximately –30 dBm, is applied to the device, and the levels of the
harmonics at 100 MHz and 150 MHz are measured by a spectrum analyzer.
Because the 50-MHz output is much greater than the harmonics, a filter is
needed to reject it, or distortion generated in the spectrum analyzer may
interfere with the measurement of harmonics generated by the device. The
Taylor-series coefficients are found from the following:

50-MHz
source

Atten. FET Filter

Amp.Spectrum
analyzer

150 MHz
100 &

+ 20 dB

–30 dBm

Figure 2.26 Measurement system for characterizing weak nonlinearities in FETs. 

50 MHz
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(2.128)

(2.129)

(2.130)

where gn are the Taylor-series coefficients, Rin is the source resistance
(invariably 50Ω), gds is the drain-to-source conductance, Ps is the available
source power at the device, and IMn are the ratios of output harmonic
power to linear power,

(2.131)

The coefficient CR is 

(2.132)

The double root in (2.130) arises from the spectrum analyzer’s inability to
measure phase. One can determine the correct root by comparing the two
roots to the derivative of g2. Since , (2.127) can be used in place
of (2.128). 

This method characterizes only the gate-to-drain nonlinearity,
sometimes loosely called the nonlinear transconductance. An extension of
this method, which characterizes all the I/V nonlinearities, can be found in
[2.31].
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2.8.3 Parameter Extraction for Bipolar Devices 

We saw that measuring Rs in FETs was a particularly difficult problem.
Measuring the analogous quantity in bipolar devices, the emitter resistance,
Re, is actually quite easy. This is true of both HBTs and BJTs. To a good
approximation, R e is given by

(2.133)

and this relation is valid over a wide frequency range. In principle, the base
resistance, Rb, could also be measured by performing a common-emitter to
common-base transformation and again calculating (2.133), but this
process is considerably less accurate. The same is true of measuring the
collector resistance, Rc. 

The I/V parameters for a Gummel-Poon model can be obtained from
so-called Gummel plots. A Gummel plot is an I/V plot of the transistor’s
collector current, Ic, as a function of base-to-emitter voltage, Vbe , when the
device is configured as shown in Figure 2.27. This measurement produces
an I/V curve much like that of a diode (Figure 2.24), and the same methods
can be used to find the parameters of Is, ηf, and IKF of (2.110). Reverse
Gummel plots, in which the collector is treated as the emitter and the
emitter as the collector, are used to find the reverse parameters, η r and IKR .
The assumption is made that Is is the same for both forward and reverse
characteristics (called the reciprocity condition); if it is not, the collector
current, as predicted by (2.110), may not be zero when Vce = 0. 

In evaluating Gummel plots, it is important to subtract the voltage
dropped across the parasitic resistances, primarily Re , from Vbe . If this is
not done, it is difficult to separate the effects of high-level injection from
simple resistive voltage drop. 

The depletion component of the base-to-emitter capacitance, Cbe , is a
function of Vbe  only, while the diffusion component, because of its depen-

Re Re 1 Z12⁄{ }=

+
Vbe
–

Ic

Figure 2.27 Circuit used for producing Gummel plots. Setting Vbc = 0 reduces the
second term in (2.102) to 1.0, giving it the same form as a diode I/V
equation. 
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dence on transit time, is a weak function of Vbc as well. For purposes of
parameter extraction, the dependence on Vbc can usually be ignored, so no
transcapacitances are needed. Separation of depletion and diffusion
capacitance is tricky, but it is essential for proper modeling. The simplest,
and probably the best method, is to determine the depletion component by
measurements at values of Vbe  low enough so that no significant collector
current results. To determine the diffusion component, the depletion
component can be calculated from (2.59) and subtracted from the
capacitance measured at higher Vbe . If this is done correctly, the diffusion
capacitance should follow (2.105) accurately, at least at frequencies that are
low compared to 1/τf . 

Another intriguing possibility is to calculate the model parameters
from the device geometry and the measured characteristics of the substrate.
This process is one step removed from a “physical model,” in that no
attempt is made to analyze the device in the way that a solid-state device
simulator does. Instead, a lumped-element model is used for the intrinsic
transistor, and its parameters, as well as the parasitics, are calculated from
the substrate characteristics and the device’s geometry. One such example,
described in [2.32], reputedly is quite successful. 

2.8.4 Final Notes on Parameter Extraction

Parameter extraction depends on measurements, but measurements are
always imperfect. Thus, it makes no sense to force a model to agree with
measurements more closely than the measurement accuracy. This point
seems obvious, but it is frequently missed or ignored. 

A second concern is that RF measurements may be more accurate in
some frequency ranges than in others. For example, network-analyzer
measurements of gate-to-source capacitance in a FET are unlikely to be
accurate at low frequencies, where the capacitive reactance is much higher
than the analyzer’s system impedance. The same is true of gate-to-drain
capacitance, but measurement accuracy may be better in a higher frequency
range. The extraction process must select the data that are most reliable, for
example by selecting the region where the variation is minimal. 

Finally, one must be careful in using the original data to validate a
model. A model should be validated by showing that it successfully
reproduces the phenomenon it is intended to model. It proves little to show
that it reproduces only the data used to generate it. 
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Chapter  3

Harmonic-Balance Analysis and Related 
Methods

This chapter is concerned with two of the most important techniques for
analyzing nonlinear circuits. The first, called harmonic-balance analysis, is
most useful for strongly or weakly nonlinear circuits that have single or
multitone excitation. Harmonic balance analysis is applicable to a wide
variety of problems in such microwave circuits as power amplifiers,
frequency multipliers, and mixers. Harmonic-balance calculates a circuit’s
steady-state response. It works particularly well when a circuit has a mix of
long and short time constants and, in fact, was originally proposed to solve
the problems inherent in analyzing such circuits [3.1]. 

The second technique, large-signal/small signal analysis, is used for
nonlinear circuits that are excited by two tones, one of which is very large
and the other is vanishingly small. This situation is encountered most
frequently in mixers, in which a diode or transistor is excited by a large-
signal local oscillator and a much smaller RF signal. The circuit is first
analyzed via harmonic balance, under LO excitation alone, and is
converted into a small-signal linear, time-varying equivalent. The time-
varying circuit is then analyzed as a quasilinear circuit under small-signal
RF excitation. The quasilinear assumption is not always necessary, and the
small-signal analysis can be extended to include nonlinear effects such as
intermodulation. 

3.1 WHY USE HARMONIC-BALANCE ANALYSIS?

Transient analysis methods predate harmonic balance methods. Thus, the
existence of harmonic-balance analysis implies that transient methods are
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not adequate for many kinds of circuits. In fact, the methods are pleasantly
complementary: harmonic balance works well where transient analysis
does not, and transient analysis usually outperforms harmonic balance in
the kinds of problems where it is applicable. 

Three problems can make time-domain techniques impractical. First,
matching circuits may contain such elements as dispersive transmission
lines, transmission-line discontinuities, and multiport subnetworks de-
scribed by S or Y parameters. These are difficult to analyze in the time do-
main. Second, the circuit’s time constants may be large compared to the
period of the fundamental excitation frequency. When long time constants
exist, it becomes necessary to continue the numerical integration of the
equations through many—perhaps thousands—of excitation cycles, until
the transient part of the response has decayed and only the steady-state part
remains. This long integration is an extravagant use of both computer time
and the engineer’s patience; furthermore, numerical truncation errors in the
long integration may become large and reduce the accuracy of the solution.
Although algorithms exist to ameliorate this difficulty [3.2, 3.3], imple-
menting them is an extra complication. Third, each linear or nonlinear reac-
tive element in the circuit adds a differential equation to the set of
equations that describes the circuit. A large circuit can have many reactive
elements, so the set of equations that must be solved may be very large. For
this reason, time-domain analysis is notoriously slow. 

The greatest advantage of time-domain analysis is its ability to handle
very strong nonlinearities in large circuits. Its robustness results in part
from the fact that small time steps can be used in the time-domain
integration. As long as the nonlinearities are continuous, the time steps can
always be made short enough so that the circuit voltages and currents
change very little between steps. 

3.2 AN HEURISTIC INTRODUCTION TO HARMONIC-
BALANCE ANALYSIS

Figure 3.1 shows a simple dc diode circuit, which we wish to analyze.
Knowing that the diode’s I/V characteristic is given by (2.62), we can easily
write an equation for the circuit, 

(3.1)I Isat δ Vs IR–( )( )exp 1–( )=
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where δ = q / ηKT (see Section 2.4.2). This equation cannot be solved
algebraically. It must be solved numerically or, if only moderate accuracy
is adequate, graphically. The usual method is to estimate I, substitute it into
(3.1), and see if it satisfies the equation. If it does not, I is modified and the
process repeated until the equation is solved. A variety of numerical
methods can be used for this purpose. We do not need a method that solves
the problem completely; all we need is to improve an estimated solution.
Then, we need only repeat the process a number of times, using the result
of each iteration as the starting estimate for the next one. Eventually, the
error is reduced to the point where it is deemed negligible. 

Thus, we need four things:

1. An initial estimate of the solution;

2. A numerical method for improving an estimated solution;

3. A criterion for determining whether the process has indeed improved
the solution at any particular iteration step;

4. A way to decide when the solution is adequate.

These needs are easily satisfied for the circuit in Figure 3.1, but they might
not be so clear in more complex circuits. Let’s look at a slightly more
complicated problem, shown in Figure 3.2(a), which consists of an RF
source, which may include a dc component, a diode, and a complex
impedance, Z(ω). We excite our diode, with the RF source, at the frequency
ωp. We know from Chapter 1 that the diode generates harmonics of both
current and voltage, and Z(ω) can be expected to vary with harmonic
frequency; thus, we could write it Z(kωp), where k is the harmonic number. 

Although still simple, this circuit illustrates the most significant
difficulties in analyzing a nonlinear RF or microwave circuit. Since the
impedance is represented in the frequency domain, it is impossible to
analyze this circuit in precisely the same manner as the previous one.
However, with a few changes, we can use a similar approach. First, we
assume that we know the diode voltage (consisting of its complex

+
–Vs

R

I

Figure 3.1 A simple dc-biased diode.



 Nonlinear Microwave and RF Circuits122

components at all harmonic frequencies, kωp). We then create the
equivalent circuit in Figure 3.2(b), which can be analyzed easily in the
frequency domain, giving 

(3.2)

Of course, if Vs consists of a dc and a sinusoidal component, only two
components of Vs, Vs(0) and Vs(ωp), are nonzero. Vs need not be sinusoidal,
but for our present purposes, it must be periodic. 

Using Fourier theory, we convert V(kωp) into a time waveform, V(t).
We then create the circuit in Figure 3.2(c) and find the current in the diode
junction algebraically from (2.62): 

(3.3)

Z(ω)

Vs
+
V
–

INLILIN

Z(ω)

Vs
+
V
–

ILIN

+
V(t)
–

iNL(t)

(a)

(b)

(c)

Figure 3.2 A diode excited by an RF circuit (a) can be divided into a pair of
equivalent circuits, one describing the linear part (b), and another, the
nonlinear part (c).

ILIN kωp( )
V kωp( ) Vs kωp( )–

Z kωp( )
----------------------------------------------=

INL t( ) Isat δV t( )( )exp 1–( )=
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If necessary, we can find INL(kωp) by Fourier transformation. The only
remaining problem is that we really don’t know V(kωp). However, we do
know how to tell whether a particular V(kωp) is a solution: substitute it
(V(t) or V(kωp), as appropriate) into (3.2) and (3.3), and see if Kirchoff’s
current law is satisfied at all the harmonics:

(3.4)

If (3.4) is satisfied, we have a solution. 
We now can summarize the solution process as follows:

1. Create an initial estimate of V(kωp), k = 0, 1, ..., K, where K is the
maximum harmonic with which we need be concerned. This estimate
may be extremely crude; for example, V(kωp) = 0 for all k. 

2. Use (3.2) to obtain ILIN(kωp). 

3. Inverse-Fourier transform V(kωp) to obtain V(t). 

4. Use (3.3) to determine INL(t). 

5. Fourier transform INL(t) to obtain INL(kωp). 

6. Substitute ILIN(kωp) and INL(kωp) into (3.4). Of course, (3.4) probably
will not be satisfied. Define an error function at each harmonic, fk,
where 

(3.5)

Note that each fk is implicitly a function of all voltage components
V(kωp). 

7. Modify V(kωp) and repeat the process from step 2. Use some
appropriate numerical method that can be trusted to decrease the | fk|. 

8. Continue until all K + 1 errors fk are negligibly small. 

In step 7, we have assumed the existence of some “appropriate numeri-
cal method.” This assumption is not unreasonable because, fortunately, the
mathematicians have been here ahead of us. There exists a large body of
mathematical theory addressing the problem of finding zeros of multiple
sets of nonlinear equations (see, for example, [3.4]); this is one application
of that theory. 

ILIN kωp( ) INL kωp( )+ 0=

fk ILIN kωp( ) INL kωp( )+= k 0 1 … K, , ,=
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Looking at all this a little more closely, we encounter some dilemmas.
For example, if we improve fk at several harmonics, but it increases at a few
others, is this an improvement? Are some harmonics more important than
others? What about termination criteria? If the error is small at the
harmonic of interest (say, the second harmonic in a frequency doubler), is
that good enough, or must all harmonic errors be reduced? And, to what
degree? Answering these questions is, obviously, essential; we address
them throughout the rest of this chapter. 

3.3 SINGLE-TONE HARMONIC-BALANCE ANALYSIS

Having introduced a method for solving simple nonlinear-circuit problems,
we now must generalize it to larger circuits. Although earlier work
involved the application of harmonic-balance analysis to simple circuits,
more recent work has enabled it to be used more generally, often in circuits
having large numbers of circuit elements. 

We begin by examining single-tone circuits, ones having periodic exci-
tations at a single fundamental frequency. This includes periodic, nonsinu-
soidal excitations, as long as they can be expressed by a one-dimensional
Fourier series. In later sections, we show how harmonic-balance analysis
can be applied to circuits having more complex excitations. 

3.3.1 Circuit Partitioning

In general, microwave and RF circuits have a large number of both linear
and nonlinear circuit elements. These can be grouped as shown in Figure
3.3 to form two subcircuits, one linear and the other nonlinear. The linear
subcircuit can be treated as a multiport and described by its Y parameters,
S parameters, or by some other multiport matrix. The nonlinear elements
are modeled by their global I/V or Q/V characteristics, described in Chap-
ter 2, and must be analyzed in the time domain. Thus, the circuit is reduced
to an (N + 2)-port network, with nonlinear elements connected to N of the
ports and voltage sources connected to the other two ports. [The (N + 1)th
and (N + 2)th ports represent, of course, the input and output ports in a two-
port network. Usually, a sinusoidal source is connected to only one of those
ports; however, sources are shown at both ports in Figure 3.3 for
generality.] Zs(ω) and ZL(ω), the source and load impedances, respectively,
are “absorbed” into the linear subcircuit; they are still in series with the
input and output ports, and for some purposes it may be necessary to
resurrect them as separate entities. The voltages and currents at each port
can be expressed in the time or the frequency domain; because of the
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nonlinear elements, however, the port voltages and currents have frequency
components at harmonics of the excitation. Although in theory an infinite
number of harmonics exist at each port, we shall assume throughout this
chapter that the dc component and the first K harmonics (i.e., k = 0 ... K)
describe all the voltages and currents adequately. Consequently, all higher
harmonics can be ignored. Ignoring the higher harmonics is equivalent to
setting the embedding impedances to zero at those frequencies; see Section
3.3.6.

The circuit in Figure 3.3 is successfully analyzed when either the
steady-state voltage or current waveforms at each port are known. Alterna-
tively, knowledge of the frequency components at all ports constitutes a
solution, because the frequency components and time waveforms are
related by the Fourier series. If, for example, we know the frequency-
domain port voltages, we can use the Y-parameter matrix of the linear
subcircuit to find the port currents. The port currents can also be found by
inverse-Fourier transforming the voltages to obtain their time-domain
waveforms and calculating the current waveforms from the nonlinear

Figure 3.3 A nonlinear microwave circuit can be divided into linear and nonlinear
subcircuits with the source and load impedances Zs(ω) and ZL(ω)
absorbed into the linear subcircuit.
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elements’ I/V equations. The idea of harmonic balance is to find a set of
port voltage waveforms (or, alternatively, the harmonic voltage compo-
nents) that give the same currents in both the linear-network equations and
the nonlinear-network equations; that is, the currents satisfy Kirchoff’s
current law. When that set is found, it must be a solution. 

(Note that we were careful to say a solution, not the solution.
Nonlinear circuits, in general, have multiple solutions. Fortunately, in
practical circuits, a single solution usually dominates. Nevertheless, we
should remain aware of the possibility of multiple solutions in any
nonlinear circuit.) 

If we express the frequency components of the port currents as vectors,
Kirchoff’s current law requires that 

(3.6)

where In, k is a phasor quantity, the kth harmonic component of the current
at port n, in the linear subcircuit; În, k, with the circumflex accent, is the port
current in the nonlinear subcircuit. Equation (3.6) shows the general form
of the voltage, current, and charge vectors; all such vectors in this chapter
use this form unless indicated otherwise. The vectors include only positive-
frequency components, because the negative-frequency components, being
the complex conjugates of the positive-frequency ones, can be found
immediately if needed. Eliminating the negative-frequency components
from (3.6) reduces its complexity considerably. 

First we consider the linear subcircuit. The admittance equations are 

I1 0,

I1 1,

I1 2,

…
I1 K,

I2 0,

I2 1,

…
I2 K,

…
IN K,

Î1 0,

Î1 1,

Î1 2,

…

Î1 K,

Î2 0,

Î2 1,

…

Î2 K,

…

ÎN K,

+

0

0

0

…
0

0

0

…
0

…
0

=
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(3.7)

The current vector I, from (3.6), has been written as a set of subvectors,
where 

(3.8)

that is, In is the vector of harmonic currents at the nth port. Similarly, 

(3.9)

The elements of the admittance matrix Ym,n in (3.7) are all
submatrices; each submatrix is a diagonal, whose elements are the values
Ym,n at each harmonic of the fundamental excitation frequency, kωp,
k = 0 ... K:

(3.10)

I1
I2
I3
…
IN

IN 1+

IN 2+

Y1 1, Y1 2, … Y1 N, Y1 N 1+, Y1 N 2+,

Y2 1, Y2 2, … Y2 N, Y2 N 1+, Y2 N 2+,

Y3 1, Y3 2, … Y3 N, Y3 N 1+, Y3 N 2+,

… … … … … …

YN 1, YN 2, … YN N, YN N 1+, YN N 2+,

YN 1 1,+ YN 1 2,+ … YN 1 N,+ YN 1 N 1+,+ YN 1 N 2+,+

YN 2 1,+ YN 2 2,+ … YN 2 N,+ YN 2 N 1+,+ YN 2 N 2+,+

V1
V2
…
…
VN

VN 1+

VN 2+

=

In

In 0,

In 1,

…
In K,

=

Vn

Vn 0,

Vn 1,

…
Vn K,

=

Ym n, diag Ym n, kωp( )[ ]= k 0 1 2 … K, , , ,=
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that is, 

(3.11)

VN+1 and VN+2, the excitation vectors, have the form, 

(3.12)

where Vb1 and Vb2 are the dc voltages at ports N + 1 and N + 2,
respectively, and Vs is the excitation voltage at port N + 1. Equation (3.12)
implies that the port N + 1 excitation includes a dc and a fundamental
frequency source, while the N + 2 port includes only dc. This is the usual
situation; it corresponds, for example, to a FET amplifier that has gate and
drain bias and gate excitation. A two-terminal device would normally have
only one bias source, and in this case the N + 2 port might not exist. On the
other hand, a very complex IC might have a number of dc sources, and
perhaps many RF sources as well. Finally, if the excitation were periodic
but not sinusoidal, the vector on the right in (3.12) would include its
harmonic components instead of zeros. The extension to these cases is
straightforward. 

Partitioning the Y matrix in (3.7) gives an expression for I, the vector
of currents in ports 1 to N: 

Ym n,

Ym n, 0( ) 0 0 … 0

0 Ym n, ωp( ) 0 … 0

0 0 Ym n, 2ωp( ) … 0

… … … … 0
0 0 0 … Ym n, Kωp( )

=

VN 1+

VN 2+

Vb1

Vs

0
0

…
Vb2

0
…
0

=



 Harmonic Balance Analysis and Related Methods 129

(3.13)

or

(3.14)

where  is the  submatrix of Y corresponding to its first N rows
and columns. Is represents a set of current sources in parallel with the first
N ports; the first matrix term in (3.13) transforms the input- and output-port
excitations into this set of current sources, so the (N + 1)th and (N + 2)th
ports need not be considered further. The equivalent representation is
shown in Figure 3.4. This transformation allows us to express the
harmonic-balance equations as functions of currents at only the first
through Nth ports, the ones connected to nonlinear elements. 

3.3.2 The Nonlinear Subcircuit

The nonlinear-element currents, represented by the current vector on the
right in (3.6), can result from nonlinear capacitors, resistors, controlled
sources, or occasionally inductors. Because nonlinear inductors occur
rarely in RF and microwave circuits, we need not consider them at this
point. Furthermore, we assume that the nonlinear elements are all voltage
controlled. These assumptions do not limit us severely; simple methods,
such as the use of a gyrator, can be employed to circumvent them. Inverse
Fourier transforming the voltages at each port gives the time-domain
voltage waveforms at each port: 

(3.15)

I1

I2

…
IN

Y1 N 1+, Y1 N 2+,

Y2 N 1+, Y2 N 2+,

… …
YN N 1+, YN N 2+,

VN 1+

VN 2+

=

Y1 1, Y1 2, … Y1 N,

Y2 1, Y2 2, … Y2 N,

… … … …
YN 1, YN 2, … YN N,

V1

V2

…
VN

+

I Is YN N× V+=

YN N× N N×

F 1– Vn{ } vn t( )→
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We first examine nonlinear capacitors. Because the port voltages
uniquely determine all voltages in the network, a capacitor’s charge
waveform can be expressed as a function of those voltages: 

(3.16)

Fourier transforming the charge waveform at each port gives the charge
vectors for the capacitors at each port: 

(3.17)

and the charge vector, Q, is 

Figure 3.4 The circuit of Figure 3.3, in which the excitation voltage sources at ports
N + 1 and N + 2 have been transformed into current sources at ports 1 to
N. 

qn t( ) fqn v1 t( ) v2 t( ) … vN t( ), , ,( )=

F qn t( ){ } Qn→
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(3.18)

The nonlinear-capacitor current is the time derivative of the charge
waveform. Taking the time derivative corresponds to multiplying by jω in
the frequency domain, so 

(3.19)

Equation (3.19) can be written as 

(3.20)

where Ω is the diagonal matrix 

Q

Q1

Q2

…
QN

Q1 0,

Q1 1,

Q1 2,

…
Q1 K,

Q2 0,

…
Q2 K,

…
QN K,

= =

ic n, t( )
dqn t( )

dt
---------------- jk ωp Qn k,↔= k 0 1 … K, , ,=

Ic jΩQ=
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(3.21)

This matrix has N cycles of (0, ..., K)ωp along the main diagonal. 
Similarly, the current in a nonlinear conductance or a controlled current

source is 

(3.22)

Fourier transforming these gives 

(3.23)

and the vector 

(3.24)

Substituting (3.14), (3.20), and (3.24) into (3.6) gives the expression 

(3.25)

Equation (3.25) represents a test to determine whether a trial set of port
voltage components is the correct one; that is, if F(V) = 0, then V is a valid

Ω

0 0 0 … … … … … 0
0 ωp 0 … … … … … 0

0 0 2ωp … … … … … 0

… … … … … … … … …
0 … … … Kωp 0 0 … 0

0 … … … 0 0 0 … 0
0 … … … 0 0 ωp … 0

… … … … … … … … …
0 … … … … … … … Kωp

=

ig n, t( ) fn v1 t( ) v2 t( ) … vN t( ), , ,( )=

F ig n, t( ){ } IG n,→

IG

IG 1,

IG 2,

…
IG N,

=

F V( ) Is YN N× V jΩQ IG+ + + 0= =
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solution. It also represents an equation that can be solved to obtain the port-
voltage vector, V. F(V), called the current-error vector, represents the
difference between the current calculated from the linear and nonlinear
subnetworks, at each port and at each harmonic, for a trial-solution vector
V. 

3.3.2.1 Example: Formulation of the Current-Error Vector

We shall derive the current-error vector of the circuit in Figure 3.5, which
consists of an ideal diode (one having no series resistance or junction
capacitance) and a linear embedding network described by an admittance
matrix. As before, the source impedance Zs(ω) is absorbed into the linear
network. Figure 3.5 might represent, for example, the local-oscillator
circuit in a diode mixer. Because only one nonlinear element exists, N = 1
and the vector V = V1. The admittance matrix of the embedding network,
Ym, can be written as 

(3.26)

Y1,1 is a submatrix that corresponds to YN × N in (3.13) and (3.14), and Y1,2
corresponds to the leftmost submatrix in (3.13). Then 

(3.27)

When V2 is transformed through the Y network, the equivalent circuit of
Figure 3.6 results. The linear-circuit equations then depend only upon Is, 1
and the admittances seen by the diode at each harmonic, the elements of

Figure 3.5 Pumped diode circuit of the example.

Ym
Y1 1, Y1 2,

Y2 1, Y2 2,

=

Is Is 1, Y1 2, V2= =
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Y1,1, are often called the embedding admittances. V2 in (3.27) consists of
only the fundamental source Vscos(ωpt) and the dc bias source Vb, so 

(3.28)

We must generate an initial estimate of either v1(t) or V1; because this
is a simple circuit, that estimate is easy to produce. Previous experience
suggests that a sinusoidal waveform clipped at approximately 0.6V should
be a good initial estimate of v1(t). Fourier transforming v1(t) gives the
components of V1. The diode current i1(t) is found from the I/V equation of
an ideal junction, given by (2.62). Because there is no capacitance,
q1(t) = 0. Fourier transforming i1(t) gives the components of the vector
IG, 1, so the current-error vector is 

(3.29)

One might wonder if the other Y parameters, Y2,1 and Y2,2, have any
use. Indeed they do. Once V1 is known, they can be used to find the input
current from the source, I2: 

(3.30)

Figure 3.6 Simplified circuit for the example, with the two-port linear subcircuit
reduced to a one-port.

V2

Vb

Vs

0
…
0

=

F V( ) Y1 2, V2 Y1 1, V1 IG 1,+ +=

I2 Y2 1, V1 Y2 2, V2+=
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Knowing I2, the vector of input currents at all the harmonics, we can
calculate many useful quantities. The RF input power is 

(3.31)

where the raised asterisk indicates the complex conjugate. The power
dissipated in the source impedance at kωp is 

(3.32)

This quantity is more important than it might seem at first, because a
nonlinear circuit using a two-terminal device is often modeled in such a
way that the linear subcircuit consists only of Zs(ω); in this case, Zs(ω) is
the impedance seen by the diode at each harmonic, including the source
and output impedances. For example, this approach is often used to model a
diode frequency multiplier, wherein the source impedance is Zs(ωp) and the
load at the kth harmonic is Zs(kωp). We can also find the fundamental-
frequency input impedance, 

(3.33)

As explained in Chapter 1, one cannot define a true input impedance of a
nonlinear circuit because an impedance implies a V/I relationship that is
independent of voltage or current magnitude. However, the “quasi-
impedance” given by (3.33) can be used in much the same way as a linear-
circuit impedance. Specifically, Zin is the input impedance to which the
source should be matched in order to optimize power transfer at the
specific value of Vs. 

3.3.3 The Linear Subcircuit

Many methods exist for generating the N-port admittance matrix of a linear
circuit. Perhaps the simplest is to generate an indefinite admittance matrix
and convert it into a port matrix. The process is straightforward and can be
implemented readily on a computer. Of course, a matrix must be produced
for each harmonic frequency in the analysis. 

Pin
1
2
--- Re V2 1, I2 1,

*{ }=

Pk
1
2
--- I2 k,

2Re Zs kωp( ){ }=

Zin
Vs

I2 1,
--------- Zs ωp( )–=
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The indefinite admittance matrix is created by “stamping” the matrix
with a pattern of admittances for each element. For example, if we have a
simple two-terminal element connected from node n1 to n2, whose
admittance is Y, we add Y to the (n1, n1) and (n2, n2) positions and add –Y to
the (n1, n2) and (n2, n1) positions. Similar procedures are used for more
complex elements, such as controlled sources and multiports. An N-node
circuit results in an  matrix. 

To convert the indefinite admittance matrix to a port admittance
matrix, we must create a port impedance matrix and invert it. To obtain the
impedance matrix, we first select the nodes corresponding to port 1, excite
them with unity current, and measure the voltage between the nodes
representing each of the ports. This produces the first column of the
impedance matrix. Moving the excitation to port 2 produces the second
column, and proceeding in this manner to the last port produces the entire
matrix. 

Specifically, suppose node 1 is the positive terminal of port 1 and node
3 is the negative. The matrix equation is 

(3.34)

Solving (3.34) gives us all the Vn . Since port 1 is excited by a unit current,
Z1,1 in the port impedance matrix is simply the port voltage: Z1,1 = V1 – V3.
Similarly, if port 2 were connected to nodes 4 and 7, Z2,1 = V4 – V7. When
all Zn, 1 have been found, we move the excitation to port 2 (I4 = 1 and
I7 = –1, to continue the example) and repeat the process. Finally, the
impedance matrix must be inverted. This is rarely a lengthy process,
because the number of ports is usually far less than the number of nodes. 

A few notes are in order. First, the solution of (3.34) is best obtained by
factoring the matrix. This allows the matrix equation to be solved
repeatedly, for each new right-hand (current) vector, by only a simple back-
substitution operation instead of a lengthy matrix reduction. As the
indefinite admittance matrix is very sparse, sparse-matrix techniques can
dramatically reduce computation time compared to full-matrix methods.
Second, it often happens that certain elements, such as transformers and

N N×
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controlled voltage sources, do not have an admittance representation and
cannot be used directly to form the admittance matrix. One common
solution is to approximate the unrealizable element by realizable ones; for
example, a voltage-controlled voltage source can be approximated as a
voltage-controlled current source with a low-value resistor in shunt with
the current source. Another solution, which provides better matrix
conditioning, is to cascade the current source with a gyrator. Similarly,
transformers can be realized as interconnections of gyrators. Finally, a
persistent problem in formulating the matrix is that breaking the
connections with the nonlinear elements often results in disconnected
nodes. If nothing were done to accommodate them, the indefinite
admittance matrix would be singular. The conventional solution is to
interconnect all nodes by high-value resistors, but an ill-conditioned matrix
usually results. A better solution is to shunt each port with a moderate-
value resistor, typically 100Ω, when the indefinite matrix is formulated. To
remove the resistors, simply subtract their admittances from the main
diagonal of the port admittance matrix. 

3.3.4 Solution Algorithms 

The one remaining problem, and the nastiest part of the whole business, is
to solve (3.25) to obtain V. Each of the K + 1 frequency components of V at
each port is a variable, and each component has a real and imaginary part.
Thus, there are 2N (K + 1) variables to be determined (we concede that the
dc components do not have imaginary parts; however, it is usually easier in
the analysis to carry the dc terms’ imaginary parts than to try to circumvent
them). For example, a FET frequency-multiplier analysis might include
nonlinear elements at three ports, and have eight significant harmonics plus
dc at each port. Thus, N = 3, K = 8, and there are 54 variables in (3.25)!
Solving a set of equations having so many variables, especially in view of
the circuit’s nonlinear nature, is no small task. 

A number of algorithms have been proposed for solving (3.25). Some
of these are obvious applications of existing numerical techniques, but
others show great ingenuity. Today, there is a strong consensus that
Newton’s method is preferred for harmonic-balance simulation, and
virtually all harmonic-balance simulators use it. We describe Newton’s
method in Section 3.3.4.3.
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3.3.4.1 Optimization 

At first glance, solving (3.25) looks a lot like an optimization problem.
Therefore, we might be able to solve it by minimizing the magnitude
squared of the current-error function; that is, minimize ε where 

(3.35)

and *T represents the complex conjugate transpose of the vector. Libraries
of scientific subroutines often include a general-purpose functional optimi-
zation routine, so, with this method, a large and difficult part of the com-
puter programming is prepackaged for us. However, the error function in
(3.35) destroys a lot of information about the individual contribution of
each variable to the error, so optimization routines may have convergence
problems, especially when a large number of variables must be optimized
simultaneously. Because of these limitations, optimization is a reasonable
approach only for relatively simple problems, in which the ease of pro-
gramming outweighs the inefficiency. 

3.3.4.2 Relaxation Methods 

A number of relaxation methods, which are both simple to implement and
intuitively satisfying, have been proposed. As the name implies, relaxation
methods use simple algorithms that encourage the voltages to move
gradually (or relax) toward the solution. Often the methods are largely
heuristic. For example, the bisection method, used to find the zero of a
nonlinear function and described in virtually all basic numerical methods
texts, is a kind of relaxation method. An advantage of these methods is that
they are simple to implement, often not requiring the generation of I/V
derivatives or even an initial estimate of the solution. 

Two of the most popular relaxation methods are those of Hicks and
Khan [3.5] and Kerr [3.6]. Although seemingly quite different, it is
possible to show that these methods are equivalent, and that Kerr’s method
is a reflection form of Hicks and Khan. 

Relaxation methods are largely obsolete. The worst problems are (1)
unpredictable (and often disappointing) convergence characteristics, and
(2) inapplicability to large systems. Their importance today is largely
historical, as they represent an important step in the development of
nonlinear circuit simulation technology. As a more practical matter, they
may yet be useful for a “quick and dirty” solution of a special problem. 

ε F*T V( )F V( )=
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3.3.4.3 Newton’s Method 

Newton’s method is a powerful algorithm for finding the zeros of a set of
multivariate nonlinear functions. Because the harmonic-balance method
involves finding the zeros of F(V), Newton’s method is an obvious choice
as a solution algorithm. Newton’s method is an iterative technique; it
estimates the zero of a function by using its first derivative to extrapolate to
the axis of the independent variable. Its power comes from its use of all the
derivatives of F(V), with respect to the voltage components of V, in each
iteration. Newton’s method is used in virtually all modern harmonic-
balance software. 

This iterative process is most easily illustrated by applying it to a one-
dimensional problem. Figure 3.7(a) shows a function of one variable, f(x),
and a Newton estimate of its zero. One can write, for the linear extrapola-
tion, 

(3.36)

f(x0) and its derivative are known, (3.36) can be solved easily to obtain ∆x,
and a new estimate of the zero is found as x0 – ∆x. The function and its
derivative are again evaluated, at the estimated zero, and the process is
repeated until the zero is determined with the required accuracy. 

It is important to realize that Newton’s method can fail. For example,
Figure 3.7(b) shows what can happen when the process is started near a
relative minimum of the function: the second estimate of the zero returns
the process to a point near the original one, and it oscillates within a limited
region. The process can easily get caught in that region and never find the
zero. It could also land close to the minimum, where  df /dx is nearly zero, so
the next estimate of the zero would either be hopelessly far from the zero’s
real location, or would cause a numerical exception. Newton’s method can
be trusted to converge only when it is started sufficiently close to the zero.
“Sufficiently close” can be hard to determine, but it generally means that
(1) the function is well behaved between the zero and starting point, and (2)
it is not too strongly nonlinear. Thus, Newton’s method usually requires
approximate knowledge of the location of the zero before it begins. 

f x0( )
xd

df

x x0=

∆x– 0=
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3.3.5 Newton Solution of the Harmonic-Balance Equation

3.3.5.1 Iterative Process and Jacobian Formulation

Our error function, F(V), is in fact a set of multidimensional functions, and
we need to find all zeros simultaneously. The analog of (3.36) applied to a
set of multidimensional functions is 

(3.37)

(a)

(b)

Figure 3.7 Newton’s method in one dimension. In (a) the process finds the zero
easily by making repeated linear estimates of its location. When a
relative minimum exists, as in (b), the process can become trapped near
the minimum. 

F Vp( ) dF V( )
dV

----------------
V Vp=

∆V– 0=
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where Vp is the pth estimate of the solution vector. With 

(3.38)

the updated vector, Vp +1, is 

(3.39)

Equation (3.39) involves the derivative of a vector, F, with respect to
another vector, V. The result is a matrix, called the Jacobian of F,
designated JF:

(3.40)

The Jacobian contains the derivatives of all the components of the error
vector with respect to the components of V. Thus, it contains information
on the sensitivity of changes in every component of F resulting from
changes in any component of V. This amount of information is the
maximum possible from a linearized system of equations. 

The form of the Jacobian is 

Vp Vp 1+– ∆V=

Vp 1+ Vp dF V( )
dV

----------------
 
 

1–
F Vp( )–=

JF
dF V( )

dV
----------------

V Vp=

=
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(3.41)

The elements of the Jacobian are the derivatives

(3.42)

where n and m are the port indices (1, N), and k and l are the harmonic
indices (0, ..., K). Determining these quantities requires some effort. We
begin by taking the derivative of (3.25): 

(3.43)

Thus, we must find  and . We begin with the former.
, a matrix, has the same form as ; that is, its elements are

. 

JF

V1 0,∂
∂F1 0,

V1 1,∂
∂F1 0,

V1 2,∂
∂F1 0, …

V1 K,∂
∂F1 0,

V2 0,∂
∂F1 0, …

VN K,∂
∂F1 0,

V1 0,∂
∂F1 1,

V1 1,∂
∂F1 1,

V1 2,∂
∂F1 1, …

V1 K,∂
∂F1 1,

V2 0,∂
∂F1 1, …

VN K,∂
∂F1 1,

… … … … … … … …

V1 0,∂
∂F1 K,

V1 1,∂
∂F1 K,

V1 2,∂
∂F1 K, …

V1 K,∂
∂F1 K,

V2 0,∂
∂F1 K, …

VN K,∂
∂F1 K,

V1 0,∂
∂F2 0,

V1 1,∂
∂F2 0,

V1 2,∂
∂F2 0, …

V1 K,∂
∂F2 0,

V2 0,∂
∂F2 0, …

VN K,∂
∂F2 0,

… … … … … … … …

V1 0,∂
∂F2 K,

V1 1,∂
∂F2 K, … … … … …

VN K,∂
∂F2 K,

… … … … … … … …

V1 0,∂
∂FN K, … … … … … …

VN K,∂
∂FN K,

=

Vm l,∂
∂Fn k,

JF
dF V( )

dV
---------------- YN N× V∂

∂IG jΩ
V∂

∂Q
+ += =

IG∂ V∂⁄ Q∂ V∂⁄
IG∂ V∂⁄ F∂ V∂⁄
In k,∂ Vm l,∂⁄
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First, we note that a Fourier series can be expressed a number of
different ways; we express it here as follows:

(3.44)

where k ≠ 0. The components are 

(3.45)

Thus, In, k, k > 0, is half the phasor value of the current component at kωp.
To determine its derivative w.r.t. Vm, l, we must consider both positive and
negative frequency components of Vm, l. Then, 

(3.46)

where 

(3.47)

From (3.45), the Fourier component  is 

(3.48)

with

(3.49)

We see immediately that

in t( ) In k, jkωpt( )exp
k K–=

K

∑=

In k,
1
T
--- in t( ) jkωpt–( )exp

0

T

∫=

In k,d
Vm l,∂

∂In k, Vld
Vm l–,∂

∂ In k, V l–d+=

V l–d Vld *=

Ik∂ Vl∂⁄

Vm l,∂
∂In k, 1

T
---

vm∂
∂ in

Vm l,∂
∂ vm jkωpt–( )exp

0

T

∫=

vm t( ) Vm l, jlωp t( )exp
l K–=

K

∑=
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(3.50)

Substituting (3.50) into (3.48) gives

(3.51)

For the negative-frequency component

(3.52)

so 

(3.53)

We find that the derivatives are components of the Fourier expansion of the
derivative waveform. 

The terms (3.53) tend to occur at higher frequencies than those in
(3.51) and thus have less effect on the convergence process. In many
simple situations, (3.53) can be neglected. However, including it noticeably
improves convergence in strongly nonlinear circuits. 

We still need to put all this into the same form as (3.8). First, we note
that the derivative terms are complex, so we can write

(3.54)

where Gp = Gp
R + jGp

I
 is the pth Fourier-series component of

g(t) = ∂ in / ∂ vm, evaluated at vm(t), and

Vm l,∂
∂ vm jlωpt( )exp=

Vm l,∂
∂In k, 1

T
---

vm∂
∂ in j k l–( )ω p t–( )exp

0

T

∫=

Vm l–,∂
∂ vm j– lω pt( )exp=

Vm l–,∂
∂ In k, 1

T
---

vm∂
∂ in j k l+( )ωpt–( )exp

0

T

∫=

Vm l,∂
∂In k, Gk l–

R jGk l–
I+=

Vm l–,∂
∂In k, Gk l+

R jGk l+
I+=
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(3.55)

Substituting into (3.46) gives

(3.56)

Thus, each term in (3.41) must be treated as a 2 × 2 submatrix,

(3.57)

Unfortunately, it is not possible to write (3.56) as a simple, complex
equation. Worse, when k = l = 0, the matrix in (3.57) becomes 

(3.58)

The second row and second column of the Jacobian, for each port, are both
zero. The Jacobian is, therefore, singular and (3.37) cannot be solved! The
problem arises from the fact that dc components must have zero imaginary
parts. To circumvent this difficulty, we can set the (2, 2) position of (3.58)
to some arbitrary value; for example, 

(3.59)

Then, as long as G0 ≠ 0 and the imaginary parts of the dc voltage and
current components are consistently set to zero, all should be well. Of
course, another solution is simply to delete the row and column. Yet
another solution is to derive the Jacobian as described in Section 3.6.8. 

dVm l, dVm l,
R jdVm l,

I+=

dVm l–, dVm l,
R jdVm l,

I–=

dIn k,
R Gk l–

R Gk l+
R+( )dVm l,

R G– k l–
I Gk l+

I+( )dVm l,
I+=

dIn k,
I Gk l–

I Gk l+
I+( )dVm l,

R Gk l–
R Gk l+

R–( )dVm l,
I+=

dIn k,
R

dIn k,
I

Gk l–
R Gk l+

R+ G– k l–
I Gk l+

I+

Gk l–
I Gk l+

I+ Gk l–
R Gk l+

R–

dVm l,
R

dVm l,
I

=

G0 0

0 0

G0 0

0 G0
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The third term of (3.43) is handled in the same manner. To obtain
∂ Qn,k/∂Vm, l, we use the small-signal capacitance waveform, ∂qn /∂vm,
instead of the conductance waveform, ∂ in/vm, in (3.51), and proceed
identically. The result can be written,

(3.60)

where Cp = Cp
R + jCp

I
 represents the pth Fourier-series component of

c(t) = ∂ qn/∂ vm. The matrix containing the kωp terms represents a single
entry of the Ω matrix (3.21). 

Since we have separated the real and imaginary parts of dIn,k and dVm, l,
we need to treat the Y matrix similarly. The 2 × 2 submatrix representing a
Y parameter has the form

(3.61)

For dc, we require only the matrix component in the (1, 1) position.

3.3.5.2 Jacobian Structure

The Jacobian consists of an N × N matrix of square submatrices, each of
which has dimension K + 1. Each submatrix represents the harmonic
components for a particular nonlinear-element port; that is, if the current or
charge at port n depends upon the voltage at port m, the (n, m) submatrix is
filled with Fourier terms. Added to each (n, m) submatrix is a diagonal
matrix of Yn, m at each harmonic, 0 ... Kωp. Thus, some submatrices are
filled and some are diagonal. It is also possible for some to be empty. 

Equation (3.62) shows a possible form of the matrix when N = 3 and
K = 3. Filled blocks along the main diagonal occur when a port has a two-
terminal nonlinear element connected to it. Off-diagonal filled blocks
result from controlled nonlinear current sources. The diagonal matrix in the
(3, 3) position implies that the voltage at this port is a control voltage for
one of the other nonlinearities, but there is no nonlinear element connected
to it. 

dIn k,
R

dIn k,
I

0 kωp–

kωp 0

Ck l–
R Ck l+

R+ C– k l–
I Ck l+

I+

Ck l–
I Ck l+

I+ Ck l–
R Ck l+

R–

dVm l,
R

dVm l,
I

=

Yn m, kωp( )
YR

n m, kωp( ) YI
n m, kωp( )–

YI
n m, kωp( ) YR

n m, kωp( )
→
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It is interesting to note that this matrix is rather sparse, so sparse-
matrix methods may be useful in solving it. Sparse-matrix methods,
unfortunately, usually work well only when the matrix is extremely sparse,
and the Jacobian, in the harmonic-balance problem, is usually not sparse
enough to benefit more than modestly from such methods. It also may be
possible to exploit the special structure of this matrix in other, more elegant
ways to speed its factorization. 

(3.62)

3.3.5.3 Example: Jacobian Formulation

The circuit of the previous example and Figures 3.5 and 3.6 will be solved
by means of Newton’s method. F(V) is given by (3.29); differentiating
gives the terms of the Jacobian: 

(3.63)

or 

(3.64)

x x x x
x x x x
x x x x
x x x x

x x x x
x x x x
x x x x
x x x x

x
x

x
x

x
x

x
x

x x x x
x x x x
x x x x
x x x x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

JF
dF V( )

dV1
----------------=

V1 l,∂
∂F1 k, Y1 k, k l=( )

V1 l,∂
∂IG 1 k,;+=
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where 

(3.65)

The partial derivative within the integral sign can be interpreted as the
incremental junction conductance of the diode:

(3.66)

Fourier-transforming g(t) gives the frequency components Gk,
k = –K ... 0 ... K. The Jacobian JF is 

(3.67)

Note that the terms arising from the negative frequencies (3.53) involve
rather high harmonics, so they decrease to insignificance rapidly. 

The solution is found by the following process: 

1. Form an initial estimate of the waveform v1(t). As in the previous
example, a clipped sinusoid is a good initial estimate. 

Y1 k, k l=( )
Y1 1, kωp( )

0



=
k l=

k l≠

g t( )
v∂

∂ ig 1,
vd

d Isat δV( )exp 1–( )[ ]= =

δ Isat δv( )exp=

δ ig 1, t( )≈

JF =

Y11 0( ) G0+ 0

0 0

2GR
1 2GI

1

0 0

2GR
2 2GI

2

0 0
…

2GR
1 0

2G1
I 0

Y11
R ωp( ) G0 G2

R+ + Y– 11
I ωp( ) G2

I+

Y11
I ωp( ) G2

I+ Y11
R ωp( ) G0 G2

R–+

GR
1– GR

3+ GI
1–– GI

3+

G I
1– G3

I+ GR
1– GR

3–
…

… … … …
… … … …
… … … …
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2. Fourier-transform v1(t) to obtain V1
0 , the initial estimate in the

frequency domain. The superscript represents the iteration number. 

3. Find the conductance waveform g(t) from (3.66) and Fourier
transform it. 

4. Form JF and F(V0) from (3.67)and (3.29). 

5. Solve (3.39) to obtain a new estimate of the voltage vector, V1
1. 

6. Fourier-transform the diode current, which was found in step 3, and
form the vector IG, 1. 

7. Use (3.29) to determine F(V1). 

8. If the magnitudes of the components of F(V1) are small enough, the
solution has been found. Otherwise, inverse Fourier transform to
obtain v1(t) and repeat from step 3 to obtain V1

2. 

3.3.6 Selecting the Number of Harmonics and Time Samples

In theory, the waveforms generated in nonlinear analysis have an infinite
number of harmonics, so a complete description of the operation of a
nonlinear circuit would appear to require current and voltage vectors of
infinite dimension. Fortunately, the magnitudes of frequency components
invariably decrease with frequency; otherwise the time waveforms would
represent infinite power. Accordingly, it is always possible to ignore all
harmonics above some maximum number, which we have designated K. An
important consideration in implementing a harmonic-balance analysis is
the selection of K. Selecting K too small results in poor accuracy, and often
poor convergence; conversely, selecting K too large slows the solution
process, which under the best circumstances is time-consuming, and
increases the use of computer memory. 

Perhaps the simplest criterion for selecting K is to consider the
magnitudes of the capacitances in the device’s equivalent circuit. Above
some frequency the capacitive susceptances are greater than the circuit’s
conductances, so they effectively are short circuits, and their voltage
components are negligibly small. This criterion can be applied easily to a
diode, for example, where the junction capacitance short-circuits all
voltage components across the only other nonlinearity, the resistive
junction. 

Another important consideration in the selection of K is the strength of
the dominant nonlinearity and the magnitude of the excitation. It is often
possible to generate a simplified equivalent circuit for the nonlinear device
and to approximate the voltages and currents in it well enough to form a
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rough estimate of the frequency-component magnitudes. For example, in a
strongly driven FET, one can often approximate the gate voltage as a
sinusoid and the drain current as a rectangular pulse train. The length of
each pulse is equal to the length of time that the gate voltage is above Vt,
the threshold voltage. A pulse train’s Fourier series is found easily, and
because the actual drain-current pulse is invariably softer than a
rectangular pulse, this series establishes an upper bound to the relative
magnitudes of the drain current’s harmonic components. In Chapter 1 we
saw that an nth-degree nonlinearity generates only n harmonics directly,
although higher harmonics are possible as mixing products between these
frequencies. These higher harmonics are usually much weaker than those
generated directly, so it rarely makes sense to pick K much larger than the
highest degree nonlinearity in the circuit. Conversely, if we wish to
determine the levels of high harmonics, we must be careful to model the
circuit nonlinearities by using polynomials (or other functions having
polynomial expansions) of a degree great enough to generate those
harmonics. 

The nature of the problem to be solved often places some constraints
on K. If the current or voltage at some harmonic k are to be found, K > k is
an obvious requirement. It is perhaps less obvious that the errors
introduced by harmonic truncation are usually greater at higher harmonics
than at the lower ones, so we really must choose K considerably larger.
Calculating the magnitudes of high harmonics accurately also requires that
convergence be more complete, so that the errors in all the high-harmonic
components are small. 

The properties of the fast Fourier-transform algorithm (FFT), used to
obtain the frequency components from the time waveforms, also places
constraints on K. One requirement of the FFT is that the number of
harmonics must always be an integer power of two. (Forms of the FFT have
been devised that do not have this requirement, but they are not used much
in harmonic-balance simulators.) The second, a consequence of the
sampling theorem, is that the number of time samples must be twice the
number of frequency components. It is not necessary to include all these
harmonics in the harmonic-balance equations; it is possible to use, for
example, only 10 harmonics in the equations but to calculate 16 via the
FFT. It is essential, however, to use all the time samples required by the
FFT. Furthermore, there are good reasons to use even more time samples.
Using the minimum number of samples required by the sampling theorem
may result in aliasing errors, where the neglected high harmonics affect the
accuracy of lower-harmonic components. The simplest way to minimize
aliasing errors is to oversample, that is, to use a sampling rate 25% to 30%
greater than the minimum, or 2.5 to 2.6 times the minimum number of



 Harmonic Balance Analysis and Related Methods 151

required samples. In the above example, 10 harmonics require a sample
rate of 25 or 26 time samples per cycle. The next highest power of two is
32, so 32 samples should be used, with 16 harmonics in the FFT. The
higher six harmonics are simply discarded in formulating the current-error
vector. 

The intended use of the analysis also affects the number of harmonics
that must be considered. In Section 3.4 we shall see that a conversion-
matrix analysis involving mixing products around the kth local-oscillator
harmonic requires K = 2k harmonics, plus the dc component, in the large-
signal analysis. Obtaining good accuracy in the IM analysis of mixers or
other time-varying circuits often requires even more harmonics, however,
and it is often very difficult to estimate K beforehand. In these problems
one must determine K empirically by increasing it until consistent results,
independent of K, are obtained. 

What is the effect of discarding the harmonics k > K? It implies that the
voltage across the nonlinear elements at those frequencies is zero, so the
impedance looking into the embedding network from the element terminals
is a short circuit. It is sometimes possible, although rarely practical, to
formulate a dual case to the one we have described, wherein the element
currents, not the voltages, are the independent variables. In this case,
harmonic truncation would set the currents to zero, which implies open
circuits at the higher frequencies. 

3.3.7 Matrix Methods for Solving (3.37) 

Solving (3.37) involves solving a set of linear equations. Certainly, there is
no shortage of literature describing methods for solving linear equations;
however, certain methods have been found especially useful for harmonic-
balance analysis, so we examine them here. 

3.3.7.1 Direct Solvers

Direct or “full” solvers are those described in most basic linear-algebra
texts. Especially when norm reduction methods are used (Section 3.3.8),
the most practical is LU decomposition, as solutions can be obtained for
multiple right-hand sides with a single factorization.

The principle behind LU decomposition is very simple. Suppose we
must solve the matrix equation,

(3.68)Ax b=
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for x, where A is a matrix and x, b are vectors. We factor the matrix A into
a lower triangular matrix, L, in which the entries above the diagonal are
zero, and an upper triangular matrix, U, in which the entries below the
diagonal are zero. Then, we have 

(3.69)

Let

(3.70)

where m is a vector, and solve, in two steps,

(3.71)

The two steps in (3.71) can be solved by back-substitution operations,
which are computationally inexpensive; virtually all the work is in fac-
toring the matrix. Once the matrix is factored, it can be used repeatedly to
solve (3.68) at very low cost. This property is especially valuable in
harmonic-balance analysis. Another nice property is that LU factorization
can be performed “in place”: that is, without using more memory than what
is required to hold the original matrix, A. A is destroyed in the factorization
and is replaced by L and U.

Direct solvers scale poorly for harmonic-balance analysis. The time
required to factor the matrix varies approximately as the cube of its
dimension; thus, doubling the size of the matrix increases computation time
by a factor of eight. This characteristic clearly makes direct solvers
impractical for analyses of large circuits. 

3.3.7.2 Sparse Solvers

A sparse matrix is one that contains mostly zero entries. Conventional
sparse solvers use LU decomposition to factor the matrix but exploit the
sparsity of certain kinds of matrices to improve efficiency. The
improvement comes from avoiding the need to multiply and add large
numbers of zero entries. In most such methods, the zero entries are not
stored, so a saving of memory results as well. 

As a sparse matrix is reduced, it tends to fill in; that is, entries that
originally were zero are converted to nonzero numbers. Avoiding such

LUx b=

Ux m=

Lm b=

Ux m=
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“fill-ins” is important to the success of a sparse-matrix method. Usually,
there is a trade-off between fill-ins and optimal pivoting, so sparse matrix
methods may not be as robust as direct, full solvers. 

If the matrix is very sparse, the time required to factor it may vary by
as little as the 1.5 power of its dimension. This is a considerable
improvement over direct methods. However, it is rarely possible to achieve
adequate sparsity in the Jacobian to achieve this kind of performance. 

3.3.7.3 Krylov-Subspace Techniques and Inexact Newton Iteration

Krylov subspace techniques are a class of iterative methods for solving
sparse linear systems of equations. There is now a general consensus that a
technique called the generalized minimum residual, or GMRES, is the
preferred one, of many available, for harmonic-balance analysis. Although
some of the material in this section may be valid for other methods, it
should be considered specific to GMRES. 

Iterative methods minimize the residual, r, of (3.68):

(3.72)

where  is an estimate of the solution. This can be done efficiently only
when  can be estimated with at least moderate accuracy, so r is not too
large. To obtain such conditions, we must precondition the matrix; that is,
multiply it by an estimate of the inverse. Thus,

(3.73)

where P, the preconditioner, is an estimate of A–1. Other Krylov methods
require different kinds of preconditioning; in GMRES, it is also possible to
perform right preconditioning:

(3.74)

to obtain y, and then solve 

(3.75)

In this case, it is essential that (3.75) be solvable at low computational cost.
In harmonic-balance analysis, a suitable preconditioner is the inverse of the
admittance matrix of the linear subcircuit, which is generated in the process

r b Ax̂–=

x̂
x̂

PAx Pb=

AP 1– y b=

y Px=
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of creating the port Y matrix, and need be inverted only once in the
solution process. Another option for the preconditioner is the inverse of a
severely pruned (Section 3.3.9.1) version of the Jacobian, but this must be
regenerated periodically as the Jacobian changes. 

An advantage of Krylov techniques is that (3.37) need not be fully
solved in each iteration; the iterative process need only proceed until ∆V
decreases the error function. This approach to the solution, called inexact
Newton, can provide significantly improved efficiency. In the early
harmonic-balance iterations, a Newton step is, at best, a poor estimate of
the zero, so an accurate solution of (3.37) has little value. At each step, the
matrix need only be solved until some condition on the improved solution
is found; the usual criterion [3.7, 3.8] is 

(3.76)

where α is selected at the beginning of the pth harmonic-balance iteration
to be 

(3.77)

Setting α = 0 in (3.76) corresponds to ordinary, exact Newton iterations. 
The author has observed that Krylov solvers are distinctly inferior to

direct solvers in handling poorly conditioned Jacobian matrices (Section
3.3.7.4). For further information on Krylov-subspace methods, see
[3.9–3.11]. 

3.3.7.4 Matrix Conditioning 

It is well known that, if A is singular and b is nonzero, (3.68) has no unique
solution. In many cases, however, A is nonsingular, but it is so close to
being singular that the solution is indistinct. In this case, we say that the
matrix is ill conditioned, and the result is an inaccurate solution, x. 

The accuracy of the solution is controlled by the condition number,
κ(A). Then, 

(3.78)

where  is the maximum norm of the N-dimensional vector, x, 

F V( ) J V( )∆V– α F V( )<

α F Vp( ) F Vp 1–( )– J Vp 1–( )∆Vp 1–+

F Vp 1–( )
----------------------------------------------------------------------------------------------------=

δ x
x

----------- κ A( )δ b
b

------------≤

x
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(3.79)

and 

(3.80)

where 

(3.81)

over all nonzero x. 
A loose interpretation of (3.78) is that a certain fractional error in b,

which may come from a loss of numerical precision or limiting the degree
of the harmonic series in the FFT, results in a proportionately larger error in
x, when κ(A) is large. An error in a particular component of b, bi, does not
simply affect xi, but can create errors in any or, more commonly, all the
components of x. If κ(A) is very large, as is the case when A is nearly
singular, the error can be greater than x itself, rendering the solution
useless. Convergence failure in Newton-based harmonic-balance analysis
is often caused by an ill-conditioned Jacobian. 

It is disturbingly easy, in harmonic-balance analysis, to encounter an
ill-conditioned Jacobian or Y matrix. Some of the causes are discussed in
Section 3.3.9.6. 

3.3.8 Norm Reduction

The need for norm-reduction methods can be illustrated by reviewing the
operation of Newton’s method in one dimension. For example, consider the
problem of finding the zero of the function shown in Figure 3.8. Although
the nonlinearities are weak, and we have no relative minima near the zero,
the process can still become trapped near the zero, or even diverge.
However, suppose that, instead of the full Newton step in (3.36), we take a
partial step; precisely, 

(3.82)

x max xi= 1 i N≤ ≤

κ A( ) A A 1–=

A max Ax
x

-------------=

∆x β f x0( )
xd

df

x x0=

1–
=
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where β is a constant, between zero and one, that we can adjust as needed.
Now, we adjust β to obtain the step size that minimizes f(x), and simply
continue the Newton steps. Unless our algorithm for selecting β is
extraordinarily inept, this process always finds the zero in the situation
illustrated in Figure 3.8.

In the multidimensional case, (3.39) is modified to form

(3.83)

where β, as in the one-dimensional case, is a real constant. The usual
process for adjusting β is to begin with a full Newton step (β = 1). If that
step reduces the current error, it is retained; if not, β is reduced by some
factor, and the process is repeated until the error decreases. The process
devolves to a direct, linear search over a single variable, β. Note that it is
not necessary to solve (3.37) every time that β is modified; β simply
multiplies ∆V and F(V) is recalculated. Therefore, the process is
computationally much less expensive than doing a full Newton step. 

3.3.9 Optimizing Convergence and Efficiency

Even under the best circumstances, convergence problems are sometimes
encountered in the algorithm, especially in circuits that are complex,

x0 x

f(x)

x1

Figure 3.8 A situation where norm-reduction methods prevent failure of Newton’s
method. Newton’s method can fail when the function has an inflection
point near the zero. In this case, reducing the step size can provide
success.

Vp 1+ Vp β dF V( )
dV

----------------
 
 

1–
F Vp( )–=
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strongly nonlinear, or strongly excited. Various methods have been
developed to improve convergence and to make the process more efficient. 

The effectiveness of Newton’s method comes from its use of all the
derivatives of the error function with respect to each frequency component
at each port. In principle, this allows it to select a ∆V vector that decreases
all the components of the error function at any step. As a result, Newton’s
method is capable of achieving convergence with a very large number of
variables, as long as the nonlinearity is not too strong. The disadvantage of
this algorithm is in the large amount of computer memory and computation
time required to generate the Jacobian and to solve the matrix equation
(3.37). The Jacobian is a square matrix of dimension 2N(K + 1); in our
earlier example of a FET circuit having three nonlinear elements and eight
harmonics plus dc, the Jacobian is 54 × 54. Because the Jacobian is
complex, solving (3.37) for this simple case involves solving a 54 × 54 set
of real linear equations. It is not unusual for a single RF IC to have several
hundred transistors and, with multitone excitation, tens or hundreds of
frequency components. Analyzing such a circuit is a computationally
expensive proposition. 

In most cases, the entire matrix, the solution vector, and the update
vector must remain in memory simultaneously; thus, Newton’s method
requires a large amount of computer memory. (Many of the matrix entries
are zero in large problems, so the use of sparse-matrix techniques can
ameliorate this situation somewhat, as can the use of Krylov methods.)
Finally, generating the Jacobian requires taking a large number of
derivatives. Many solid-state device models are very complex, and
expressions for the derivatives require several times the computation of the
static I/V and Q/V functions. Evaluating such functions may be a
significant part of the time required for the entire analysis. 

3.3.9.1 Pruning the Matrix: Removal of Small Values from the Jacobian

Because the method scales poorly with matrix size, direct factorization of
the Jacobian is rarely used. Instead, some type of sparse-matrix method,
whether conventional or iterative, is preferred. Such methods are most
efficient when the matrix is very sparse; they can be worse than direct
methods if the matrix’s sparsity is inadequate. 

Often, many of the elements of the Jacobian are very small and have
little effect on the Newton update, so it makes sense to increase the sparsity
simply by eliminating all elements whose magnitudes are below some
threshold. These are invariably the elements farthest from the diagonals of
the Jacobian’s blocks. Eliminating them converts each block into a banded
matrix. 
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The matrix can often be pruned rather severely without affecting
convergence. As we shall see, a certain degree of inaccuracy in the
Jacobian is often tolerable. A Newton step is, after all, only an
approximation of the zero, and is expected only to decrease the error
function. The Jacobian need only be accurate enough so that the update
vector, ∆V, decreases the error function. 

3.3.9.2 Samanskii Iteration

It is an empirical observation that, after the first few iterations, and
especially close to convergence, the Jacobian does not change much
between iterations. We can exploit this fact by simply reusing the Jacobian
for several consecutive Newton iterations. This practice works well; the
key is to have an intelligent method for deciding when the process has
become so inefficient that it is best to reformulate the Jacobian. If a
Jacobian is used too long, the improvement in F(V) becomes gradually
smaller; if it is reformulated too often, efficiency suffers. Generally, the
Jacobian is reformulated when the norm of F(V) fails to be reduced by
some predetermined amount. 

Samanskii iteration should be used with care in a norm-reduction
process involving the NU norm (Section 3.3.9.4). If the Jacobian is
inaccurate, the accuracy of the norm suffers accordingly, and it can become
difficult to tell whether a norm-reduction step results in an improvement in
the error. 

3.3.9.3 Continuation Methods

Continuation methods circumvent convergence problems at the cost of
increased computation time. In a continuation method, some parameter of
the circuit is varied gradually, so convergence can be achieved at each step.
At the first step, the parameter is adjusted to make the circuit nearly linear,
and convergence is achieved easily. The solution of that step is used as the
initial estimate for the next step, the parameter is adjusted to make the
circuit somewhat more strongly nonlinear, and the process is repeated. The
process continues in this manner until convergence is achieved with the full
value of the circuit parameter. 

The most commonly used continuation method is called source
stepping. In that process, the magnitude of an RF source (or occasionally
one or more dc sources) is the continuation parameter. In the continuation
process, the excitation is varied stepwise from a low level to the desired
excitation level, in such a way that convergence is achieved at each step.
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The amount of increase, per step, depends on the strength of the circuit’s
nonlinearity. 

Continuation works best when (1) it is adaptive (i.e., if convergence
fails, the step size is reduced and the process repeated), and (2) an estimate
of the new solution, rather than simply the solution of the previous step, is
used as the step’s starting value.

The new solution is estimated as follows. From (3.25) we have

(3.84)

When a step has converged,

(3.85)

Differentiating, we obtain 

(3.86)

or 

(3.87)

Thus, the inverted Jacobian can be used at the end of each continuation step
to estimate the port voltages at the next step. 

3.3.9.4 Yeager and Dutton’s NU Norm

In a linear or nearly linear circuit, each Newton step should reduce all
components of F(V). In reality, however, some components of F(V)
decrease, while others may change very little or even increase. How do we
determine whether a Newton step is a good one? Such a determination is
essential when norm reduction methods are used. 

One possible method is to calculate the Euclidean norm of F(V),
designated |F(V)|. It happens, however, that |F(V)| is a poor choice,
because the direction of the Newton step, in multidimensional space, does
not necessarily minimize |F(V)|. The step direction that minimizes |F(V)| is
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its gradient; however, our Newton step is the gradient of F(V), not of
|F(V)|. 

In a classic paper, Yeager and Dutton [3.12] showed that a good
Newton step does not, in general, coincide with the gradient of |F(V)|, and
can even be perpendicular1 to it. They propose, instead, a new norm, called
the NU (Newton Update) norm, that is weighted by the Jacobian and
therefore has a gradient that coincides with the Newton step. The use of
this norm improves the performance of a harmonic-balance simulator
significantly. 

The NU norm, at iteration p, is defined as

(3.88)

where  indicates the L2 (Euclidean) norm, Vp is the voltage vector at the
pth iteration, and V = Vp – β∆V; that is, V is evaluated at the norm-
reduction step. The steepest descent in this norm always coincides with the
direction of the step ∆V. 

3.3.9.5 Parametric Models

If the multidimensional error surface can be “flattened” (i.e., the
nonlinearity reduced), the convergence characteristics of harmonic-balance
analysis can be improved. Rizzoli [3.13] has shown that this can be done by
making both the current and voltage functions of an abstract parameter; if
that parameter is x, we form i = fi(x) and v = fv(x). As an example, consider
a diode having the I/V relation, 

(3.89)

The I/V equation can be written in the parametric form

1.  In 2N(K + 1)-dimensional space. Don’t try to visualize this. 

NNU J 1– Vp( )F V( )=

*

I Isat δV( )exp 1–( )=
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(3.90)

V1 can be selected arbitrarily, but it is best if it is a small number, typically
1 / δ. When x(t) < V1, x(t) = v(t) and (3.90) is identical to (3.89). At higher
voltages, however, i(t) becomes a linear function of x(t), and the diode
voltage, v(t), becomes a logarithmic function of x(t). This preserves the
exponential relationship of (3.89), while dividing the strong nonlinearity of
(3.89) between v(t) and i(t), making it effectively much weaker. 

In this process, we have replaced one dependent variable, i(t), with
two, v(t) and i(t), both of which are functions of x(t), the independent
variable. This makes the problem larger, although the improvement in
convergence should compensate for the increase in problem size. The
greatest limitation of this method is that existing, industry-standard models
are not formulated in this manner, and in many cases it is difficult to
translate models into this form. The simulator then must be formulated to
work optimally with both parametric and nonparametric models, an
additional complication. 

3.3.9.6 Nodal Formulation and Ill Conditioning in the Y matrix 

In Sections 3.3.1 and 3.3.3, we assumed that the Y matrix and its inverse
both exist. In many cases, however, partitioning the circuit results in a
disconnected subcircuit, which has no admittance or impedance matrix. If
nothing is done about this situation, the analysis clearly must fail. 

One simple solution is to replace each nonlinear branch with a
moderate-value resistor; a resistance of 100Ω usually works well. These
resistors prevent the Y matrix from being disconnected, so a singular Y
matrix is much less likely to occur. The resistors can be removed from the
N-port Y matrix by simply subtracting their conductances from the main
diagonal. 

Another solution is to use a nodal formulation instead of the port
formulation that we have described in this chapter [3.14]; in this case, the
node voltages, not the branch voltages of the nonlinear elements, become
the independent quantities. A nodal formulation may be more tolerant of

v t( )
V1

1
δ
--- 1 δ x t( ) V1–( )+( )ln+ x t( ) V1>

x t( ) V1≤x t( )






=

i t( )
Is δV1( )exp 1 δ x t( ) V1–( )+( ) Is– x t( ) V1>

Is δx( )exp 1–( ) x t( ) V1≤



=



 Nonlinear Microwave and RF Circuits162

circuit disconnections, although isolated nodes still result in a singular
matrix. 

In a nodal formulation, each node voltage in the circuit becomes an
independent variable. The number of variables remains 2N(K + 1), but N is
the number of nodes, not the number of control voltages. In microwave and
RF circuits, the number of nodes is likely to be greater than the number of
nonlinear elements, so the nodal formulation increases the size of the
Jacobian. In analog ICs, however, the number of nonlinearities may be on
the same order as the number of nodes, so the disadvantage may be minor
or even nonexistent. When a nodal formulation is used in the analysis of
microwave or RF ICs, large parts of the linear subcircuit can often be
reduced to smaller nodal blocks, reducing the size of the problem. 

3.3.9.7 Termination Criteria

In Newton-based harmonic-balance analysis, we decrease the error vector
F(V) until the errors are negligible. Defining, precisely, what we mean by
negligible is something of a dilemma. The problems arise from the fact that
the current components at various ports and harmonics may be vastly
different in magnitude; a factor of 106 or even 108 difference between the
largest and smallest components is not unusual. 

To illustrate the difficulties, we examine a few possibilities:

Limit the Euclidean Norm

One possibility is to require that the Euclidean norm of the error function
be less than some maximum value. Mathematically, we require that

(3.91)

where ε is a scalar value. In this case, the larger current components, which
normally have the larger errors, dominate in establishing |F(V)|; the smaller
errors contribute little. Thus, even when |F(V)| is small, the errors in
smaller current components may be quite large. The errors in the smaller
currents could be controlled by requiring that |F(V)| be smaller, but this
may put unrealistic demands on the errors in large components. Then, the
maximum allowable errors for large current components may be so small
that convergence is impossible. 

F V( ) ε<
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Limit the Absolute Magnitudes of the Current Components

Another possibility is to require that the absolute magnitudes of all
components of F(V) be less than some maximum value; specifically, 

(3.92)

As with the previous criterion, a value of ε that is adequate to guarantee the
accuracy of small current components may be too stringent for large ones. 

Limit the Relative Magnitudes of the Current Components

A possible solution is to limit the relative magnitudes of the current-error
components instead of the absolute ones. Specifically, we require that

(3.93)

That is, we compare the current error, , to the absolute current,
defined as the average of the current in the linear and nonlinear subcircuits,

. Although an improvement over the previous criteria, this
criterion has the opposite problem: a reasonable value of ε for large current
components makes unreasonably severe demands on the convergence of
small components. For example, in a power amplifier, we might well want
the fundamental-frequency error to be less than 1%, but a 1% error is too
severe for weak intermodulation components, whose accuracy is on the
order of a few decibels at best. 

Another problem is that (3.93) is meaningful only near convergence.
When the iterative process is far from convergence, 
so the relative error sits stoically at a value of 2. This does not affect the
Newton iterations, but it gives the user no information about the progress
of the convergence, so he cannot tell if the problem is proceeding normally
toward convergence. 

Combined Relative and Absolute Criteria

A final solution is to combine relative and absolute criteria. In this scheme,
each current-error component, , is observed. If it satisfies either
the relative or absolute error criterion, the component is considered
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converged. The analysis terminates when all components are converged in
this sense. Of course, the entire error vector must be examined on each
convergence test.

This scheme naturally accommodates both large and small current
components. Large components usually converge on the basis of the
relative error, and small ones on the fractional error, as the relative criterion
is a weaker one for large components and the absolute criterion is weaker
for small components. It is a simple matter to select the criteria so they
ensure that all errors are sufficiently small at termination. 

3.3.9.8 Initial Estimate

One important property of Newton’s method is that its speed and reliability
of convergence depend strongly upon the initial estimate of the solution
vector. Formulating the initial estimate may not be difficult in analyzing a
specific type of circuit, but it may be difficult to conceive of a way to form
initial estimates in a general-purpose circuit-analysis program, which must
accommodate a wide variety of circuits that have a concomitant variety of
possible responses. 

For nearly linear circuits, such as class-A power amplifiers, the linear
response is a good initial estimate. The response can be found by setting
the excitation level to a small value and the harmonic number, K, equal to
one, so the size of the problem is relatively small. When the solution has
completed, the results are scaled to the correct excitation level and K is
reset to the desired value for the large-signal analysis. 

In strongly nonlinear circuits, such as class-B or -C amplifiers,
frequency multipliers, and mixers, an initial estimate is more difficult to
generate. Occasionally the nature of the circuit allows a good estimate; for
example, in diode mixers, the diode-voltage waveform invariably is a
clipped sinusoid. In difficult cases, it may be best first to do a dc analysis,
then to apply the RF signal and increase it using a continuation method. 

3.4 LARGE-SIGNAL/SMALL-SIGNAL ANALYSIS USING 
CONVERSION MATRICES 

Large-signal/small-signal analysis, or conversion matrix analysis, is useful
for a large class of problems wherein a nonlinear device is driven, or
“pumped,” by a single large sinusoidal signal; another signal, much
smaller, is applied; and we seek only the linear response to the small signal.
The most common application of this technique is in the design of mixers
and in nonlinear noise analysis. The process involves first analyzing the
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nonlinear device under large-signal excitation only, usually by the
harmonic-balance method. The nonlinear elements in the device’s
equivalent circuit are then linearized to create small-signal, linear, time-
varying elements, and finally a small-signal analysis is performed. The
method is much more efficient than multitone harmonic-balance analysis
but provides only the linear response of the circuit. It cannot be used for
determining saturation or intermodulation distortion in mixers, but it is a
good method for calculating a mixer’s conversion efficiency and its RF and
IF port impedances. The results of the harmonic-balance analysis can be
used for finding LO voltage and current waveforms, and LO port
impedance. 

3.4.1 Conversion Matrix Formulation

Figure 3.9 shows a nonlinear resistive element driven by a large-signal
voltage, V, generating a current I. The nonlinear element has the I/V
relationship I = f(V). Following the process outlined in Chapter 2, we can
find the incremental small-signal current by assuming that V consists of the
sum of a large-signal component V0 and a small-signal component v. The
current resulting from this excitation can be found by expanding f (V0 + v)
in a Taylor series, 

(3.94)

The small-signal, incremental current is found by subtracting the large-
signal component of the current, 

Figure 3.9 Nonlinear resistive element driven by a large excitation. 
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(3.95)

If v << V0, v2, v3, ... are negligible (and, in any event, are nonlinear, so they
do not contribute to the linear response). Then, 

(3.96)

V0 need not be a dc quantity; it can be a time-varying large-signal voltage
VL(t) (in fact, V0 and VL are control voltages). We assume that this is the
case, and also that v = v(t), a function of time. Then 

(3.97)

Equation (3.97) can be expressed as 

(3.98)

The time-varying conductance in (3.98), g(t), is the derivative of the
element’s I/V characteristic at the large-signal voltage. This is the usual
definition of small-signal conductance for static elements. By an analogous
derivation, one could have a current-controlled resistor with the V/I
characteristic 

(3.99)

and obtain the small-signal v/i relation 

(3.100)

where 

(3.101)
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Often, the nonlinear element is a function of more than one control
voltage. A conductance controlled by two voltages has I = f2(V1, V2).
f2(V1, V2) can be expanded in a two-dimensional Taylor series, and after
subtracting the large-signal current component and retaining only the linear
terms, 

(3.102)

where 

(3.103)

Equation (3.102) shows that a nonlinear conductance having two
control voltages is equivalent to two conductances in parallel. One must be
a controlled current source, and the other may be either a controlled source
or a time-varying two-terminal conductance. When the I/V characteristic is
a function of more than two voltages, (3.102) can be extended in the
manner one would expect: 

(3.104)

It is unusual, however, to encounter a nonlinear element having more than
two control voltages. 

The same process can be followed with a capacitor. A nonlinear
capacitor has the Q/V characteristic Q = fQ(V), and by a similar derivation,
the incremental, small-signal charge is 

(3.105)
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(3.106)

The capacitor’s current is the time derivative of the charge: 

 (3.107)

Like a conductance, a capacitance can have multiple control voltages. In a
manner analogous to (3.102) to (3.104), the small-signal charge is 

(3.108)

and the current is found by differentiating with respect to time: 

(3.109)

A nonlinear element excited by two tones supports currents and
voltages at the mixing frequencies m ω1 + n ω2, where m and n are
integers. If we assume that one of those tones, ω1, has such a low level that
it does not generate harmonics, and the other is a large-signal sinusoid at
ωp, the mixing frequencies are ω = ±ω1 + n ωp. This equation represents
the set of frequency components shown in Figure 3.10, which consists of
two tones on either side of each large-signal harmonic frequency, separated
by ω0 = |ω1 – ωp|. A more compact representation of the mixing
frequencies is 

(3.110)

which is shown in Figure 3.11 and includes only half of the mixing
frequencies: the negative components of the lower sidebands and the
positive components of the upper sidebands. This set of frequencies is
adequate for two reasons: first, the small-signal analysis is linear, so by the
superposition principle, the results for positive and negative components
can be separated; and second, positive- and negative-frequency com-
ponents are complex conjugate pairs, so knowledge of only one is
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necessary. We will carry only the components in (3.110) in the following
analysis, with confidence that the others can be generated when necessary. 

The frequency-domain currents and voltages in a time-varying circuit
element are related by a conversion matrix. We begin by deriving the
conversion matrix that represents a time-varying conductance. The small-
signal voltage and current can be expressed in the frequency notation of
(3.110) as 

(3.111)

Figure 3.10 Spectrum of small-signal mixing frequencies in the pumped nonlinear
element. 

Figure 3.11 Spectrum of small-signal mixing frequencies illustrating the frequency
notation of (3.110). 
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and 

(3.112)

where the primes indicate that  and  are sums of the positive- and
negative-frequency phasor components in (3.110) and are not the complete
time waveforms. Above all, (3.111) and (3.112) are not Fourier series, in
spite of their superficial resemblance. The conductance waveform g(t) can
be expressed by its Fourier series, 

(3.113)

and the voltage and current are related by Ohm’s law, 

(3.114)

Substituting (3.111) through (3.113) into (3.114) gives the relation, 

(3.115)

Equating terms on both sides of the equation in (3.115) results in a set of
equations that can be expressed in matrix form: 
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(3.116)

Two details in (3.116) must be clarified. First, the vectors in (3.116)
have been truncated to a limit of n = N for In and Vn, and n = 2N for Gn. We
assume that Vn, In, and Gn are negligible beyond these limits. The second
detail is that the negative-frequency components (Vn, In where n < 0) are
shown as conjugate. The conjugates are caused by a change of definition;
according to (3.110), ωn is negative when n < 0, so the In and Vn are
negative-frequency components when n < 0. We would rather define them
as phasors, which are always positive-frequency components. Positive- and
negative-frequency components are related as V–n = Vn

* and I–n= In
*, so if

we wish Vn , In to represent positive-frequency components, they must be
Vn

*, In
*. Thus the conversion matrix relates ordinary phasor voltages to

currents at each mixing frequency. The main advantage of making this
change is that the conversion matrix is now completely compatible with
conventional linear, sinusoidal steady-state analysis. 

The dual case, a time-varying resistor, has an unsurprising result. The
conversion matrix is 

I N–
*

I N– 1+
*

I N– 2+
*

…
…
I 1–

*

I0

I1

…
…
IN

G0 G 1– G 2– … G 2N–

G1 G0 G 1– … G 2N– 1+

G2 G1 G0 … G 2N– 2+

… … … … …
… … … … …

GN 1– GN 2– GN 3– … G N– 1–

GN GN 1– GN 2– … G N–

GN 1+ GN GN 1– … G N– 1+

… … … …
… … … …

G2N G2N 1– G2N 2– … G0

V N–
*

V N– 1+
*

V N– 2+
*

…
…

V 1–
*

V0

V1

…
…
VN

=
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(3.117)

where the Rn are the Fourier components of the resistance waveform. As
one might expect, the resistance-form conversion matrix of any element is
the inverse of its conductance-form matrix, as long as the element can be
defined either as a time-varying conductance or resistance. 

The conversion matrix of a capacitor is only slightly more complicated.
The capacitor’s charge is given by 

(3.118)

and c(t) has the Fourier series 

(3.119)

The current is 

(3.120)

and  has the form 

V N–
*

V N– 1+
*

V N– 2+
*

…
…

V 1–
*

V0

V1

…
…
VN

R0 R 1– R 2– … R 2N–

R1 R0 R 1– … R 2N– 1+

R2 R1 R0 … R 2N– 2+

… … … … …
… … … … …

RN 1– RN 2– RN 3– … R N– 1–

RN RN 1– RN 2– … R N–

RN 1+ RN RN 1– … R N– 1+

… … … …
… … … …

R2N R2N 1– R2N 2– … R0

I N–
*

I N– 1+
*

I N– 2+
*

…
…
I 1–

*

I0

I1

…
…
IN

=

q' t( ) c t( )v' t( )=

c t( ) Cn jnωpt( )exp
n ∞–=

∞

∑=

i' t( )
td

d q' t( )=

q' t( )
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(3.121)

Substituting (3.111), (3.119), and (3.121) into (3.118) gives 

(3.122)

The current can be found by differentiating. In the frequency domain,
differentiation corresponds to multiplying by jω, so 

(3.123)

Equating terms at the same frequency gives the matrix equation 

(3.124)

where I and V represent the frequency-component current and voltage
vectors and C represents the conversion matrix for the capacitance. I and V
are identical to the vectors in (3.116) and (3.117), and C has the same form
as the conductance and resistance matrices in those equations. The matrix
Ω is a diagonal matrix; its elements are jω–N to jωN : 

(3.125)

3.4.1.1 Example: Conversion Matrix of a Time-Varying Element

We form the conversion matrix of the circuit shown in Figure 3.12(a). It
consists of a conductance in series with a switch; the switch is opened and

q' t( ) Qn jωnt( )exp
n ∞–=

∞

∑=

Qk jωkt( )exp
k ∞–=

∞

∑ CnVm jωm n+ t( )exp
m ∞–=

∞

∑
n ∞–=

∞

∑=

Ik jωkt( )exp
k ∞–=

∞

∑ jωm n+ CnVm jωm n+ t( )exp
m ∞–=

∞

∑
n ∞–=

∞

∑=

I jΩCV=

Ω

jω N– 0 … 0

0 jω N– 1+ … 0

… … … …
0 0 … jωN

=
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closed with a duty cycle of 0.5, so the combination has the waveform
shown in Figure 3.12(b). Its Fourier series, when t0 = 0.5T, is 

(3.126)

The conversion matrix when 2N = 6 is 

(3.127)

Figure 3.12 (a) Time-varying conductance; (b) conductance waveform, g(t). 

g t( ) Gp 0.5 0.318 jωpt( )exp 0.318 j– ωpt( )exp+ +[=

0.106 j3ωpt( )exp– 0.106 j– 3ωpt( )exp–

0.064 j5ωpt( )exp 0.064 j– 5ωpt( )exp …+ + +

G Gp

0.5 0.318 0 0.106– 0 0.064 0
0.318 0.5 0.318 0 0.106– 0 0.064

0 0.318 0.5 0.318 0 0.106– 0
0.106– 0 0.318 0.5 0.318 0 0.106–

0 0.106– 0 0.318 0.5 0.318 0
0.064 0 0.106– 0 0.318 0.5 0.318

0 0.064 0 0.106– 0 0.318 0.5

=



 Harmonic Balance Analysis and Related Methods 175

which relates the mixing products up to ω3, those close to the third
harmonic of the large-signal excitation. 

