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Preface

This book is intended o provide the siudent with a clear and thorough
presentation of the theory and application of structural analysis as it applies
10 russes, beams, and frames. Emphasis is placed on developing the student’s
ability to both model and analyze o strcture and 1o provide realistic applica-
tions encountered in professional practice.

Organization and Approach

The contents of cach chapter are arranged into sections with specific topics
categorized by titk headings. Discussions relevant o a particular theory are
succinet, yel thorough. In most cases, this is followed by a “procedure for
analysis” puide, which provides the student with & summary of the important
‘cancepts and a systematic approach for applying the theary. The example prob-
lems are solved using this outlined method in order to clarify its rumerical
application. Problems are given at the end of each chapter and are armanged
t0 cover the material in sequential onder; morcover, for any topic they are
amanged in spproximate onder af inc lty.

During recent years there has been a growing emphasis on using com-
puters o analyze stractures by matrix analysis. These developments are most
welcome, hecause they relieve the engineer of the often lengthy calculations
required when large or complicated structures are analyzed using elassical
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omework Problems

7 ¢l are more efficient for a structural analy-
""eu-m'd‘ N\"h"il:‘gr:::‘“:i\nrn“:;::“\l:u::nu taking a first course in this subj y_l
Tt btent ‘.r]\ \-’er] in the classicial methods. Practice in applying
il sn b “|=| develop a deeper understanding of the basic engincering
alidgy "‘-I' and mechanics of materials. Also, problem-solving skills
g :;:::I\. d when the vanous techniques are thought out and
o flI:JM el [2;1':;\1 orderly way. By experience, one can better grasp the
al‘-11”'::»«‘]” ::1;:e:-ran\miucd mmug-n structures and obtain a more complete
::germnzmg of the way structures n?cﬁmu under load. Finally, the classi-
cial methods provide a means of checking computer results rather than simply
relying on the gengrated output

Muost of the problems in the book depict rea ituations encountered in
practice. It is hoped that this realism will both stimulate the student’s interest
in structural analysis and develap the skill to reduce any such problem from
its physical description 10 a model or symbolic representation to which the
appeopriste theory can be applied. Throughout the book there is an approxi-
mate balance of problems using either SI or FPS units. The intent has been (o
dgvelup problems that test the student’s ability to apply the theory, keeping in
mind that those problems requiring tedious calculations can be relegated o
computer analysis. Using the STRAN computer program, included with this
book, the student also has a means of checking the solutions to many of these
problems, and can thereby be encouraged o apply a compulter analysis
:nmu:l;:lklln course. The answers to selected problems are listed in the back

Contents

This book is divided into three parts. The first pan consists of seven chapters
that cover the elassical methods of analysis for statically determinate struc-
tures. Chapter 1 provides a diseussion of the various types of structural forms
and loads. The analysis of statically determinate structures is covered in the
next six chapters. Chapter 2 discusses the determination of forces at a struc-
ture’s supports and connections. The analysis of various types of statically
determinate trusses is given in Chapter 3, and shear and bending-moment
functions and diagrams for beams and frames are presented in Chapter 4. In
Chapter 5, the analysis of simple cable and arch systems is presented, and
in Chapter 6 influence lines for beams, girders, and trusses are discussed
Finally, in Chapter 7 several common technigues for the approximate analysis
of statically i are considered.

In the second part of the book. the analysis of sutically indeterminate
structures is covered in five chapters. Both geometrical and energy methods
for computing deflections are discussed in Chapter 8. Chapter 9 covers the
analysis of statically indeterminate structures using the force method of analy-
sis, in addition to a discussion of influence lines for beams. Then the displacement
methods consisting of the slope-deflection method in Chapier 10 and moment
distribution in Chapter 11 are discussed. Finally, beams and frames having
nonprismatic members are considered in Chapier 12.

The third part of the book treats the analysis of structures using the suff-
ness method. Trusses are discussed in Chapter 13, beams in Chapter 14. and
frames in Chapter 15. A review of matrix algebra is given in Appendix A
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Columns. Membess that are generally vertical and resist axial compressive
loads are referred 1o as columns, Fig. 1-4. Tubes and wide: flange cross sec-
tions are often used for metal columns, and circular and square eross sections
with reinforcing rods arc sed for those made of concrete. Occasionally,
columns are subjected (0 both an axial load and a bending mament as shown
in the figure. These members are referred to as bearm columns.

Types of Structures. The combination of structral elements and the
materizls from which they arc composed is referred 1o as a struchiral system.
Each system 15 constructed of one or more of four basic types of structures
Renked in order of complexity of their force analysis, they are as follows.