3.4.2 Applying Conversion Matrices to Time-Varying Circuits 

In order to mix ordinary, constant-value, and time-varying components in
the same equations, the constant-value elements must have a conversion
matrix form. This form is a diagonal matrix, and the element value must
occupy all the locations on the main diagonal. The conversion matrix of a
frequency-sensitive time-invariant element, such as a fixed impedance or
admittance, is also a diagonal; however, the matrix elements are the
impedance or admittance at the frequency corresponding to the location in
the matrix. For example, the impedance-form conversion matrix of a static,
lumped impedance is 

(3.128)

When n < 0 ωn is negative, so the impedance or admittance in the ωn
position is Vn

*/ In
* = Z*(–ωn); thus the entry must be the conjugate of the

positive-frequency impedance or admittance at that frequency. 
Equations (3.116) and (3.117) can be expressed, like (3.124), as 

(3.129)

(3.130)

Z

Z* ω N––( ) 0 … 0 0 0 … 0

0 Z* ω N– 1+–( ) … 0 0 0 … 0

… … … … … … … …
0 0 … Z* ω 1––( ) 0 0 … 0

0 0 … 0 Z* ω0( ) 0 … 0

0 0 … 0 0 Z ω1–( ) … 0

… … … … … … … …
0 0 … 0 0 0 … Z ωN( )

=

I GV=

V RI=
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These relations have the same form as those that define the I/V relations of
linear, time-invariant resistance, conductance, and capacitance in the
sinusoidal steady state. The only difference is that these are matrix
equations, and the latter are scalar. The individual current and voltage
components in the V and I vectors must satisfy Kirchoff’s current and
voltage laws in any linear circuit using time-varying elements, just as in
time-invariant circuits. Therefore, the matrix equations can be used in
exactly the same way as the scalar ones, as long as the requirements of
matrix arithmetic are met: the order of multiplication must be preserved,
and one must invert and multiply instead of dividing. 

This realization allows all the tools of conventional sinusoidal, steady-
state analysis to be applied to time-varying circuits. For example, the
conversion matrix for two elements in parallel is the sum of their individual
admittance-form matrices, and for two elements in series, it is the sum of
their impedance-form matrices. One can also generate transfer functions
and input/output impedances or admittances in terms of conversion
matrices. 

A second property of the conversion matrices is that they can be treated
in all ways like multiport admittance or impedance matrices; the “ports” in
the conversion matrix are currents and voltages at different frequencies, not
physically separate ports. In theory, one could separate the frequency
components by filters and create a physically separate port for each,
without changing any of the circuit’s properties. Indeed, in designing
components that include time-varying elements, such as mixers, one tries
to separate at least a few of the frequency components in this manner, in
order to realize input and output ports, and to terminate other mixing
products optimally. This property allows multiport-circuit concepts to be
employed in interconnecting time-varying circuits, interfacing them with
matching networks, and determining their gain, impedances, and stability.
One can even convert the admittance- or impedance-form conversion
matrix to an S-parameter form. These points are illustrated by the
following examples. 

3.4.2.1 Example: Conversion Matrix of a Simple Circuit

We derive the conversion matrix that represents the circuit shown in Figure
3.13. This circuit consists of a time-varying conductance and capacitance
in parallel and a resistor in series (this is a common model of a pumped
mixer diode). We assume that a large-signal analysis has been performed,
and that the time waveforms and conversion matrices of each circuit
element have been determined. Cj and Gj are the conversion matrices
representing cj(t) and gj(t), respectively. 
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Because the capacitor and conductance are in parallel, the conversion
matrix is the sum of the admittance-form conversion matrices of each
component: 

(3.131)

and their impedance-form conversion matrix is the inverse: 

(3.132)

The conversion matrix for the resistor is R1, where 1 is the
2N + 1 × N + 1 identity matrix. R1 is in series with Zj, so the impedance-
form conversion matrix of the entire circuit is the sum of R1 and Zj: 

(3.133)

The admittance-form matrix, if needed, is just the inverse of the
impedance-form matrix. 

3.4.2.2 Example: Two-Port Conversion Matrix

We calculate the conversion matrix that represents the simplified FET
equivalent circuit shown in Figure 3.14(a), which could represent a FET
mixer. It has two nonlinear circuit elements, Id(Vg, Vd) and Cg(Vg), and all
the remaining elements are linear. The circuit is treated as a two-port, so a
two-port admittance-form matrix is needed. It has the form 

Figure 3.13 Pumped diode equivalent circuit of the example.

Yj Gj jΩCj+=

Zj Yj
1– Gj jΩCj+( ) 1–= =

Zc R1 Zj+ R1 Gj jΩCj+( ) 1–+= =



 Nonlinear Microwave and RF Circuits178

(3.134)

where I1, I2, V1, and V2 are current and voltage vectors as shown in (3.116)
and (3.117), and the Ym, n submatrices are each complete conversion
matrices. Thus, (3.134) relates not only the currents and voltages at the
mixing frequencies and at each port, but also includes transfer terms
between ports. 

Again, we assume that a large-signal analysis has been performed and
that the nonlinear elements have been converted to their incremental, time-
varying forms. The drain current source can be split into two elements,
gm(t) and gd(t), according to (3.102) and (3.103); the former element is a
controlled source, representing the time-varying transconductance, and the
latter is a time-varying drain-to-source conductance. The resulting circuit is
shown in Figure 3.14(b). 

The submatrices are defined in a manner entirely analogous to static
admittance matrices:

(3.135)

Figure 3.14 (a) FET nonlinear equivalent circuit for the example; (b) time-varying
linear equivalent circuit. 

I1

I2

Y1 1, Y1 2,

Y2 1, Y2 2,

V1

V2

=

I1 Y1 1, V1= V2 0=
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and so on, where 0 is the zero vector. The time-varying quantities cg(t),
gm(t), and gd(t) have conversion matrices designated Cg, Gm, and Gd,
respectively. 

We begin by finding Y1,1. When port 2 is shorted at all harmonics, cg(t)
and Cf  are in parallel, so we can immediately write 

(3.136)

and Y1,1 is found by comparing (3.136) to (3.135). Y2,1 is just a little more
trouble. When the output is shorted, 

(3.137)

and 

(3.138)

Substituting (3.136) into (3.137), and the result into (3.138), we finally
obtain

(3.139)

and Y2,1 is found by inspection. Y2, 2 and Y1, 2 are a little sticky algebraical-
ly but straightforward conceptually. From similar manipulations, we obtain

(3.140)

and

(3.141)

from which Y2,2 and Y1,2 are easily identifiable. Yf  is defined as 

(3.142)

I1 jΩ Cg Cf 1+( )[ ] 1– Rg1+{ } 1– V1=

Vg jΩ Cg Cf1+( )[ ] 1– I1=

I2 Gm j– ΩCf 1( )Vg=

I2 Gm j– ΩCf1( ) jΩ Cg Cf1+( )[ ] 1–=

jΩ Cg Cf1+( )[ ] 1– Rg1+{ } 1– V1⋅

I2 Gd Yf 1 Gm
1

Rg
------1 jΩCg+

 
  1–

++
 
 
 V2=

I1 1 jRgΩCg+( ) 1– Yf V2–=

If Yf V2=
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where If is the current in Cf. Yf is 

(3.143)

3.4.2.3 Example: Two-Port Formulation

We now calculate the input and output impedances, simultaneous
conjugate-match impedances, transducer conversion gain, and maximum
available conversion gain of the circuit of the previous example, at a
specific pair of input and output frequencies. Figure 3.15 shows the circuit
to be analyzed, where the two-port is described by the conversion matrix Y,
derived in the previous example. The source and load impedances,
generally functions of ω, are shown in series with the two-port; shorting
either set of terminals loads the input or output port with the appropriate
impedance. 

We wish to calculate this circuit’s gain and impedances at specific
input and output frequencies. This means that, with the exception of the
input port at the input frequency and the output port at the output
frequency, we wish to terminate the ports in their source and load
impedances at all mixing frequencies. The source and load impedances at
the unwanted mixing frequencies are then absorbed into the network, and
we are left with a conventional two-port, describable by a simple 2 × 2 Y
matrix. The only feature that would distinguish this matrix from the Y
matrix of a time-invariant network is that it represents input and output
phasors at different frequencies, and if one of those frequencies is a lower
sideband, its voltage and current are conjugate quantities. 

We begin by putting the source and load impedances into a compatible
two-port conversion matrix representation. This is 

Yf
1

Rg
------1 jΩCg+

 
  1– j

Cf
-----Ω 1––

1–
=

Figure 3.15 Circuit of the example. The block Y, Z is the circuit in Figure 3.14. 
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(3.144)

where Zs and ZL are diagonal matrices of the form shown in (3.128).
Following the notation for mixing products (3.110), we let ωq be the input
frequency and ωr be the output frequency. The source and load impedances
at these frequencies, Zs(ωq) and ZL(ωr), respectively, are set to zero in
(3.144), because we want them to remain external to the circuit; the
impedances at other frequencies are retained and are absorbed into the
circuit. Following the rule for conventional two-ports, the impedance-form
conversion matrix of the terminated network, Za, is 

(3.145)

The admittance-form matrix for the combination of the FET and the source
and load impedances is 

(3.146)

At this point, Ya still relates two voltage vectors to two current vectors and
has the form 

(3.147)

We now reduce (3.147) to a simple 2 × 2 admittance matrix by
terminating the ports at all unwanted mixing frequencies. To terminate the
output port at all frequencies other than ωr we set V2 to zero by shorting the
output terminals at those frequencies; similarly, V1 is zeroed at all
frequencies other than ωq . Setting these voltage components to zero
multiplies all the corresponding columns in Ya by zero; therefore, those
columns can be eliminated. Furthermore, because the input and output are
shorted, the current components at those frequencies are not of interest, so
the corresponding rows in Ya and I can also be removed. The only terms
left in Ya can be put into the 2 × 2 matrix form, 

Zt
Zs 0

0 ZL

=

Za Zt Y 1–+=

Ya Za
1–=

I1

I2

Ya 1; 1, Ya 1; 2,

Ya 2; 1, Ya 2; 2,

V1

V2

=
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(3.148)

where 

(3.149)

The rest is all downhill. Equation (3.148) can now be used with the
usual assortment of Y-matrix relations. For example, if the load admittance
is YL(ωr), the input admittance has the familiar relation, 

(3.150)

and with a source admittance Ys(ωq), the output admittance is 

(3.151)

Note that if r < 0, the output admittance is conjugate; if q < 0, the input
admittance is conjugate. In these cases, the conjugate of the load or source
admittance must also be used in (3.150) and (3.151), respectively. The
equation for transducer conversion gain, in terms of Y parameters, is 

(3.152)

The Linvill stability factor, c, is 

(3.153)

I1 ωq( )

I2 ωr( )

y1 1, y1 2,

y2 1, y2 2,

V1 ωq( )

V2 ωr( )
=

y1 1, Ya 1; 1, ωq ωq,( )=

y1 2, Ya 1; 2, ωq ωr,( )=

y2 1, Ya 2; 1, ωr ωq,( )=

y2 2, Ya 2; 2, ωr ωr,( )=

Yin ωq( ) y1 1,
y1 2, y2 1,

YL ωr( ) y2 2,+
----------------------------------–=

Yout ωr( ) y2 2,
y2 1, y1 2,

Ys ωq( ) y1 1,+
----------------------------------–=

Gt
4Re Ys ωq( ){ }Re YL ωr( ){ } y2 1,

2

y1 1, Ys ωq( )+[ ] y2 2, YL ωr( )+[ ] y1 2, y2 1,– 2
----------------------------------------------------------------------------------------------------------------=

c
y1 2, y2 1,

2Re y1 1,{ }Re y2 2,{ } Re y2 1, y1 2,{ }–
---------------------------------------------------------------------------------------------=
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If c < 1, the circuit is unconditionally stable, and no passive source
impedance at ωq or load at ωr can cause oscillation. If c < 1, the maximum
available conversion gain (MAG) and simultaneous conjugate match
impedances Ys, opt(ωq), YL, opt(ωr) are defined. They are 

(3.154)

and 

(3.155)

(3.156)

where 

(3.157)

The load impedance YL, opt(ωr) can be found from (3.155) and (3.156) by
interchanging y1,1 and y2,2, and y2,1 and y1,2. 

As is the case in a time-invariant circuit, unconditional stability at the
excitation frequency and large-signal excitation level is not adequate to
guarantee that the time-varying circuit is stable in a practical sense; for the
circuit to be stable in practice, it must be unconditionally stable at all
possible input frequencies and large-signal excitation levels. Varying the
small-signal excitation frequency for which the Y parameters in (3.148) are
determined also varies the higher-order mixing frequencies, and hence the
embedding impedances at those frequencies. Stability, therefore, is a
function of everything that affects the Y parameters, literally all the
characteristics of the circuit and its large-signal excitation. 

It is important to recognize that small-signal and large-signal stability
are interrelated. To explain why this is so, we must note that a fundamental
assumption in the conversion matrix theory is that small-signal voltages are
small variations (in frequency as well as in magnitude and phase) in the
large-signal voltage. The conversion matrix is in fact nothing more than the
large-signal Jacobian, a matrix that relates the current and voltage

MAG
y2 1,

2

2Re y1 1,{ }Re y2 2,{ } Re y2 1, y1 2,{ }– Ty+
----------------------------------------------------------------------------------------------------------=

Im Ys opt, ωq( ){ } I– m y1 1,{ }
Im y2 1, y1 2,{ }

2Re y2 2,{ }
----------------------------------+=

Re Ys opt, ωq( ){ }
Ty

2Re y2 2,{ }
---------------------------=

Ty 2Re y1 1,{ }Re y2 2,{ } Re y2 1, y1 2,{ }–( )2 y1 2, y2 1,
2–[ ]1 2/=
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deviations, evaluated at the mixing frequencies instead of the large-signal
harmonics. Small-signal oscillation is a process where these variations
build up spontaneously and without bound and eventually become
indistinguishable from the large-signal voltage. If they occur at a different
frequency from the large signal, they may appear as modulation, “snap”
phenomena, parasitic oscillation, or other well-known manifestations of
instability in nonlinear circuits. 

The two-port conversion matrix of (3.148) is in admittance form only
because an admittance-form conversion matrix is usually most convenient.
It need not be expressed in this form, however; in fact, it can be converted
to any two-port matrix form desired, such as an S matrix or even a T matrix
(transfer-scattering matrix). The procedure for converting the Y matrix to
one of these forms is precisely the same as for any other scalar matrix. For
example, the S matrix is found from the Y matrix as

(3.158)

where  is the Y matrix (3.148) normalized to the S parameters’
reference admittance. The interpretation of lower-sideband quantities
(q, r < 0) in the S matrix may be a little confusing. For example, if q = –1
and r = 0, a common situation, the S matrix has the form 

(3.159)

where s1,1 is the conjugate of the input reflection coefficient: 

(3.160)

and |s2,1|2 is, as usual, the transducer gain 

(3.161)

S 1 Ynorm+( ) 1– 1 Ynorm+( )=

Ynorm

b1
* ω 1–( )

b2 ω0( )

s1 1, s1 2,

s2 1, s2 2,

a1
* ω 1–( )

a2 ω0( )
=

Γin
* s1 1,

b1
* ω 1–( )

a1
* ω 1–( )

--------------------

a2 ω0( ) 0=

= =

Gt s2 1,
2 b2 ω0( )

a1
* ω 1–( )

--------------------
a2 ω0( ) 0=

2
= =
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The fact that a1 is conjugate in (3.161) does not change the magnitude of
s2,1. Fortunately, the fact that the definitions of s2,1 and s1,2 include one
conjugate and one nonconjugate quantity rarely is a problem; the properties
that are usually of most interest—gain, impedances, and stability—are
scalar. 

When the conversion-matrix formulation is used in this manner, it has
significant advantages over multitone harmonic-balance analysis. Such
characteristics as simultaneous conjugate match impedances and maximum
available gain can be calculated easily; these would be much more difficult
to determine with harmonic-balance analysis. Even calculating a set of
two-port S parameters would require two harmonic-balance analyses.
When conversion-matrix analysis is used, S parameters can be calculated
with only one single-tone harmonic-balance analysis; the subsequent
conversion-matrix manipulations are computationally inexpensive, esp-
ecially compared to two-tone harmonic balance. A disadvantage is the lack
of nonlinear calculations, but these can be included as well, as we shall see
in Section 3.5. 

3.4.3 Nodal Formulation

In order to use conversion matrices in a general-purpose circuit analysis
program, we need a general-purpose method for formulating the equations.
In static linear analysis, we often formulate the equations as an indefinite
admittance matrix, which we then reduce to a conventional, nodal
admittance matrix. We can do the same thing with conversion matrices. We
end up with a set of equations that looks like (3.134), and we use
manipulations identical to those of Section 3.4.2.3 to obtain S parameters,
port reflection coefficients, gain, or other characteristics of interest. 

Consider a time-varying admittance element, whose conversion matrix
is Yc, connected between nodes i and j, as shown in Figure 3.16. Let Ii and
Ij be the vectors of current in the element connected between nodes i and j,
respectively, and Vi and Vj be the voltages. These voltages and currents
have the form of the voltage and current vectors in (3.116) and (3.117). The
current in the branch is 

(3.162)

and 

(3.163)

Ii Yc Vi Vj–( )=

Ij Yc Vj Vi–( )=
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These show that Yc can be added into the nodal matrix as

(3.164)

which is entirely analogous to static nodal analysis. The process of
generating this matrix is entirely mindless, so it is perfect for imple-
mentation on a computer. 

3.4.3.1 Example: Nodal Formulation

We create the nodal matrix of the circuit in Figure 3.14(b). First, we
number the nodes, as shown in Figure 3.17. As in (3.164), we add the
admittances to the matrix in the appropriate locations. The result is 

(3.165)

Note that the transconductance element has the same general form as a
simple admittance, but the four Gm terms are off the main diagonal. In

Vi Vj

Ii Ij

Yc

Figure 3.16 A time-varying admittance described by a conversion matrix, Yc. 

…
Ii

Ij

…
…

… … … … …
… … Y+ c … Yc– … …

… … Yc– … Y+ c … …

… … … … …
… … … … …

…
Vi

Vj

…
…

=

Y

Rg
1– 1 0 R– g

1– 1 0

0 jΩCg Gd Gm+ + jΩCg– Gm– Gd–

Rg
1– 1– jΩCg– Rg

1– 1 jΩ Cg Cf+( )+ j– ΩCf

0 Gm– Gd– j– ΩCf Gm+ jΩCf Gd+

=
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general, however, the larger terms in the expressions, the dc Fourier
components, are along the main diagonal in (3.165). This causes the
conversion matrix to be diagonally dominant, so it is rarely ill conditioned.
Ill conditioning can occur in devices that have large, nonlinear diffusion
capacitances combined with a low minimum mixing frequency ω0, and in
negative-resistance components. 

Reducing this matrix to the form of (3.148) requires no algebra, only
numerical manipulations, so this method can be used to analyze very large
circuits. 

3.5 MULTITONE EXCITATION AND INTERMODULATION IN 
TIME-VARYING CIRCUITS 

The small-signal analysis of the previous sections was based on the
assumption that the excitation was vanishingly small. Accordingly, the
nonlinear terms in the incremental Taylor series could be ignored, resulting
in a linear, small-signal formulation. In this section, that assumption is
discarded, and instead it is assumed only that the incremental I/V or Q/V
characteristic is weakly nonlinear. This is not the same as assuming that the
nonlinear device is weakly nonlinear; it means instead that the element is
weakly nonlinear for small deviations from its instantaneous large-signal
voltage. Virtually all nonlinear solid-state devices meet this condition, as
long as they are not driven into saturation by the small-signal excitation. 

The techniques in this section are most useful for determining
intermodulation levels and spurious responses in heavily pumped circuits,
such as mixers. The method is based on [3.15]; it also uses some concepts
from the Volterra- and power-series theory in Chapter 4, and could be

V1

V2

V3 V4

Figure 3.17 Simple FET equivalent circuit for the example. It is the same as Figure
3.14(b), except that the nodes are numbered for nodal analysis. 
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considered a time-varying application of the Volterra series. For these
reasons the reader might do well to become conversant with Chapter 4
before continuing with this section. 

In order to minimize unnecessary complications, the circuit model used
in this section includes only a single set of terminals in the nonlinear
subcircuit, with a resistive and capacitive nonlinearity. We do this for a
couple of reasons: first, the analysis is complex, and simplifying the circuit
provides lucidity. The results still include everything necessary to
generalize the analysis to larger circuits. Second, the circuit itself is
important: it describes the junction of a Schottky diode. 

The linear part of our circuit can be described by a Norton equivalent,
which consists of a single current source and embedding impedance. The
model is shown in Figure 3.18; it is assumed in the figure that the large-
signal nonlinear analysis has been performed, the large-signal voltages and
currents have been recorded, and the currents and voltages shown are the
small-signal, incremental ones. Except for the excitation source is(t), these
currents and voltages include intermodulation components as well as linear
mixing products. The excitation is(t) is a two-tone source having frequen-
cies ω1 and ω2, 

(3.166)

where, as before, ωp is the fundamental frequency of the large-signal
excitation, and m is an integer; for the usual case of an upper-sideband
input, m = 1. ω1 and ω2 can be upper- or lower-sideband components; for
simplicity, we can assume them to be upper-sideband. 

The spectrum of mixing frequencies is shown in Figure 3.19(a), and a
detail of those closest to dc is shown in Figure 3.19(b). The spectrum
shown in Figure 3.19(b) is mirrored on either side of each large-signal
harmonic at positive and negative frequencies. ω1 and ω2 are the lowest-

Figure 3.18 Small-signal, incremental, time-varying linear circuit derived from a
pumped large-signal nonlinear circuit. 

is t( ) Is1 mωp ω1+( )cos Is2 mωp ω2+( )cos+=
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frequency (usually IF) components of the excitation, and the rest are
intermodulation (IM) products. The IM products shown in the figure are by
far not the only ones possible; they are, instead, those of third or lower
order that are closest to ω1 and ω2, and are consequently of greatest
concern in practice. 

Following the same process as in (3.94) through (3.98) and (3.105)
through (3.109), but retaining the terms up to third degree, we have 

(3.167)

and 

Figure 3.19 (a) Lowest-order mixing frequencies in the nonlinear time-varying
circuit; (b) detail of the frequencies closest to dc. 

(a)

(b)
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v 2 t( )+=

1
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---

V 3

3

d

d f V( )
V VL t( )=

v 3 t( ) …+ +
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(3.168)

where f(V) and fQ(V), as before, are the large-signal I/V and Q/V
characteristics, respectively. The above two equations can be expressed as 

(3.169)

(3.170)

Limiting consideration to third-order components, we have 

(3.171)

(3.172)

(3.173)

where vn(t) is the nth-order voltage, the combination of all nth-order
mixing products. Recall that an nth-order mixing product is any
combination of n excitation frequencies, including both positive and
negative frequencies. The square of the junction voltage obviously creates
a second-order product from  and a third-order product by mixing the
first-order v1(t) and second-order v2(t). 

The differential equation describing Figure 3.18 is 

(3.174)

Substituting (3.169) through (3.173) into (3.174) and separating the
equations into first, second, and third-order products, we have 

q t( )
Vd

d fQ V( )
V VL t( )=

v t( ) 1
2
---

V 2

2

d

d fQ V( )
V VL t( )=

v 2 t( )+=

1
6
---

V 3

3

d

d fQ V( )
V VL t( )=

v 3 t( ) …+ +

i t( ) g1 t( )v t( ) g2 t( )v2 t( ) g3 t( )v3 t( ) …+ + +=

q t( ) c1 t( )v t( ) c2 t( )v2 t( ) c3 t( )v3 t( ) …+ + +=

v t( ) v1 t( ) v2 t( ) v3 t( )+ +=

v2 t( ) v1
2 t( ) 2v1 t( )v2 t( )+=

v3 t( ) v1
3 t( )=

v1
2 t( )

td
dq i t( ) i0 t( )+ + is t( )=
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(3.175)

(3.176)

and 

(3.177)

where i0, n(t) is the nth-order current in Ze(ω). These equations imply that a
separate circuit can be generated for each mixing product; those circuits are
shown in Figure 3.20. Figure 3.20(a), the linear, small-signal circuit, can be
used to determine v1(t) by conversion-matrix techniques. The first-order
voltage v1(t) is then used to find the excitation current in Figure 3.20(b),
from which the second-order voltage v2(t) can be found. Note that the
circuit in Figure 3.20(b) is linear; the only nonlinear process is in the
formulation of the excitation current from v1(t). Therefore, once this
current is determined, ordinary, linear conversion matrix analysis can be
used to find the voltage across and current in Ze(ω). Finally, v1(t) and v2(t)
are used to find the third-order excitation current in Figure 3.20(c). In
concept, these currents could be evaluated in the time domain or frequency
domain; however, the rest of the circuit uses a frequency-domain
characterization, so it is likely to be more convenient to express the source
currents in the frequency domain as well. Furthermore, ω1 and ω2 are
noncommensurate frequencies, so v(t) is not periodic; this situation would
introduce further difficulties into a time-domain analysis. 

We now find frequency-domain expressions for both the junction
voltages and the excitation currents. The voltage v1(t) is found from the
small-signal linear analysis and has the form 

td
d c1 t( )v1 t( )[ ] g1 t( )v1 t( ) i0 1, t( )+ + is t( )=

td
d c1 t( )v2 t( ) c2 t( )v1

2 t( )+[ ] g1 t( )v2 t( )+

g2 t( )v1
2 t( ) i0 2, t( )+ + 0=

td
d c1 t( )v3 t( ) 2c2 t( )v1 t( )v2 t( ) c3v1

3 t( )+ +[ ]

g1 t( )v3 t( ) 2g2 t( )v1 t( )v2 t( )+ +

g3 t( )v1
3 t( ) i0 3, t( )+ + 0=
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(3.178)

This expression is similar to the one used to express the mixing
components in conversion-matrix analysis. Unlike that expression,
however, it includes both upper- and lower-sideband frequency
components. Because the conversion-matrix analysis was linear, we could
ignore redundant frequency components; our present analysis is nonlinear,
so we now must include components at all frequencies, both positive and
negative. 

Figure 3.20 Linear circuits for determining the (a) first-order, (b) second-order, and
(c) third-order IM components. 

v1 t( ) 1
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(3.179)

In (3.179), ; we shall assume this to be the case throughout the
following analysis. The second-order terms of most interest are those at
kωp + ω1 – ω2 and kωp + 2ω1. The components at kωp + ω1 + ω2 and
kωp + 2ω2 can be found in a nearly identical manner, if they are of interest,
so we will not consider them further. The terms of interest are designated
by a and b subscripts, respectively: 

(3.180)

and 

(3.181)

The coefficient of (3.180) is 1/2 instead of 1/4 because there are two
identical terms in the q, r summation in (3.179) at this frequency. Also, one
should note that v1a

2 (t)  and v1b
2 (t)  are complex because they include only

some of the terms in (3.179); thus, they do not represent real time
functions. 

The Taylor-series coefficients can be expressed by their Fourier series
as 

(3.182)

and 
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∞
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(3.183)

Substituting (3.180) through (3.183) into the parts of (3.176) that represent
the source current gives the current-source components at these two
frequencies, i2a(t) and i2b(t): 

(3.184)

and 

(3.185)

i2a(t) and i2b(t) have the form 

(3.186)

and 

(3.187)

c2 t( ) C2 h, jhωpt( )exp
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Equating terms in (3.184) and (3.185) with those in (3.186) and (3.187),
respectively, gives 

(3.188)

and 

(3.189)

Limiting k to the range (–K, ..., K) allows Ik, 2a and Ik, 2b to be expressed as
column vectors: 

(3.190)

and similarly for I2b. Finally, conversion-matrix analysis gives the vectors
of second-order output currents: 

(3.191)

(3.192)

where Yj is the conversion matrix that represents the parallel combination
of the time-varying conductance and capacitance, and Ze, 2a and Ze, 2b are
the diagonal embedding impedance matrices (3.128) at their respective sets
of mixing frequencies. The second-order voltages are 

(3.193)

Ik 2a, t( ) Vm 1, Vn 2–,

n ∞–=

∞

∑
m ∞–=

h m n+ + k=

∞

∑
h ∞–=

∞

∑=

G2 h, C2 h, j kωp ω1 ω2–+( )+[ ]⋅

Ik 2b, t( ) 1
2
--- Vm 1, Vn 1,

n ∞–=

∞

∑
m ∞–=

h m n+ + k=

∞

∑
h ∞–=

∞

∑=

G2 h, C2 h, j kωp 2ω1+( )+[ ]⋅

I2a I K– 2a,
* I K– 1+ 2a,

* … I 1– 2a,
* I0 2a, I1 2a, … IK 2a,

T
=

I0 2a, 1 Yj Ze 2a,+( ) 1– I2a–=

I0 2b, 1 Yj Ze 2b,+( ) 1– I2b–=

V2a Ze 2a, I0 2a,=
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(3.194)

The third-order components are found analogously. The components of
greatest interest are those at 2ω1 – ω2 and 2ω2 – ω1; both are derived
identically, so only the former is considered here. The v1(t)v2(t) terms in
(3.177) have two components that generate 2ω1 – ω2: v1(t) at ω1 mixing
with v2a(t) at ω1 – ω2, and v1(t) at –ω2 mixing with v2b(t) at 2ω1. The
components of v1

3(t) and v1(t)v2(t) at this frequency are 

(3.195)

(3.196)

and 

(3.197)

The Fourier-series representations for the time-varying Taylor-series coef-
ficients are 

(3.198)

and 
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(3.199)

The resulting third-order components of the source current are 

(3.200)

The third-order current in Ze(ω) is 

(3.201)

where I0, 3 is the vector of output currents and I3 is the vector having the
form of (3.190) whose components are Ik, 3 from (3.200). Ze, 3 is the
diagonal matrix of embedding impedances at the third-order mixing
frequencies. Finally, the power of the third-order current component
dissipated in the embedding network at the frequency kωp + 2ω1 – ω2 is 

(3.202)

Equation (3.202) is the output power if the embedding network is lossless.
If it is not (for example, if the diode series resistance has been included in
it) it is necessary to subtract the real part of Ze;k, 3 representing the loss
from the impedance in (3.202). 
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3.6 MULTITONE HARMONIC-BALANCE ANALYSIS 

We saw that harmonic-balance analysis was applicable to large-signal,
single-tone problems, and that large-signal/small-signal analysis could be
used to solve problems that involved multitone small-signal excitations and
a single large-signal excitation. We shall see in the next chapter that power-
series and Volterra-series techniques are very useful in analyzing weakly
nonlinear circuits having multiple small-signal excitations at noncom-
mensurate frequencies. 

Although these cases cover a wide range of practical problems, there is
still one remaining class of problems that has not been addressed: large-sig-
nal, excitation of strongly nonlinear circuits by several noncommensurate
excitations. Examples of this type of problem are the calculation of inter-
modulation levels in power amplifiers and of large-signal intermodulation
in mixers. This type of problem cannot be solved by large-signal/small-sig-
nal analysis or by Volterra-series techniques because both of these methods
require that at least one signal, and sometimes all of them, be very weak.
These problems can, however, be handled by a modified type of “harmon-
ic” balance, which has been called, at various times, generalized harmonic-
balance analysis or spectral balance analysis. Here we use the term, multi-
tone harmonic-balance analysis. Finally, we examine envelope analysis
(sometimes called envelope transient analysis), an alternate, approximate
way to address certain kinds of multitone problems. 

3.6.1 Generalizing the Harmonic-Balance Concept 

The concept of harmonic-balance analysis is illustrated by Figure 3.3,
which shows a nonlinear circuit partitioned into linear and nonlinear
subcircuits. The voltages at the interconnections between the two
subcircuits are variables which, when determined, define all the voltages
and currents in the network. In the case of single-tone excitation, the
voltages and currents are periodic, and thus have a fundamental-frequency
component and a number of harmonics. There is nothing in that
formulation, however, that requires the frequency components to be
harmonically related. As we shall see, even the need for a Fourier
transform does not limit the analysis to harmonic frequencies; we can
easily generate a time-to-frequency transform (which, strictly, is not a
Fourier transform, although, for lack of a better term, we will call it that)
for noncommensurate frequencies. 

We now consider the case where the excitation may have two or more
noncommensurate frequencies, and the frequency components of the
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currents and voltages are no longer harmonically related. In general, the
voltages and currents at each port in Figure 3.3 have a set of K frequency
components: 

(3.203)

Usually ω0 = 0. These frequency components are mixing products, not
harmonics; each mixing frequency ωk arises as a linear combination of the
excitation frequencies. In the case of a two-tone excitation, 

(3.204)

where ωp1 and ωp2 are the frequencies of the two excitations, and each
(m, n) pair maps into a unique k. All mixing frequencies up to some
maximum value of m or n are included in the set of frequencies described
by (3.204), although only positive ωk need be included. (Negative-
frequency components are included in the analysis implicitly when the
Fourier transform converts the frequency-domain quantities to the time
domain.) The number of frequency components retained in the set is
subject to considerations similar to those that applied to single-tone
harmonic balance. See Section 3.6.7 for more on this subject. 

Of course, many problems require more than two noncommensurate
excitation tones. We shall restrict the following discussion to the two-tone
case; the extension to greater numbers of excitations is straightforward. It
will also become apparent that the size of the harmonic-balance problem
grows rapidly with the number of tones, and easily can become so large as
to be impractical. This is a serious limitation of multitone harmonic-
balance analysis. 

The goal of the harmonic-balance analysis, as before, is to find a set of
voltage components Vn, k at the frequencies ωk that satisfies (3.4). In this
case, however, the components In, k of the current vector and Qn, k of the
charge vector represent the components at port n and at mixing frequency
ωk, where ωk is not necessarily a harmonic of a single excitation frequency.
The harmonic-balance equations are still valid in the multitone case; it is
necessary only to replace the harmonics kωp with ωk and to include all
excitation tones in the excitation voltage vectors. Finally, the voltage,
current, charge, and similar components are no longer harmonic
components, but components at the frequency ωk. They can no longer be
determined by classical Fourier transform, but must be found by an
alternative time-to-frequency transform. Finally, we must determine how to
formulate the Jacobian for the nonharmonic case. 

ω ωk= k 0 1 … K 1–, , ,=

ωk mωp1 nωp2+=
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The development of multitone Fourier transformations has become a
cottage industry for academics in the last decade. A large number of
methods have been suggested. Instead of describing these in detail, we will
focus on the nature of the problem and provide references for specific
methods. 

3.6.2 Reformulation and Fourier Transformation 

One possibility is simply to find a common subharmonic for the two tones.
In this case, the two-tone signal is periodic, and conventional Fourier
transformation can be used. This is probably the most common and also the
worst way to address the multitone problem; the reasons will be clear
momentarily.

In order to use a Fourier transformation, the voltage and current
waveforms must be periodic. This will be the case if and only if the
excitation frequencies are commensurate; that is, 

(3.205)

for some nonzero positive integers q and r. Then the waveforms have a
period T, where 

(3.206)

In (3.206) we have assumed that ωp2 > ωp1. In order to avoid aliasing
errors, the waveforms must be sampled at a rate equal to twice the highest
significant temporal (i.e., not radian) frequency; if that frequency is the Nth
harmonic of the higher excitation frequency, Nωp2/2π, there must be
Nωp2/π samples per second. The number of samples S that must be made in
each Fourier transformation is therefore the product of this quantity and T,
or 

(3.207)

If ωp1 and ωp2 are closely spaced, S becomes a very large number.
Furthermore, because the fast Fourier transform algorithm requires that S
be a power of two, even the large number given by (3.207) must be
increased to the next power of two. This large number of samples requires a

qωp1 rωp2=

T 2π
ωp2 ωp1–
-------------------------=

S
2Nωp2

ωp2 ωp1–
-------------------------=
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comparably large—and often prohibitive—amount of computation time. It
is especially frustrating to note that all but a few of the S /2 complex
frequency components formed by the FFT are zero, and most of the
computation time is expended in finding the magnitudes of these
components, rather than the magnitudes of the K components of interest.
Finally, a little consideration shows a fundamental flaw in this method:
there is no reason why the frequency spacing, or the excitation frequency
itself, should affect the size of the harmonic-balance problem. 

The large amount of computation time is not the only problem that this
method introduces. The large number of arithmetic operations necessary to
form the Fourier transform reduces numerical precision, causing the result
to be inaccurate. This is especially troublesome when the analysis includes
both large and small frequency components, the usual situation in
multitone analysis. Finally, because of the requirement that ωp1 and ωp2 be
commensurate, it is not possible to use any frequencies of interest. 

3.6.3 Discrete Fourier Transforms 

One possible method for creating a multitone Fourier transform is to adapt
a discrete Fourier transform (DFT). In fact, the fast Fourier transform
(FFT) used commonly in harmonic-balance analysis is simply a method for
performing a DFT while avoiding multiple, redundant arithmetic oper-
ations. 

We wish to express the time waveform x(t), which may represent either
a voltage or a current, as 

(3.208)

where ωk are the set of mixing frequencies in the multitone problem. If the
function x(t) is sampled at the S = 2K – 1 time intervals ti = t1, t2, ..., t2K– 1,
the samples x(ti) can be expressed by a set of linear equations, 

x t( ) Xc k, ωkt( )cos Xs k, ωkt( )sin+

k 0=

K 1–

∑=
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(3.209)

or, in simpler notation, 

(3.210)

Γ describes the transformation from the time to the frequency domain.
In a classical DFT (3.209), the time samples are selected uniformly and the
ωk are harmonics. In the harmonic case, DFT or FFT generates little error
in transforming between the time and frequency domains, because the rows
of Γ–1 are orthogonal, and the matrix is well conditioned. If the frequencies
are not harmonics, the rows are not orthogonal, and it is possible for some
rows to be nearly linearly dependent; then the matrix is ill conditioned and
large errors result. This is usually the case when two or more of the
excitation frequencies, ωpn, are closely spaced. 

Because uniform time intervals often result in an ill-conditioned matrix
when ωk are not harmonics, nonuniformly spaced time samples provide
better conditioning. In any case, the ωk are fixed, so the choice of time
samples is our only remaining degree of freedom in optimizing the DFT.
But how do we select the sample points? Clearly, we select them to make
the rows of Γ–1 orthogonal,2 and developing methods for selecting a set of

2.  Creating orthogonal rows guarantees orthogonal columns as well, so we do not need to
consider orthogonality of the rows and columns separately.
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1 ω1t2( )cos ω1t2( )sin ω2t2( )cos ω2t2( )sin … ωK 1– t2( )sin
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=
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⋅
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sample points that results in orthogonal or nearly orthogonal rows is the
key to developing our multitone transform. 

Some methods for creating an optimum multitone DFT are the
following:

• Almost-periodic Fourier transform (APFT) of Sorkin and Kundert [3.16];

• Two-dimensional FFT [3.17];

• Quasiorthogonal matrix method and filter-balance DFT [3.18];

• Time-mapped harmonic balance [3.19];

• APFT and mapping techniques of Rodrigues [3.20, 3.21];

• Artificial frequency mapping [3.22, 3.23];

• Determination of a low sampling frequency that prevents aliasing [3.24].

The simplest literature search undoubtedly will turn up many more such
papers. We shall describe the APFT of Sorkin because it is an early, elegant
method that is simple to understand and clearly illustrates the problems in
selecting time points. (Unfortunately, its performance is not as good as
later methods.) A second method we describe is the two-dimensional FFT,
as it is an optimal method. Finally, we examine the use of artificial
frequency mapping to provide our multitone transform. 

3.6.4 Almost-Periodic Fourier Transform (APFT)

Although in the noncommensurate case the waveforms are not periodic,
they are in some sense “almost” periodic, with a period given by (3.206). It
is therefore possible to devise an “almost-periodic” transform that can be
used to transform the waveforms between the time and frequency domains.
the method we describe is one of the first for implementing such a
transform [3.16]. 

One possibility for improving the conditioning of Γ–1 is to oversample;
that is, to select more than 2K – 1 points. Selecting S according to (3.207)
is an extreme example of this approach, but it happens that a set of 4K to
6K points, selected randomly over an interval T given by (3.206), usually
provides a well-conditioned system. However, oversampling has the
disadvantage that it increases the amount of computation time required to
solve (3.209) and the equations describing the nonlinear subcircuit; it also
introduces the minor problem of an overspecified system. We would
therefore like to find a well-conditioned form of Γ–1 that does not require
oversampling.
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It is possible to create a well-conditioned system that is not over-
sampled by first choosing an excessive number of time points and reducing
the number of points to the minimum. We begin by selecting approximately
1.5 times the minimum necessary sampling points, choosing the
approximately 3K sample points randomly over an interval T given by
(3.206). The resulting sine-cosine matrix is tall; it has more rows than
columns. We then select 2K – 1 rows of the matrix to form Γ–1 and note the
corresponding time points; these are used as the sample points in Γ and x.
The rows we retain are rows of the matrix that, as closely as possible, form
an orthogonal set of vectors. 

The set of nearly orthogonal rows are chosen by a variation of the
Gram-Schmidt orthogonalization procedure. Let γn represent the nth row of
the matrix Γ–1. We select one row arbitrarily, say γ1, and remove the
components in the direction of γ1 of all the other vectors by forming 

(3.211)

The set of vectors γn are all orthogonal to γ1; because the vectors originally
were the same length and had the same norm, the largest remaining vector
(the one having the greatest norm) must have been the one most nearly
orthogonal to γ1. This row is retained and γ1 is replaced by it in the next
iteration. The process continues until the required number of vectors are
selected. 

3.6.5 Two-Dimensional FFT

Consider a two-tone excitation. The x(t) vector can be expressed as 

(3.212)

where Xm, n are the complex phasor magnitudes of the components at their
respective frequencies. It is possible to treat the time as two independent
time variables, so we can define ν1 and ν2, in which

γn′ γn
γ1

Tγn

γ1
Tγ1

-----------γ1–= n 2 3 … 2N, , ,=

x t( ) Xm n, mωp1 nωp2+( )t[ ]exp
n
∑

m
∑=
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(3.213)

where Nm and Nn are the number of sample points for the m and n series,
respectively. These must be powers of two, and the number of samples
must be twice the number of harmonics. This results in a two-dimensional
grid of time samples, which can be processed with a two-dimensional FFT.
The result is a two-dimensional set of frequency components, in which the
component at (mωp1, nωp2) is the frequency component mωp1 + nωp2. 

The two-dimensional FFT is equivalent to a DFT in which we sample
first at the rate determined by ωp1 and then sample at the ωp2 rate,
beginning at each ωp1 sample. This is, of course, a large number of
samples, and it would be prohibitive without the use of the FFT. An
apparent disadvantage of the approach is the restriction of the sample set to
powers of two, which invariably requires oversampling of the time
waveform. Nevertheless, oversampling can be beneficial, as it reduces
aliasing in the transform. 

The method can be extended to any number of dimensions, but the time
required to fill the multidimensional FFT matrix and to evaluate the
transform increases exponentially with dimension. In practice, n-
dimensional Fourier transformation is usually limited to n ≤ 3. The two-
dimensional FFT is an optimal method; that is, it achieves the same
conditioning as an orthogonal DFT. This is no surprise, as it consists of
repeated FFT operations. 

3.6.6 Artificial Frequency Mapping 

Consider a simple resistive nonlinearity, 

(3.214)

Let V(t) be the two-tone signal, 

(3.215)

Substituting (3.215) into (3.214) gives the unsurprising result,

ν1 ω1t r 1–( ) 2π
Nm
-------= =

ν2 ω2t s 1–( )2π
Nn
------= =

I f V( ) aV 2= =

V t( ) V1 ω1t( )cos V2 ω2t( )cos+=
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(3.216)

Note that the coefficients in (3.216) are unrelated to the frequencies ω1 and
ω2. Thus, the shape of the spectrum does not depend on the frequencies, as
long as the nonlinearity is quasistatic. Therefore, for the kind of algebraic
nonlinearities we normally encounter, we could solve the multitone
problem by mapping the excitation frequencies in such a way that the
resulting mixing products are equally spaced. We can then use a one-
dimensional FFT to provide the Fourier transform. 

For example, consider the simple frequency set,

(3.217)

where 0 ≤ m ≤M and |n| ≤ N, with m ≠ 0 when n < 0. (These complicated
criteria merely prevent redundant frequency components.) We scale the
frequencies with the coefficients, 

(3.218)

That is, mω1 is multiplied by s1 and nω2 by s2. This creates a uniform set of
frequencies in ω, which can be Fourier transformed by a conventional FFT.
Similar scaling functions can be used for other frequency sets and for more
than two excitation tones. 

An important advantage of artificial frequency mapping is its
applicability to problems having a large number of noncommensurate
excitations. An important disadvantage is that the time waveform returned
by the FFT has no physical meaning. This is less of a disadvantage than it
might seem; if time waveforms are desired as a final output from the
simulation, the frequencies can be rescaled to their original values and the
time waveforms calculated trigonometrically. 

3.6.7 Frequency Sets

In single-tone harmonic balance, the selection of a frequency set is
relatively simple: merely select the value of K, the highest harmonic in the

I t( ) a
2
---{V1

2 V2
2 V1

2 2ω1t( )cos V2
2 2ω2t( )cos+ + +=

2V1V2 ω1 ω2+( )t( )cos ω1 ω2–( )t( )cos+[ ]} +

ω mω1 nω2+=

s1 1=

s2
ω1

ω2 2N 1+( )
-----------------------------=
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series. We addressed this issue in Section 3.3.6. In multitone harmonic
balance, the question becomes more complex. 

We consider, for simplicity, the two-tone case. One option is to select
some order, Q, and select frequencies such that 

(3.219)

If the values of m and n satisfying (3.219) are plotted on Cartesian axes, the
pattern forms a diamond; therefore, it has been called a diamond truncation
[3.22]. Similarly, selecting

(3.220)

results in a rectangular pattern, called the rectangular or box truncation.
These criteria can be combined, resulting in something between those
extremes. Neither, however, provides the precise set of frequencies shown
in Figure 3.11 or 3.19; there is some justification, from Volterra theory, to
believe that the latter sets are optimum for small-signal problems. 

The optimization of frequency sets is an important unexplored problem
in nonlinear circuit theory. Clearly, the selection of frequency sets depends
on the nature of the nonlinearity and the excitation, but we can say little
more about it. Useful research in this area would do much to enhance the
performance of harmonic-balance simulation. 

3.6.8 Determining the Jacobian

In single-tone harmonic-balance analysis, the Jacobian, given by (3.43),
consists of the sum of the admittance matrix and terms representing the
frequency domain I/V derivatives. In multitone analysis, (3.43) is still
correct, but the admittance matrix is evaluated at the mixing frequencies
used in the analysis, instead of the harmonic frequencies. The derivative
matrices must be evaluated at those frequencies as well. We now derive the
latter. 

We begin by considering the nonlinear resistive elements; the reactive
elements follow directly. The part of the Jacobian representing these ele-
ments is 

(3.221)

ω mωp1 nωp2+= m n+ Q≤

ω mωp1 nωp2+= m M≤ n N≤

JG V∂
∂IG=
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so

(3.222)

From (3.210),

(3.223)

and, since Γ is a constant matrix, 

(3.224)

from which we obtain, by ordinary matrix manipulations, 

(3.225)

or

(3.226)

The form of the matrix  is analogous to that of the Jacobian. It is a
set of diagonal submatrices:

 (3.227)

The individual  submatrices have the form,

IG∂ JG V∂=

Γi∂ JG Γv∂=

Γ i∂ JG Γ v∂=

i∂
v∂

----- Γ 1– JG Γ=

JG Γ i∂
v∂

----- Γ 1–=

i∂ v∂⁄
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…
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(3.228)

The form of (3.228) is a diagonal because, in quasistatic nonlinear
elements,  is necessarily zero when m ≠ n. It is possible, in
some cases, to have nonzero off-diagonal elements; for example, if the
control voltage is a delayed function of another control voltage. In such
cases, it is necessary to modify the Jacobian in this manner, or convergence
of the Newton process is poor. 

Reactive elements follow the same pattern. For nonlinear capacitors,
the Jacobian component, from (3.43), is JQ = jΩC. The matrix 
is given by (3.227) and (3.228), with q, of course, replacing i. The matrix Ω
follows (3.21), with the mixing frequencies, instead of single-tone
harmonics, along the main diagonal. 

3.7 MODULATED WAVEFORMS AND ENVELOPE ANALYSIS

In linear systems, it is easy to determine, from single-tone analysis, how a
component handles a modulated signal. One need only analyze the circuit
at a number of frequencies, determine a transfer function, and multiply the
excitation waveform by that function. In nonlinear circuits, it is not so
simple; the effect of the circuit on the modulated waveform cannot be
determined accurately from a single-tone analysis. Specialized methods,
called envelope transient analysis, or simply envelope analysis,
[3.25–3.27] have been developed to deal with modulated signals in an
efficient manner. These methods are approximate. It is also possible to use
multitone analysis in a more exact manner. 

3.7.1 Modulated Signals 

A narrowband modulated waveform, s(t), can be represented as 

ik t1( )∂

ik t2( )∂

…

ik tS( )∂

ik t1( )∂
vl t1( )∂

---------------- 0 … 0

0
ik t2( )∂
vl t2( )∂

---------------- … 0

… … … …

0 0 …
ik tS( )∂
vl tS( )∂

----------------

vl t1( )∂

vl t2( )∂

…

vl tS( )∂

=

ik tn( )∂ vl tm( )∂⁄

C q∂ v∂⁄=
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(3.229)

where se(t) is the complex envelope of the signal, containing information
about the magnitude and phase of the modulated waveform.3 When such a
waveform is distorted by a nonlinear circuit, harmonics of the carrier are
generated and the envelope is distorted, causing its spectrum to spread.
Each carrier harmonic is surrounded by modulation components. The
distorted waveform can be represented as 

(3.230)

where the number of carrier harmonics, theoretically infinite, has been
limited to |m| ≤ M. Sm(t) represents the envelope function around the mth
harmonic. We assume, for now, that the modulation is periodic and
deterministic, so Sm(t) can be expressed by 

(3.231)

and (3.230) becomes 

(3.232)

Equation (3.232) shows that a modulated-waveform problem can be treated
as a conventional, two-tone harmonic-balance analysis if the somewhat
artificial requirement of a periodic modulating waveform is acceptable. 

3.  A narrowband signal has a fractional bandwidth that is small compared to the carrier
frequency. Virtually all practical communication signals, even those considered
“wideband” in some other sense (e.g., wideband CDMA systems) are narrowband in the
sense we consider here. 

s t( ) Re se t( ) jω pt( )exp{ }=

s t( ) Sm t( ) jmωpt( )exp
m M–=

M

∑=

Sm t( ) Sm k, jkω0t( )exp
k K–=

K

∑=

s t( ) Sm k, j kω0 mωp+( )t[ ]exp
k K–=

K

∑
m M–=

M

∑=
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3.7.2 Envelope Analysis

In a narrowband signal, the envelope function Sm(t) varies slowly
compared to the carrier; that is, we can always assume that .
Therefore, we can sample the waveform at a rate based on the envelope
frequency, instead of the carrier frequency, performing harmonic-balance
analyses at each sample point. We first perform a harmonic-balance
analysis at t = t0, giving Sm(t0) for all m; then, at t = t1, giving Sm(t1), and
so on. When the envelope functions at all M harmonics are known, they can
be Fourier transformed to provide Sm, k . In effect, we are sampling Sm(t) and
determining the frequency components Sm, k in (3.232). This process is
inherently more efficient than multitone analysis, as it replaces a dimension
of the multitone problem with a sequence of analyses. That sequence scales
linearly with K; adding a dimension to the analysis would scale, at best, as
~K1.5 although ~K2 is more likely. 

An even easier process would be to perform a number of analyses at a
range of excitation amplitudes and phases to map the Sm space. Then, Sm(t)
could be found simply by applying the map to the real excitation. Indeed,
this is the principle behind certain kinds of behavioral component models.
Nothing we have said, so far, makes our envelope analysis superior to this
latter approach. Properly implemented, however, an envelope analysis can
account for phenomena that the latter approach cannot. 

First, consider a nonlinear capacitor having the charge function Q(V).
From (3.231), its charge is 

(3.233)

Its current is found by differentiating:

(3.234)

so the current components in the current-error vector, (3.25), are

Kω0 ωp«

Q t( ) Qm t( ) jmωpt( )exp
m M–=

M

∑=

I t( )
td

d Q V( )=

jmωpQm t( )
td

d Qm t( )+
 
  jmωpt( )exp

m M–=

M

∑=
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(3.235)

The second term in (3.235), the derivative, is new. These derivatives are
usually calculated by finite differences. 

Second, we must account for the variation in the linear subcircuit’s
admittance over the frequency spectrum, however narrow, of the
modulation. One way of many is simply to linearize the admittance in the
vicinity of the carrier harmonics; then, 

(3.236)

Finally, (3.235) shows that we have created a nonquasistatic system.
The solutions at each time point are linked, and this dependency must be
included in the Jacobian. That is, we must have terms of the form

(3.237)

If only the (p – 1) and (p + 1) time points are used to estimate the
derivatives, three such submatrices are needed, and each harmonic-balance
iteration must include them. Although this increases the dimension of the
Jacobian by a factor of approximately three, the blocks lie along its main
diagonal, so the damage is not too great. In some cases, the links can be
removed entirely, at some cost of robustness, but improving solution speed
[3.25]. 
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Chapter  4

Volterra-Series and Power-Series 
Analysis 

The previous chapter was concerned with strongly nonlinear circuits hav-
ing a single, large-signal excitation and sometimes one or more additional
excitations that could be assumed to be vanishingly small. In this chapter
we consider the opposite extreme, weakly nonlinear circuits having
multiple, noncommensurate small-signal excitations. In these circuits,
nonlinearities have a negligible effect upon their linear responses, but even
low levels of nonlinear distortion can affect system performance. The
problem of analyzing such circuits is sometimes called the small-signal
nonlinear problem. 

Two techniques will be examined. The first is power-series analysis, a
technique that is relatively simple but requires a simplifying assumption
that is often unrealistic: the circuit contains only ideal memoryless transfer
nonlinearities. The power-series approach is useful in some instances,
however, and gives the engineer a good intuitive sense of the behavior of
many types of nonlinear circuits. The second technique is Volterra-series
analysis, a very powerful method that does not require such restrictive
assumptions. Volterra analysis is most useful for the analysis of inter-
modulation distortion and related phenomena from weakly nonlinear
circuits and systems. 

This chapter generally follows the approach of Weiner and Spina [4.1],
modified as necessary for microwave applications. That book is based upon
work reported in [4.2] and [4.3], performed in the early 1970s under U.S.
Government sponsorship. References [4.4] and [4.5] are other excellent
sources of information on the Volterra series. 
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4.1 POWER-SERIES ANALYSIS 

4.1.1 Power-Series Model and Multitone Response 

Many nonlinear systems and circuits are modeled as a filter, or other
frequency-selective network, followed by a memoryless, broadband
transfer nonlinearity. The model is shown in Figure 4.1, where the linear
network has the transfer function H(ω) and the nonlinear one has the
transfer function 

(4.1)

or

(4.2)

where . For practical reasons, the series must be truncated
at some value n = N. 

In Figure 4.1 and (4.1), the transfer function variables w(t) and u(t) are
small-signal, incremental quantities (i.e., small deviations around a dc bias
point) and may be current or voltage. It is important that the transfer
function f(u) be single-valued, and that it be weakly nonlinear, expressing
the nonlinearity adequately via a limited number of terms. In practice, N
usually must be limited to 3 or at most 5, or the analysis becomes
hopelessly laborious. The linear block H(ω) may represent a filter or,
frequently, a matching network. To account for the effects of an output

w t( ) f u t( )( ) anun t( )
n 1=

N

∑ a1u t( ) a2u2 t( ) …+ += = =

w t( ) wn t( )
n 1=

N

∑=

wn t( ) anun t( )=

Figure 4.1 Power-series model of a nonlinear system: H(ω) is a linear circuit, and
f(u) is a memoryless nonlinear transfer function.
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filter or a matching network, one may include another linear network at the
output. The inclusion of such a network can be accomplished via ordinary
linear circuit theory. 

Figure 4.2 shows a simplified equivalent circuit of a FET, which can be
described by this model. The elements of the circuit are readily identified
with those of the block diagram in Figure 4.1: vs(t) corresponds to s(t),
v(t) to u(t), and i(t) to w(t). The input linear transfer function
H(ω) = V(ω) / Vs (ω), where V(ω) and Vs (ω) are the frequency-domain
equivalents of v(t) and vs(t), respectively. Thus, in this example, 

(4.3)

The only nonlinearity in the circuit is the transfer function i = f (v)
between the gate depletion voltage v(t) and the drain current i(t). The
transfer function f(v) is the power-series expansion of the current around
the bias point; it is found by expanding the large-signal drain current/gate
voltage characteristic Id = F(V) in a Taylor series: 

(4.4)

where Vg0  is the dc bias voltage across the capacitor. The coefficients an
are found by comparing (4.1) to (4.4). 

So far, nothing in this problem precludes the use of time-domain
techniques for analyzing the nonlinear circuit of either Figure 4.1 or 4.2.

Figure 4.2 Simplified equivalent circuit of a FET for which the power-series model
is applicable.
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We could easily convert the linear transfer function H(ω) to an impulse
response function h(t), find v(t) by convolution, and finally substitute v(t)
into (4.1) to obtain i(t). Nevertheless, there are two problems inherent in
using time-domain techniques to analyze this type of circuit. First,
undertaking the solution of such problems is usually motivated by a need
for frequency-domain, not time-domain, information, so a frequency-
domain approach is the natural first choice. Second, if the excitations are at
noncommensurate frequencies, the time-waveforms are not periodic, so
obtaining valid frequency-domain data from a numerical time-domain
result is often difficult. Finally, we use the frequency-domain approach
because of the insight it gives us into a much more powerful technique,
Volterra-series analysis. 

The excitation s(t) usually contains at least two noncommensurate
frequencies. In Figure 4.2, vs(t) corresponds to s(t) and can be expressed as 

(4.5)

where the asterisk indicates the complex conjugate. Equation (4.5) can be
written in the following, more compact form: 

(4.6)

where , .
We assume in (4.6), and throughout the following analysis, that the

excitation and the response have no dc component. In microwave circuits,
the excitation invariably has no dc component, other than the bias, which
we include implicitly by evaluating the an coefficients at the bias point. We
noted in Chapter 1 that a nonlinear circuit may indeed generate dc
components in its output in response to a sinusoidal excitation. When the
excitation is small and the nonlinearities are weak, (which is, after all, our
basic assumption), the dc components generated by the nonlinearities are
very small, and invariably negligible. The practical effect of the generation
of dc components is to offset the bias currents and voltages slightly from
their quiescent values. In cases where significant bias offset occurs, for

vs t( ) 1
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--- Vs q, jωqt( )exp Vs q,

* jωq– t( )exp+
q 1=
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q Q–=
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example, in a class-B amplifier, Volterra and power-series analyses usually
are not applicable. 

We shall assume throughout the remainder of this chapter that the
excitations do not include dc components, and we will dispense with the
notation to that effect (q ≠ 0) in all the summations. 

The output of the linear circuit is v(t), which corresponds to u(t) in
Figure 4.1: 

(4.7)

where H(ω–q) = H*(ωq). The output of the nonlinear stage is found by
substituting v(t), expressed by (4.7), into (4.1) for u(t); the terms are all of
the form anvn, where 

(4.8)

The entire response is 

(4.9)

where i(t) is equivalent to w(t) in (4.1). Equations (4.8) and (4.9) show that
a large number of new frequencies can be generated by the nonlinearity;
each frequency generated by the nth-degree term is a linear combination of
n excitation frequencies, and the total response for each n is the sum of all
possible linear combinations of n excitation frequencies. Figure 4.3 shows

v t( ) 1
2
--- Vs q, H ωq( ) jωqt( )exp

q Q–=

Q

∑=

anv n t( ) an
1
2
--- Vs q, H ωq( ) jωqt( )exp

q Q–=

Q

∑

n

=

an

2n
----- …

q2 Q–=

Q

∑
q1 Q–=

Q

∑= Vs q 1,
qn Q–=

Q

∑

Vs q2, … Vs q n, H ωq1( )H ωq2( ) … H ωqn( )⋅

j ωq1 ωq2 … ω qn+ + +( )t[ ]exp⋅

i t( ) anv n t( )
n 1=

N

∑=



 Nonlinear Microwave and RF Circuits220

some of the lowest-order terms, those that are usually of most concern to
system designers, when Q = 2 (two excitation tones) and n ≤ 3.
Furthermore, the amplitude of each frequency component is proportional to
the product of the amplitudes of all the contributing excitations. 

It is important in the following analysis to distinguish between the
concepts of degree and order. The degree of the nonlinearity refers simply
to the power of u(t) in the nonlinear transfer characteristic (4.1). An nth-
order mixing frequency is defined as one that arises from the sum of n
excitation frequencies. In general it is not possible to determine the order
of a mixing product from its frequency; for example, the frequency
2ω1 – ω 2 appears at first to be of third order, that is,
2ω1 – ω 2 = ω1 + ω1 – ω2, but in reality it could be the fifth-order mixing
product, ω1 + ω1 + ω1 – ω1 – ω2 . In this example, our circuit contains only
a single, ideal, transfer nonlinearity and no feedback, so an nth-degree
nonlinearity generates mixing products up to only nth order. However, in
more complicated circuits, a nonlinearity of degree n can generate mixing
products of order equal to or greater than n. This situation exists because,
in reality, the mixing products and the excitations generally are not limited
to separate parts of the circuit, so a mixing product can mix with
excitations or other mixing products. For example, if the circuit of Figure
4.2 included a feedback capacitance from the top of the current source to
the top node of the input capacitor Ci, the control voltage v(t) would

Figure 4.3 Spectrum of intermodulation frequencies resulting from two-tone
excitation; the excitation frequencies are ω 1 and ω 2. 
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include mixing products as well as excitation-frequency components. Thus,
v(t) would consist of components at the excitation frequency and at mixing
frequencies, and products of order greater than n would arise as nth-order
combinations of any of those frequencies. In that situation, even if n ≤ 3, a
2ω1 – ω2 product could mix with a component at ω1 – ω2 to form a fifth-
order component at 3ω1 – 2ω 2 . 

To illustrate power-series analysis, we now consider a two-tone
excitation (Q = 2) and find the part of the response associated with the
second- and third-degree components of the output current, n = 2 and n = 3,
respectively. The second-degree component is designated i2(t) because it
corresponds to w2(t) in (4.1) and (4.2) : 

(4.10)

The summation in (4.8) generates (2Q)n terms; in this example, Q = 2, so
there are 16 terms. The frequencies associated with the terms are the fol-
lowing: 

We can readily see that these terms include harmonics of the input
frequencies (e.g., ω1 + ω1 = 2ω1), repeated terms (e.g., ω1 + ω 2 and
ω2 + ω1), and dc terms (e.g., ω1 – ω1). Also, the frequencies occur in
positive and negative pairs, so the terms in (4.10) occur in complex
conjugate pairs. Thus, the frequency components represent real time
waveforms, as they must in any real circuit. For example, the ω1 – ω2
component is 
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(4.11)

The coefficient of 2 ahead of the brackets indicates that there are two terms
at ω1 – ω 2 and two terms at –(ω1 – ω2) in the double summation: q1 = 1,
q2 = –2 and q1 = –2, q2 = 1 give identical terms at ω1 – ω 2; q1 = –1, q2 = 2
and q1 = 2, q2 = –1 give identical terms at –(ω1 – ω 2). Finally, (4.11) can
be expressed in cosine form: 

(4.12)

where φ2 is the phase angle associated with the complex coefficients in
(4.11). The purpose of intermodulation (IM) analysis is usually to
determine output power at the mixing frequency, so φ2 is rarely of interest.
Phase angles are important in Volterra analysis and in power-series analysis
only when two components that have different orders but the same
frequency are combined. For example, saturation effects can be analyzed
by combining the linear output at ω1 and the third-order component at
ω1 + ω1 – ω1 = ω1 ; the phase difference between these components affects
the circuit’s amplitude saturation (AM-to-AM) and phase (AM-to-PM)
characteristics. 

The current component generated by the third-degree term, i3(t), can be
found in a similar manner. From (4.8), with n = 3, we have 

(4.13)

The i3(t) summation has (2Q)n = 43 = 64 terms, although not all
represent different mixing frequencies. Half of the terms in (4.13) are
simply conjugates of the others and, as in the second-degree case, many
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terms are identical. Some (but definitely not all!) of the frequencies in
(4.13) are 

(4.14)

The first two of these mixing frequencies are important because they often
occur at frequencies close to ω1 and ω 2. There are three identical terms at
2ω2 – ω1 and three at 2ω1 – ω 2; the terms at 2ω2 – ω1 occur when 

(4.15)

and

Because there are three terms at this frequency in (4.13), the coefficient 3 is
used in the expression for the current component at 2ω2 – ω1: 

(4.16)

The cosine form of (4.16) is 
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Again, φ3 represents the combined phases of the complex coefficients in
(4.16) and may be ignored in determining the power levels of third-order
mixing components. 

4.1.2 Frequency Generation 

The new frequencies generated by a transfer nonlinearity, expressed by
(4.8), are easy to predict. A large number of frequencies are possible; we
shall assume that K nth-order frequencies are of interest, and any one of
them, ωn,k, k = 1...K, can be expressed as follows: 

(4.18)

where mi is the number of times the frequency ωi occurs in generating the
mixing frequency ωn, k. Because exactly n terms are generated by an nth-
degree nonlinearity, the set of values of mi that defines any single mixing
frequency is subject to the constraint 

(4.19)

Some of the nth-order terms in (4.18) may not appear to be a
combination of n frequency components; for example, if n = 3 and Q = 2,
some of those terms are the following: 

(4.20)

and these seem to involve only one frequency. This is an illustration of the
fact, stated in the previous section, that it is not generally possible to
determine the order of a mixing product from its frequency. The evidence
that these products are indeed third-order is their cubic dependence on Vs, q
and H(ωq) in (4.8). 

To obtain the correct magnitude of each IM component, determining
the number of terms at each frequency is clearly necessary. For a mixing
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frequency given by (4.18), the number of terms is given by the multinomial
coefficient 

(4.21)

For example, in the second-order case of ω1 – ω2 = ω1 + ω –2 examined
earlier, n = 2, m1 = 1, m–2 = 1, so 

(4.22)

as we had determined by brute force. Similarly, for the n = 3 case,
ωn, k = 2ω2 – ω1 so m2 = 2, m–1 = 1, and 

(4.23)

which agrees with the coefficient in (4.16) and (4.17). 

4.1.3 Intercept Point and Power Relations

A two-tone test is a common method for determining the intermodulation
properties of a nonlinear or quasilinear circuit. In such a test, two
excitations of equal amplitude and separated only slightly in frequency are
applied to the circuit, and the powers of the resulting IM components are
measured. Figure 4.4 shows the test setup for such measurements. The two
excitations are combined at the input of the nonlinear component, a
variable attenuator is used to adjust the input level, and the output-
frequency components are observed on the display screen of a spectrum
analyzer. A spectrum similar to that shown in Figure 4.3 is normally
observed. In a two-tone test, Vs, 1 = Vs, 2 = Vs, , and
H(ω 1) ≈ H(ω2 ) = H(ω); Vs can be assumed real without loss of generality.1
These approximations are almost always valid for third-order IM at
2ω1 – ω2 and 2ω2 – ω1 , but they may be somewhat strained when applied

1.  While true of a two-tone excitation, this reasoning is not valid for IM problems involving
a large number of excitation tones. In that case, the envelope of the composite waveform
depends on the initial phases of the excitation tones and the magnitude of the mixing
products may, as well. This is especially true of large-signal IM problems, which are
outside the scope of this chapter. 
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to second-order products, like ω 2 – ω 1 and 2ω 2, which can easily be out of
band. We justify them by recognizing that second-order products are of
primary concern when they are in-band; thus, H(ω) is approximately
constant, and in any case the qualitative results of the following analysis
are more important than the quantitative ones. 

When these approximations are made and the phase angle φ2 is
ignored, (4.12) becomes 

(4.24)

The second-order IM output power, the power dissipated in the real part of
ZL(ω 1 – ω2 ), is 

(4.25)

We assume for simplicity that Re{ZL(ω 1 – ω2 )} = RL, a constant. Then 

(4.26)

The available power of each input tone is 

Figure 4.4 Two-tone test circuit. In general Vs, 1 and Vs, 2 are equal, and ω1 and ω2
are nearly equal.
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(4.27)

and the output IM power can be written in terms of the available input
power: 

(4.28)

The same can be done with the third-order IM component at 2ω 2 – ω1. The
output current at that frequency is 

(4.29)

and the IM output power is 

(4.30)

As with the second-order component, the third-order IM output power can
be expressed as a function of available input power Pav : 

(4.31)

It is normally most convenient to express the IM powers PIM2 and PIM3 in
dBm, not linear quantities. Thus, with PIM2, PIM3, and Pav expressed in
terms of dBm, (4.28) and (4.31) become 

(4.32)

(4.33)

The IM output power given by (4.32) and (4.33), along with the linear
output power, are graphed in Figure 4.5. At low levels, the second- and
third-order IM powers vary by 2 dB/dB and 3 dB/dB, respectively, with
input power level, while the linear output varies at the expected 1 dB/dB
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rate. In fact, further analysis shows that nth-degree IM products always
vary by n dB/dB with input power level. At some point, the linear output
power saturates, because the output power available from any real
component is always finite; the IM characteristics also saturate at
approximately the same input level. Below this saturation level, however,
the IM power curves, in terms of dBm, are straight lines. 

The straight-line behavior of the IM characteristic can be used to
predict IM levels at any input power level. It is necessary only to know the
output level at one point in order to define the entire curve. A convenient
point is the extrapolated point at which the IM and linear output powers are
equal; this point is different, in general, for each order of IM product (and,
in fact, for each different mixing frequency of a given order) and is called
the intermodulation intercept point. This point is useful because it defines
not only the IM curve, but its relation to the linear curve as well. Therefore,
it can be used to find not only the IM output power, but the ratio of linear to
IM power level, often a more important quantity. 

The IM characteristic follows the equation for any straight-line
function: 

(4.34)

Figure 4.5 Input/output power curves for linear and intermodulation components.
By tradition, the power shown in these curves is the power in each tone
of the linear or IM product. 
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where P0 is a constant that we will evaluate. In terms of linear output
power, 

(4.35)

At the nth-order intercept point IPn, 

(4.36)

Substituting (4.36) into (4.35) gives 

(4.37)

Substituting (4.37) into (4.35) finally gives the result, 

(4.38)

Equation (4.38) gives the relationship between the linear power, Plin,
the nth-order IM output power, PIMn, and the nth-order intercept point, IPn,
at input levels below saturation. The only quantity that must be determined
in order to define (4.38) is the intercept point IPn. To determine IPn, an
expression for IM level must be found by an analysis similar to the one
above; IPn can then be found by comparison. A straightforward analysis of
the circuit in Figure 4.2 gives the transducer gain Gt in decibels: 

(4.39)

Substituting this expression and Pav = Plin – Gt into (4.32) and (4.33), and
doing some straightforward algebra, gives the expressions 
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(4.41)

By comparing (4.40) and (4.41) to (4.38), we find IP2 and IP3 in dBm: 

(4.42)

(4.43)

We again note that (4.42) and (4.43) apply only to the specific second-
and third-order intermodulation products ω1 – ω 2 and 2ω2 – ω1,
respectively. Although the intercept points are also valid for the ω2 – ω1
and  2ω1 – ω2 products, they are generally not valid for other products of
the same orders, for example, 2ω1 and 3ω2. These latter components have
different intercept points. They have the same dependence on a1, a2, a3,
and RL, but the fractional coefficient within the parentheses in (4.42) or
(4.43) is different; also, some of the assumptions used in generating (4.42)
and (4.43) may not be valid for other IM products. Equation (4.38) is valid
for all IM products, as long as the correct intercept point is used for IPn . 

Although the power-series concept is simple to implement and gives a
good intuitive sense of the IM performance of a quasilinear circuit, it is
severely limited. The most obvious limitation of power-series analysis is in
the difficulty or, frequently, the impossibility of applying it to circuits that
are not unilateral; the circuit must be described by a cascade of linear
blocks and a transfer nonlinearity. Most real circuits are not adequately
described by such simple models. A second limitation is that a power-series
analysis requires memoryless nonlinearities; in particular, it cannot include
nonlinear capacitances, which are often significant contributors to IM
distortion in solid-state devices. One of the effects caused in part by
nonlinear reactances is that the “straight-line” portion of the IM
characteristic, shown in Figure 4.5, is not precisely straight; it often
includes curvature and small ripples, and, in some cases, sharp nulls are
observed at power levels close to saturation. Even so, the IM characteristic
of most quasilinear circuits often includes a dominant straight-line
component, and an intercept point can be defined in such a way that it
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describes the component’s intermodulation characteristics with reasonable
accuracy. 

We must also remember that the intercept point concept, as described
here, is directly applicable only to two-tone excitations, and that the power
relations are based upon the assumption that the levels of both excitations
vary in tandem. In practice, one signal may vary and the other may not; in
this case the variation in the power of any IM output tone with variation in
the power of one excitation tone will differ from the previous case. The
variation in output level with variations in a single excitation can be found
via the following rule: if the level of a single excitation tone at frequency
ωi is varied while all the other tones remain constant, the IM output power
at ωn, k varies by mi dB/dB, where ω n, k, ω i, and mi are as used in (4.18). We
consider the third-order IM product at 2ω2 – ω1 as an example. The IM
frequency component at 2ω2 – ω1 varies by 2 dB/dB with variations in the
level of the ω 2 excitation and by 1 dB/dB with variations in the level of the
ω1 excitation. This rule can be used to find the level of an IM product when
the excitation levels are dissimilar, as long as the two-tone IM intercept
point for excitations of identical levels is known. 

4.1.4 Intermodulation Measurement

The system shown in Figure 4.4 does not fully illustrate the difficulty in
making good IM measurements. Therefore, before leaving this subject, we
offer a few suggestions for making such measurements accurately:

• The outputs of the signal generators must be well filtered. A harmonic out-
put from one signal generator can mix in the test device with the funda-
mental of the other. The result is a second-order mixing product occurring
at the same frequency as a third-order product. 

• It is possible for the output of one generator to leak into the input of the
other, generating IM products. Those IM products are then applied to the
input of the nonlinear circuit and amplified by it. For this reason, it is wise
to use isolators or attenuators at the output ports of the signal generators. 

• The signal generators must be very stable; usually, they must be frequency
synthesizers. Frequency instability limits the resolution bandwidth that can
be used in the spectrum analyzer, and thus the sensitivity of the measure-
ment. 

• Spurious signals from the frequency synthesizers can interfere with the IM
measurement. Usually, these are related to the instruments’ 5-MHz time
base. For this reason, it is best to use a frequency spacing that is not a har-
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monic of the time-base frequency. A frequency spacing of 11 MHz, or
some other odd number, is often ideal. 

• The input intercept point of the spectrum analyzer must be much greater
than the output intercept point of the test device. (If it is not, the measure-
ment will be that of the analyzer, not the test device.) The simplest way to
improve the spectrum analyzer’s intercept point is to increase its input at-
tenuation, but this decreases its sensitivity as well. In tests of linear power
amplifiers, it may be impossible to keep the IM products above the spec-
trum analyzer’s noise level when enough input attenuation is used. In that
case, it is necessary to use a narrowband filter to reject the fundamental
components at the output of the test device. 

4.1.5 Interconnections of Weakly Nonlinear Components 

Equation (4.38) is useful for finding the two-tone intermodulation levels in
a single, quasilinear circuit. Microwave systems, however, comprise a
number of such circuits interconnected in a variety of ways, and it is
invariably necessary to have an IM characterization of the entire system. In
this section we derive the intercept point of a cascade interconnection of
stages. Having that intercept point, we can use (4.38) to find the IM levels
at the output of the cascade. The effect on IPn of the parallel or hybrid
interconnection of identical components, a much simpler subject, is
considered in Chapter 5; in most cases, we find that all the intercept points
are increased by 10 log10(M) dB, where M is the number of identical
components in the combination. 

Figure 4.6 shows the cascade interconnection of several two-ports.
These two-ports may be amplifiers, mixers, control components, or any
other type of weakly nonlinear component. We can accommodate linear
components by assigning them intercept points that are much greater than
those of the other elements. The stages are designated Am, m = 1...M, and
their transducer gains and nth-order intercept points are Gm and IPn, m,
respectively. We assume that the gain and input/output impedances of each
stage are constant over a frequency range that includes all IM products of
interest, and that the stages’ nonlinearities do not interact. 

Under these conditions, the system operates as follows: a two-tone
signal is applied to the input of A1, and A1 passes the linear signal to the
output and generates distortion products. These are applied to the input of
A2; A2 again passes the linear and IM outputs from A1 to its output, and
generates some IM distortion of its own. These distortion products occur at
the same frequencies as those generated by A1, and thus are combined with
those from A1. This process is repeated throughout the rest of the cascade. 
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In general, the phases of the IM distortion products generated in any
stage and those passed from its input are unknown. Thus, one generally
does not know whether those IM components will be combined in phase
(increasing the IM level) or out of phase (decreasing it) or with some other
phase. To circumvent this problem, we make a worst-case assumption: that
all distortion products combine in phase. This assumption results in an
upper bound to the intercept point. That bound inevitably is close to what
we measure in practice, because it is likely that, somewhere in the system’s
passband, all the IM components will have nearly the same phase. 

The bound is valid for another reason. A Volterra analysis of a cascade
of components shows that, in many situations, the IM products always
combine in phase, so the worst-case result is not a bound, but a precise
calculation [4.6]. Those cases include such ordinary ones as a cascade of
identical components. 

The voltage of the linear products at the output of A1 is designated
Vlin,1 and the IM voltage generated in A1 is VIMn, 1; at the output of A2, the
linear component is G2

1/2Vlin,1 and the IM voltage is G2
1/2VIMn, 1 + VIMn, 2.

Thus, at the output of the last stage, AM, 

(4.44)

and 

Figure 4.6 Cascade connection of weakly nonlinear components. Although the
stages shown here are amplifiers, they can be any type of unilateral two-
port. 
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(4.45)

Converting (4.38) from dBm to units of power gives 

(4.46)

We now square Vlin, M and VIMn to obtain Plin, M and PIMn, and
substitute the squared forms of (4.44) and (4.45) into (4.46). We also
substitute  for VIMn, m in (4.45). This substitution and a little algebra
give the result 

(4.47)

Equation (4.46) shows that, at the output of any stage, 

(4.48)

Finally, we substitute (4.48) into (4.47) and, again, grind through the
algebra. The result is the cascade relation for intercept point, 

(4.49)

Equation (4.49) shows that the amount each stage contributes to the output
intercept point of the cascade is a function of the intercept point of that
stage multiplied by the gain of all the stages following it. It is important to
note that the gain Gm and nth-order intercept point IPn, m in (4.49) are in
units of watts or mW, not dBm. 
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4.2 VOLTERRA-SERIES ANALYSIS 

4.2.1 Introduction to the Volterra Series 

The power-series analysis of Section 4.1 was based on the system model
shown in Figure 4.1, in which the frequency-sensitive linear part of the
circuit and the memoryless nonlinear elements were clearly separate from
each other. The model used for the Volterra-series analysis, shown in
Figure 4.7, is similar, but the separation between the memoryless and the
reactive parts of the circuit has been eliminated. Thus, the nonlinear block
may contain a mix of linear and nonlinear elements, with or without
memory and feedback. The nonlinear elements may be either resistive or
reactive, and they are characterized by power series having the same form
as (4.1). As in the previous section, the excitation s(t) contains, in general,
a number of individual sinusoidal excitation components having noncom-
mensurate frequencies.

In the previous section we showed that the response w(t) to the
excitation s(t), found via the power-series model, could be expressed by
(4.8) and (4.9). Those expressions can be recast as follows: 

(4.50)

where H(ω) was the transfer function of the linear part of the circuit, and
an, n = 1 ... N, were the coefficients of the terms in the power series that
characterized the memoryless nonlinear block. The excitation s(t) was a
small-signal, incremental voltage, 

w t( ) an
1
2
--- Vs q, H ω q( ) jωq t( )exp

q Q–=

Q

∑

n

n 1=

N

∑=

an

2n
----- …

q2 Q–=

Q

∑
q1 Q–=

Q

∑ Vs q 1,
qn Q–=

Q

∑
n 1=

N

∑=

Vs q2, … Vs q n, H ω q1( )H ω q2( ) … H ω qn( )⋅

j ω q1 ω q2 … ω qn+ + +( )t[ ]exp⋅
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(4.51)

(By the use of the term Vs, q, we have implied that the signal is a voltage, as
is usually the case in microwave circuits, but of course it could be a current
as well.) As before, q ≠ 0. In Volterra-series analysis, we assume that the
excitation has the same form as (4.51), and we find that the response can be
expressed as the following function of the excitation: 

(4.52)

The only formal difference between (4.52) and (4.50) is that (4.52) contains
a single function, , instead of the product of linear
transfer functions, . The former function is
called the nth-order nonlinear transfer function. Knowing it, we can find
individual mixing and distortion products in a manner identical to that used
in the power-series analysis. 

Volterra-series analysis, like power-series analysis, is based on the
assumptions that the circuit is weakly nonlinear and that the multiple
excitations are small and noncommensurate. In some cases, the two
approaches are equivalent; comparing (4.50) and (4.52), we can see that
power-series analysis is a special case of Volterra-series analysis, one in
which the nonlinear transfer function can be expressed as 

Figure 4.7 Weakly nonlinear circuit model for Volterra-series analysis. The circuit
may have both reactive and resistive nonlinearities.
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(4.53)

All the previous work in Section 4.1 regarding frequency mixing in circuits
characterized by a power series is valid for the Volterra series; the primary
difference is in the form of the nonlinear transfer function. 

4.2.2 Volterra Functionals and Nonlinear Transfer Functions 

A fundamental tenet of linear system and circuit theory is that the output
w(t) of a linear system or circuit having excitation s(t) can be expressed by
the convolution integral 

(4.54)

where h (t) is the impulse response, the response to a pulse having
infinitesimal width and infinite amplitude but unit energy. This pulse is
called the Dirac delta function, δ(t). It has the property that 

(4.55)

Equation (4.54) is valid only for linear circuits and systems. An extension
of (4.54) to the case of nonlinear systems was proposed by Norbert Wiener
[4.7, 4.8], who applied the work of Volterra [4.9] to the problem of
analyzing nonlinear systems. Wiener showed that the response of a weakly
nonlinear circuit having small excitations can be described by the func-
tional series 

Hn ω q1 ωq2 … ωqn, , ,( ) an H ω q1( )H ω q2( ) … H ω qn( )=

w t( ) h τ( )s t τ–( ) τd
∞–

∞

∫=

f t0( ) f t( )δ t t0–( ) td
∞–

∞

∫=
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(4.56)

In (4.56), the multidimensional function  is called the
nth-order kernel or the nth-order nonlinear impulse response. Just as the
linear frequency-domain transfer function H(ω) is the Fourier transform of
h(t), the nonlinear transfer function  is the n-
dimensional Fourier transform of . The excitation
function s(t) may be any finite small-signal voltage or current waveform,
although in microwave circuits we will be interested exclusively in the case
where s(t) is the sum of several sinusoidal components, given by (4.51). 

Equation (4.56) can be expressed in more compact form as 

(4.57)

where 

(4.58)

and we have limited the series to N terms (N th order). The frequency-
domain form of the response can be found by substituting (4.51) into
(4.58). The result is 
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(4.59)

As before, we assume in (4.59) and in the following expressions that all
summations over qi = –Q ... Q do not include qi = 0, and for clarity we will
not make this point explicitly. Rearranging the terms in (4.59) and
interchanging the order of integration and summation gives 

(4.60)

The terms from the integral sign to the end of (4.60) can be recognized as a
multidimensional Fourier transform: 
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(4.61)

Of course, we could find the nonlinear impulse response from the
frequency-domain nonlinear transfer function by inverse-Fourier trans-
forming: 

(4.62)

Calculating multidimensional Fourier transforms is a nasty business; for
this and other reasons, we work entirely in the frequency domain.
Replacing the integrals in (4.62) with the nonlinear transfer function

 gives the following expression for wn(t): 

(4.63)

and summing this expression for wn(t) over n, n = 1 ... N, to obtain w (t),
gives the expected result, (4.52). 

It is worthwhile at this point to examine (4.63) and (4.52) and to note
some of their important implications. First, as in the power series analysis,
the total response in the Volterra case is simply the sum of the individual
nth-order responses. In the power-series case, this result was guaranteed by
the separation of the linear from the nonlinear parts of the circuit, and by
the limitation of the analysis to a single transfer nonlinearity. In the
Volterra case, this result is an obvious consequence of the form of (4.56),
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but it is not obvious from the nature of the circuit model, where the
nonlinear and linear parts of the circuit are freely intermingled. Our ability
to separate even orders of mixing products, as well as different mixing
products of the same order, is the key to the practicality of the Volterra
series. Without that ability, the analysis of weakly nonlinear circuits would
be hopelessly laborious. 

Although it is beyond the scope of this book to do so, it is possible to
show in several different ways that the series (4.56) is convergent, and that
the magnitude of each successive term is smaller than the previous one.
Because each of the integral terms in (4.56) represents a single order of
mixing products wn(t) in the circuit’s total response w(t), the power in the
higher-order response components must be less than that in the lower-order
response components. This result is consistent with the experimental
observation that higher-order nonlinear distortion products are invariably
weaker than lower-order ones. 

A second property of the nonlinear transfer function is that it must be
symmetrical in ω. The reason for this symmetry is obvious from a practical
standpoint: there is no order associated with the different tones in the
multitone excitation of (4.51), so one must be able to permute the
frequencies in, for example, (4.63) without changing the response.
Equation (4.62) implies that  must also be symmetrical in
τ if  is symmetrical in ω. 

4.2.3 Determining Nonlinear Transfer Functions by the Harmonic
Input Method 

The nonlinear transfer function can be found via a technique called the
harmonic input, or probing method. This method is not very different in
concept from the process of finding the frequency-domain transfer function
H(ω) of a linear circuit: we assume that the circuit has the simplest
possible excitation, find the response, substitute both into the input/output
equation, in this case (4.63), and finally solve algebraically for

. 
In linear analysis, we find the linear transfer function H(ω) by as-

suming that the input voltage is 1⋅exp(jωt) and manipulating the output into
the form H(ω)exp(jωt). The ratio of these quantities is the linear transfer
function H(ω). In the case of a nonlinear circuit the situation is, as usual, a
little more complicated, but the concepts are much the same. In order to
find the nth-order part of the response, we assume the excitation to be 

(4.64)

hn τ1 τ2 … τn, , ,( )
Hn ωq1 ωq2 … ωqn, , ,( )

Hn ω q1 ω q2 … ωqn, , ,( )

s t( ) jω 1t( )exp jω 2 t( )exp … jω n t( )exp+ + +=
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The excitation used to find the nth-order transfer function is the sum of n
positive-frequency phasors of unit magnitude; the negative-frequency
components are not included. The excitation s(t) need not be a real func-
tion of time, because that excitation is used only to determine the
transfer functions. From (4.63) the nth-order response component at
ω1 + ω2 + ... + ωn has the form 

(4.65)

This expression for wn(t) is substituted into the circuit equations; only
the terms of nth order are retained; terms of other orders do not contribute
to the nth-order response, so they can be ignored. The nonlinear transfer
function  is found algebraically. 

In all cases, the nth-order nonlinear transfer function is found to be a
function of the transfer functions of order less than n. Thus, we first use
s(t) = exp(jω1t) to find H1(ω 1), the linear transfer function, then use
s(t) = exp(jω1 t) + exp( jω2 t) to find the second-order transfer function
H2(ω1, ω2 ) as a function of H1(ω1 ) and H1(ω2 ). We continue this process
until transfer functions of all desired orders have been determined. When
all n transfer functions have been found, (4.63) and (4.57) are used to find
the levels of the frequency components of interest in the total response. It is
not necessary in evaluating (4.63) to find the levels of all possible
frequency components; it is necessary only to determine those of interest at
each order. 

4.2.3.1 Example: Harmonic-Input Method

Figure 4.8 shows a simple, weakly nonlinear circuit consisting of a
nonlinear capacitor, a linear resistor, and a voltage source. We shall find the
nonlinear transfer function between the excitation, the voltage vs(t), and the
response, the current i(t). 

We assume that the capacitor can be characterized adequately by a
second-degree polynomial, so the small-signal, incremental voltage v
across the capacitor can be expressed as follows: 

(4.66)

wn t( )
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where S1 is the capacitor’s linear, small-signal, incremental elastance and
S2 is the second-degree Taylor-series coefficient for the capacitor’s V(Q)
expansion. It is usually most convenient to represent the capacitor’s charge
as a function of voltage; however, if the voltage can be expressed as a
single-valued function of charge over the range of voltages the capacitor
will encounter, the charge/voltage function can be inverted to obtain (4.66).
(If the voltage is not a single-valued function of charge, the circuit is not
amenable to Volterra-series analysis, and also may be unstable.) 

The loop voltage equation of the circuit is 

(4.67)

where the charge waveform q(t) is the time-integral of the current: 

(4.68)

and τ is a variable of integration. We assume in all cases that q(t), t → –∞,
is zero. The nth-order current component, in(t), is given by (4.63), where
in(t) = wn(t): 

(4.69)

Figure 4.8 Circuit of the example, consisting of a resistor and a nonlinear capacitor.

vs t( ) Ri t( ) S1q t( ) S2q2 t( )+ +=

q t( ) i τ( ) τd
∞–

t

∫=

in t( ) 1
2n
----- …

q2 Q–=

Q

∑
q1 Q–=

Q

∑ Vs q1, Vs q2, … Vs qn,
qn Q–=

Q

∑=

Hn ωq1 ωq2 … ωqn, , ,( )⋅

j ωq1 ωq2 … ωqn+ + +( )t[ ]exp⋅



 Nonlinear Microwave and RF Circuits244

and the current i(t) is 

(4.70)

We begin by finding the first-order transfer function. Following the form of
(4.51), we set 

(4.71)

which implies that 

(4.72)

Substituting (4.71) and (4.72) into (4.69), and (4.69) into (4.70), we obtain 

(4.73)

The only first-order component in i(t) is the term H1(ω1) exp(jω1t).
Furthermore, the integration of this term in (4.68) to form q(t) is a linear
process, so if i(t) is limited to first order, S1q(t) must be of first order as
well. The term q2(t) generates components of second order and above, but
no first-order terms. Accordingly, 

(4.74)

We now substitute (4.71) and (4.73) into (4.67) and equate terms of
first order; terms other than first-order do not affect the first-order transfer
function, so they can be ignored. Because q2(t) contains no such terms, it is
eliminated, and the remaining terms in (4.67) contain only i1(t). Equation
(4.67) becomes 
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(4.75)

Performing the integration and solving for H1(ω1) gives the first-order
transfer function, 

(4.76)

Equation (4.76) is, of course, nothing more than the linear admittance of
the series-connected resistor and capacitor; the first-order transfer function
is equivalent to the linear transfer function. 

The second-order transfer function is found by setting 

(4.77)

and by finding the component of i2(t) at ω1 + ω2 . Comparing (4.77) to
(4.51), we see that 

(4.78)

and we note that i(t) = i1(t) + i2(t). Because we need only second-order
terms to form the second-order transfer function, no current components of
order greater than two need be included. The excitation has two frequency
components, so the first-order current i1(t) also has two frequency com-
ponents: 

(4.79)

Substituting for Vs, q gives 

(4.80)

H2(ω1, ω2) relates the excitation voltages to the second-order current i2(t): 
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(4.81)

There are two identical terms in the summation at ω1 + ω2 : q1 = 1,
q2 = 2; and q1 = 2, q2 = 1. Substituting for Vs, q via (4.78) and performing
the summation gives 

(4.82)

where the prime indicates that only the components at a single frequency of
(4.81), ω1 + ω2 , are included. 

We now substitute i(t) into (4.67) to find the second-order transfer
function. As before, all terms in the equation of order other than two and at
frequencies other than ω1 + ω 2 do not contribute to H2(ω1 , ω2 ), so they can
be ignored. Equation (4.77) shows that vs(t) contains only first-order
components, so it is ignored; only the second-order current components
i2(t) contribute to second-order terms in the linear terms Ri(t) and S1q(t), so
in these terms i1(t) is ignored. However, only i1(t) contributes to second-
order terms in S2q2(t), so

(4.83)

and carrying out the integration in (4.83) gives 

(4.84)

The squared term, S2q2(t), is 
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(4.85)

Substituting (4.80) into (4.85) gives 

(4.86)

Changing the order of integration and summation in (4.86), performing the
integration, and then squaring (4.86) gives the result 

(4.87)

The summation in (4.87) has two identical terms at ω1 + ω2; therefore, 

(4.88)

Substituting (4.82), (4.84), and (4.88) into (4.67) gives the circuit equation
for the second-order components, 

(4.89)

Solving for H2(ω1, ω2) gives the expression for the second-order transfer
function: 
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(4.90)

The third- and higher-order transfer functions are found in an
analogous manner. To find the third-order transfer function, we set 

(4.91)

that is, 

(4.92)

and find the component of i3(t) at ω1 + ω2 +ω3. It has the form 

(4.93)

Again, because they are linear terms, Ri(t) and S1q(t) generate third-order
mixing products from i3(t) only. From (4.21), there are six components at
ω 1 + ω 2 + ω 3 in (4.93), so 
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The excitation vs(t) has only first-order terms, so it is again eliminated from
consideration. The mixing products generated by S2 q2(t) are not obvious,
however, as they were in the second-order case. Evaluating q2(t) is
conceptually straightforward but algebraically messy: 

(4.96)

Interchanging the order of summation and integration and performing the
integration gives 

(4.97)

Squaring (4.97) produces the nasty expression 

(4.98)

A careful inspection of (4.98) shows that third-order terms exist only when
m = 1, n = 2 and m = 2, n = 1, and because of the symmetry in (4.98), both

q2 t( ) … Hn ωq1 ωq2 ... , ω qn, ,( )
qn 1=

3

∑
q1 1=

3

∑
n 1=

N

∑
∞–

t

∫=

j ω q1 … ω qn+ +( )τ[ ]d τ
2

exp⋅

q2 t( ) …
Hn ωq1 ω q2 ... , ω qn, ,( )

j ω q1 … ω qn+ +( )
--------------------------------------------------------

qn 1=

3

∑
q1 1=

3

∑
n 1=

N

∑=

j ω q1 … ωqn+ +( )t[ ]

2

exp⋅

q2 t( ) … …
p1 1=

3

∑
qn 1=

3

∑
q1 1=

3

∑
m 1=

N

∑
n 1=

N

∑=

1
j ω q1 … ω qn+ +( )
--------------------------------------------- 1

j ω p1 … ω pm+ +( )
----------------------------------------------

pm 1=

3

∑⋅

Hn ω q1 ωq2 ... , ω qn, ,( )Hm ωp1 ωp2 ... , ωpm, ,( )⋅

j ω q1 … ω qn ω p1 … ω pm+ + + + +( )t[ ]exp⋅



 Nonlinear Microwave and RF Circuits250

of these cases give identical results. Thus, we need consider only one of
them, say, n = 1, m = 2, and double the result. Evaluating (4.98) and
retaining the terms at ω1 + ω2 +ω3, we have 

(4.99)

Substituting (4.94), (4.95), and (4.99) into (4.67), we obtain 

(4.100)

Solving (4.100) for the third-order transfer function, we have 

(4.101)

where {H1H2} represents the term in parentheses multiplied by 4S2 in
(4.100). 

It is important to note that we obtained a third-order transfer function,
indicating the presence of third-order mixing products, even though the
nonlinearity was only of second degree. This result was predicted in
Section 4.1 and was illustrated in Chapter 1. 

q2 t( ) 2 1
jω1
-------- 2

j ω 2 ω3+( )
---------------------------H1 ω1( )H2 ω 2 ω 3,( )=

1
jω 2
-------- 2

j ω 1 ω 3+( )
---------------------------H1 ω 2( )H2 ω 1 ω 3,( )+

1
jω 3
-------- 2

j ω 1 ω2+( )
---------------------------H1 ω3( )H2 ω1 ω 2,( )+

j ω 1 ω 2 ω 3+ +( ) t[ ]exp⋅

0 6RH3 ω 1 ω 2 ω 3, ,( )
6S1H3 ω 1 ω2 ω 3, ,( )

j ω 1 ω 2 ω 3+ +( )
------------------------------------------------+=

4S2
H1 ω 1( )H2 ω2 ω 3,( )

ω1 ω2 ω3+( )
------------------------------------------------–

H1 ω2( )H2 ω1 ω3,( )
ω2 ω1 ω3+( )

------------------------------------------------+

H1 ω3( )H2 ω1 ω2,( )
ω 3 ω1 ω2+( )

------------------------------------------------+

H3 ω 1 ω 2 ω 3, ,( ) 2
3
---

j ω1 ω 2 ω 3+ +( )S2 H1 H2{ }
j ω 1 ω 2 ω 3+ +( )R S1+

--------------------------------------------------------------------=
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4.2.4 Applying Nonlinear Transfer Functions 

When the nonlinear transfer functions Hn(ω1 , ω2 , ...,ωn ), n = 1 ... N, have
been determined, the frequency components of interest can be found in a
straightforward manner from (4.52). It is important to recognize that there
are many identical terms in (4.52), as explained in Section 4.1.2, and to
find the number of identical terms from (4.21). Furthermore, each mixing
frequency may have significant current or voltage components at more than
one order. We illustrate these points, and the application of the nonlinear
transfer functions, by the following examples. 

4.2.4.1 Example: Application of Nonlinear Transfer Functions

We wish to find the current component of the third-order mixing frequency
ω3,k = 2ω1 – ω2  in the previous example. The excitation is 

(4.102)

or 

(4.103)

We begin by recognizing that the product of interest occurs as a mixing
frequency of all odd orders of three or greater; that is, 

and so on. However, we assumed earlier that orders above three contribute
negligibly to this component, a safe assumption when the nonlinearity is
less than third degree and the excitation is very weak. 

From (4.69) we obtain

vs t( ) Vs 1, ω 1 t( )cos Vs 2, ω2 t( )cos+=

vs t( ) 1
2
--- Vs q, jωq t( )exp

q 2–=

2

∑=

2ω 1 ω 2– ω 1 ω 1 ω 2–+= n 3=( )

ω 1 ω 1 ω 1 ω 1– ω 2–+ += n 5=( )

ω 1 ω 1 ω 2 ω 2– ω 2–+ += n 5=( )
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(4.104)

Where H3 (ωq1, ωq2, ωq3) is given by (4.101). From (4.21) we find the
number of terms at ω 3, k = 2ω1 – ω2, where n = 3, m1 = 2, and m–2 = 1: 

(4.105)

Evaluating (4.104) at the frequency ω 3, k , and including the coefficient
tn, k = 3, gives 

(4.106)

The prime indicates that (4.106) represents only a single frequency
component, not all the frequency components of i3(t). We note that 

(4.107)

In this case Vs, 1 and Vs, 2 have arbitrary phases, so without losing generality
we can set the phase of both equal to zero; then 

(4.108)

and 

(4.109)

With this assumption, (4.106) becomes 

(4.110)

i3 t( ) 1
8
--- Vs q 1, Vs q2, Vs q3,

q3 2–=

2

∑
q2 2–=

2

∑
q1 2–=

2

∑=

H3 ωq1 ωq2 ωq3, ,( ) j ω q1 ω q2 ω q3+ +( )t[ ]exp⋅

tn k,
n!

m1!m 2– !
-------------------- 3!

2!1!
---------- 3= = =

i3' t( ) 3
8
--- Vs 1,

2 Vs 2–, H3 ω 1 ω 1 ω 2–, ,( ) j 2ω 1 ω2–( )t[ ]exp{=

Vs 1–,
2 Vs 2, H3 ω 1– ω– 1 ω 2, ,( ) j– 2ω 1 ω2–( )t[ ] }exp+

H3 ω 1– ω– 1 ω 2, ,( ) H3
* ω 1 ω 1 ω 2–, ,( )=

Vs 1–, Vs 1,
* Vs 1,= =

Vs 2–, Vs 2,
* Vs 2,= =

i3' t( ) 3
4
--- Vs 1,

2 Vs 2, H3 ω 1 ω 1 ω 2–, ,( ) 2ω 1 ω 2–( ) t φ3+[ ]cos=
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where φ3 is the phase of H3(ω 1, ω 1, –ω2). 
From (4.100) and (4.101) we see that 

(4.111)

and at this mixing frequency, 

(4.112)

4.2.4.2 Example: Application to Gain Compression or Enhancement

We wish to find the current in the circuit at ω1 when the excitation is 

(4.113)

where, again, we have assumed Vs,1 to be real. This is, of course, a trivial
problem unless we include the effects of the capacitor’s nonlinearity. The
effect of this nonlinearity is to add a third-order component at ω1, the term
ω 1 = ω1 + ω 1 – ω 1. 

Equations (4.69) and (4.70) are evaluated, as in the earlier example.
there are three identical terms at ω1 in the three-fold summation; we could
use (4.21) to determine that fact, or simply recognize that they are
obviously ω 1 + ω 1 – ω 1, ω 1 – ω 1 + ω 1, and –ω 1 + ω 1 + ω 1. In any case, we
obtain 

(4.114)

Converting (4.114) into cosine form gives

H3 ω1 ω 1 ω 2–, ,( ) 2
3
---

j 2ω 1 ω 2–( )S2 H1H2{ }
j 2ω1 ω 2–( )R S1+

---------------------------------------------------------=

H1H2{ }
2H1 ω 1( )H2 ω1 ω 2–,( )

ω1 ω 1 ω2–( )
-------------------------------------------------------

H1
* ω 2( )H2 ω1 ω 1,( )

2ω1 ω 2
------------------------------------------------–=

vs t( ) Vs 1, ω 1t( )cos 1
2
--- Vs 1, jω1 t( )exp Vs 1–, j– ω1 t( )exp+[ ]= =

i t( ) 1
2
--- Vs 1, H1 ω1( ) jω1t( )exp Vs 1–, H1 ω– 1( ) j– ω1t( )exp+[ ]=

3
8
--- Vs 1,

3 H3 ω 1 ω 1 ω 1–, ,( ) jω1t( )exp[+

Vs 1–,
3 H3 ω 1– ω– 1 ω 1, ,( ) j– ω 1t( )exp ]+
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(4.115)

The phase angles φ1 and φ3 in (4.115) are the phase angles of H1(ω1)
and H3(ω 1, ω 1,–ω 1), respectively. Because both terms in (4.115) have the
same frequency, these phases cannot be ignored; they are important in
establishing the behavior of i(t) with changes in Vs, 1. The results show that,
when Vs, 1 is very small, the current depends upon the linear transfer
function only, but as Vs, 1 increases, the third-order transfer function rapidly
becomes more significant. As a result, i(t) does not increase linearly with
Vs, 1. If φ3 ≅ φ1 + π, a common situation, the current increases progressively
less rapidly with Vs,1 and at some point may even decrease. If φ3 ≅ φ1, i(t)
increases more rapidly than Vs,1, and gain enhancement is observed. (Gain
enhancement is infrequently encountered, and then only over a limited
range of input levels.) We see that saturation effects can be attributed to the
progressively greater significance of high-order mixing components, at the
fundamental excitation frequency, as excitation level is increased. 

4.2.5 The Method of Nonlinear Currents 

Another approach to Volterra-series analysis is called the method of
nonlinear currents. In this technique, current components are calculated
from voltage components of lower order, much as are transfer functions in
the harmonic-input method. Voltage components of the same order are then
determined from those currents, and the next higher-order currents are
found. It is necessary only to calculate the frequency components that are
of interest, or that contribute to a higher-order component of interest; it is
rarely necessary to calculate the entire nonlinear transfer function. 

In many cases, the method of nonlinear currents is easier to use than
the transfer function approach: it is a little easier to apply to circuits having
multiple nodes and is more amenable to computer-aided design techniques.
However, the nonlinear-current method is not based on transfer functions,
(although it can be used to generate the nonlinear transfer functions of
circuits numerically), so it is not directly useful for system analysis.
Nevertheless, it is possible to show that the recursive process at the heart of
this method is equivalent to the explicit generation of nonlinear transfer
functions. 

Figure 4.9 shows a simple nonlinear circuit consisting of a voltage
source, a linear resistor, and a nonlinear conductance. The conductance has
voltage v(t) across it and current i(t); its I/V relation is 

i t( ) Vs 1, H1 ω 1( ) ω 1t φ 1+( )cos=

3
4
---Vs 1,

3 H3 ω1 ω1 ω1–, ,( ) ω 1t φ 3+( )cos+
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(4.116)

where, as before, the gn are Taylor-series coefficients. As in the previous
cases, i(t) and v(t) in (4.116) represent the small-signal incremental current
and voltage in the nonlinear conductance—that is, the ac deviation around
a bias point. The voltage v(t) consists of all orders of mixing products: 

(4.117)

where vn(t) represents the sum of all nth-order mixing products. 
Using the substitution theorem (Section 2.2.1), we can redraw the

circuit of Figure 4.9 as shown in Figure 4.10, in which the nonlinear
conductance has been replaced by a linear conductance and several current
sources. The linear conductance represents the linear part of (4.116), and
the current sources each represent a nonlinear term in (4.116). If we limit
(4.116) to the third degree, and limit consideration to third-order mixing
products, then 

(4.118)

(4.119)

(4.120)

The v1
2 (t)  term on the right side of (4.119) generates only second-order

mixing products, and the second term, 2v1(t)v2(t), represents third-order
products. The circuit of Figure 4.10 can be rearranged as shown in Figure

i g1v g2v2 g3v3 …+ + +=

Figure 4.9 A simple series circuit that includes a weakly nonlinear resistor.

v t( ) v1 t( ) v2 t( ) v3 t( ) …+ + +=

v t( ) v1 t( ) v2 t( ) v3 t( )+ +=

v2 t( ) v1
2 t( ) 2v1 t( )v2 t( )+=

v3 t( ) v1
3 t( )=
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4.11, so that each current source represents the same order of mixing
frequency; then 

(4.121)

where

(4.122)

(4.123)

(4.124)

The current sources i2(t) and i3(t) in Figure 4.11 represent all the second-
and third-order current components in the nonlinear element that arise from
the terms in (4.116) of degree greater than one. The linear part of (4.116),

Figure 4.10 The circuit of Figure 4.9, in which the nonlinear resistor has been
converted, via the substitution theorem, to a linear resistor and a set of
current sources.

Figure 4.11 A circuit equivalent to that of Figure 4.10, except the current sources
have been rearranged so that each represents a single order of mixing
products.

i t( ) il in t( ) i2 t( ) i3 t( )+ +=

il in t( ) g1v t( ) g1 v1 t( ) v2 t( ) v3 t( )+ +[ ]= =

i2 t( ) g2v1
2 t( )=

i3 t( ) 2g2v1 t( )v2 t( ) g3v1
3 t( )+=
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expressed by (4.122), accounts for all the other first- and higher-order
current components. Rearranging the circuit this way has two remarkable
results: first, the circuit in Figure 4.11 is linear, although the current
sources are nonlinear functions of the various-order voltage components.
Second, the first-order voltage components v1(t) are generated by the first-
order source vs(t), the second-order current i2(t) is a function of the first-
order voltages, and the third-order current i3(t) is a function of the first- and
second-order voltages. We find that the currents of each order greater than
one are always functions of lower-order voltages. These facts suggest a
method of solution: 

1. Find the first-order components by setting the current sources equal to
zero and finding v1(t) under vs(t) excitation; this is an ordinary linear
analysis. 

2. Find the second-order current, i2(t) = g2v1
2 (t) ,  from the voltages v1(t)

found in the previous step. Then set vs(t) equal to zero, with i2(t) the
only excitation, and find the second-order voltages, v2(t), from a linear
analysis of the circuit. 

3. Find the third-order current i3(t) from v1(t), v2(t), g2(t), and g3(t).
Then, with vs(t) and i2(t) set to zero, find the third-order voltage
components. 

Because the circuit in Figure 4.11 is linear, we can find the total voltage,
v(t), as the superposition of the responses to each individual excitation
source. 

4.2.5.1 Example: Nonlinear Current Method

We use the nonlinear current method to find the response of the circuit of
Figures 4.9 to 4.11 to the multitone excitation, 

(4.125)

or 

(4.126)

vs t( ) Vs 1, ω1 t( )cos Vs 2, ω2 t( )cos … Vs Q, ωQ t( )cos+ + +=

vs t( ) 1
2
--- Vs q, jωqt( )exp

q Q–=

Q

∑=
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where, as usual, . We set the current sources equal to zero and find 

(4.127)

From (4.123), (4.126), (4.127), and Figure 4.11, the current source i2(t) is 

(4.128)

Setting all sources except i2(t) to zero, we find easily that 

(4.129)

The third-order current i3(t) consists of two separate terms: 

(4.130)

q 0≠

v1 t( ) 1
Rg1 1+
------------------- vs t( )=

i2 t( ) g2v1
2 t( )=

g2
1

Rg1 1+( )2
--------------------------- 1

4
--- Vs q1, Vs q2,

q2 Q–=

Q

∑
q1 Q–=

Q

∑=

j ωq1 ωq2+( )t[ ]exp⋅

v2 t( ) R–
Rg1 1+
------------------- i2 t( )=

g2R–

Rg1 1+( )3
--------------------------- 1

4
--- Vs q1, Vs q2,

q2 Q–=

Q

∑
q1 Q–=

Q

∑=

j ωq1 ωq2+( )t[ ]exp⋅

i3 t( ) 2g2v1 t( )v2 t( ) g3v1
3 t( )+=

i3a t( ) i3b t( )+=
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(4.131)

which can be simplified to 

(4.132)

Substituting (4.127) into the second term of (4.130), i3b(t), gives 

(4.133)

The third-order voltage is 

(4.134)

and the explicit form of v3(t) can be found by substituting (4.132) and
(4.133) into (4.134). 

The expressions (4.127), (4.129), and (4.134) can be evaluated to
determine any mixing product of interest. In some cases, however, it is
easier to perform a type of ad hoc analysis to determine these products;
then, only the minimum number of frequency components necessary to
obtain a particular mixing product are evaluated, instead of general
expressions for all mixing products. This approach is possible because only

i3a t( )
2g2

Rg1 1+
------------------- 1

2
--- Vs q1, jωq1 t( )exp
q1 Q–=

Q

∑=

g2 R–

Rg1 1+( )3
--------------------------- 1

4
--- Vs q2, Vs q3,

q3 Q–=

Q

∑
q2 Q–=

Q

∑⋅

j ω q2 ωq3+( )t[ ]exp⋅

i3a t( )
g2

2 R–

4 Rg1 1+( )4
------------------------------ Vs q1, Vs q2, Vs q3,

q3 Q–=

Q

∑
q2 Q–=

Q

∑
q1 Q–=

Q

∑=

j ω q1 ω q2 ω q3+ +( )t[ ]exp⋅

i3b t( )
g3

8 Rg1 1+( )3
------------------------------ Vs q1, Vs q2, Vs q3,

q3 Q–=

Q

∑
q2 Q–=

Q

∑
q1 Q–=

Q

∑=

j ωq1 ωq2 ωq3+ +( )t[ ]exp⋅

v3 t( ) i3 t( ) R
Rg1 1+
-------------------–=
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a limited number of lower-order mixing products contribute to any specific
higher-order product. This analysis is illustrated by the following example. 

4.2.5.2 Example: Two-Tone Intermodulation

We wish to find the 2ω1 – ω2 third-order current in the previous example,
where the excitation source has two tones. The excitation is given by
(4.126) with Q = 2. From (4.126) and (4.127), 

(4.135)

where 

(4.136)

Clearly, we need only find the positive-frequency component at
2ω1 – ω2; the negative-frequency component is just its complex conjugate.
Therefore, we need only find the lower-order mixing products that
contribute to this positive-frequency component. The third-order
component we wish to find is generated by both terms in (4.130), i3a(t) and
i3b(t). The term i3b(t) is an obvious contributor, generating the mixing
product ω1 + ω1 – ω 2, but i3a(t) also contributes to 2ω1 – ω 2 via two
mixing products: the second-order frequency 2ω 1 in v2(t) mixing with the
first-order frequency ω–2 = –ω 2 in v1(t), and the second-order frequency
ω1 – ω 2 mixing with the first-order frequency ω 1. All other mixing
products of order three or lower that contribute to 2ω 1 – ω2 are just the
negative-frequency components of these or are repeated, identical terms.
Thus, in order to find 2ω1 – ω2 , we need only find the first-order
components at ω1 and –ω2, the second-order components at 2ω 1 and
ω1 – ω2 , and the third-order component from i3b(t) at 2ω1 – ω 2. 

The second-order current is i2(t) = g2v1
2 (t);  we designate the two

second-order current components of interest at 2ω 1 and ω1 – ω2 , i2a(t) and
i2b(t), respectively. From (4.128) and (4.136), 

(4.137)

v1 t( ) 1
2
--- Vq jωqt( )exp

q 2–=

2

∑=

Vq
Vs q,

Rg1 1+
-------------------=

i2a t( )
g2
4
-----V1

2 j2ω1 t( )exp=
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and 

(4.138)

We note in (4.138) that V–2 = V2
*  (= V2, in this example, because, in this

purely resistive circuit, all voltages are real), and that there are two terms in
(4.128) at ω1 – ω 2 but only one at 2ω1; thus the difference in the
coefficients. The voltage components at these frequencies, which we
designate v2a(t) and v2b(t), are 

(4.139)

(4.140)

The third-order current  at 2ω1 – ω2  is 

(4.141)

where v1(t) is given by (4.135), v2(t) = v2a(t) + v2b(t), and only the terms at
2ω1 – ω2 are retained in . Then, 

(4.142)

or, by simplifying (4.142), 

(4.143)

i2b t( )
g2
2
-----V1V2

* j ω 1 ω2–( )t( )exp=

v2a t( ) R–
Rg1 1+
------------------- i2a t( )=

v2b t( ) R–
Rg1 1+
------------------- i2b t( )=

i3' t( )

i3' t( ) i3a t( ) i3b t( )+=

2g2v1 t( )v2 t( ) g3v1
3 t( )+=

i3' t( )

i3a t( ) 2g2
V1
2

------ jω1t( )exp
R– g2

2 Rg1 1+( )
----------------------------V1V2

* j ω 1 ω 2–( )t[ ]exp




=

V2
*

2
------ j– ω2 t( )

R– g2
4 Rg1 1+( )
----------------------------V1

2 j2ω 1 t( )expexp




+

i3a t( ) 3
4
---

R– g2
2

Rg1 1+( )
------------------------V1

2V2
* j 2ω 1 ω 2–( )t[ ]exp=
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The contribution from the cubic term is 

(4.144)

Finally, 

(4.145)

The cosine form of (4.145) is found by including the negative-frequency
part of ; it is simply the conjugate of (4.145). Finally, 

(4.146)

We note that (4.143) and (4.144) are equivalent to (4.132) and (4.133)
when (4.136) is used to substitute Vs, 1 and Vs, 2 for V1, V2, and when (4.21)
is used to calculate the number of identical terms in the triple summation at
2ω1 – ω2. As before, 

(4.147)

4.2.5.3 Example: Application to Nonlinear Capacitance

To show how the nonlinear-current method can be applied to nonlinear
capacitances, we shall find an expression for the current in the circuit of
Figure 4.8 through the second order. In the example of Section 4.2.3.1, the
capacitor was characterized in (4.66) as 

(4.148)

We now need an expression of the form q = f(v); this can be found, as
shown in [1.1], by series reversion: 

i3b t( ) 3
8
--- g3V1

2V2
* j 2ω1 ω2–( )t[ ]exp=

i3' t( ) 3
4
---

R– g2
2

Rg1 1+( )
------------------------

g3
2
-----+ V1

2V2
* j 2ω1 ω2–( )t[ ]exp=

i3' t( )

i3' t( ) 3
2
---

R– g2
2

Rg1 1+( )
------------------------

g3
2
-----+ V1

2V2 2ω 1 ω 2–( )t[ ]cos=

v3' t( ) i3' t( ) R–
Rg1 1+
-------------------=

v S1q S2q2+=
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(4.149)

where 

(4.150)

(4.151)

and 

(4.152)

The current i(t) is 

(4.153)

After separating the current components of different orders, as in (4.118)
through (4.124), we write the first- through third-order current com-
ponents: 

(4.154)

(4.155)

(4.156)

Again we express vs(t) by (4.126). Then 

q C1v C2v2 C3v3 …+ + +=

C1
1
S1
-----=

C2
S2

S1
3-----–=

C3
2S2

2

S1
5

---------=

i t( )
td

d q t( ) C1 td
d v t( ) C2 td

d v2 t( ) C3 td
d v3 t( )+ += =

i1 t( ) C1 td
d v t( )=

i2 t( ) C2 td
d v1

2 t( )=

i3 t( ) C2 td
d 2v1 t( )v2 t( )[ ] C3 td

d v1
3 t( )+=
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(4.157)

and 

(4.158)

Substituting (4.158) into (4.155) gives the second-order current i2(t): 

(4.159)

The second-order voltage is found from the linear circuit, in which i2(t) is
the only excitation: 

(4.160)

The astute reader may recognize parts of (4.157) and (4.159) as first-
and second-order nonlinear transfer functions; the fractional quantity in
(4.157) is clearly equivalent to (4.76) if (4.150) replaces C1 with S1.
Similarly, the terms in (4.159) are equivalent to those in (4.90), the second-
order transfer function, after H1(ω) from (4.76) is substituted. If we desired
third-order current or voltage components, we could use (4.156) and follow
the same process used to obtain the second-order components. The
procedure is almost identical to the one employed in the conductance
examples; the only difference is that it is necessary to differentiate the
multiple summation. Because we are limited to sinusoidal, steady-state

i1 t( ) 1
2
---

C1 jω q

RC1 jωq 1+
-----------------------------Vs q, jωq t( )exp

q Q–=

Q

∑=

v1 t( ) 1
2
--- 1

RC1 jω q 1+
-----------------------------Vs q, jωqt( )exp

q Q–=

Q

∑=

i2 t( )
C2
4

------
j ωq1 ωq2+( )

RC1 jωq1 1+( ) RC1 jω q2 1+( )
---------------------------------------------------------------------------

q2 Q–=

Q

∑
q1 Q–=

Q

∑=

Vs q1, Vs q2, j ω q1 ω q2+( )t[ ]exp⋅

v2 t( )
C– 2
4

---------
q2 Q–=

Q

∑
q1 Q–=

Q

∑=

Rj ω q1 ω q2+( )Vs q1, Vs q2, j ω q1 ω q2+( )t[ ]exp
RC1 j ω q1 ω q2+( ) 1+[ ] RC1 jω q1 1+( ) RC1 jω q2 1+( )

---------------------------------------------------------------------------------------------------------------------------------------⋅
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excitations, this differentiation simply involves multiplication by
j(ωq1 + ωq2 + ... +ωqn ). 

4.2.6 Application to Large Circuits 

By now the reader is probably astounded by the enormous amount of effort
we have devoted to the analysis of thoroughly trivial circuits. At this point,
one might begin to suspect that Volterra-series analysis of large circuits
would be prohibitively laborious. Fortunately, the complexity of the
analysis increases approximately in proportion to the number of nonlinear
elements, not in proportion to the overall complexity of the circuit, so with
a little careful bookkeeping, one can apply the Volterra series successfully
to remarkably large circuits. 

We now consider the circuit of Figure 4.12(a), which consists of a
linear network, an excitation source vs(t), a load admittance YL(ω), and
P – 1 nonlinear elements (the source impedance is treated as a part of the
linear network). The nonlinear elements are separated from the linear
network, and terminals are added so that each element is in parallel with a
port. As with the single-element circuit of the example in Section 4.2.5.1,
we use the substitution theorem to replace each nonlinear element by a
linear element and a set of current sources representing the current
components of order greater than one. The linear elements, including the
load admittance YL(ω), are then included in the linear part of the network.
As before, we are left with an equivalent circuit of the nonlinear network,
one that consists of a linear network and current sources for each order of
the mixing products greater than one; these currents are nonlinear functions
of the lower-order mixing voltages. The linear network has P + 1 ports,
where vL(t) and vs(t) are observed at the Pth and (P + 1)th ports
respectively, and is described by its admittance matrix. 

The port voltages and currents can be expressed by the admittance
equations, in matrix form: 

(4.161)

where Ip, n is the phasor representation of the current at some specific nth-
order mixing frequency in ip, n(t), the nth-order current source at port p in

I1 n,

I2 n,

…
IP n,

–

Y1 1, Y1 2, … Y1 P,

Y2 1, Y2 2, … Y2 P,

… … … …
YP 1, YP 2, … YP P,

V1 n,

V2 n,

…
VP n,

Y1 P 1+,

Y2 P 1+,

…
YP P 1+,

+=
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Figure 4.12(b), and Vp, n is the corresponding voltage. (There are, of course,
many such mixing frequencies at each order; we have left off the frequency
subscript in (4.161) for simplicity.) The Y matrix is evaluated at the mixing
frequency of interest. We note that Vs, n = 0 when n > 1 and Ip, n = 0 when
n = 1; that is, Vs, n represents vs(t), the first-order excitation, and the current

Figure 4.12 (a) A nonlinear circuit divided into a multiport linear network and a set
of nonlinear elements. Each element is in parallel with a separate port.
(b) The circuit at (a) converted into a linear circuit and a set of current
sources.
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sources all represent mixing products. Also, in general Ip, n = 0 for all n
unless the output port includes a nonlinear element. 

The first-order voltages at all the ports can be found readily by setting
I, the current vector in (4.161), to zero. We also set n = 1 and form 

(4.162)

In general vs(t) is a multitone excitation, so the admittance matrix in
(4.162) must be formulated at each frequency. For orders n ≥ 2 we set
Vs,n = 0 and I ≠ 0; then 

(4.163)

In order to find the output power at any mixing frequency, we need only
evaluate the currents Ip, n; we then use (4.163) to obtain Vp, n , the voltage
across the load admittance at each mixing frequency of interest. For
simplicity, we use the ad hoc evaluation of mixing products described in
the example of Section 4.2.5.2 and apply it to a specific port in Figure
4.12(b). To minimize confusion, we streamline the notation somewhat in
the following derivation; we eliminate the port subscript, p, but retain the
order subscript, n. The reader should recognize that the voltage and current
variables in the following derivation refer to any one port. 

The excitation vs(t) is given by (4.126), and the first-order voltages at
each port are found by applying (4.162) at each of the Q excitation
frequencies. The first-order voltage at any one port is 

(4.164)

V1 1,

V2 1,

…
VP 1,

Y1 1, Y1 2, … Y1 P,

Y2 1, Y2 2, … Y2 P,

… … … …
YP 1, YP 2, … YP P,

1–

–

Y1 P 1+,

Y2 P 1+,

…
YP P 1+,

Vs 1,[ ]=

V1 n,

V2 n,

…
VP n,

Y1 1, Y1 2, … Y1 P,

Y2 1, Y2 2, … Y2 P,

… … … …
YP 1, YP 2, … YP P,

1–

–

I1 n,

I2 n,

…
IP n,

=

v1 t( ) 1
2
--- V1 q, jωqt( )exp

q Q–=

Q

∑=
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We have included the additional subscript 1 in V1, q , indicating first order,
to distinguish it from higher-order voltages (this subscript was not
necessary earlier). If the nonlinear element at that port is a conductance, its
incremental I/V characteristic is 

(4.165)

and if it is a capacitor, its Q/V characteristic is 

(4.166)

The second-order current, in the case of a conductance, is 

(4.167)

and, in the case of a capacitor, 

(4.168)

We now limit the summation in (4.167) and (4.168) to the current
components in i2(t) at frequencies of interest. The components of interest
are not only those whose levels we wish to know, but those that contribute
to third- and higher-order mixing products of interest. Current components
in i2(t) at other frequencies may be ignored. Thus, there may be several
components in (4.167) and (4.168) that must be evaluated. 

The components of i2(t) that are retained from (4.167) and (4.168) each
can be put in the form 

i g1v g2v2 g3v3 …+ + +=

q C1v C2v2 C3v3 …+ + +=

i2 t( ) g2v1
2 t( )=

g2
4
----- V1 q1, V1 q2, j ω q1 ω q2+( )t[ ]exp

q2 Q–=

Q

∑
q1 Q–=

Q

∑=

i2 t( ) C2 td
d v1

2 t( )=

C2
4

------ j ωq1 ωq2+( ) V1 q1, V1 q2,
q2 Q–=

Q

∑
q1 Q–=

Q

∑=

j ω q1 ω q2+( )t[ ]exp⋅
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(4.169)

and the total current that these terms represent is 

(4.170)

As before, the prime indicates that not all the terms in (4.167) or (4.168)
are represented in (4.170), although in this case  is real. There are K
second-order mixing frequencies of interest in (4.167), (4.168) where 

(4.171)

Each ω 2, k is the sum of some two excitation frequencies ω q1 and ω q1. We
let t2,k, given by (4.21), represent the number of terms in (4.168) at
frequency ω2,k; then, in the case of a conductance, 

(4.172)

and in a capacitor, 

(4.173)

Equating (4.172) and (4.173) with (4.169) at each frequency ω 2, k gives an
expression for I2, k: 

i2 k, t( ) 1
2
--- I2 k, jω2 k, t( )exp I2 k,

* j– ω2 k, t( )exp+[ ]=

i2' t( ) i2 k, t( )
k 1=

K

∑=

i2' t( )

ω 2 k, ω q1 ω q2+= k 1 … K=

i2 k, t( )
g2 t2 k,

4
-------------- V1 q1, V1 q2, j ω q1 ω q2+( )t[ ]exp{=

V1 q1,
 * V1 q2,

 * j– ω q1 ω q2+( )t[ ]exp }+

i2 k, t( )
C2 t2 k,

4
--------------- j ω q1 ωq2+( )V1 q1, V1 q2,{=

j ω q1 ω q2+( )t[ ]exp⋅

j ω q1 ω q2+( )V1 q1,
 * V1 q2,

 *–

j– ω q1 ω q2+( ) t[ ]exp }⋅
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(4.174)

for conductances, and 

(4.175)

for capacitors. 
This process must be repeated at all the ports having nonlinear

elements (i.e., all except the P th port). The second-order currents at all the
ports, and at the first mixing frequency (ω

 2, 1),  are then substituted into
(4.163) and the port voltages at that frequency are found. The admittance
matrix is then reformulated at the next mixing frequency (ω

 2, 2) and (4.163)
determines all the port voltages at that mixing frequency. The process is
repeated K times, until all the port voltages at all the K second-order
mixing frequencies, ω

 2, 1 to ω
 2, K, are determined. 

We now have the second-order voltage components of interest. At each
port, 

(4.176)

and the second-order voltage at these frequencies is 

(4.177)

Next, we find the third-order current components in terms of the first- and
second-order voltages V1, q and V2,k, respectively. These third-order mixing
frequencies are designated ω3,m, m = 1 ... M. We continue to assume that
the degree of the nonlinearity in (4.165) and (4.166) is limited to three;
thus, in the case of a conductance, the current at some specific port and
frequency ω3, m is 

(4.178)

I2 k,
g2 t2 k,

2
-------------- V1 q1, V1 q2,=

I2 k,
C2 t2 k,

2
--------------- jω2 k, V1 q1, V1 q2,=

v2 k, t( ) 1
2
--- V2 k, jω2 k, t( )exp V2 k,

 * j– ω2 k, t( )exp+[ ]=

v2' t( ) v2 k, t( )
k 1=

K

∑=

i3 m, 2g2 v1' t( ) v2' t( ) g3v'1
3 t( )+=
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where  and  include all the first- and second-order frequency
components that contribute to ω3, m. Then, 

(4.179)

The first term in (4.179) is summed over all k and q that give the desired
mixing frequency ω

 3, mwhere 

(4.180)

and the triple summation is evaluated only at the same frequencies. Again
we designate t3, m, given by (4.21), as the number of terms in the triple
summation at frequency ω

 3, m, and 

v1' t( ) v2' t( )

i3 m, 2 g2
1
2
--- V1 q, jωqt( )exp V  *

1 q, j– ωq t( )exp+[ ]
ω q ω 2 k,+ ω 3 m,=

∑=

1
2
--- V2 k, jω2 k, t( )exp V  *

2 k, j– ω2 k, t( )exp+[ ]⋅

g3
8
----- Vs q1, Vs q2, Vs q3,

q3 Q–=

Q

∑
q2 Q–=

Q

∑
q1 Q–=

Q

∑+

ωq1 ωq2 ωq3+ + ω3 m,=( )

j ωq1 ω q2 ωq3+ +( )t[ ]exp⋅

ω 3 m, ω q ω 2 k,+ ω q1 ω q2 ω q3+ += =
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(4.181)

In the case of a nonlinear capacitor, 

(4.182)

By the same approach, we obtain 

i3 m, t( )
g2
2
----- V1 q, V2 k,

ω q ω 2 k,+ ω 3 m,=
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g3 t3 m,
8

----------------V1 q1, V1 q2, V1 q3, jω 3 m, t( )exp+

ω q1 ω q2 ω q3+ + ω 3 m,=( )

g2
2
----- V1 q,

 * V  *
2 k,

ω q ω 2 k,+ ω 3 m,=

∑+

g3 t3 m,
8

----------------V  *
1 q1, V  *

1 q2, V  *
1 q3, j– ω 3 m, t( )exp+

ω q1 ω q2 ω q3+ + ω3 m,=( )

i3 m, t( ) 2C2 td
d v1' t( ) v2' t( )[ ] C3 td

d v'1
3 t( )+=
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(4.183)

The third-order current at ω
 3,m can be expressed in the form 

(4.184)

Comparing (4.181) and (4.183) to (4.184), we obtain 

(4.185)

for the conductance, and 

(4.186)
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for the capacitor. 
Equations (4.185) and (4.186) represent a single mixing frequency

ω3, m at a single port. Either (4.185) or (4.186) must be evaluated for each
nonlinear element, and then (4.163) must be used to find the voltage
components V3, m, m = 1 ... M. The Y matrix is then reformulated at the next
third-order mixing frequency of interest, and the currents and voltages are
again determined. 

4.2.7 Controlled Sources 

In all the previous sections we ignored the possibility that the circuit might
include controlled sources, because Volterra-series modeling of controlled
sources is not significantly different from the cases examined above. When
a controlled source is included in Figure 4.12(b), the current is simply a
function of a voltage at another port instead of the voltage at the current
source’s terminals. Thus, equations such as (4.185) and (4.186) remain
valid as long as the voltages are those of the appropriate port, the one that
defines the source’s control voltage. 

4.2.8 Spectral Regrowth and Adjacent-Channel Power

Many types of modern communication systems organize users into a
number of contiguous channels. In such systems, modulating waveforms
are carefully filtered to prevent energy from one user spreading into an
adjacent channel, causing interference. In spite of such filtering, however,
third- and higher-order distortion can cause broadening of the modulated
spectrum, called spectral regrowth. In weakly nonlinear circuits, this
phenomenon can be modeled by Volterra methods. 

We assume that our input waveform, x(t), which can represent either
voltage or current, is modulated by a periodic signal. In this case, the
waveform has a spectrum of discrete frequency components. Then, 

(4.187)

As before, the summation does not include q = 0. The system has the linear
transfer function  and the third-order nonlinear transfer function,

. Each component of the first-order, linear output y1(t) is 

x t( ) 1
2
--- X ωq( ) jωq t( )exp

q K–=

K

∑=

H1 ω( )
H3 ω 1 ω 2 ω 3, ,( )
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(4.188)

and the third-order output is

(4.189)

The components that contribute to spectral regrowth are nth order, where n
is odd and (n – 1) / 2 components are negative. We assume that third-order
terms dominate and one frequency is negative. Thus, we are interested in
terms of the form, 

(4.190)

where tk, as before, represents the number of identical terms at a particular
mixing product, k. For narrowband systems, we can assume that both the
linear and nonlinear transfer functions are approximately constant, so

(4.191)

Under this assumption, we need only perform a single Volterra analysis to
determine H1 and H3. Then, we sum (4.189) over all the terms satisfying
(4.190). Some of these terms occur at the excitation frequencies, causing
compression, while others fall immediately outside the band, causing
spectral regrowth. 

Figure 4.13 shows a calculation involving a modulated waveform
having 10 frequency components. The growth of the interference sidebands
and the compression of the modulated waveform are clearly evident. The
analysis required less than 1 second on a 200-MHz Pentium computer. 

y1 t( ) 1
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Chapter  5

Balanced and Multiple-Device Circuits

Single solid-state devices have limitations that may be troublesome in cer-
tain applications. One of these is output power; a single device is not
always adequate to supply sufficient power or dynamic range. In other
cases, a circuit generates potentially troublesome harmonics or inter-
modulation products, or has spurious responses, and these often cannot be
eliminated by filtering. Some of these problems can be solved by a
balanced circuit. Balanced circuits connecting two or more solid-state
devices or two-port components have many attractive properties beyond
improved power and dynamic range; in some cases they can improve
bandwidth and input or output match. 

Solid-state devices can be combined in many ways. The simplest
technique is to connect one or more transistors in parallel. Direct
interconnection is often impractical, however, because it changes
impedance levels, requires nearly identical devices, or can lead to strange
types of spurious oscillation; for example, odd-mode oscillations in power
amplifiers. Sometimes it is preferable to employ power-combining
components such as hybrids and power dividers, which isolate the
individual devices from each other and preserve input and output
impedance levels. In some cases, devices can be combined by hybrids at
the input or output and directly connected at the opposite port. This chapter
examines the types and properties of interconnected devices and discusses
the trade-offs involved in the design of balanced and multiple-device
circuits. 



 Nonlinear Microwave and RF Circuits278

5.1 Balanced Circuits Using Microwave Hybrids 

5.1.1 Properties of Ideal Hybrids 

A microwave hybrid coupler is a lossless, four-port, passive component.
Each port is matched, and the power applied to any input port is split
equally between a pair of output ports. The remaining port is isolated; that
is, none of the input power is transferred to it. It is possible to show, by
using the properties of the S matrix, that only two types of ideal hybrids are
possible: the 180-degree hybrid, in which one path between ports has a
phase reversal, and the 90-degree or quadrature hybrid, which has two 90-
degree phase shifts. 

Figure 5.1 shows, schematically, both types of hybrids. The lines
between ports show the possible power transfers and phase shifts; for
example, power applied to port 1 of the 180-degree hybrid emerges 3 dB
lower and with identical phase at ports 3 and 4, and port 2 is isolated. If
port 4 is excited, the outputs are ports 1 and 2, and the voltages at those
ports differ in phase by 180 degrees. Similarly, power applied to port 1 of
the quadrature hybrid emerges at ports 3 and 4, with 90-degree phase dif-
ference, and port 2 is isolated. 

The S matrices of ideal 180-degree and quadrature hybrids, S180 and
S90, are 

(5.1)

and

(5.2)

Equations (5.1) and (5.2) imply an absolute phase shift of 0, 90, or 180
degrees between the input port and the output ports. However, in real
hybrids, the phase difference between a pair of output ports, not between

S180
1
2

-------

0 0 1 1
0 0 1 1–

1 1 0 0
1 1– 0 0

=

S90
1
2

-------

0 0 j– 1
0 0 1 j–

j– 1 0 0
1 j– 0 0

=
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the input and output, is of most importance. For example, in Figure 5.1(a)
the difference in phase between ports 3 and 4, when driven at port 2, must
be 180 degrees; the phase difference between ports 2 and 4, and between 2
and 3, is rarely of concern. The S matrices verify that, in both hybrids,
transmission between ports 1 and 2, or between ports 3 and 4, is
impossible; these ports are called mutually isolated pairs. 

Hybrids can be used as power combiners as well as power dividers if
inputs are applied to mutually isolated ports. If, for example, waveforms
are applied to ports 1 and 2 of the 180-degree hybrid in Figure 5.1(a), the
output at port 3 is proportional to the sum of the inputs, and the output at
port 4 is proportional to their difference. When the 180-degree hybrid is
used this way, port 3 is called the sum, or sigma, port, and port 4 is called
the difference, or delta port. If the other ports, 3 and 4, are used as inputs,
then port 1 is the sigma port and port 2 is the delta. 

Practical hybrid couplers do not exhibit these ideal characteristics and
have only a limited bandwidth over which they approximate the ideal re-
sponse. The nonidealities of greatest concern are isolation, phase balance,
amplitude balance, loss, and port VSWR. Phase balance is the deviation
from the ideal phase difference at a pair of output ports; amplitude balance,

Figure 5.1 Ideal (a) 180-degree and (b) 90-degree, or quadrature hybrids. 
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usually expressed in decibels, is the ratio of the amplitude levels at the
output ports. Isolation, also expressed in decibels, is the loss between a pair
of mutually isolated ports, and the loss is the ratio of available input power
to the sum of the powers at the two output ports. The loss accounts for the
dissipation and reflection loss in the hybrid, including power delivered to
the termination of the isolated port; it does not include the unavoidable 3-
dB power-split loss. The port VSWRs are invariably imperfect, not only
because of manufacturing limitations, but also because VSWR, isolation,
and loss are not independent quantities; for example, in all hybrids, if even
one port VSWR is imperfect, isolation cannot, in theory, be perfect. The
VSWRs of the individual ports (as functions of frequency) generally are
not the same unless the hybrid is symmetrical. A hybrid’s balance,
isolation, and VSWR, as a function of frequency, usually establish its
bandwidth. 

5.1.2 Practical Hybrids 

5.1.2.1 Transformer Hybrid 

The transformer hybrid is a practical structure for use at frequencies
between a few megahertz and approximately 500 MHz, although careful
design occasionally allows operation above 2 GHz. This hybrid uses the
symmetry properties of a transformer to achieve 180-degree hybrid
operation. Its simplest form is shown in Figure 5.2, in which the ports are
numbered in a manner that corresponds to Figure 5.1(a). In this con-
figuration the impedance at ports 3 and 4 is not the same as that of ports 2
and 3; however, it is possible to devise more complex transformer hybrid
circuits that have equal port impedances. 

Figure 5.2 The transformer hybrid. All three windings are have the same number of
turns, and the port numbering follows Figure 5.1(a). 
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Figure 5.3 illustrates the operation of the transformer hybrid. In Figure
5.3(a), power is applied to port 4 and is split between the load resistors at
ports 1 and 2. Because of the symmetry of the structure, no voltage appears
across the resistor at port 3, so it is isolated from port 4. In Figure 5.3(b),
port 3 is excited. The currents in the secondary windings (those connected
to ports 1 and 2) must be equal and opposite because of the symmetry of
the structure, so no voltage is generated across any of the windings, and the
loads at ports 1 and 2 are effectively in parallel with port 3. Figure 5.3(c)
shows the operation of the hybrid with port 2 excited. Because the
windings all have an equal number of turns, the current generated in the
primary (port 4) winding is equal to that generated in the winding
connected to port 2, causing a power division between those ports. These
currents also induce equal but opposite currents in the remaining winding,
isolating port 1. Note that the voltage polarities in Figures 5.3(a) and 5.3(c)
imply that the 180-degree phase division is between ports 2 and 4. 

Transformer hybrids are often realized as shown in Figure 5.4, by a set
of trifilar windings on a toroidal core. The core is usually made of a ferrite
material. This structure is favored because it confines the magnetic field
within the windings and thus provides very good coupling over a wide
bandwidth. Transformers realized as so-called transmission-line trans-
formers [5.1, 5.2] are used primarily as baluns, not hybrids. 

An important property of the transformer hybrid is that its phase and
amplitude balance are determined by the structure of the circuit, and not by
frequency-sensitive elements such as half-wavelength transmission lines.
Accordingly, the hybrid’s balance is usually very good over a broad
frequency range, and its bandwidth is generally limited by loss and
degradation of isolation. This degradation occurs at high frequencies
because of stray inductance and capacitive coupling between the
transformer windings. Operation is limited at low frequencies by a standard
requirement for transformers that the self inductances of the windings have
reactances much greater than the load and source impedances. 

5.1.2.2 Ring (Rat-Race) Hybrid

Figure 5.5 shows the ring or rat-race hybrid. Unlike the transformer hybrid,
the ring hybrid requires frequency-sensitive elements, namely transmission
lines of a precise length, that make it a narrow-band component. Figure 5.5
shows a ring hybrid in a form that can be realized in microstrip or stripline;
ring hybrids have also been realized in a wide variety of other transmission
media, including waveguide. 

Power applied to any port of the ring hybrid is divided equally between
the two adjacent ports. The remaining port is isolated because there are
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Figure 5.3 Currents and voltages in the transformer hybrid when different ports are
excited: (a) port 4 excited; (b) port 3 excited; and (c) port 2 excited. 
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always two paths between the input port and the isolated port: going around
the ring in one direction leads from the input to the isolated port over a 0.5-
wavelength path; in the other direction the path is 1.0 wavelength, or 0.5-
wavelength longer. The longer path introduces a phase reversal that cancels
the voltage at the isolated port and creates a virtual ground at its point of
connection to the ring. Because of the extra half wavelength of trans-
mission line, the path from port 4 to port 2 has the 180-degree phase shift. 

Because of its relatively low loss and the simplicity of its design and
fabrication, the ring hybrid is a very popular design. All the ports have the
same impedance, and the ring’s characteristic impedance is  times the
port impedance. If transmission line dispersion and junction effects are
negligible, the VSWR of each port is less than 2.0 over a nearly 100%
bandwidth; however, the transmission bandwidth is much narrower than the
VSWR bandwidth, 10% to 20% at most. 

5.1.2.3 Wilkinson Hybrid 

The Wilkinson hybrid of Figure 5.6 is another simple but effective design.
It is usually used as a combiner or power splitter, but it is actually a type of
180-degree hybrid that has a built-in resistor termination on port 2. The
resistor’s value is 2R, where R is the impedance of the other three ports.
The Wilkinson hybrid uses quarter-wavelength transmission lines, but its
phase and amplitude balance depend primarily upon circuit symmetry and
thus are broadband. Ports 1 and 2 are mutually isolated, as are ports 3 and
4. 

Figure 5.4 The transformer hybrid realized by a trifilar winding on a toroidal core.

2
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The Wilkinson hybrid is often used as a power combiner for individual
amplifier stages. An advantage in this application is that its port ter-
mination, the 2R resistor, need not be connected to ground, and because of
its excellent balance, large trees of Wilkinson combiners and dividers can
be made with good overall balance and low loss. Furthermore, it is possible
to make broadband, well-balanced, Wilkinson-like dividers having multiple
outputs. 

Figure 5.5 The ring hybrid in microstrip or stripline form. 

Figure 5.6 The Wilkinson hybrid or power divider.



 Balanced and Multiple-Device Circuits 285

5.1.2.4 Branch-Line Quadrature Hybrid 

A branch-line quadrature hybrid is shown in Figure 5.7. It consists of two
quarter-wave transmission lines connected by quarter-wave branches; the
series lines have characteristic impedances , and the branch
impedances are simply R. This hybrid is simple to design and fabricate, and
it has very low loss. Because it does not require bond wires or narrow
microstrip lines, it can be fabricated successfully on soft substrates to
realize low-cost circuits. 

The branch-line hybrid has a relatively narrow bandwidth,
approximately 10% at the 20-dB isolation points. The port return loss is
nearly identical to the isolation. The transmission bandwidths of different
pairs of ports are not the same; the excess loss in transmission from port 1
to port 3 is only 0.4 dB over a 40% bandwidth, while the excess loss from
port 1 to port 4 is 2.2 dB. The low impedance lines, which provide low loss,
also create large discontinuities at the junctions, so performance degrades
at high frequencies. When the branch lengths are on the order of the line
widths, the hybrid becomes completely impractical. Multisection designs
have much greater bandwidth; see [5.3, 5.4]. 

5.1.2.5 Coupled-Line Quadrature (Lange) Hybrid 

One of the most popular types of quadrature directional couplers consists
of a pair of coupled microstrip lines, one-quarter wavelength long, as
shown in Figure 5.8. This coupler is designed by selecting the even- and
odd-mode characteristic impedances of the coupled lines so that 

R 2⁄

Figure 5.7 The branch-line quadrature hybrid in microstrip or stripline form. All
branches are one-quarter wavelength long. 
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(5.3)

and 

(5.4)

where R is the port impedance and c is the voltage coupling ratio, the
square root of the power coupling ratio. If such a coupler is designed to
achieve a 3-dB power division, it is a quadrature hybrid. In order to achieve
3-dB coupling (c = 0.707), (5.3) and (5.4) imply that Z0e = 2.414R and
Z0o = 0.414R, or 120.7Ω and 20.7Ω, respectively, in a 50Ω system. 

Unfortunately, it is virtually impossible in practice to obtain 3-dB
coupling from a single pair of edge-coupled lines, even on substrates
having high dielectric constants, because the required spacing between the
microstrips is impractically small. Furthermore, the coupler has the
practical disadvantage that the output ports are always on opposite sides of
the structure, so a symmetrical circuit is impossible. 

Both of these problems can be solved in a remarkably simple and
elegant manner. A solution to the coupling problem is to split the two
coupled lines into four, as shown in Figure 5.9. The four strips now have
three pairs of adjacent edges, instead of only one in the two-strip case, so
the capacitance between the strips is approximately tripled. This mod-
ification allows the even- and odd-mode characteristic impedances required
to realize a 3-dB coupler to be achieved successfully. The output ports can

Z0e R 1 c+
1 c–
------------

 
 

1 2/
=

Z0o R 1 c–
1 c+
------------

 
 

1 2/
=

Figure 5.8 The simplest form of the coupled-line hybrid. This structure is used to
realize directional couplers having low coupling coefficients; it cannot
provide sufficient coupling to be used as a 3-dB hybrid.
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be interchanged by dividing one of the outer strips and moving half of it to
the other side of the coupler; this modification moves the port connected to
that strip to the desired location. It is necessary to interconnect the
separated strips via wires. This hybrid, named after its inventor, J. Lange
[5.5], is one of the most popular and broadband quadrature couplers in use.
For more information on their design and operation, see [5.4] and [5.6]. 

The ideal coupled-line hybrid has a 0.5-dB coupling bandwidth of
approximately 50%. Furthermore, the phase balance, isolation, and port
VSWRs of a coupled-line hybrid are theoretically perfect and independent
of frequency. Perfect isolation implies that any two output ports are
complementary; that is, the sum of the powers at the output ports equals the
input power. However, the balance is not frequency-independent. If port 1
is excited with voltage V1, the voltages at the terminated output ports, V3
and V4, are, respectively, 

(5.5)

Figure 5.9 Evolution of the Lange hybrid. The simple coupler of Figure 5.8 is split
into four strips to increase its coupling, and the strips are rearranged to
place both outputs on the same side of the structure. 

V4
V1
------ jc θ( )sin

1 c2–( )1 2/ θ( )cos j θ( )sin+
----------------------------------------------------------------------=
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and 

(5.6)

The electrical length θ of the coupler is 

(5.7)

where ω0 is the hybrid’s center frequency. If c = 0.707 (a 3-dB hybrid),
dividing (5.5) by (5.6) gives 

(5.8)

showing that V4 leads V3 by 90 degrees at all frequencies. The balance is 

(5.9)

Practical Lange couplers have significant nonidealities. The parasitic
inductances of the wires needed for the crossover connections and the
unequal phase velocities of even and odd modes on microstrip coupled
lines are the dominant effects that limit the coupler’s performance. These
effects are especially severe at high frequencies. Even so, it is relatively
easy to minimize the effects of these factors, and to realize Lange hybrids
having remarkably good performance over broad bandwidths. In
applications that are not sensitive to amplitude balance, Lange hybrids can
be used over very wide bandwidths, often greater than one octave.
Conversely, by overcoupling the lines, the imbalance at the band edges can
be reduced, and the bandwidth increased, at the cost of imbalance at the
bandcenter. 

5.1.3 Properties of Hybrid-Coupled Components 

Figure 5.10 shows a pair of two-ports connected in parallel by microwave
hybrids. The two-ports can be of any type, and the hybrids can be 180-

V3
V1
------ 1 c2–( )1 2/

1 c2–( )1 2/ θ( )cos j θ( )sin+
----------------------------------------------------------------------=

θ π
2
--- ω

ω0
------=

V4
V3
------ j θ( )sin=

V4
V3
------

2
θ( )sin 2=
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degree or quadrature designs. The requirements for the interconnection are
(1) that the ports of each hybrid that are connected to the two-ports be
mutually isolated pairs; (2) that the phase shifts from the input to the output
through each branch (i.e., through the input hybrid, one of the two-ports,
and the output hybrid) be equal; and (3) that the two-ports be identical. If
these conditions are met, the coupled pair of two-ports has the same gain as
either two-port, but twice the output-power capability. The coupled pair
may have other useful properties, depending upon the type of hybrid used
for the interconnection. 

5.1.3.1 180-Degree Hybrid-Coupled Components 

Figure 5.11 shows a pair of identical two-port components connected in
parallel by 180-degree hybrids. The components can be connected to in-
phase or out-of-phase pairs of the hybrid’s ports, but the characteristics are
different for the two interconnections. 

This configuration is frequently used to power-combine amplifier
stages. Because of their structural simplicity and excellent amplitude and
phase balance, Wilkinson hybrids are a natural choice for power-
combining; they are configured with port 1 as the input or output and the
amplifiers connected to ports 3 and 4 (see Figure 5.6). In order to achieve
high output power, Wilkinson-like power dividers having multiple outputs
are often used to combine a large number of amplifiers. 

Figure 5.12 illustrates the operation of the input and output hybrids. In
Figure 5.12(a), the input port has voltage Vs and current Is; the available
power at the input is divided in half by the hybrid, so the voltage Vi and
current Ii at the two outputs of the hybrid, the inputs of N1 and N2, is 

Figure 5.10 General configuration of hybrid-coupled two-ports.
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(5.10)

and 

(5.11)

We have assumed that the hybrid is ideal, the two-ports are identical,
and both two-ports have the same input impedance Zi. One can show from
(5.1) that the input impedance of the hybrid under these conditions must
also be Zi; the input reflection coefficient of the hybrid-coupled
components is that of the individual components. The voltages and currents
at the outputs of N1 and N2 (i.e., those at the inputs of the output hybrid), Vo
and Io, are identical. The 3-dB power division in the output hybrid reduces
Vo by , but two input voltages are combined in phase, so the output
voltage and current VL and IL are 

(5.12)

and

(5.13)

Figure 5.11 Hybrid-coupled two-ports using 180-degree hybrids or power dividers.

Vi
Vs

2
---------=

Ii
Is

2
-------=

2

VL
2 Vo

2
-------------=

IL
2 Io

2
-----------=
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Unsurprisingly, the output power is 3 dB greater than the powers at either
input. Thus, the hybrid introduces a 3-dB loss in available power at its
inputs, but reclaims that loss at its output by combining the voltages in
phase. The transducer gain (Section 1.5) of the hybrid-coupled pair is,
therefore, the same as that of the individual stages, but the available output
power is 3 dB greater. 

Figure 5.12 180-degree hybrid-coupled components. This configuration has limited
second-order harmonic and spurious rejection as long as the output
hybrid’s amplitude and phase balance are maintained at the spurious
output frequency.
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A consequence of coupling the components via a 180-degree hybrid is
a modest improvement in the worst-case VSWR. It can be shown that the
reflection coefficient at the input of the ideal hybrid is 

(5.14)

where Γin is the input impedance looking into port 1, and Γ3 and Γ4 are the
reflection coefficients of the terminations on the input hybrid’s output
ports, ports 3 and 4, respectively, in Figure 5.1. Thus, if the two-ports are
not precisely identical, and at some frequency the input reflection
coefficient of one two-port is much poorer than that of the other, the
averaging effect of the 180-degree hybrid reduces the worst-case input
reflection coefficient. The same property is evident at the output. 

5.1.3.2 Quadrature-Coupled Components 

Figure 5.13 shows a pair of two-port components coupled via quadrature
hybrids. The crossover paths between ports in the ideal hybrids have
identical phase delays of 90 degrees, and the straight-through paths have no
phase delay; the components are connected to the hybrids’ ports in such a
way that the phase shift through each branch of the balanced structure is the
same.

The magnitudes of the port voltages in the quadrature hybrids are the
same as those of the 180-degree hybrid; (5.10) through (5.13) apply to
Figure 5.13 as well as to Figure 5.12. The only consequence of the different
phase shifts is that the quadrature hybrid’s ports must be configured as

Γin 0.5 Γ3 Γ4+( )=

Figure 5.13 Hybrid-coupled two-ports using quadrature hybrids. The paths in the
hybrid that have the 90-degree phase shift are the crossover paths.
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shown in Figure 5.13, so that the output voltages of the individual
components N1 and N2 combine in phase. Thus, the gain of the quadrature-
coupled components is equal to that of the individual two-ports, and the
output power capability is 3 dB greater. 

The most attractive property of the quadrature-coupled configuration is
that, in the ideal case, the input reflection coefficient is zero, regardless of
the input reflection coefficients of the individual two-ports. One can derive
this property by using (5.2) and by assuming that port 1 is the input and that
ports 3 and 4 have terminations with reflection coefficient Γ. The termi-
nations constrain the a and b waves at ports 3 and 4 as follows: 

(5.15)

and 

(5.16)

Substituting (5.15) and (5.16) into (5.2) gives 

(5.17)

Equation (5.17) implies that all the input power reflected from the
individual components is dissipated in the load at port 2, and none emerges
from port 1; in simple terms, the input port is matched. The same
considerations apply to the output port, which is also matched. An intuitive
explanation of this phenomenon is that a wave reflected from port 4 returns
to port 1 without phase shift, but a wave reflected from port 3 passes
through the hybrid’s 90-degree path twice, returning to port 1 with 180-
degree phase shift. Thus, reflected waves cancel at port 1. However, the
reflected waves undergo identical phase shifts between the input and port 4,
and therefore combine in phase. Similarly, one can show that, when the
terminations on ports 3 and 4 are unequal and the termination on port 2 is
ideal,

(5.18)

a3 Γb3=

a4 Γb4=

b1

b2

Γ 0 j–

j– 0

a1

a2

=

Γin 0.5 Γ3 Γ4–( )=
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where Γin = b1/a1, and Γ3, Γ4 are the reflection coefficients of the
terminations at ports 3 and 4, respectively. Thus, even when the port
terminations are not precisely equal, the input VSWR may still be very low. 

This property of quadrature-coupled components is indeed delightful;
equally delightful is the fact that, if the quadrature hybrid is an ideal
coupled-line hybrid, good gain is achieved over a very broad bandwidth.
The reason for the broadband operation is that the coupled-line hybrid’s
phase balance, port VSWR, and isolation are theoretically perfect and
frequency independent. Its amplitude balance is imperfect, varying as
sin2(ω / ω0), but this imperfection is not as important as it may seem at
first. Because the hybrid’s isolation and input VSWR are perfect, all the
available input power must appear at the output ports; that is, if the loss
from the input to one port of the hybrid is L (L < 1), the loss from the input
to the other port must be 1 – L. Figure 5.13 shows that the coupled stages
are connected to the hybrids in such a way that a signal must experience
loss L through one hybrid and loss 1 – L in the other. Therefore, the gain
through the input hybrid, either component, and the output hybrid is
L (1 – L)Gt, where Gt is the transducer gain of the identical two-port
components. The gain of the coupled pair of components is 4L (1 – L)Gt;
even if the imbalance is fairly large, this gain is very close to the ideal gain
Gt. For example, at 0.5 and 1.5 times the center frequency, the coupling of
an ideal hybrid drops to 0.33 (i.e., L = 0.33) and its amplitude balance
(L / (1 – L)) is a seemingly horrific 3 dB; however, the gain reduction of
the coupled pair of components over this 3:1 frequency range is only 0.8
dB. Even greater bandwidth can be achieved by designing the hybrid to
have a bandcenter power division other than 3 dB: if the coupling between
port 4 and port 1 is made greater than 3 dB at center frequency, the band-
edge balance of the hybrid is improved, as is the worst-case imbalance over
the entire band. Similarly, one can show that the effect of imperfect
amplitude balance is to raise the magnitude of the input reflection
coefficient to |(2L – 1) Γ|, where Γ is the component’s input reflection
coefficient in the absence of the hybrids. 

5.1.3.3 Effect of Imperfect Balance 

In the previous sections we frequently assumed that the hybrids were ideal
and the two-ports were identical. Such perfection never occurs in practice,
of course, so it is important to be able to estimate the effects of imper-
fection. Estimating the effects of phase, amplitude, and gain imbalance is
not difficult as long as the hybrids are not too far from ideal. 

In any balanced circuit, two voltage components combine in phase
after traveling through different paths (each consisting of the input hybrid,
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one of the two parallel two-port components, and the output hybrid)
between the circuit’s input and output. The effect of dissimilar gains in the
two-ports and amplitude imbalance in the hybrids is that the amplitudes of
those voltage components are not identical. Similarly, phase imbalance
arising in either the components or the hybrids causes the two output
voltage components to have different phases. 

The two voltage components at the output of the output hybrid can be
described as phasors, as shown in Figure 5.14. The phase difference
between the two components is θ, and the amplitudes of the voltage
components, Vo, 1 and Vo, 2, generally are also different. If the voltage
components had equal amplitude and θ = 0, the output power would be 

(5.19)

or 

(5.20)

where R is the hybrid’s output termination resistance and Vo, 1 = Vo, 2 is the
amplitude of either component. When they are unequal and θ ≠ 0, 

(5.21)

Figure 5.14 Voltage phasors at the output of the hybrid-coupled circuit. Vo, 1 is the
voltage of the signal that passed through the upper path in Figure 5.11 or
5.13, through the input hybrid, N1, and the output hybrid; Vo, 2 is the
signal that followed the lower path.

Po e,
1
2
---

Vo 1, Vo 2,+ 2

R
-----------------------------------=

Po e, 2
Vo 1,

2

R
-----------------=

Po u,
1
2
---

Vo 1, Vo 2, jθ( )exp+

R
----------------------------------------------------=
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or, letting δ = Vo, 2 / Vo, 1 with Vo, 2 < Vo, 1, 

(5.22)

If we assume that Vo, 1 is a reference voltage, so that it has the same value
for the cases of perfect and imperfect balance, 

(5.23)

Equation (5.23) indicates that a 20-degree phase imbalance and 1-dB
gain imbalance between the two branches reduces the overall gain of the
circuit by 0.6 dB. This degree of balance is not particularly difficult to
maintain in most cases, even over broad bandwidths, so one may conclude
that the penalty, in terms of gain, for phase and amplitude imbalance is not
particularly severe. 

5.1.3.4 Harmonics and Spurious Signals 

Hybrid-coupled circuits may provide limited rejection of spurious signals
and harmonics generated in the parallel two-ports. Such rejection is by no
means guaranteed, because it depends upon the type of hybrid used in the
balanced circuit and that hybrid’s properties at the harmonic or spurious
frequency. The spurious signals of greatest concern are usually close to the
frequency of the desired signal; harmonics invariably are not close to the
desired signal, but may still be of concern in broadband systems. If the
phase and amplitude balance of the hybrid are uniform over a wide
frequency range (an acceptable assumption for certain hybrid types, e.g.,
the transformer hybrid), then it is possible for the balanced structure to
have significant spurious rejection. 

The only balanced structure having significant spurious- and harmonic-
rejection properties is shown in Figure 5.15. In this figure the two-ports are
combined by 180-degree hybrids and are connected to mutually isolated,
out-of-phase ports. If a two-tone signal is applied to the circuit, the input
voltage vi, 1(t) at N1 is 

(5.24)

Po u,
1
2
---

Vo 1,
2 1 2 θ( )cos δ2+ +[ ]

R
-----------------------------------------------------------------=

Po u,
Po e,
-----------

1
4
--- 1 2 θ( )cos δ2+ +[ ]=

v i 1, t( ) V1 ω1t( )cos V2 ω2t( )cos+=
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and vi,2(t), the input voltage at N2, is 

(5.25)

For simplicity we can model the networks by the power-series approach of
Section 4.1, wherein each network consists of a linear two-port having the
transfer function H(ω), followed by a nonlinear, frequency-independent
element having the transfer function 

(5.26)

The second-order voltage components at the output of N1, vo, 1(t), are 

(5.27)

The second-order outputs at N2 are 

vi 2, t( ) V1 ω1t π+( )cos V2 ω2t π+( )cos+=

Figure 5.15 180-degree hybrid-coupled components. This configuration has limited
second-order harmonic and spurious rejection as long as the output
hybrid’s amplitude and phase balance are maintained at the spurious
output frequency. 

f V( ) a1V a2V 2 a3V 3 …+ + +=

vo 1, t( ) a2 H ω1( )H ω2( ) V1V2 ω1 ω2+( )t( )cos=

a2 H ω1( )H* ω2( ) V1V2 ω1 ω2–( )t( )cos+

0.5a2 H ω1( ) V1
2 2ω1t( )cos+

0.5a2 H ω2( ) V2
2 2ω2t( )cos+
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(5.28)

which is clearly the same as vo, 1(t). The signal vo, 2(t) undergoes an
additional 180-degree phase shift in the output hybrid, but vo, 1(t) does not;
thus, all the second-order voltages cancel in the output as long as the
bandwidth of the hybrid is broad enough to include them. Similar analysis
shows that all even-order mixing products and harmonics are rejected as
long as the hybrid’s balance and phase properties are the same at the
mixing or harmonic frequency as they were at the excitation frequency.
Conversely, all odd-order harmonics and mixing products differ in phase by
180 degrees at the outputs of N1 and N2 and combine in phase after the 180-
degree phase shift in the output hybrid. Thus, odd-order products are not
rejected. 

The spurious-rejection properties of the quadrature-coupled circuit are
significantly different from those of the 180-degree hybrid-coupled circuit.
Applying the same analysis to the quadrature-coupled circuit shows that
second-order mixing products are 180 degrees out of phase at the outputs
of N1 and N2. These voltage components are applied to the quadrature
output hybrid, so the second-order mixing products would be expected to
have a 90-degree phase difference when they are combined, providing only
3-dB rejection. However, most quadrature hybrids do not have the same
amplitude or phase characteristics at the second harmonic as at the intended
operating frequency, so it is usually not possible to make general state-
ments about their second-order rejection properties. Third harmonics at the
output of N2 are delayed by 270 degrees, and the third-harmonic properties
of most quadrature hybrids are approximately the same as the fundamental-
frequency properties. Thus, the voltage components have a 180-degree
phase difference when they are combined in the output hybrid, so third
harmonics are rejected. Some, but not all, third-order mixing products are
rejected; the third-order intermodulation products at 2ω1 – ω2 and 2ω2 – ω1
are not rejected, but those at 2ω1 + ω2 and 2ω1 + ω2 are rejected. These
rejections, of course, are largely theoretical, as they depend on the
characteristics of the coupler, near the third harmonic, being identical to
those at the fundamental. This is, at best, only approximately the case.

vo 2, t( ) a2 H ω1( )H ω2( ) V1V2 ω1 ω2+( )t 2π+( )cos=

a2 H ω1( )H* ω2( ) V1V2 ω1 ω2–( )t( )cos+

0.5a2 H ω1( ) V1
2 2ω1t 2π+( )cos+

0.5a2 H ω2( ) V2
2 2ω2t 2π+( )cos+
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5.1.3.5 Intermodulation Intercept Point 

Section 4.1.3 introduced the intermodulation (IM) intercept point, the point
at which the extrapolated two-tone IM levels and linear output levels are
identical. Because of the balanced circuit’s power-combining effect,
interconnecting two components in a balanced structure gives the com-
bination a greater intercept point than that of the individual components.
We saw, in Section 4.1.3, that the level of nth-order IM products, PIMn, can
be found from the linear output level and the intercept point as follows: 

(5.29)

where Plin is the level of the linear output power and IPn is the nth-order
intercept point. All power levels are in dBm. Equation (5.29) can be
rearranged to express IPn: 

(5.30)

If the two-ports are operated at identical output levels, they have identical
IM output levels. At the output of the balanced circuit, both the IM and
linear output levels are 3 dB higher than those of the individual two-ports.
The IPn of the balanced circuit must differ from that of the individual
components, so for the balanced circuit (5.30) becomes 

(5.31)

Equation (5.31) can be rearranged to give

(5.32)

The intercept point of the balanced structure is 3 dB greater than that of the
individual two-ports, regardless of order. Furthermore, one can show via
the same approach that combining m two-ports via any power-combining
technique increases the intercept point by 10 log10(m) dB. 