I:'ﬁ.‘i".‘.}";mm structure is required (o be large and its depth is
iy -|=mn”l« design. a truss may be selected. Trusses consist
bl m:m;“:ﬁu, I-_mnpedmlnangum fashion, Planer trusses are
bodge s o e Lhatle in the same plane and are frequently used for
il ‘Pport, whereas space frusses have members extending in

mensions and are suitshle for derricks and

wers,
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Cables and Arches. Two other forms of structures used to span long dis-
tances are the cable and the Cables are usually flexible and carry their
n. Unlike ten: 5, ho
cable, and consequently the cable takes a form that has
Fig. 1-6a. Cables are commonly used 10 support bridges and
building roofs. When used f e purposes, the cable has an advantage over
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Ioads in tensi ever, ihe exiernal load is not applied
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the other hand, is limited only by their sag, weight.,
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Frames. Frames are often used in buildings and are composed of beams ang
columns that are either pin or fined connected. Fig. \_ Like trusses, frames
extend in fwo of three dimensions. The losding on & frame causes bending of
o mermbers, snd if & has rigid joint comnections, this structure i generally
sndeerminate” from a standpoint of analysis. The strength of such a frame
derived from the moment interactions between the beams
the rigid joints. As a result, the economic benefits of using a fr:
the efficiency gained in using smaller beam sizes versus increasi the size of
the columas due 1 the “heam-column”™ action caused by bending at the joints,

Surface Structures, A surfuce siructure is made from a matenial havin,
very small thickness compared to its other dimensions. Sometimes this mate
rial s very flexible and can take the form of @ tent or air-inflated structure. In
both cases the material acts ac a membrane that is subjected to pure tension.

Surfuce stractures may also be made of nigid material such as rein forced
comcrete. As such they may be shaped as folded plates, cylinders, or hyperbolic
pasaboloids, and are referred 10 as ghin plates or shells. These stractures act
like cables or arches since they support loads primarily in tension of
compression, with very linle bending. In spite of this, plate or shell structures
are generally very difficult to analyze, due to the three-dimensional gepmetry
of their surfice. Such an analysis is beyond the scope of this text and is instead
covered in texts devoted entirely 10 this subject.

f of the “Georgia T in Aulanis
an be comsideredt as  thin membriné

1.3 Loads

Onee the d

ec

mensional requirements. for a stucture have been defined. it
7es necessary to determine the loads the stucture must suppart. Often
it s the anticipution of the various loads that will be imposed on the stracture
tht provides the basic type of structure that will be chosen for design. For
example, high-rise structures must endure large lateral loadings
wind, and so shear walls and tubular frame systems are selected, whereas
buildings located i thiuakes must be designed having dus
frames and connections.

Onee the structural form has been determined, the actual design begins
with those elements that are subjected to the primary loads the structure is
intended to carry, and proceeds in sequence to the various supporting mermbers
until the foundation is reached, Thus, a building floor slab would be designesd
first, followed by the supporting beams, columns, and last, the foundation
footings. In order to design o structure, it is therefore necessary to first speeify
the loads that act on it

The design loading for & structure is often specified in codes. In general
the structural engineer works with two types of eneral building codes
and design codes. Genoral building codes specify the requirements of
governmental bodies for minimum design loads on structures and minimum
standards for constraction. Design codes provide detailed technical standards
and are used to establish the requirements for the actual structural design
Table 1-1 lists some of the important codes used in practice. It should be
realized, however, tht codes provide only & general guide for design. The
wltimate responsibility for the design lies with the structural engineer.

Since a structure is generally subjected to several types of loads. a brief
discussion of these loadings will now be presented fo illustrate how one must
consider their effects in practice.

areas prone 10

desi

addes:

General Building Codes
s for Buildings and Qurer Stacrres. ASCE 7-98, American

n Design Lo
xiety of Civil E

g

ers
iz Coafe-2000, {UBC-2000)

Design Codes

s for Reinforced Concrere, Am. Cone. Inst. (ACHH

Man Seeel American Institute of Steel Comstructian (AISC)

Standard Specifications for Highaay Brid an Association of State
Highway and Transportation Officials (AASHTO)

Nasional Design Specificarian, American Institute of Timber Consruction (AITCY

Manuai for Raituay Engineering, American Railway Engineering Assosiation
(AREA)

Huilding Cade Requi
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g the data in Tables 1-2 and 1-3, we have

[8 IO in) 164 in 6 i) = 192 Ih/ft

Plaster ceiling (8 /)6 ) = 30Ib/0
Block wall: (105 /)8 Ml fe) = $40 I/t
Tatal foad 1062 /i = 106K/ Ams.

Here the un
1k = 1000 T

k stands for “kip” which symbolizes Kilopousds. Heoce.