PIMn nPl in n 1–( )IPn–=

IPn
nPl in PIMn–

n 1–
--------------------------------=

PIMn C,
n Pl in 3+( ) PIMn 3+( )–

n 1–
--------------------------------------------------------------=

PIMn C, PIMn 3+=
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5.1.3.6 Noise Figure

The noise figure of a pair of identical components connected by ideal
hybrids, either 90- or 180-degree, is equal to that of the individual
components. This result may be paradoxical, as the input hybrids introduce
3-dB loss, and anyone familiar with Friis’ formula [5.7] might expect them
to increase the noise figure by minimum of 3 dB at room temperature. 

The paradox can be resolved by viewing the problem in terms of
signal-to-noise ratio (SNR) instead of noise figure. At the input, the hybrid
splits the power of the signal, so the SNR, in the components, is indeed
3 dB lower that it would be without the hybrid. However, at the output, the
signals combine voltage-wise in the output hybrid, while the noise from the
two amplifiers, being uncorrelated, combines power-wise. The result is a
3-dB increase in SNR in the output combiner, which restores the SNR lost
at the input. 

Two phenomena can increase the noise figure of hybrid-coupled
components. First, the input hybrid’s excess loss affects the noise figure in
the same way as input loss in a single component. Second, the input
hybrid’s termination applies its noise directly to the inputs of the
components. Ideally, this noise is cancelled in the output hybrid. However,
at frequencies near the edge of the hybrid’s passband, where the isolation is
imperfect, not all of this noise is rejected. The phenomenon is relatively
minor, however, usually increasing the noise temperature by only a few
degrees. 

5.2 Direct Interconnection of Microwave Components

It is not always necessary or desirable to use some type of hybrid to
interconnect solid-state devices or components. Although the previous
section was concerned primarily with ideal hybrids, real, nonideal hybrids
must be used in practical circuits, and real hybrids are not perfect. Hybrids
introduce additional loss, which may not be tolerable in power circuits, and
their imperfect balance and VSWR may also degrade a circuit’s
performance. They also increase the circuit’s size and weight and make it
more expensive to design and fabricate. The direct interconnection of
components circumvents some of these problems, but at the expense of
losing the inherent isolation between stages that hybrids provide.

     The primary purpose of connecting solid-state devices directly is to
increase output power without adding complexity; for example, high-power
microwave bipolar and field-effect transistors are realized by directly
connecting many smaller devices, called cells, in parallel. A second
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purpose is to eliminate undesired harmonics and intermodulation products;
even- or odd-order products sometimes can be eliminated by appropriately
connecting devices together. These rejection properties are often exploited
in the design of frequency converters such as frequency multipliers and
mixers.

5.2.1 Harmonic Properties of Two-Terminal Device Interconnections

Nonlinear two-terminal circuit elements such as diodes are often connected
in parallel or series in order to eliminate certain harmonics or mixing
products. Because spurious signals often are in-band and cannot be
removed by filtering, the ability to eliminate such products without
resorting to filters is often valuable. In circuits designed to have very wide
bandwidths, harmonics may be within the output passband, but even in
narrowband circuits, certain spurious mixing products may be in-band.
Two of the most important interconnections of nonlinear devices having
spurious-rejection properties are called the antiparallel and the antiseries,
or, more commonly but less elegantly, the push-push interconnection. A
third type of interconnection is called the series interconnection; it is a
variation of the antiparallel interconnection but has different properties.

5.2.1.1 Antiparallel Interconnection

Figure 5.16(a) shows a two-terminal nonlinear conductance having the I/V
characteristic

(5.33)

The element’s I/V characteristic is generally not symmetrical, so it is
marked with a + sign at one terminal in order to indicate its polarity. In
Figure 5.16(b), the applied voltage is reversed. In this case,

(5.34)

and the odd-degree components of the power series are negative. Finally, if
the element is reversed, but the voltage and current conventions remain as
in Figure 5.16(a),

(5.35)

I f V( ) aV bV 2 cV 3 dV 4 eV 5 …+ + + + += =

I f V–( ) a– V bV 2 cV3– dV4 eV 5– …+ + += =

I f– V–( ) aV bV2– cV 3 dV 4– eV 5 …+ + += =
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This case, illustrated in Figure 5.16(c), is the converse of the previous
one: the even-degree current components are negative. We conclude from
(5.35) that reversing the terminals of a nonlinear circuit element changes
the sign of the even-degree terms in its power series.

Figure 5.17 shows the antiparallel interconnection of two ideal
conductive nonlinear elements described by (5.33) through (5.35). The
current in element A, IA, is found from (5.33):

(5.36)

IB, the current in element B, is found from (5.35):

Figure 5.16 Voltage/current relations in a conductive nonlinearity with three different
voltage and current polarities.

IA f V( ) aV bV 2 cV 3 dV 4 eV 5 …+ + + + += =
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(5.37)

and finally the total external current, I, is 

(5.38)

From (5.38) we can see that the external current does not include any
even-degree components. Therefore, the antiparallel pair of nonlinear
elements operates as if it were a single element having only odd-degree
nonlinearities; indeed, plotting the I/V characteristic would show that it is a
purely odd function of voltage. It was shown in Chapter 1 that even-degree
nonlinearities generate even-order mixing products, and odd-degree
nonlinearities generate odd-order mixing products. Thus, antiparallel-
connected nonlinear elements generate no even-order mixing products
from the frequencies in their terminal voltages.

This result may at first seem impossible because, from (5.36) and
(5.37), the even-degree current components still exist in IA and IB. In order
to examine this mystery further, we consider the loop current, Iloop, in
Figure 5.17. The loop current must consist only of the components for
which

(5.39)

The odd-degree components in Iloop must be zero because it is impossible
to have –aV = aV, –CV 3= CV 3, ..., for all V. Equation (5.39) shows that
Iloop contains the missing even-degree current components and does not
include any of the odd-degree terms. We now can see what has happened:
the even- and odd-order mixing components have been separated; the even-
order current components circulate in the loop, while the odd-order current
components circulate in the external circuit. 

IB f– V–( ) aV bV 2– cV 3 dV 4– eV 5 …+ + += =

I IA IB+ f V( ) f V–( )– 2aV 2cV 3 …+ += = =

Figure 5.17 Antiparallel connection of two identical nonlinear elements.

Iloop IA IB– bV 2 dV 4 …+ += = =
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The lack of even-order components circulating in the external circuit
can be used to an advantage. For example, antiparallel diodes can realize a
frequency tripler having inherently low second- and fourth-harmonic
output. Such a tripler has no inherent rejection of fundamental-frequency
output. The antiparallel pair also can be employed as a mixer that has no
mixing response between the RF frequency and the fundamental
component of the local oscillator. A mixer using antiparallel diodes
achieves efficient mixing between the RF and the second LO harmonic, a
third-order mixing product. Such subharmonically pumped mixers are in
wide use; they are particularly valuable at millimeter wavelengths where
fundamental-frequency LO power may be difficult or expensive to obtain.

The separation of the even- and odd-order frequency components of the
current has another implication, one that is subtle but very important.
Because no even-order currents circulate in the external circuit, no even-
order voltages are generated between the elements’ terminals. Thus, the
even-order components of the terminal voltage, as well as the external
even-order currents, are zero. Furthermore, each nonlinear element
generates even-order currents that are equal to those of the other and are
opposite in direction. The existence in each component of a circulating
current and zero terminal voltage implies a short circuit at the terminals;
each element in effect short circuits the other at all even-order mixing
frequencies. 

The fact that each element short circuits the other at even-order
harmonics and mixing frequencies allows considerable simplification of
the analysis of such components. It is not necessary to include both
nonlinear components in the analysis, or the embedding impedances at
even-order harmonics and mixing frequencies. Instead, we need only
include one element in the circuit, express the I/V characteristic of the
single element as I = 2 f (V), and set all the even-order embedding
impedances to zero. In this way, we obtain a single-device equivalent
circuit that describes the two-device circuit completely. The results will be
the same as those of an analysis that includes both nonlinear elements. 

Scaling the nonlinear element as I = 2 f(V) is not always wise or even
possible because, in some cases, the nonlinear element may not be a simple
two-terminal conductive nonlinearity; it may have a relatively complex
equivalent circuit, one described by a model that is difficult to modify.
Furthermore, modifying the model may require modifying the computer
program that is used to analyze the circuit; such changes may not be
possible if the source program is not available and, in any case, may not be
advisable because of the possibility of introducing errors. Instead, it may
be preferable to generate a single-device equivalent circuit by modifying
the external circuit.
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To scale the external circuit, all odd-order embedding impedances are
artificially set to twice their true values, even-order embedding impedances
are set to zero, and the antiparallel pair is replaced by a single device. This
process is illustrated in Figure 5.18, in which Z′(ω) = 2Z(ω) at odd-order
mixing frequencies and Z′(ω) = 0 at even-order frequencies. On completing
the analysis of the single-device circuit, all absolute power levels (e.g., LO
power of a mixer, input and output powers of a multiplier) must be
doubled, but all relative levels (e.g., conversion loss or gain) remain
unchanged. 

A limitation of the single-device equivalent circuit is that it is valid
only in the case of perfect balance and identical nonlinear elements. This
limitation is not as severe as it seems, however, because, as with hybrid-
coupled circuits, performance in many respects is not highly sensitive to
balance. More importantly, a single-device equivalent circuit provides
great intuitive insight into the operation of a balanced circuit. 

Figure 5.18 Generation of the single-device equivalent circuit of the antiparallel-
connected elements: (a) the complete circuit; (b) the single-device
equivalent. Z′(ω) equals Z(ω) for odd-order frequencies; it is zero for
even-order frequencies. 
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5.2.1.2 Antiseries Interconnection

A dual case of the antiparallel connection is the antiseries connection
shown in Figure 5.19. Because of the circuit’s symmetry, VA = VB = V and

(5.40)

IA is found from (5.33) and IB from (5.34). Adding these gives the output
current, 

(5.41)

The output current in the load, RL, is an even-degree function of the voltage
across the nonlinear elements. Thus, under sinusoidal excitation, the load
current and voltage contain only even-order mixing frequencies and
harmonics. We find the loop current in a manner similar to that of the
antiparallel case, by recognizing that IA = –IB for current components in
Iloop:

(5.42)

IL IA IB+=

Figure 5.19 Antiseries connection of two identical nonlinear elements. The dual
sources must be realized via a transformer or other 180-degree hybrid.

IL 2bV 2 2dV 4 …+ +=

Iloop IA IB– aV cV 3 …+ += = =
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Iloop is an odd-degree function of V, so the loop current must contain the
odd-order mixing components and harmonics of the frequencies in its
terminal voltage waveform. Like the antiparallel interconnection, the
antiseries interconnection separates even- and odd-order frequency
components, but in the latter case, the even-order components circulate in
the external circuit. 

Figure 5.20 shows how the even- and odd-order voltage components,
ve(t) and vo(t), respectively, and the even- and odd-order current
components, ie(t) and io(t), are distributed in the circuit [vo(t) does not
include the fundamental-frequency component]. The load current IL(t) has
only even-order components, so only even-order voltages ve(t) exist at its
terminals. Although element B does not directly short-circuit element A at
the odd-order frequencies, as it did in the antiparallel case, the entire lower
half of the loop short-circuits the entire upper half of the loop, a fact
evidenced by the lack of odd-order voltage components across RL. This
observation can be used to decompose the antiseries-connected pair of
devices into a single-device equivalent circuit; the process is illustrated in
Figure 5.21. 

Figure 5.20 Even- and odd-order voltages and currents in the antiseries circuit.
Although the odd-order voltage components exist only across A, B, and
both Z(ω), the voltages across these elements do not consist solely of
odd-order components. 
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Figure 5.21 Generation of the single-device equivalent circuit of the antiseries
circuit: (a) the antiseries circuit is split into two half-circuits; (b) the
lower half-circuit is replaced by a short circuit fo at the odd-order
frequencies; (c) the single-device equivalent is formed by including the
load resistor 2RL in Z(ω). 
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In Figure 5.21(a), the load resistor RL has been split into two resistors,
each having resistance 2RL; each resistor also has half the load current,
IL(t)/2. In this circuit, IL(t)/2 = ie(t), where ie(t) is the even-order current in
either half of the divided circuit. The odd-order current components do not
circulate in RL, but pass through the links between the half-circuits;
because the odd-order current in the top half of the circuit passes through
the bottom half without generating any voltage across it, the bottom half-
circuit effectively shorts the upper half-circuit at the odd-order frequencies.
For this reason, the lower half-circuit can be replaced by an ideal filter, fo
shown in Figure 5.21(b), that short circuits the load resistor at odd-order
frequencies and is an open circuit at even-order frequencies. This circuit is
a valid single-device equivalent of the circuit in Figure 5.20.

The circuit in Figure 5.21(b) is not in the form we prefer, however; it is
not in the canonical form that we have assumed to exist in the previous
chapters. We prefer an equivalent circuit that consists of the device,
embedding impedance, and voltage source in series. That circuit is shown
in Figure 5.21(c), in which the load resistance is absorbed into the
embedding network. The embedding impedance of this circuit therefore is
Z(ω) + 2RL at even-order frequencies and Z(ω) at odd-order frequencies.
The loop current, i(t) in Figure 5.21(c), consists of both the even- and odd-
order components; that is, i(t) = ie(t) + io(t). These components can be
separated easily in the frequency domain, and the output power is found
from the desired frequency component of ie(t) and 2RL. As before, the
output power of the single-device equivalent circuit is half that of the
complete circuit.

The dual excitation sources shown in Figures 5.19 through 5.21 could
be realized by some type of balun or 180-degree hybrid. The transformer
hybrid is often employed for this task; port 4 in Figure 5.2 is the input, and
ports 2 and 3 are the outputs. Because port 3 is in series with RL, port 3 is
usually shorted and connected to ground instead of terminated. Other types
of 180-degree hybrids can also be used to provide the dual sources, as long
as an out-of-phase pair of ports is used as output. 

Although the antiseries connection of two-terminal devices has
important uses in microwave electronics, one of the most familiar
applications is in a low-frequency circuit, the full-wave rectifier shown in
Figure 5.22(a). Fourier analysis of the output current and voltage
waveforms, Figure 5.22(b), shows that the waveforms contain no
excitation-frequency component; the output frequencies are only dc and
even harmonics of the excitation frequency. This same circuit can be scaled
to microwave frequencies and used as a second-harmonic frequency
multiplier having minimal fundamental and third-harmonic output. One
such multiplier is described in [5.8]. 
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5.2.1.3 Series Interconnection

Figure 5.23 shows an interconnection of two nonlinear elements with an
output transformer that couples them to the load, RL; for lack of a better
term, we call this a series interconnection. From the descriptions of the
antiparallel and antiseries circuit, it should be clear that the even- and odd-
order currents in the nonlinear elements are as shown in the figure.

The primary circuit (the tapped side) of the output transformer is
excited in phase by the odd-order currents in the nonlinear elements; these
currents induce equal but opposing currents in the secondary side, and
consequently there is no odd-order current in the transformer’s secondary
winding. Because there is no secondary current, the odd-order voltage
across both the secondary and primary must be zero; thus, the nonlinear
elements are connected to ground through the transformer at odd-order
mixing frequencies. Furthermore, the even-order currents are equal and
opposite at the node connecting A, B, and Z(ω); this node is a virtual
ground for even-order products.

Figure 5.22 A common antiseries circuit: the full-wave rectifier. (a) Circuit; (b)
voltage and current waveforms.
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The single-device equivalent circuits are found in the usual manner, by
splitting Z(ω) and the transformer into two parallel elements. The circuit
can then be separated into two separate circuits, each of which has the form
shown in Figure 5.24(a). In this figure, the load impedance has been
transferred to the primary side of the transformer, and the elements fo and
fe, ideal filters that are short circuits at the odd- and even-order mixing
frequencies, respectively, provide the short circuits at the virtual ground
points. The elements can be consolidated further as shown in Figure
5.24(b), in which Z(ω), fo, fe, and the load have been expressed as a
single impedance: 2Z′(ω) = n2/ 2RL at even-order frequencies, and
2Z′(ω) = 2Z(ω) at odd-order frequencies. Except for the change in
impedances and the fact that the even-order products are the output
quantities, this circuit is identical to the single-device equivalent circuit of
the antiparallel interconnection in Figure 5.18. The series circuit operates
in a manner similar to that of the antiparallel circuit; in the former,
however, the output is coupled to the devices via the circulating odd-order
current instead of the even-order terminal current. Consequently, in the
series circuit, the even-order products are the output, not the odd-order.

In a microwave realization of the series circuit, some type of 180-
degree hybrid would be used in place of the transformer. Depending upon

Figure 5.23 Series connection of two nonlinear elements. In a microwave circuit, the
transformer is realized by a 180-degree hybrid.
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the characteristics of the hybrid, it may be necessary to change the
description of the series impedance 2Z′(ω) in Figure 5.24(b), because many
microstrip hybrids do not present short circuits to all odd-order currents, as
does the transformer. Many hybrids present a short circuit to the odd-order
currents at the excitation frequency, but they present open circuits to other
odd-order products. In this case, it is necessary to modify Z′(ω) in Figure
5.24(b) appropriately.

5.2.1.4 Properties of Direct Parallel Interconnection of Two-Ports

Two-port components can be connected in parallel at their input and output
ports, as shown in Figure 5.25. Direct parallel interconnection is very
common in microwave circuits; power FET and bipolar devices, and even

Figure 5.24 Single-device equivalents of the circuit in Figure 5.23: (a) half-circuit
representation where fo and fe are ideal series resonators tuned to the
odd- and even-order frequencies, respectively; (b) representation in
which Z(ω) has been modified to account for fo and fe.
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some small-signal devices, are realized as parallel combinations of many
low-power cells. Characterizing parallel-connected linear two-ports is
straightforward: the Y matrix of parallel two-ports equals the sum of their
individual Y matrices. Nonlinear two-ports cannot be described by Y
parameters, however, nor by any similar linear two-port equations.

The simplest approach to the analysis of parallel-connected two-ports
is to generate a single-component equivalent circuit. Generating the
equivalent circuit requires changing only the source and load impedances
at all harmonics or mixing frequencies.

Figure 5.26 illustrates the process of generating the single-device
equivalent circuit. Because of the symmetry of the structure, it is possible
to split Zs(ω) and ZL(ω) into two parallel impedances of 2Zs(ω) and 2ZL(ω).
This operation preserves the voltage levels in the circuit but reduces the
input and output currents by a factor of two compared to the currents of the
combined pair. The input and output power levels in the single-component
equivalent circuit are, therefore, half those of the parallel-connected pair of
two-ports. However, because both available input power and output power
are reduced by the same factor, the gain is the same.

The single-component equivalent circuit in Figure 5.26 shows that each
component is effectively terminated by an impedance twice that of the
actual load; thus, the impedance levels necessary to match a parallel-
coupled pair of two-ports is half that required by a single two-port. This is
the major disadvantage of such interconnections and the primary limitation
in achieving high power by paralleling individual solid-state devices; the
impedance necessary to match the parallel combination drops by a factor

Figure 5.25 Direct parallel connection of a pair of two-ports.
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Figure 5.26 Evolution of the single-element equivalent circuit of the directly
connected two-ports: (a) directly connected circuit; (b) splitting the
source and load impedances does not change the voltages or total
currents; (c) single-element equivalent.
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equal to the number of devices, while the total current increases by the
same factor. As we parallel more devices, we eventually reach a point
where it is no longer possible to match the combination by circuits having
practical element values. Furthermore, because of the low impedances,
parallel-connected devices have high combined input and output currents,
so I2R losses in the matching circuits may be substantial. Other practical
problems, such as maintaining phase and amplitude balance in a large
number of separate devices, and especially thermal problems, also limit the
number that can be connected in parallel. We shall explore some of these
practical matters further in Chapter 9. 

Another implication of Figure 5.26, one particularly relevant to the
design of mixers and frequency multipliers, is that the embedding
impedance presented to each device is twice the actual terminating
impedance. Because of this property, it is sometimes possible to achieve
optimum terminating impedances more easily in a balanced structure than
in a single-device structure. For example, the optimum IF load impedance
for each diode in a balanced diode mixer is usually approximately 100Ω.
This impedance can be achieved without transformation by connecting the
IF outputs of the two individual mixers in parallel in a balanced pair. The
shared 50Ω IF load is equivalent to each mixer having an individual load of
100Ω at its IF port.

Because the phase shifts are identical in both two-ports in the parallel-
coupled circuit, the circuit does not reject any harmonics or mixing
frequencies of any order, even or odd. It does, however, achieve the same
3-dB improvement in intermodulation intercept point as do the hybrid-
coupled two-ports. Accordingly, in applications where harmonic or
spurious rejection is important, it is best to use circuits that are hybrid-
coupled.
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Chapter  6

Diode Mixers

The most common type of microwave-frequency mixer uses a Schottky-
barrier diode. Diode mixers are useful over a remarkably broad range of
frequencies: inexpensive doubly balanced mixers can be obtained for use at
the lower microwave frequencies (below 20 GHz), and mature single-diode
mixer designs are available for millimeter-wave applications as well. This
chapter is concerned with the practical aspects of designing mixers in both
frequency ranges. For further information on the subject of microwave and
millimeter-wave mixers, the author shamelessly suggests his own books on
the subject [2.5, 6.1]. 

6.1 MIXER DIODES 

Virtually all modern diode mixers employ Schottky-barrier diodes as the
mixing elements. Inexpensive silicon diodes are used in most prosaic mixer
applications; these diodes, available in a wide variety of chip and packaged
forms, are adaptable to virtually any transmission medium. In particular,
they can be obtained in so-called quads, consisting of four diodes in a ring,
or, occasionally, cross configuration. These are useful in balanced mixers
and frequency multipliers. Silicon diodes are available in a wide variety of
packages and barrier heights (a term we shall define in Section 6.1.1.7),
making them extremely versatile devices. 

GaAs diodes are more expensive than silicon, but they can provide
better conversion loss and noise performance, especially at high
frequencies. GaAs diodes have higher breakdown voltages than silicon. At
low frequencies their performance advantage is minimal, so they generally
are not obtainable in the low-cost packages sometimes used for silicon
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diodes. GaAs diodes are available as chips, as beam-lead devices, and in
miniature ceramic and quartz packages. 

Schottky-barrier diodes are discussed generally in Section 2.4.
Modeling of Schottky devices is discussed in Section 2.4.2, and mixer
diodes in particular are examined in Section 2.4.3. Those sections describe
the theory and modeling of the Schottky junction; this section is concerned
with the use of such diodes in practical mixer circuits. 

6.1.1 Mixer-Diode Types 

6.1.1.1 Chip Diodes

Perhaps the simplest diode used commonly in mixers is an unpackaged
chip having the cross section shown in Figure 2.10. Such chips can be
mounted in ceramic or plastic packages or may be used unpackaged in
hybrid circuits. Chip diodes often have multiple anodes; several anodes of
different diameters may be defined on a single chip in order to compensate
for manufacturing tolerances or to allow one type of diode to be used at
widely differing frequencies. However, in order to allow bonding of a wire
or ribbon to the anode, the anode must be at least 10 to 15 microns in
diameter, or it must have a metal overlay to increase its area. Such large
anodes have relatively high junction capacitance and thus are not optimum
for millimeter-wave operation; reducing the capacitance, without reducing
junction area, requires low epilayer doping levels that increase series
resistance. 

If a different method is used to connect the anode, the diodes’ anodes
can be smaller. One such method, which facilitates connections to very
small anodes, is to use a pointed spring wire, or whisker. Because of the
difficulty of creating reliable, whisker-contacted diodes, considerable
effort has been devoted to the development of high-frequency beam-lead
diodes that have integral leads and low parasitics. Today, whisker-
contacted diodes are virtually obsolete. 

6.1.1.2 Beam-Lead Devices

An important and very versatile type of diode is the Schottky-barrier beam-
lead device shown in cross section in Figure 6.1. A beam-lead device has
integral ribbon leads connected to its anode and cathode, and the cathode
lead is on the same side of the chip as the anode. The beam-lead diode has
many of the desirable characteristics of both packaged and chip devices: it
can have a small anode and low series inductance, and no wire bonds or
other special methods are needed to connect it to a circuit. 
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The beam-lead diode requires two major modifications of the Schottky-
barrier diode structure shown in Figure 2.10: first, the top surface must
somehow be connected to the substrate; and second, the anode ribbon must
be so designed that it does not cover a large area above the epilayer, or a
large parasitic “overlay” capacitance results. The most common method of
minimizing overlay capacitance is to locate the anode close to the edge of
the chip. The resulting structure is not entirely satisfactory for many
purposes, however, because the very small anode connection close to the
edge of the chip is delicate, and the overlay capacitance may still be
substantial. The cathode connection is made by etching away the oxide
layer and epilayer in a region near the anode. Because of the long, thin
current path, the series resistance may also be high (see Section 6.1.1.6). 

Many ingenious structures have been proposed to circumvent the
problems inherent in beam-lead diodes; the research literature of the 1980s
is full of examples [6.2–6.4]. Today, the usual approach is to use an “air
bridge” connection; that is, a conductor that connects the anode to its lead
with an air gap underneath. The air insulating region can be fabricated as a
trench [6.4] or, more commonly, the metal can arch over it. Less effective,
but perhaps cheaper and more rugged, is the use of oxide isolation to
minimize overlay capacitance. 

Beam-lead diodes are available as pairs and quads for balanced mixers
and frequency multipliers, as well as single devices. 

Figure 6.1 Cross section of a beam-lead diode. The diode’s most serious limitation
for high-frequency operation is the overlay capacitance between the
anode ribbon and the epilayer.
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6.1.1.3 Packaged Diodes

Inexpensive silicon diodes—single devices, pairs, and quads—are
available in a wide variety of packages. Figure 6.2(a) shows one of the
most common, consisting of a circular ceramic substrate, on which the
diode and leads are mounted, coated with a dome of epoxy. The substrate
can be as small as 1.25 mm in diameter. Although the package parasitics
are substantial and can vary considerably between devices, such diodes are
used regularly at frequencies up to 18 GHz, and occasionally even to
26 GHz. They are the most commonly used type of diode for commercial
mixers. 

Silicon diodes are also available in a wide variety of standard surface-
mount packages. Surface-mount packages, although small, have large
parasitics, making them useful only to approximately 5 to 6 GHz. 

Both silicon and GaAs diodes are available in more expensive ceramic
packages, which are usually hermetically sealed and thus acceptable for use
in high-reliability applications or in severe environments [Figure 6.2(b)].
Ceramic packages are generally larger than the smallest epoxy packages, so
their parasitics are the same or even greater. Chip diodes are often installed
in a so-called pill package, a cylindrical ceramic package having metal end
caps, that may be either flat or have pins (Figure 6.3). A pill package
introduces additional parasitics, largely the capacitance of the end caps and
inductance of the bond ribbon. 

1.27 2.5

0.5 0.5

1.3

3.0 3.0

Figure 6.2 Common diode packages: (a) ceramic/epoxy package; (b) hermetic
ceramic package. Dimensions are in millimeters. 

(a) (b)

1.3
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6.1.1.4 Flip-Chip and Leadless Devices

The fragility of the leads on beam-lead devices has prompted the
development of various kinds of leadless devices, often described by the
illogical term leadless beam-lead diodes. Such chips have a ball or dome of
gold or some other solderable metal in the corners of the chip, where beam
leads would otherwise be attached. The chip is mounted upside down and
bonded to the circuit by the ball or dome. Parasitics of such devices are
approximately the same as those of beam-lead diodes, but handling is much
easier. Inverted devices cannot be inspected after installation, so they are
often unacceptable for high-reliability applications. 

6.1.1.5 Monolithic Devices 

Diodes for use in RF or microwave monolithic circuits can be fabricated in
a number of ways. Monolithic devices must be compatible with MESFET,
HEMT, or HBT technology and should not require extra processing steps or
mask layers. As a result, the diode design is invariably compromised to

Figure 6.3 (a) Cutaway view and (b) equivalent circuit of a chip diode in a “pill”
package. Ls is the inductance of the bonding wire or ribbon; Cp is the
capacitance of the package resulting from the metallic top and bottom
and ceramic sidewalls. 

(a) (b)



 Nonlinear Microwave and RF Circuits322

some degree. Rarely, a monolithic process includes a diode that is
independent of the transistor design. 

Gate Diode

In MESFET or HEMT processes, a diode can be made from a FET’s gate-
to-channel junction. The gate is the anode, and the drain and source, which
are connected together, form the cathode. 

Gate diodes usually have relatively poor electrical characteristics.
First, the anode shape is not appropriate for a mixer diode. The long,
narrow gate metallization has significant resistance, and the long periphery,
for a given area, results in high fringing capacitance. Second, as with all
planar diodes, the component of series resistance from the ohmic region is
relatively high. It is unusual for gate diodes to have cutoff frequencies
(Section 2.4.3) above a few hundred gigahertz. 

HBT Diode

Schottky diodes can be fabricated in heterojunction bipolar transistor
(HBT) technology by depositing a metal anode on a collector mesa, and the
anode is usually connected to the rest of the circuit by an air bridge. The
result is a kind of mesa diode, whose electrical characteristics can be quite
good, although rarely as good as achieved with discrete diodes or diodes
fabricated in an independent process. 

The HBT collector mesa usually is lightly doped, well below the
optimum for a mixer diode. Since a diode’s series resistance is largely that
of the undepleted active layer, HBT diodes can have high series resistance.
To reduce the series resistance, the collector mesa may be etched thinner
before the anode is deposited. This requires an extra process step and mask
layer, but it significantly improves the performance of the diode. It also
causes the active layer to be nearly depleted at zero bias, so the junction
capacitance has little variation with voltage. In the past, so-called Mott
diodes were purposely given thin, lightly doped epilayers to minimize
capacitance variation. Mott diodes were used primarily for low-
temperature millimeter-wave operation [6.3], but they have no particular
advantages for more ordinary applications. 

Independent Diode Process 

Occasionally a designer is fortunate enough to work with a process in
which the diodes are fabricated independently; that is, they are not
constrained by the requisites of the transistor processes. The most common
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type of diode used in such a process is a mesa diode. Mesa diodes are
similar to the HBT diode described above, but the dimensions and doping
are optimized for Schottky-barrier mixer devices. 

Mesa diodes have a small component of capacitance between the
ohmic region and the substrate metallization that connects to the outer end
of the air bridge. This component can be reduced by the use of an empty
trench [6.4, 6.5]. 

6.1.1.6 Limitations of Planar Diodes

Series Resistance

Planar diodes usually have high series resistance per junction area, which
makes their cutoff frequencies relatively low, compared to chip devices. In
a chip diode, the current direction is largely vertical in the substrate and
spreads rapidly, so the substrate resistance is small, and the undepleted
epilayer dominates the series resistance. In planar devices, the current is
largely horizontal, confined to a thin region near the substrate/epilayer
interface, which is relatively long, making its resistance significant. 

In planar diodes, the series resistance can be minimized by forming the
cathode ohmic contact to surround the anode over most of its
circumference. Although necessary for low series resistance, this structure
creates a fringing component of capacitance between the anode and
cathode metallizations. The resulting intermetallic capacitance is not in
parallel with the junction capacitance, so its effect is not as severe as an
increase in junction capacitance; it is like the package capacitance Cp in
Figure 6.3. 

In lightly doped diodes (e.g., HBT diodes), electrons may approach
saturation velocity in the active layer. This phenomenon limits the junction
current, so the diode behaves very much as if the series resistance were
increasing, in a nonlinear fashion, with junction current. When this
phenomenon occurs, it may be necessary to treat Rs as a nonlinear element. 

Junction Capacitance

We have already mentioned several phenomena in planar diodes that
introduce additional capacitive parasitics and reduce the capacitance
variation with junction voltage. As a result, (2.59) may not describe the
capacitance accurately. Often, (2.59) can be corrected simply by adding a
constant component of capacitance or by limiting the junction voltage in
the expression in some numerically acceptable manner (Section 2.3.6).
Sometimes it is necessary to use an entirely different expression. 



 Nonlinear Microwave and RF Circuits324

6.1.1.7 Barrier Height

Silicon diodes are available in high, medium, or low barrier heights. Low-
barrier diodes turn on around 0.3V, medium-barrier around 0.5V, and high-
barrier around 0.6 to 0.7V.1 Barrier height is varied through the use of
different anode materials and epilayer doping, changing the quantity φb in
(2.63) and thus Isat. GaAs devices are available in only a single barrier
height. 

Low-barrier diodes usually have higher series resistance than medium-
or high-barrier devices. When used in mixers, low-barrier diodes require
less local oscillator (LO) power than high-barrier devices, but have greater
intermodulation distortion. In resistive frequency multipliers, low-barrier
diodes operate at lower input and output levels; for reasons discussed in
Chapter 7, they may also have lower conversion efficiency. Very low-
barrier diodes, which turn on around 0.1V, are necessary for unbiased
detectors. Detector diodes often use p epilayers to achieve low barrier
height and to minimize low-frequency noise. 

6.2 NONLINEAR ANALYSIS OF MIXERS 

The analysis of diode mixers is a straightforward application of harmonic-
balance analysis. Either multitone harmonic-balance or large-signal/small-
signal analysis can be used, depending on the needs of the design. In most
cases, large-signal/small-signal analysis is adequate and considerably more
efficient than multitone analysis. Simple and straightforward, it provides
conversion efficiency, frequency response, input and output impedances,
and noise figure. Multitone harmonic-balance analysis can provide more
information about the mixer’s performance, including saturation, spurious
responses, and intermodulation levels, but it must be used with caution. 

6.2.1 Multitone Harmonic-Balance Analysis of Mixers

Multitone harmonic-balance analysis of mixers is not nearly as
straightforward as large-signal/small-signal analysis. It is easy to obtain
results that are either inaccurate or even completely erroneous, especially
for multitone excitations. In this section, we examine several important
considerations. 

1.  By turn on, we mean a junction current on the order of 1 mA.
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6.2.1.1 Frequency Set

A mixer excited by a large-signal LO at frequency ωp and a small-signal
RF at ωR generates the frequencies 

(6.1)

where k is the harmonic number and ω0 is the lowest-frequency mixing
product, usually . This spectrum consists of a number of
harmonics surrounded by a pair of sidebands. The conversion-matrix
formulation in Section 3.4 shows that we need at least 2K LO harmonics,
plus dc, to establish sidebands around the first K LO harmonics. The
resulting spectrum, when K = 4, is shown in Figure 6.4. In that case, 17
frequency components are needed. 

In most harmonic-balance simulators, the frequency set for multitone
harmonic-balance analysis is chosen according to 

(6.2)

where H is a user-selectable constant. To obtain all the frequency
components in (6.1), for the same case of K = 4, we require H = 8. The
number of frequency components is 0.5 H (H + 1) = 36, a much larger—
and unnecessarily large—set of frequencies. Some simulators, fortunately,
allow limits on the harmonics of the individual excitations. Setting 
and  gives 23 components, a significant improvement but still too
many. 

The problem becomes much worse with two or more RF excitation
tones. Unless the simulator can set the number of RF and LO harmonics

ω kωp ω0±=

ω0 ωR ωp–=

ω0 -ω-1 ω1 -ω-2 ω2 -ω-3 ω3

ωLO 2ωLO 3ωLO 4ωLO

-ω-4 ω4

5ωLO 6ωLO 7ωLO 8ωLO

ω

Figure 6.4 Mixer frequency spectrum when K = 4. This set is adequate for analysis
of conversion efficiency and port impedances, but not for intermod-
ulation, saturation, or other phenomena involving harmonics of the RF
excitation. 

ω nωR mωp+= n m+ H≤

n 1≤
m 8≤
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independently, the problem becomes impractically huge. The solution is
simple: the simulator should offer a special frequency set specifically
designed for mixer analysis. 

The above considerations apply to the analysis of conversion loss, port
impedances, and similar pseudolinear effects. For analysis of intermodula-
tion distortion, spurious responses, saturation, and similar effects, the opti-
mum frequency set is less clear. For two-tone intermodulation analysis, the
following set works well: 

(6.3)

In (6.3), n, m, and k are integers, O is the order of the intermodulation, K is
the maximum LO harmonic, and ω01 and ω02 are the IF frequencies of the
two excitation tones. This creates a set of sidebands around each LO
harmonic, kωp, that look like the spectrum in Figure 4.3. In this case, K
must be relatively large, much larger than the value used in conversion-loss
analysis. A similar frequency set, with O = 3, should be adequate for
compression analysis. 

6.2.1.2 Model Limitations

Diode Model

In Section 2.3.2, we noted that a device model used for nth-order
intermodulation analysis must have both an accurate I/V (or Q/V)
characteristic and accurate derivatives through the nth order. Fortunately,
the exponential I/V function used to characterize Schottky diodes meets
this criterion, at least up to the third derivative, and possibly higher. The
junction capacitance, however, may not be so accurate, especially in planar
diodes having thin epilayers. In such devices, the modeling problem
becomes especially acute, as the static Q/V characteristic, and its
derivatives, must be accurate over the entire LO voltage range. 

Unrealistically Low Conversion Loss

Analyses of diode mixers frequently produce unrealistically low
predictions of convergence loss. Several phenomena can produce this
result: 

1. The series resistance, Rs, may not have been modeled properly. We
noted in Section 2.8.1 that thermal effects can cause the measured Rs

ω kωp nω01 mω02+( )±= n m+ O≤ k K≤,
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to be low. We also saw, in Section 6.1.1.6, that velocity saturation in
the undepleted epilayer can increase Rs. Both phenomena cause Rs to
be underestimated, leading to optimistic calculations of conversion
loss. 

2. In all types of mixers, but especially in upconverters, the pumped
junction capacitance can improve the conversion efficiency. In the
past, this phenomenon has been exploited, in parametric upconverters
using varactors, to provide gain. When the conventional Schottky
junction expression (2.59) models the capacitance, but the capacitance
variation is not as great as the expression implies, the calculated
conversion loss may be unrealistically low. To minimize series
resistance, most modern diodes have thin epilayers, and (2.59) does
not hold at reverse voltages beyond those that fully deplete the
epilayer. Worse, (2.59) implies infinite capacitance as V → φ. The
parameter FC [see (2.60) and (2.61)] in the SPICE diode model is
designed to prevent this error; it must be chosen with great care. When
FC is too large, the capacitance variation used in the simulation is also
much too great, and fictitious parametric conversion-loss enhance-
ment may occur. 

3. Mixers are sometimes surprisingly sensitive to losses in the
embedding network at high-order mixing frequencies. When circuit
losses are ignored in the simulation, losses at these frequencies, not
only the RF and IF, are removed. The result is an unrealistically low
estimate of the mixer’s conversion loss. 

These errors are easy to make, so they are quite common. For this reason,
predicted conversion loss below 5 dB, in any type of mixer, should be
viewed with skepticism. 

Passive Element Models

The effect of passive circuit-element models (e.g., transmission-line
discontinuities) is always a concern in mixer design. In principle, it would
appear that passive-element models must be accurate to the highest
frequency used in the mixer analysis, so the required range, in even
ordinary mixer designs, could be over 100 GHz. In fact, several realities
ameliorate the situation. First, the magnitudes of the current and voltage
components in the diode decrease with order, so errors in embedding
impedances have progressively smaller effect on the solution, especially on
the lower-order products. Second, while high harmonics and high-order
mixing products may be necessary for an accurate analysis, the accuracy of
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those frequency components is not as important because the diode’s
capacitance tends to short circuit the junction at high frequencies.
Therefore, at high frequencies, little of the junction current actually
circulates in the external circuit. 

These considerations apply to all kinds of nonlinear circuits, not only
to diode mixers. 

6.2.1.3 Convergence Criteria 

In large-signal/small-signal analysis, the harmonic-balance analysis
involves only the LO, and its convergence is not particularly critical. In
multitone harmonic balance, however, the analysis includes both the large
LO harmonics and many much smaller components, including RF and
intermodulation products. Intermodulation components of interest may be
100 dB or more below the largest LO component. It is essential that the
harmonic-balance simulator examine each frequency component for
adequate convergence; it is not adequate, for example, to look only at the
magnitude of the current-error vector, as it is inevitably dominated by the
largest components. 

6.3 SINGLE-DIODE MIXER DESIGN 

Diode mixer design is primarily a process of matching the pumped diode to
the RF input and IF output, terminating the diode properly at LO harmonics
and unwanted mixing frequencies (i.e. those other than the RF and IF), and
adequately isolating the input, LO, and output ports. That isolation, and in
some cases the termination, can be provided by filters, a balanced structure,
or both. The choice depends on the frequencies and the intended appli-
cation. 

Single-diode mixers are worth examining for two reasons. First, single-
diode mixers are used, albeit infrequently, in a number of applications.
Second, a single-diode mixer is a prototype for a balanced mixer, which
may consist of nothing more than a hybrid-coupled pair of single-diode
mixers. If a designer understands single-diode mixers, he will recognize
that balanced mixers are simply another variation on a familiar theme. The
design process for single-diode mixers is fundamental to all diode mixers. 
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6.3.1 Design Approach 

In this section we introduce a partially empirical process for the design of a
single-diode mixer. The process is applicable to many kinds of nonlinear
circuits, not only mixers. It is as follows:

1. Using linear circuit techniques, design all the parts (primarily baluns
and hybrids) that do not require nonlinear analysis.

2. Estimate the source and load impedances that must be presented to the
device.

3. Design matching circuits that present those impedances to the diode
and provide appropriate filtering functions. 

4. “Build” the circuit on the computer and analyze and optimize it.

The first three steps are precisely those used to design nonlinear circuits
before the advent of general-purpose nonlinear-circuit simulators. In those
days, step 4 was to build the circuit and tune it in the lab.2 

Our goal is to develop an approximate but accurate design before
resorting to nonlinear simulation. If steps 1 to 3 are performed adequately,
the computer simulation should not require huge modifications of the
circuit. Nonlinear analysis, even under the best circumstances, is time-
consuming, and thus an expensive part of the design task. We want to avoid
as much of it as possible. Especially, we wish completely to avoid
numerical optimization of the circuit, as it is more difficult to implement,
more time-consuming, and less likely to be successful than in linear circuit
design. 

6.3.2 Design Philosophy

Figure 6.5 shows the circuit of a generic single-diode mixer. It consists of a
diode and three filter/matching circuits that match the RF, IF, and LO
terminations to the diode. It is clearly necessary in any mixer that these
circuits do not interact; that is, no circuit affects the tuning of the others.
They must also provide the appropriate termination to the diode at LO
harmonics and at unwanted mixing frequencies. These requirements—
termination and noninteraction—imply a filtering function as well as a
matching one. Filtering alone, however, is not the only requirement; the

2.  And step 5 often was to discard the circuit and start over.
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impedance presented to the diode, over a wide range of frequencies, must
be controlled by the design. 

This is a large number of requirements, and it is difficult to meet all of
them simultaneously. Some of these requirements are met automatically by
the structure of the mixer. For example, in a mixer having a waveguide RF
input and a coaxial IF output, interaction between the RF and IF matching
circuits at the IF frequency is usually obviated because the IF frequency,
which is ordinarily below cutoff, cannot propagate in the waveguide. The
IF circuit, however, must still be designed to reject the RF and LO
frequencies. Almost all practical single-diode mixers exploit some
characteristic of their structures to satisfy the above requirements; it is
virtually impossible to have a practical, single-diode mixer that depends
solely on the electrical characteristics of the matching circuits for all the
above requirements. 

Before we can design a mixer, we need to know the following: 

1. The input impedance of the pumped diode at the RF frequency;

2. The output impedance of the pumped diode at the IF frequency;

3. The LO input impedance;

4. The diode’s optimum termination at undesired mixing frequencies and
LO harmonics;

5. The required port-to-port isolation. 

Figure 6.5 Single-diode mixer circuit. 
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If these five parameters are known, designing a mixer requires only
designing the matching/filtering networks. However, the matching
networks inevitably affect the parameters in the list. How do we handle this
dilemma? The best way is to estimate what we need to know, design the
matching circuits, and calculate the performance. The estimate, made
correctly, is usually close enough to allow good performance with minor
modifications of the circuit. If not, we can obtain a better estimate,
redesign the matching circuits, and repeat the process. 

The process is easier than it sounds. For example, suppose we estimate
an LO input impedance, for the diode, of 50Ω . After designing the
matching circuits, we enter the circuit into a harmonic-balance circuit-
simulation program, and find that the input impedance, with our matching
circuit, is actually 70Ω. In this case, we can modify the matching circuit
slightly. Alternatively, we can increase the LO level slightly, reducing the
input impedance. Finally, we might choose to accept the 1.4 VSWR, which
is, after all, thoroughly acceptable for most applications. 

Frequently, to minimize cost and facilitate manufacture, the mixer may
have no RF, LO, or IF matching at all. In this case, which is actually the
norm for commercial mixers, the diode itself is used as a tuning element.
First, we decide what the source impedance shall be (invariably 50Ω), and
then select a diode that (1) has negligible junction reactance at the RF and
LO frequency, and (2) exhibits the required input impedance at the desired
LO level. We accomplish the former by the diode’s anode size, and the
latter by the barrier height. If the frequency is high, it may impossible to
select a diode having negligible junction reactance; in that case, simple
tuning (e.g., a series or shunt inductance) may be needed. 

A long history of doing large-signal/small-signal mixer calculations
allows one to make some generalizations about the embedding impedances
at unwanted mixing frequencies and input/output impedances of the
pumped diode. Exceptions to the following observations can, of course, be
found; nevertheless, they are generally valid for practical mixers: 

1. The pumped diode can be modeled at the RF frequency as a resistor
and capacitor in parallel. The resistor is usually in the range of 50Ω to
150Ω and the capacitor is between Cj0 and 1.5 Cj0. The IF output
impedance is usually between 75Ω and 150Ω . At low IF frequencies
the reactive part of the output impedance is almost always negligible.

2. Unusual embedding impedances at other mixing frequencies
(especially at the sum frequency, ωRF + ωLO) can cause the RF input
impedance to be surprisingly high. If the RF input impedance is not in
the range stated above, this condition should be suspected. 
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3. The large-signal LO input impedance is usually close to the small-
signal RF input impedance, especially if the IF frequency is low and
the diode is short-circuited at its LO harmonics and unwanted mixing
frequencies. As LO level increases, both RF and the LO input
impedances decrease. RF impedance usually levels off at some
particular LO level, while LO impedance continues to decrease. 

4. The RF and IF input impedances are close to the high end of the
impedance range given in (1) if the embedding impedances are open
circuits at the unwanted mixing frequencies and LO harmonics. They
are close to the low end of the range if the impedances are short
circuits at those frequencies. 

5. Open-circuit embedding impedances give the lowest conversion loss,
highest noise temperature, and worst intermodulation performance;
short-circuit embedding impedances result in slightly greater
conversion loss but lower noise and distortion. 

6. Short-circuit embedding impedances, at LO harmonics and unwanted
mixing frequencies, generally result in the best overall performance. It
may be possible to improve one aspect of the mixer’s performance by
using other embedding impedances, but other characteristics suffer. 

The source and load impedances of interest are those presented to the
terminals of the intrinsic diode; that is, they do not include package or
other parasitics. Such parasitics must be treated as part of the embedding
circuits. These observations indicate that the best overall mixer
performance results from a short-circuit diode termination at LO harmonics
and unwanted mixing frequencies. In that case, the IF output impedance is
usually close to 100Ω and the RF and LO input impedances are
approximately those of a 100Ω resistor in parallel with Cj0. 

The diode’s termination at the image frequency is the most critical of
all the terminations at unwanted mixing frequencies. In many mixers the
image frequency is close to the RF frequency, so the image termination is
the same as the RF source impedance. However, if the IF frequency is
relatively high, it is possible to use a filter (or the filtering properties of the
RF matching circuit) to terminate the diode in a reactance at the image
frequency. This practice, called image enhancement, can improve the
conversion efficiency of the mixer. Image enhancement must be used with
care, however, because it is possible for an image-enhanced mixer to
achieve only a modest improvement in conversion loss at the expense of
poor intermodulation and noise performance. 

It may be surprising that these generalizations apply to any diode. They
are possible because the I/V characteristics of all diodes are fundamentally
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the same: they are exponentials. The only apparently significant difference
in the I/V characteristics of different diodes is in their values of Isat;
however, even differences in Isat are less important than they might appear,
because of the current’s exponential dependence on voltage. One property
of an exponential I/V characteristic is that the same conductance waveform
can be achieved with any value of Isat, simply by scaling the bias voltage
and LO power appropriately. The junction capacitance, of course, has a
significant effect on the LO waveform, but most diodes have the same C/V
dependence, and Cj0 in most well-designed mixers is selected to have
approximately the same reactance at the RF frequency. The similarity in I/V
and C/V characteristics between diodes causes all well-designed mixers to
have conversion losses within a few decibels of each other, regardless of
frequency, structure, or intended application. 

6.3.3 Diode Selection 

The selection of an appropriate diode for a specific design is important in
achieving good performance and minimizing cost. Most mixers intended
for use at the lower microwave frequencies are not designed to achieve the
lowest possible conversion loss; instead, they are designed to exhibit good
overall performance, including low port VSWRs, flat frequency response,
stability, low distortion, and, especially, low-cost manufacture. In these
mixers, the important trade-offs are usually economic, not technical. The
electrical parameters of the diode are more critical in millimeter-wave
mixers, where maintaining good conversion and noise performance is much
more difficult. 

An initial consideration is the selection of a silicon or a GaAs device.
GaAs devices can achieve better conversion performance than silicon, but
their advantage at low frequencies is minimal, and their cost is greater.
Therefore, GaAs devices probably should be reserved for use at higher
frequencies, primarily millimeter-wave applications. Compared to silicon
devices, GaAs devices generally have higher cutoff frequencies (Section
2.4.3), higher breakdown voltages, and better resistance to ionizing
radiation. In single-diode and singly balanced mixers, GaAs diodes’ higher
breakdown voltages provide a wider range of optimum conversion loss and
noise figure with LO power variation. The greater Isat of GaAs devices
implies that these diodes require higher LO power. 

The diode’s cutoff frequency is an important consideration in diode
selection. Although a first-order analysis indicates that the cutoff frequency
is independent of junction area, second-order effects cause a diode’s cutoff
frequency to increase as its area decreases. Small, well-made GaAs
Schottky-barrier diodes often have cutoff frequencies above 2,500 GHz.



 Nonlinear Microwave and RF Circuits334

Inexpensive silicon diodes usually have cutoff frequencies of a few
hundred gigahertz. 

It is important to recognize that capacitive parasitics affect fc only if
they are directly in parallel with the junction. Parasitics, (e.g., intermetallic
or package capacitance) connected to the diode’s external terminals may
affect matching, but they do not affect fc. 

Minimizing both Rs and Cj0 is necessary to achieve low conversion loss
and distortion, but they are inverse trade-offs. Thus, a large part of
selecting a diode is making an appropriate trade-off between these
quantities. One consideration is the conversion-loss degradation factor, δ,
which accounts for the loss in the series resistance at the RF frequency. It is 

(6.4)

where fRF is the RF frequency and fc is the cutoff frequency. (In this case,
Rs is evaluated at fRF, not dc.) Zs is the source impedance at the RF
frequency and at the terminals of the resistive junction (i.e., the terminals
of the current source I(V) in Figure 2.8). Zs is assumed to be real. The
cutoff frequency usually remains approximately constant with small
changes in Rs, so fc can be treated as constant and (6.4) minimized. The
value of Rs that minimizes δ is 

(6.5)

For example, a mixer operating at 20 GHz, using a diode having a cutoff
frequency of 1,000 GHz and Zs = 100Ω , has an optimum Rs of 2Ω. This is a
very low series resistance, and a diode having such a low Rs would have a
large anode area. The resulting value of Cj0, 0.08 pF, would be
uncomfortably large. We noted earlier that second-order effects (associated
with the nonuniform junction electric field near the edge of the anode)
generally cause large-area diodes to have lower cutoff frequencies than
small diodes. Consequently, such a large diode would not have optimum fc,
and the high junction capacitance might introduce matching difficulties.
Thus, a 20-GHz mixer could probably have a higher Rs, perhaps 4 to 6
ohms, and lower Cj0, and still achieve close to the optimum δ. In general,
considerations of matching and cutoff frequency dictate a lower Cj0 than
the optimum given by (6.5). For this reason, the best Rs /Cj0 trade-off is
usually to use a relatively large Cj0, consistent with matching limitations. 
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The parameters in the I/V characteristic are either of secondary
importance or are not under the designer’s control. Obviously, it is
desirable to minimize the ideality factor, η; η depends primarily upon the
quality of the diode manufacturing process. The parameter Isat in (2.62) is
proportional to the junction area; in small diodes, Isat is small, implying
that the diode has high current density for moderate total current. The
conductance waveform, however, is proportional to total junction current,
not to current density; thus, in small diodes, current-density limitations in
the junction may prevent the peak current from being great enough to
achieve a high peak conductance. This situation complicates the design of
millimeter-wave mixers by raising impedance levels and increasing
conversion loss. 

The package or diode structure is dictated by the type of circuit in
which the diode is used. Surface-mount or epoxy-packaged diodes are most
often used on soft composite substrates or printed circuit boards. Beam-
lead and chip diodes can be mounted on soft substrates, but because of their
fragility, care in attaching them is necessary. Microstrip circuits on alumina
or other hard substrates provide better support. Pill-packaged diodes are
best reserved for waveguide or stripline applications. 

6.3.4 dc Bias

It is sometimes advantageous to apply dc bias to the diode in a single-diode
mixer. The dc voltage forward-biases the junction, but, in the absence of
LO power, is not enough to cause appreciable junction current. dc bias has
two advantages: (1) it can reduce the required LO power, and (2) it
provides a degree of freedom for adjusting the diode’s conductance
waveform, (and therefore the mixer’s input and output impedances) and for
optimizing conversion efficiency. dc bias is common in high-performance
millimeter-wave mixers; it is rarely used in more ordinary applications. 

6.3.5 Design Example

The circuit shown in Figure 6.6 is used frequently in block downconvert-
ers, receiver front ends for commercial satellite television receivers. It con-
sists of a ring resonator for LO injection, an RF filter (primarily to reject
the image frequency), a diode, and an IF filter. The ring resonator, a nar-
rowband structure, is a convenient means for injecting a fixed-frequency
LO. Because its bandwidth is narrow, it is unsuitable for tunable LOs. 

For this design, the RF frequency range is 12.0 to 12.5 GHz, IF is 1.0 to
1.5 GHz, and the LO is fixed at 11.0 GHz. The LO power level should be
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10 dBm or less. In a commercial circuit, conversion efficiency is not the
most important characteristic of the mixer. More important are low cost and
consistent performance over a large number of manufactured units.
Because manual tuning is expensive, the mixer must require little or no
tuning.

We begin by assuming that the RF and LO input impedances, and IF
load impedance, all must be  50Ω . In this case, we design primarily for a
match to the diode over the required frequency ranges, not to optimize
conversion efficiency; we are designing for flatness and bandwidth, not
conversion loss. This approach is acceptable because (1) the most
important characteristics of this mixer are to achieve adequate bandwidth
and flat response, (2) the conversion efficiency is likely to be adequate, and
(3) the 50Ω source obviously does not require tuning. Of course, if the
initial design surprises us with high conversion loss, we can modify it. 

The ring resonator and RF filter are designed in a straightforward
manner. Therefore, we focus on the diode—in fact, the mixer—and defer
the design of the former circuits until later. We begin by selecting a diode.
To minimize LO power requirements, we select a low-barrier silicon
Schottky device. To minimize the effects of the junction capacitance, it
must have a junction reactance of 100Ω or more at 12.5 GHz. A diode
having Cj0 = 0.1 pF and Rs = 12Ω seems appropriate. (Even less junction
capacitance would be desirable, but few diodes having lower Cj0 are
readily available, and they have even higher Rs.) This diode has
Isat = 10–8 A and η = 1.25 . From (2.66), the cutoff frequency is 132 GHz
and from (6.4) δ = 1.27, or 1.05 dB. This value of δ is only 0.3 dB greater
than the optimum given by (6.5). These are reasonable results for this kind
of mixer. 

Figure 6.7 shows the circuit used to simulate the mixer alone. The IF
filter consists of a parallel L-C resonator, which limits the bandwidth and
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Figure 6.6 A practical single-diode mixer. This type of mixer is used commonly in
commercial and consumer microwave equipment. 
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provides a dc return for the rectified diode current. An important function
of the IF filter is to ground the cathode of the diode at the RF and LO
frequencies. Because of its parasitics, the lumped-element circuit probably
will not be a short circuit at high frequencies, so we add an open-circuit
stub. To minimize LO leakage into the IF, the stub is tuned to 11.0 GHz. A
high-impedance stub from the anode to ground provides a return path for dc
and IF currents. That stub is less than one-quarter wavelength long, making
it inductive and providing a small degree of tuning. It is expected that this
tuning will not have to be adjusted in manufacturing. 

Figure 6.8 shows the calculated conversion loss and port reflection
coefficients of the mixer element in Figure 6.7. The RF and LO port
impedances are somewhat higher than desired, but the VSWRs are still low
enough to provide good performance. The predicted conversion loss is
approximately 6 dB over the 12- to 12.5-GHz band. 

The rest of the design is straightforward. The RF filter is a simple,
parallel-coupled structure, designed according to conventional methods
(see, for example, [5.3, 6.6]). The RF filter is designed primarily to reduce
noise from the front-end amplifier in the IF band. For this purpose, it
requires approximately 13-dB rejection. A filter having two sections is
needed. The ring resonator is one wavelength in circumference at the LO
frequency and is coupled to the RF and LO source by quarter-wavelength
sections of the ring. The coupling is adjusted empirically, on the computer.
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Figure 6.7 The mixer part of the circuit in Figure 6.6 is designed separately from the
rest of the circuit. This allows us to optimize the mixer without the
potentially confusing effects of the filters. 
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If the resonator were lossless, it would have a very narrow bandwidth, only
a few tens of megahertz. Line losses, however, increase its bandwidth and
introduce considerable transmission loss. A loss of 3 to 5 dB in the LO path
is not unusual for such a structure, and that loss must be overcome by LO
power. The ring does not couple to the RF path, so RF losses are low. 

Figure 6.9 shows the calculated conversion loss of the entire mixer.
The conversion loss is 7.4 to 7.8 dB across the band. The increased loss, in
comparison to that of the mixer element alone, is largely from the RF filter
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and changes in the embedding impedances when the power divider in
Figure 6.7 is replaced by the RF and LO filters. 

6.4 BALANCED MIXERS 

Most diode mixers used at microwave and even millimeter-wave fre-
quencies are balanced. The advantages of balanced mixers over single-
diode mixers are (1) rejection of spurious responses and intermodulation
products, (2) inherent LO-to-RF isolation, (3) in some cases, inherent LO-
to-IF or RF-to-IF isolation, and (4) rejection of AM noise in the LO. The
most important disadvantage of balanced mixers is their greater LO power
requirements.

Commercially available balanced mixers are frequently small,
lightweight, inexpensive, broadband components. In many applications,
their good spurious-response properties are essential. Furthermore, in
systems where the LO and RF bands overlap, balanced mixers must be
used, because it is impossible to separate the LO from the RF by filtering. 

6.4.1 Singly Balanced Mixers 

A singly balanced mixer consists of two single-diode mixing elements,
which may be nothing more than two individual diodes, combined by
either a 180-degree or a 90-degree hybrid. The LO and RF are applied to
one pair of mutually isolated ports, and the mixing elements, which we
shall simply call mixers, are connected to the other pair of ports. The
diodes in the two mixers must be connected to the ports in such a way that
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Figure 6.9 Conversion loss of the complete mixer. 
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their polarities are opposite. The IF outputs of the individual mixers can be
combined by another hybrid, or, more commonly, connected in parallel.
The properties of hybrid-connected nonlinear elements are described in
detail in Chapter 5. 

Figure 6.10 shows a singly balanced mixer that uses a 180-degree
hybrid. The RF and LO are connected to one pair of mutually isolated
ports; the single-diode mixers, represented by diode symbols in the figure,
are connected to the other pair. 

In a singly balanced mixer, it is essential that the dc path through the
diodes be continuous. If the diodes are open-circuited at dc, the mixer
simply will not work. Often, the hybrid provides that path. In Figure 6.10
the inductors L1 and L2 realize the so-called IF return; they ground their
respective ends of the diodes at the IF frequency. The inductors also
provide a dc return in cases where the hybrid does not. dc bias, if desired,
can be provided to both diodes by a voltage source in series with either of
these inductors. If bias is used, dc blocks between the hybrid and diodes
also may be necessary. 

Because the IF ports are connected in parallel, the impedance presented
to each single-diode mixer at the IF frequency is twice that of the actual IF
load. If the IF load impedance is 50Ω, each diode has, in effect, a 100Ω
load. Section 5.2 explains this point in detail; however, one can see that this
is the case by thinking of the IF load as two loads in parallel, each having
twice the impedance of the actual load. Because of the symmetry of the
circuit, the two loads can be separated so that each is connected to only one

Figure 6.10 180-degree, singly balanced mixer. The diodes D1 and D2 can be
unmatched diodes or complete, individual, single-diode mixers. The
mixer can be configured with either the sigma or delta port as the RF; the
other is the LO. 
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mixer. Since the optimum IF load impedance is usually close to 100Ω, this
is a beneficial property. 

We can estimate the conversion loss of the balanced mixer by
analyzing the individual single-diode mixers, each having the doubled IF
load impedance, and from Chapter 5 the conversion loss of the balanced
mixer must be the same as that of the individual single-diode mixers (plus,
of course, hybrid losses, and we must remember that the balanced mixer
requires twice the LO power of the individual mixers). When the individual
diode mixers are designed and optimized, they are connected to a hybrid,
and the entire structure is analyzed. If the single-diode mixers and the
hybrid have been designed well, little or no further optimization should be
needed. Thus, the design process for a single diode mixer, described in
Section 6.3, is directly applicable to the design of a balanced mixer. 

A singly balanced mixer can also be realized by replacing the 180-
degree hybrid in Figure 6.10 by a quadrature hybrid. The individual mixers
are the same as those used with the 180-degree hybrid, and, as before, they
are connected to mutually isolated ports. 

The main differences in operating characteristics between the 180-
degree and quadrature hybrid mixers are in the port’s VSWRs, isolation,
and spurious response properties. In the 180-degree mixer, the input VSWR
at the LO and RF ports is dominated by the VSWRs of the individual
mixers, and the RF/LO isolation is dominated by the isolation of the
hybrid. The quadrature hybrid, however, operates in a very different
manner (see Section 5.1). LO power reflected from the individual mixers
does not return to the LO port, but instead exits the RF port; similarly,
reflected RF power exits the LO port. The LO/RF and RF/LO isolation is
therefore equal to the input return loss of the individual mixers at the LO
and RF frequencies, respectively; the port isolation of the quadrature-
hybrid mixer depends primarily on the input VSWRs of the two individual
mixers, not on the isolation of the hybrid itself. As long as the LO and RF
source VSWRs are good, the mixer’s LO and RF input VSWRs are also
good. However, if the RF port termination has a poor VSWR at the LO
frequency, the circuit’s balance can be upset and the LO pumping of the
individual mixers becomes unequal; similarly, a poor LO port termination
at the RF frequency can upset RF balance. 

The spurious-response properties of the 180-degree and quadrature-
hybrid mixers also differ. If the sigma port of the hybrid is used as the LO
port, the 180-degree hybrid mixer rejects spurious responses involving
even harmonics of the LO; if the sigma port is the RF port, even harmonics
of the RF that mix with any harmonics of the LO are rejected. The
quadrature-hybrid mixer, however, does not reject the even harmonics of
one signal, either the RF or LO, mixing with the odd harmonics of the
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other. Both types of mixers, however, reject the even LO harmonics that
mix with the even RF harmonics. 

It is worth noting that while many seemingly different types of singly
balanced mixers have been developed, all are fundamentally realizations of
either the 180-degree or quadrature structures. Nothing else exists. An
example is the crossbar mixer shown in Figure 6.11(a), which is in fact a
type 180-degree hybrid mixer. In the crossbar mixer two diodes are
connected in series across the RF waveguide, and the LO is coupled to the
diodes via a metallic strip (the crossbar) that acts as a coupling probe in the
LO waveguide. The probe is also used for the IF output. The orientation of
the probe and the RF and LO waveguides is such that the probe does not
couple the LO and RF waveguides. 

The fact that the crossbar mixer is a type of 180-degree hybrid
balanced mixer is evident from the polarities of the LO and RF voltages at
the diode, as shown in Figure 6.11(b). The RF voltage applied to the diodes
has the same phase it would have if the RF signal had been applied to the
delta port of a 180-degree hybrid, and the LO voltage pumps the diodes out
of phase, as if it had been applied to the sigma port. 

Figure 6.11 (a) A crossbar mixer; (b) polarities of the LO and RF voltages at the
diodes. 
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Singly balanced mixers have many of the desirable properties of
balanced mixers, yet can be treated in many ways like single-diode mixers.
It is practical for singly balanced mixers to have matching circuits and dc
bias, giving them good conversion efficiency, flat bandwidth, and low
VSWR. The structures used for doubly balanced mixers, described in the
next section, do not allow for practical matching circuits and dc bias.
Accordingly, it can be more difficult to optimize a doubly balanced mixer.
Doubly balanced mixers are used primarily in applications where their
superior spurious-response properties are essential, and those applications
comprise most types of modern microwave systems. 

6.4.2 Singly Balanced Mixer Example

As an example, we create a singly balanced mixer from the single-diode
mixer described in Section 6.3.5. This involves connecting two of the
mixing elements shown in Figure 6.7 to a rat-race hybrid (Section 5.1.2.2). 

The single-diode mixer in Figure 6.7 must be modified slightly, by
changing the load impedance to 100Ω. This change accounts for the
parallel connection of the individual mixers’ IF ports. Rerunning the
analysis of the single mixing element, we find that the conversion loss is
nearly identical to the 50Ω case; the mixer is not very sensitive to the IF
load impedance. 

Next, we design the hybrid. The combined RF and LO bandwidth of
the mixer is approximately 13%; this is close to the limit for a rat-race
hybrid, but (as we shall see) is achievable with a little empirical
modification of the basic design. The hybrid is modeled as shown in Figure
6.12, with several microstrip transmission line sections and junction
discontinuities. The lengths of the transmission lines are not exactly the
ideal values of one-quarter and three-quarters of a wavelength; they are
modified slightly to account for the junction parasitics and to optimize the
bandwidth. We keep the one-quarter wavelength sections equal in length,
but allow the three-quarter wavelength section to be varied independently.
A little tuning gives the result shown in Figure 6.13. 

We now connect two of the mixer elements to ports 2 and 3 of the
hybrid, remembering, of course, to reverse the diode in one of them. The
RF excitation is connected to port 1 and the LO to port 4. The LO power
must be increased 3 dB (compared to the single-diode mixer), plus the
hybrid’s minimal excess loss, shown in Figure 6.13. The resulting
conversion loss is shown in Figure 6.14. Again, the increase in conversion
loss of approximately 1 dB, compared to the loss of the single-diode
mixing element, is caused largely by differences in the embedding
impedances at high-order mixing products. 
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Figure 6.12 Circuit model of a 180-degree rat-race hybrid used for the singly
balanced mixer. 
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6.4.3 Doubly Balanced Mixers 

The two most common types of doubly balanced mixers are the ring mixer
and the star mixer. The ring mixer is more amenable to low-frequency
applications, in which transformers can be used, but it is also practical at
high frequencies. The star mixer is used primarily in microwave
applications, as it is better suited to operation with microwave baluns.
There is no significant fundamental difference in the electrical properties or
performance of both mixer types; as we shall see, both are polarity-
switching, or commutating, mixers. 

6.4.3.1 Ring Mixer

The classical ring mixer circuit, sometimes called a ring modulator, is
shown in Figure 6.15. The circuit consists of a ring of four diodes,
designated D1 through D4, and two transformers, T1 and T2. The
transformers are identical to the transformer hybrid described in Section
5.1.2.1 and are often realized as separate trifilar windings on toroidal cores.
(One winding is used as the primary, and the other two are connected in
series to form the secondary.) The secondaries of these transformers are
connected to the nodes of the diode ring, labeled A through D. 

The operation of the mixer can be described very simply if the diodes
are viewed as ideal, LO-driven switches. When the polarity of the LO
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Figure 6.14 Conversion loss of the complete mixer. 
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voltage is such that the right side of the secondary of T2 is positive, diodes
D1 and D2 are turned on and D3 and D4 are turned off. During this half of
the LO cycle, D1 and D2 short circuit T2 so that node C is connected to
ground through the center tap of T2. The upper half of T1 is thus connected
through these diodes to the IF port, and the RF port is momentarily
connected to the IF port. When the LO voltage reverses, D3 and D4 are
turned on and D1 and D2 are turned off. Then the lower half of T1 is
connected to the IF, so the RF is again connected to the IF, but with its
polarity now reversed. The mixer therefore acts as a polarity-reversing
switch, connecting the RF port to the IF but reversing its polarity every half
LO cycle. 

The IF voltage is 

(6.6)

or 

(6.7)

Figure 6.15 The ring mixer. The IF port can be the center tap of either transformer;
however, LO-to-IF isolation is usually better if the RF transformer’s
center tap is used. 

vIF t( ) s t( )vRF t( )=

vIF t( ) bn nω t( ) vRF t( )sin
n 1=

∞

∑=
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where n is odd and s(t), the switching waveform in Figure 6.16, has been
represented as a Fourier series. Downconversion occurs via the product of
the fundamental-frequency component of s(t) and the sinusoidal vRF(t).
Because s(t) is a symmetrical square wave, it has no dc component in its
Fourier-series representation; (6.7) shows that vIF(t) can have no RF-
frequency component. Consequently, the RF and IF are isolated, even
though no filters are used. The waveform s(t) also has no even-harmonic
components (bn = 0, n even), so there can be no spurious responses
associated with even LO harmonics. Because of the symmetry of the
circuit, spurious responses associated with the even harmonics of the RF
also are rejected. Furthermore, at all times either D1 and D2 are shorted or
D3 and D4 are shorted; this short-circuit prevents the coupling of RF
voltage to the LO port or LO voltage to the RF port. Even if the diodes are
not ideal switches, the RF-to-LO isolation is theoretically perfect because
the instantaneous RF voltage at A and B must always be the same, as long
as the voltage drops in the pairs (D1, D2) and (D3, D4) are identical. Since
the voltage drops across these diodes are identical, the symmetry of the
circuit causes nodes C and D, the terminals of the T1 secondary, to be
virtual ground points for the LO. The RF transformer secondary is
connected to these LO ground points, so the LO-to-RF isolation is likewise
theoretically perfect. 

Ring mixers using transformers are best for broadband applications at
frequencies up to a few hundred megahertz, although careful transformer
design (involving so-called transmission-line transformers [5.1, 5.2]) can
sometimes raise the frequency limit above 2 GHz. A ring mixer’s
bandwidth is limited primarily by the bandwidth of its RF and LO
transformers; the diodes rarely limit performance in this frequency range.
Ring mixers can also be used as modulators, phase detectors, and even
voltage-controlled attenuators; they are very versatile components. 

Figure 6.16 Switching waveform of the ideal ring mixer. This waveform also is valid
for the star mixer.
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6.4.3.2 Microwave Ring Mixer

Replacing the transformers in Figure 6.15 with baluns realizes a microwave
ring mixer. Microwave baluns, however, do not have anything comparable
to the transformer’s center tap, so some other provision must be made for
the IF connection. A common microwave implementation of the ring mixer
is shown in Figure 6.17. 

The mixer in Figure 6.17 uses parallel-strip baluns. These can be
viewed either as a pair of coupled transmission lines or as a single,
balanced transmission line; in fact, the two are equivalent when 

(6.8)

Z0o and Z0e are the odd- and even-mode impedances of the coupled line,
and Z0b is the characteristic impedance of the balanced line. In the ideal
case, as Z0e → ∞, the structure cannot support an even mode, so all the
energy applied to its unbalanced terminal must propagate on the line in the
odd mode. 

In practice, it is difficult to achieve a large value of Z0e. Usually the
balun is realized as a suspended substrate with an air gap between the lines

Figure 6.17 A microwave realization of the ring mixer. The baluns consist of parallel
coupled strips, and the IF is extracted by means of quarter-wavelength
stubs. Blocking capacitors are used to prevent IF leakage from the RF
port. 
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and ground surfaces, and the substrate is made very thin (often as little as
125 µm) to minimize the line widths for a desired value of Z0o. 

Because the balun is equivalent to a balanced transmission line, its
impedance Z0o can be selected so that the line operates as a quarter-
wavelength transformer. Then

 (6.9)

where Z0 is the port impedance (usually 50Ω) and Zd is a single diode’s
junction impedance, which we have previously estimated as 50Ω to 100Ω .
Using the line as a transformer limits its bandwidth considerably, however,
so we might instead choose to set Z0b = 50Ω and tolerate an input VSWR
that may be as high as 2.0. 

As with most balanced mixers, the bandwidth is limited primarily by
the balun. The high-frequency limit occurs when the balun’s length
approaches one-quarter wavelength in terms of the even-mode phase
velocity. At this point, the finite Z0e creates a resonance and a characteristic
“glitch” in the passband. The low-frequency limit is established by Z0e; the
even-mode input impedance, at the balanced end, must be kept high. This
requires that

(6.10)

where θe is the balun’s even-mode length in degrees of phase. 
These considerations show that the balun’s bandwidth—and therefore

the mixer’s bandwidth—are established by the even-mode impedance of
the balun; the greater the balun’s Z0e, the wider its bandwidth. The
bandwidth of such mixers can exceed a decade; a 2- to 26-GHz mixer is not
unusual. 

The IF is extracted by a pair of stubs. These are one-quarter
wavelength long at the centers of the RF and LO frequency ranges, and
realize high-impedance stubs in parallel with the balanced ends of the
baluns. At the IF, the conductors represent a substantial inductance, so a
wide IF bandwidth is not possible. The RF balun must have IF blocks, often
realized by capacitors. The L-C combination can create resonances in the
IF band if the designer does not select their values carefully. 

Z0b Z0Zd=

Z0e θe( )tan Z0»
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6.4.3.3 Ring Mixer Design Example

To illustrate the design of a ring mixer, we design a 2- to 26-GHz mixer
using parallel-strip baluns. Because of the high maximum frequency, we
use beam-lead diodes having minimal parasitics; however, cost and LO
power requirements do not allow the use of a GaAs device. 

Because of the high frequency, we need a diode having the lowest Cj0
available. Minimizing LO power requirements dictates a low-barrier
device, but low-barrier devices often have high series resistance. We select
a medium-barrier device as a compromise. The best device available has
Isat = 1.0⋅10–12 A, Cj0 = 0.07 pF, and Rs = 12Ω. Its external parasitics
consist of an overlay capacitance of 0.02 pF and a series inductance of
0.3 nH. 

We begin with the design of the balun. For best bandwidth, we want it
to have a characteristic impedance of Z0b = 50Ω, so from (6.8) Z0o =25Ω .
To minimize the line width, we must minimize the thickness of the
suspended substrate used for the balun. The minimum thickness available
is 125 µm, but to improve the support for the fragile beam-lead device, we
select 250 µm. Parallel-strip baluns work best when the even- and odd-
mode phase velocities are as close to equal as possible; this requirement
dictates that the substrate have a low dielectric constant. A composite
substrate having εr = 2.35 is chosen. Finally, standard mixer packages
allow a clearance of 2.3 mm between the substrate and the top- and bottom-
plates. Using transmission-line design software, we find that strips having a
width of 0.81 mm provide the desired odd-mode impedance, and the
resulting even-mode impedance is approximately 260Ω and the effective
dielectric constant is 1.125. 

In evaluating the bandwidth, we encounter a difficulty. Making the
balun one-quarter wavelength long at 26 GHz means that it will be 0.012
wavelengths, or 6.9 degrees, long at 2 GHz. We find that
Z0etan(6.9) = 32Ω, which does not satisfy (6.10). However, by tapering the
ground-plane side of the balun, we might be able to achieve the desired
bandwidth. The taper causes the excitation, which normally consists of
equal even- and odd-mode components, to excite the odd mode more than
the even. Although this improves the bandwidth, electromagnetic
simulation is required to determine the balun’s characteristics. 

Figure 6.18 shows the balun. The taper is designed empirically; its
width at the input must be several times the top-line width, and the taper
must become more gradual as its width approaches that of the line. With a
little tuning on the computer, we obtain a balun design having the input
return loss and balance shown in Figure 6.19. In this analysis, the balun is



 Diode Mixers 351

treated as a power divider; the two output terminals are treated as a pair of
ports, and we plot the power division at those two output ports. The
imbalance is a measure of the balun’s even-mode output. The calculation
shows an imbalance of 1.2 dB at the band edges; although not exciting, this
result is not unusual for this type of balun. 

Figure 6.18 Tapered balun used in the ring-mixer design example. The thickness of
the dielectric layer is artificially increased for ease of viewing. 
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Finally, we connect the diodes to the balun, add transmission lines for
IF extraction, and simulate the circuit in its entirety. To optimize the
circuit, we have relatively few degrees of freedom; the most important is
LO power. We can, of course, modify the balun slightly or select a different
diode. 

The mixer’s conversion performance is shown in Figure 6.20.
Conversion loss is quite acceptable, 6 to 7 dB over most of the band. The
input return loss is modest, 5 to 10 dB across the band, and the use of four
medium-barrier diodes causes the LO power to be rather high, 16 dBm.
This level of performance is typical of this kind of mixer. Other types of
mixers, such as the “horseshoe” balun mixer [6.1], may offer improved
performance, including much wider IF bandwidth. 

6.4.3.4 Star Mixer

In a star mixer, one terminal of each of four diodes is connected to a
common node, which is used as the IF terminal. The mixer’s operation can
be described by the transformer realization shown in Figure 6.21, which,
unlike the ring mixer, is rarely used in practical circuits. The mixer uses
two transformers, each of which has two windings; T2a and T2b are the
secondaries of one transformer, while T1a and T1b are those of the other.

This mixer, like the ring mixer, operates as a polarity-reversing switch.
When the dotted sides of the LO transformer secondaries T2a and T2b are
positive, D1 and D2 are turned on, D3 and D4 are turned off, and the dotted
sides of T1a and T1b are connected to the IF port. The RF port is thus
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Figure 6.20 Calculated conversion loss of the ring mixer.
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connected to the IF through the transformer T1 and the diodes. When the
LO polarity reverses, D1 and D2 are off and D2 and D3 are on; then the
undotted side of both T1 windings is connected to the IF port, and the RF is
again connected to the IF but its polarity is reversed. The RF polarity is
therefore applied to the IF port, but its polarity is reversed at the LO
frequency. Because the star mixer operates by the same principles as the
ring mixer, it should be no surprise that the spurious-response properties of
the star mixer are the same as those of the ring mixer. 

Figure 6.22 shows a version of a microwave star mixer. The balun, a
variation of a structure known as the Marchand balun, is described in detail
in [6.1, 6.7, 6.8]. The Marchand balun is remarkably broadband; it is
theoretically capable of decade bandwidths, but the form used in mixers is
limited to bandwidths of a little over an octave. 

The star mixer has low parasitic IF inductance, giving it a broad IF
bandwidth. Unfortunately, the Marchand balun is an open circuit for even-
mode excitation, and the IF excites the baluns in an even mode. For this
reason, the IF cannot overlap the RF or LO bands, but it can sometimes
approach 70% to 80% of the lower end of the RF/LO frequency range.
Another limitation of this circuit is that the RF and LO baluns must cover
the same frequency range; thus, each balun must cover the entirety of both
the RF and LO bands. 

Figure 6.21 Transformer equivalent circuit of the star mixer.
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Chapter  7

Diode Frequency Multipliers

A large part of the electronics in any microwave communications system is
devoted to generating signals at specific frequencies. Frequently, signals of
high stability and low noise are needed; these are sometimes obtained by
generating harmonics from a very stable low-frequency source, such as a
crystal oscillator. For better or worse, harmonic generation is one of the
things that nonlinear circuits do best, so it should be no surprise that
varactor, step-recovery, and Schottky-barrier diodes are employed widely
in frequency-generating systems. 

Diode circuits that use varactors or step-recovery diodes (SRDs) are
frequently employed as harmonic generators at microwave frequencies.
These are reactive multipliers: they make use of the diode’s nonlinear
capacitance characteristic. Varactors are used primarily to multiply
microwave signals to low harmonics, rarely over four times the source
frequency; in contrast, SRDs are used to multiply signals in the UHF or low
microwave range to very high harmonics. Both components are inherently
narrowband and, when properly designed, have good efficiency and low
noise. 

Resistive diodes—Schottky-barrier diodes—are sometimes used in
low-order frequency multipliers. Resistive multipliers are less efficient
than reactive multipliers, but they can be made very broadband.
Furthermore, it is usually easier to develop a resistive multiplier than a
reactive one; reactive multipliers are sensitive to even slight mistuning, and
therefore have a well-deserved reputation of being difficult to optimize. In
contrast, resistive multipliers are relatively easy to adjust and are not nearly
as sensitive. 
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7.1 VARACTOR FREQUENCY MULTIPLIERS 

7.1.1 Noise Considerations 

In the past it was common to use varactor frequency multipliers to generate
moderate to high levels of RF power. Solid-state sources now available
have greater efficiency, fewer components, and greater bandwidth than
varactor multipliers. Furthermore, GaAs MESFET frequency multipliers,
described in Chapter 10, are capable of greater efficiency and bandwidth
than are diode multipliers. One might wonder why varactor frequency
multipliers are still used at all. 

The major advantage of a varactor frequency multiplier is that, because
it is a reactive device, it generates very little noise. This property is
particularly valuable where low phase noise is desired: local oscillator
(LO) sources for radar applications and many types of phase- or
phase/amplitude-modulated communication systems. The dominant noise
source in a varactor multiplier is the thermal noise of its series resistance
and of its circuit losses; both are very small in a well-designed device and
circuit. Frequency multipliers using Schottky-barrier varactors can achieve
high efficiency and low noise at output frequencies of several hundred
gigahertz; such multipliers, driven by Gunn or FET sources, can generate
adequate LO power for single-diode mixers, with very low AM noise
levels. 

Even if a multiplier introduces no phase noise of its own, the process of
frequency multiplication—even by an ideal, noiseless multiplier—inevita-
bly increases phase noise. The reason for this unfortunate characteristic is
that a frequency multiplier is in fact a phase multiplier, so it multiplies the
phase deviations as well as the frequency of the input signal. The minimum
carrier-to-noise degradation, ∆CNR, in decibels, caused by an ideal fre-
quency multiplier is 

(7.1)

where n is the multiplication factor. Thus, a frequency doubler (n = 2)
degrades the CNR of the input signal by at least 6 dB; a quadrupler
degrades the CNR by at least 12 dB. If the multiplier is noisy, it can add
even more phase noise to the input signal, and ∆CNR can be even greater. 

In addition to phase noise, AM noise is a concern in many types of
systems. AM noise in the LO can be an especially serious problem in low-
noise receivers: if the LO signal has AM noise sidebands at the RF

∆CNR 20 n( )log
10

=
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frequency, that noise can be downconverted to the IF, significantly
increasing the noise temperature of the receiver. 

Solid-state devices used in frequency sources or in multiplier chains
are usually driven into saturation, and their limiting effects usually remove
much of the signal’s AM noise. However, these effects do not completely
eliminate AM noise, so sources that are inherently noisy (e.g., IMPATT
devices and klystron tubes) often generate signals that have high AM noise
levels, in spite of any limiting that may occur. Using an amplifier to
increase the power level of a signal, even if the amplifier is driven into
saturation, also can introduce a large amount of AM noise. The use of
balanced mixers or narrowband filters at the mixer’s LO port can do much
to reduce the effects of such noise; however, in some cases, balanced
mixers or filtering may not be possible. An LO system consisting of a Gunn
or FET source followed by a varactor multiplier usually has minimal AM
noise and is therefore a preferred configuration for millimeter-wave
systems. 

7.1.2 Power Relations and Efficiency Limitations 

Manley and Rowe [7.1] developed a set of general relations between the
real powers at all mixing frequencies in a nonlinear capacitor. The Manley-
Rowe relations are valid for any nonlinear capacitor driven by one or two
signals having noncommensurate frequencies. The relations are remarkable
in that they do not depend directly upon the capacitor’s Q/V characteristic
or the levels of the applied excitations. (They do require, however, that
voltages and currents exist at certain frequencies, and this requirement
contains implicit assumptions about the Q/V characteristic and embedding
circuit.) The Manley-Rowe relations have been applied to parametric
amplifiers and upconverters as well as to varactor frequency multipliers,
and they establish limits to the gain or loss of such components. 

The two Manley-Rowe relations are 

(7.2)

(7.3)

mPm n,
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∞

∑
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∞
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where f1 and f2 are the frequencies of the two excitation signals, and Pm, n is
the average real power into the capacitor at the frequency |m f1 + n f2|.
(Note that, in this case, the input powers at the excitation frequencies, P1, 0
and P0, 1, are the powers absorbed by the network, not available powers
from the sources.) These relations can be derived from the sole
considerations that the capacitor is lossless, and that the capacitor’s Q/V
characteristic is single-valued. 

A frequency multiplier has only a single excitation, f1, so f2 = 0, the
summation over n can be eliminated, and all the terms of (7.3) become
zero. Equation (7.2) becomes

(7.4)

where Pm is the power in the diode at the frequency m f1. Equation (7.4)
indicates that all the input power must be converted into output power at
the harmonics of f1; none can be dissipated in the reactive junction (note
that (7.4) does not say where the output power must be dissipated; in
practice much of it may be dissipated in circuit losses or in the series
resistance). In an Mth-harmonic multiplier, the highest possible value of Pm
occurs when only P1 and Pm are nonzero; then Pm = –P1. In that case, the
output power at Pm is equal to the input power at P1, and if the input power
equals the available power of the source, the multiplier has 100%
efficiency. 

For this optimum efficiency to be achieved, there must be no real
power in the circuit at any of the unwanted harmonic frequencies. This
condition is guaranteed when the diode’s junction is terminated in a pure
reactance at all harmonics other than the desired one. In practice, however,
the diode’s series resistance makes a pure reactance impossible; this
resistance is always in series with the terminating impedance, and thus
dissipates power at all harmonics. To eliminate power dissipation in the
series resistance, one might be tempted to open-circuit the diode at all
unwanted harmonics; then the unwanted harmonic currents in the series
resistance would be zero and no power would be dissipated. The next best
approach would be to short-circuit the diode at all unwanted harmonics; a
short circuit would not eliminate the dissipation in the series resistance, but
would prevent harmonic power dissipation in the output network. 

It happens, however, that in diodes having C/V characteristics close to
that of the ideal Schottky or pn junction, and in frequency multipliers that
generate harmonics greater than the second, short-circuit terminations at

Pm
m 0=

∞

∑ 0=
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unwanted harmonics are preferred. The diode’s voltage, as a function of
charge, is the cause of this counterintuitive situation. The V/Q function has
a square-law characteristic and therefore cannot generate voltage
components beyond the second harmonic, unless harmonic current
components also exist. Let us suppose that the diode is driven at the
excitation frequency by an ideal current source and thus has only open-
circuit harmonic terminations. The Q/V characteristic of an ideal,
uniformly doped junction, given by (2.58), with γ = 0.5, is 

(7.5)

which can be rearranged to express V as a function of Q: 

(7.6)

where Qφ = 2Cj0φ, a constant. If the diode is open-circuited at all
harmonics, the current can have no harmonic components and thus must be
sinusoidal at the fundamental frequency. Because the current is sinusoidal,
the charge also varies sinusoidally at the same frequency; if the voltage has
a square-law dependence on Q, it must also have a square-law dependence
upon the current. Squaring this sinusoid produces only second harmonics;
therefore, if the varactor is open-circuited at all harmonics, there can be no
voltage components across the junction at any harmonics beyond the
second, and the multiplier is limited to second-harmonic operation. In order
to have a third-harmonic output, it is necessary to have a large second-
harmonic component of junction current; then the third “harmonic” arises
as a second-order mixing product between the fundamental excitation and
the second-harmonic current. In order to have this large second-harmonic
current, there must be a short circuit across the junction—called a short-
circuit idler—at the second harmonic. Similarly, for higher-harmonic
outputs, idlers must be provided at the intermediate harmonics. For
example, a quadrupler could have a second-harmonic idler, or both a
second-harmonic and a third-harmonic idler; a quintupler would likely
have at least second- and third-harmonic idlers. 

The idea that varactor multipliers can generate only second harmonics
directly is strictly valid only for varactors that have the ideal Q/V
characteristic of (7.5). The Q/V characteristics of real varactors normally
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deviate somewhat from (7.5), and some second-harmonic current is
generated by second-harmonic voltage dropped across the finite embedding
impedance. Furthermore, because the charge-storage properties of a p+n
varactor increase its V/Q nonlinearity beyond second degree, overdriving
the diode generates current and voltage components at harmonics greater
than the second. An extreme case is that of the step-recovery diode, which
has a very strong C/V nonlinearity; idlers are not normally needed in SRD
multipliers. However, both theory and experimental evidence indicate that
the use of idlers can improve the efficiency of all reactive frequency
multipliers, even those using SRDs. 

Idlers are usually realized as short-circuit resonators that are separate
from the input and output matching circuits. In practice, idlers are usually
realized by a series resonance that is chosen more for its convenience than
for high performance; frequently, the series resonance of the varactor’s
package is used as an idler at high frequencies, and tuning elements are
often included to tune the resonance precisely to the desired harmonic. This
technique results in a very compact multiplier that can be realized easily in
strip transmission media, but probably has a lower Q than would a
waveguide-mounted diode having a separate idler cavity. It is important to
maximize idler Q in multipliers designed to have high efficiency, because
the large idler currents must circulate in the idler resonator’s loss
resistance; this resistance, like the diode’s series resistance, can generate
significant power losses. Low series resistance and high unloaded Q are
therefore clear requirements of high-efficiency frequency multiplication. 

In theory, high-order multipliers are most efficient when they have
idlers at all intermediate harmonics. Unfortunately, it is rarely practical at
microwave frequencies to provide more than one idler, and harmonics up to
the fourth can be generated efficiently in such multipliers. The difficulty in
realizing several idlers is one of the factors that limits the order of
multiplication of a varactor multiplier. 

Finally, we examine two important details. The first is that the
efficiency limitation established by the Manley-Rowe relations is only part
of the story. These relations show that all the input power must be
converted to output power at the fundamental and harmonic frequencies;
this result is obvious because a reactive element—linear or nonlinear—
cannot dissipate power. Thus, the power gain of a frequency multiplier
using an ideal diode can be unity. However, we are really interested in the
transducer gain of the multiplier, not the power gain, and the Manley-
Rowe relations do not prove anything regarding the transducer gain. To
show that the transducer gain can be as great as the power gain, we must
show that it is possible to achieve a conjugate match at the multiplier’s
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input; then, the available power equals the input power, and the Manley-
Rowe limit is valid for transducer gain as well as power gain. 

Proving that the input can be matched is not a simple task; indeed, we
can show that in many nonlinear circuits, the input can not be matched. For
example, a circuit consisting of an ideal diode (one having zero resistance
in the “on” state) in series with a load resistor cannot be matched, and has
the property that the total power at all frequencies delivered to the load can
be no more than half the available power. Although no power can be
dissipated in the diode, and all the input power is delivered to the load, the
maximum transducer gain is –3 dB! The loss is a reflection loss at the
input. Fortunately, we can see from harmonic-balance calculations and
other evidence that the input of a reactive frequency multiplier can indeed
be matched; we will not attempt to prove this point in any general way. 

The second detail is that the Manley-Rowe relations do not simply
establish a limit to the efficiency of a varactor frequency converter; they
describe a fundamental characteristic of any pumped nonlinear reactance.
In the case of a frequency multiplier, that characteristic, expressed by (7.4),
is consistent with intuition: the sum of all the harmonic power components
must equal the input power. This relationship is precisely valid for the
reactive junction of the diode and does not depend in any way upon the
excitation level or the external circuit of the multiplier. If the multiplier is
badly designed, the input power may be low, and the output power is
dissipated in the series resistance and wasted in unwanted harmonics; if the
circuit is well designed, input power is coupled efficiently to the diode
junction, loss in the series resistance is minimized, and significant real
power exists in the diode only at the input and output frequencies. In both
cases, however, the Manley-Rowe relations are satisfied. Thus, although
these relations can establish limits to a multiplier’s efficiency, they do not
guarantee that efficiency; achieving optimum efficiency in a frequency
multiplier requires using a varactor that has low series resistance, selecting
the varactor that is appropriate for the frequency and power level at which
it is to be operated, using idlers, and matching the input and output
impedances. 

7.1.3 Design of Varactor Frequency Multipliers 

Figure 7.1 shows the structure of a varactor frequency multiplier. It
consists of input and output matching circuits, a varactor, and M idler
resonators, fi, 1,  ... , fi, M . Designing the multiplier requires estimating the
parameters of a diode that is appropriate for the multiplier’s frequency and
power level and determining the source and load impedances. When these
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quantities are known, the matching circuits and idler resonators can be
realized in the conventional manner. 

A classic paper by Burkhardt [7.2] has been the basis for the design of
many frequency multipliers. Burkhardt’s analysis is not unlike the
harmonic-balance analysis described in Chapter 3, but his results are
presented in a normalized and tabulated form, so they can be used to design
a wide variety of multipliers. The assumptions and limitations in
Burkhardt’s work are that (1) the idlers are lossless series resonators (short-
circuit idlers); (2) only input, output, and idler currents in the diode are
considered; (3) idlers and input/output circuits resonate with the average
diode elastance; (4) the diode’s junction voltage varies between the
reverse-breakdown voltage and φ, although the varactor may be overdriven;
and (5) the varactor’s dynamic Q (2.69), evaluated at the output frequency,
is greater than 50. 

The diode’s normalized drive level D is defined as 

(7.7)

where QB is the depletion charge at breakdown and qφ is the charge when
the junction voltage just reaches φ. The charge qmax is the maximum stored
charge; if the junction voltage just barely reaches φ, qmax = qφ and D = 1.0.
This is the maximum drive level possible in a Schottky-barrier varactor,
although, in practice, the junction voltage is usually limited by resistive
conduction to a value less than φ, so D < 1.0. In a p+n varactor, qmax may
be greater than qφ, so D can be greater than unity; however, in this case the
positive excursion of the junction voltage is clamped at φ. Burkhardt gives
data for drive levels from D = 1.0 to D = 1.6. 

Tables 7.1 and 7.2 give the important parameters necessary for design-
ing varactor doublers and triplers. The optimum conversion efficiency, εc,

Figure 7.1 Varactor frequency multiplier. The blocks marked fi, n are the idlers at the
nth harmonic. The input and output matching circuits must not interact. 

D
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Source: C. B. Burkhardt, “Analysis of Varactor Frequency Multipliers for Arbitrary
Capacitance Variations and Drive Level,” Bell System Tech. J., 44:675. The tables are
reprinted with permission from the Bell System Technical Journal, Copyright 1965,
AT&T. 

Table 7.1 Doubler
γ = 0.5

Design Parameter D=1.0 D=1.3 D=1.6

α 9.95 8.3 8.3

β 0.0227 0.0556 0.0835

Rin ω1 / Smax 0.080 0.098 0.0977

RL ω1 / Smax 0.1355 0.151 0.151

S01 / Smax 0.50 0.37 0.28

S02 / Smax 0.50 0.40 0.34

Vdc, n 0.35 0.28 0.24

Table 7.2 Tripler
(Idler at 2ω1)

γ = 0.5

Design Parameter D=1.0 D=1.3 D=1.6

α 11.6 9.4 9.8

β 0.0241 0.0475 0.0700

Rin ω1 / Smax 0.137 0.168 0.172

RL ω1 / Smax 0.0613 0.0728 0.0722

S01 / Smax 0.50 0.36 0.26

S02 / Smax 0.50 0.38 0.31

S03 / Smax 0.50 0.38 0.30

Vdc, n 0.32 0.24 0.18
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and output power, PL, are related to two tabulated parameters, α and β, as
follows:

(7.8)

and 

(7.9)

where Qδ is given by (2.69) and is evaluated at the output frequency. Smax
is the maximum junction elastance (the inverse of the minimum
capacitance), Vb is the breakdown voltage, and ω1 is the input frequency.
The tables also include the normalized source and load resistances, Rin and
RL, and the average junction elastances at the input and output frequencies,
S0, 1 and S0, n, where n is the output harmonic number. These elastances
must be resonated by the source and load networks. Table 7.2 includes S0, 2,
the elastance at the idler frequency in the tripler, which must be resonated
by the idler. The tables also give the normalized bias voltage, Vdc,n: 

(7.10)

and Vdc is the actual (i.e., not normalized) bias voltage. Vdc is easily
adjusted empirically to optimize the multiplier’s efficiency, so it is not a
very important design parameter. When Rin , RL, S0, 1, and S0, n are known,
designing the input and output matching circuits requires matching the
simple source and load models shown in Figure 7.2. Reference [7.2] has
more extensive tables that include data for multipliers at higher harmonics,
with different drive levels and idler configurations, and with values of γ
between 0.0 and 0.5. Many of these configurations, however, are practical
only at low frequencies or describe types of diodes that no longer are made.
The design process will be illustrated by the following example.

7.1.4 Design Example of a Varactor Multiplier

We shall design a 10- to 20-GHz frequency doubler. First we use
Burkhardt’s data, and then check the design by harmonic-balance analysis.
A p+n varactor would be the logical choice for this application. However,

εc α– Qδ⁄( )exp=

PL β
ω1 φ Vb–( )2

Smax
------------------------------=

Vdc n,
φ Vdc–

φ Vb–
------------------=
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to illustrate some of the problems with such devices, the multiplier uses a
Schottky-barrier varactor instead. Because the multiplier is a doubler, no
idler is required, but it would still be prudent to short-circuit the diode at
high frequencies to prevent power dissipation at the third and higher
harmonics. 

We begin by selecting a diode that has the parameters Cj0 = 0.3 pF,
φ = 0.9V, Vb = –11.0V, γ = 0.5, and Rs = 4.0Ω. The maximum junction
voltage that can be achieved without significant conduction is 0.7V. We
calculate immediately that the minimum junction capacitance is 0.09 pF
and the maximum is 0.61 pF, giving Smin and Smax equal to 1.64⋅1012 F–1

and 1.11⋅1013 F–1, respectively, and a dynamic cutoff frequency of 376
GHz or, alternatively, a dynamic Q of 19 at 20 GHz. We may have to suffer
some inaccuracy, because this value of Qδ is lower than the minimum value
of 50 required for the Burkhardt analysis. This situation is unavoidable,
because a dynamic Q of 50 at 20 GHz would imply a cutoff frequency of
1,000 GHz, a value not beyond the state of the art in varactor diodes, but
probably not available in ordinary, inexpensive devices. We also find that
the drive level D = 0.98 from (7.7), and that the normalizing parameter for
the input and output resistances Rin and RL, ω1 / Smax, is 5.66⋅10–3. 

From Table 7.1, with D = 1.0, we find α = 9.95 and β = 0.0277.
Substituting these into (7.8) and (7.9), we find the conversion efficiency εc
to be 0.589, or –2.3 dB, and PL = 14.8 mW, or 11.7 dBm. It is important to
note that these quantities include only the loss in the series resistance, and
do not include circuit loss, idler loss, or loss in the embedding circuits at
unwanted harmonics. Next we find normalized values of Rin and RL from
Table 7.1, and quickly determine that Rin = 14.1Ω and RL = 23.9Ω.
Similarly, we find both 1/S0,1 and 1/S0,2 to be 0.18 pF; the source and load
impedances are therefore 14.1 + j88 and 23.9 + j44, respectively. Finally,
the normalized bias voltage is obtained from the table, and (7.10) gives
Vdc = –2.7V.

Figure 7.2 Input and output models of the varactor frequency multiplier. 
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Figure 7.3 shows the circuit. We use transmission-line segments to
isolate the input and output; the stubs shown in the figure are one-quarter
wavelength long at the fundamental frequency. The open-circuit stub
effectively grounds the diode’s anode at the fundamental frequency but
does not affect the second harmonic. Similarly, the short-circuit stub
grounds the cathode at the second harmonic but does not affect the
fundamental frequency. The inductors used to tune the capacitive part of
the input and output impedance are readily identifiable. 

Table 7.3 compares the design and optimized circuit parameters for the
multiplier at the design input level of 14 dBm. The agreement is quite
good. In tuning the circuit, we find that the most sensitive parameters are
the tuning inductors and bias voltage; the source and load impedances are
relatively insensitive. Five harmonics were used in the analysis; increasing
this to 12 had no measurable effect on the predicted performance. Figure
7.4 shows the junction waveform, which varies from breakdown to φ.

7.1.5 Final Details

7.1.5.1 C/V Characteristic and Modeling

A limitation of this simple design process is that the diode’s C/V
characteristic must follow (2.59) at all voltages between breakdown
voltage and φ. Many modern varactor diodes do not have such ideal C/V
characteristics, especially at high reverse voltages. In an epitaxial
Schottky-barrier diode, a high reverse voltage may deplete the epilayer
before breakdown occurs, and beyond this voltage the variation in

Figure 7.3 Multiplier circuit for the design example, somewhat idealized. 
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capacitance is minimal. In p+n punch-through or dual-mode varactors
(Section 2.4.5), the varactor’s C/V characteristic is purposely tailored (by
adjusting the doping profile) so that the junction-capacitance variation is
minimal at high reverse voltages; this characteristic minimizes sensitivity
to input level, and may also enhance stability somewhat. When such
devices are used in a multiplier, it is best to use the voltage at which the
C/V curve begins to limit in place of Vb or QB in (7.7) through (7.10). 
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Figure 7.4 Varactor junction voltage waveform at an input level of 14 dBm. 

Table 7.3 Multiplier Design vs. Optimized Parameters

Design Parameter Design Value Opt. Value

Conversion loss 2.3 dB 1.8 dB

Rin 14.1Ω 18.1Ω

RL 23.9Ω 24.8Ω

Lin 1.40 nH 1.54 nH

LL 0.35 nH 0.443 nH

Vdc –2.7V –2.99V
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The models used in circuit simulators, primarily versions of the SPICE
diode model (Section 2.4.2), are often not well suited for use in varactor
multipliers. Uniformly doped Schottky-barrier varactors are reasonably
well modeled by the standard diode model, as long as the user is careful to
limit the junction voltage to values that do not cause avalanche breakdown
or fully deplete the epilayer. pn-junction varactors are more of a problem.
The diffusion-capacitance model should be adequate for most purposes,
and the γ parameter [(2.58), (2.59)] in the depletion part of the model can
be adjusted to obtain reasonable accuracy. If these expedients do not
produce adequate accuracy, it may be necessary for the user to create his
own model. 

7.1.5.2 High-Order Multipliers

An important question that often arises in the design of multiplier systems
is the following: is it better to realize a high-order multiplier by a single
stage or by a cascade of several low-order multipliers? We find from the
tables in [7.2] that, in theory, a cascade of low-order multipliers usually has
greater efficiency than a single high-order multiplier. However, before
concluding that this is true in any particular application, one must consider
the additional losses in cascading two multipliers (it is invariably necessary
to use an isolator between them) and especially the additional cost of
designing, manufacturing, and testing two separate components and their
interconnecting hardware. When these practical considerations are
included, the answer to this question is not nearly as clear. It must be
answered on an ad hoc basis, in view of the requirements of the system in
which the multiplier is to be used. 

7.1.5.3 Stability 

Varactor frequency multipliers are notoriously unstable. Their instability is
a kind of chaotic process, not a simple oscillation. The stability of any non-
linear circuit is difficult to assess analytically, but it can be addressed more
directly from a practical standpoint. The author has observed that most sta-
bility problems encountered in varactor frequency multipliers are the result
of practical design deficiencies and are rarely inherent in the nature of the
component. Thus, it is best to examine stability from a practical viewpoint,
and to note some of the causes of disappointing behavior. 

Controlling the broadband embedding impedance characteristic very
carefully is the best way to insure good stability. In particular, the input
source and output load must be linear and not vary with input or output
level. One must not drive a mixer’s LO port directly from a multiplier, or
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the multiplier directly from another multiplier; an isolator should be used.
The input and output networks must not have any spurious resonances,
especially near harmonics or subharmonics of the input or output
frequencies, and the idler resonances must be implemented effectively. In
general, the simplest effective matching and idler circuits are least likely to
introduce instability. It is also important to have a spectrally clean
excitation; the excitation signal must not have significant spurious signals,
harmonics, or noise. 

7.1.5.4 dc Bias

It is almost always necessary to provide dc bias to the varactor used in a
multiplier, although sometimes it is possible to self-bias the device. Even a
p+n varactor has some dc current, caused by rectification at high input
levels. By introducing a resistor in the diode’s dc return path, this current
can be used to bias the diode. The resistor also helps to reduce the
sensitivity of the output power level to the input power level; as input drive
is increased, the resulting increase in dc current further reverse-biases the
diode, reducing the multiplier’s efficiency and levelling the output power.
The design of the bias circuit often has a strong effect on stability. Low-
frequency resonances in the bias circuit are a common cause of instability. 

7.1.5.5 Noise

Varactor multipliers are low-noise devices. In low-noise applications, even
low levels of noise may be a concern. Thus, we need to address the matter
of noise in such devices. 

Noise in varactor multipliers arises from several sources:

1. The series resistance generates thermal noise. In a well-designed
multiplier, this is the dominant noise source. 

2. If a Schottky varactor is driven so hard that it rectifies, shot noise is
generated. Avalanche breakdown also generates high levels of shot
noise. 

3. When carriers are accelerated in a strong electric field, the increased
energy causes their temperature to be higher than the surrounding
lattice. The result is hot-electron noise. 

4. When GaAs devices have a strong electric field, carriers can be
scattered from their normal, high-mobility energy level to a low-
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mobility satellite “valley” at a higher level. The resulting change in
electron velocity generates intervalley-scattering noise. 

5. Traps near the junction interface generate low-frequency (“1 / f ”)
noise. Although this noise rarely reaches the microwave region, it can
modulate the signal applied to the multiplier through the varactor’s
inherent nonlinearity. This effect can increase the phase noise of a
signal beyond what is expected from (7.1). 

Accounting for these noise sources in a multiplier design requires a
complete noise model and circuit-analysis software capable of performing
a complete nonlinear noise analysis. In practice, however, multiplier noise
usually can be rendered insignificant by proper design, avoidance of
overdrive in Schottky devices, and the use of a high-quality varactor. 

7.1.5.6 High-Frequency Considerations

Frequency multipliers using Schottky-barrier varactors are often employed
to generate millimeter-wave or submillimeter-wave energy. At such high
frequencies, additional phenomena affect the performance and must be
considered in the design. Most of these are associated with the diode’s
series resistance. They include (1) increased series resistance due to skin
effect, (2) velocity-saturation effects in the undepleted epilayer, and (3)
increases in the substrate’s impedance caused by plasma resonances. These
phenomena are discussed in Section 2.4.6. 

7.2 STEP-RECOVERY DIODE MULTIPLIERS

An SRD can achieve efficient high-order frequency multiplication. The key
to its operation is its very strong capacitive nonlinearity, which is realized
almost exclusively by charge-storage effects. The SRD multiplier operates
by generating a very fast voltage pulse once for each cycle of the input
voltage; the pulse is then applied to a filter that converts it to a sinusoidal
output voltage. Without the need for idlers, SRD multipliers can achieve
conversion efficiency on the order of 1/n, where n is the harmonic number.
They are, however, narrowband components and are limited to output
frequencies below approximately 20 GHz. 
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7.2.1 Multiplier Operation 

Because it is consistent with the way SRD multipliers are most often
operated, Hamilton and Hall’s description of SRD multiplier operation
[7.3] is widely accepted. A description of the operation of the SRD in a
slightly different circuit is given by Hedderly [7.4]; this paper contains
more useful information about the factors that limit efficiency. 

We begin by treating the SRD multiplier as a lossless circuit having an
ideal diode. First we describe the multiplier circuit as a pulse generator, and
then show how the pulse generator is modified to achieve a sinusoidal
output. The ideal SRD has the C/V characteristic shown in Figure 7.5; the
reverse-bias capacitance is small and independent of voltage, the forward-
bias capacitance is infinite, and other parasitics, particularly series
resistance, are negligible. We assume that the forward characteristic begins
at V = 0, although in reality it begins at V = φ; this assumption simplifies
the analysis and makes little difference in the results. We also assume that
the voltage across the diode never exceeds the reverse breakdown voltage;
this requirement limits the output power. 

In an ideal SRD, all forward current creates stored charge at the
junction without causing a change in voltage. This stored charge must be
removed by reverse current before a reverse voltage is possible. If the
carrier recombination time of a practical diode is long compared to the
inverse of the input frequency, very little of the stored charge recombines
(so little charge contributes to resistive conduction) before it is removed,
and the diode is nearly ideal in this respect. In the following derivation, we
assume that all charge is stored and is recoverable, and that the diode can
switch from forward to reverse conduction instantaneously after the stored
charge is removed. 

Figure 7.5 C/V characteristic of an ideal step-recovery diode.



 Nonlinear Microwave and RF Circuits372

Figure 7.6 shows the circuit of the pulse generator. The excitation
consists of a sinusoid at frequency ω1 plus dc bias Vdc, and the source
impedance Zs(ω) is assumed to be zero at dc and all harmonics of ω1
except, of course, the fundamental; therefore, the input voltage V1(t) is
sinusoidal. The phase of V1(t) is chosen so that the beginning of the SRD’s
conduction occurs at t = 0. Then 

(7.11)

where α is the phase angle of V1(t) and Vdc is the dc component; normally
Vdc < 0. During this interval, the diode is forward-biased, so its capacitance
is infinite, and it is effectively a short circuit; the equivalent circuit is
shown in Figure 7.7(a). The current is found directly to be 

(7.12)

where IL(0) is the initial current in the inductor at the beginning of the
conduction cycle. The second term in (7.12) is the sinusoidal component,
and the third term is the linear current ramp generated by the bias source.
The voltage waveform V1(t) and the resulting current IL(t) are shown in
Figure 7.8; when the current is positive, charge is stored in the SRD, and
when it is negative, reverse conduction removes this stored charge. 

At the end of the conduction interval, the stored charge Qs is zero: 

(7.13)

V1 t( ) V1 ω1t α+( )sin Vdc+=

Figure 7.6 Impulse-generator circuit using a step-recovery diode. 
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where T is the excitation period and Tt is the length of the impulse period.
At t = T – Tt all the stored charge has been removed, and the diode switches
to its reverse-bias state. At this point the impulse interval begins. 

At the instant the diode switches, the current in the inductor is the
excitation current for the harmonic-generating impulse. Therefore, we
adjust Vdc so that the diode switches at the instant when IL(t) has its
maximum negative value. At that instant dIL(t) / dt = 0, so the voltage
across the inductor is zero and the diode voltage Vd(t) is zero; V1(t) is the
sum of these voltages, so it must also be zero. Because the SRD switches
when V1(t) = 0, the multiplier has the equivalent circuit of Figure 7.7(b), in
which the voltage source has been eliminated, and the inductor current
IL(T – Tt) is the only excitation (we call this current I0 for simplicity; I0 is a
negative quantity). The diode capacitance is now Cd, a relatively small
depletion capacitance.

The response Vd (t) of the circuit in Figure 7.7(b) is a damped sinusoid
at the resonant frequency of L and Cd : 

Figure 7.7 Equivalent circuit of the SRD multiplier during (a) the conduction
interval, and (b) the impulse interval. 
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(7.14)

where t′ = t – T + Tt; that is, t′ is time measured from the beginning of the
impulse interval. The loaded resonant frequency, ωn, of the tuned circuit in
Figure 7.7(b) is 

(7.15)

and the damping factor ς is 

(7.16)

Figure 7.8 Voltage and current waveforms in the SRD impulse generator.
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This sinusoid does not last very long; as soon as Vd (t) reaches zero, at
the end of one half cycle, the diode again switches to its high-capacitance
state and Vd (t) is clamped at zero. Thus, the output voltage consists of a
very short-lived pulse, a half-sinusoid at the loaded resonant frequency of
the circuit in Figure 7.7(b). The pulse waveform is shown in Figure 7.8; the
peak voltage is 

(7.17)

and the pulse width Tt is 

(7.18)

The current in the inductor during this interval is 

(7.19)

so that 

(7.20)

The power Po in the pulse train is 

(7.21)

The input impedance of the multiplier circuit Zin(ω1), including the
inductor L, is the ratio of the fundamental-frequency components of V1(t)
and IL(t). Because the impulse interval is so short, it is tempting to ignore it
in approximating Zin(ω1); however, it is only during this interval that power
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is removed from the circuit, so ignoring the impulse interval gives the
trivial result that Zin(ω1) = ω1L. This is, however, a good approximation of
the imaginary part of the input impedance. 

The real part of the input impedance can be found from power
considerations. Because the diode and inductor are lossless, the power
dissipated in the real part of the input impedance must equal the output
power. We express the fundamental component of IL(t) as I1; then, 

(7.22)

where R = Re{Zi(ω1)}. The input power is Pin, and 

(7.23)

(The assumption that Pin = Po is, of course, a stretch. We shall examine it
further in the design example in the next section.) We find from other
analyses that in most well-designed multipliers R ≈ ω1L; then substituting
(7.22) into (7.23) gives 

(7.24)

Real diodes, of course, have a series resistance Rs added to R. Finally, the
estimate of the input impedance is 

(7.25)

Equation (7.25) is not very useful for design purposes, because it is
difficult to estimate Vp /V1 without calculating the complete current
waveform. Hamilton and Hall give expressions for the real and imaginary
parts of the input impedance; however, it appears that they have calculated
the inverses of the real and imaginary parts of the input admittance instead.
Their tabulated results can be approximated as 
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(7.26)

and

(7.27)

We now have a circuit (Figure 7.6) that generates a pulse train, Vd (t).
The spectrum of Vd(t) has components at many harmonics of ω1, and the
envelope of that spectrum has its first zero at 3 ωn. This circuit can be used
effectively to generate a large number of harmonically related tones.
However, usually we wish to generate a single output frequency as
efficiently as possible. In this case it is not enough just to filter the output;
one must use a resonant network that does not dissipate appreciable power
at unwanted harmonics, and does not upset the pulse waveform too
seriously. Note that the value of RL in the impulse generator has little effect
on the shape of the pulse; even making RL → ∞ has no effect except to
increase Vp [because ς → 0 in (7.17)]. Thus, an open circuit at unwanted
harmonics and an appropriate resistance at the desired output frequency are
the desired terminations. The resonant network that realizes these
terminations is an ideal series LC resonator. The SRD frequency multiplier
is shown, in its conceptual form, in Figure 7.9; the box marked fN is the
resonator. 

One must be careful to recognize that the circuit in Figure 7.9 is not
equivalent to that of Figure 7.6, because the resonator changes the diode’s

Gi
1

ω1L 1.2 ς+( )
---------------------------------=

Bi
1–

ω1L 0.7 ς+( )
---------------------------------=

Figure 7.9 Circuit of an SRD frequency multiplier. The block fN is an ideal series
LC resonator tuned to the Nth harmonic of the input frequency.
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termination at unwanted harmonics to an open circuit, rather than a finite
resistance. Because the diode is a short circuit over most of the excitation
period, this change has less effect than one might imagine. The main
practical effect is to make the multiplier operate as if it were an impulse
generator having a lower damping factor than the value given by (7.16);
when terminated in a resonant network, the multiplier is less stable than
when terminated in a resistance. Accordingly, it is generally good practice
to design an SRD frequency multiplier to have a damping factor of
approximately 0.6 to 0.7, rather than the value of 0.4 to 0.5 that would
provide stable operation in an impulse generator. 

If the multiplier uses an ideal diode and is ideally terminated, all the
energy of each impulse is converted to output power at the desired
harmonic frequency. Under these conditions the output power is given by
(7.16). Unfortunately, because of the distinct paucity of ideal conditions in
the world of microwave electronics, the efficiency is considerably lower.
The most serious reduction in efficiency comes from the series resistance
of the diode. Power is dissipated in the diode’s forward resistance not only
at the input and output frequencies, but at all the other harmonics as well.
Power is also dissipated at these harmonics in the losses in the input
matching circuit, the inductor, and the output resonator. 

Another important loss mechanism is the recombination current in the
diode. Even if the carrier recombination time is long, a fraction of the
injected charge recombines and cannot generate output power. This
phenomenon has the same effect as adding a resistance in parallel with the
diode during the pulse interval. Similarly, the transition time of the diode is
always finite and lengthens the pulse interval. The increased pulse length
reduces the magnitude of the higher harmonics, and thus reduces the
efficiency. The effects of finite pulse length may also limit the SRD
frequency multiplier’s efficiency. 

7.2.2 Design Example of an SRD Multiplier

Designing a step-recovery diode multiplier is a relatively straightforward
application of the equations in Section 7.2.1. It is most important to select
an appropriate diode and the proper damping factor. 

We design an SRD multiplier to generate 20 mW at 4 GHz from a 1-
GHz excitation. The diode’s recombination time must be long compared to
the period of the input excitation, so τ >> 10–9 sec, and in fact 10–8 sec
would not be too great. The ideal pulse length is one-half period at the
output frequency; thus Tt = 1.25⋅10–10 sec. The diode’s transition time must
be considerably shorter than this, no more than approximately 70 to 100 ps.
Estimating the optimum value of reverse capacitance Cd is a controversial
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subject among multiplier designers; this controversy is not unexpected,
because the criteria for selecting Cd are mostly empirical. The range of
suggested values for the diode’s reactance, under reverse bias, varies from
10 or 20 ohms at the output frequency to more than double this value; the
best choice is probably an intermediate value that gives a reasonable input
impedance without making Vp too great. From (7.26) and (7.27) we see that
the input impedance is proportional to ω1L, a reactance that must resonate
with Cd; increasing Cd decreases L and thus reduces input impedance. We
begin by choosing Cd = 1.0 pF and ς = 0.5, a good compromise between
pulse length (low ς) and stability (high ς); from (7.15) and (7.16) we have
L = 1.19 nH and RL = 35Ω. We find the input admittance from (7.26) and
(7.27) and convert to impedance; the result is Zin(ω1) = 4.2 + j6.0, a low
but reasonable value. 

Equation (7.21) can be used to find the peak impulse voltage Vp; Vp
must be kept below the diode’s reverse breakdown voltage. If the multiplier
had 100% efficiency, (7.21) would be directly applicable and could be
solved for Vp. However, we expect loss on the order of at least 6 dB; most
of this loss is caused by inefficiencies in converting the pulse energy to
output power. Accordingly, it would be more realistic, from a design
standpoint, to use input power instead of output power in determining Vp.
Therefore, to be conservative, we use 80 mW instead of 20 mW in (7.21).
This gives Vp = 6.7V, considerably below the breakdown voltage of
virtually all practical SRDs. 

Figure 7.10(a) shows the idealized circuit. The resistive part of the
diode is modeled by a conventional Schottky junction; capacitance is a
combination of a diffusion capacitance and a linear component
representing Cd. A dc bias source is included; dc bias is not necessary, but
by controlling the turn-on voltage of the diode, it helps adjust the optimum
power level. 

Figure 7.10(b) shows the unfiltered output-voltage waveform at an
input power level of 23 dBm, which produces an output level of 13.5 dBm
at the fourth harmonic. The dc bias is –0.4 V. The pulse width is
approximately 0.15 ns, a little wider than intended. No attempt has been
made to optimize the inductance or the terminations. 

Designing the input matching circuit may be difficult because of the
low input impedance; for this reason, a multistage matching network is
usually necessary. A low-pass structure consisting of series inductors and
parallel capacitors has the required short-circuit output impedance at
harmonics of ω1. To prevent instability, the matching and bias circuits must
have no spurious resonances; all capacitors must have series resonant
frequencies well above the input frequency, including those in the bias
circuit. Because of the matching circuit’s low output impedance, the
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currents in the matching elements are relatively great; these elements must
be high-Q parts, or the loss in the matching circuit may be excessive. 

There are many ways to design a load network, and in general the
simplest designs are best. A lumped-element series resonator is usually not
realizable at 4 GHz, so a distributed equivalent network must be used. One
possibility is to connect the diode directly to a filter that has the desired
out-of-band characteristics; another is to couple it loosely through a
capacitor to a narrowband filter. It is wise to design this circuit to provide
the impedance transformation between the standard 50Ω coaxial load
impedance and RL. Experienced designers of SRD multipliers report that
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some types of resonant networks give better efficiency and stability than
others, for reasons that are not always clear. For example, Hamilton and
Hall recommend a resonant transmission-line section; this structure,
however, can introduce instability if the line impedance is low. Other
possibilities are a quarter-wave coupled-line section or a weak capacitive
coupling to a quarter-wave coaxial resonator. 

Simple resonant structures often have inadequate Q to reject the
harmonics closest to the output frequency; in this case the multiplier should
be followed by a filter. If the output circuit has been designed to match RL
to 50Ω, the multiplier can be tested easily without this filter in place, and
the filter can be tested without the multiplier; this practice significantly
eases the testing of both components. The circuit of the multiplier is shown
in Figure 7.11. 

7.2.3 Harmonic-Balance Simulation of SRD Multipliers

The SRD is fundamentally a diffusion-capacitance device (Section 2.4.7).
Such devices are notorious for causing convergence difficulty in harmonic-
balance analysis, partly because of their strong capacitive nonlinearity, and
partly because they may be unstable. Less obvious is the fact that diffusion
and transit time devices can have a Jacobian that is poorly conditioned. We
have noted that varactor multipliers are highly sensitive to parameter
variations, a property that makes them less “designable” than other types of
multipliers. SRD multipliers are no better in this regard; if anything, they
are worse.

Harmonic-balance analysis of SRD multipliers designed for high-order
operation is especially difficult. The number of harmonics required in the

Figure 7.11 The SRD frequency multiplier designed in the example. 
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analysis is several times the highest harmonic; if, for example, we design a
tenth harmonic multiplier, accurate reproduction of the impulse may
require 30 or more harmonics. The results also become quite sensitive to
the diode model and to small losses at all the harmonics. Time-domain
(SPICE) analysis of the impulse-generator circuit of Figure 7.6 is often
successful [7.5]; however, extending time-domain analysis to the complete
harmonic generator would be complicated by the need to model distributed
circuits. 

7.3 RESISTIVE DIODE FREQUENCY MULTIPLIERS 

Resistive diode (i.e., Schottky-barrier diode) frequency multipliers have
not been employed widely in microwave systems. The reason for their
disuse is that they are significantly less efficient than varactor multipliers,
and are limited in output power. Furthermore, their efficiency decreases
rapidly as harmonic number increases, so resistive diode multipliers are
rarely practical for generating harmonics greater than the second. Resistive
multipliers, however, have good stability and are capable of wide band-
widths; as such, they complement varactor multipliers nicely, and may be
an attractive option in the design of a microwave system. 

We saw that reactive multipliers are theoretically capable of achieving
100% efficiency, although, in practice, their efficiency varies approxi-
mately as 1/n . Resistive multipliers are theoretically capable of efficiency
no better than 1/n2 [7.6]; this is obviously much worse. If AM noise is not a
concern, the multiplier’s output can be amplified by a FET or HBT
amplifier. 

7.3.1 Approximate Analysis and Design of Resistive Doublers 

Figure 7.12 shows a canonical representation of a resistive multiplier. The
diode symbol represents an ideal resistive diode, a Schottky device having
no junction capacitance. (We shall see later that the junction capacitance is
frequently insignificant in these multipliers.) The series resistance Rs is
shown separately from the diode. Ri is the source impedance at f1, and RL is
the load impedance at 2 f1. The blocks marked f1 and 2 f1 are ideal parallel-
resonant filters; that is, they have infinite impedance at frequencies f1 and
2 f1, respectively, and zero impedance at all other frequencies. Because of
the properties of these resonators, voltage components at only these two
frequencies exist across the diode-Rs combination, and only fundamental-
frequency and second-harmonic currents circulate in the input and output
loops, respectively. V1 is the magnitude (peak value) of the fundamental
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component of the diode junction voltage Vj(t), and V2 is the magnitude of
the second-harmonic voltage across RL. Similarly, I1 and I2 are the peak
values of the fundamental and second-harmonic components of the diode
junction current Ij(t). The source voltage Vs(t) is a sinusoid at frequency f1;
dc bias may also exist. 

One can understand the operation of the multiplier by first imagining
that the diode is short-circuited at all harmonics except the fundamental, a
condition that can be established by letting RL = 0, and that the diode is
pumped to a high peak current (≥ 25 mA) by Vs (t). Under these conditions
the current waveform, shown in Figure 7.13, is a series of pulses, in phase
with the positive excursion of Vs(t) and shaped much like half-cosine
pulses. The duty cycle of the pulses is close to 50%. We assume that the
current waveform is adequately approximated as a series of half-cosine
pulses and, from Fourier analysis, find that the fundamental current
component, I1, is 

(7.28)

where Imax is the peak junction current. Similarly, we find the second-
harmonic current component, I2, to be 

(7.29)

It is also worth noting that the dc component of the junction current, Idc, is 

(7.30)

Figure 7.12 Circuit of a resistive frequency doubler. f1 and 2f1 are ideal parallel LC
resonators tuned to the fundamental frequency and its second harmonic,
respectively. 
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Because of the source resistance, the junction voltage Vj (t) has more
harmonic components than just the first and second. In the time domain
Vj(t) is a clipped sinusoid; if Rs << Ri, the magnitude of the fundamental
component of Vj (t) is 

(7.31)

where Vs is the peak value of Vs(t), and Vf is the forward voltage of the
diode, approximately 0.6V for silicon devices, a few tenths of a volt greater
for GaAs. 

Now imagine that RL slowly increases from its zero value. I2 circulates
in RL and generates a voltage V2(t), the second-harmonic output, shown in
Figure 7.13. While RL is small, I2 remains approximately constant, so the
second-harmonic output power increases with RL. However, the phase of
V2(t) is such that it reduces the peak positive value of Vj (t), and thus
reduces the peak value of Ij(t), Imax. This reduction in Imax in turn reduces
the value of I2, and eventually a point is reached where the output power
levels off and then begins to decrease. If RL is increased further, V2 also

Figure 7.13  Voltage and current waveforms in the resistive doubler. 

I j(
t)

V1 0.5 Vs Vf+( )=



 Diode Frequency Multipliers 385

increases and eventually the second-harmonic component of the junction
current becomes evident as a dip in the peak of the current pulse. 

The effect of the magnitude of RL on the shape of the current pulse is
shown in Figure 7.14. It appears at first that the current pulse in Figure
7.14(c) (large RL) has a strong second-harmonic component; however, this
second-harmonic component in fact is relatively weak because the peak
current Imax is much lower when RL is large than when RL is optimum.
Harmonic-balance studies of resistive multipliers indicate that optimum
efficiency is achieved at the value of RL where the peak diode current is
starting to be compressed by the second harmonic. 

In order to design a multiplier, we need to determine the input
resistance at f1, the optimum output load resistance RL, and the output
power as a function of input power. The input quasi-impedance of the
junction is the ratio of the fundamental-frequency voltage to current at the
junction: 

Figure 7.14 Current waveforms in the diode: (a) RL = 0; (b) optimum RL; (c) RL
greater than optimum. The peak current is greatest in (a), lowest in (c). 

I j(t
)
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(7.32)

The input impedance is simply the sum of this impedance and the series
resistance: 

(7.33)

The multiplier’s input power equals the sum of the real power of the
junction plus the power dissipated in Rs, at all the harmonics, minus the
output power. If Rs << Rj, the fundamental-frequency power dominates;
then 

(7.34)

We shall see that the efficiency of a resistive multiplier is invariably
very low, because most of the input power is dissipated in the diode
junction and in the series resistance at the fundamental frequency, and very
little is converted to harmonics. When the input is matched, the power
available from the source is equal to Pin ; then 

(7.35)

We now consider the output. At the peak of the excitation cycle, all the
voltage components across the diode must equal the forward voltage.
Summing these voltages around the output loop gives 

(7.36)

or 

(7.37)

where Vdc is the dc bias. In (7.36) and (7.37) we have assumed that only the
first- and second-harmonic components in Vj(t) are significant. The
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quantity Vdc – Vf is no more than a few tenths of a volt; it can be neglected,
and we find V2 to be 

(7.38)

From (7.28) and (7.32), we can express (7.38) in the more convenient form 

(7.39)

We find from harmonic-balance calculations that the value of V2 given
by (7.39) is too great; it results in a value of RL that is much too high and in
a current waveform similar to that shown in Figure 7.14(c). This result
occurs because the diode’s exponential I/V characteristic causes the current
to be very sensitive to junction voltage. The value of V2 given by (7.39) is
not precisely correct for two reasons: first, V1 is itself approximate; second,
it is determined only at a single instant, the peak of the excitation cycle,
and does not include effects of high V2 throughout the period of the
junction-voltage waveform. We find empirically that a better value of V2 is
approximately one-third that given by (7.39). Therefore, 

(7.40)

The load impedance is 

(7.41)

in which we have used (7.29) to express I2. 
The output power is 

(7.42)

The maximum available conversion gain Gav, max is found from (7.42) and
(7.35): 

(7.43)
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V2 0.5Imax Rj 2Rs–( )=
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A clear implication of (7.43) is that resistive multipliers suffer from
low efficiency. Even if the parasitic series resistance Rs were zero, (7.43)
implies that the maximum conversion efficiency of a resistive doubler is
only 0.133, or –8.8 dB. This high loss is the unavoidable result of power
dissipation in the diode junction. Of course, (7.43) is approximate, so the
–8.8 dB limit must also be considered approximate; however, it is difficult
to see any way that the efficiency could be more than 1 dB or so greater
than this limiting value. Practical resistive diode doublers usually have
conversion losses of at least 9 to 10 dB. 

7.3.2 Design Example of a Resistive Doubler

We shall design a 20- to 40-GHz frequency doubler. Schottky-barrier
diodes are not produced specifically for multiplier use, but good mixer
diodes are acceptable and readily available. A typical four-micron chip
diode has Rs = 6.0Ω and Cj0 = 0.05 pF. Initially we shall ignore the
junction capacitance; later, we include it in the circuit and design the
matching circuit to compensate. 

We begin by recognizing that, because of the low conversion
efficiency, virtually all the input power is dissipated in the diode. A four-
micron Schottky diode has a thermal resistance of approximately 2,000°C
per watt. We wish to limit the temperature rise in the junction to
approximately 50°C, a prudent limit, so the power dissipation cannot
exceed 0.025W, or 14 dBm. We therefore choose the nominal available
input power to be 10 dBm, to allow for the effects of input power variation
over the input frequency range, changes in environmental temperature, and
dc bias power, as well as to maintain a decibel or two of margin. 

A second consideration is that the dc junction current must be limited.
In order to achieve high output power and efficiency, we wish to have a
high value of Imax; Imax, however, is limited by Idc, which should not
exceed approximately 10 mA in a four-micron diode. Using (7.30), we
select Imax = 30 mA. In practice, it may be necessary to provide dc bias in
order to achieve this value of Imax at the prescribed 10-dBm power level.
Equations (7.33) and (7.35) give 

(7.44)

and with Rs = 6.0Ω, Rj = 83.0Ω. The conversion loss is found from (7.43) to
be 9.7 dB, and with 10 dBm of input power, the output power PL is
0.3 dBm or 1.07 mW. The load resistance RL is found directly from (7.41)
to be 59Ω. 

Ri Rin Rj Rs+ 89Ω= = =
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Figure 7.15 shows the circuit of the doubler, which does not include the
diode’s capacitance. With the design values of Rin and RL, the conversion
loss is 8.5 dB, slightly lower than expected. The lower conversion loss is
caused by differences between the idealized and calculated shape and peak
value of the current pulse; I2 is relatively sensitive to such differences,
especially to the pulse’s peak value. The junction voltage and current
waveforms are shown in Figure 7.16; the second harmonic is not
immediately evident unless the load resistance is decreased to zero. 

We now account for the junction capacitance. In a manner analogous to
the design of the LO circuit in a diode mixer, we initially assume that the
junction capacitance can be approximated as a lumped capacitance equal to
Cj0, in parallel with the junction. Thus, at the input frequency the diode is
equivalent to an 89Ω resistor in parallel with 0.05 pF, and at the output it is
equivalent to a 59Ω resistor in parallel with the 0.05 pF capacitor. 0.05 pF
is a reactance of 317Ω at 10 GHz and 159Ω at 20 GHz; this is, by itself,
low enough that little would be gained by adding a matching circuit to
remove its effects. A better approach might be to add transformers to match
the source and load impedances to 50Ω; those transformers could be
modified to provide tuning. We find that adding a 72Ω line 55 degrees long
to the input and a 70Ω line 45 degrees long to the output matches the
device to 50Ω source and load impedances, and increases the conversion
efficiency insignificantly, a few tenths of 1 dB. Harmonic-balance analysis
of the multiplier verifies our approximation that the diode’s effective input
and output capacitances are quite close to Cj0.

Figure 7.15 Idealized circuit of the resistive frequency doubler. 
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A few final details should be examined. First, the theory considers only
a multiplier having short-circuit embedding impedances, although the
embedding impedances of our circuit clearly were not zero at all
harmonics. In high-frequency multipliers, the short-circuit case is usually
valid, because, regardless of the diode’s terminating impedances, the
junction capacitance short circuits the resistive junction at the higher
harmonics of the input frequency. Second, it may be surprising that we
never explicitly considered the diode’s I/V characteristic in deriving the
expressions for impedance and power. We did, however, account for it
implicitly in our assumptions about the shape of the current pulse and Vj(t).
The unstated assumption was that the diode does not have an ideal
rectifying characteristic (i.e., it is not a short circuit under forward bias),
but that it does not have an unusually “soft” I/V characteristic either. [The
latter would have rendered invalid the assumptions about Vj(t) and Ij(t).]
Third, it may seem cavalier to assume that the desired value of Imax is
achieved at the desired input level. Of course, Pav and Imax cannot be
selected independently unless dc bias is used; dc bias can be varied to
adjust the waveforms to achieve Imax and Pav simultaneously. Some
judgment is necessary here; if one attempts to achieve a value of Imax that
is unreasonable in view of Pav, the Ij(t) and Vj (t) waveforms may not
approximate those in Figure 7.13, and the results may be unsatisfactory.
Finally, the assumption in (7.35) that all the input power is dissipated in the
diode and the conclusion that the efficiency is low may seem like a circular
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Figure 7.16 Current and voltage waveforms in the junction of the diode used in the
resistive doubler.
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argument. It is not, because this assumption was used only to find an
expression for the input power; the output power was determined from
other considerations. 

7.4 BALANCED MULTIPLIERS 

It is a common practice to realize diode frequency multipliers in balanced
structures. Balanced multipliers have significant advantages compared to
single-ended multipliers; the most important are increased output power
and the inherent rejection of certain unwanted harmonics. The input or load
impedance of a balanced multiplier in some cases differs by a factor of two
from that of a single-diode multiplier; therefore, a balanced multiplier
sometimes provides more satisfactory input or load impedance. 

Diode multipliers are sometimes interconnected via hybrids, but for
economy they are more often used in the antiparallel or series forms
described in Section 5.2.1. The antiparallel connection, shown in Figure
5.17, is probably the simplest form of a balanced multiplier; it rejects even
harmonics of the input frequency and consequently can be used only as an
odd-order multiplier. In an antiparallel-diode multiplier, each diode
effectively short circuits the other at the second harmonic, so each diode
acts as a type of idler for the other. This circuit does not reject the
fundamental frequency, however, so it requires an output filter. 

In theory, the antiparallel circuit can be used to realize either resistive
or reactive multipliers. However, because the stability of a varactor
multiplier is sensitive to slight unbalance between the diodes, varactor
multipliers are rarely realized as antiparallel circuits. It is thoroughly
practical, however, to realize resistive multipliers this way, although the
restriction to third-harmonic operation in the resistive multiplier results in
low efficiency. 

The bridge rectifier circuit in Figure 7.17 is a practical way to realize
resistive frequency doublers. The design of such multipliers is not unlike
the design of a diode ring mixer. The diodes are selected to have large
junction areas, consistent with a manageable Cj0. (We saw from the design
example that a capacitive reactance of ~100Ω at the output frequency is
usually small enough.) Each transformer is loaded with two sets of two
diodes in series; thus, a single diode impedance of Rs + Rj. As with
balanced diode mixers, high-frequency components require baluns, not
transformers; the baluns are designed to match the diode. See Section
6.4.3.3 for an example of balun design as it applies to mixers; balun design
for multipliers follows directly from that discussion.
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The voltage and current waveforms in the balanced bridge multiplier
are identical to those of a full-wave rectifier in a dc power supply. The
current consists of a train of half-sinusoidal pulses, which has no odd-
harmonic components. Thus, the multiplier inherently rejects the two most
troublesome harmonics, the first and third, and the fourth is usually weak
enough to require little or no filtering. Reference [7.7] describes a
monolithic realization of such a mixer, covering an output frequency range
of 16 to 40 GHz. 

It is important to note that the diode “quad” used in the balanced
multiplier is not identical to that used in the ring mixer (compare to Figure
6.17). The type of diode required by the multiplier is readily available
commercially and uses the same kinds of packages as mixer ring quads.
The multiplier version is called a bridge quad. 
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Chapter  8

Small-Signal Amplifiers 

This chapter is concerned with nonlinear distortion phenomena in small-
signal amplifiers. Such amplifiers are designed primarily to have low noise
figures or specific values of small-signal gain, and their linearity usually
must be optimized within gain and noise constraints. The distortion
phenomena of greatest concern are saturation, intermodulation distortion,
harmonic distortion, and AM-to-PM conversion; these terms are defined in
Section 1.3. We shall see that Volterra-series analysis is applicable to all
these phenomena, although harmonic-balance analysis is preferable for
determining single-tone saturation effects. 

8.1 REVIEW OF LINEAR AMPLIFIER THEORY 

8.1.1 Stability Considerations in Linear Amplifier Design 

In its simplest form, a small-signal amplifier consists of a transistor, an
input-matching network, and an output matching network. Bias circuitry
must also be included; however, a well-designed bias network does not
affect the RF matching of the device, so we will not consider the bias
circuit further. The circuit model of the amplifier is shown in Figure 8.1(a). 

The transistor is treated in the design process as a two-port, described
by a set of two-port parameters, usually S or Y parameters. When used in a
linear amplifier, FET and bipolar devices are usually operated in a
common-source or common-emitter configuration, respectively, and the
emitter or source is common to the input and output. The S parameters vary
with dc bias and therefore must be measured at the bias voltages at which
the device will be operated. If the matching networks are lossless (we will
assume that they are), they can be represented as lumped impedances or
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reflection coefficients at the operating frequency, and we can redraw the
circuit in Figure 8.1(a) to form the canonical equivalent circuit shown in
Figure 8.1(b). 

As an alternative to a two-port, a transistor can be represented by an
equivalent circuit. This representation can include nonlinear elements for
modeling nonlinear phenomena. If the lumped-element model is well
conceived, its S parameters can be calculated easily, and they should agree
with those measured from the device. 

Figure 8.2 shows a widely used small-signal equivalent circuit of a
microwave MESFET or HEMT device. Other kinds of FETs (MOSFETs
and JFETs), can be represented by an equivalent circuit having a nearly
identical structure, but, of course, very different element values; the
equivalent circuit of bipolar devices is only slightly different. The
following discussion about microwave FETs is at least qualitatively true for
bipolars and other types of FETs as well; for this reason, we shall focus
first on the microwave FET. 

Figure 8.1 (a) Small-signal amplifier consisting of input and output matching
circuits and a MESFET; (b) canonical model of the amplifier.
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The nonzero value of S1, 2 implies that the device has feedback, a
consequence of elements Cgd and Rs in Figure 8.2. A high value of Rs tends
to stabilize the device (although it reduces gain and increases noise), but
Cgd degrades stability. Feedback causes the device’s input impedance to be
a function of the load impedance, and the output impedance to depend on
the source impedance. Occasionally S1, 2 is small enough to be negligible; a
device having S1, 2 = 0 is called unilateral1; it has no feedback, and
therefore the input and output impedances are independent of the load and
source impedances. 

In some devices, and at some frequencies, it is possible to find a
passive source impedance that results in an output impedance having a
negative real part or a load impedance that causes the input impedance to
have a negative real part. In such cases, it is possible to satisfy the
Kurokawa conditions for oscillation (see Section 12.1.3) and, if those
conditions are satisfied, oscillation inevitably results. Then, we say that the
device is conditionally stable or, equivalently, potentially unstable; when
no such source or load impedances can be found, the device is
unconditionally stable. Most transistors are conditionally stable in the low-
frequency part of their useful range (which, in modern devices, may be
several tens of gigahertz) and unconditionally stable at the high end of their
useful frequency range.

1.  A device having S2,1 = 0 is called dead. 

Figure 8.2 Small-signal, nonlinear MESFET equivalent circuit. Four elements—
Cgs , Cgd , id, and gds—are nonlinear, although Cgd often can be treated as
a linear element. 
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Stability in small-signal amplifiers is important for reasons beyond the
natural desire to prevent oscillation; it affects the criteria for which the
amplifier can be designed. When a device is unconditionally stable, it is
always possible to achieve a conjugate match simultaneously at the input
and output; when the amplifier is conditionally stable, it is generally
impossible to achieve a simultaneous conjugate match. Furthermore, many
of the characteristics of a FET that improve performance—the most
important being high transconductance, low Cgs, and low Rs—also raise the
minimum frequency at which the device is unconditionally stable. Thus,
most high-quality MESFETs and HEMTs are only conditionally stable at
microwave frequencies. 

When a device is unconditionally stable, the design process can be very
simple: one calculates the source and load impedances that result in a
simultaneous conjugate match (so-called SCM conditions) and designs
matching networks that present these impedances to the gate and drain of
the device over the required bandwidth. The gain that results is the
maximum available gain, or MAG (Section 1.5). SCM conditions may not
be practical, however, for several reasons: (1) the device may be
conditionally stable; (2) a value of gain other than the MAG may be
desired; (3) SCM conditions do not provide optimum noise figure; or (4) in
a broadband amplifier, the designer must mismatch either the source or
load at low frequencies to obtain a flat passband. In these cases a unique set
of source and load impedances that result in the desired gain generally does
not exist. Consequently, our design procedure must allow us to select
source and load terminations that result in a specific value of gain and, in
some cases, an acceptable noise figure. The design procedure must also
prevent us from inadvertently using source or load impedances that cause
instability. 

The necessary and sufficient conditions for unconditional stability are
that the stability factor K be greater than 1.0 and that the magnitude of the
determinant of the S matrix, , be less than 1.0. If either of these
conditions is not met, the device is conditionally stable. SCM conditions
can be found if K > 1, even if , although this situation rarely occurs
in practical devices. The determinant of the S matrix is 

(8.1)

and the stability factor K is 

∆S

∆S 1>

∆S S1 1, S2 2, S2 1, S2 2,–=
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(8.2)

It is interesting to note that an amplifier having lossless input and output
matching circuits has the same value of K as the transistor it uses; that is, K
is invariant with lossless, passive matching. 

If the device is conditionally stable, we need to know the input and
output terminations that can cause oscillation, the source and load reflec-
tion coefficients for which 

(8.3)

and 

(8.4)

where  and  are the respective input and output reflection
coefficients of the device. These are given by the following relations: 

(8.5)

(8.6)

The solutions of (8.3) and (8.4) are regions in the plane of the load and
source reflection coefficients, respectively, and can be plotted conveniently
on a Smith chart. The borders of the regions are circles; the values of ΓL
that border the stability region defined by (8.3) and (8.5) is called the
output stability circle. Its center CL is 

(8.7)

and its radius rL is 
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(8.8)

Similarly, the input stability circle defines the boundaries of the region in
which satisfies (8.4). Its center and radius, Cs and rs, respectively, are 

(8.9)

and 

(8.10)

Equations (8.7) through (8.10) identify the boundaries of the stability
regions, but they do not indicate whether the region that insures stability is
inside or outside the stability circle. The stable region is determined easily
from the following considerations: if , the point , the
center of the Smith chart, must be in the stable region; similarly, if

, the point  in the input plane must be within the stable
region. In practical devices that do not employ external feedback, the
outside of the circle is usually the stable region. 

8.1.2 Amplifier Design 

Designing a small-signal amplifier involves selecting the appropriate
source and load impedances (or reflection coefficients) and designing the
input and output matching circuits to present those impedances to the
device. If the device is unconditionally stable and maximum gain is
desired, the process of determining source and load reflection coefficients
is straightforward. The reflection coefficients that provide a simultaneous
conjugate match,  and  are 

(8.11)

and 
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(8.12)

where 

(8.13)

(8.14)

(8.15)

and

(8.16)

Under SCM conditions, the transducer gain equals the maximum available
gain; it is 

(8.17)

If the device is conditionally stable, or if it is unconditionally stable but the
desired gain is less than the maximum available gain, the source and load
reflection coefficients that give the desired gain are not unique. If the
source reflection coefficient is specified, the locus of load reflection
coefficients providing a particular value of gain is a circle in the reflection
coefficient (Smith chart) plane; conversely, if the load is specified, the
source reflection coefficients lie on a circle. Although the desired gain can
often be achieved without a conjugate match at either the input or output, it
is usually wise to match at least one port; having one port well matched
allows stages to be cascaded easily and with minimal gain variation over
the amplifier’s passband. 

An amplifier having one conjugate-matched port can be designed
according to its available gain, Ga, or power gain, Gp . These quantities are 
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(8.18)

and 

(8.19)

where  and  are given by (8.5) and (8.6). From (8.18) we can see
that Gp is independent of Γs ; therefore, designing an amplifier to have a
specific value of power gain requires only selecting . However, the
quantity that we loosely call gain is in fact transducer gain, Gt , which is 

(8.20)

If the input is conjugate-matched, the power delivered to the network
equals the power available from the source, and from (8.8) and (8.20)
Gt = Gp. Similarly, (8.19) indicates that the available gain is independent of

; achieving the desired value of Ga requires only selecting . If the
output is matched, the power delivered to the load equals the power
available from the network, and Gt = Ga . Thus, one can achieve a specified
value of Gt by designing the amplifier to have Gp or Ga equal to the desired
value of Gt and then conjugate-matching the input or output, respectively.
The design procedure is as follows: 

1. Select the desired transducer gain Gt. 

2. Decide which port is to be matched. 

3. If the input is to be matched, select  to achieve Gp = Gt; then find
 from (8.5). 

4. If the output is to be matched, select  to achieve Ga = Gt; then find
ΓL = Γout*  from (8.6). 

The remaining problem is to find the values of ΓL that provide the
specified Gp or the values of Γs that provide the specified Ga; these
quantities lie on circles in the load or source planes, respectively. The
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center and radius of the ΓL circle, called the power gain circle, are
respectively 

(8.21)

and 

(8.22)

where K is given by (8.2) and gp = Gp / |S2, 1|2. The loci of Γs that provide
constant available gain are also circles, and their centers and radii are given
by the similar relations, 

(8.23)

and 

(8.24)

where ga = Ga / |S2, 1|2. Comparing (8.23) and (8.9), we see that the centers
of the input stability circle and available-gain circle lie on the same line;
similarly, the centers of the output stability circle and power-gain circle lie
on the same line. Moreover, although it is not obvious from the equations,
the circles intersect at the edge of the reflection-coefficient plane. 

8.1.2.1 Example: Gain and Stability Circles

A FET has the following S parameters at 10 GHz:
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2–( )+
-----------------------------------------------------------------------------------------------------=
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ra
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2–( )+
-----------------------------------------------------------------------------------------------------=
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=
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We wish to find the input and output stability circles and gain circles that
represent Gp and Ga values of 10 dB. We first use (8.2) to find K, and
calculate ∆S from (8.1). We find that K = 0.271 and  so
the device is conditionally stable. If the device were unconditionally stable
there would be no need to find the stability circles. Equations (8.7) and
(8.8) provide the output stability circle; its center and radius are 
and 0.634, respectively. Similarly, (8.9) and (8.10) give the center and
radius of the input stability circle; these are, respectively,  and
0.350. 

We now calculate the gain circles. First we find
gp = ga = 3.16/1.72 = 1.093. Then, using the K and ∆S found earlier, (8.21)
and (8.22) provide the power-gain circle; its center and radius are

and 0.526, respectively. Similarly, we use (8.23) and (8.24) to
find the available-gain circle’s center and radius,  and 0.378,
respectively. These circles are plotted on a Smith chart in Figure 8.3.

We have now identified a range of values of Γs or ΓL that provide a
specified value of transducer gain; however, we still have no clear rationale
for selecting any particular value. Clearly, it is wise to pick a value that is
not too close to the stability circle, or a small source or load mismatch may
cause oscillation. A consideration in the design of a low-noise amplifier is
that Γs should be as close as possible to the value that optimizes noise
figure; thus, one would pick Γs to optimize noise figure and would choose
ΓL = Γout*  to match the output. A third criterion (the one we all have been
waiting for!) is to pick Γs or ΓL to optimize linearity, perhaps within
constraints on gain and noise figure. The latter half of this chapter is
devoted to an examination of that criterion. 

∆S 0.391 140°–∠=

1.32 83°∠

1.45 92°∠

0.636 83°∠
0.718 92°∠

Figure 8.3 Stability and gain circles of the FET in the example: (a) input plane; (b)
output plane.
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8.1.3 Characteristics of FETs and Bipolars in Small-Signal
Amplifiers

Because the transistor was treated as a general two-port described by S
parameters, the design process described in Section 8.1.2 is valid for all
types of devices, bipolar as well as FET. Bipolar devices, BJTs and HBTs,
are distinctly different, however, and require some special considerations.
We describe some of these in this section.

8.1.3.1 Bias

Bipolar transistors are exponential devices: the collector current is an
exponential function of base-to-emitter voltage. This characteristic makes
it difficult to provide stable bias from a base-to-emitter voltage source.
Furthermore, because the current gain is a strong function of temperature,
even a dc base-current source provides inadequate stability. 

Methods for providing stable dc bias to a bipolar transistor are well
known and are standard textbook material. Unfortunately, the methods that
provide the best dc stability require an emitter resistor and bypass
capacitor. At high frequencies, a bypass capacitor’s parasitics may prevent
it from working adequately. Methods that do not require an emitter resistor
have been developed, but they are not as stable as those that do. Other
methods involve active bias, and the use of a current mirror. Reference
[8.1] describes a number of such methods. 

8.1.3.2 Gain Characteristics

FET devices have relatively low transconductance and low gate-to-source
capacitance, while bipolars have high transconductance but high base-to-
emitter capacitance. As such, high low-frequency gain (often greater than
the in-band gain) is much more likely to occur in bipolar devices than in
FETs. Designers of bipolar amplifiers must select matching circuits that
suppress low-frequency gain; for example, by using a high-pass circuit
structure.

8.1.3.3 Impedances 

High-frequency FETs have a high input Q. The input is well approximated
by a series RC circuit, which has a large capacitive reactance compared to
its resistance, even in the microwave range. In bipolars, however, the large
input capacitance short circuits the base-emitter resistance at high
frequencies, so the input impedance consists largely of the base resistance.
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As a result, the bipolar’s input, in common-emitter configuration, is much
easier to match over a broad bandwidth. 

The output impedance of a BJT or HBT, lacking feedback, would be
virtually infinite. Feedback from the base-to-collector capacitance,
however, decreases the output impedance dramatically and makes the
output impedance much more sensitive to source impedance than in FETs. 

Because of the bipolar’s high transconductance, its input capacitance,
at low frequencies, often consists largely of Miller-effect capacitance.
Since the transconductance depends on bias, the input impedance also
becomes bias-sensitive. It also can be difficult to model, as it is sensitive to
the base-to-collector capacitance, which in turn is quite small and difficult
to measure. 

8.1.3.4 Distortion

Levels of intermodulation distortion in high-frequency bipolar devices are
generally lower than in FETs. HBTs, in particular, often exhibit dramatical-
ly lower distortion at signal levels well below the 1-dB compression point.
The reason for this characteristic is discussed in detail in Section 8.2.2.

8.1.3.5 Noise Matching

The noise figure of most bipolar transistors is considerably less sensitive to
source impedance than in FETs. The noise figures of small-signal bipolars
are generally considerably higher than GaAs MESFETs and HEMTs. 

In both bipolars and FETs, the source impedance that provides opti-
mum noise figure at low frequencies is higher than the input impedance. As
frequency increases, the source impedance decreases; it approaches a con-
jugate match at the high end of the device’s useful frequency range. 

8.1.4 Broadband Amplifiers

Section 8.1.2 described the design of amplifiers for a single “spot”
frequency. Practical amplifiers must cover a prescribed bandwidth, which,
in some cases, may be quite broad. Our design method must address this
requirement. 

The single-frequency design is usually adequate for amplifier
bandwidths up to perhaps 10%. The simplest approach is to design the
amplifier for a single frequency, the band center, and use computer analysis
to optimize the circuit. For broader bandwidths, however, a new
methodology is needed. One simple approach is to make Γs the source
impedance for optimum noise figure. This defines the output impedance of
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the device, Γout. Selecting ΓL = Γout
*  matches the output, but unfortunately

results in a sloped passband. Thus, it is necessary, in a broadband amplifier,
to mismatch the output to achieve flat gain. The equations in Section 8.1.2
can be used to obtain ΓL values, over the passband, which provide flat gain.
This is easiest to do, however, with a computer circuit-analysis program. 

Once the values of Γs and ΓL are determined, matching networks can be
synthesized, preferably with the aid of a network-synthesis program. If Γs
or ΓL are difficult to synthesize, the resulting networks may not provide the
desired performance. In this case numerical optimization on the computer
may be necessary. 

8.1.5 Negative-Image Modeling

The design of broadband amplifiers can become difficult when it involves
competing trade-offs between gain, distortion, and noise. An elegant
method for resolving those conflicts is called negative-image modeling
[8.2]. 

The method is as follows: 

1. Create a circuit with “negative-image” source and load networks as
shown in Figure 8.4(a); –Cs and –CL are negative capacitances. 

2. Use an appropriate topology for the input and output networks. For
best results, they should mirror the structure of the device’s equivalent
circuit at its respective ports.

3. Optimize the circuit by means of a circuit-analysis program. Use
whatever criteria or trade-offs are appropriate. Because of the negative
capacitances, the optimization will be surprisingly easy.

4. When satisfactory performance has been achieved, synthesize input-
and output-matching networks using the positive versions of the
negative-image networks as loads; see Figure 8.4(b).

5. Replace the negative-image circuits with the matching circuits. 

6. Do any necessary final optimization. 

Why does the method work? If the matching circuits synthesized in Figure
8.4(b) provide a conjugate match to their respective positive-load
networks, their output impedances must be equivalent to the negative-
image networks. Thus, they provide the same Γs and ΓL that the negative-
image networks provided to the FET. Of course, the synthesized networks
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may not provide a perfect match to the positive loads, but we expect that
they are a good approximation. Some final optimization still may be
necessary. 

8.1.5.1 Example: Design with Negative-Image Modeling 

As a simple example, we use negative-image modeling to design a 7- to 11-
GHz amplifier having 10-dB gain. For the example, we use lumped-
element matching circuits and do not design a complete, distributed
matching circuit. These conditions are, of course, impractical, but they
serve to illustrate the method without introducing additional complications.

Figure 8.5(a) shows the amplifier using negative-image matching. The
port impedances and capacitor values are adjusted to achieve flat, 10-dB
gain over the prescribed band. A simple synthesis program was used to
create matching circuits for the positive-image networks, as illustrated in

Rs RL
–Cs

–CL

Figure 8.4 Negative-image matching: (a) a FET with negative-image networks; (b)
synthesis of equivalent real matching circuits. 

RL+CL

Matching
Circuit

Rs
+Cs

Matching
Circuit

(a)

(b)
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Figure 8.4(b), and these were attached to the amplifier, as shown in Figure
8.5(b). 

Figure 8.6 shows the gain of the amplifier with negative image
matching and with the synthesized matching circuits. Without any further
optimization, the final circuit’s gain is within 1 dB of the negative-image
circuit’s gain. Optimization can be used to fine-tune the gain, if desired. 

8.2 NONLINEAR ANALYSIS 

Nonlinear analysis of a small-signal amplifier requires the use of the
lumped-element equivalent circuit of Figure 8.2, along with appropriate
source and load networks. When the excitation is weak, Volterra methods
are the logical means to evaluate such small-signal nonlinear effects such
as harmonics, intermodulation, or AM-to-PM conversion. Because the
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Figure 8.5 (a) Negative-image matching networks connected to a FET; (b) the
negative-image networks replaced by equivalent matching circuits
having real, positive-valued elements. 
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circuit includes feedback elements and reactive nonlinearities, power-series
analysis cannot be used. For Volterra-series analysis, each significant
nonlinear element must be characterized by a power series in terms of its
small-signal control voltage. 

8.2.1 Nonlinearities in FETs 

The equivalent circuit in Figure 8.2 shows four nonlinear elements: the
gate-to-drain capacitance, Cgd , the gate-to-source capacitance, Cgs, the
controlled current source, id, and the drain-to-source conductance, gds.
When used in a small-signal amplifier, a FET is always operated well into

Figure 8.6 Performance comparison of the real and negative-image amplifiers: (a)
gain; (b) input and output return loss. 
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its saturation region; the description of the GaAs MESFET’s large-signal
model in Section 2.5.4 showed that in current saturation Cgs depends only
weakly upon vd, and Cgd depends so weakly upon vg and vd that it often can
be treated as a linear element. Thus, Cgs is shown in Figure 8.2 as a
function of vg only. If Cgd is treated as a nonlinear element, it is a function
of only the voltage vf  across it.2 

The nonlinearities of the capacitances usually do not dominate in the
establishment of the small-signal nonlinear performance of the circuit; the
dominant element is usually id(vg) or, occasionally, gds(vd). Therefore, we
can take some reasonable liberties with the nonlinear characterization of
these less significant elements. In particular, since Cgs is a relatively minor
contributor to intermodulation distortion, it usually can be treated as a
linear element. Similarly, in small-signal amplifiers where the FET remains
in current saturation, Cgd  also can be treated as a linear element. When the
C/V or Q/V characteristic of an element has been determined, the incre-
mental power-series representation can be found. 

These approximations should be treated with caution. As with all
nonlinear capacitances, the significance of the nonlinearities in Cgs
depends on frequency, bias, and source and load impedance. At low
frequencies, the capacitive reactance is high, so it generates little linear or
distortion current, regardless of dc bias. As frequency increases, it is
possible to find combinations of frequency and bias where the capacitive
nonlinearity causes surprisingly high distortion [8.3]. 

The controlled current source id and the gate/drain conductance gds
represent the FET’s channel current, a single nonlinearity that has two
control voltages, vg and vd . Equation (2.10) gives a Taylor-series
characterization of a multiply controlled nonlinearity; we can identify v1 in
(2.10) as vg , v2 as vd, and the FET’s dc I/V characteristic Id(Vg , Vd) as f.  As
in Chapter 2, we let capital letters represent large-signal voltages and
currents, while lower-case letters represent incremental ones. If we ignore
the cross terms in (2.10) (i.e., those that include the product term v1v2 ), we
can treat the nonlinearity as two nonlinear elements in parallel, one
depending upon vg and the other on vd . The equation can then be split into
two parts, one representing the dependence on v1 and the other representing
the dependence on v2. After substituting and rearranging (2.10), we obtain 

2.  As before, we view the capacitances in a division-by-capacitance sense (Section 2.5.7),
although the assumptions are largely valid for division-by-charge modeling as well.
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(8.25)

where the derivatives are evaluated at the dc bias points Vg0 and Vd0. The
terms in (8.25) that contain vg represent a nonlinear controlled current
source, and the ones that contain vd represent a nonlinear conductance. The
former is, of course, the current source id(vg) in Figure 8.2, and the latter is
gds(vd). 

An unfortunate complication of this neat situation is that the drain
conductance gds(vd) often depends upon frequency, and the value of gds
obtained from dc I/V measurements is usually much lower than the value
measured at high frequencies. For this reason, it is best to determine gds(vd)
by extraction from measured S or Y parameters. It is important to
remember that the Volterra-series analysis requires a series expansion of
this element’s incremental I/V characteristic, not of its G/V characteristic;
see Section 2.2.6. 

Figure 8.7 shows an example of the measured Taylor-series coefficients
of the gate I/V characteristic of a conventional MESFET, as a function of
the gate bias voltage. The coefficients are largest near pinch-off, simply
because the current changes most rapidly near that voltage. This implies
that the distortion is worst near pinch-off as well. It is worth noting that the
third derivative has a zero near Vg = –0.95V, so we might expect the third-
order distortion to be very low at this bias voltage. Unfortunately, this is
not the case, because (1) the second derivative is maximum at this point, so
the contribution of second-order mixing to third-order distortion is
relatively great, and (2) the large variation in the third derivative near the
zero implies that the contribution to the 2ω2 – ω1 product from higher-
order terms (Section 4.1.1) could be relatively large as well. However, the
more gradual decrease in the magnitude of the third derivative as Vg → 0
does indeed imply that third-order distortion decreases in that region. 

The simplifications described in this section allow modeling of third-
order intermodulation distortion intercept points to an accuracy of 1 to 2 dB
in modern MESFETs, JFETs, and MOSFETs fabricated in mature
technologies. In more advanced technologies, such as short-gate-length
pHEMTs and MOSFETs, nonlinearities that were insignificant in mature
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MESFETs may be more important. It may be necessary to examine the
device characteristics carefully to determine what must be modeled most
accurately. HEMT devices, in particular, have greater gds than MESFETs,
and stronger id nonlinearity. Additionally, it may be necessary to model the
cross terms in the Taylor series, which have been neglected in (8.25).
Reference [8.4] gives some valuable insight into these matters. 

8.2.2 Nonlinearities in Bipolar Devices

Bipolar devices have extremely strong, exponential nonlinearities, yet they
have relatively low levels of distortion. Two reasons explain this paradox.
The first is in the way that the transistor’s distortion levels vary with dc
bias current. From (2.102), the collector current in a bipolar device, Ic, is 

(8.26)
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Figure 8.7 The measured derivatives of the gate I/V characteristic of a conventional
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We saw in Section 4.1.3 that a FET’s output third-order IM intercept point,
IP3, is given by 

(8.27)

where a1 and a3 are the first- and third-degree Taylor-series coefficients of
the I/V characteristic and IP3 is in dBm. Because of the similarity in the
equivalent circuits, this expression is at least qualitatively valid for bipolar
devices. Differentiating (8.26), we have 

(8.28)

so

(8.29)

We see that the intercept point increases dramatically with collector
current. A high intercept point can be achieved simply by using a high
collector current. 

The second reason is a cancellation phenomenon between the
components of collector current generated by the resistive and reactive
parts of the junction. As a result, there is an optimum capacitive
nonlinearity, which is that of a classical diffusion capacitance (2.105). This
is a surprising result, as it is impossible for the current in a reactance and a
resistance to cancel; however, it is possible for the collector current
generated by those nonlinearities to cancel. A full derivation of the can-
cellation phenomenon can be found in [8.5].

The dominant capacitances in a bipolar device are (1) charge stored in
the depletion regions around the base-to-emitter and base-to-collector
junctions, and (2) diffusion charge stored in the base. The depletion
capacitances are well described by the textbook pn junction capacitance
expression, (2.59), and the diffusion capacitance by (2.105). The base-to-
emitter capacitance nonlinearity is quite strong; the diffusion component is,
in theory, an exponential function of voltage. In reality, the capacitive
nonlinearity is much weaker than (2.105) implies, in part because it is valid
only at frequencies well below 1/τf, and because its nonlinearity is diluted
somewhat by the depletion capacitance. The nonlinearity of the base-to-
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collector capacitance is significant in bipolars, as well; it can be described
accurately by (2.59). 