12 CH 1 TYPESOF STRUCTURES AND LOADS

Table 14 Minimum Live Loads®

Live Loads. Live foads can vary bath in their magmludu and location, They
may be caused by the weights of objects Lmpe arily placed on 4 stnuctuge
maving vehicles, or naniral forces, The minimem Ive loads specifed in cogeg
are determined from studying the history of their effects on existing st
tores. Uspally, these loads inclode additional protection against excessive
defection or sudden overload. In Chapter § we will dev

specifying the poper locatian of live laads an the sinuclure 35 that th
the greatest stress or deflection of the members. Various types of live loags

will naw be discussed

Balldky1 The floars of buildings are assumed 1o be subjected to ini.
Jorm live loads, which depend on the purposc foe which the building i
Jesigned. These loadings are gencrally tabulated in local, state, or national
codes. A representative sample of such minirtan inve loadings, taken from
(he ASCE 798 Sundard, is showm in Teble 1-4. The values arc
determined from & history of loading various buildings. They include some
protection against the possibility of overload due to emergency situations, con-
struction laads, and serviceability requirements due to vibration. In addition
+ouniform boads, some codes specify mrinimum concentrated live loads, caused
by hand carts, sutomobiles, etc., which must also be applied anywhere 1o the
floor system. For example, both uniform and concentrated live loads must be
considered in the design of an automobile parking deck

For some types of buildings having very large floor areas many codes will
allow a reducrion in the uniform live load for a floor since it is unlikely that
the prescrited live load will occur simultancously throughout the entire

Live Load.
- ' Live Lood
Ovexpancy or Use P B Occupancy or Use s N
Asscably areas
ﬁw, and theaters = Residential
e & ,:; :‘Mdhngs {one- and two-family) 40 192
Mouahic Hoicls 3
izl 1 i oicls and maltifamily houses
Gamapes (passcoger cars ouly) 0 240 o 4
100 +¥
Lobtecy 100 aTe 40 19
Offices 2 ) £
0 240 3
s 0 3
125 600
250 119

0 o o M Ui L o

B s ot Oubar Swceares, ASCE 138

structure at any one time. For example. AS

7-08 allews a reduction of live
Jasd on a member having an influen 2

(Kee Ay) of 400 ft* (37.2 m' s or

more. This reduced live boad is calculated using the following equation:
{ 15
L=pfoas+ gp=r) (PP uy
-1y
L=L]025+ £ | (stunis)
VA,

where

L = reduced design live load per square foot or square meler of ared supporied
by the member

unreduced design live load per square fool or square meter of ara
supported by the member (see Table 1-3)

Ky = live load clement Factor. For imerior column Kpg = 4

Ay = tribwtary area in square feet or square meters®

The reduced live load defined by Eg. 11 is limited o not less than 50% of
I.. for members supporting one floor, o not less than 405 of L, for members
e floor. No reduction is allowed for loads exceeding
P for structures used for public assembl
roofs. Example 1-2 illustrates its application.

Bridge Loads. Design live loadings for highway beidges are specifi
cade of the American Association of State Highway and Transportation Offi-
cials (AASHTO), whereas railroad bridge design follows the specifications of
the American Ruilway Engineering Association (AREA). Both of these codes
give wheel lnadings and spacing for different types of trucks and trains. For
design, 4 series of such loadings is placed buck to back within critical
regions of the bridge, and the maximum live-load stress in the members 1
calculated, Furthermore, since vehicles are in constant motion, any bouncing
that occurs results in an impact of their weights on the bridge. To account
for this the AASHTO and AREA coles give empirical formulas used o
determine the impact fraction, which spesifies the percentage by which the
maximum live load should be increased. Specific cxamples of such formalas
and vehicle loadings are discussed further in Sec. 6.6.

Deatm and colamns a5 given

o of wiutary arcas

*Sperific cxamgles of the des
nSer 210
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erior colunns thot are spaced 22 fi apan
If the (flat) roof losding is 201b/1t%
supported by @ typical interior column

A twosstory office building hs ink
in two perpendicalar directions
determine the reduced live Tood
Jocated at ground level

—ua——21

SOLUTION

As shown in Fig. 1-9, each interior column has a tributary area or effec-
tive Iusded ares of Ay = (22 i)(22 1) = 484 fr". A ground-floor column
therefore supports a roof live load of

Fy = (20 Ib/C)484 ') = 9680 1b = 9.6 k

This load cannot be reduced, since it is not a floor load. For the second
flocoe, the live load is taken from Table 1-4: L, = 501b/it. Since
Ky = 4, then 44, = 4(484 1) = 1936 1" and 1936 f° > 200 1%, the live
load can be reduced using Eq. 1-1. Thus,

L= sn{n.zs +

The load reduction bere is (29.55/50)L00% = 59.1% > 50%. O K. Thercfore

Fy = (29.55 Ib/°)(384 fi') = 14300 1b = 143k

The total live load supported by the ground-floor column is thus.