8.2.3 Nonlinear Phenomena in Small-Signal Amplifiers 

The nonlinear phenomena of greatest concern in amplifiers are AM-to-PM
conversion, harmonic generation, intermodulation distortion, and satura-
tion. These phenomena can be analyzed by either Volterra techniques or
harmonic-balance analysis. For saturation calculations beyond the 1-dB
compression point, harmonic-balance analysis is probably preferable to
Volterra-series analysis, because the harmonic-balance approach can in-
clude the effects of strong nonlinearities in the device model. These effects
are often the dominant ones in establishing saturation characteristics, and
are generally not modeled by the Volterra series. Nevertheless, in situations
where gain compression effects are dominated by weak nonlinearities, es-
pecially a FET’s nonlinear transconductance, Volterra-series analysis is an
acceptable analytical method. 

As in Section 8.1, we view the amplifier as a “black box” (Figure 8.8)
having linear and nonlinear transfer functions. The excitation is the signal
vs(t), which consists of Q sinusoidal components, 

(8.30)

The response i(t), the output current, is 

(8.31)

The current i(t) is the sum of all the nth-order output currents in(t) ; an nth-
order output current is the sum of all current components that arise from
mixing between n input frequencies. The function ,
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vs(t) at those frequencies. In this section we assume that the nonlinear
transfer functions of the circuit are known, and we show how they can be
used to evaluate a circuit’s nonlinear behavior. Those transfer functions can
be determined by straightforward application of the theory in Chapter 4. 

8.2.3.1 Saturation and AM-to-PM Conversion 

When the amplifier is driven into saturation by a single sinusoidal signal at
frequency , the output current at  can be found by evaluating (8.31)
under the condition of a single-tone excitation and by retaining only the
terms at . The result is 

(8.32)

where is the component of the output current i(t) at . In (8.32) we
have considered only the positive-frequency part of  [so  is a
phasor], and we have limited the summation over n to N = 3; components
of order greater than three are neglected. The coefficient of 3 in the second
term of (8.32), and similar coefficients in the following equations, may be
confusing. They arise from the fact that there are multiple identical terms in
(8.31) at any particular mixing frequency. 

Although it may not be obvious, (8.32) predicts that as Vs, 1 increases,
 saturates and then begins to decrease. Equation (8.32) is valid if Vs, 1

remains small enough that  does not decrease with an increase in
Vs,1; beyond that point, higher-order terms in the series must be included.
The next highest-order component at the fundamental frequency is fifth
order; these higher orders become significant as the amplifier is driven
more strongly into saturation. 

Figure 8.8 Quasilinear amplifier model.
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We define the relative distortion  as the ratio of the total output
current to the linear (first order) part.  represents the fractional
deviation from linear operation: 

(8.33)

and substituting (8.32) into (8.33) gives 

(8.34)

Equation (8.34) indicates that  can be expressed as the sum of two
phasors, as shown in Figure 8.9. If Vs, 1 is very small, , which
indicates linear operation. As Vs, 1 increases, however,  changes in
both magnitude and phase; in FET amplifiers the phase of H3/H1 is always
such that  decreases, which indicates that the gain decreases, and the
output power saturates. The existence of a nonzero phase shift θ shows
that, as the device begins to saturate, the phase shift also begins to deviate
from its value when Vs, 1 is small; this phenomenon is called AM-to-PM
conversion. 

8.2.3.2 Harmonic Generation 

Again we consider a single-tone excitation at . The positive-frequency
component of  in (8.31) at the nth harmonic of  is 

(8.35)
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Figure 8.9 Relative distortion vector D(ω1) describing saturation and AM-to-PM
conversion. |D(ω1)| is the gain compression and θ is the phase deviation.
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For example, the second harmonic output current is 

(8.36)

and the third harmonic is 

(8.37)

A harmonic can also have a component at a higher order; for example, the
second harmonic can include a fourth-order component, 

(8.38)

Note that there are four identical terms in (8.31) that contribute to the
second term in (8.38). We can, of course, pick the phase of Vs, 1 arbitrarily
without losing generality, so the conjugate quantity is not significant. In
general, an even harmonic can have components at all even orders, and an
odd harmonic can have components at all odd orders. The components at
orders greater than the lowest, however, are only significant when Vs, 1
approaches saturation. 

The relative distortion of the lowest-order component at the nth
harmonic is, from (8.33), 

(8.39)

8.2.3.3 Intermodulation Distortion 

Intermodulation involves the effects of mixing between the fundamental
frequencies and harmonics when two or more excitation frequencies exist.
If the excitation contains the frequencies , the output may
contain the frequencies , where m, n, and p are
integers. Many of these mixing products are potentially troublesome, but
the case that is universally annoying is the one in which two excitation
frequencies exist,  and , and the intermodulation distortion product
has the frequency  or . Then, 
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(8.40)

Higher-order current components can contribute to a mixing product at
. Thus, 

(8.41)

As with the other distortion products, the components of order greater than
three represent saturation effects and are not significant at very small Vs, 1
and Vs, 2. The relative distortion, when Vs, 1 and Vs, 2 are small, is 

(8.42)

The relative distortion, as it is defined for intermodulation and harmonic
generation, is an important quantity. Its magnitude squared is the ratio of
the power in the distortion component to the linear power, or, more
colloquially, the signal-to-distortion ratio. This is an important quantity in
specifying a system, and can be used to define the intermodulation
intercept point of a system or component (Section 4.1.3). 

8.2.3.4 IMD, Saturation, and the 10-dB Rule

A commonly used rule, throughout the industry, is to estimate the output
third-order intercept point (for the  product) as 10 dB greater than
the 1-dB gain compression point. This rule seems to hold remarkably well
in a wide range of devices. Although often viewed as an empirical
observation, the 10-dB rule has some basis in theory: we see the third-order
nonlinear transfer function in both the expression for gain compression,
(8.34), and for intermodulation distortion (IMD), (8.42), so there should be
no surprise that the two are linked. In fact, a simple analysis gives a
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10.6-dB difference between the compression point and the third-order
intercept point.3 

For better or worse, the 10-dB rule often collapses dramatically. For
example, the IP3 of an HBT amplifier is often much more than 10 dB
greater than the compression point. This puzzle can be resolved by noting
that even a perfectly linear amplifier (in the sense that Hn(ω1, ... ,ωn) = 0,
n > 1) must still compress at some point, as it has only limited dc bias
power available to create RF output power. Thus, if the amplifier
compresses because of weak nonlinearity, the 10-dB rule holds, but if it
compresses because of dc limitations, the rule may not apply. 

8.2.3.5 Spectral Regrowth 

Spectral regrowth, which has been examined in Section 4.2.8, is a
manifestation of intermodulation distortion in components or systems
involving modulated waveforms. When a bandlimited signal is distorted,
the odd-order distortion components appear as an increase in spectral
power adjacent to the linear spectrum. Figure 4.13 shows the spectrum
when the signal is subjected only to third-order distortion; however, higher-
order distortion can increase the bandwidth even further. 

In many communication systems, users are assigned contiguous
channels. Thus, the distortion components fall into adjacent channels and
cause interference. The adjacent-channel power ratio can be defined as

(8.43)

where f1 and f2 are the boundaries of the adjacent channel and f2 and f3 are
those of the prescribed channel. It is important to note that many wireless
and cellular-telephone standards define this quantity in different ways. 

3.  Some sources give a figure of 9.6 dB, which comes from ignoring the 1 dB of gain
compression. 
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8.2.4 Calculating the Nonlinear Transfer Functions 

Nonlinear transfer functions of small-signal amplifiers are best calculated
by the method of nonlinear currents, described in Section 4.2.5. Section
4.2.6 describes the application of this method to large circuits. The output
current as a function of excitation voltage can be used to determine the
transfer function; for example, from (8.40) we obtain

(8.44)

Currently available commercial circuit-analysis software can perform this
analysis. 

8.3 LINEARITY OPTIMIZATION 

In this section, we examine ways to optimize the distortion in small-signal
amplifiers using both FET and bipolar devices. We assume throughout that
the dominant nonlinearity is the weak nonlinearity of the I/V and Q/V
characteristics, so Volterra-series analysis is applicable. In particular, we
assume that the device is not driven hard enough so that its strong
nonlinearities, such as a FET’s gate pinch-off and the knee of its drain I/V
characteristic, have any significance. In effect, we assume that the device is
biased in the ordinary manner, and that RF voltages are small relative to the
dc bias voltages. When these conditions are not met, harmonic-balance
analysis should be used instead of Volterra methods. 

8.3.1 Linearity Criteria 

One of the first problems in optimizing linearity is to select a quantity to
optimize. An immediate choice is the output intermodulation intercept
point, IPn. Closer inspection shows, however, that IPn is not a very good
candidate as a figure of merit for linearity. For example, if the dominant
nonlinearity is located near the input of a two-port (or cascade of two-
ports), IPn can be increased arbitrarily by increasing the linear gain,
without improving the linearity of the nonlinear part of the circuit.
Nevertheless, if the output power is controlled to a specific value (e.g., by
an AGC loop), the output IPn may well be the most important quantity.
Conversely, if the input power is the controlled quantity, the input intercept
point, IPni, may be most important. 
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Another possibility is the dynamic range of the system. Dynamic range
is defined as the difference between the maximum and minimum signal
levels that the system can accommodate. The maximum and minimum
levels are sometimes defined rather arbitrarily; the minimum signal level is
often defined as the noise level, and maximum as the point where inter-
modulation-distortion components exceed the noise level. For third-order
distortion,

(8.45)

where K is Boltzmann’s constant and T is the noise temperature. In dBm, 

(8.46)

where T0 = 290K by definition. From (4.38),

(8.47)

where Pmin and Pmax are input powers, and IP3i is the input third-order
intercept point. A little algebra gives the dynamic range in decibels:

(8.48)

Equation (8.48) is probably the most generally valid criterion for
optimization, as it describes the quantity that system designers usually need
to optimize. 

Another problem is that linearity—however defined—may not be the
most important characteristic of an amplifier, and other characteristics,
usually noise figure and gain, may be more important. Unfortunately, the
conditions that optimize linearity may not satisfy constraints on noise
figure or gain. When this situation arises, the designer must make a prudent
trade-off between the conflicting requirements. 
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8.3.2 MESFETs and HEMTs

8.3.2.1 Bias Effects 

It is a general rule that a dc drain current of approximately 0.5 Idss
maximizes a FET’s gain and IM intercept points. The gain and intercept
points achieved at this bias level are 1 to 2 dB greater than those obtained
at the bias that optimizes noise figure, approximately 0.1 Idss to 0.2 Idss. In
fact, the gain and intercept point increase further at higher drain current,
but the higher gate bias voltage introduces the possibility of large-signal
distortion from rectification in the gate-to-channel Schottky junction. In
HEMTs, distortion is minimal near the peak transconductance. 

In Chapter 4 we saw that intermodulation distortion can be related
directly to the coefficients of the Taylor-series expansion in the vicinity of
a dc bias point. Those coefficients are derivatives of the I/V characteristic,
so it should be no surprise that distortion is greatest where the gate-to-drain
I/V characteristic is most strongly curved. In MESFETs, JFETs, and
MOSFETs, curvature is greatest near the pinch-off or threshold voltage, so
distortion is worst at low current, when the device is biased near threshold.
In HEMTs, the situation is more complex, as HEMTs’ transconductance
often peaks at a gate voltage well above pinch-off, and there exist multiple
minima and maxima of all derivatives. 

For this reason, the primary means to improve a FET amplifier’s
linearity has always been to increase its dc drain current, although this
approach inevitably compromises the amplifier’s noise figure. 

dc bias has another effect on the linearity of the amplifier. Even if
increasing the drain current increases the transconductance without
changing the linearity of the curve, the change still increases the output
intercept point. This situation would exist even if increasing the drain
current multiplied all the Taylor coefficients in by the same factor. The
effect of such a change would be to “scale up” the output power of the
device by a decibel or two, so that all linear and IM powers would be
increased by the same factor. Because the intercept point is a point on the
extrapolated linear and IM output power curves, it would be increased by
that same factor of 1 or 2 dB. 

A final consideration is large-signal distortion. Intermodulation
distortion is generated not only by the small-signal nonlinearity of the
device, as manifested by the curvature of the I/V characteristic, but also by
large-signal nonlinearities. Examples of the latter are the turn-on voltage,
and rectification in the gate-to-channel Schottky junction. Biasing the
device at 0.5 Idss approximately centers the RF voltage between these
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limits; the clipping that results from attempts to exceed these limits
generates large-signal intermodulation. 

8.3.2.2 Effect of Source and Load Impedances 

The selection of source and load impedances that optimize linearity has
always been a major concern in the design of FET amplifiers. Various
researchers have shown both theoretically and empirically that the
appropriate selection of these impedances, particularly the load impedance,
strongly affects the output intercept point of a microwave amplifier
[8.6–8.11]. The power-series analysis of a simplified FET equivalent
circuit in Section 4.1.3 is consistent with this idea; in particular, (4.42) and
(4.43) imply that the IM intercept point of the simplified FET equivalent
circuit is a function solely of the load resistance and the power-series
coefficients of the controlled current source. In the case of a real FET, the
situation is more complicated, but the idea that the load impedance and the
linearity of the controlled current source primarily establish the FET
amplifier’s intercept point is still entirely valid. 

Optimization of source and load impedances depends largely on the
parameter to be optimized. It is quite clear that the load impedance has a
strong effect on the output intercept point, but the source impedance has
little effect. Conversely, the source impedance has a much stronger effect
on the input intercept point. In cases where the output intercept point is the
important quantity, the load impedance can be selected to optimize
distortion, while the input can be adjusted to achieve minimal noise (within
the constraints of optimizing bias for low distortion) or flat passband. In
the latter case, however, there is a clear trade-off between distortion and
noise figure. 

Some researchers [8.6] have suggested that selecting ΓL = S2,2
*

optimizes the output intercept point. This rule has become “conventional
wisdom,” and is actually fairly accurate in most cases. Similarly, conjugate
matching (which often is not much different from selecting ΓL = S2,2

* ) has
been suggested for IM optimization. Reference [8.12] presents a criterion,
using an available-gain design approach, for optimizing distortion under
constraints of gain and even noise figure. It shows that the optimum load
impedance lies on an available-gain circle that is far from the stability
circle and usually closest to the Smith chart’s real axis. 

8.3.2.3 Effect of Constraints on Gain, Match, and Noise Figure 

In Section 8.1 we saw that we could design a FET amplifier to have a
specific value of transducer gain by first designing it to have that same
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value of power gain or available gain and then matching one port. If the
output port is to be matched, the source impedance (or equivalently the
source reflection coefficient) of the amplifier is chosen to achieve the
desired available gain; conversely, if a conjugate match at the input port is
desired, the load impedance is selected to achieve the desired power gain.
The values of source or load impedance that result in a specific value of
available or power gain lie on a circle in the Γs or ΓL plane. 

Although all the values of Γs or ΓL on one of these circles provide the
same gain, they do not provide the same intermodulation intercept point.
This fact should be clear in the case of power-gain design, in which the
input is matched and ΓL is selected from the power-gain circle; a wide
range of ΓL values can be used, but there is no guarantee that the optimum
value lies along the constant-gain circle. However, ΓL is not fixed in
available-gain design either; because of the requirement that the output port
be matched, ΓL varies as Γs is varied. Consequently, neither the available-
gain nor the power-gain design processes guarantee that the optimum value
of ΓL can be used. 

Nevertheless, intermodulation performance still can be optimized
within the constraints of one matched port and a specified value of gain.
Because there is considerable variation in intercept point with values of Γs
or ΓL that lie along the gain circles, it is important to select the source or
load reflection coefficient optimally. This selection can be made by
drawing the gain circle and then calculating the amplifier’s intercept point
at a range of Γs or ΓL values along the circle. 

This kind of plot is shown in Figure 8.10, which presents available-
gain circles of a conventional MESFET representing gains of 6 to 11 dB.
Output intercept values are plotted along the gain circles at various values
of Γs. It is clear from this plot that the variation in IP values is relatively
small, as long as the values of Γs are well removed from the stability circle.
The optimum values are those closest to the real axis of the Smith chart,
especially on the high-impedance side (i.e., ∠ Γs ≅ 0).

Performing a trade-off between noise figure, gain, and intermodulation
in this design process is straightforward. Matching the input of a MESFET
amplifier invariably results in noise figure that is much greater than the
minimum value; in order to minimize the noise figure, we must be free to
vary the amplifier’s source impedance, so the available-gain design process
must be employed. We first draw the gain circles as in Figure 8.10, and
then draw circles of constant noise figure on the same chart (noise figure
and noise figure circles are not within the scope of this book; see [8.1]).
Finally, we add the values of the third-order intercept point periodically
along the gain circles. Having this information, we can determine imme-
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diately the gain, noise figure, and intermodulation intercept point of the
amplifier that results from any proposed value of Γs. 

It is important to recognize that these results represent only one third-
order IM product, the one at 2f2 – f1, and apply strictly to only one device
at only one frequency. The situation may change somewhat at different
frequencies or in different MESFETs. 

8.3.2.4 Effect of Source and Load Terminations at Low-Order Mixing
Frequencies 

In Chapter 4 we saw that the second-order nonlinear transfer function
H2(ω1, ω2) often is a part of the third-order transfer function
H3(ω1, ω2, ω3). This situation occurs because mixing between the second-
order voltages at f2 – f1 and 2f2 contribute to the nonlinear source currents
at 2f2 – f1. Therefore, it seems possible that the termination of the
MESFET’s input or output at the second-order mixing frequencies might
affect the intermodulation performance at the third-order IM frequency.
FET amplifiers are normally not designed to have some particular
termination at their second-order frequencies; any sensitivity of third-order
IM levels to those terminations could partially explain any variation in the
intercept point in different amplifiers using the same device. 

Figure 8.10 Available gain circles plotted on the Γs plane, with corresponding values
of the IM intercept point. 

Stability Circle
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Measurements of FET amplifiers often show asymmetry in the third-
order IM products. Normally, the levels of the mixing products at 2f2 – f1
and 2f2 – f1 are identical, but in some cases, especially power amplifiers,
they differ. The difference, often several decibels, makes IM
characterization difficult. Carvalho and Pedro [8.13] have attributed this
phenomenon to the existence of a reactive part in H2(–ω1, ω2), in
conjunction with a complex H3(ω1, ω2, ω2). These requirements imply that
the amplifier must have some kind of difference-frequency feedback and a
significant reactive nonlinear element in the input. The RF circuitry of FET
small-signal amplifiers rarely satisfies either of these requirements, but it is
not unusual to have significant difference-frequency feedback in the bias
circuits. In bipolar devices, however, the large base-to-emitter capacitive
nonlinearities, combined with modest feedback effects, are enough to cause
such asymmetry. 

8.3.2.5 Effects of Individual Nonlinear Elements 

The significance of the individual nonlinear elements in the MESFET’s
equivalent circuit can be found by replacing each of the nonlinear elements
with a linear one, and by recalculating the IM level. These changes affect
only the IM performance; they have no effect on such linear parameters as
the small-signal gain. Table 8.1 shows the results of one such study. It
involves a conventional GaAs MESFET fabricated in a mature technology,
and probably is typical of such devices. It may not be applicable to HEMTs
or MOSFETs, however. 

Table 8.1 Change in IM Output Level Due to Linearization 
of Certain Elements

Case No. Cgs gds id ∆PIM (dB)

1 NL NL NL 0.00

2 lin NL NL –0.29

3 NL lin NL –1.34

4 NL NL lin –8.66

5 NL lin lin –7.60

6 lin NL lin –12.22

7 lin lin NL –2.52
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In Table 8.1, lin means that only the linear part of the element’s C/V or I/V
expansion is used in the calculation; NL means that the first three terms of
its Taylor-series expansion were used. The nonlinearity of id(vg) is clearly
the dominant one in this MESFET; in cases 4, 5, and 6, where id(vg) is
linear, the amplifier has significantly lower IM levels than in those in
which id(vg) is nonlinear. Most studies of intermodulation in MESFETs
have drawn the same conclusion, although in at least one study [8.10], gds
was found to be dominant, and others [8.3] have shown that the normally
insignificant nonlinearities can sometimes become significant. 

It is important to be cautious with such generalizations, because many
devices don’t obey the rules. HEMTs, for example, often have a higher and
more strongly nonlinear gds(vd) than MESFETs. By adjusting the doping
profile, it is possible to make a FET’s transconductance approximately
constant with gate voltage, thus linearizing the device, or even for gds and
gm nonlinearities to cancel [8.14]. Such forms of linearization inevitably
require making the device more strongly nonlinear in some operating
region; for example, if gm(vg) is flat above pinch-off, yet zero below pinch-
off, there must be a region of relatively strong nonlinearity near the pinch-
off voltage. In practice, such conditions cause the IM level to be low at low
excitation levels, but to increase suddenly when the excitation level
exceeds some threshold. 

8.3.2.6 Conclusions 

It is most important to note that optimized values of source and load
impedance can be selected to minimize distortion in a small-signal
amplifier. Selection of terminating impedances and dc bias are the
designer’s main degrees of freedom in minimizing distortion in small-
signal amplifiers. The fact that the linearity of the id(vg) characteristic
usually dominates the amplifier’s IM performance is also important,
because that characteristic can be measured relatively easily (Section
2.8.2.2). Thus, a designer can select FETs having good IM performance on
the basis of relatively simple screening. 

8.3.3 HBTs and BJTs

Both HBTs and homojunction BJTs exhibit low levels of intermodulation
distortion as small-signal amplifiers. The reason, as we have noted, is a
cancellation phenomenon between collector currents generated by the
resistive and reactive parts of the base-to-emitter junction. This
phenomenon is evident only above a critical frequency, ωc; in a conjugate-
matched device, ωc is approximately
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(8.49)

where Rb is the base resistance and Cbe is the total base-to-emitter
capacitance. 

As with FETs, the designer’s tools for distortion minimization are (1)
device selection, (2) dc bias, and (3) source and load optimization. Because
all bipolar devices are fundamentally exponential (Section 2.6.3), one
cannot say that any particular device is inherently more linear than another.
Apparent differences in linearity are probably caused by such things as
feedback from emitter resistance, which may appear to reduce IM at the
cost of noise figure and gain, not inherent linearity of the I/V or Q/V
characteristics of the intrinsic device. 

Equation (8.28) shows that the intermodulation intercept point
increases rapidly with an increase in collector bias current. Although this
expression does not account for IM cancellation, the cancellation terms
increase in largely the same manner as collector current, so the conclusion
is largely valid. Empirical evidence shows that the reduction of distortion
in bipolar devices, with increased bias current, is greater than in FETs.
Both the current gain-band width product, ft , and the maximum available
gain, fmax, increase with current; therefore, when noise is not a
consideration, bipolar devices are operated at their maximum practical
current. As with FETs, noise figure is optimum at a particular bias current;
however, it is usually less sensitive, at least for small current variations,
than in MESFETs or HEMTs. The noise figure of bipolars also is generally
less sensitive to source impedance; this characteristic allows the source
impedance to be used more freely to optimize gain and, in some cases, IM. 

Because of their large values and strong nonlinearities, nonlinear
capacitances are more significant in bipolars than in FETs. This fact is of
great concern because accurate separation of the diffusion and depletion
components of the capacitance is critical to accurate IM analysis. It may be
best simply to treat the base-to-emitter capacitance as a single nonlinear
element, and to find its Taylor coefficients by other means. The base-to-
collector capacitance has a significant effect on IM analysis; fortunately, it
is a relatively easy element to characterize. The most important resistive
element is, unsurprisingly, the collector current as a function of base
voltage, but the other base-to-emitter diodes (which model current gain)
can also be significant. 

ωc
1

2RbCbe
-------------------≈
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Chapter  9

Power Amplifiers

Transistor power amplifiers can be realized with either FETs or bipolar
devices. For many years, BJTs have been used in high-power amplifiers at
frequencies up to a few gigahertz. HBTs are rapidly supplanting BJTs in
such applications, as they offer improved gain and efficiency, and require
only a positive dc power supply. This is especially important in such
portable systems as cellular telephones. Similarly, new MOSFET
technologies, such as laterally-diffused MOS (LDMOS) devices, have
found application in power amplifiers, especially for fixed base stations.
MESFETs and HEMTs are used as power amplifiers in the higher
microwave and millimeter-wave frequency ranges. 

As with small-signal amplifiers, our fundamental concern is for the
single-tone properties of power amplifiers—gain, output power, and
impedance. Although linear theory has some use in the design of power
amplifiers, linear theory by itself is usually inadequate for determining all
the properties of a power amplifier that we need to know; it is necessary to
take into account the device’s nonlinearities as well. For this reason
harmonic-balance techniques are the logical method for analyzing power
amplifiers. 

9.1 FET AND BIPOLAR DEVICES FOR POWER AMPLIFIERS

9.1.1 Device Structure

Power devices must be designed to survive much greater electrical stresses
than small-signal devices. A power device must support high current,
survive high drain-to-gate or collector-to-base voltages, endure high
temperatures, and dissipate a large amount of heat. Furthermore, like a
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small-signal device, a power device must provide good gain, linearity, and
efficiency, and often must be useful at high frequencies. 

A transistor’s output-power capability is established primarily by three
factors: (1) its breakdown voltage, (2) its maximum current, and (3) its
thermal properties. Obtaining high power involves maximizing breakdown
voltage and channel current, as well as maintaining good heat-dissipation
properties, while avoiding the introduction of excessive resistive or capaci-
tive parasitics. In FETs, channel current can be increased arbitrarily by sim-
ply increasing the gate width; however, increasing gate width exacerbates
many device parasitics, especially the gate-to-source capacitance and, un-
less measures are employed to keep it low, the gate resistance. For a FET’s
gain to remain constant with changes in gate width, the gate resistance
must decrease in proportion to the change in gate width. Although it is pos-
sible to decrease the gate resistance by modifying the FET’s geometry, it
usually cannot be reduced in proportion to the increase in gate width, so
gain decreases as gate width increases. Consequently, power FETs usually
have low gain, compared to small-signal devices. A power FET’s gain is
often marginal at high frequencies, and its maximum operating frequency
decreases with gate width. 

The channel current in a FET cannot exceed a value slightly above its
Idss. Bipolar devices do not have such a well defined limit, but for
reliability, and to maximize their gain-bandwidth products, maximum
current and power dissipation must be constrained. Power HBTs are usually
biased to approximately 20 to 30 kA/cm2 of emitter area; peak current is, in
most types of amplifiers, approximately twice this value. Bipolar devices
have base resistance and base-to-emitter capacitance that are analogous to
the gate parasitics of a FET, but the base resistance scales inversely with
emitter area, while the gate resistance of FETs generally does not. 

In order to allow for adequate current, and to obtain good thermal
properties, a power device is designed as a number of cells—individual,
small devices—connected in parallel. In FETs, the gates of the individual
cells may have multiple feed points, or they may be arranged as a number
of small sections. This cell structure has a price, however: the cell
interconnections introduce additional inductive and capacitive parasitics.
In modern devices, the cells are often interconnected by air bridges, which
minimize stray capacitance. 

The use of multiple cells and multiple short gate segments places
difficult requirements upon the manufacturing process. Because even one
flaw in one gate segment can ruin the entire device, each power FET must
have a perfect gate, sometimes several millimeters wide. Because the
difficulty of fabricating flawless gates decreases with increasing gate
length, the gates of power FETs usually are longer than those of small-
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signal devices. Transconductance decreases and capacitance increases with
gate length, so a long gate results in low gain. 

Because it establishes a fundamental limit to the power capability of
the device, the gate-to-drain breakdown voltage of a power device must be
much greater than that of a small-signal device. A device designer can
maximize a FET’s breakdown voltage by optimizing the ohmic contact
technology, using a recessed-gate structure, and leaving adequate space
between the gate and drain. The gate-to-drain spacing cannot be increased
arbitrarily, however, because it increases the drain series resistance. The
full drain current passes through that resistance; if the resistance is too
great, the resulting I2R loss can degrade the gain, efficiency, and output
power. 

Inductance in series with a FET’s source or a bipolar’s emitter can re-
duce the gain of a power amplifier, especially in devices having high
transconductance. The series inductance, Ls, adds a frequency-independent,
resistive component RLs having an approximate value of RLs = gm Ls / Cπ,
where Cπ represents either the gate-to-source or base-to-emitter capaci-
tance. It also creates an inductive component of value Ls in series with the
gate or base. These additional elements reduce the FET’s maximum avail-
able gain and make impedance matching more difficult. If Ls is fixed, RLs
remains approximately constant with changes in gate width; most of the
other resistive parasitics in the input decrease with gate width, however, so
source inductance becomes more significant as gate width increases. Fur-
thermore, mutual inductance between bond wires prevents the series induc-
tance from decreasing in proportion to the number of wires. Therefore,
source/emitter inductance has a particularly strong effect on the gain in
power devices, so a low-inductance ground connection is critical to the per-
formance of a power device. One highly effective way to reduce the induc-
tance is to include via holes—metallized holes connecting the source or
emitter metallization to the underside of the chip—in the design of the de-
vice. Virtually all modern high-power FETs and HBTs use via-hole ground-
ing. 

The third factor that limits output power is the chip’s ability to
dissipate heat. Thermal properties of GaAs devices are especially
worrisome because GaAs has poor thermal conductivity, significantly
lower than silicon. Furthermore, a power transistor must dissipate quite a
lot of heat; the dc-to-RF efficiency of a power amplifier is rarely above
50%, and some types of amplifiers dissipate more power in the absence of
RF output than in operation. Consequently a power device must dissipate,
in the form of heat, 1.5 to four times its RF output power, and often must do
so in the presence of one or more other chips dissipating equal amounts of
heat. Because the heat dissipation can be so great, the chip must be
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designed carefully to minimize its thermal resistance: the cells must not be
placed too close together, the chip must be made quite thin (some large
chips are thinned to 50 µm or even 25 µm), and often a thick gold layer
must be plated onto the chip’s underside. The resulting thermal resistance
between the channel and the mounting surface may be from one to two
C/W (in the case of a large chip) to 50 C/W or more (for single-cell,
medium-power devices). The resulting increase in channel temperature
may be several tens of degrees Celsius at full power. 

Bipolar devices, but not FETs, are subject to thermal instability.
Thermal runaway in silicon BJTs is a well-known phenomenon. HBTs
exhibit thermal collapse, in which the central cells in a large device
become hotter than the outer cells, and the resulting decrease in base-to-
emitter voltage causes them to draw a disproportionately large base current.
The current in the central devices becomes much greater than the outer
devices, causing them to become even hotter and their gain to decrease.
Meanwhile the outer cells conduct less current, causing the total collector
current to decrease and the device gain likewise to decrease. The use of
series resistors, called ballast resistors, in the base, emitter, or both can
reduce this effect. See Section 9.5.8 for further information. 

9.1.2 Modeling Power Devices

Large-signal modeling of FETs and bipolar devices is covered in Chapter 2,
primarily Sections 2.5 and 2.6. That material is fairly general, but makes
the point that models should be designed for their intended use. In this
section, we address the special requirements of device models for nonlinear
analysis of power amplifiers. 

9.1.2.1 Considerations in Power-Device Modeling

Thermal Effects and Self Heating

Power devices get hot. The large amounts of power dissipated in such
devices can raise their temperatures to well over 100°C. The characteristics
of a device at a high temperature are certain to be very different from its
characteristics at room temperature, so temperature must be a parameter of
a power-device model. 

There are two ways to approach the problem of thermal modeling. The
first is to allow for thermal scaling, in which the user estimates the
temperature of the device and enters it as a model parameter. In this case,
the user’s temperature estimate must be reasonably accurate. Developing a
sufficiently accurate temperature estimate is not difficult for a single
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device, but in an integrated circuit, which may have many tens or even
hundreds of devices, estimating the temperature of each device may not be
practical. The second method is to use a self-heating model, in which the
model monitors its power dissipation and, through the use of an appropriate
thermal network model, calculates the temperature of the device. The
thermal network model is usually a simple electrical analog of the thermal
circuit, consisting of a simple thermal resistance and capacitance. It may
also be a fairly complex characterization, which models the nonlinear
thermal conductivity of the semiconductor and thermal coupling between
cells. For more information on thermal modeling, see Section 2.7. 

Traditionally, the self-heating analysis has been built into the device
model. It is also possible to make it part of the simulator; then, any
thermal-scaling model can be used in a self-heating analysis, models would
be simplified considerably, and simulator convergence would be much
more robust. This capability has not been implemented in commercial
harmonic-balance software, however, as of this writing. 

Geometrical Scaling

A power device consists of a number of cells connected in parallel to form
a larger device. The equivalent circuits in Chapter 2 should be viewed as
models of individual cells. When N cells are connected in parallel,
generating an equivalent circuit of the combination merely requires
dividing all the resistances of a single-cell model by N and multiplying
capacitances and current-source currents by N. In large power devices,
however, the interconnection parasitics are rarely negligible, and they
prevent such a simple expedient. Furthermore, cells in the center of the
device run hotter than those at the outer ends, so some accommodation
must be made for temperature differences. 

Conversely, it is usually not practical to describe each cell by its own
equivalent circuit; since a power device may have tens or hundreds of cells,
such a description would be prohibitively complex. Generally, the designer
must treat the device as a number of groups of cells, where each group can
be modeled by a simple parallel interconnection. These groups are then
interconnected, with appropriate parasitics, to form the complete model.

Devices usually scale approximately, but not precisely, in proportion to
a FET’s total gate width or a bipolar’s emitter area. When improved
accuracy is needed, nonlinear scaling rules (i.e., something other than a
direct or inverse proportionality to N) may be used. A FET’s gate resistance
is an example of a parameter where such special rules are needed. As a FET
is made wider, the gate resistance increases in proportion to width. To
prevent the resistance of power devices from becoming too great, the gate
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is broken into multiple segments. These resistances are in parallel. Thus,
the resistance scales as

(9.1)

where AW = Wg/Wg0 is the ratio of the scaled width of each gate finger to
the original, and AF = NF/NF0 is the ratio of the number of gate fingers.
When Wg is defined as the total gate width, AW = (Wg/NF) / (Wg0/NF0);
then, 

(9.2)

Avalanche Breakdown

Power devices experience avalanche breakdown. Unless avalanche
breakdown is included in a device model, an analysis may predict much
greater output power and efficiency than the device can really supply.
Many kinds of FETs experience “soft” breakdown, which has a more
gradual onset than classical avalanche breakdown. 

Breakdown is often modeled as a resistive phenomenon; however,
significant time delays may be associated with avalanche multiplication. 

“Four Quadrant” Operation

Most early FET models were designed to operate only with Vds > 0 and
Id > 0. In fact, in many power amplifiers, reactive elements in the output
matching circuit may cause the drain voltage to drop below zero
momentarily. In other kinds of circuits, operation at Vds < 0 and Id < 0 may
be the norm; for example, FET resistive mixers and switches are biased at
Vds = 0. Thus, it is clearly necessary for models to be valid at or below zero
drain voltage. 

One method to create a model that works at Vds < 0 is to exploit the
symmetry of the FET. Then, when the voltage drops below zero, the model
exchanges Vgs with Vgd . Although seemingly an effective solution, this
practice can create a discontinuity at Vds = 0, leading to convergence
failure in harmonic-balance analysis. In Volterra-series analysis using such
models, the derivatives at Vds = 0 are indistinct, so large errors result. 

Rg Rg
AW
AF
-------→

Rg Rg
AW

AF
2

-------→
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Fortunately, the SPICE Gummel-Poon BJT model, the mainstay of BJT
and HBT circuit design, is well defined for inverse operation. The same is
true of virtually all advanced bipolar models. 

Parasitics

Interconnecting a large number of cells introduces parasitic capacitance,
inductance, and resistance. These parasitics can be difficult to estimate.
Additional parasitics are associated with the long conductors needed to
connect the large device to its matching circuits. 

When the width of a multicell power device approaches a significant
fraction of a wavelength (which, to be more concrete, we might define as
approximately 0.1λ), it becomes difficult to guarantee that all cells are
driven equally by the source. Electromagnetic simulation may be necessary
to design structures that provide uniform drive to all cells. 

9.1.2.2 MOSFET Models

For many years, the SPICE MOSFET models have been the dominant ones
in the industry. In particular, the Berkeley SPICE level 3 model has been
used for most MOSFET design of all kinds. This model has a number of
limitations, which have been well documented in the technical literature.
Of great concern for harmonic-balance analysis is the existence of multiple
discontinuities in the model’s functions and their derivatives. 

The limitations of the level 3 model have motivated the development of
new models. At this writing, more than 50 such models exist. There is
certainly no shortage of MOSFET models, but a great shortage of
consensus on which model to use. Recently, the University of California at
Berkeley was contracted to develop an industry-standard MOSFET model.
The result was BSIM, an extremely complex model that underwent
multiple revisions. The current (as of late 2002) and probably final revision
of that model is BSIM3 version 3.22 [2.15]. Currently, BSIM4 is under
development. 

BSIM3 has not been received with unqualified admiration. The
model’s complexity is daunting, and parameter extraction requires
considerable expertise. It has not, on the whole, resulted in better circuit
simulations than much simpler models (see Section 2.3.12). Because the
model exists in so many forms, it has not solved the problem of support for
multiple models; instead of multiple models, we have multiple
implementations and multiple versions of a single model. That is not much
of an improvement. Finally, BSIM3 is a “general-purpose” model; it is not
specifically designed for power amplifiers, and, for all its complexity, lacks
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such features as self-heating that are essential for the design of power-
amplifier ICs. 

A promising model for power LDMOS devices is the Motorola
Electrothermal Model (MET) developed by Curtice et al. [9.1].
Unfortunately, a complete description of this model has not been published
in the open literature, but a good description is available in an unnumbered
report from Motorola [9.2]. Another such model, whimsically called
ELMO,1 uses BSIM3 as its core [9.3]. 

For more insight on the dominant MOSFET models and their
applicability to power devices, see [2.14] and [2.19]. 

9.1.2.3 MESFET and HEMT Models 

One of the earliest compact MESFET models, from Curtice [9.4], was
originally devised for power amplifier use. Since then, dozens of FET and
HEMT models have been produced. Many of the simpler models are quite
serviceable for straightforward amplifier, mixer, and frequency multiplier
calculations, but may not be adequate for accurate power amplifier design.
Missing from them are thermal scaling or self-heating, breakdown
phenomena, lack of correct operation at Vds < 0, and inconsistent capa-
citance formulation. More modern, advanced models have solved many of
these problems. Examples of the latter are those of Parker and Skellern
[9.5], Angelov [9.6], and Cojocaru [9.7]. 

9.1.2.4 BJT and HBT Models

Like the SPICE MOSFET models, the SPICE Gummel-Poon model has
been the industry workhorse since the early 1970s. This model is an
extension of the model described in Gummel and Poon’s original paper
[2.17]. 

The limitations of this model are well known. Among the most serious
are the lack of self heating, avalanche breakdown, poor thermal scaling,
and poor scaling of transit time with current and temperature. The model is
designed for silicon homojunction devices, but it can be modified
acceptably, although clumsily, for use with HBTs. As we might expect, this
situation has engendered the development of advanced BJT and HBT
models. The resulting models are more complex than the SPICE Gummel-
Poon model, but not so daunting as BSIM3. Three important advanced BJT
models are VBIC [2.18], MEXTRAM [2.19], and HICUM [2.20]. Of these,

1.  For Ericsson LDMOS Model. The author suggested this name as a humorous remark, and
somehow it stuck. See how technology develops? 
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only VBIC is designed specifically as a power-amplifier model, but their
designers have claimed that the latter models are perfectly adequate for
power amplifier use as well. VBIC, conversely, includes complex substrate
modeling, which is unnecessary for discrete devices and for devices
fabricated on insulating substrates, such as GaAs and InP HBTs. 

Two models developed specifically for HBTs are the Anholt [2.21] and
UCSD [2.23] models. The Anholt model, like VBIC, uses much of the
SPICE Gummel-Poon model, changing only the parts necessary for
modeling HBTs. It also includes self-heating. The UCSD model is a more
extensive revision. Neither of these models are specifically designed for
power amplifier use, but they do include appropriate features for power-
amplifier modeling. 

A new model by Angelov [2.22] may also prove useful for HBT power-
amplifier design. 

9.2 POWER-AMPLIFIER DESIGN 

9.2.1 Class-A Amplifiers

Figure 9.1 shows a simplified circuit of a FET power amplifier. We will
derive some of the fundamental properties and limitations of power
amplifiers from this circuit. As in other chapters, we use a FET simply to
keep our examples concrete; the conclusions apply equally to bipolar
power amplifiers. 

Figure 9.1 Equivalent circuit of an ideal FET power amplifier. 
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The circuit consists of a FET, excitation and gate-bias sources, a tuned
circuit, and a load, RL. The drain-bias voltage is Vdd, and the gate bias is
adjusted so that, in the absence of excitation, the dc drain current is Idd.
Initially we shall assume that the FET is an ideal transconductance
amplifier; that is, it has no resistive or reactive parasitics, so the external
and internal voltages are identical (Vgs = Vg and Vds = Vd). The tuned
circuit in the figure is resonant at the excitation frequency. 

The application of a sinusoidal excitation Vs(t) to the gate generates an
RF component of drain current, ∆Id(t). If the tuned circuit is resonant at the
RF frequency, that current must pass entirely through RL. The RF
component of the drain voltage, ∆Vd (t), is equal to the voltage drop across
RL:

(9.3)

Each curve in the FET’s drain I/V characteristic, shown in Figure 9.2,
represents a range of values of Vd and Id that can exist when the gate
voltage Vg has a specified value; (9.3) expresses an additional constraint on
Vd and Id. Thus, the drain voltage and current must satisfy both (9.3) and
the I/V curve for Vg simultaneously; these values of Vd and Id are found at
the point where the I/V curve and (9.3) intersect. Figure 9.2 shows (9.3)
plotted on top of the FET’s drain I/V curves; when the FET is excited by
Vs(t), Vd(t) and Id(t) must always lie along the straight line. That line is
called a load line. 

VL t( ) ∆Vd t( ) ∆Id t( )RL–= =

Figure 9.2 Drain I/V characteristics and the load line of the FET in Figure 9.1.
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In a power amplifier, we wish to maximize the power delivered to RL.
This power is clearly maximum when both VL(t) = ∆Vd(t) and
IL(t) = –∆Id(t) have their maximum excursions. If we recognize that Vd and
Id can not be less than zero, these maximum excursions occur when
|VL(t)| = Vdd and |IL(t)| = Idd; the geometry of the load line dictates that
these conditions are met when RL = Vmax, A / Imax = Vdd / Idd. Then, if Vs(t)
and Vgg are chosen appropriately, the drain voltage varies from zero to
Vmax, A = 2 Vdd, and the drain current varies from zero to Imax = 2 Idd. The
Vd(t) and Id(t) waveforms in this case are shown in Figure 9.3. 

The output power PL under these conditions is 

(9.4)

Usually we wish to maximize the output power of a specified transistor. In
that case Vmax, A and Imax are the device’s maximum drain voltage and cur-
rent, and the maximum output power is 

(9.5)

PL 0.5 VL t( ) IL t( ) 0.5VddIdd= =

Figure 9.3 Drain voltage and current waveforms in the ideal class-A FET power
amplifier; the bias voltages, excitation, and load resistance are chosen
optimally, causing both Vd(t) and Id(t) to vary between zero and their
maximum values.
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Ideally, the dc current remains constant at Idd at all excitation levels;
therefore, the dc power Pdc = Vdd Idd, and the dc-to-RF conversion effi-
ciency is 

(9.6)

An amplifier operated in this manner is called a class-A amplifier (although
this arcane terminology was originally used to describe vacuum-tube
amplifiers, it has been transferred with little modification from vacuum
tubes to bipolar transistors and finally to FETs). In theory, the maximum
efficiency of such an amplifier is 50%, so the transistor in a class-A
amplifier dissipates at least as much power in the form of heat as it delivers
to the RF load. In theory, it uses the same dc power at all excitation levels,
and that power is divided between output power and heat dissipation in the
device. At full output, a class-A amplifier transistor has minimum power
dissipation. 

Two factors complicate this simple reasoning. First, it is not possible,
in practice, to vary the drain voltage and current all the way to the peak of
the load line, where Id = Imax and Vd = 0, because of the knee in the
uppermost I/V curve in Figure 9.2. As a result, |VL(t)| cannot quite equal
Vdd, and |IL(t)| must be less than Idd, so both the output power and
efficiency are somewhat lower than the values given by (9.5) and (9.6).
Second, the FET is nonlinear, so the Id (t) waveform is generally not
sinusoidal. The tuned circuit constrains IL(t) to be sinusoidal, however, so
the assumption that IL(t) = –∆Id(t) is not precisely correct, and in fact
|IL(t)| < |∆Id(t)|, which further limits output power and efficiency.
Nevertheless, because the purpose of this derivation is to illustrate
fundamental properties of power amplifiers, we shall continue to assume
that Id (t) can reach Imax and that the FET is linear. We will modify these
assumptions when we face the problem of accurately designing practical
power amplifiers. 

Two undesirable characteristics of the class-A amplifier are its
relatively low efficiency and its dissipation of a great amount of power
even when it is not excited; in fact, class-A amplifiers dissipate more
power under quiescent (i.e., unexcited) conditions than when they are
operating. Thus, a class-A amplifier must be designed either to dissipate
safely its quiescent power, or to be turned off when not in use. Both
alternatives are unacceptable in many applications. 

ηdc
PL
Pdc
--------

0.5Vdd Idd
Vdd Idd

------------------------ 50%= = =
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9.2.2 Class-B Amplifiers

Many of the disadvantages of class-A operation are circumvented by class-
B operation. The gate-bias voltage of an ideal class-B amplifier is set at the
turn-on (or threshold) voltage, Vt; therefore, the FET’s quiescent drain
current is zero, so the FET dissipates no power in the absence of excitation.
The bias point is thus Vdd on the voltage axis of the FET’s I/V curves. It is
not possible to draw a true load line describing the single-device amplifier
in Figure 9.1 when the amplifier is biased to achieve class-B operation
because the harmonic components of Id, which are substantial in a class-B
amplifier, do not circulate in RL; therefore, (9.3) is not valid here. 

During the half cycle when Vs(t) is positive, Vg(t) > Vt and the drain
conducts; during the other half cycle, Vg(t) < Vt so the drain current is zero.
The drain current Id(t) is therefore a pulse train, and each pulse has the
half-cosine shape shown in Figure 9.4. The dc drain current is the average
value of the half-cosine waveform; from Fourier analysis, we find that,
under full excitation, Idc = Imax / π, and the amplifier’s dc power is 

(9.7)

Because the tuned circuit allows only the fundamental and dc
components of drain voltage to exist, the ac part of Vd(t), which is equal to

Figure 9.4 Drain voltage and current waveforms in the ideal class-B amplifier. The
drain conducts in sinusoidal pulses because the gate is biased at Vt.

Pdc Vdd
Imax

π
----------=
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VL(t), is a continuous sinusoid. The tuned circuit also allows only the
fundamental component of Id(t) to pass through RL. The power delivered to
the load is 

(9.8)

where I1 = |IL(t)| is the magnitude of the fundamental component of Id(t).
From Figure 9.4, |VL(t)| = |∆Vd(t)| = |Vdd|, and from Fourier analysis,
I1 = 0.5 Imax. Then 

(9.9)

and the dc-to-RF efficiency is 

(9.10)

Theoretically, a class-B amplifier has a maximum efficiency of 78%,
much better than the 50% limit of the class-A amplifier. It has achieved this
improvement by allowing the channel to conduct during only half the
period of the excitation; during the time that the FET is turned off, it
dissipates no power. However, the peak value of the class-B amplifier’s
drain current is twice the peak value of ∆Id(t) in the class-A amplifier, so
the fundamental-frequency component of the output current is the same in
both types of amplifiers. 

To find the maximum output power in terms of the device’s limitations,
we let the maximum drain voltage be Vmax, B and note that
Vmax, B = 2 Vdd = 2 |VL(t)|. Then, 

(9.11)

which is the same as that of the class-A amplifier if Vmax, A = Vmax, B. 
To achieve the maximum output power, the load resistance RL must be

such that 
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(9.12)

so 

(9.13)

and we see that the load resistance of the class-B amplifier is the same as
that of the class-A, again, if Vmax, A = Vmax, B. Furthermore, because the
load resistance and the fundamental component of the load current are the
same in both amplifiers, the output power must also be the same. 

Because the maximum drain voltage is limited by gate-to-drain
avalanche breakdown, Vmax, A is generally greater than Vmax, B. In a class-A
amplifier, the maximum drain-to-gate voltage occurs when Vd = Vmax, A and
Vg = Vt. Thus, if Va is the drain-to-gate avalanche breakdown voltage, 

(9.14)

The class-B amplifier is biased at Vgg = Vt, so the maximum negative
excursion of Vg is 2 Vt. Then, 

(9.15)

so Vmax, B is less than Vmax, A by an amount equal to |Vt |. Accordingly, the
maximum output power of a class-B amplifier is slightly lower than that of
a class-A amplifier using the same device. 

The difference in maximum output power between class-A and class-B
amplifiers is not the most significant one; there is a much greater difference
in their gains. The gate voltage of a class-A amplifier varies between zero
and Vt; in a class-B amplifier the gate voltage varies between zero and 2 Vt.
More input power is required to achieve the class-B amplifier’s wider gate-
voltage variation, but the output power is nearly the same; thus, class-B
amplifiers have inherently lower gain than class-A. 

Another disadvantage of the class-B amplifier is that it generates a high
level of harmonics in the drain current by switching the FET on and off
during each excitation cycle. If the device is terminated in the same
impedance at the fundamental and second-harmonic frequencies, the
second-harmonic output of an ideal class-B amplifier is only 7.5 dB below
the fundamental output (for reasons that will be examined in Section 9.3,

I1RL 0.5 ImaxRL VL t( ) Vdd= = =

RL
2Vdd
Imax

------------
Vmax B,

Imax
-----------------= =

Vmax A, Va Vt–=

Vmax B, Va 2 Vt–=
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the second-harmonic output of a practical amplifier is usually somewhat
lower). One solution to the problem of harmonics is to use a “push-pull”
configuration, in which the excitation is applied out of phase to the inputs
of two class-B amplifiers, and the outputs are combined out of phase. The
phase shift of the output combiner must be 180 degrees at the harmonic
frequencies as well as the fundamental. This configuration, in conjunction
with an appropriate design of the output matching network, can reduce
significantly the levels of even harmonics. 

In order to avoid the class B amplifier’s inherently low gain, and
because the turn-off characteristics of power FETs are often very “soft,”
power FETs are rarely operated in a true class-B mode. So-called class-B
microwave amplifiers are usually biased near 0.1 Imax, and are actually
operated in a mode somewhere between class B and class A. Conversely,
class-A amplifiers are often not operated in a classical class-A mode; they
are sometimes biased to a minimal current level and driven well into
saturation. Both types of operation are called class AB, and both represent a
compromise between the extremes of either class. Class-AB amplifiers
usually have better efficiency than class-A amplifiers and better gain than
class-B amplifiers. 

Power-added efficiency is used more often than dc-to-RF efficiency as
a figure of merit for power amplifiers. It is defined as the ratio of the
additional RF power provided by the amplifier to the dc power: 

(9.16)

where Pin is the RF input power. One can show easily that 

(9.17)

where Gp is the power gain; Gp = PL/Pin. Equation (9.17) implies that the
low gain of the class-B amplifier somewhat offsets the advantage of high
dc-to-RF efficiency; practical class-B amplifiers usually have, at best, only
slightly better power-added efficiencies than class-A amplifiers. Class-B
amplifiers are most valuable for amplifying pulsed signals having low duty
cycles, where their low average current requirements are a distinct advan-
tage. 

ηa
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9.2.3 Other Modes of Operation

Other classes of operation are possible, but they are used less often in mi-
crowave and RF circuits. We mention a few of them here for completeness. 

9.2.3.1 Class C

We saw that decreasing the operating angle of an amplifier (the fraction of
the excitation cycle, expressed in degrees of phase, over which it conducts)
increased the efficiency of the amplifier, at the cost of distorting the current
waveform. The efficiency comes from the absence of drain (or collector)
current over half the excitation cycle. The power dissipated in the device is 

(9.18)

where T is a period of the excitation waveform. If Id(t) = 0 over half the
cycle, the integral is zero during this period and power dissipation
decreases. 

In a class-B amplifier, the distortion was acceptable, even for linear
applications, as it (theoretically, at least) generated only even-order
products. In many applications, such as FM or phase-modulated
communications, linearity is not necessary, so trading off even greater
distortion for efficiency is acceptable. By decreasing the operating angle
further, so it is less than 180 degrees, efficiency can approach 100% in
theory, although rarely greater than 75% in practice. Such amplifiers are
called class-C amplifiers. 

Unfortunately, decreasing the operating angle, while keeping the peak
current constant, decreases the magnitude of the fundamental component of
current. The peak current must increase, as operating angle decreases, to
maintain practical levels of output power. In FETs, increasing the drain
current beyond Idss is impossible, but in bipolar devices a high peak
collector current is possible. The problem of decreased gain, however,
which was evident in class-B amplifiers, is more severe in class C. Thus,
class-C amplifiers are practical only at relatively low frequencies, where
device gain is high. Class-C bipolar amplifiers are also subject to
instability if the collector is not effectively shorted at harmonics of the
excitation frequency. 

Pd
1
T
--- Vd t( )Id t( ) td

T
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9.2.3.2 Class D

Figure 9.5 illustrates the idea behind the class-D amplifier. In the figure, L2
is an RF choke and C2 is a large capacitor, which keeps the voltage at point
A equal to Vcc . L1 and C1 are resonant at the output frequency. The switch,
which is implemented by a pair of transistors, creates a square wave of
voltage across the resonant circuit. The resonator forces the current in the
load to be sinusoidal at the fundamental frequency. Since the transistors
conduct only when they are saturated, at all times either the collector/drain
voltage or current are zero, so the power dissipation, from (9.18), is also
zero and the theoretical efficiency is 100%. In practice, efficiency is
limited by parasitic resistances in the devices and their switching time. 

Class-D amplifiers are not used frequently. They have been used
occasionally in high-power, low frequency applications such as AM and
short-wave broadcast transmitters. 

9.2.3.3 Class E 

Like class D, class E is a switching mode method of amplification, using
approximately 50% duty cycle and achieving a theoretical 100% efficiency
[9.8]. Unlike class D, however, only a single device is needed. 

Figure 9.6 shows a class-E amplifier. The transistor operates as a
switch, and L1 is an RFC, which maintains a constant dc current Idc. When
the transistor turns on, the switch is closed, Vce = 0, and Ic = Idc . When the
switch is opened, Ic = 0 and a pulse of current is applied to the C1, C2, and
L2 combination. The current pulse excites a damped, second-order system
with Vce = 0 as an initial condition. During the half cycle while Ic = 0, a

Vcc

C2

C1 L1

L2

RL

Figure 9.5 Conceptual circuit of a class-D amplifier. C2 is charged through L2, an
RF choke, providing a constant voltage at point A. The switching
operation creates a square wave of voltage at the series LC resonant
circuit.

A
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pulse of voltage is generated. At the end of that half cycle, the switch
closes again, setting Vce = 0. If the circuit is designed properly, the overlap
between the current and voltage across the transistor is virtually zero.
Additionally, the efficiency does not depend as critically on switching time
as in the class-D amplifier. 

Class E is a strongly nonlinear mode of amplification and therefore is
practical only in applications where high levels of distortion are tolerable.
Nevertheless, class-E amplifiers are thoroughly practical for many
applications, usually (but not exclusively) in the VHF to UHF frequency
ranges. 

9.3 DESIGN OF SOLID-STATE POWER AMPLIFIERS 

In designing power amplifiers, we follow the general procedure used in the
previous three chapters: we employ the usual components of approximation
and engineering judgment to generate an initial design, then optimize that
design via numerical techniques. The numerical process we use to optimize
the power amplifier is harmonic balance. Because a class-A amplifier is
ideally a linear component, its initial design can employ linear circuit
theory, usually very successfully. This is not the case with the class-B
amplifier, however, so we must be more careful with its design. 

9.3.1 Approximate Design of Class-A FET Amplifiers 

The first step in the design of a power amplifier is to select an appropriate
device. Most manufacturers of power devices know their output-power
capabilities, and this information is listed prominently on the specification

Vcc

C1

C2
L2

L1

RL

Idc

Figure 9.6 The output circuit of a class-E amplifier. L1 is an RFC, and C1, C2, and
L2 provide waveform shaping. 

+
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sheets along with other traditionally optimistic claims. Most importantly,
the device must be capable of handling the required RF current and voltage,
and these quantities are derived from the required power and available dc
supply voltage, which we shall calculate presently. Finally, the device’s
thermal resistance must be low enough so that the channel temperature
remains within prescribed limits. 

In designing the amplifier, we recognize that an ideal class-A amplifier
is, after all, a linear component. Therefore, we should be able to rely fairly
heavily on linear-amplifier theory in the initial, approximate design. The
fundamental task in designing a class-A amplifier, as in designing a small-
signal linear amplifier, is to pick the appropriate source and load
impedances and to bias the device appropriately. In a power amplifier, the
load impedance must be selected to achieve the desired output power, and
the source impedance must provide a conjugate input match. Additionally,
we must select a bias point that results in both adequate power and good
efficiency. 

We use the load-line approach described in Section 9.2 to select the
real part of the load admittance. However, in order to select the load
conductance properly, we must take into account the limits on the drain
voltage and current as explained in Section 9.2. Figure 9.7 shows the
terminal I/V characteristics of a power MESFET (i.e., with Id expressed as
a function of the terminal voltages Vgs and Vds , instead of a function of the
internal voltages Vg and Vd); we would prefer to have a plot of the internal
I/V characteristics, the function Id(Vg, Vd), which does not include the
voltage drops across the drain and source resistances. However, such
curves are difficult to generate, and recognizing that this initial design is,
after all, approximate, we shall accept a plot of the MESFET’s terminal I/V
characteristics as an approximation of the internal ones. 

Vmin, the minimum drain-to-source voltage, is limited to approximately
1.5V by the knee of the I/V curve at Vg = 0.6V; Imax is similarly limited.
Because of subthreshold conduction (or, if you prefer, the variation in Vt
with Vd) and the gate-to-drain avalanche limitation, Vd usually cannot be
driven to the point where Id = 0. Thus, there is a finite drain current Imin at
Vmax, the maximum value of Vd. Vdd, the dc drain-to-source voltage, is
selected precisely halfway between Vmax and Vmin; Idd, the quiescent dc
drain current, is halfway between Imax and Imin. The gate-bias voltage that
establishes this bias point is read directly from the I/V curves. We draw the
load line superimposed on the I/V curves so that it connects these points;
the load conductance is equal to the slope of the load line: 
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(9.19)

When an unpackaged MESFET is biased in its saturation region, the
dominant component of its output admittance is the drain-to-source
capacitance, Cds. Because we wish to present a real load of conductance GL
to the terminals of the controlled current source Id, the susceptance of the
load must resonate with Cds. Thus, the initial estimate of the load
admittance is 

(9.20)

If a packaged FET is used, determining the load impedance is complicated
somewhat by the presence of the package parasitics, but the underlying
principle—presenting a real conductance of value GL to the terminals of
the current source—remains the same. 

Because the load impedance at the terminals of the current source is
real, the ac part of the drain voltage ∆Vd(t) [which equals the load voltage
VL(t)] and the load current IL(t) = –∆Id(t) are in phase. The output power is
their product: 

Figure 9.7 Drain I/V characteristics of a MESFET and the amplifiers load line.
Because of the knee of the uppermost I/V characteristic, the minimum
voltage is greater than zero. The optimum bias points are halfway
between the maximum and minimum values of both voltage and current. 

GL
Vmax Vmin–

Imax Imin–
-------------------------------=

YL GL jωCds–=
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(9.21)

Some of this power is dissipated in the drain and source resistances, so for
this reason, as well as the others discussed in Section 9.2, (9.21) represents
a slightly optimistic estimate. 

The drain current of a class-A amplifier should remain constant at the
dc value under all excitation levels up to approximately the 1-dB gain
compression point. As the amplifier is driven further into saturation, the
Id(t) waveform becomes distorted and its average current may change.
Below the compression point, the dc power equals the product of Vdd and
Idd; above the compression point, the dc power is usually greater, but much
of it is converted to RF output power. Therefore, the quiescent dc power
can be considered an upper limit to the power dissipated by the device. If
the amplifier has high gain and is to be operated only under excitation, the
power dissipated by the device is approximately the difference between the
output power and dc power. Designating the power dissipation Pd and the
thermal resistance of the device from the channel to the mounting surface
θjc, we find the temperature of the channel Tch to be 

(9.22)

where Ta is the temperature of the mounting surface. Equation (9.22)
presupposes that the junction between the device and the mounting surface
is thermally perfect; flaws in that junction, such as solder voids, can change
the thermal resistance significantly or can cause “hot spots” on the surface
of a large chip. In high-reliability circuits, chips are sometimes X-rayed to
find such flaws. 

The input of the power FET amplifier is designed to be conjugate
matched, so we need to know the input impedance of the terminated device.
We can estimate this impedance by using small-signal S parameters and
(8.5). Finally, the small-signal gain can be found from (8.20), and stability
factors and circles can be found from the appropriate equations, (8.2) and
(8.7) through (8.10); the load impedance that optimizes output power is
usually well within the stable region. Harmonic-balance analyses show that
the input impedance varies only slightly with power level up to the point
where the FET’s gate begins to rectify the input signal significantly.
Furthermore, in a well-designed amplifier, a good margin of small-signal
stability is usually adequate to guarantee large-signal stability. 

PL
1
2
--- 1

2
--- Vmax Vmin–( ) 1

2
--- Imax Imin–( )=
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When the approximate source and load impedances are known, we can
turn to the computer and a harmonic-balance program for optimization.
First, we terminate the device with an ideal load, and optimize the output
power, bias, and load impedance. Optimum tuning of the output can be
determined by plotting the internal drain voltage and current, Vd(t) and
Id(t). When their phase difference is precisely 180 degrees and they vary
from Vmax to Vmin and Imax to Imin, respectively, the circuit is optimized.
The input need not be perfectly matched for this operation. 

Once the optimum load impedance is determined, an output matching
circuit can be designed, and the FET’s large-signal input impedance
determined from the harmonic-balance analysis. If all is well, it should not
be very different from the value determined from S parameters. Finally,
knowing the input impedance, we can design an input matching circuit and
connect it to the FET. When the entire combination of input matching, FET,
and output matching is simulated, it should be very close to the optimum. 

Designing the matching networks is complicated by the low source and
load impedances and the need to short-circuit the drain at the harmonics of
the excitation frequency. The latter requirement is not very important for
class-A amplifiers, because the second and higher harmonic currents are
not great, but it is much more important in class-B amplifiers. However, the
combination of low impedances and high current densities requires careful
consideration. The gate and drain currents in a power amplifier can be on
the order of a few amperes, so even very small resistances can cause
significant power dissipation. Capacitors—even those used for such
prosaic purposes as dc blocking—must have high Qs, and inductors should
not be made from narrow microstrips or fine wire (gold ribbon is a good
material for inductors that must carry high currents). The topology of the
matching circuit can often be selected to minimize the currents in relatively
lossy components. 

9.3.2 Approximate Design of Class-A Bipolar Amplifiers

Design of bipolar amplifiers—both BJT and HBT—follows the same
pattern as with FETs. The device is biased at half its maximum collector
current, the output power is found from (9.21), and the load conductance
from (9.19). The output susceptance of a bipolar device depends strongly
on feedback (collector-to-base capacitance) and the source impedance, so it
may be necessary to determine the imaginary part of YL empirically. 

As with FETs, the input impedance can be estimated by linear analysis.
Because of the high base-to-emitter capacitance and pronounced Miller
effect in bipolar devices, the impedance of a power bipolar amplifier can be
extraordinarily low, and therefore difficult to match. Packaged discrete
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devices often employ prematching: LC elements, within the package, that
increase the input impedance to a manageable value. In ICs, similar
techniques can be used on-chip to raise the input impedance. In some cases,
it is not possible to match a power device in any practical manner; then,
power combining with power dividers or similar structures may be
necessary. 

Increasing the drive level of a class-A bipolar amplifier can increase
the rectified current in the base, increasing the collector current. To avoid
this phenomenon, bipolar amplifiers can use current-source biasing. When
the base is biased by a current source, the collector current is forced to
remain approximately constant at all drive levels; as drive is increased, the
dc base current source causes the base-to-emitter voltage to decrease,
keeping the base and collector currents from increasing. 

9.3.3 Approximate Design of Class-B Amplifiers 

The design of the class-B amplifier parallels that of the class-A amplifier.
The load impedance of an ideal class-B amplifier is the same as that of an
ideal class-A amplifier having the same output power, and it is determined
identically. In general, however, it is not possible to estimate the linear gain
or input impedance of a class-B amplifier from small-signal S parameters;
instead we must use nonlinear analysis to determine gain and input
impedance. 

The maximum value of Vd allowable in a class-B amplifier is
somewhat lower than that of a class-A amplifier. In FET amplifiers that are
limited by gate-to-drain avalanching, the output power in class-B operation
is lower than that in class-A operation. However, if the amplifiers are not
limited by avalanche breakdown, the output powers of both classes are
nearly identical. Thus, one can use the same procedure to select the load
impedance of a class-B amplifier as is used for a class-A amplifier, as long
as Vmax is chosen to have its class-B value. 

The dc drain current of a class-A amplifier under full excitation can be
estimated as Imax / π. The dc power dissipation is 

(9.23)

This estimate of the dc drain current is reasonable up to the 1-dB
compression point; however, because the drain-current waveform distorts
with drive level, it is not valid at other levels. Furthermore, because of the
inherently low gain of the class-B amplifier, the RF input power may be

Pd Vdd
Imax

π
----------=
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relatively high, and therefore may contribute significantly to power
dissipation. Equation (9.22) is a valid expression for the channel
temperature of a class-B amplifier as well as a class-A amplifier. 

In an ideal FET class-A amplifier, the gate-to-source voltage Vg  varies
between Vt and the threshold of gate conduction, approximately 0.5 V. In a
class-B amplifier, Vg varies between approximately 2 Vt and the same
maximum voltage. Therefore, in order to deliver the same output power,
the class-B amplifier requires approximately twice the voltage across the
input capacitance as the class-A. Accordingly, one might conclude that the
class-B input power must be 6 dB greater, so the gain must be 6 dB lower.
This conclusion is troubling, because many microwave power devices do
not provide high gain, and 6-dB gain decrease is not tolerable. Fortunately,
the situation is not quite that bad, for several reasons: first, even in the ideal
case, the differences in voltage is usually slightly less than a factor of two;
second, a class-B amplifier is often biased slightly above Vt, in class-AB
operation, so it has a small quiescent drain current, which reduces the
difference in the variation of Vg even further; and third, because the gate-
bias voltage is more negative, the gate-to-source capacitance in a FET or
the depletion component of the base-to-emitter capacitance in a bipolar
device is lower in class B than in class A. As a result, the difference in gain
between class-B and class-A amplifiers using the same FET is usually from
3 to 5 dB, still significant, but less than 6 dB. 

A workable approach to the design of a class-B amplifier, either FET or
bipolar, is as follows:

1. Determine the load conductance for maximum output power from 

(9.24)

2. Add a shunt reactance and optimize the power and efficiency using
harmonic-balance analysis. Bias should allow moderate drain current
when there is no excitation. Do not be concerned about input matching
at this point. 

3. Once the output is designed, calculate the input impedance, defined as
Vi(ω)/Ii(ω), where Vi(ω) and Ii(ω) are the fundamental-frequency
components of the input voltage and current, respectively. 

4. Design the input and output matching networks.

GL
Vmax B, Vmin B,–

Imax Imin–
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5. Replace the ideal output impedance with the matching network and
verify that the circuit is still optimized. 

6. Add the input matching network and check the input VSWR. Minor
tweaking may be necessary. If major changes are needed, there is a
significant design error. 

9.3.4 Push-Pull Class-B Amplifiers

Figure 9.8 shows a push-pull amplifier. It consists of two transistors biased
as class-B amplifiers, connected by 180-degree transformers or, for high-
frequency circuits, hybrids. (Matching circuits, not shown in the figure, can
be included as well.) In this configuration, one transistor conducts when the
excitation cycle is positive, and the other when it is negative. Thus, a linear
amplifier results. 

A push-pull amplifier is a practical implementation of a pair of 180-
degree hybrid-coupled components, discussed in Section 5.1.3 and shown
in Figure 5.11. We noted in Section 5.2.1 that this configuration rejects
even harmonics of the excitation frequency. The class-B amplifier
generates only even harmonics, so rejecting these effectively turns a class-
B amplifier into a linear amplifier. Additionally, the circuit inherently
provides a short-circuit termination to the transistors’ collectors at even
harmonics; this is the ideal termination for such devices. 

9.3.5 Harmonic Terminations

An early paper by Snider [9.9] identified optimum terminations for
transistor power amplifiers. He concluded that the optimum output

Vcc

+V

-V

Input Output

Figure 9.8 A push-pull amplifier consisting of two class-B stages interconnected by
180-degree hybrids. 
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terminations are short circuit at even harmonics and open circuit at odd
harmonics other than, of course, the fundamental. These terminations
ideally must be realized at the internal collector-to-emitter or drain-to
source junctions. These terminations create a square wave of voltage,
resulting in theoretically zero power dissipation in the device. 

Achieving such terminations, at high frequencies and with large
devices is difficult. The large size of power devices often prevents the
placement of a stub close enough to the junction to realize the required
short circuits, and device parasitics make an open circuit, at microwave
frequencies, almost impossible to achieve. In some lower-frequency
amplifiers, however, it may be possible to approximate these terminations
at the first few harmonics. 

9.3.6 Design Example: HBT Power Amplifier

We wish to design a single-stage HBT amplifier integrated circuit. The
amplifier must cover 1.6 to 2.1 GHz, have at least 10-dB gain at full output,
and operate at a power-supply voltage of 3.4V. To save chip area and
minimize output loss, the output matching circuit is off-chip. A
conventional foundry process will be used; the foundry offers InGaP HBT
technology having an fmax of approximately 50 GHz. The DC bias
regulator also will be off-chip, probably a CMOS IC. Thus, the output
matching network and DC bias need not be part of the design. 

To design the amplifier, we start at the output and work our way toward
the input. The process is as follows:

1. Evaluate the device;

2. Determine the device size, bias point, and optimum load;

3. Determine the device input impedance;

4. Synthesize an input matching network;

5. Connect the input network to the device and make sure the
combination works properly;

6. Design the output matching network. 

We address each step in order. 
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Evaluate the Device

Before beginning the design, it is essential to perform a sanity check on the
device models that the foundry provides. Often, the model’s parameters
may seem questionable, and such problems should be resolved before the
design begins. Most foundries use the SPICE Gummel-Poon (SGP) model
to characterize their devices. SGP is an old model and has many limitations
for HBT design. More advanced models, such as the UCSD HBT model,
would be preferable, but such advanced models are not uniformly
implemented in circuit simulators, while SGP is supported on virtually all. 

It is a simple matter to evaluate the device. We use two simple test
circuits in the nonlinear simulator, one to calculate S parameters and power
performance, the other to create I/V characteristics. We calculate the
device’s small-signal current gain and maximum available gain to make
sure they are reasonably close to the expected ft and fmax advertised for the
device. We find that the current gain, H21, and the maximum available gain,
Gmax, indicate that ft and fmax are both 45 GHz, in good agreement with the
expected ~50 GHz. To make certain that we do not have any potential
instability problems, we compute stability circles using conventional,
linear analysis. Finally, we sweep the HBT’s I/V characteristic to make
certain that the DC part of the model is reasonable, and to determine the
base bias current that provides the proper collector current.

Determine the Device Size, Bias Point, and Optimum Load

We begin with the load impedance. The resistive part is given by the well-
known relation, 

(9.25)

and the output power, PL, is 

(9.26)

The device’s I/V curves show that Vmin ~ 0.5V, and we estimate
Imin ~ 0.05A. Noting that Vcc = 3.4, and experimenting a little with (9.26),
we find that Icc = 0.5A. This results in Pout = 0.65W and RL = 6.4Ω. These
are starting values, which may have to be modified somewhat. According
to the foundry, we must limit the current density in the devices, under bias

RL
Vcc Vmin–

Icc Imin–
--------------------------=

PL 0.5 Vcc Vmin–( ) Icc Imin–( )=
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conditions, to 25 kA/cm2. The individual cells have areas of 50 µm2, so we
need a device having 40 cells. The foundry offers a 20-cell device, so we
can use two of these in parallel. 

In most power amplifier designs, we must provide a shunt inductance
to resonate the device’s output capacitance. However, from linear analysis,
we find that the output capacitance is negligible, so no reactive tuning is
needed. The load is purely resistive. 

We now use the harmonic-balance simulator to optimize the bias and
load impedance, using the evaluation circuit of Figure 9.9. We make no
attempt to match the input at this time; we simply increase the excitation
until we achieve maximum output power. We adjust the load impedance
while monitoring the collector waveforms and adjusting the power. It is a
simple matter to do this with the simulator’s tune mode; numerical
optimization is not necessary. The optimum condition is achieved when
both the voltage and current minima are near zero, but not clipping; if the
resulting output power is not right, we adjust the bias current and load
resistance until the correct power is achieved. Note that we allow for an
extra fraction of 1 dB in output power, to compensate for losses in the
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Figure 9.9 Evaluation circuit for the half-watt, 2-GHz HBT power amplifier design.
This circuit can be used to determine power performance, the optimum
load, and the input impedance. Note that emitter ballast resistance has
been included.
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output matching network. The final collector current is 0.47A and load
resistance is 5.0Ω. 

Figure 9.10 shows the collector voltage and current waveforms at
bandcenter. These are internal quantities; that is, they are the current in,
and voltage across, the collector-to-emitter controlled source. The internal
voltage and current exhibit a precise 180-degree phase difference, showing
that the output reactance is negligible (or if it were not negligible, proper
output tuning) and no saturation or clipping.

Determine the Input Impedance

To design an input matching circuit, we must first calculate the large-signal
input impedance, Zin(ω), defined as 

(9.27)

where Vin(ω) and Iin(ω) are the input voltage and current Fourier
components, respectively, at the excitation frequency. This is the device-
input impedance that should be used for designing a matching circuit.
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Figure 9.10 The internal collector-to-emitter voltage and current are precisely 180
degrees out of phase and vary from Vmin to Vmax and Imin to Imax, while
providing the desired output power with minimal waveform distortion.
These conditions show that the output circuit is optimized. 
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To design a matching circuit, it is helpful to have a lumped-element
model of the HBT’s input. The dominant input elements in the HBT model
are the base resistance and collector-to-emitter capacitance, so it is no
surprise that a series RC network models the input impedance quite well.
By plotting the input impedance of the HBT and the model on the same
graph, we can easily adjust the model to fit the input impedance. Again,
optimization could be used for this task, but it is a simple task with the
simulator’s tuner. The input model consists of 16.9 pF capacitance and 2.2
ohms resistance. 

Synthesize the Input Matching Network

Several considerations drive the design of the input network. To eliminate
low-frequency gain, it should have a high-pass structure, and it should
allow for easy biasing and DC blocking. Because of the high Q of the load,
and the need to transform from a very low impedance to 50Ω , the design of
the network is not simple. 

To meet these requirements, we use a series-L, shunt-C design. We
employ a “constant-Q” approach, in which elements are selected by
moving along a contour of constant Q on the Smith chart. This is an
entirely graphical process, which can be performed with the circuit
simulator in the tune mode. Additionally, we use resistive loading to
optimize the input match over the relatively wide bandwidth of 1.6 to 2.1
GHz. The loading introduces loss, of course, but the gain of modern HBTs
is so great that it is acceptable. It also reduces the sensitivity of input return
loss to uncertainties in the device model. Square spiral inductors,
characterized by EM simulation, are used in the matching circuit. Because
of the high current in these inductors, it is essential to include their losses.
The input return loss of the complete circuit is better than 20 dB across the
1.6- to 2.1-GHz band. 

Connect the Matching Circuit to the HBT

We now connect the input matching circuit to the HBT and analyze the
combination. We find that no further tuning or optimization of the circuit is
needed. 

Design the Output Matching Circuit

Because of the low load impedance required by the amplifier, an output
matching circuit is unavoidably lossy. Most of the loss is generated where
the currents are greatest, in the elements closest to the chip. Ideally, these
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should use capacitive microstrip stubs, but size constraints may dictate the
use of chip capacitors instead. In this case, the main problem is a trade-off
between capacitor cost and Q. A second problem is the large impedance
transformation between ~5Ω at the chip and the invariably 50Ω outside
world, which creates a direct trade-off between bandwidth and loss. 

A matching circuit consisting of series transmission lines and shunt
capacitors represents a good trade-off between loss and size. High-quality
RF ceramic chip capacitors must be used. The chip must also be designed
to allow the use of multiple bond wires, as even bond-wire loss can be
significant. The output matching circuit includes the bias circuit.

Performance

Figure 9.11 shows the final circuit and the calculated performance of the
amplifier. It provides a minimum of 27 dBm over the band with 14-dB
minimum gain. The output matching circuit is not shown. 

9.4 HARMONIC-BALANCE ANALYSIS OF POWER 
AMPLIFIERS 

9.4.1 Single-Tone Analysis

Harmonic-balance analysis of power amplifiers is generally straight-
forward, especially when only single-tone analysis is required. Still, a few
caveats are necessary.

Class-A amplifier analysis usually does not require a large number of
harmonics; five or six is usually adequate. Analysis of class-B and other
types of switching mode amplifiers may require more harmonics, but rarely
is it necessary to use more than 8 or 10 harmonics. The more strongly
driven circuits require the largest number of harmonics. 

Because power amplifiers have large current components, termination
criteria should not be too tight. Excessively stringent termination criteria
can result in apparent nonconvergence of the analysis. There is no need, for
example, to force current components to converge to error levels below
10–6 A when the current itself is on the order of amperes. This is especially
true of bipolar amplifiers, where tight termination criteria in terms of
current imply even more severe tolerances on the voltage components. 
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9.4.2 Multitone Analysis

Multitone problems involve such phenomena as intermodulation distortion
in power amplifiers, spectral regrowth, and adjacent-channel interference.
These are largely manifestations of intermodulation distortion. Thus, the
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analysis of intermodulation distortion can be treated as a fundamental
requirement of the more complex analyses.

Analysis of intermodulation distortion in strongly driven power
amplifiers places severe requirements on a harmonic-balance software.
First, the analysis of intermodulation distortion is a multitone problem; that
is, it requires at least two noncommensurate excitation frequencies. The
resulting number of frequency components is quite large; moreover, it is
difficult to determine how many frequency components, and which com-
ponents, must be retained. 

Certain simulators give the user more control over frequency set
selection than others. Most use a so-called diamond truncation, defined as

(9.28)

and the user specifies the maximum order of the product. A second method,
called a rectangular or box truncation, is to select

(9.29)

where the user specifies the maximum harmonic numbers, M and N. This
method is more versatile, especially when combined with the constraint in
(9.28). Note that M = N = Q in (9.29) gives approximately double the
number of frequency components as (9.28).

Second, intermodulation distortion arises largely from the clipping of
the envelope of the composite, multitone waveform near voltage and
current minima and maxima. These, in turn, require that the device be well
modeled at the voltage and current extremes of its operation, a requirement
that goes well beyond the usual modeling task. Most device models are not
as accurate in these regions as in the central region; for example, FET
capacitances become strongly nonlinear at low drain-to-source voltage, and
these must be modeled well to handle clipping phenomena adequately. 

Third, harmonic-balance analysis is based on an assumption that all
signals are periodic, but multitone waveforms are not. Thus, we must use
an imprecise time-to-frequency transform, which may be less accurate than
a classical, single-tone fast Fourier transform (FFT). The reduced accuracy
greatly affects weak distortion components. Finally, the distorted
waveforms contain a mix of large frequency components (the fundamental
excitation frequencies and their lower harmonics) and very weak
components (the distortion components). The latter are the products of
most interest. Therefore, we must use a termination criterion that
guarantees convergence of the weak components while not making the

ωm n, mω1 nω2+= m n Q<+

ωm n, mω1 nω2+= m M< n N<
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criterion too strong for the stronger components. These problems all are
solvable, but few simulators have implemented effective solutions to all of
them. They are addressed in detail in Sections 3.6 and 3.7.

Three approaches are possible in dealing with modulated signals in
power amplifiers. One is to force the modulating function to be determinis-
tic and periodic, allowing the signal to be expressed as a Fourier series. Al-
though it has a large number of frequency components, the excitation has
only two independent, noncommensurate basis frequencies, the carrier and
the fundamental modulating frequency. This approach is no different, in
principle, from the use of single-tone deterministic signals to analyze and
test all kinds of circuits that are eventually used with more complex sig-
nals. 

A second technique is behavioral analysis. In this case, the amplifier’s
nonlinear AM-to-AM and AM-to-PM responses are determined, and the
amplifier is modeled as a simple, memoryless two-port having these
responses. A random signal can then be applied to the amplifier, and
statistics of the amplified signal (e.g., bit error rate) can be measured. This
method is frequently used in system simulators. It is valid as long as the
signal is narrowband and memory effects in the amplifier are negligible. 

A third method is called envelope analysis, which is discussed in
Section 3.7. In this approach, the modulated waveform is sampled at a rate
based on the envelope frequency, not the carrier frequency. A single-tone
harmonic-balance analysis is performed at each sample point, using the
carrier frequency as the fundamental. Considerable effort must be
expended to characterize the linear circuit properly at the carrier frequency
and its harmonics; otherwise, envelope analysis devolves to a complicated
form of behavioral analysis. 

9.5 PRACTICAL CONSIDERATIONS IN POWER-AMPLIFIER 
DESIGN

9.5.1 Low Impedance and High Current

Transistor power amplifiers operate at low voltages. Amplifiers used in
cellular telephones, for example, typically operate from a dc supply of only
3.4V, which decreases as the battery power is expended. At such low
voltages, high currents are necessary to provide even a watt or two of
power. To provide such high currents, large devices are needed, and the
resulting base-to-emitter or gate-to-collector capacitances may be large.
Low-frequency amplifiers using bipolar devices have high voltage gain,
which increases the input capacitance because of Miller effect. The input
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and load impedances of a 1W HBT RF amplifier, in the 1- to 2-GHz range,
are on the order of only 1 ohm. 

When impedance levels are so low, currents are high, and I 2R losses in
circuit elements can be significant. In ICs, the loss is highest in such
components as transmission-line segments and spiral inductors, especially
those closest to the device in the input matching circuit, where the current
is highest. Even capacitors in off-chip output matching circuits can
introduce significant losses; microstrip stubs have lower loss, and should
be used wherever size allows. Similarly, small parasitics, such as a 0.05 nH
via-hole inductance, or the series inductance of a short bond wire, can have
a surprisingly great effect on the circuit. For a design to be accurate, all
such parasitics must be included in the circuit model. 

When impedances are so low that it is impossible to match them in any
practical manner, or resistive losses are simply too great, power-combining
a number of lower-power amplifiers may be necessary. The simplest
combiner is probably a “tree” of power dividers; such structures are
practical up to 8- or 16-way combining before imbalance and the effect of
imperfect interface VSWR make the approach impractical. Other kinds of
power-combining structures, such as radial combiners [9.10], have been
employed. The ubiquitous quadrature-coupled amplifier, discussed in
Section 5.1.3.2, is arguably a simple type of power combining structure. It
is practical for power amplifiers as well as small-signal ones. 

9.5.2 Uniform Excitation of Multicell Devices 

The large dimensions of power chips introduce several practical
difficulties. Because good output power and efficiency requires that all the
cells operate at full power, it is important that all cells in the device have
equal excitation. If a discrete device is very wide (large chips can be
several millimeters in width), the bond wires from the cells near the center
of the chip to the microstrip line are often shorter than those from the cells
that are close to the chip’s ends, causing the outer cells and inner cells to be
driven unequally. Even if the chip is no wider than the microstrip to which
it is connected and the bond wires have equal lengths, the connections to
the outer edges of the microstrip have source impedances different from
those close to the center, and these unequal impedances may cause the
cells’ drive levels to be nonuniform. Even in ICs, driving all the cells
equally can be difficult, especially at high frequencies. A symptom of
unequal drive in FETs is the existence of dc gate current at power levels
well below saturation. 

A simple way to avoid the problem of unequal drive is to use a tree
structure in the input microstrip. The input microstrip is split into two
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branches, those are then split in two, and the process continues until there
are enough branches to provide a separate microstrip line to each cell. In
such structures, it is essential to avoid the possibility of odd-mode
oscillation (Section 9.5.3). Of course, power-combining lower-power
amplifiers, although an expensive solution, avoids this problem completely. 

9.5.3 Odd-Mode Oscillation

Figure 9.12 shows two FETs connected in parallel by a tree of transmission
lines, as suggested in Section 9.5.2, to equalize drive to the two devices. It
is possible for such transistors to oscillate in an odd mode; that is, where
the currents and voltages in the two devices have a phase difference of 180
degrees. In that case, the connection points of the transmission lines are
virtual grounds, and each device is effectively terminated in a shorted stub.
The impedance of the stub can satisfy oscillation conditions for the device
at some frequency. Such oscillation can be puzzling, because the virtual
ground isolates the output port, so oscillatory output power may not be
evident on a spectrum analyzer. 

Figure 9.12 shows the simple solution to the problem: add stabilizing
resistors between the devices. In normal oscillation, there is no voltage
across either of the resistors.2 If the devices were oscillating in an odd
mode, however, they would each be terminated in half the resistance. As
long as the resistors’ values are selected appropriately, such oscillation is
impossible. 

The situation becomes much more complex when many devices are
interconnected with a tree feed structure. Then, it is possible to have
multiple modes of oscillation, and the simple approach shown in Figure
9.12 is not optimum. In practice, however, we find that the simple resistor
network invariably provides adequate stability. 

9.5.4 Efficiency and Load Optimization

Optimizing efficiency and output power of a particular device is largely a
process of optimizing the dc bias and load. When a class-A amplifier is
optimized, the load, as seen from the intrinsic junction, is resistive, and the
dynamic load line is a straight line extending from the knee of the
uppermost drain I/V curve to the I = 0 axis. Ellipticity in the dynamic load

2.  We assume that the resistors can be viewed as lumped-element components. However, at
high frequencies, the resistors may not be short relative to a wavelength, and thus behave
as lossy, open-circuit stubs with the open-circuit point at their centers. The resistors then
can dissipate power. It is therefore essential that the stabilizing resistors be kept small. 
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line indicates the presence of a reactive component at the fundamental or
harmonic frequencies. Figure 9.13 shows a nearly ideal set of curves,
calculated as part of an 850-MHz, class-A HBT amplifier design. 

In assessing whether the amplifier is optimized, it is essential to view
the voltage at the intrinsic junction (the voltage and current at the
controlled source representing the FET channel or the bipolar collector-to-
emitter current), not at the device’s terminals. The latter includes the
reactive current in parasitic drain-to-source or collector-to-emitter
capacitance, and the voltage across the parasitic drain/source or
collector/emitter resistances. The current and voltage at the terminals may
well have a phase difference other than 180 degrees. 

The slope of the load line is the inverse of the load resistance. This
must be adjusted, along with the bias voltage and current, to locate the load
line properly. 

9.5.5 Back-off and Linearity

Linearity in power amplifiers can be specified in several ways. In some
cases, a classical intercept point is the most meaningful characterization.
More often, however, adjacent-channel power or the two-tone inter-
modulation level, at full output power, are more meaningful. 

Distortion in power amplifiers can arise from two different phenomena.
At low levels, in class-A amplifiers, distortion is caused by the same
nonlinearities that affect small-signal amplifiers. These phenomena are
discussed in Sections 4.2 and 8.3. As the amplifier is driven into saturation,
however, distortion caused by clipping the amplitude peaks of the
modulated carrier waveform becomes the dominant phenomenon, and the
distortion generated in this manner is much greater than the small-signal

Virtual groundVirtual ground

Figure 9.12 When odd-mode oscillation occurs, the connection point between the
devices is a virtual ground, effectively terminating each device in a stub. 

Microstrips

Stabilizing resistor
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distortion. As a result, distortion increases significantly—much more
rapidly than small-signal intermodulation levels—as the amplifier is driven
into saturation, and it is not possible to define a meaningful intercept point. 

Minimizing clipping distortion requires optimizing the load
impedance. It is frequently noted that the load impedance providing
optimum output power and efficiency is significantly different from the

Figure 9.13 Waveforms in an optimized 1.5W class-A amplifier: (a) dynamic load
line, superimposed on a set of collector I/V curves; (b) voltage and
current waveforms. Note that we view internal, not external, voltages and
currents. Ideally, the current minimum should be zero, but this would
introduce distortion that would degrade the amplifier’s linearity. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
Internal CE Voltage (V)

IV Sweep

0

500

1000

1500

2000

2500

C
ol

le
ct

or
 C

ur
re

nt
 (m

A)

I/V Curves (mA)
HBT IV

Dynamic Load Line (mA)
HBT RF

0 500 1000 1500 2000 2222
Time (ps)

Collector Waveforms

0

2

4

6

8

C
E 

Vo
lta

ge
 (V

)

0

625

1250

1875

2500

C
ol

le
ct

or
 C

ur
re

nt
 (m

A)

Internal CE Voltage (L, V)
HBT RF

Internal CE Current (R, mA)
HBT RF

(a)

(b)



 Nonlinear Microwave and RF Circuits470

impedance that minimizes distortion. Figure 9.13 illustrates why this is so:
an increase in the load resistance flattens the dynamic load line, reducing
the clipping, especially at minimum current. The range of the drain-voltage
variation must be reduced to compensate, reducing the output power, but
the reduction in distortion is great. 

In many applications, the distortion at full output power is unacceptable,
so the amplifier’s power is reduced to decrease the distortion level. This
back-off may be several decibels below full sinusoidal output power. Effi-
ciency decreases as output power decreases, so backed-off amplifiers are
usually inefficient. For this reason, other linearization schemes are some-
times employed. One is predistortion, in which the input signal is distorted
in a manner that compensates for the amplifier’s distortion [9.11]. Predistor-
tion linearizers can reduce distortion at levels close to the amplifier’s full
output power; however, they cannot decrease distortion in hard saturation.
Predistortion linearizers are not easy to design; the design depends strongly
on the type of amplifier with which they are used, and they are notoriously
temperature sensitive. Another technique is feedforward linearization, a
type of distortion cancellation scheme. Feedforward linearization is used ex-
tensively in base-station amplifiers [9.12]. It is not applicable to low-power,
mobile applications such as cellular telephones. 

9.5.6 Voltage Biasing and Current Biasing in Bipolar Devices

The base bias of a bipolar device used in a class-A amplifier can be
provided by either a voltage or a current source. When a voltage source is
used, increasing the input power results in an increase in the rectified dc
base-to-emitter junction current. This allows the collector current to
increase with power as well, causing the gain and output power to saturate
gradually. 

When a current source provides base bias, increased input power
cannot increase the dc base current. As the RF drive increases, the dc base
voltage decreases to maintain constant current. Consequently, the dc
collector current remains constant as the RF input level increases, and the
amplifier is driven into saturation. The result is a “hard” saturation
characteristic in which the transition from linear to saturated operation
occurs rapidly with increased input power. 

Other biasing schemes, including certain forms of active bias, can
provide saturation characteristics that are somewhere between these two
extremes. For example, biasing the base from a voltage source and series
resistor allows the dc current to increase with increased drive, but the dc
base voltage also decreases. The saturation characteristics then depend on
the value of the base resistance. 
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Because the average dc collector current must increase when the device
is driven, class-AB or B amplifiers cannot be current-biased. 

9.5.7 Prematching 

For many reasons, a designer may prefer to use packaged devices.
Packaged devices are usually practical at low frequencies (below a few
gigahertz, depending upon power level), but at higher frequencies, the
package parasitics may complicate an already difficult matching problem.
One solution is for the device manufacturer to place some of the matching
components inside the package. These raise the input and optimum load
impedances to a level that can be matched easily by the external circuit.
Such devices are called internally matched or prematched; some internally
matched power devices are so carefully designed that it is not necessary to
use any external matching circuits at all. A disadvantage of internal
matching is that the internal circuit has a specific, limited frequency range
that cannot be adjusted by the user. 

9.5.8 Thermal Considerations

The thermal design of the power amplifier must be performed carefully so
that the device’s channel or junction temperature is minimized. Tempera-
ture affects both the performance and the reliability of an amplifier. In
FETs, the transconductance varies approximately in inverse proportion to
temperature. Furthermore, a transistor’s mean time to failure increases ex-
ponentially with temperature; bipolars are subject to thermal runaway,
while HBTs exhibit thermal collapse. Although the circuit designer can do
little to change the thermal design of the device itself, he can do much to
minimize the temperature increase caused by factors under his control. If
an unpackaged chip is used, the chip must be soldered effectively to the
mounting surface; a packaged device must be screwed or soldered in place,
according to its design. The housing in which the device is mounted must
provide good heat transfer to its outer surface, and in many cases a separate
heat dissipator, sometimes including forced-air cooling, must be used. 

Hot areas on the surface of the device can be caused by solder voids
under the chip. These “hot spots” can lead to early failure of the device, so
devices used in high-reliability applications must be free of them. The most
commonly used method of identifying such problems is to perform an
infrared scan across the surface of the device. Another popular method is to
use a liquid crystal material that can be deposited directly on the chip and
observed under polarized light. Finally, devices can be X-rayed to view any
voids directly. 
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High-performance discrete power devices often are fabricated on very
thin substrates. ICs sometimes also can be thinned to 50 µm, instead of the
standard 100 µm, to decrease thermal resistance. Although effective in
reducing temperature, such thin substrates are fragile and difficult to
handle. Spreading out the cells in a power device can improve cooling as
well, but this expedient may increase interconnection parasitics, size, and
cost. 

In large, multicell bipolar transistors, the center cells have the highest
temperature and therefore the lowest dc base-to-emitter voltage, Vbe. The
base current in the center cells is therefore significantly greater than in the
outer ones, as is the collector current and power dissipation. Eventually, as
the device heats, the hottest cells carry all the collector current and the
cooler cells conduct very little. In silicon BJTs, the current gain increases
with temperature, causing thermal runaway and eventual destruction of the
device. In HBTs, the current gain decreases with temperature, causing
thermal collapse of the I/V characteristic. 

To prevent thermal runaway or collapse, ballast resistors can be placed
in series with the base or emitter [9.13, 9.14]. Emitter ballast can be used in
either HBTs or silicon homojunction devices, while base ballast is best
used only in HBTs [9.14]. Ballast resistors provide negative dc feedback,
which helps to stabilize the device thermally and insure uniform dc bias in
the individual cells. Ballast also provides a more uniform input impedance
at all the cells, which helps to make the RF drive more uniform as well.
Unfortunately, the ballast resistors also introduce considerable loss, which
decreases gain, output power, and efficiency.

In some cases, in HBT amplifiers, it is possible to use ballast resistors
in series with the base of each cell, and to bypass them with capacitors.
This way, RF performance is not degraded. This approach is most practical
in low-frequency amplifiers, where the parasitics that are introduced and
the increased layout size are tolerable. It is usually not workable with large
devices at high frequencies.

Ballast-resistor design requires knowledge of device characteristics,
such as dVbe /dT, that cannot be estimated a priori, but must be measured
from test devices. The value of the ballast resistors is very sensitive to
these quantities; the thermal scaling equations of the device model
(particularly those of the SPICE Gummel-Poon model) are rarely accurate
enough to estimate them. 

In any power device, the instantaneous power dissipation varies with
time. When the device amplifies a high-frequency sinusoid, the period of
the temperature variation is essentially that of the RF waveform. That
period is short compared to the thermal time constant (which is on the order
of tens of microseconds to, at most, milliseconds), so the temperature does
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not fluctuate. However, when the device amplifies a modulated waveform
having a time-varying amplitude, the power dissipation varies on the time
scale of the modulating waveform. The latter may be on the same order as
the thermal time constant, so the device temperature varies with time as
well. In effect, the amplifier is modulated by a new waveform, the device
temperature. Such phenomena are called memory effects, and are evident
when the thermal time constant has the same order as the envelope period. 
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Chapter  10

Active Frequency Multipliers

Active frequency multipliers have significant advantages over diode
multipliers. While passive resistive diode multipliers are broadband and
inefficient, and varactors are narrowband and efficient, active multipliers
can have broad bandwidths and conversion gain. They can realize efficient
multipliers; a high-frequency FET or bipolar multiplier chain usually
consumes little dc power and dissipates little heat; this is an important
advantage in space systems. In contrast, receiver LO chains using
multipliers often require high-power, high-gain driver amplifiers; such
amplifiers often are a dominant drain on dc power. 

This chapter is primarily concerned with low-power “class-B”
multipliers, which operate in a manner analogous to a class-B power
amplifier. Such multipliers are very stable and have good gain, efficiency,
and output power, and they are usually the most practical form for an active
frequency multiplier. 

10.1 DESIGN PHILOSOPHY 

In the past, frequency multipliers were often used to generate high levels of
microwave RF power. High-power multipliers were important components
because microwave solid-state power amplifiers did not exist; power
amplification at microwave frequencies could be provided only by vacuum
devices, which were expensive, unreliable, and had high dc power
requirements. Accordingly, a “high-power” multiplier chain (which rarely
had an output power greater than a fraction of 1W) consisted of a power
amplifier (often a UHF bipolar amplifier) that delivered several watts to a
cascade of varactor or SRD multiplier stages. 
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Today, solid-state power amplification at microwave frequencies is
possible, so high-power multiplier chains are rarely needed. Instead, the
functions of power amplification and signal generation are usually
separated; signals at the required frequencies are generated at relatively
low powers, and if greater power is needed, those signals are amplified.
Keeping these functions separate has two important advantages: first, it
minimizes the consumption of dc power and the generation of heat, and
allows the components that dissipate the most heat to be separate from
others that may be temperature-sensitive. Second, because the multipliers
operate at low power, the levels of spurious signals and harmonics are
reduced. Furthermore, many systems do not require high-power signals.
The majority of frequency-multiplier chains are used in low-power
systems, as mixer local oscillators (LOs), in test instruments, in frequency
synthesizers, or as low-power drivers for transmitters. The output power of
such chains is usually on the order of 10 dBm. 

When used as frequency multipliers, small-signal FETs and bipolar
transistors can achieve conversion gain over broad bandwidths while
maintaining good dc-to-RF efficiency. In contrast, diode multipliers always
exhibit loss. Varactor multipliers are lossy, narrowband components that
operate best at moderate to high power levels; resistive (Schottky-diode)
multipliers are more broadband but have even greater loss and limited
power-handling ability. Thus, the medium- to high-power driver amplifiers
required by such multipliers generate RF power that is eventually
dissipated in the diodes and matching circuits. It is not unusual for a driver
amplifier and diode multiplier chain to require several watts of dc power to
generate a few milliwatts of RF power. The dc power advantage of active
multipliers is essential for RF and wireless applications. 

The low-power, class-B multipliers we examine in this chapter
generate low-level RF output power (normally below 10 dBm) at low
harmonics, have at least unity gain, and may have high output frequencies,
sometimes in the millimeter-wave region. The design approach we shall
develop is, of course, applicable to FET or bipolar multipliers operating at
higher powers and lower frequencies; designing a high-power multiplier
requires only using a larger device and providing greater dc and RF input
power. Like the class-B power amplifier discussed in Chapter 9, the gate or
base of a frequency-multiplier device is biased near the turn-on point, the
channel conducts in pulses having a duty cycle near 50%, and the device’s
terminals are short-circuited at all unwanted harmonics of the excitation
frequency. 
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10.2 DESIGN OF FET FREQUENCY MULTIPLIERS 

Following the pattern of the previous chapters, we begin with an
approximate design procedure, use it to generate an initial design, and then
optimize that design via harmonic balance. To keep the discussion con-
crete, we focus on FET frequency multipliers; the extension to bipolars is
straightforward. We begin by examining the properties of a large-signal
multiplier circuit that uses an ideal FET, then modify the circuit to account
for parasitic elements. 

10.2.1 Design Theory 

Figure 10.1 shows the circuit of a frequency multiplier that uses an ideal
FET. The output resonator is tuned to the nth harmonic of the excitation
frequency, so it short circuits the FET’s drain at all other frequencies,
especially the excitation frequency, ωp. We assume throughout this section
that a short-circuit termination is optimum; in Section 10.4.1 we examine
this assumption further. 

For reasons that will be clear shortly, the gate-bias voltage in an
efficient FET multiplier must be equal to or less than (more negative than)
the threshold voltage, Vt . Thus, the FET’s channel conducts only during the
positive half of the excitation cycle, and the drain conducts in pulses; the
shape of the pulses is approximately a rectified cosine. In this derivation
we assume that the drain-current waveform can be modeled as a train of
half-cosine pulses, an assumption that is justified by the results of
harmonic-balance analyses. The duty cycle of the pulses varies with the dc
gate bias Vgg; if Vgg = Vt, the duty cycle is 50%, but if Vgg < Vt (the usual

Figure 10.1 Circuit of an ideal FET frequency multiplier. 



 Nonlinear Microwave and RF Circuits478

situation), the FET is turned off over most of the excitation cycle. The duty
cycle then is less than 50%. 

Figure 10.2 shows the voltage and current waveforms of an ideal FET
used as a frequency doubler. Because the output resonator eliminates all
voltage components except the one at the nth harmonic, the drain voltage
Vd(t) is a sinusoid at radian frequency nωp. For best efficiency and output
power, the drain voltage must vary between Vmax and Vmin; Vmin is the
value of drain voltage at the knee of the drain I/V curve when the gate
voltage has its maximum value Vg, max . Vmax and Vmin are established by
the same considerations as those used in power amplifiers; Vdd, the dc drain
voltage, is halfway between Vmax and Vmin . The gate voltage varies
between Vg, max, the peak gate voltage (limited to approximately 0.5V by
rectification in the gate/channel Schottky junction), and 2Vgg – Vg, max, a
relatively high reverse voltage. The drain current peaks at the value Imax,
and the current pulses have the time duration t0; t0 < T/2, where T is the
period of the excitation. If we define t = 0 as the point where the current is
maximum, the Fourier-series representation of the current has only cosine
components: 

Figure 10.2 Voltage and current waveforms in an ideal FET frequency multiplier.
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(10.1)

When  the coefficients are 

(10.2)

and when n = 0, 

(10.3)

When t0/T = 0.5/n, , (10.2) is indeterminate. Then, In is 

(10.4)

Because the tuned circuit in Figure 10.1 is an open circuit at the output
frequency nωp, all of the nth-harmonic current In circulates in RL and
contributes to output power. Accordingly, in order for the FET multiplier to
achieve maximum output power and efficiency, we must maximize In .
Equation (10.2) shows that we have only one means to do so, adjusting t0/T.
Figure 10.3 shows a plot of In/Imax as a function of t0/T when n = 2 through
n = 4; each of these curves has a clear maximum below t0/T = 0.5. It
appears that, in order to achieve the optimum value of In, we need only
adjust Vgg so that Id (t) has the desired period of conduction, t0. 

Unfortunately, two problems arise in this attempt to achieve a short
conduction period. First, we would have to make , and this large
bias voltage would make the magnitude of the peak reverse voltage, which
is approximately 2 Vgg, a very great value. Ideally, the peak reverse gate
voltage occurs at the minimum drain voltage, but because of phase shifts in
practical multipliers and the more rapid variation of Vd(t) than Vg(t), the
peak drain-to-gate voltage can be nearly Vmax – 2 Vgg . If Vgg is adjusted to
make t0/T very small, the peak drain-to-gate voltage may be much greater
than the breakdown voltage of the FET. The second problem is that, even if
the device could survive this high voltage, the input power required to
achieve such a wide gate-voltage variation would be so great that the
multiplier’s conversion gain would be poor. Thus, it is necessary in most
cases (especially in a multiplier having an output harmonic greater than the
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second) to use a value of t0/T that is greater than the optimum. Selecting
t0/T to achieve an acceptable trade-off between gain and output power is an
important part of the design process. 

The maximum reverse gate voltage that the FET can tolerate
establishes one limit on t0/T. If the gate voltage varies between Vg, max and
the peak reverse voltage Vg, min, the phase angle, θt, over which Vg(t) > Vt is 

(10.5)

The bias voltage that achieves this value of θt is 

(10.6)

θt is sometimes called the conduction angle of the device. Equation (10.5)
shows that a large negative value of Vg, min decreases the conduction angle.
It also shows that decreasing Vg, max has the same effect and, by decreasing

Figure 10.3 Harmonic drain-current components as a function of t0/T when the drain-
current waveform is a half-sinusoidal pulse train.
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the range of Vg(t), reduces input power. However, decreasing Vg, max is not
a good way to achieve a low value of t0/T; decreasing Vg, max decreases
Imax, and thus reduces output power. Furthermore, when Vg, max is not as
great as possible, the multiplier may not be operated in gain saturation, and
the output power may vary appreciably with input power (in most practical
applications, multipliers are operated in gain saturation in order to stabilize
their gains). 

The difficulty of achieving a low value of t0/T can be illustrated by an
example. Suppose that a FET has the parameters Vt = –1.5V,
Vg, min = –7.0V, and Vg, max = 0.5. Equation (10.5) indicates that θt = 2.183
(125 degrees), and therefore t0/T = 0.35. This is the minimum t0/T that can
be achieved with this device if Vg, max is not reduced. Figure 10.3 shows
that this value of t0/T is nearly optimum for a doubler, and is not too far
from the optimum value for a tripler (although I3 < I2/2, so a tripler’s
output power would be approximately 6 dB below a doubler’s). However,
t0/T = 0.35 is near the zero of I4, so a fourth-harmonic multiplier having
this value of t0/T would have very low output power and efficiency. If a
fourth-harmonic multiplier were desired, it would be better to increase t0/T
to 0.5, although even then the output power would be at least 16 dB below
that of the doubler. It is easy to see from this example why the published
research shows that successful FET frequency multipliers have most
frequently been doublers. 

The current in the load resistance RL is In. For the voltage VL across the
load to vary between Vmax and Vmin, 

(10.7)

The optimum load resistance is 

(10.8)

Because In is relatively small compared to I1 in a class-B amplifier, RL in a
multiplier is usually much greater. The output power at the nth harmonic
PL,n is 

(10.9)
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As with a power amplifier, the dc drain bias voltage is halfway between
Vmax and Vmin:

(10.10)

The dc power is 

(10.11)

Substituting I0 from (10.2) into (10.11) gives 

(10.12)

The dc-to-RF efficiency is 

(10.13)

Because the harmonic output current in a multiplier is usually much less
than the fundamental-frequency current in an amplifier, ηdc is usually much
lower in a FET multiplier than in a FET amplifier. 

We can approximate the RF input power by employing the same set of
assumptions that is used to approximate the LO power in a FET mixer
(Section 11.1.2). Because the drain is short-circuited at the fundamental
frequency, the input of the FET can be modeled as a series connection of
Rs + Ri + Rg and Cgs(Vgg). The excitation source must generate an RF
voltage having the peak value Vg, max – Vgg across Cgs ; if the source is
matched, the power available from the source must equal Pin: 

(10.14)

The expression shows that the required input power is proportional to ωp
2,

so the required input power increases 6 dB per octave; or, in other terms,
the available gain decreases by 6 dB per octave. If the input is well
matched across a broad bandwidth, a gain slope inevitably results. A
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broadband multiplier requires low-frequency input mismatching to have a
flat response. 

The transducer conversion gain is simply PL, n /Pav. The power-added
efficiency of a FET multiplier is 

(10.15)

or 

(10.16)

where Gp is the power gain of the multiplier (Gp = PL, n/Pin). 
A final consideration is the trade-off between Vmax and Vg, min. Neither

of these parameters can be established independently in any FET; Vmax and
Vg, min must be chosen so that the drain-to-gate avalanche voltage is not ex-
ceeded. The maximum drain-to-gate voltage is approximately Vmax – Vg, min,
so we have the limitation 

(10.17)

where Va is the drain-to-gate avalanche voltage. Thus, we can increase
|Vg, min| by decreasing Vmax. Decreasing Vmax decreases the optimum value
of RL, not an undesirable result in view of the fact that RL is often too great
to be realized in practice. It is usually not possible to decrease Vmin when
Vmax is reduced, however, so from (10.9) we see that decreasing Vmax
reduces PL,n. The design process is illustrated by the following example. 

10.2.2 Design Example: A Simple FET Multiplier 

We wish to design a 10 to 20-GHz MESFET frequency doubler. The FET
has the following parameters: 

Va = 12.0V Vt = –2.0V
Ls = 0.005 nH Cds = 0.10 pF
Cgs = 0.25 pF (at Vgs = Vgg) Cgd = 0.08 pF 
Rs = 2.0Ω Ri = 2.0Ω
Rg = 1.0Ω Rd = 2.0Ω
Idss = 80 mA (at Vds = 3.0V) 
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We use a Curtice model [9.4] to describe the FET. From the I/V curves we
estimate Imax = 80 mA and Vmin = 1.0V. Vg ,min and Vmax must obey the
constraint expressed by (10.17), so we choose Vg, min = –7.0V and
Vmax = 5.0V; we also choose Vg, max = 0.2V, slightly below the lowest value
that allows rectification. Equations (10.10) and (10.6), respectively, give
Vdd = 3.0V (a convenient value) and Vgg = –3.4V; substituting these values
into (10.5) gives θt = 2.36 (135 degrees), or t0/T = 0.37. Figure 10.3 shows
that this value of t0/T is close to the optimum for a doubler, and that
I2 = 0.27 Imax, or 21.6 mA. 

Equation (10.14) can now be used to find the input power; (10.16)
implies that Pin = 8.0 mW, or 9.0 dBm. If the input is conjugate matched,
the input power is equal to the power available from the excitation source.
The output power PL, 2 is given by (10.9); it is 21.6 mW or 13.3 dBm,
making the conversion gain 4.3 dB. The dc drain current from (10.11) and
(10.2) is 19.9 mA, which gives 59.7 mW dc power and 36% dc-to-RF
efficiency. Finally, RL is found from (10.8) to be 92.6Ω, and in order to
resonate the output capacitance, Cds, there must be a susceptance in parallel
with RL of –2ωpCds, or –12.5 mS. Converting this load to an impedance
gives ZL(2ωp) = 39.4 + j45.8Ω. The estimated input impedance is simply
Rs + Ri + Rg + 1 / jωpCgs(Vgg), or 5 – j63Ω.

The rest of the design involves realizing the input and output matching
networks. The output matching network is relatively easy to design; it
consists of a filter, to short-circuit the drain at the fundamental frequency
and unwanted harmonics, followed by matching elements. A half-wave
filter is ideal for the output; it consists of a cascade of alternating high- and
low-impedance transmission-line sections, each λ/4 long at ωp; these
sections are λ/2 long at 2ωp and 3λ/4 long at 3ωp. Thus, the frequencies of
maximum rejection occur at ωp and 3ωp, but the filter has no rejection at
the output frequency 2ωp. From Figure 10.3 we see that I4 ~ 0 at
t0/T = 0.37, so the fourth-harmonic output should be very low. The gate’s
short circuit at the second-harmonic frequency is less critical; a shorted
stub λ/4 long at ωp is adequate to provide the termination. This stub has no
effect on the excitation, but is λ/2 long at 2ωp and thus short-circuits the
gate at this frequency. Figure 10.4 shows the circuit of the multiplier.

A quarter-wavelength open-circuit stub could also be used to short-
circuit the drain at the fundamental frequency. This would also short-circuit
the third harmonic and require less space, an advantage in an IC. Because
of the limited Q of a microstrip stub, however, rejection would not be as
good, and bandwidth would be less. 

The validity of this design was tested by a harmonic-balance
calculation. To insure validity, we compare the performance when the
approximate design and the harmonic-balance calculation have the same
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gate-voltage variation. By normalizing the gate voltage instead of the
available input power, we can separate the effects of the input- and output-
circuit designs more easily. Accordingly, the input power and bias were
adjusted in the harmonic-balance calculation until the estimated peak-to-
peak voltage of 7.2V across Cgs was achieved. 

The multiplier’s operating parameters found by the harmonic-balance
analysis are compared in Table 10.1 to those from the approximate design.
The two sets of data agree reasonably well, although the output power
calculated by harmonic balance is 1.6 dB lower than the estimated output
power. The main reason for the difference is that the current pulse is not
precisely a half-sinusoid; the pulse is somewhat distorted, so that its shape
appears to be something between a cosine and a triangle. This distortion
reduces the magnitude of I2, and thus decreases the output power at 2ωp.
The second-harmonic peak-to-peak voltage across RL of 3.5V, instead of
4.0V, is evidence that I2 is lower than intended; this difference in voltage
alone accounts for 1.2 dB of the difference in output power. The calculated
value of t0/T, 0.44, is slightly greater than the estimated value, 0.37; this
difference further reduces I2.

It is also possible that the load impedance is not precisely optimum;
certainly RL could be increased to achieve the full peak-to-peak output
voltage of 4.0V; this change would increase the output power approx-
imately 0.6 dB. A plot of the output current and voltage shows that Cds is
effectively resonated, because the peak of the drain current pulse Id(t)
occurs almost exactly at the minimum of the drain voltage, Vd(t); this
condition implies that the impedance presented to the terminals of the
controlled source Id is entirely real.

It is a worthwhile exercise for the reader to compare this design process
to those of the varactor and resistive multipliers in Chapter 7. Although the

Figure 10.4 Circuit of the FET frequency doubler designed in the example. 
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Table 10.1 10- to 20-GHz FET Frequency Doubler Design

Parameter Approximate 
Analysis

Harmonic-Balance 
Analysis

Vg(t) Range –7.0 to –0.2V –6.9 to –0.1V

Vd(t) Range 1.0 to 5.0V 1.1 to 4.6V

Imax 80.0 mA 91.0 mA

Idc 19.9 mA 22.7 mA

Vgg –3.4V –3.3V

Vdd 3.0V 3.0V

t0 / T 0.37 0.44

ZL 39 + j46 39 + j46 (not optimized)

Zin 5 – j63 3.4 – j56

Pav 9.0 dBm 11.0 dBm

PL, 2 13.3 dBm 11.7 

Gt 4.3 dB 0.7 dB

Pdc 59.7 mW 68.1 mW

latter are no more difficult to implement, the approximate design of the FET
frequency multiplier is much “cleaner” than those of the diode multipliers:
the design is more intuitive, the approximations are not as severe, less
empiricism is required, and there is a better initial agreement between the
approximate and harmonic-balance analyses. Indeed, after performing
harmonic-balance analyses of a FET multiplier and a varactor multiplier, we
can see immediately that the performance of the FET multiplier is far less
sensitive to virtually every circuit parameter than is the varactor. This
property—that the FET multiplier is more “designable”—is difficult to
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quantify but is nevertheless one of the multiplier’s most important
characteristics.

10.2.3 Design Example: A Broadband Frequency Multiplier 

Now that we know what we’re doing, we can illustrate how the design
process can be simplified, as we did in Chapter 9 with power amplifier
circuits. 

Here we consider the design of a frequency doubler having an input
frequency of 8.6 to 9.8 GHz. We will not go through the entire process of
making the initial, approximate design, as we did in the first example, but
instead we will start with an ideal circuit, use it to determine the optimum
load and source impedances, and finally synthesize them on the computer. 

The ideal circuit is shown in Figure 10.5. The circuit is ideal in the
sense that it uses elemental source and load networks and ideal bias
sources, but the FET is described by its complete Curtice model. It is a
0.25-µm MESFET, having an Idss of 80 mA and threshold voltage of –1.5V.
The gate-to-source capacitance is 0.35 pF at zero gate bias. An open-
circuit, quarter-wavelength stub short-circuits the drain at the fundamental
frequency and odd harmonics. 
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Figure 10.5 Ideal circuit of the frequency multiplier in the example of Section 10.2.3.
This circuit is used to obtain basic operating parameters—input and load
impedances, input power, and bias conditions—which will be used in the
complete design. 
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The ideal circuit is optimized by adjusting the input power, gate bias,
and load impedance. The latter consists of the port resistance, which is
freely adjustable, and the drain-bias inductance, which provides the
reactive part of the load. The circuit simulator’s tune mode is adequate for
this purpose; there is no need for numerical optimization. When the circuit
is optimized, we find that PL, 2 = 12.1 dBm, Vgg = –1.17, RL = 105Ω,
LL = 0.505 nH, and Zin = 9.7 – j58.9. 

Figure 10.6 shows the voltage and current waveforms in the device.
The pulse of drain current coincides with the gate-to-source voltage (some
delay is evident) and the second harmonic in the drain voltage is also
clearly evident. 

Figure 10.7(a) shows the final circuit. Knowing the optimum load
impedance, we can approximate the 0.5-nH drain inductance by a
transmission line. The drain-bias line serves nicely for this purpose. The
length of the bias line is adjusted to optimize the output power. To realize
the 105Ω resistive load, we use a quarter-wave transformer, 72Ω,
approximately 30 µm wide. The quarter-wave stub is also realized as a real
microstrip line. Finally, when the output is optimized, the input matching
circuit is designed and optimized. To achieve flat frequency response, we
tune the circuit empirically on the computer, mismatching the input at the
low end of the band. The circuit does not include discontinuities such as tee
and step junctions; these should be included before the circuit is fabricated. 
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Figure 10.7(b) shows the output power at the fundamental frequency
and at the second, third, and fourth harmonics. The fourth harmonic is
actually greater than the fundamental and third harmonics because the stub
does not attenuate it. 
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10.2.4 Bipolar Frequency Multipliers

The theory of bipolar multipliers is essentially the same as that of FET
multipliers. A few notes on the differences, however, are in order. 

Unlike FETs, whose channel currents are limited to a little over Idss,
bipolar devices do not have such a strict limit. Silicon BJTs experience
high-level injection effects, which tend to limit the peak current and reduce
transconductance at high collector current. HBTs do not exhibit such
effects but still should be limited in peak current for reliability reasons. The
peak current depends strongly on the HBT technology, but in most devices,
the peak current should be kept below approximately 40 to 50 kA/cm2 of
emitter area. Of course, collector current must also be restricted to
minimize heat dissipation. 

Bipolar devices have a large, strongly nonlinear base-to-emitter
capacitance. Because of that capacitance, bipolar multipliers are susceptible
to modes of oscillation that are not unlike those of p+n junction varactor
multipliers. As with varactors, the best (and simplest) way to avoid such
instability is to short-circuit the base and drain at all unwanted harmonics.
Similarly, the designer must make certain that active dc bias supplies do not
exhibit negative resistance or couple the collector to the base at low
frequencies. 

Because multiplying devices are turned off under quiescent conditions,
bipolar multipliers should not be current-biased; they must be biased from
a voltage source, perhaps with a series resistance. 

10.3 HARMONIC-BALANCE ANALYSIS OF ACTIVE 
FREQUENCY MULTIPLIERS 

The harmonic-balance analysis of frequency multipliers is virtually
identical to the analysis of class-B power amplifiers described in Section
9.4. The main differences between the power-amplifier and multiplier
analyses are that frequency multipliers usually employ small-signal or
medium-power devices, not high-power transistors, and the output is taken
at a harmonic of the excitation frequency, not at the fundamental frequency. 

Because of the stronger nonlinearities, convergence may be slower in
frequency multipliers than in other nonlinear active circuits. In bipolar
multipliers, especially, the strongly pumped base-to-emitter capacitance
can be unstable; in that case, convergence failure is virtually assured. The
best way to avoid convergence failure caused by an unstable circuit is to
make certain that the circuit is stable, by effectively short-circuiting
unwanted harmonics at the collector and base. 
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10.4 PRACTICAL CONSIDERATIONS

10.4.1 Effect of Gate and Drain Terminations at Unwanted
Harmonics 

The previous sections were based on the hypothesis that the optimum gate
and drain terminations at unwanted harmonics are both short circuits.
Empirical evidence shows that short-circuit terminations at these
frequencies results in good performance, but we have accepted on faith, not
proven, that short-circuit terminations are in some sense optimum. In fact,
there have been reports that the use of other terminations, especially an
open-circuit drain termination at the fundamental frequency, has advantages
over a short circuit. The primary advantage of using other terminations is
that greater gain can be achieved, although the increase in gain usually is the
result of undesirable feedback. 

Short-circuit terminations for unwanted harmonics are optimum, in a
practical sense, because most solid-state devices operate as voltage-
controlled current sources, and their capacitive parasitics are in shunt with
their terminals. Open-circuiting the drain in a multiplier implies that the
second harmonic current is sinusoidal, while the voltage can have some
arbitrary waveform determined by the characteristics of the device. This
condition violates the gate-to-drain I/V characteristic of the device and is
therefore impossible; trying to enforce it can only result in a circuit that has
poor performance in virtually all respects. 

A study by Rauscher [10.1] describes the performance of a small-signal
MESFET operating as a frequency doubler between 15 and 30 GHz.
Because of the multiplier’s high output frequency and the relatively large
value of Cgd in this device, feedback effects are very significant, and the
effect of the drain-terminating impedance on gain and stability is
pronounced. The conversion gain is approximately 2 dB when the drain is
shorted, but rises monotonically with the reactance of an inductive
fundamental-frequency termination. When the terminating reactance is
only 45Ω, the multiplier oscillates; when the termination is an open circuit,
it has low conversion efficiency, –4 dB. One is forced to conclude that
using an open-circuit drain termination at the fundamental frequency may
have unpredictable results, and its effect on stability in particular is likely
to be deleterious. 

10.4.2 Balanced Frequency Multipliers 

By far the most practical and the one most commonly used balanced
multiplier is the antiseries or, less elegantly, the “push-push” multiplier, a
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circuit that has existed since the days of vacuum tubes [10.2]. An especially
nice property of an antiseries active doubler is that the connection between
the two drains or collectors is a virtual ground; it therefore eliminates the
problem of achieving a broadband fundamental-frequency short circuit at
the drains or collectors. Figure 10.8 illustrates the antiseries multiplier
circuit. 

The general properties of the push-push circuit are described in detail
in Section 5.2.1. Although that section describes circuits consisting of two-
terminal nonlinear elements, the circuit in Figure 10.8 is conceptually
identical. The gates of two FETs are connected, by individual matching
circuits, to two mutually isolated ports of a 180-degree hybrid. The delta
port of the hybrid is used as the input, and the sigma port is terminated. The
gates of the two FETs are driven by signals having a 180-degree phase
difference; therefore, the fundamental-frequency components of the drain
currents are out of phase, so each FET effectively short-circuits the other at
the fundamental frequency and all odd harmonics, creating a virtual ground
at the drain. The even harmonics of the drain currents in the two FETs have
no phase difference, however, so the drain-current components at those
frequencies combine in phase at the output. 

This configuration has several advantages over a single-device circuit.
First, the output matching circuit can be located close to the drains of the
FETs; it need not be separated from them, as in the single-device multiplier,
by the intervening filter. Eliminating the parasitic effects of this filter
allows the balanced multiplier to have greater bandwidth than would a
single-device multiplier. Second, like other balanced circuits, a balanced
multiplier has 3-dB greater output power than an equivalent single-device
circuit. This can be a significant advantage when used at high frequencies,
with small devices, which have low output power. Third, it is often easier

Figure 10.8 Antiseries or “push-push” frequency multiplier. The devices are driven
out of phase from a 180-degree hybrid or balun, but the outputs are in
parallel. Point A is a virtual ground at the fundamental frequency and all
odd harmonics, but even-harmonic components combine at that point. 

A
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to realize the load impedance of a balanced multiplier than that of a single-
device multiplier. As we saw in Section 5.2.1, the effective load impedance
presented to each device in an antiseries circuit is twice the actual load
impedance of the balanced circuit. The load impedance required by a
single-device FET multiplier often is relatively high; however, the load
impedance of the balanced multiplier need only be half that of a single-
device circuit. This property significantly eases the task of matching the
output at the second harmonic. 

In practical balanced multipliers, it is important that the drains (or
collectors, in the case of bipolar multipliers) be connected together as close
as possible to the device. In particular, hybrids or power dividers should
not be used to combine the outputs, and a single matching circuit, as shown
in Figure 10.8, should be employed. Any length of conductor between the
drain or collector and the common node, point A in the figure, becomes an
inductance in series with the drain, and the drain no longer has its ideal,
virtual ground at odd harmonics. 

10.4.3 Noise 

We saw in Chapter 7 that their very low noise levels was one of the most
attractive properties of varactor frequency multipliers, especially in such
applications as receiver LO sources. Since their gain, bandwidth, and
efficiency make FET multipliers attractive for generating LO signals in
communications receivers, and phase noise and AM noise are important
properties of the receiver’s LO, it seems wise to examine the noise
properties of FET frequency multipliers. This is particularly true of
receivers used in phase-modulated communications systems, because the
phase noise of the receiver LO is transferred degree-for-degree to the
received signal. 

GaAs MESFETs are known to have relatively high levels of 1/f noise,
and this noise can modulate the phase of a signal applied to the FET.
Bipolar devices are somewhat better, but operate at lower frequencies. This
phenomenon is responsible for most of the phase noise in oscillators, and it
can also increase the noise in FET frequency multipliers beyond the
inevitable 20 log(n) dB, the minimum carrier-to-noise ratio degradation in
any frequency multiplier (Section 7.1.1). Other noise sources, such as noise
from the multiplier’s bias circuits, can also introduce low-frequency phase
noise. 

Like other active devices, active frequency multipliers can generate
amplitude (AM) noise as well as phase noise. When a multiplier is used in
the LO chain of a receiver, the AM noise can be coupled into the mixer



 Nonlinear Microwave and RF Circuits494

with the LO signal, increasing the receiver’s noise figure. This
phenomenon is analyzed in detail in [2.5]. 

10.4.4 Harmonic Rejection

Another important concern is the rejection of the fundamental-frequency
output and unwanted harmonics. Transistors are, after all, amplifying
devices, so unless special effort is made to prevent it, the FET or bipolar
device amplifies the input signal, creating a large fundamental-frequency
output. Viewed another way, the fundamental component of the drain
current in an active multiplier is much greater than the harmonic
components, so the fundamental output power may not be much lower than
the desired harmonic. 

In balanced multipliers, the balance of the hybrid and the individual
multipliers can provide approximately 20 dB rejection of the fundamental
output; greater rejection is possible in narrowband circuits, ICs, and in
other circuits where good balance is relatively easy to obtain. Nevertheless,
because most circuits require even more rejection, some degree of high-
pass filtering at the output may be needed. Because the rejection band is
invariably far below the output passband, a simple filter is usually
adequate. The third-harmonic output of a FET doubler is usually very
weak, so minimal filtering is needed at this frequency. Many types of
microwave filters (e.g., half-wave filters) have frequencies of maximum
rejection near 0.5 and 1.5 times the passband frequency; this property
makes such filters ideal for use in FET multipliers. The fourth harmonic of
a well-designed FET frequency doubler is often virtually nonexistent; this
fact is evident from the zero of I4 / Imax near the peak of I2 / Imax in Figure
10.3. Thus the fourth and higher harmonics are rarely of concern. 

A single microstrip quarter-wavelength open-circuit stub provides an
adequate drain of collector termination for optimizing conversion
efficiency but may not provide adequate harmonic rejection. At high
frequencies, the Q of a stub is limited not only by resistive losses, but by
radiative losses as well, and those can be difficult to quantify. Thus, the
harmonic rejection of a stub is difficult to predict. 

10.4.5 Stability

Reference [10.1] indicates that the gain of the doubler studied in that
research increases dramatically when the fundamental-frequency load
susceptance resonates the output capacitance, creating a fundamental-
frequency open circuit at the drain. Although that paper does not say so
explicitly, this is an obvious indication of instability. Instability in active
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frequency multipliers usually results from a reactive drain termination at
frequencies where the drain should be short-circuited. Such nonoptimum
terminations often result from an attempt to increase conversion gain.
Increasing conversion gain in this manner is similar to increasing amplifier
gain by introducing positive feedback; gain can indeed be increased, but
only at the cost of decreasing stability margins. 

10.4.6 High-Order Multiplication

Figure 10.3 and the discussion in Section 10.2.1 lead to the inevitable
conclusion that FETs and bipolar transistors do not make very good
frequency multipliers beyond second order.1 It is inevitable that the
conversion gain and output power of a third- or higher-order multiplier are
lower than those of a doubler, but such multipliers may still be practical. 

An important difficulty in triplers is the need to short circuit the drain
or collector at the unwanted harmonics. In a doubler, this is easy to do; a
quarter-wave stub, for example, effectively shorts the first and third
harmonic, while the fourth and higher harmonics are weak enough to
neglect. There is no such elegant solution for terminating the drain or
collector in a tripler. The output network can be maddeningly difficult to
design; the inevitable result is a suboptimum termination, which results in
suboptimum efficiency and a genuine risk of instability. 

Because the magnitude of the harmonic current, In, decreases with n,
the load resistance (10.8) increases, and quickly becomes unrealizable in
practice. Output power and gain suffer, not simply because of the decrease
in In, but also because of the lower-than-optimum value of RL. 

If even-harmonic frequency multiplication is needed, a designer should
consider using a cascade of doublers instead of a single multiplier. If this is
not possible, the best gain is achieved when high-harmonic multipliers are
closer to the input. It may be necessary to follow the high-harmonic stages
with amplifier stages to increase power and to provide isolation. 
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Chapter  11

Active Mixers and FET Resistive Mixers

Although diode mixers are used more frequently than active mixers, it is
possible to design active FET and bipolar mixers that are in many respects
superior to them. X-band mixers having 4- to 5-dB single-sideband (SSB)
noise figures, 6- to 10-dB gain, and 20-dBm third-order intermodulation
intercept points are regularly produced, and this performance can be
achieved at lower LO power levels than would be required for diode mixers
[11.1, 11.2]. MESFETs and HEMTs can produce conversion gain well into
the millimeter-wave region. Dual-gate MESFETs reduce the problem of
obtaining adequate LO-to-RF isolation in single-device FET mixers; the
RF and LO are applied to separate gates, and the low capacitance between
the gates provides approximately 20 dB of isolation without the need for
filters or hybrids. Balanced FET mixers reject spurious responses and LO
noise in a manner similar to balanced diode mixers. 

11.1 DESIGN OF SINGLE-GATE FET MIXERS 

11.1.1 Design Philosophy 

In the design of diode mixers, we often wish to minimize conversion loss,
because low conversion loss generally guarantees low-noise operation. In
microwave FET mixers, high gain is usually relatively easy to obtain, but it
does not automatically insure that other aspects of performance will be
good. Indeed, high mixer gain is often undesirable in receivers because it
tends to increase the distortion of the entire receiver. Therefore, in most
receiver applications, an active mixer is designed not to achieve the
maximum possible conversion gain, but to achieve a low noise figure and
modest gain, unity or only slightly greater. 



 Nonlinear Microwave and RF Circuits498

As in earlier chapters, to keep our discussion concrete, we begin with
FET mixers and later discuss mixers using bipolar devices. Indeed, most
active microwave mixers use FETs, although occasionally bipolar devices
are used in the lower microwave region. Most bipolar mixers use the
Gilbert-cell configuration, a type of doubly balanced mixer, which we
discuss in Section 11.3.5. 

Figure 11.1 shows a diagram of a single-device FET mixer. The mixer
consists of a FET and RF, LO, and IF matching circuits (bias circuits, not
shown in the figure, are also required). The matching circuits provide
filtering as well as matching; they terminate the FET’s gate and drain at
unwanted frequencies (mixing products and LO harmonics) and provide
port-to-port isolation. 

Although other types of mixers have been proposed, most FET mixers
have the LO and RF signals applied to the gate and the IF filtered from the
drain. The time-varying transconductance is the dominant contributor to fre-
quency conversion. These are sometimes called transconductance mixers or
transconductance downconverters. In such mixers, the effects of harmoni-
cally varying gate-to-drain capacitance, gate-to-source capacitance, and
drain-to-source resistance are often deleterious and must be minimized. 

Because the time-varying transconductance is the primary contributor
to mixing, it is important to maximize the range of the FET’s trans-
conductance variation. In simple downconverters, we are most concerned
with the magnitude of the fundamental-frequency component of the
transconductance. To maximize the fundamental-frequency component of
the transconductance variation, the FET must be biased close to its
threshold voltage, Vt , and must remain in its current-saturation region

Figure 11.1 Single-gate, single-device FET mixer. 
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throughout the LO cycle. Full saturation can be achieved by ensuring that
the drain voltage Vd (t) under LO pumping remains at its dc value, Vdd . This
condition is achieved by short circuiting the drain at the fundamental LO
frequency and all LO harmonics. If the drain is effectively shorted, the
drain LO current, which may have a fairly high peak value, cannot cause
any drain-to-source voltage variation; then, the LO voltage across the gate-
to-drain capacitance is minimal, so feedback is minimal and the mixer is
stable. In this case, the drain current has the same half-sinusoidal pulse
waveform as a class-B power amplifier, and the transconductance
waveform is similar. 

If the drain is not effectively shorted, the drain voltage varies with the
LO excitation. Then, the voltage is likely to drop, at the current peaks, as it
does in a class-B amplifier. If the voltage dips enough that the FET drops
into its linear region, the peak transconductance also decreases, so the fun-
damental-frequency component of the transconductance is not maximized.
Similarly, the peak drain-to-source conductance increases, increasing the
average output conductance, creating an additional loss mechanism. 

It is usually best to bias the FET at the same drain voltage it would
require when used in an amplifier. Although the optimum gate bias is
usually near Vt , minor adjustment of the gate voltage must be made
empirically as part of the circuit tuning. A well-designed mixer is usually
insensitive to small changes in dc drain voltage, but may be moderately
sensitive to dc gate voltage. 

FET mixers are often conditionally stable, so it is impossible to find
source and load impedances that simultaneously match the RF input and IF
output ports. Even when the mixer is unconditionally stable, the output
impedance of a FET downconverter having an IF frequency below X-band
is very high. The resistive part is on the order of several hundred ohms, and
there may be a small shunt capacitive reactance. The resistive part is much
greater than the drain-to-source resistance of an unpumped, dc-biased FET.
Except at low frequencies and over very narrow bandwidths, it is nearly
impossible, in practice, to obtain a conjugate match to such a high
impedance; therefore, it is usually impossible to match the IF output of an
active FET mixer. A better choice is to use a resistive load at the IF, its
value selected to obtain the desired conversion gain. In this case, the
mixer’s output VSWR is, of course, high; however, theoretical and
practical limitations of impedance matching dictate that the high output
VSWR is unavoidable, regardless of the philosophy employed in designing
the IF circuit. Nevertheless, a resistive load, if properly implemented,
provides stable operation, flat frequency response, and the desired gain. 

The high IF output impedance is a consequence of pumping the FET
with the LO. It exists, in principle, in all gate-driven FET transconductance



 Nonlinear Microwave and RF Circuits500

mixers, whether used as upconverters or downconverters. In mixers having
high IF frequencies, however, including most microwave upconverters,
capacitive parasitics may lower the output impedance somewhat. Nonlinear
analysis may be necessary to determine the IF output impedance and an
appropriate matching circuit. 

Ordinary small-signal HEMTs and MESFETs are used to realize single-
gate FET mixers. A FET designed to be used in low-noise amplifiers within
some specific frequency range usually works well as a mixer within the
same range. Special situations often affect the choice of a device; for
example, it is generally easier to obtain a high intermodulation intercept
point from a device having a relatively wide gate, and there is some
experimental evidence that good noise figures are more readily obtained by
using narrow devices. Most millimeter-wave devices are optimized for
amplifier use, and therefore have very narrow gates. It may be difficult to
obtain conversion gain at high frequencies from such devices. 

When the FET is pumped strongly by the LO, its transconductance
waveform is approximately a rectified sinusoid. That waveform has an
average (dc) value, which allows the FET to amplify as well as mix.
Amplification must be minimized to achieve good stability and to prevent
spurious effects. In particular, the mixer must not have appreciable linear
gain at the IF frequency, or spurious inputs at the IF frequency (especially
noise from the gate-bias circuit or other sources) can be amplified and
appear in the output.1 Similarly, RF and LO amplification can result in
instability and spurious responses. The only way to minimize unwanted
amplification is to mismatch the device at either the gate or drain at these
frequencies; therefore, one should design the mixer to have a short circuit
at the gate and drain at, ideally, all unwanted mixing frequencies and LO
harmonics, especially the IF. This precaution also helps to prevent large-
signal instability that might be caused by the pumped nonlinear gate-to-
source capacitance, and by ordinary feedback effects. 

The effect of parametric instability caused by pumping the gate-to-
source capacitance can be insidious, as it can mimic intermodulation
distortion in two-tone IMD measurements. Minimizing the source-lead
inductance can help enormously in preventing such oscillation, as can
short-circuiting the gate at LO harmonics. 

Achieving adequate LO-to-IF isolation can be difficult in active
mixers. (Of course, if the LO is really short-circuited at the drain, there can
be no LO leakage. The short circuit is never perfect, however, so some
degree of leakage is inevitable.) The LO current in the FET’s drain is very

1.  In the author’s experience, amplification at the IF frequency is the most common cause of
high noise figure in active mixers. 
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great; its peak value is somewhat above Idss, which, even in small-signal
devices, may be over 100 mA. Consequently, the LO-frequency output
power is potentially very high. Unfortunately, it is difficult to design an IF
matching circuit that provides high LO isolation and still meets all the
other requirements placed upon it; therefore, even in well-designed mixers,
the level of the LO leakage from the IF port often is high, sometimes even
higher than the applied LO power. This LO leakage can saturate the IF
amplifier or generate spurious signals. Accordingly, it is important that the
IF output circuit include sufficient filtering to provide adequate LO-to-IF
isolation. The required rejection depends upon the FET’s output power
capability and the level of LO leakage that the IF amplifier can tolerate. For
example, most small-signal FETs have saturated output levels of at most 10
to 16 dBm. If the leakage is to be kept to –30 dBm or lower, 40 to 46 dB of
rejection may be necessary. This large amount of rejection may dictate that
a separate LO-rejection filter be used. 

11.1.2 Approximate Mixer Analysis

We now perform an approximate analysis of a FET mixer. The results of
this exercise can be used for an approximate design, which is optimized by
means of nonlinear analysis, or for assessing the performance capabilities
of some particular FET. The analysis in this section is valid only for gate-
driven transconductance downconverters, but with a little careful thought,
it can be modified to include upconverters or other types of mixers. 

The design of a FET mixer must optimize the large-signal LO pumping
(i.e., it must vary the transconductance over the widest range possible
while using as little power as possible) as well as the small-signal
operation. We begin with the LO design, recalling that the FET must be
short-circuited at the drain at all LO harmonics, and at the gate at all
harmonics except the fundamental frequency. If the gate and drain are well
shorted at unwanted mixing frequencies and LO harmonics, it is possible to
simplify the FET equivalent circuit to obtain the approximate unilateral
equivalent circuit shown in Figure 11.2(a). In generating this circuit we
assumed that the source inductance, Ls , is negligible; included the source
resistance Rs in the input loop; and recognized that when the drain is
shorted, Cgd is effectively in parallel with Cgs. Usually , so Cgd
can be neglected. The parallel-tuned circuit at the output is tuned to the IF
frequency, and the input tuned circuit is assumed to be broadband enough
to include both the RF and LO frequencies. These resonators short-circuit
the drain and gate at all other frequencies. 

Cgd Cgs«
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The input impedance is found from Figure 11.2(a) to be 

(11.1)

where Cgs is the gate-to-source capacitance at the bias voltage Vgg = Vt ;
ω = ωp, the LO frequency; and Ril is the resistance in the input loop. In a
MESFET or HEMT, Ril = Rg + Rs + Ri, the sum of the gate, source, and
intrinsic resistances. 

Ideally, the input matching circuit should match the input impedance of
the FET at both the RF and the LO frequencies. In many cases, however,
the LO and RF frequencies are significantly different, and it is impossible
to match the device successfully at both frequencies. When this conflict
exists, it is better to match the device at the RF frequency and to accept a
mismatch at the LO frequency. A poor RF match degrades conversion
performance, but the only consequence of a poor LO match is to waste a
little LO power. 

Figure 11.2 (a) Simplified equivalent circuit of the single-gate FET mixer; (b) the
MESFET’s transconductance waveform when Vgg = Vt. 

l
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The minimum required LO power can be estimated from Figure
11.2(a), under the assumption that the input is conjugate matched. We
assume that the gate is biased at Vt, and that the LO voltage at the gate
varies between Vg, max (the maximum forward gate voltage, limited by gate-
to-channel rectification in MESFETs; Vg, max~ 0.5V) and the maximum
reverse voltage, 2 Vt – Vg, max. The LO power is 

(11.2)

If the gate is not conjugate matched at the LO frequency, reflection losses
must be included. 

If we make the reasonable assumption that the transconductance
waveform can be approximated by the pulse train of half-sinusoids shown
in Figure 11.2(b), the circuit in Figure 11.2(a) can be analyzed relatively
easily to determine its conversion gain. Because the input impedance of a
FET is not highly sensitive to signal level (as long as the gate is not driven
to the point of rectification), the expression for the input impedance of a
FET mixer at the RF frequency is the same as the LO input impedance.
Therefore, (11.1) is a valid expression for RF input impedance when the RF
frequency is substituted for ωp. The FET’s RF input is usually conjugate
matched; although it is likely that the noise figure could be improved by
input mismatching, as is done with FET amplifiers, it is not clear that
similar techniques improve the noise figure of a FET mixer. 

The RF excitation vs(t) in Figure 11.2(a) is 

(11.3)

where ω1 is the RF frequency; we use the notation shown in Figure 6.4. If
the source is matched, Zs(ω1) = Zin

*(ω1)  and the small-signal gate voltage
is 

(11.4)

The phase shift φ will not be evaluated, because it does not affect the
conversion gain. The fundamental-frequency component of gm(t) in Figure
11.2(b) is 

PLO min,
1
2
--- Vg max, Vt–( )2ωp

2Cgs
2 Ril=

vs t( ) Vs ω1t( )cos=

vg t( )
Vs ω1t φ+( )cos

2ω1CgsRil
---------------------------------------=
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(11.5)

where gm,max is the peak value of gm(t). The small-signal drain current id(t)
is 

(11.6)

The current id(t) includes components at the RF and IF frequencies, and at
all other mixing frequencies shown in Figure 6.4. Substituting (11.4) and
(11.5) into (11.6), employing the usual trigonometric identities, and
retaining only the terms at the IF frequency gives the IF component of id(t),
iIF(t). Note that only the fundamental component gm,1(t) of gm(t)
contributes to frequency conversion: 

(11.7)

where ω0 is the IF frequency. The IF output power is 

(11.8)

The available power from the conjugate-matched source is 

(11.9)

and the transducer conversion gain, Gt , is the ratio of (11.8) and (11.9): 

(11.10)
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Equation (11.10) is remarkably accurate in practice, as long as the optimum
short-circuit embedding impedances are achieved and the gate is optimally
biased, near the FET’s turn-on voltage, Vt . 

Equation (11.10) seems to imply that it is possible to make the
conversion gain arbitrarily high by increasing the IF load impedance, RL, or
by increasing the device’s width, thus increasing gm,max . These implications
are generally valid; however, practical difficulties limit the conversion gain.
Problems involving stability and realizability limit RL to 100Ω to 200Ω, and
the FET’s output capacitance limits the bandwidth if RL is made too great.
If device width is increased too far, the resulting decrease in input impedance
introduces matching difficulties. Furthermore, as we noted earlier, it may not
be desirable to have high gain in a mixer. It is possible, however, to achieve
remarkably high gain (above 10 dB) at X-band in mixers using medium-
power devices (having gate widths around 0.5 mm) and high load
impedances. Because of the mixer’s high output impedance, it is even
possible in some cases for a MESFET to achieve greater gain as a mixer than
as an amplifier. 

An active FET mixer’s input intermodulation intercept point is largely
constant with RL. Thus, a valid approach to designing a mixer for low
distortion is to use a large device, pump it adequately, and use a relatively
low value of RL to keep the gain reasonable and to provide stability. It is
better to use a smaller device, strongly pumped, than a larger device with
inadequate LO power. 

The design process is relatively simple. The first task is to estimate the
important parameters of the FET, gm,max, Ril, and Cgs(Vt) . The peak
transconductance, gm,max, can be found from dc measurements, as can the
resistances; Cgs can be estimated with adequate accuracy from the FET’s S
parameters. One should then select a value of RL that is achievable in
practice and satisfies the gain requirements, as indicated by (11.10), and
then estimate the input impedance by (11.1). If the input Q of the device is
so high that it cannot be matched over the required bandwidth, reflection
losses must also be included in the gain estimate. The final step is to design
the input and output networks to conjugate match the input, to present RL to
the drain at the IF frequency, and to short-circuit the gate and drain at all
other significant frequencies. 

11.1.3 Bipolar Mixers 

The requirements for the design of bipolar mixers, both conventional
homojunction BJTs and HBTs, are essentially the same as in FETs. As with
FETs, providing an LO short circuit at the drain is probably the most
important requirement. The general design goals—conjugate matching the
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input and terminating the output in an appropriate value of RL—are
likewise identical. 

The above analysis is generally applicable to bipolar-transistor mixers,
both homojunction and heterojunction, when Cbe is substituted for Cgs and
Rb for Ril. Bipolar transistors have an additional base-to-emitter junction
resistance, Rje, which is in parallel with Cbe; the analysis can be modified
easily to include it when necessary. In many cases, however, Rje can be
neglected, because the large, parallel Cbe has a much lower impedance at
RF and microwave frequencies. 

In bipolar mixers, the peak transconductance is usually much greater
than in FET mixers. This allows much greater conversion gain at lower
frequencies, which may not be desirable; it may exacerbate IF gain and
stability problems. At high frequencies, however, the high Cbe may create
difficulties in achieving adequate conversion gain. 

Bipolar mixers are rarely implemented as single-device mixers, and
only occasionally as singly balanced mixers. The most common
implementation is a Gilbert cell, a type of doubly balanced structure. We
examine Gilbert-cell mixers in Section 11.3.5. For an example of a singly
balanced HBT mixer, see [11.3]. 

11.1.4 Matching Circuits in Active Mixers 

The input and output matching circuits in active mixers have unique
requirements, so designing them requires special care. The input matching
circuit must not only match the RF source to the FET’s gate or BJT’s base-
to-emitter junction, but it must also provide an IF short circuit to the
device. If the IF frequency is much lower than the RF, this short can be
realized via the bias-circuit elements. As long as the IF short is realized
effectively, the only other critical function of the input matching network is
impedance matching at the RF frequency and, if possible, at the LO
frequency. 

Because of its limited Q, a quarter-wave stub may not be adequate to
short-circuit the drain at the RF and LO frequencies; it is better to realize
the IF matching circuit as a low-pass filter connected directly to the FET’s
drain, and to include additional elements to provide the desired IF
terminating impedance. The IF matching network is a critical part of a FET
mixer, and applying a little creative thought to its design can do much to
ensure that the mixer’s performance will be good. A standard, textbook
filter design is often not a good choice for the IF filter, because a filter
having even very high rejection may present a reactive termination, rather
than a short circuit, to the drain. In many cases it is possible for the IF
circuit to provide both impedance transformation and filtering functions
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from a single structure; this approach minimizes circuit loss and
complexity. 

In many FET mixers, especially those having RF and LO frequencies
below a few gigahertz, it may be impossible, in any practical way, to match
the input. It is easy to see why. The input Q of the FET, Qi, is

(11.11)

As an illustration of the problem, suppose we are designing a 5-GHz mixer.
If the input is conjugate matched, Re{Zs(ω1)} = Ril = 5Ω, Cgs = 0.25 pF,
and Qi = 12.7. Even with a complex matching circuit, which may be
difficult, in practice, to realize, the bandwidth cannot exceed approx-
imately 10%. Even if a broadband conjugate match were possible, the
conversion gain would have a slope, since conjugate matching does not
guarantee that the voltage across Cgs will be flat with frequency. 

In such cases, a different approach is needed. The goal is to achieve a
voltage across Cgs that is adequately flat over the frequency range of
interest, not to achieve a good input VSWR. Since (11.6) shows that the IF
output current is proportional to that voltage, this approach should result in
a flat frequency response. We select a gate inductance that approximately
resonates Cgs and adjust the real part of the source impedance to reduce Qi
to a reasonable level. Finally, the values of these elements are adjusted, on
the computer, to achieve a flat voltage response across Cgs.

Unlike FET mixers, which usually have a high input Q, bipolar mixers
usually have a low input Q. Bipolar devices—both conventional
homojunction devices and HBTs—have a large base-to-emitter capacitance
in series with a moderate base resistance; at high frequencies, the reactance
of the capacitance is very low, often negligible, making the input
impedance equal to the base resistance. In homojunction bipolars, the base
resistance is on the order of tens or hundreds of ohms; in heterojunction
devices, it is on the order of a few tens of ohms at most.2 Real impedances
in these ranges are usually not difficult to match; therefore, input matching
in bipolar mixers is usually much easier than in FETs. 

2.  These broad generalities are offered in a desperate attempt to be quantitative. Because so
many different types and sizes of transistors exist, these generalizations may not be valid
in some cases. 

Qi
X
R
--- 1
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11.1.5 Nonlinear Analysis of Active Mixers 

Nonlinear analysis of active mixers, both FET and bipolar, is a relatively
straightforward application of harmonic-balance analysis. Two methods are
possible: multitone harmonic-balance analysis and large-signal/small-
signal analysis. The latter is more efficient and is best used to calculate
conversion loss and input/output impedances. Multitone harmonic-balance
analysis is necessary when distortion, compression, or other nonlinear
effects are of interest. 

Certain mixer calculations are easier than others. It is usually easy to
calculate conversion loss and port impedances accurately, as long as the
device model is adequate and the passive circuit elements are well
modeled. Isolation is always difficult to calculate because it depends
strongly on circuit-element Q and value tolerance. When isolation is high,
it may be dominated by coupling outside the circuit, for which the circuit
simulator obviously cannot account. 

More complex phenomena, such as spurious responses and inter-
modulation distortion, involve mixing between harmonics of the RF and
LO. Often they result in a mix of strong and weak frequency components,
so the concerns regarding criteria for terminating the analysis, described in
Section 3.3.9.7, are especially relevant. Multitone harmonic-balance
analysis requires a multitone Fourier transform, which inevitably has less
numerical range than a classical fast Fourier transform. It can sometimes be
difficult to determine the accuracy of a weak intermodulation component;
in some cases, the mixing product can be lost in numerical noise, but the
simulator still produces a value for it, however invalid. 

Device modeling also requires special care. In Section 2.3.2, we noted
that accurate analysis of nth-order distortion requires a device model whose
first n derivatives are accurate. In a small-signal amplifier, the derivatives
must be accurate only at the bias point, but in a mixer they must be accurate
over the entire range of the LO voltage. This is a difficult requirement to
meet. 

11.1.6 Design Example: Simple, Active FET Mixer

Given a model of the device and the I/V characteristics, (11.1), (11.2), and
(11.10) can be used to estimate the input impedance, conversion efficiency,
and minimum LO power. As discussed in Section 11.1.4, however, it may
not be possible to match the input over both the LO and RF bands, so the
estimated conversion efficiency may be high and LO power requirement
low. Nonlinear analysis can increase the accuracy of those estimates. 
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We design a mixer operating from 7.9 to 8.4 GHz with a 7.4-GHz LO
frequency and 0.5- to 1.0-GHz IF. A conventional Ku-band MESFET is
available; its Idss is 100 mA, Vt = –2.5V, and it is characterized by a Curtice
model. The mixer will be realized as a hybrid circuit on a 0.635-mm thick
alumina substrate (εr = 9.8). 

We use much the same approach as for the single-diode mixer design in
Section 6.4.2: begin with an ideal circuit and replace the ideal parts with
real ones to create the complete design. The ideal circuit is shown in Figure
11.3. The LO and RF are combined by an ideal combiner, which eventually
will be replaced by an appropriate diplexer. Since the LO frequency is
constant, the ring resonator shown in Figure 6.6 might be a good choice.
The FET’s drain is shorted by a stub, and the FET itself is modeled by the
complete Curtice model. We have included a high-impedance series line to
tune the gate, and the source resistance is selected according to the
controlled-Q matching approach described in Section 11.1.4. In the
simulator, the source impedance can be adjusted directly at the port; it is
not necessary to include a transformer or other such structure. Being
unimaginative, however, we start with 50Ω, and see how well that works.
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Figure 11.3 Idealized single-device active FET mixer. This circuit is used to optimize
the LO power, dc bias, and load resistance; by optimizing the pieces of
the mixer individually, little or no numerical optimization should be
necessary. 
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The load impedance is similarly adjustable, and for precisely the same
reasons, we start with a 50Ω load. 

The bias, LO power, and input tuning are adjusted to optimize the
design. The result is a flat response over the required bandwidth and, with
50Ω source and load, 5.6-dB gain. The input return loss is quite low, only
about 1 dB; decreasing the source impedance can improve it at the cost of
more passband gain variation and higher gain, neither of which is desirable.
A better approach in dealing with the input mismatch is to use isolators or
to make sure that the source return loss at each port is high. 

We next create the real circuit. We replace the ideal stubs by microstrip
ones and replace the ideal bias circuits with real ones. The circuit is shown
in Figure 11.4, along with a plot of the conversion gain. The gain is
virtually identical to that of the ideal circuit. 

Because of the low IF frequency, it is easy to minimize amplifier-mode
gain. A bypass capacitor in the gate-bias circuit should be adequate. The
2KΩ resistor, although intended primarily for gate protection, also helps to
isolate the gate from power-supply noise. 

To complete the circuit, we still must design a diplexer and add
discontinuity parasitics. The discontinuities and the diplexer’s output
impedance (which is never precisely equal to 50Ω) may detune the circuit
somewhat. Lengths of the tuning elements can be adjusted to account for
these additions. It is especially important to make certain that the drain
stub, once the discontinuity elements are added, still provides the required
short circuit. This can be assured by adjusting the length to minimize LO
leakage at the IF. 

11.2 DUAL-GATE FET MIXERS 

Dual-gate FETs have an important advantage over single-gate FETs when
used as mixers: the LO and RF can be applied to separate gates. Because
the capacitance between the gates is low, the mixer has good LO-to-RF
isolation. Because of its high isolation, a single-device, dual-gate FET
mixer often can be used in applications where a balanced mixer would
otherwise be needed. Dual-gate FETs are also used in integrated circuits,
where filters and distributed-element hybrids may be impractical, and good
LO-to-RF isolation may otherwise be difficult to achieve. 

Dual-gate MOSFET mixers have been used successfully in many kinds
of portable and fixed radio receivers for many years. Because of this
success, it was originally expected that dual-gate FET mixers would
become the devices of choice for most receiver applications. Unfortunately,
the reported performance of dual-gate FET mixers has not been very good,
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and after some initial enthusiasm in the mid 1980s, they are now not
produced very often. Although dual-gate mixers usually exhibit reasonably
good gain, their noise figures have been disappointing, considerably worse
than those of single-gate mixers. One reason is that dual-gate FET mixers
have inherent disadvantages compared to single-gate mixers; another is
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Figure 11.4 (a) Circuit and (b) conversion gain of the single-device mixer. The RF-
LO combiner still must be designed and discontinuity parasitics added to
complete the circuit. 
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that a dual-gate mixer is a much more complex component than a single-
gate mixer, and the subtleties of its operation are not always appreciated by
designers (a good explanation of these subtleties can be found in [11.4]).
Still, dual-gate mixers have their place: most important is their use in ICs to
obtain many of the advantages of balanced mixers without the need for
hybrids. 

Figure 11.5 shows a simplified circuit of a dual-gate FET mixer. The
dual-gate FET is modeled as two single-gate FETs in series. The LO is
applied to gate 2, the gate of FET 2 (the FET that is connected to the
external drain terminal), and varies Vgs2; the RF signal is applied to gate 1,
the gate of FET 1. RF and LO sources are connected to gate 1 and gate 2
through matching circuits, represented by the embedding impedances
Zs, RF(ω) and Zs, LO(ω), respectively; a series-resonant element (which can
be an LC tuned circuit, a stub, or simply a bypass inductor) is used to
ground gate 2 at the IF frequency. As with the single-gate FET mixer, the
load impedance ZL(ω) is a short-circuit at all LO harmonics and mixing
frequencies except the IF; this termination guarantees that the LO power is
not dissipated in the IF load, and that the drain voltage Vds remains
constant over the LO cycle. 

A dual-gate mixer is a transconductance mixer, so mixing must occur
by variation of the transconductance between Vgs1 and Id . The trans-
conductance variation must come from varying the drain voltage of FET 1.

Figure 11.5 Circuit of the dual-gate FET mixer; the dual-gate device is modeled as
two single-gate MESFETs in series.
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Figure 11.6 shows the dc drain I/V characteristic of FET 1 in Figure 11.5 as
a function of the gate voltages Vgs1 and Vgs2 when Vds is fixed at 5.0V. Vds
must be divided between the channels of the two single-gate MESFETs;
Vds1 + Vds2 = Vds. When two FETs are connected in series, it is impossible
to have a stable operating point if both devices are in current saturation,
because in this case the FETs’ channels are equivalent to two current
sources in series. Inevitably, one device must be saturated, and the other
must operate in its linear region; most of Vds is dropped across the saturated
FET. 

If FET 2 is linear and FET 1 is saturated (i.e., the operating point is
close to the right side of the set of curves in Figure 11.6), varying Vgs2 with
the LO voltage, while Vgs1 is constant, does not vary the transconductance
between Vgs1 and the drain current Id; therefore, no mixing can occur.
Significant transconductance variation occurs only when the gate voltages
lie within the shaded region of Figure 11.6, the region in which FET 2 is
saturated and FET 1 is linear. In this case, the Vgs1-to-Id transconductance
variation occurs primarily because the drain voltage of FET 1 is varied
from nearly zero—a value that forces the FET to be in its linear region, and
its channel to be a low-value resistance—almost to the point of current
saturation. 

Figure 11.6  I/V characteristics of the dual-gate FET when Vds = 5.0V.
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In a dual-gate mixer, mixing occurs primarily in FET 1; its
transconductance and drain-to-source resistance vary with time while the
device is in its linear region. In this mode of operation, the peak
transconductance of FET 1 is relatively low, and its low drain-to-source
resistance shunts the IF output, further reducing conversion gain. In
contrast, a single-gate device is in current saturation throughout the LO
cycle, so its transconductance is greater and its drain-to-source resistance is
very high. For this reason, the single-gate FET is a more efficient mixer
than a dual-gate FET. 

In the dual-gate mixer, FET 2 remains in its saturation region
throughout the LO cycle, and its high transconductance varies only
moderately. Consequently this FET provides some mixing between the RF
drain current of FET 1 and the LO, but its primary effect is to amplify
FET 1’s IF output. The series resonator grounds the gate of FET 2, so that
FET operates as a common-gate amplifier at the IF frequency. The input
impedance of this amplifier is approximately 1 / <gm(t)>, where <gm(t)> is
the average transconductance of FET 2; this impedance is usually a
mismatch to the IF output impedance of the mixing FET, so the amplifier’s
input coupling is not optimum. As a result, its gain is not great. The mixing
FET’s poor conversion transconductance and the poor current coupling to
the input of the amplifying FET cause the dual-gate mixer’s gain and noise
performance to be poorer than that of a single-gate FET. 

The procedure for designing a dual-gate mixer is much the same as that
for designing a single-gate mixer. The dual-gate mixer requires both a
carefully designed RF-LO filter at its drain and a resistive IF load. As with
a single-gate mixer, the IF output impedance of a dual-gate FET mixer is
relatively high, although for a different reason: the high output impedance
is a property of a common-base FET amplifier. Thus, good gain can be
achieved, in spite of the inherent limitations of the device, by using a
relatively high value of IF load resistance. The IF resonator connected to
gate 2 has a critical effect upon the mixer’s stability and LO efficiency. If
the resonator’s reactance at the LO frequency is too low, the LO matching
may be poor; however, at some frequency, the combination of the
resonator’s reactance and the impedance of Zs, LO(ω) may cause the mixer
to oscillate. One can avoid such problems by making certain that Zs, LO(ω)
and the resonator do not present a high inductive reactance to Gate 2
outside the LO frequency range. As with a single-gate mixer, source and
load impedances Zs, RF(ω) and ZL(ω) should be short circuits at unwanted
mixing frequencies. 
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11.3 BALANCED ACTIVE MIXERS 

11.3.1 Singly Balanced Mixers 

A pair of single-gate FET or BJT mixers can be combined by quadrature or
180-degree hybrids to create a singly balanced mixer. The properties of
balanced transistor mixers—LO isolation, spurious-response rejection, and
LO noise rejection—are essentially the same as in balanced diode mixers.
However, FETs and bipolars cannot be “reversed,” as can diodes, so the
structures of singly balanced active mixers are not entirely analogous to
those of singly balanced diode mixers. A balanced active mixer employs
the same type of hybrid and input structure as a diode mixer, but because
the IF currents in the individual devices are out of phase, an active mixer
always requires an IF hybrid to subtract them. Because the output hybrid
complicates both the circuit and its layout, the need for an output hybrid is
a disadvantage of single-gate FET balanced mixers. 

Both the 180-degree and 90-degree (quadrature) mixers shown in
Figure 11.7(a) and 11.7(b), respectively, require 180-degree output hybrids,
and in both mixers the IF output is derived from the delta port. In Figure
11.7(a), the RF and LO are applied to the sum (sigma) and difference
(delta) ports, respectively; if the ports are reversed, the conversion gain and
noise figure are the same, but the spurious-response characteristics are not.
Because the IF currents are subtracted instead of added, the spurious-
response characteristics of a singly balanced active mixer are precisely the
opposite of those of a singly balanced diode mixer, described in Section
6.4.1. Pumping the devices out of phase [the case shown in Figure 11.7(a)]
rejects spurious responses arising from odd harmonics of the RF mixing
with even harmonics of the LO. If the LO were applied to the sigma port of
the input hybrid, the devices would be pumped in phase and the opposite
would occur: the mixer would reject mixing products between odd
harmonics of the LO and even harmonics of the RF. In both cases, however,
the mixer would reject all responses that arise from even harmonics of both
the RF and LO. 

There are other valid reasons for applying the LO or the RF to a
particular port. If the LO is applied to the sigma port, it may be possible to
achieve LO rejection via the output hybrid. This property is particularly
valuable when the LO frequency is close to the IF frequency, as might
occur in an upconverter, and it may not be possible to separate the
frequencies by filters. If the LO and IF are both within the output hybrid’s
bandwidth, the hybrid combines the IF but rejects the LO. The rejection
level depends upon the amplitude and phase balances of both the mixer and
the hybrid, but well designed hybrids and mixers should have LO rejection
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on the order of 20 dB. Conversely, in conventional downconverters, where
the LO and RF frequencies are high compared to the IF, there may be an
advantage to using the delta port for the LO. The drains or collectors of the
two devices can then be connected by a small-value capacitor, which
connects the drains or collectors together at the LO frequency but leaves
them separate at the IF. Because the LO currents in the devices are 180
degrees out of phase at the fundamental frequency and all odd harmonics,
each device effectively short-circuits the other, reducing LO leakage
significantly. 

The singly balanced quadrature mixer, shown in Figure 11.7(b), has a
90-degree hybrid at the input, and the RF and LO are applied to one pair of
mutually isolated ports; the other pair of isolated ports is connected to the
inputs of two single-device mixers. This configuration has the same
properties as a quadrature diode mixer, specifically that the isolation
between the RF and LO ports is good only if the inputs of the FETs or

Figure 11.7 Active (a) 180-degree and (b) quadrature singly balanced FET mixers.
The block marked mixer can be either a FET or bipolar single-device
mixer. 
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bipolar devices are well matched at both the LO and RF frequencies. This
mixer has the same spurious response properties as a quadrature diode
mixer: it rejects only spurious responses associated with even harmonics of
both the RF and LO frequencies. 

A singly balanced FET mixer can be realized with the differential
structure shown in Figure 11.8(a). This approach is often more practical
than the one described above, as it requires only a simple LO balun. The
two FETs connected directly to the LO balun operate as switches, while the
lower FET, whose gate is connected to the RF port, operates as a
transconductance element. The node connecting the sources of the upper
devices (point A in the figure) is a virtual ground, so there is no LO voltage
on the lower FET’s drain, and the upper devices operate as if their sources
were grounded. Consequently, the RF and LO input impedances are simply
those of a common-source FET.

As with all mixers, the drains of the upper devices must be shorted at
the LO fundamental frequency. If the IF frequency is well below the LO
frequency, the short can be provided by simply connecting the drains
together with a capacitor. This expedient does not short the even LO
harmonics; however, the FETs are not operated in their active regions, so
little LO harmonic energy is generated. 

The design of this mixer is straightforward. Like other active FET
mixers, the IF output impedance is likely to be high, so the load is resistive
and selected for appropriate gain. The RF and LO input matching is
essentially the same as in any other common-source circuit. Because of the
FET’s high input Q, a conjugate match over a wide bandwidth may not be
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Figure 11.8 Two simple singly balanced FET mixers: (a) conventional and (b)
configured so that a balun is not needed. 

LO

RF

IF
BALUN

IF

(a) (b)

A A
F1 F2



 Nonlinear Microwave and RF Circuits518

possible or even desirable; it may be necessary to use the methods
described in Section 11.1.4. Determination of the gain and optimization of
the matching circuits should be done on the computer. The LO and RF
matching networks should be tuned to achieve a flat frequency response of
Vgs(t) at their respective FETs; then, flat gain should be achieved easily. 

Figure 11.8(b) shows a version of the mixer that uses no balun. It takes
advantage of the fact that, in a differential amplifier, the applied voltage is
divided between the gate-to-source junctions of the two devices. This
circuit has two serious problems: first, the source node (point A) is no
longer a virtual ground, so there is significant LO voltage at the drain of the
RF FET. This LO voltage component can pump the drain voltage of the RF
FET, causing a decrease in conversion gain. The second problem is that the
drain-to-source resistance of the RF FET, which is never particularly high,
is in parallel with the gate-to-source junction of the device marked F1, but
not in parallel with the same junction of F2. The lack of symmetry causes
unequal pumping of the two FETs, and consequent imbalance in the mixer.
Isolations suffer, especially RF-to-IF, as does spurious-response rejection.
This circuit does not offer high performance, but it may still be useful in
cases where a balun cannot be used and moderate performance is adequate. 

11.3.2 Design Example: Computer-Oriented Design Approach

As an example, we design another 7.9- to 8.4-GHz mixer of the type
illustrated in Figure 11.8(a), using the same FET as in the example in
Section 11.1.6. Because the performance is difficult to approximate
analytically, we use a fully computer-based design approach. 

First, we must select the bias for the devices. The upper pair of devices
is biased in their linear region, while the lower device is biased into
saturation. For a decent noise figure, we bias the lower device well below
0.5 Idss, but not as low as 0.15 Idss, the approximate bias for minimum
noise figure in amplifier operation. (If we were to bias the device at such a
low current, we might not be able to obtain any conversion gain.) We
therefore select Id = 35 mA for the lower device, or 17.5 mA for the upper
devices. We also select Vds = 3V for the lower device and Vds = 0.5V for
the upper ones, giving 3.5V for the dc supply. These selections are not
critical; we can optimize them later. From the I/V characteristic in Figure
11.9(a), we see that Vgs = –1.3V for the lower device and Vgs = –1.5V for
the upper ones. Figure 11.9(b) shows that we must apply –1.5V to the gate
of the lower device and 1.7V to the upper ones. 

Next, we assemble the circuit. We use ideal bias circuits, an ideal
hybrid to serve as the LO balun, and an ideal transformer for the IF output.
We use the complete FET model, and include quarter-wave open-circuit
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stubs to ground the drains at the LO frequency. Finally, we include high-
impedance lines in series with the gate, as in the example of Section 11.1.6,
to resonate the gate capacitance. 

Optimization requires adjustment of the LO level, dc bias, and gate
tuning elements to achieve maximum conversion efficiency. This may seem
like a paradox; after all, we stated earlier that high conversion gain is not
necessarily desirable. Nevertheless, we need to distinguish between
optimizing the circuit, for which conversion gain is an indicator, and
designing it to achieve high gain. If our optimization results in gain that is
too high, we can easily reduce it by decreasing the load impedance or the
bias current in the lower device. In optimizing the bias, the dc gate voltage
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of the lower FET should not be varied appreciably; doing so would increase
the bias current in that FET. Instead, we concentrate on the bias to the
upper devices. After a few minutes of work, we have reduced the bias on
the upper FETs to 0.5V and set the LO level to 4 dBm. The drain-to-source
voltage of the lower FETs is now approximately 2.3V and on the upper
FETs, 1.1V. The upper FETs bias must be adjusted, to maintain the correct
current in the circuit, because pumping them causes a change in their dc
current. With Vgs = –1.9V, they are operating on the edge of the linear
region, which allows them to switch quickly and with minimal LO power.
Conversion gain, at this point, is approximately 6 to 7 dB with a 1-dB gain
slope across the band. 

Finally, we replace the ideal elements with real ones. The hybrid, a
simple rat-race design, is realized in microstrip with appropriate
discontinuity elements. By treating it as a subcircuit, we can easily assess
and optimize its performance outside of the mixer circuit. Ideal dc blocking
capacitors are replaced by chip-capacitor models. Finally, the microstrip
bias line on the lower FET is used as a tuning element and adjusted to
flatten the gain. The resulting circuit and conversion performance are
shown in Figure 11.10. 

Several minor modifications might be considered. Because the LO is
narrowband, it would be easy to conjugate match it and further reduce the
LO power requirement. The separation of the LO and RF circuits allows
this; it is an important advantage over the mixers in Figure 11.7, where the
input matching circuit must encompass the combined RF and LO
passbands. Second, the gain of 7 dB is a little high for some applications. It
might be worthwhile to reduce the current in the lower FET, to reduce the
conversion gain to a 3 to 5 dB while reducing the mixer’s dc input power. 

11.3.3 Doubly Balanced FET Mixers 

Doubly balanced FET mixers have most of the same beneficial
characteristics as doubly balanced diode mixers: good port isolation, broad
bandwidth, rejection of LO AM noise, and rejection of all spurious
responses that include an even harmonic of either, or both, of the RF or LO
frequencies. Doubly balanced mixers need baluns at all ports, including the
IF, but those baluns can sometimes be implemented as active circuits. This
makes the mixers practical for monolithic integration. 

Figure 11.11 shows a doubly balanced FET mixer without its baluns. It
can be viewed as a balanced connection of two of the mixers shown in
Figure 11.8(a). Alternatively, it can be viewed as a FET version of the
Gilbert-cell mixer, discussed in Section 11.3.5. 
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The LO is usually applied to the upper devices, and the RF to the lower
ones. As with the related singly balanced mixer, the upper devices operate
as switches. The upper devices are biased in their linear region, while the
lower ones are biased into current saturation. A current-source device can
be used instead of grounding the sources of the RF FETs directly; this may
provide some improvement in balance, but requires that Vdd be increased
by 2V or so to bias the transistor. Including the current-source device, this
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circuit requires a minimum of 5V to operate, and usually considerably
more. As such, it may not be suitable in RF circuits designed for low-
voltage portable operation, which must operate from a dc supply as low as
3V. For such applications, a FET resistive mixer may be more suitable. 

11.3.4 Active Baluns

Active baluns are, in fact, linear amplifiers having two outputs that have
equal amplitudes but differ in phase by 180 degrees. They can provide the
phase split necessary for balanced mixers. Such baluns are much smaller
than their distributed counterparts, and therefore may be more useful in
applications, such as ICs, where space must be minimized. 

It is difficult to make a good active balun. The fundamental problem is
that FETs’ low drain-to-source resistance prevents them from making good
current sources. Active baluns suffer from a number of additional prob-
lems: 

• An active balun must often be designed primarily to achieve broad
bandwidth in combination with good phase and amplitude balance. It is
often not possible to optimize its noise figure or linearity within such

LO
BALUN

RF
BALUN

IF
BALUN

IF

LO

RF

Figure 11.11 A doubly balanced FET mixer. This circuit can be viewed as a balanced
interconnection of the singly balanced circuit in Figure 11.8(a). 
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constraints. Therefore, an active balun may introduces a substantial
amount of noise and distortion. 

• Amplitude and phase balance of the balun are often poor. 

• The balun’s impedances and frequency response are often different at its
two outputs.

• The bandwidth and gain flatness of the balun may limit that of the entire
mixer. 

The greatest advantage of an active balun is its small size. Active baluns
are much smaller than distributed ones, making them practical for
integrated circuits. 

Figure 11.12 shows two types of active baluns. The first, in Figure
11.12(a), uses the well-known property of a transistor amplifier in which
the signal at its drain and source have, ideally, a 180-degree phase
difference. In practice, this property exists only at low frequencies, and the
large number of mid- and high-frequency poles in its equivalent circuit
introduce substantial phase shifts. As a result, the voltage gain between the
input and the two outputs is generally unequal, and the difference varies
with frequency. In brief, it is difficult to achieve good phase and amplitude
balance with this circuit. 

Figure 11.12(b) shows a more common approach: the use of a
differential amplifier. This circuit suffers from the same problems as the
singly balanced mixer in Figure 11.8(b) and described in Section 11.3.1.
The low drain-to-source resistance of the current-source device is in

180o OUTPUT

0o OUTPUT

INPUT

(b)

+Vgg

+Vdd
+Vdd

180o OUTPUT 0o OUTPUT

INPUT

(a)

Figure 11.12 Two active balun circuits: (a) a classical phase splitter and (b) a
differential amplifier. 
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parallel with one gate-to-source junction but not the other, so it unbalances
the balun. 

11.3.5 Gilbert-Cell Mixers 

The Gilbert multiplier [11.5] was originally conceived to be a bilinear,
four-quadrant analog multiplier. It is a BJT circuit using a diode-connected
transistor as a linearizer; the logarithmic V(I) response of the diode cancels
the transistor’s exponential I/V characteristic. 

For a Gilbert multiplier to operate as a bilinear multiplier, it must
operate at frequencies where the transistors’ capacitances are negligible.
Even then, the noise figure may be high. In RF and microwave circuits, the
devices’ capacitance is not negligible, and high noise figure is not
tolerable, so some other mode of operation is needed. Still, except for the
linearizing devices, the circuit is essentially the same as the original, and
thus bears the same name. 

A Gilbert multiplier is a doubly balanced mixer. As such, it is similar to
the FET mixer in Figure 11.11, and operates in much the same manner. In
RF applications, the LO is applied to the upper devices, which operate as
commutating switches. The lower transistors realize a differential amp-
lifier, whose outputs are modulated by the switching devices. The virtual-
ground conditions described in Section 11.3.3 apply to a bipolar Gilbert
mixer as well as to a doubly balanced FET mixer. 

Figure 11.13 shows a Gilbert-cell mixer. The dc current source is
helpful for setting the bias of the mixer devices, but if the RF signals are
applied as shown, it is not essential. In many cases, however, the RF is
applied with no balun [in a manner similar to Figure 11.12(b)]. The current
source, when needed, is designed as in any differential amplifier. Usually, it
is realized by a single BJT in a Wilkinson connection. 

Unlike the drain-to-source impedance of FETs, bipolar devices usually
have a high low-frequency collector-to-emitter impedance. At high
frequencies, the collector-to-base feedback reduces the collector-to-emitter
impedance, but the effect is usually not as severe as in FETs, so practical
current sources are possible. This characteristic allows Gilbert multipliers
to be operated, at low to moderate frequencies, without baluns. 

The design of a Gilbert multiplier parallels that of a doubly balanced
FET mixer, which parallels that of a singly balanced mixer. The latter is
described in Sections 11.3.1 and 11.3.2. The key to the design is to
recognize that the ungrounded terminal of the dc current source is a virtual
ground for the RF emitters, and that the RF collectors are virtual grounds
for the LO devices. Then, to design the individual parts of the circuit, the
RF and LO devices can be treated as simple, common-emitter stages. The
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RF devices are designed as a differential amplifier, to have constant gain
over the RF frequency range. This requires, in turn, that the base-to-emitter
voltage be constant with frequency. Matching to the LO devices is designed
similarly, even though they operate primarily as switches. 

It is often helpful to add emitter resistance (emitter degeneration) to the
RF and LO devices, to obtain flat gain. Usually only a few ohms are
necessary; too much feedback of this type reduces the gain-bandwidth
product and can cause instability. 

11.4 FET RESISTIVE MIXERS

The FET resistive mixer is a relatively new idea. It was first described in
[11.6], and a balanced version was described in [11.7]. Since then, many
such mixers have been reported, occasionally in the form of commercial
products. The advantages of such mixers are very low distortion, low 1/f
noise, and no shot noise; the conversion loss of such mixers is comparable
to diode mixers, around 6 dB, and, since the high-frequency noise is
virtually entirely thermal, the noise figure equals the conversion loss. 

Figure 11.13 Gilbert mixer circuit. The baluns are not shown, but the polarity of the
applied RF and LO signals, and the IF polarity, are as indicated. 

RF+ RF–

LO+ LO–LO–
IF+IF–

IF–
IF+
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11.4.1 Fundamentals

Although it uses a nonlinear device to realize it, a mixer is fundamentally a
linear device; shifting a signal from one frequency to another obeys
superposition, and is therefore a linear operation. This operation is
performed by a time-varying, linear circuit element such as a time-varying
resistor. We create this time-varying linear element by applying a large-
signal LO to a nonlinear element, but there is no fundamental, theoretical
reason why this is necessary. Any time-varying linear circuit is capable of
mixing. 

As long as we use a nonlinear device to perform the mixing operation,
mixers have relatively high levels of intermodulation distortion, spurious
responses, and other undesirable nonlinear phenomena. However, if we
could obtain this time-varying element without nonlinearity, we could use
it to realize a mixer having no distortion. All we need is some way to
modulate a resistance (or some other linear parameter) at the LO frequency. 

The channel of a FET, at low drain-to-source voltages, is a good
approximation of a linear resistor. It becomes significantly nonlinear only
above some minimum drain voltage. In most FETs, this occurs at a few
tenths of a volt to 1V, depending on the gate voltage. At normal, small-
signal voltages (a few millivolts), the FET’s resistive channel is very linear. 

The resistance of this linear channel can be modulated by applying an
LO voltage to the gate. That voltage changes the depth of the depletion
region under the gate and therefore the resistance of the channel. When the
gate voltage drops below Vt, the FET’s turn-on voltage, the channel
becomes an open circuit; when the gate voltage reaches its maximum value
(just below the value that causes gate-to-channel rectification, about 0.5V),
the channel resistance drops to a few ohms. This range of resistances is
entirely adequate to achieve good conversion performance in a resistive
mixer; it is, in fact, not very different from the junction resistance of a
diode mixer.

FET resistive mixers are based on this principle. To realize such a
mixer, we must do the following: 

• Apply the LO to the gate; dc gate bias is usually necessary as well;

• Apply the RF to the drain;

• Filter the IF from the drain;

• Short circuit the LO at the drain;

• Especially, apply no dc bias to the drain!
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Of course, appropriate filtering is required to separate the RF from the IF.
Filtering is also necessary to prevent LO leakage from being coupled to the
drain, through the gate-to-drain capacitance, Cgd , and pumping the drain
conductance. This latter point is important; because the drain is unbiased,
the gate-to-drain capacitance, Cgd, is much greater than it would be in a
more conventional application, such as an amplifier. When the FET’s dc
drain voltage is zero, the gate-to-channel capacitance is approximately
equally divided between Cgd and the gate-to-source capacitance, Cgs .
Therefore, the mixer’s matching circuits must be designed to short-circuit
the drain at the LO frequency. Similarly, the gate should be short-circuited
at the RF frequency to prevent the RF voltage from being coupled to the
gate and introducing nonlinearity by varying the channel conductance. This
latter requirement is less important than the former, and therefore
sometimes can be ignored. 

FET resistive mixers can achieve low conversion loss with surprisingly
low LO power. At low LO levels, the RF input and IF output impedances
are usually relatively high and dc gate bias must be adjusted carefully. At
low LO levels, distortion performance is poor, often worse than that of a
diode mixer. As LO level is increased, distortion performance improves,
the optimum dc bias becomes more negative, and the conversion loss
becomes less sensitive to bias. Minimum distortion in MESFETs and
HEMTs occurs when the LO drive is just short of causing breakdown on
negative peaks, or rectification on positive peaks. In MOSFETs, the
optimum level is less pronounced; as LO level is increased, a point of
diminishing returns is gradually reached, and further increases in LO power
provide little improvement in performance. 

11.4.2 Single-FET Resistive Mixers

Figure 11.14 illustrates the basic, single-device circuit. The LO, RF, and IF
are applied as specified above, and provision is included for dc bias at the
gate. The gate bias voltage is usually somewhat lower (i.e., more negative)
than Vt ; the result is a pulsed conductance waveform little different from
that of a diode. The dc drain voltage must be 0V; to guarantee this, it may
be necessary to create a path to ground with an RF choke, stub, or even a
resistor. 

Fortuitously, the channel’s RF input and IF output impedances are
usually surprisingly practical; when a conventional, 250-µm-wide
MESFET or HEMT is used, the RF input impedance is usually close to
50Ω, and the IF output impedance is often the same or a little higher,
perhaps 50Ω  to 100Ω. Because FET’s parasitic capacitances are substantial,
greater than those of a diode, these impedances usually have a significant
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imaginary part as well. The values of input and output impedance depend
somewhat on LO level and dc bias, although the latter are best adjusted to
achieve low distortion, and should not be used as tuning adjustments to
minimize port VSWR. 

The LO input impedance at the gate is largely the same as in any
common-source FET. See Section 11.1.4 for ways to handle the high input
Q. 

Because the FET’s channel is purely resistive, its noise is almost
entirely thermal. Therefore, in terms of its noise, a FET resistive mixer
should behave as a simple passive attenuator, with an effective temperature
equal to the mixer’s physical temperature. This is somewhat lower than that
of a diode mixer, which includes both shot and thermal noise. 

11.4.3 Design of Single-FET Resistive Mixers

The design of single-FET resistive mixers is straightforward. LO input
matching is essentially the same as for any common-source FET; the only
addition is the need to short-circuit the gate at the RF frequency. Although
the gate RF short is theoretically optimum, we have found, in practice, it is
not essential; the mixer works almost as well without it. 

Drain matching is a more complex problem. The LO short circuit at the
drain is essential at frequencies where significant gate-to-drain coupling,
through the large gate-to-drain capacitance, can be expected. At the same
time, the circuit must provide a conjugate match to the drain. Finally, it
must separate the IF signal from the RF with appropriate isolation. 

If the IF frequency is not very high (say, less than 10% of the RF), the
LO frequency is close to the RF, and it may be difficult to provide the

LO
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IF
FILTER

RF

IF

LO

GATE BIAS

Figure 11.14 Single-FET resistive mixer. 
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necessary short circuit at the drain without affecting RF matching. In such
cases, a balanced mixer is probably the best solution.

LO input and RF output impedances can be found in the same manner
as with other circuits: create an ideal circuit, one having an ideal RF-IF
diplexer, ideal dc bias circuits, and drain-shorting structure, but the
complete FET model. Then, optimize its bias voltage and LO level, and
calculate the FET’s RF and LO input impedances and IF output impedance.
Finally, design the matching circuits and replace the ideal circuits, one at a
time, with the real ones; when each circuit is replaced, do essential tuning
to make sure that the performance of the ideal circuit is retained. 

11.4.4 Design Example: FET Resistive Mixer

As an example, we design a resistive FET mixer having an RF frequency of
14 to 16 GHz, IF from 2.5 to 4.5 GHz, and a fixed LO frequency of 11.5
GHz. We use the same FET as in the active-mixer example. It is described
by a Curtice model, which we assume to be accurate near Vds = 0. The
circuit will be fabricated in hybrid form on an alumina substrate. 

The “ideal” mixer (which is not entirely ideal, as it includes the full
nonlinear FET model) is shown in Figure 11.15. The circuit is used to
determine the optimum dc bias, LO level (as indicated by the voltage
variation at the gate) and port impedances. It uses an ideal combiner to
separate the IF and RF signals and an ideal, high-Q, series-resonant circuit
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to short-circuit the drain at the LO frequency. We quickly determine that
the optimum bias is –2.2V and the LO voltage at the gate varies from
almost –5V to a few tenths of a volt positive. The LO input impedance is
6 – j 58 and the RF input impedance is 49 + j 18. The slightly inductive RF
port impedance is no great surprise; it is a consequence of the mixing
phenomena. The IF output impedance is 49 + j 4. The RF and LO port
impedances are particularly convenient. They are not unusual, however, for
conventional, 250 µm × 0.25 µm Ku-band MESFETs at this frequency. The
ideal circuit has 7-dB conversion loss. 

Converting this ideal circuit to a real one requires matching the LO,
changing the LO level to retain the correct voltage variation at the gate, and
designing a practical diplexer to replace the combiner. The diplexer must
provide the drain short circuit as well. 

We begin at the gate. Since the LO is fixed frequency, a straightforward
stub-matching circuit is adequate. By monitoring the gate voltage in the
time domain, we see that 5 dBm of LO power is adequate to achieve the
desired gate voltage variation. Because of the FET’s high input Q, the stub-
matching circuit is a sensitive element; it probably will require manual
tuning if a low LO input VSWR is necessary. 

The diplexer is a much more difficult design. For the RF filter, we
select a quarter-wave, coupled-line structure. A series line is adjusted to
make the filter’s output impedance equal to zero at the LO frequency, and,
as with all such filters, the low-frequency output impedance is very high.
The IF filter is a simple stub structure. It includes an RFC, at the input end,
to guarantee that Vds = 0 at dc. The last section, at its output (the drain end
of the filter) is adjusted to present an open circuit at the RF frequency.
Finally, the two filters are connected to form the diplexer, and the
performance is adjusted by a little additional tuning. Figure 11.16 shows
the filters and the diplexer’s passbands. 

Finally, we replace the drain circuitry of the ideal mixer with the
diplexer and calculate the performance. With no further tuning or
optimization, the conversion loss is 7 to 8 dB across the band, and the LO
and RF port VSWRs are less than 1.5. The circuit is shown in Figure 11.17. 

As with previous examples, to maintain lucidity, we have left out the
microstrip discontinuity parasitics. These should be included in a final
design. 

11.4.5 Balanced FET Resistive Mixers

The advantages and disadvantages of balanced FET resistive mixers are
essentially the same as those of other types of balanced mixers. There is,
however, one important consideration in the design of such mixers. We
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noted earlier that the mixer’s matching circuits must be designed to short-
circuit the LO at the drain and the RF at the gate. Unfortunately, most
microwave baluns are driven in an even mode by the waveform they are
required to short-circuit, and the baluns present an open circuit to such
excitation. A very few types of baluns present a short circuit to even-mode
excitation; for example, a simple transformer provides the appropriate
termination. So does the half-wave “hairpin” balun, which we shall
describe presently. 

Figure 11.18 shows a microstrip singly balanced FET resistive mixer.
The LO is applied to the gates through a balun, and the RF is applied to the
drains in phase. It is best, in this circuit, to use baluns and direct connection
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of the RF; this configuration provides optimum drain and gate
terminations. In particular, hybrids or power dividers should not be used;
these do not terminate the gates or drains optimally.

The drains are connected together at all frequencies except the IF by
capacitors, thus providing an LO virtual ground at the drains. The LO
balun, consists of a u-shaped half-wavelength “hairpin” transmission line.
Although the simple balun shown in Figure 11.18 does not have very wide
bandwidth, it presents a short circuit to even-mode excitation, in this case,
RF leakage. The balun’s bandwidth can be increased by the use of a
multisection structure. As with active balanced mixers, the IF currents in
the drains are out of phase; thus, an output balun or hybrid must be used to
combine them. RF tuning can be applied to the line from the capacitors to
the RF terminal. LO tuning elements should not be located on the hairpin;
they should be placed between the hairpin and the LO terminal. 

It is possible to have a singly balanced mixer structure in which the
gates are driven in phase by the LO and the drains out of phase by the RF.
In this case, the gates are a virtual ground for the RF, which is certainly
desirable, but the drains are no longer LO virtual grounds. In this case,
some type of filter must be used to short-circuit the drains, and this
complicates the design somewhat. 

Figure 11.19 shows a doubly balanced FET resistive mixer. Such
mixers are very practical for RF applications; with microwave baluns
instead of transformers, they can be used at high frequencies as well. This

+IF

-IF
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BIAS

RF

D

D
IF FILTER

Figure 11.18 A singly balanced FET resistive mixer using a half-wavelength “hairpin”
LO balun. 
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is a type of commutating mixer, and it operates very much like the ring
diode mixer described in Section 6.4.3. The FET mixer, however, requires
three hybrids instead of the diode mixer’s two. The RF, LO, and IF are
connected to the ring by these hybrids. All four corners of the ring are
virtual grounds for the LO; the IF connection points are virtual grounds for
the RF, the RF connection points are virtual grounds for the IF, and the
gates are virtual grounds for both. The existence of these virtual grounds
implies that the RF, LO, and IF are inherently isolated.

The circuit of this mixer includes tuning inductors in the RF and LO
paths. At low frequencies, these may not be necessary; conversely, if the IF
frequency is high, some IF tuning may be needed. As with diode mixers, it
is best to minimize tuning (to preserve balance) and to achieve matching by
adjusting the device sizes and, when practical, the output impedances of the
baluns or transformers. As shown in Figure 11.19, the mixer can operate
with either positive or negative dc bias; negative bias is applied directly to
the gates, while positive bias is applied equally to the four source and drain
connection points, preserving the Vds = 0 condition but creating a negative
gate-to-source voltage. The unused bias terminal should be grounded. 

The virtual-ground properties listed above can be used to make the
design of such mixers entirely straightforward. Note that, when the virtual
grounds are considered, each balun is terminated in two parallel sets of two
series impedances. Figure 11.20 illustrates this situation for the LO circuit;
the RF and IF follow directly. In Figure 11.20(a), we see that the LO balun

Figure 11.19 Commutating ring mixer using resistive FETs. The circuit is configured
so that either positive or negative bias can be used. The operation of this
mixer is similar to the diode ring mixer. 
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drives four gates, two in series and two in parallel. The load is equivalent to
a single device, shown in Figure 11.20(b). 

The FET ring mixer has the same intermodulation and spurious-
response rejection properties as a diode-ring mixer: all even-order products
are rejected. Good rejection requires careful balance, a condition not
difficult to achieve at RF frequencies. At high frequencies, however, the
balance can be upset easily by the large number of parasitics introduced by
the inevitably complex layout. Good odd-order distortion performance
requires hard pumping of the devices; the FETs must be driven as hard as
possible, but the gate-to-channel junction must not be allowed either to
rectify the LO or to break down. In this respect, silicon MOS devices are
ideal, because of the linearity of their channel resistance and lack of gate
rectification. MOS devices are somewhat limited in frequency, however, so
MESFETs or HEMTs may be necessary for microwave realizations. 

2LsZout

VLO

2LsZout

VLO

(a)

(b)

Figure 11.20 (a) LO equivalent circuit of the ring-FET resistive mixer; (b) the single-
device equivalent circuit. 
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Chapter  12

Transistor Oscillators

This chapter is concerned with the design and nonlinear analysis of high-
frequency FET and bipolar oscillators. We begin with the classical
approach to both feedback and negative-resistance oscillators, and then
reexamine these classical concepts in view of our understanding of
nonlinear circuits. Finally, we examine some practical circuits and design
techniques. 

12.1 CLASSICAL OSCILLATOR THEORY 

12.1.1 Feedback Oscillator Theory

An amplifier circuit can be made to oscillate by feeding some of its output
energy back to the input. The oscillation conditions for such a circuit are
well known. A feedback oscillator is shown schematically in Figure 12.1;
the gain of the feedback circuit, Av, can be found easily to be 

(12.1)

where A is the voltage gain of the amplifier and F is the voltage gain of the
feedback network; these are generally complex. Clearly, as AF → 1, Av→∞,
implying that an output is possible with a vanishingly small input. The
condition AF = 1 shows that oscillation occurs when (1) the loop gain, AF,
is unity, and (2) the loop phase is zero. If these conditions are established at
some particular frequency, the circuit can oscillate at that frequency. 

Av
Vo
Vi
------ A

1 AF–
-----------------= =
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This conclusion comes from linear circuit theory. In effect, it
guarantees that the transfer function has a pole on the real axis. This
doesn’t tell us much about how the oscillator actually operates; for
example, the output level is indeterminate. To find out what we really need
to know, we must examine the circuit’s nonlinear behavior. In a real
oscillator, the circuit is unstable in the linear sense; that is, its transfer
function has a pole in the right half plane, near the jω axis. This allows any
small perturbation, such as noise or the turn-on transient, to create a
sinusoidal output whose magnitude increases exponentially with time.
Eventually, the amplifier saturates, limiting the output, and decreasing the
gain to the level where (12.1) is satisfied. 

Since the amplifier is operated in saturation, nonlinear analysis is
necessary to determine oscillation frequency and output level.
Nevertheless, linear analysis can be used for an approximate, initial design,
as long as we recognize the limitations of the linear analysis and modify it
appropriately. Most importantly, we must modify the oscillation condition
to AF > 1 to put the transfer-function pole in the right half plane, to allow
the oscillation to commence. Then, as the oscillation builds, the amplifier
saturates, the gain decreases, and the oscillation stabilizes at AF = 1. We
shall examine this paradoxical idea of a “stable oscillation” in Section
12.1.3. 

To illustrate the parts of a feedback oscillator, we use the Colpitts
circuit in Figure 12.2. Figure 12.2(a) shows the oscillator, and Figure
12.2(b) shows its simplified equivalent circuit. We can readily see that the
controlled source represents the amplifier portion of the circuit, and the pi
network represents the feedback portion. In this case, we identify 

(12.2)

A(ω)

F(ω)

Figure 12.1 A model of a feedback oscillator. 

+
Vi
–

+
Vo
–

A g– m=

F Z2 1,=
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where Z2,1 is a Z parameter of the pi network. The oscillator could be
designed by deriving Z2,1 and finding the conditions for which AF = 1.

A more elegant approach is to recognize that the nodal equations of the
network are

(12.3)

where Ct = C2 + Ci, Ci is the input capacitance, and we have switched the
ground node to the emitter. We note that the input resistance R1 = β/gm and
that the determinant must be zero for this system of equations to have a
nontrivial solution. A little algebra gives

(12.4)

(which means, in practice, that β > C1/Ct) and the resonant frequency,

VigmVi
C1 CiC2 R1

LVc
B

E

C

C1

C2

L+
Vi
–

Figure 12.2 (a) A transistor Colpitts oscillator, and (b) its equivalent circuit. Ci and
R1 are the input (base-to-emitter) capacitance and resistance of the
transistor. 
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(12.5)

12.1.2 Feedback Oscillator Design

More generally, we have the case shown in Figure 12.3 [12.1]. The
oscillator consists of a transistor and some type of transmission resonator.
The resonator can be a crystal, an LC circuit, a surface acoustic wave
(SAW) device, an electromagnetic resonator coupled to a pair of ports, a
ceramic piezoelectric device, or anything else that resonates at the desired
frequency and has other required characteristics. Zs and ZL are not used in
the circuit; they exist only for the purpose of analysis. ZT is the load
connected to the oscillator’s output port. 

The circuit is adjusted until the following conditions are obtained:

(12.6)

These conditions are equivalent to |AF| > 1 and ∠AF = 0. When these
conditions are obtained, we need only connect the collector to the input of
the resonator to complete the design. 

The resonator is a critical part of the design. If it is coupled very
weakly to the circuit, its loss is high, but so is its Q. A high Q, as we shall
see, results in low noise and makes the resonator, not the transistor,
dominant in setting the oscillator frequency. This is a desirable situation,
because, with proper care in its design, the resonator is thermally more

f0
1

2π
------

C1 Ct+

LC1Ct
-------------------=

ZTResonator

Zs = Zin

Zin ZL = Zin

Figure 12.3 A circuit for calculating the open-loop gain of an oscillator. This circuit
can be analyzed in terms of S parameters, making it useful for design by
a microwave circuit simulator. 

1

2

S2 1, 1.0>

S2 1,∠ 0=
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stable than the transistor. High resonator loss, however, makes it more
difficult to satisfy the gain condition, |S2,1| > 1. 

Figure 12.4 shows an example of this approach to oscillator design.
The circuit shows a 900-MHz voltage-controlled oscillator (VCO) using a
bipolar transistor. The transistor is described by scattering parameters, so
the circuit includes no bias source, but because of their effect on the gain,
the bias resistors must be included. The resonator consists of the inductor
and capacitor L2 and C4; C4 represents a varactor, and L1 is its bias RF
choke. The 14-pF capacitors C3 and C6 adjust the coupling to the resonator.
R2 is the 50Ω output port. The value of the source and load resistance used
to calculate the gain is treated as a variable quantity. 

In adjusting the circuit, we try to achieve a linear gain of at least 6 dB,
and preferably 10 dB. This allows margin for circuit losses and ensures

Figure 12.4 The open-loop model and performance of a 900-MHz VCO. C4 and L2
are the resonator, while C6 and C3 adjust the coupling. R2 is the load.
Other resistors provide bias and limit the low-frequency gain. 
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reliable start-up. The plot of |S2, 1| shows a peak of 12.5 dB and zero phase
at the desired frequency of 900 MHz, and the plot of |S1, 1| indicates that the
input impedance is also close to the source and load values. 

In a feedback oscillator, it is relatively easy to avoid spurious
resonances, which could cause the oscillator to oscillate at an undesired
frequency. As long as the resonator has transmission only at the resonant
frequency, a condition not difficult to establish, the oscillator can oscillate
only at the desired frequency. Feedback oscillators, unfortunately, can be
difficult to design at high frequencies, because of phase shift in the long
connection from the amplifier output to the resonator, so high-frequency
oscillators are usually designed by means of a negative-resistance theory.
In Section 12.1.5 we shall see some examples of high-frequency negative-
resistance oscillators; because they use feedback to establish the negative
resistance, they also can be considered feedback oscillators. 

12.1.3 Negative-Resistance Oscillation 

A general understanding of the operation of electronic oscillators has
existed almost as long as active devices. However, more recent work by
Kurokawa [12.2] is the basis for the design of modern negative-resistance
microwave oscillators. In this work, a microwave oscillator is modeled as a
one-port in which the real part of the port impedance is negative. The one-
port can represent a two-terminal solid-state device, such as a Gunn device
or tunnel diode, that exhibits “negative resistance,” meaning that its port
impedance has a negative real part. It can also represent one port of a two-
port that includes appropriate feedback. 

An oscillator modeled in this manner is shown in Figure 12.5. The load
impedance ZL(ω) is linear, but the source impedance Zs(I0, ω) (the output
impedance of the oscillator) is modeled in an unusual fashion: it is a linear
impedance that is a function of I0, the magnitude of the fundamental-
frequency component of the output current. The real part of Zs is negative
and decreases with an increase in I0. Although no linear impedance
behaves in this manner, a nonlinear impedance can behave this way if the
current and voltage harmonics are ignored. Precisely, we define the
impedance as

(12.7)Zs I0 ω,( )
V ω( )
I ω( )
------------- ω ωp=

0 ω nωp=






=



 Transistor Oscillators 543

so the voltage across the device is zero at all harmonics. Additionally, we
assume that the harmonic components of ZL(ω) are zero, so any harmonic
currents that may exist are of no consequence. The small-signal source v(t)
in Figure 12.5 represents a perturbation in the voltage across the combined
impedances; in practical circuits it represents noise, an injection-locking
signal, or the turn-on transient of the circuit. 

Kurokawa proved that the conditions for oscillation are

(12.8)

that is, the real parts of the impedances cancel and the imaginary parts
resonate. Then, if an infinitesimal perturbation v(t) exists, the magnitude of
the response i(t) increases exponentially with time and becomes sinusoidal
at some frequency ωp where Im{Zs(ωp)} = –Im{ZL(ωp)}. 

In real oscillators, the condition is slightly different. We must have, at
start-up, Re{Zs} + Re{ZL} < 0. Then, as the amplitude of the oscillation, I0,
increases, |Re{Zs}| decreases and eventually stabilizes at the point where
(12.8) is satisfied. If I0 were to increase beyond the point at which (12.8) is
satisfied, I0 would decrease, and eventually |Re{Zs}| would rise to the point
where (12.8) would again be valid. Thus, the value of I0 that satisfies (12.8)
is stable, so I0 remains at that level and oscillation continues at a constant
amplitude. The decrease in |Re{Zs}| with increasing I0 is an inevitable
consequence of the fact that the amplitude of i(t) cannot, in practice,
become infinite. 

Figure 12.5 The classical model of a negative-resistance oscillator. The voltage
source v(t) provides a perturbation necessary to start oscillation in the
unstable circuit. 

Zs I0 ω,( ) ZL ω( )+ 0=
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The source could also be described by a nonlinear conductance
Ys(V0, ω); then, the oscillation condition is 

(12.9)

where, analogous to (12.7),

(12.10)

This is the case of a parallel resonance having a total negative conductance,
in which the transient perturbation comes from a shunt small-signal current
source, and V0 is the magnitude of the shunt voltage. The oscillation begins
when the real part of the shunt conductance is negative and Re{Ys}
decreases as the oscillation increases until (12.9) is satisfied. 

In practice, Zs or Ys is realized by a solid-state device, which inevitably
includes nonlinear capacitances. The average values of those capacitanc-
es—and thus Im{Ys} or Im{Zs}—vary at least slightly with V0 or I0. Thus,
the frequency at which oscillations begin (when V0 or I0 is small) is not
necessarily the same as that for which (12.8) or (12.9) is satisfied (and V0
or I0 are large). Nevertheless, if a transistor oscillator circuit includes a
high-Q resonator, that resonator, not the reactances of the solid-state de-
vice, will dominate in establishing the frequency. In a high-Q resonator,
Im{YL} varies rapidly with frequency close to resonance, so changes in
Im{Ys} do not cause much frequency deviation. 

The oscillation is stable if the sinusoidal voltage or current returns to
its steady-state value after it is perturbed. Kurokawa derived a condition for
stable oscillation; in terms of impedance, the condition is1 

(12.11)

1.  Some texts give an expression that appears to disagree with this one. The cause is a
difference in sign convention. In [12.2] , the device impedance was written as
Zs = –Rs + jXs, where Rs > 0. More conventional notation, today, is Zs = Rs + jXs,
where Rs < 0. We use the latter. 

Ys V0 ω,( ) YL ω( )+ 0=

Ys V0 ω,( )
I ω( )
V ω( )
------------- ω ωp=

0 ω nωp=
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where Rs = Re{Zs}, Xs = Im{Zs}, RL = Re{ZL}, XL = Im{ZL}, and the
derivatives are evaluated at I = I0 and ω = ωp. Note that, in a simple case
where Xs is independent of I and the load is a simple series RL or RC
circuit, (12.11) is always satisfied. 

The idea of a “stable oscillation” seems, at first, to be a contradiction:
the device has to be unstable to oscillate. In fact, we can define many types
of stability. The classical concept of stability from linear circuit theory,
which requires that all network poles remain in the right half plane, is only
one. Stability factors, such as the K factor in small-signal amplifiers, is
another type, which is not precisely the same as classical linear-network
stability. In the present case, we seek a type of bounded stability, in which
the magnitude of the oscillation is limited and returns to its steady state if
perturbed. Such operation can occur only in a nonlinear circuit. 

12.1.4 Negative Resistance in Transistors 

We have already noted that negative resistance can occur from physical
processes in certain two-terminal devices, including tunnel diodes and
Gunn devices. It is also possible to obtain negative resistance at one port of
an amplifier by introducing feedback. Our “amplifier” is usually just a
transistor, and one port, usually the output, is terminated; the other port
becomes, effectively, a two-terminal, negative-resistance device. Such
circuits are arguably feedback oscillators, but we can view them equi-
valently as negative-resistance oscillators. 

We saw in Chapter 8 that a two-port could oscillate if its source and
load impedances were chosen appropriately. For such oscillation to occur,
it must be possible to obtain an input or output impedance having a
negative real part or, equivalently, an input or output-reflection coefficient
greater than unity. This condition can occur only if both S2, 1 and S1, 2 are
nonzero, which requires that the two-port have forward gain and feedback.
In designing small-signal amplifiers, we usually wish to minimize the
effects of feedback; however, in oscillators, we do our best to enhance it,
even to the point of introducing additional feedback, to cause the device to
oscillate. 

We now examine negative-resistance or negative-conductance
phenomena in transistor circuits heuristically by means of a very simple
model, and we apply our understanding of large-signal and small-signal
properties of nonlinear circuits to show how Re{Zs} or Re{Ys} changes
with I0 or V0. Figure 12.6(a) shows an ideal FET and a feedback network F;
we assume that the magnitude of the voltage gain of F is AF, its phase shift
is 180 degrees, and the port impedances of F are infinite. Vd and Id are the
static or instantaneous voltage and current at the output terminals; the time-
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waveforms are Vd(t) and Id(t). The FET has no capacitive or resistive
parasitics (it does have an ideal Schottky-barrier gate-to-source junction),
its transconductance is gm, and it is biased at Vd = Vdc and Id = Idc. Its
transfer function thus has a 180-degree phase shift, making AF real.
Because we are using this example to illustrate only some of the properties
of negative resistance in transistor circuits, we have not included a
resonator or any other reactive elements; these would be necessary in
practice to establish a sinusoidal oscillation at some particular frequency. 

By a simple small-signal linear analysis, one can show that the port
conductance of the circuit Gs is 

(12.12)

Figure 12.6 (a) An ideal FET and a phase-reversing network; (b) the resulting I/V
characteristic at the terminals.

Gs gm AF–=
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and Gs is negative for all positive values of gm and AF. Gs is the circuit’s
incremental port conductance in the vicinity of the bias point (Vdc, Idc). The
large-signal terminal I/V characteristic Id (Vd) is graphed on top of the
FET’s I/V curves. The slope of Id(Vd) is negative at the bias point, indi-
cating negative conductance. 

The negative conductance exists only over a limited range of Vd .
Because of the clamping action of the gate-to-channel Schottky junction,
the gate voltage Vg  cannot increase beyond Vg, max, approximately 0.6V;
accordingly, Id(Vd) follows the curve of constant Vg, max at low values of
Vd . Similarly, beyond the point where –AFVd = Vt , where Vt  is the threshold
(or pinch-off) voltage, Id  is zero. If Vd  is increased further, Id  can increase
only through avalanching or other second-order effects (e.g., changes in Vt
with Vd). Thus, the device has an incremental conductance that is positive
at low Vd , is negative over a region of Vd , and then becomes positive (or
zero) again at even greater voltages. 

Figure 12.7 shows how the ac part of Id (t), ∆Id , behaves as the
amplitude of the ac part of Vd(t), ∆Vd , increases. When ∆Vd  is very small,
∆Id  is also small, is nearly sinusoidal, and is 180 degrees out of phase with
∆Vd . The current waveform is shown in Figure 12.7(a): as Vd  increases, Id
decreases, and the circuit exhibits negative conductance over the entire
range of Vd (t). The magnitude of the large-signal negative conductance is
defined in a manner identical to that of the large-signal impedance that we
encountered in the analysis of diode circuits: 

(12.13)

where Vd, 1 and Id, 1 are the fundamental-frequency components of Vd(t) and
Id(t), respectively (note that these are not precisely the same as ∆Vd  and
∆Id , which can contain harmonic components). The slope of the terminal
I/V characteristic, Figure 12.6(b), is relatively constant in the vicinity of the
bias point, so as long as Vd is small, Gs does not vary much. If Vd increases,
however, it encounters the lower part of the I/V curve, which has a more
positive slope. Then Id, 1 does not increase as fast as Vd, 1, and |Gs|
decreases. 

If the amplitude of ∆Vd  increases further, the peaks of Vd (t) eventually
exceed the range of the negative-resistance region, and Id(t) has the
waveform shown in Figure 12.7(b). The waveform shows two “dips” at its
peaks; these occur when Vd  enters the positive-resistance range. At this
point the increase in Id, 1 with Vd, 1 virtually ceases, and accordingly |Gs|
decreases rapidly, although Gs still remains negative. If Vd  increases

Gs
Id 1,
Vd 1,
-----------=
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further, these dips become deeper, and eventually a point is reached where
Id, 1 = 0 and therefore Gs = 0. 

If ∆Vd  is increased even further, the current waveform becomes as
shown in Figure 12.7(c). In this case, ∆Vd is so great that Vd(t) remains
within the positive-resistance range over most of its period, remaining in
the negative-resistance region only briefly while Vd(t) ≈ Vdc. The only part
of the Id(t) waveform that implies negative resistance is the rising part of
the peak that occurs when Vd ≈ Vdc; over the rest of the period, the
variations in Id(t) are in phase with Vd(t). Thus, throughout most of the
period, Id , 1 is in phase with Vd ,1, and consequently, the resulting positive

Figure 12.7 The voltage and current waveforms in the circuit of Figure 12.6(a): (a)
Vd (t) is entirely within the negative-resistance region; (b) Vd (t) peaks at
the edge of the region; (c) Vd (t) peaks well outside the region. 
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resistance dominates, making Gs > 0. We see that as the amplitude of the
oscillation increases, the large-signal conductance Gs increases from its
incremental value, which is negative, to zero, and finally becomes positive. 

In this example, we have “assumed away” all the reactive parts of the
circuit. In a real oscillator, reactive parasitics would exist, and some type of
resonator would be used to set the oscillation frequency; these elements
would add an imaginary part to Ys, with which the load would have to
resonate. If the resonator were to have a high Q, its reactance would
dominate the imaginary part of Ys making Im{Ys} very frequency-sensitive,
and keeping the oscillation frequency close to the resonant frequency.
Thus, the temperature stability of the oscillator would be essentially that of
the resonator, and the resonator’s narrow bandwidth would act as a filter to
minimize phase and amplitude (AM) noise. 

12.1.5 Oscillator Design by the Classical Approach 

Although an oscillator is in reality a large-signal, nonlinear component,
small-signal linear considerations are usually sufficient to ensure that
oscillation conditions are met, and to approximate the operating frequency.
A design based on linear theory is valid because the oscillator, at the onset
of oscillation, is in fact a linear, small-signal component. If the frequency
does not change appreciably as the amplitude of the oscillation increases,
and if precise knowledge of the output power is not needed, small-signal
design may be adequate by itself. By using nonlinear analysis, however,
one can predict output power precisely and determine the voltage
waveforms across critical components (such as a tuning varactor) in the
circuit. The latter may be very valuable in maximizing power and
efficiency or minimizing noise in voltage-controlled oscillators (VCOs). 

The classical approach to the design of oscillators involves four steps: 

1. Select a circuit structure and method of obtaining feedback. 

2. Choose bias conditions that provide adequate output power. 

3. Adjust the feedback to obtain appropriate negative resistance or
conductance at a port. 

4. Select a termination impedance, at that port, which satisfies the
oscillation conditions. 

These steps guarantee only that oscillation will begin at the desired
frequency; they do not precisely establish the amplitude or frequency of the
large-signal, steady-state oscillation. Without the use of nonlinear analysis,
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accurately estimating the output power can be especially difficult, because
the factors that limit the output-voltage range are not easy to identify. 

The transistor oscillators we examine in this section consist of a
positive-feedback amplifier that has a resonator as an input termination.
Selecting the oscillator circuit’s structure primarily involves selecting the
type of amplifier; the choice of amplifier depends strongly on the
application of the oscillator. For example, a common-gate circuit is usually
preferred for VCOs, but for fixed-frequency oscillators using dielectric
resonators, a common-source configuration is often preferred. We shall
examine this matter further in Section 12.1.5.1. 

Bias conditions are chosen in a manner similar to that used for a class-
A power amplifier: Vdc and Idc are chosen to allow a wide enough variation
of the RF voltage and current to provide acceptable output power. If output
power is not an important consideration, any bias point in the transistor’s
saturation region that provides good transconductance is probably
acceptable; Vdc is often made equal to the drain voltage that the device
would have when used as an amplifier, and Idc is often set to approximately
half the maximum value, 0.5 Idss for FETs.

12.1.5.1 Circuit Structure and Feedback

There exist a number of possible oscillator circuits and methods of
obtaining feedback. Three of the most common are the following: 

• A feedback configuration with a resonator providing the coupling; 

• A transistor in common-gate or common-base configuration with an
inductor in series with the gate or base;

• A transistor in common-source or common-emitter configuration with a
capacitor in series with the source or emitter.

These configurations are shown in Figure 12.8. Although the figures show
only FETs, the same configurations can be used with bipolar devices.
Figure 12.8(a) shows a dielectric resonator, but a wide variety of resonant
circuits are possible. Furthermore, although it is not shown explicitly, a
dielectric resonator can be used with the configurations in Figures 12.8(b)
and 12.8(c). Adding reactance in series with the FET’s common terminal
can introduce a negative real part into the input or output impedance. If the
resistance is reasonably high (but not too high!), the designer has a large
degree of freedom in selecting the load impedance and usually obtains
well-behaved operation. It is also important to adjust the feedback and to
design the load network so that oscillation can occur at only a single



 Transistor Oscillators 551

frequency. If an additional resonance exists within the frequency range for
which Re{Ys} < 0, the oscillator might oscillate at the frequency of that
resonance instead of the desired one. 

The choice of an oscillator configuration is rarely obvious. Because of
resonator losses from weak coupling, feedback circuits, such as Figure
12.8(a), are practical only when the transistor’s maximum available gain is
high. The common-gate configuration in Figure 12.8(b) is probably the
most practical; Figure 12.8(c) requires dc bypassing around the capacitor,
usually an inductor, which could introduce a spurious resonance. Still, it is
not usual to find that one of the configurations provides adequate negative
resistance, while others do not. The superiority of one configuration or the
other depends on frequency and characteristics of the particular device. 

As with a small-signal amplifier, satisfying the oscillation and stability
conditions at either the input or the output is enough to ensure oscillation.2
Therefore, the load is usually chosen to provide adequate output power, and
the input termination is chosen to satisfy the oscillation conditions. The
design process is illustrated by the following example. 

2.  It is possible to show, in the linear case, that satisfying the oscillation conditions at one
port of a feedback amplifier automatically satisfies them at the other. See [8.1]. 

(a)

(b) (c)

MicrostripsDielectric
resonator

Figure 12.8 Three ways to obtain negative resistance: (a) coupling from the drain to
the gate through a dielectric resonator; (b) series inductance in a
common-gate circuit; (c) series capacitance in a common-emitter circuit. 



 Nonlinear Microwave and RF Circuits552

12.1.5.2 Example: VCO Design

We design a 10-GHz VCO having approximately 10 dBm of output power.
This output level is well within the capability of a small-signal Ku-band
MESFET. Its small-signal S parameters at 10 GHz, in common-source
configuration, are 

(12.14)

We also choose bias values of Vdc = 3.0V and Idc = 30 mA, the conditions
under which the S parameters were measured. The drain current is
approximately 0.5 Idss, the value that provides maximum gain in amplifier
operation. 

The MESFET is used in a common-gate configuration; an inductor in
series with the gate provides feedback. The input (the MESFET’s source
terminal) is terminated by a varactor-tuned resonator, and the output is
terminated by a load that ensures good output power. We choose the load
impedance on the basis of the output-power requirement; we then design
the resonator to satisfy the oscillation conditions. 

We first estimate the load conductance. We find it by making a very
rough estimate of the fundamental-frequency RF components of the drain
voltage and current. If Idc = 30 mA, the fundamental RF current must be
less than 30 mA; we estimate it to be 25 mA. In Section 12.1.4 we saw that
the fundamental RF drain voltage must be considerably less than Vdc.
Although we derived this result by considering a common-source circuit,
the same is approximately true for the common-gate circuit. Accordingly,
we assume that the peak RF drain voltage is approximately 1V. The output
power, Pout, is 

(12.15)

The real part of the load conductance, GL, is 

(12.16)

S 0.86 102– °∠ 0.10 48°∠
2.90 104°∠ 0.47 48°–∠

=

Pout
1
2
---Vd 1, Id 1, 12.5 mW= =

GL
Id 1,
Vd 1,
-----------

1
40
------  S= =
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or a shunt resistance of 40Ω. Because the output impedance of a common-
gate circuit is usually capacitive, the output load that provides maximum
power is usually inductive. However, the susceptance found from small-
signal S parameters may not be optimum for large-signal operation;
furthermore, S1,2 in the common-gate FET has a high value, approximately
1.8, indicating that the output admittance is sensitive to the input
termination. Consequently, it is probably futile to predict the large-signal
load susceptance from small-signal considerations. Furthermore, because
of the complications introduced by the feedback inductance and the limited
range of ∆Vd, the approach to output-load design used for the FET power
amplifier is also invalid. For these reasons, in this first-order design we use
a purely resistive load. The lack of a load susceptance may cost a decibel or
two of output power; this power loss can be reclaimed by empirical tuning
or by optimizing the design by nonlinear analysis. 

We now must make certain that oscillation conditions are satisfied
when this value of load resistance is used. To do so, we adjust the circuit to
obtain negative resistance at the input port when the output termination is a
40Ω resistor. Immediately we are faced with a question: just how much
negative resistance do we need? Again, we come to the profound
conclusion that we want neither too much nor too little. If the negative
resistance is low, any small series resistance, perhaps from circuit losses,
may eliminate it; if it is too high, shunt conductivity may do the same
thing. Empirically, we find a negative resistance around –40Ω to –100Ω to
be about right. This value can be obtained easily by setting the port
impedance to 100Ω and maximizing the magnitude of the input reflection
coefficient, Γin. 

We find that a feedback (gate) inductance of 1.24 nH maximizes |Γin|,
giving |Γin|2 = 10.4 dB, or Zin = –65 – j38. To resonate this impedance, we
need an inductive reactance of 38Ω at 10 GHz. To satisfy (12.8) strictly, we
need a termination of impedance 65 + j38; however, this would leave no
room for the oscillation to grow, so we simply select ZL = j38. We expect
that, as the oscillation grows, the input reactance will change slightly, but
the oscillation frequency will change to maintain resonance. The amount
that the frequency must change depends inversely on the resonator’s Q. 

If a capacitive reactance were needed, we could simply connect a
varactor directly to the FET’s source terminal with, of course, necessary dc
blocks and bias circuitry. Since an inductance is needed, however, we could
use a varactor in series with an inductor or transmission line. A little
experimentation shows, for example, that a 100Ω transmission line 55
degrees long, and a 0.55-pF varactor, provides the desired resonance. It is
important to calculate the impedance of the combination over the range of
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frequencies where |Γin| > 1 (i.e., where Re{Zin} < 0) to make sure that there
are no other resonances at which oscillation could occur. 

Better stability could be achieved by a resonator having a high Q and
good frequency stability, such as a dielectric resonator. Because the phase
of a resonator’s reflection coefficient varies rapidly with frequency near
resonance, the oscillator’s frequency will remain close to the resonator’s
resonant frequency, even if the FET’s S parameters drift enough, with
temperature or dc bias, to change Zin. A varactor can then be coupled to the
resonator in order to vary its resonant frequency, and thus to vary the
oscillator’s frequency. 

This circuit is a very popular one for realizing wideband VCOs: even
simple oscillators of this form can achieve remarkably wide tuning
bandwidths, often over an octave. 

In designing the resonator and its tuning circuit, we find that there is a
direct trade-off between tuning range and frequency stability; more
generally, there is a trade-off in the design of any VCO between tuning
range and phase noise. To achieve high stability (or low noise) one must
use a stable, high-Q resonator (e.g., a dielectric resonator or a waveguide
cavity) and couple the FET and varactor to it very weakly. This weak
coupling limits the ability of the tuning varactor to vary the resonator’s
frequency, however, so the tuning range is narrow. Coupling the varactor
more strongly to the circuit increases its effect on the circuit and provides a
wider tuning range; unfortunately, such strong coupling also increases the
effect of its poor thermal stability, and it may also reduce the Q of the
resonator. 

Another phenomenon worth noting is that Zin is not constant with
changes in the output load. As ZL varies, so does Zin; then, the frequency at
which the oscillation conditions are satisfied must also vary, so the
oscillator frequency must change. This phenomenon, called pulling, is also
more serious when the Q of the resonator is low and the varactor is tightly
coupled. 

Although relatively crude estimates of the output conductance and
power were necessary for the initial design, after the oscillator is fabricated
one can use empirical techniques to obtain an improved estimate of the
load impedance. One method that has been widely accepted is called a
device-line measurement [12.3]. In this process, RF power is applied to the
output terminals of the unmatched oscillator and the output-reflection
coefficient Γout is measured under large-signal, nonoscillating conditions.
Because the magnitude of the large-signal reflection coefficient is greater
than unity, power is delivered by the oscillator to the measurement system
during this test. That power, Pd, is 
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(12.17)

where Pav is the available power of the excitation source. When the
oscillator is delivering Pd to the measuring system, it has the large-signal
output-reflection coefficient Γout. This is the same Γout it would have in
normal operation, delivering Pd to a load ΓL in which oscillation conditions
were satisfied. Therefore, the load ΓL must result in an output power Pd.
The underpinnings of this argument are essentially the same as those of
load-pull theory, which is applied to power amplifiers; the greatest
limitation is that effect of the load impedance at harmonic frequencies is
neglected. 

12.2 NONLINEAR ANALYSIS OF TRANSISTOR OSCILLATORS 

The oscillator design illustrated in Section 12.1.5.2 was adequate only to
guarantee that the circuit would oscillate. Because it was based on small-
signal, linear S parameters, it was not possible to estimate the output power
or to find a load impedance that optimized the output power. Thus, we were
forced, with much embarrassment, to use rather crude estimates in the
design of the output network. We would prefer to use our knowledge of
nonlinear analysis to define the load impedance and predict the output
power more precisely. A second concern is the frequency of oscillation.
The oscillation frequency determined through linear analysis is
approximate. When a low-Q resonance is used, the frequency of oscillation
can be significantly different from that predicted by the linear analysis.
Finally, we might like to simulate certain characteristics of the oscillator,
like phase noise, pulling, and dc-bias sensitivity, that are fundamentally
nonlinear and therefore cannot be addressed by linear analysis. 

Several problems arise when one attempts to analyze oscillators by
harmonic-balance techniques: the first is that the saturation phenomena that
limit the amplitude of the oscillation must be modeled very carefully. In
particular, the channel current Id(Vg, Vd) as well as the gate-to-channel
capacitances must be modeled accurately throughout both the linear and
saturation regions. The second problem is more serious. Harmonic-balance
analysis is used primarily when a nonlinear circuit is driven from an
external source. It is assumed at the outset of a harmonic-balance analysis
that the excitation frequency is known exactly. In an oscillator analysis,
however, the frequency of oscillation is not known; it is one of the things
that the analysis must determine. Clearly, the frequency of oscillation must
be one of the independent variables of the harmonic-balance process.

Pd Pav Γout
2 1–( )=
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Finally, the phase of the oscillation is indeterminate, so unless the phase is
somehow constrained, it is impossible for a harmonic-balance process—
however formulated—to converge. 

One solution to the latter problem is to use time-domain analysis. In
this case, which involves integrating the circuit’s nonlinear differential
equations numerically until a steady-state response is obtained. The
process suffers from the standard limitations of time-domain analysis:
transmission lines and lumped impedances often cannot be modeled
adequately (a serious problem, in view of the fact that the resonators in
microwave oscillators invariably use transmission lines), and long time
constants may cause the settling time of the transient response to be long.
Furthermore, the presence of a high-Q resonator in the oscillator’s circuit
may introduce numerical instability. A more subtle difficulty is that all
oscillators have a valid “zero solution”: nonoscillation invariably satisfies
the circuit equations, and an analysis—either time-domain or harmonic-
balance—can easily have this trivial result. 

In view of the complexity of oscillator analysis, it is not surprising that
many techniques have been developed. We examine a few of them in the
following sections.

12.2.1 Numerical Device-Line Measurements

One possibility is to use harmonic-balance analysis to perform a numerical
device-line measurement. This analysis is straightforward and can be
performed on any harmonic-balance simulator. The process is as follows:

1. Design the oscillator as in the above example. Use a nonlinear model
for the device; this design process is nonlinear, so S-parameter
characterization cannot be used.

2. Connect a source and a power/impedance measuring device to the
output port.

3. Excite the output port, and vary the power.

4. Find the point where output power is maximum; determine the port
impedance at this power level. 

5. Design an output network that provides this load impedance to the
device.

Figure 12.9 illustrates the analysis. Figure 12.9(a) shows the oscillator,
designed according to linear theory. Figure 12.9(b) shows the circuit for the
power sweep; the block on the right represents the oscillator, which is
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treated as a subcircuit. The power-measuring element is a voltage/current
sampler, which provides information to the circuit simulator for both power
and impedance. Because negative resistances degrade matrix conditioning,
harmonic-balance simulators often experience convergence difficulties in
oscillator analysis. To avoid this problem, a 1,000Ω resistor is inserted in
series with the port. The resistor makes high excitation power necessary,
but this is of no consequence, as the excitation power is intrinsically
meaningless. Note that we plot the real part of the output power, not the
magnitude of the power. 

The plot shows that maximum output power of 14.4 dBm occurs at an
excitation level of 32 dBm. The impedance, at that same excitation level, is
– 79 – j48. This impedance is the negative of the optimum load impedance;
thus, the oscillator requires a load of 79 + j48. Synthesizing such a load is a
minor, final step. After the output matching network is designed, it is wise
to sweep the circuit over the entire range of frequencies where negative
resistance exists, to make certain that no spurious resonances exist.

In the above example, the output impedance of the oscillator displayed
a series resonance. In that case, a large series resistor was appropriate.
Occasionally, however, an oscillator’s output impedance is best modeled as
a parallel resonance, and in that case a small, shunt resistance usually
works better. In either case, however, the level of the excitation source is
irrelevant [because the output power is determined by direct measurement
in the voltage/current sampler, not by (12.17)], as is the value of the series
or shunt resistor at the port; use whatever works best. 

A disadvantage of this method is the poor treatment of harmonic
terminations. In the analysis, the port is terminated, at all harmonics, in a
high resistance. This situation is generally unrealistic. Another problem is
that it cannot account for the effects of a buffer amplifier or other type of
load; the method can be applied only to the oscillator stage. 

12.2.2 Harmonic Balance: Method 1

It is clearly valuable to have a complete harmonic-balance analysis of
oscillators, in which the user simply describes the circuit and the simulator
provides output power, frequency, and all required voltage and current
waveforms, much as is done in forced circuits. In this section, we describe
two approaches to such an analysis. To do so, we must deal with the
problems of (1) unknown frequency, (2) indeterminate phase, (3) spurious
“zero solution,” and (4) difficult convergence. Additionally, we should
consider the need for synthesis as well as analysis: it may be more valuable
to adjust some circuit parameter to achieve the desired frequency than to
adjust the frequency to satisfy the circuit equations. 
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Figure 12.9 Oscillator design by a numerical device-line measurement: (a) the
oscillator circuit; (b) circuit for performing the large-signal device-line
simulation; (c) port impedance and output power. 

(a)

(b)

(c)



 Transistor Oscillators 559

One straightforward approach [12.4] is to use one or more circuit
parameters as variables, along with the harmonic voltages across the
nonlinear elements. The current-error function (3.1.20) becomes 

(12.18)

where P is a set of circuit parameters. For oscillator analysis, P could
include the frequency of oscillation; conversely, for synthesis, it could
include a varactor capacitance that is adjusted to obtain the specified
frequency of oscillation. The components of P, as well as the voltage
variables, are adjusted by the appropriate harmonic-balance algorithm, and
convergence is indicated, as usual, by minimal values of the components of
F. The authors of [12.4] emphasize the fact that the variables V and P can
be adjusted simultaneously in the solution algorithm; it is not necessary to
solve the harmonic-balance equations to obtain V and then to optimize the
circuit variables P. An advantage of the authors’ approach is that, by
defining the error function to include output power or other performance
parameters, one can include performance optimization in conjunction with
the standard harmonic-balance analysis. Additionally, for the analysis case,
the Jacobian includes derivatives of the frequency with respect to the
system voltages; this quantity can be very useful for phase-noise analysis. 

12.2.3 Harmonic Balance: Method 2

Another clever method [12.5] involves inserting a probe into the circuit in
some appropriate place. The probe consists of a voltage source and series
impedance at the fundamental frequency, and an open circuit at harmonics.
The magnitude and frequency of the excitation is adjusted, in an external
optimization loop, until the harmonic-balance equations are satisfied.
Oscillation conditions are satisfied when the fundamental-frequency
current in the source is zero. 

Figure 12.10 shows a feedback oscillator designed according to this
method. The probe element is connected to the base of the HBT; because of
its sensitivity, this is usually a good connection point. The frequency and
voltage ranges over which the circuit simulator will search for a solution
are parameters of the probe; it is set to search the range of 3 to 5 GHz in as
many as 1,000 steps. Similarly, the voltage range is set to search over 250
steps. These parameters describe a coarse search used only to find the
frequency and voltage region within which the oscillator operates; a fine
search begins after the coarse one is completed. This method is very robust,
and works well even when the resonator Q is quite high. 

F V P,( ) Is P( ) Y P( )V jΩQ IG+ + +=
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This method is similar, in many ways, to an automated version of the
device-line measurement. However, it provides a more correct excitation
source and is more versatile, allowing the probe to be used at any
appropriate point in the circuit. 

12.2.4 Eigenvalue Formulation 

It is interesting to note that the oscillator problem can be formulated as a
classical eigenvalue problem. This gives a rigorous method for determining
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(1) oscillation frequency, (2) whether oscillation conditions are satisfied,
(3) possibilities for satisfying oscillation conditions at multiple
frequencies, and (4) the fundamental-frequency voltages at all nonlinear
ports. It suggests, also, a large-signal method for analyzing an oscillator. 

First, we examine the linear case. Imagine that the nonlinear circuit is
linearized at the bias point. Let Z be the impedance matrix of the linear
subcircuit and Y be the admittance matrix of the linearized, nonlinear
subcircuit. Then, 

(12.19)

where I is the vector of fundamental-frequency current components in the
linear subcircuit. To have oscillations, this current must excite the linear
subcircuit and generate a voltage equal to V:

(12.20)

This implies 

(12.21)

In general, however, the voltage generated by the current is greater than V,
and as oscillations build, the device saturates and (12.21) is satisfied.
Therefore, at startup we have

(12.22)

where λ is real and λ > 1. This is a classical eigenvalue problem, and we
can state that the oscillation conditions, for the linear circuit, are that the
–ZY matrix must have an real eigenvalue equal to 1.0 (or, for the practical
case, greater than 1.0). The corresponding eigenvector, V, gives the
relative, but not absolute, port voltages. It is probably valid to claim that
this applies in the Kurokawa sense; that is, if we define a large-signal
admittance Y(V0) analogous to (12.10), oscillation conditions are satisfied
when λ = 1.

In the strict harmonic-balance case, we must satisfy 

(12.23)

I– YV=

V ZI=
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where FI(V) is the vector of fundamental-frequency currents at all the ports
of the nonlinear subcircuit. The harmonic-balance problem could be solved
by first using the linearized case as an initial estimate, then increasing the
magnitude of the V eigenvector, in a continuation loop, correcting it with
the harmonic-balance process as λ decreases. The process terminates when
λ = 1.

12.3 PRACTICAL ASPECTS OF OSCILLATOR DESIGN 

12.3.1 Multiple Resonances

Multiple resonances are a serious problem in oscillator design. If an
oscillator has a resonance at some frequency other than the desired one, it
can establish oscillations at that undesired resonant frequency. Often, the
oscillator works properly at room temperature, with the expected bias
voltages, but when the temperature changes or the bias voltage drifts, the
oscillator suddenly jumps to an undesired frequency. 

Undesired resonances can be introduced by matching and bias circuits.
Especially at high frequencies, the additional parasitics of packaged
devices can introduce unwanted resonances. Housings can also be sources
of such resonances. 

The fundamental cause of multiple resonances is complexity. If
oscillators really could be made as simple as the idealized circuit in Figure
12.9, multiple resonances would rarely be a problem. To avoid such
problems, the circuit should be made as simple as possible, and should be
analyzed over the full range of frequencies where it exhibits negative
resistance. Here, especially, Maas’ First Law of Microwaves applies: the
simplest circuit that works, works best. 

12.3.2 Frequency Stability 

Frequency stability is governed by the Q of the resonator and the sensitivity
of its resonant frequency to temperature. Since the transistor is inevitably
coupled to the resonator, its temperature-sensitive parasitic elements also
affect the resonant frequency. 

When the resonator’s Q is high, it changes less when the transistor’s
characteristics drift with temperature. To illustrate this point, consider a
series resonant circuit. Its Q can be written 
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(12.24)

where ω0 is the resonant frequency, R is the series resistance, and X is the
total reactance. This can be rearranged to 

(12.25)

showing that a high Q reduces the change in frequency dω when the
reactance, X, changes. 

Of course, the resonant frequency of the resonator itself must be stable
with temperature. In the past, temperature-stable metal alloys such as Invar
were used for resonant cavities. Now, dielectric resonators are more likely
to be used. Dielectric resonators can be formulated to have virtually no
thermal drift, or even temperature coefficients that compensate for drift in
other parts of the oscillator. 

12.3.3 Dielectric Resonators

Many microwave systems require free-running sources that are highly
stable. For these applications, fixed-frequency oscillators using dielectric
resonators are ideal. Dielectric resonators are made from modern ceramic
materials that have low thermal expansion coefficients and high dielectric
constants, usually around 40. This makes them much smaller than
waveguide or coaxial resonators. Because these materials have very low
loss, the Qs of dielectric resonators are nearly as high as those of metal
cavities. Furthermore, the temperature coefficients of the dielectrics can be
adjusted by varying the composition of the ceramic. Dielectric resonators
are usually solid cylinders, although occasionally they are realized as
hollow cylinders or rectangular blocks. 

When used in a microstrip circuit, a dielectric resonator is coupled
magnetically to a microstrip line. The coupling coefficient is adjusted by
varying the distance from the resonator to the edge of the microstrip, or by
placing the resonator on top of a dielectric spacer. When coupled to a single
line, the resonator open-circuits the line at its resonant frequency; when
coupled to two microstrips, a dielectric resonator can be operated in a
transmission mode. 

Cylindrical dielectric resonators usually operate in their dominant
mode, the TE0,1δ. This mode is shown qualitatively in Figure 12.11, and it

Q
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2R
-------

ωd
dX

=

dω
ω0
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should be clear, from its structure, that it couples nicely to the magnetic
field around a microstrip transmission line. The “δ” in the mode indices
indicates that the mode is not completely contained by the dielectric
structure; the magnetic field, in particular, “leaks” from the dielectric, and
unless measures are taken to prevent it, the radiative loss is substantial. A
dielectric resonator therefore must be shielded, or radiative loss reduces its
Q dramatically. Usually, the resonator is mounted, along with the rest of the
oscillator circuit, in a metal cavity. The resonant frequency can be adjusted
somewhat by a tuning screw located above the resonator. 

Figure 12.12 shows a simple FET oscillator using a dielectric
resonator. The design process is identical to the ones we have been
discussing. For example, the design described in Section 12.1.5.2 can be
converted to a dielectric-resonator oscillator. The resonating impedance of
+ j38Ω is realized by a piece of transmission line, and the dielectric
resonator is coupled to the line at the point where the open circuit is
required. Finally, a load resistor provides stability by preventing oscillation
at other frequencies. The load has no effect at the frequency of oscillation,
because it is decoupled from the circuit by the dielectric resonator. 

The theory of dielectric resonators is a separate discipline; that theory,
and further information on the use of dielectric resonators in filters as well
as in oscillators, can be found in [12.6–12.10]. 

12.3.4 Hyperabrupt Varactors

We saw earlier that the capacitance of a pn or Schottky junction, C(V), is
given by 

E

HH

Figure 12.11 E and H fields of the TE0,1δ mode in a solid cylindrical dielectric
resonator. 
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(12.26)

where Cj0 is the zero-voltage capacitance, V is the junction voltage, and φ
is the built-in voltage. The parameter γ is usually close to 0.5 in Schottky
junctions, but in pn junctions, it depends on the doping profile. A linearly
graded junction has γ = 0.33, while an abrupt junction has γ = 0.5. 

Suppose we wish to use a varactor diode as a tuning element. We might
reasonably want a linear tuning characteristic, in which the resonant
frequency is proportional to the control voltage, V. For an LC resonator, in
which the entire capacitance comes from the diode, a little algebra shows
that

(12.27)

where k is a constant. We see that linear tuning requires γ = 2.0. This is a
much stronger capacitive nonlinearity than is normally encountered in
junction diodes. The use of a sharply graded doping profile in a pn
junction, however, can approximate this condition over a modest range of
junction voltages; such diodes are called hyperabrupt varactors. Even
when a linear tuning characteristic is not possible, the wide capacitance
range of such diodes is valuable for wide-range VCOs. 
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Figure 12.12 The oscillator of the design example, modified to use a dielectric-
resonator. 
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To achieve the wide capacitance variation, the doping density must be
greater near the junction and decrease in the direction into the
semiconductor. This results in a relatively high series resistance, and thus a
lower Q. This lower Q is the price of the wide tuning range. 

12.3.5 Phase Noise 

Noise processes in semiconductor devices can modulate the phase of an
oscillator and create noise sidebands in its output spectrum. This phase
deviation is a serious problem in systems where a signal’s phase carries
information, especially in modern communication systems using phase or
phase-amplitude modulation. Because high-frequency components of that
noise are attenuated by the resonator, noise processes that generate low-
frequency components are of most concern: 1/f noise is a particularly
significant contributor to phase noise; accordingly, devices having low 1/f
noise levels are usually preferred for use in oscillators. Bipolar transistors
(both HBTs and conventional homojunction devices) have significantly
lower 1/f noise levels than MESFETs or HEMTs, so they are often
preferred for use in oscillators when possible. 

Phase noise is characterized by the ratio of carrier noise spectral
density or, equivalently, the spectral power in a 1-Hz bandwidth, at an
offset fm from the carrier. This quantity is designated L(fm) and is
illustrated in Figure 12.13. 

Phase noise can be minimized not only by using a low-noise device,
but also by using a resonator having a high loaded Q; in VCOs, a high-Q
varactor is necessary. Because phase noise can also be caused by noise
originating in the power supply or coupled to the dc bias circuits, power-
supply filtering should not be overlooked as a means to minimize phase
noise. 

L(fm)

ff0+fmf0

1 Hz

Signal

Phase noise

Figure 12.13 Signal and noise spectrum of an oscillator. 
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12.3.5.1 Phase-Noise Analysis

We can develop an understanding of phase noise by first viewing the noise
as a sinusoidal phase perturbation. Suppose we have a signal, v(t), with a
sinusoidal phase perturbation of β radians at a radian frequency ωm = 2πfm:

(12.28)

The frequency is the time derivative of phase. Differentiating the argument
gives

(12.29)

showing that the frequency deviation ∆ω = ∆φ ωm, or 

(12.30)

In frequency modulation (FM) theory, ∆φ is sometimes called β, the
modulation index. Clearly, the phase deviation must be small, so .
This condition corresponds to narrowband FM, so we can use the results of
narrowband FM theory to obtain the spectrum. After consulting any good
communications theory book, we obtain 

(12.31)

where Vssb is the level of a single sideband and J1 is a Bessel function. The
carrier-to-sideband ratio is then 

(12.32)

Since ∆φ is small, this approximation is virtually exact; so, offending only
the most anal-retentive mathematicians, we have replaced the approxima-
tion sign with an equality. 

This is fine for sinusoidal phase deviations, but we are really interested
in noise, not sinusoids. To convert the above results to noise, we equate the
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sinusoidal and noise cases on the basis of power. For a sinusoid, the RMS
and peak values are related as 

(12.33)

so the carrier to noise ratio L(fm) becomes 

(12.34)

where  represents the RMS value of either the sinusoid or the
noise process. 

Sinusoid and Noise

In many systems, noise is added to a carrier and the combination is limited
in amplitude. The limiting removes the amplitude component of the noise,
but not the phase component. The resulting phase noise can be found
easily. Figure 12.14 shows the combined signal and noise phasors. From
Figure 12.14, the phase deviation is 

(12.35)

The mean square noise can be defined by a noise factor, F:
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Figure 12.14 When a signal plus noise process is limited, amplitude variations are
removed and only phase variations remain. Since the oscillator’s
transistor is driven into hard saturation, it acts as a limiter, removing
most AM noise. 
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(12.36)

where K is Boltzmann’s constant, 1.37⋅10–23 J/K; T0 = 290K, by definition;
and R is the load resistance at which n(t), which has units of voltage, is
measured. The signal power is 

(12.37)

where P is the power dissipated in R. Substituting (12.35) through (12.37)
into (12.34) gives 

(12.38)

or, in dBC,

(12.39)

Noise Spectrum and Leeson’s Model

The previous relations assume that the noise is white. In reality, the
dominant noise process is the upconversion of 1/f noise by the oscillator’s
nonlinearities. We can assume that this power spectrum is centered on the
carrier and has the form 

(12.40)

where fc is the corner frequency of the noise and, as before, fm is the
deviation from the carrier in either a positive or negative direction. The
power spectrum of the phase fluctuations, S( fm), is 

(12.41)

Plotted on a logarithmic scale, the noise spectrum has the shape shown in
Figure 12.15.
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In 1966, Leeson [12.11] proposed a simple model of a noisy oscillator
by treating it as a phase-feedback system with added noise. The added
noise is a high-frequency noise spectrum, which consists of both broadband
noise and upconverted 1/f noise. The model does not treat the upconversion
process, so it is valuable only for its qualitative, not quantitative
predictions. Even so, it provides considerable insight into oscillator
operation.

The oscillator model is shown in Figure 12.16(a). It consists of an
amplifier, a resonator, and feedback. Noise is added at the amplifier’s
input, and the oscillator’s output port is the amplifier’s output port. Leeson
showed that this circuit can be represented as the baseband circuit in Figure
12.16(b), in which the variable quantity is the oscillator’s phase. In Figure
12.16(b), the resonator becomes a low-pass filter and the “output” is the
phase, not the signal itself. 

We now can apply ordinary feedback theory to the circuit of Figure
12.16(b). The transfer function of the low-pass filter, T( fm), is

(12.42)

where QL is the loaded Q of the resonator and f0 is the frequency of the
oscillator. The transfer function between the phase of the noise and that of
the oscillator’s output is

(12.43)

fmfc

Figure 12.15 1/f noise spectrum showing the corner frequency, fc. 
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Substituting (12.42) into (12.43) and using (12.41) and (12.38), we obtain

(12.44)

The loop acts as a kind of filter on the phase noise. According to
(12.44), there are two break points in the phase noise spectrum: one at the
corner frequency, fc, and another at fm = f0/2QL . At frequencies well below
both break points, the phase-noise spectrum has a slope of 30 dB per
decade; at higher frequencies, regions can exist where the slope is either 20
dB per decade or 10 dB per decade, depending upon the relative values of fc
and f0/2QL. The possible spectra are shown in Figure 12.17. Note that these
depend on the assumption that the dominant noise source has a 1/f
spectrum; often the spectrum is not precisely 1/f, so the phase-noise
spectrum may deviate from this ideal case.

Other Sources of Phase Noise

It is important to recognize that phase noise can arise from sources other
than the noise in the transistor. Some important sources are the following:
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Oscillator model
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(Noise phase)

Figure 12.16 (a) Leeson’s model of a noisy oscillator; (b) the equivalent circuit, in
which phase is the variable. 
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• Power supply noise can easily modulate the phase of an oscillator. The
power supply must be well filtered to remove such noise. For
measurements, a battery can be used to eliminate this noise source. 

• Coupling from the ac line is invariably evident in measurements of the
phase-noise spectrum of low-noise oscillators. Peaks at the ac line
frequency, and its harmonics, are invariably present. If the peaks are not
too great, they can simply be ignored; however, large peaks can degrade
the accuracy of a phase noise measurement and make it difficult to
interpret. In many cases, it may be necessary to shield the oscillator during
the measurement. 

• Mechanical vibration can generate phase fluctuations that appear as phase
noise. Ambient mechanical vibration has frequency components from a
few hertz to a few kilohertz; this is just the right range to corrupt most
phase-noise measurements. 

• The noise of a buffer amplifier, especially if it uses active biasing, can
degrade the oscillator’s phase noise. 

12.3.5.2 Frequency Multiplication

Since frequency is the time derivative of phase, frequency multiplication is,
in fact, phase multiplication. Multiplying the frequency by a factor, n,

fm

L(fm)

30

20
0

fc f0/2QL
fm

L(fm)

30

10
0

fcf0/2QL

(a) (b)

Figure 12.17 Phase noise spectra: (a) “low-Q” case, in which f0 / 2QL > fc; (b) “high-
Q” case, in which f0 / 2QL < fc. The former corresponds to VCOs and
oscillators having microstrip resonators; the latter, to DROs and
oscillators using resonant cavities. 
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multiplies ∆φ by n as well. From (12.38), we see that the phase noise
increases by n2 or, in decibels, 20 log(n).

12.3.6 Pushing and Pulling 

In Section 12.1 we saw that changes in the load impedance could affect the
oscillation frequency by changing the phase of Zs. This phenomenon is
called pulling. To some degree, pulling is inevitable; it occurs because the
feedback necessary to make oscillation possible increases S1,2, and thus
increases the sensitivity of Zs to the load impedance. Nevertheless, pulling
can be minimized. Beyond the obvious solutions of using an output isolator
or buffer amplifier, a high-Q resonator is effective in reducing pulling. 

Similarly, changes in dc bias voltage can change the transistor’s S
parameters and Zs, thus changing the oscillation frequency. This
phenomenon is called pushing. The straightforward way to minimize
pushing is to maintain adequate regulation in the oscillator’s bias circuits.
As with pulling, pushing is minimized by a high-Q resonator. Pushing is
not always undesirable; it is sometimes used as a means to obtain voltage-
tuning capability in a narrowband VCO. 

12.3.7 Post-Tuning Drift 

When the frequency of a VCO is changed, the RF current and voltage
waveforms throughout the oscillator also change, as well as the dc bias
current. As a result, the heat dissipated in the transistor and the tuning
varactor, in blocking capacitors (which dissipate heat because of finite Q),
and in coupling inductors all change as well. A small time interval is
required before the circuit returns to thermal equilibrium and steady-state
conditions. During this time the frequency may drift; this phenomenon is
called post-tuning drift. It is most significant in fast-tuning, wide-range
VCOs. 

In a well-designed oscillator, the primary cause of post-tuning drift is
heat dissipation in the varactor. Thus, careful thermal design of the varactor
can reduce post-tuning drift significantly. If the varactor is mounted in a
package, it should be mounted on a large metal surface; a beam-lead or
chip device mounted on a substrate should be bonded to the substrate
metallization over as large an area as possible. 

12.3.8 Harmonics and Spurious Outputs 

A well designed transistor oscillator should be free of spurious outputs that
are not harmonically related to the frequency of oscillation. However,
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because the transistor is driven into saturation, most oscillators have
significant harmonic outputs. Harmonic distortion can also occur in a
buffer amplifier, which may be driven into saturation to level the output of
a VCO. In most cases the designer has little control of the harmonic levels
unless an output filter is used. 
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