F=Fy+F, =968k + 143k = 240k

A

Wind Loads, When structures block the flow of wind, the wind's kinetic
is comverted into potential encrgy of pressure, which causes a wind
loading. The effect of wind on a structure depends upon the demsity and
velocity of the air, the angle of incidence of the wind, the shape and stiffness.
of the structure, and the roughness of its surface, For design parposes, wind
loadings can be treated using cither a static or a dynamic approach.
For the static approach, the fluctuating pressure cavsed by a constantly
g wind is approximated by a mean velocity pressure that acts on the
structure. This pressure g is defined by its kinetic energy, g %, where p
i« the density of the air and V is its velocity. According to the ASCE 7-98
Standard, this equation is modified to account for the importance of the

enery

structure, its height, and the terrain in which it is located. 1t is represented as
g, = 0.00256 K K K,VT (Ib/f') et
g, = 0613 K KK,V (N/m%)

where,

¥ = the velocity in mi/h (m/s) of a 3-second gust of wind measured
(10 m} ahove the ground during a S0-year recurrence period.
obtained from & wind map, shown in Fig. 1-10

the importance factor that depends upon the sature of the building
oceupancy; for example, for buildings with a low hazard to human life,
such as agriculture facilitics in a non-harricane prone region, /= 0.7, but
for hospitals, { = 1,15

= the velosity pressure exposure coefficient, which is  function of height
and dependds upon the ground terrain, Table 1-5 lisis values for a structure
which is located in open temain with scatiered Jow-lying obstructions

& factor that accounts for wind speed increases due to hills and
escarpments. For flat ground K, = 1

K

", = a factor that accounts for the direction of the wind. It is used only when
the structure is subjected to combinations of loads (see Sec. 1.4) For
wind acting alone, Ky = 1

Table 1-5  Velocity Pressure Expasure
Coeflicient for Terrain with Low-Lying
Obstructions

SEC 13 LOADS
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“Table 18 Force CoefTiients for Abave-
Groand Solid Signs. €

A e (nce the value for g, is obtained, i
Design Wind M;':ﬁ.‘::m?;u a list of relevant equations listed ;:
;::Ii;l’-‘:?:;:;:m.lw The choice depends upan the flexibility and heighy
of the structure, and whether the design is for the main wind-force resisting

e or the building’s componcits and cladding. For example, for 3
system, of pressure on nonflexible buildings of any heighy
from both external ang

conservaiively designed i
s determined using @ twotermed equation resulting

internal pressures, mamely.

= ¢GE, - q(GC,) (1-3)

und (Eq. 1-2), and

g. for the windward wall at height 2 above the
i, the mean height

4 = g for the oher side walls and roof. where 2
af the mof
G = awind-gust effect factor, which depends upon the exposure. For example,
rigid structure, G = 0.3

for a

= a wall oe roof pressure cocfficient determined from
 the wallk and a roof piteh of # = 10° are given in Fig. 1-11.
Note in the elevation view that the pressure will vary with height on the
windward side of the buikling, whereas on the remaining sides and o
the mof the pressure is assumed fo be constant

(GC,) = the internal pressure coefficient which depends upon the type of
openings in the building. For fully enclosed buildings (GCn) =
<018, Here the signs indicate that either positive or negative
{suction) pressure can occur within the building

Application of Eg. 1-3 will imolve calculations of wind pressures ro
each side of the building, with due considerations for the possibility of either
positive or negative pressures acting on the building's interior.

Design Wind Pressure far Signs. 1f the structure represents an above-g
sign®, the wind will prosuce a resuliant force acting on the face of the
which is defermined from

(14
Here

G = the wind-gust coeflicient factor defined previously

€y = a force coefficient which depends upon the ratio of the large dimension
M of the sign to the small dimension V. Values are listed in Table 1-0

= the area of the fisce of the sign

" e classafiod as such. the destance from the gro i
o e B s o s o th ot o o g s be 4

Fig. 1-10

To allow for normal and oblige wind dircctions, this resultant force is
cometric center of the face of the sign or
he geometric ceater a distance of 0.2

assumed to act either through the g
from a vertical line passing througl
times the average width of the sign

Far high-rise buildings or those having a shape ar location that makess them
wind sensitive, it is recommended that & dysamic approach be used 10
determine the wind loadings. The methodology for doing this 1 also outlined
in the ASCE 7-98 Standand. It requires wind-tunnel tests to be performed on
a scale model of the bailding and those surrounding it, in order o simulsie
the natural environment. The pressure clfects of the wind on the mn]»l\u can
be determined from pressure transducers attuched to the model. Also, if the
mixdel has stiffness characteristics that are in proper scale to the building, then
the dynamic deflections of the building can be determined

Surtace wn o Windeadd | Lovemt
g ke
Windwund | ABvalues | 08
wll wwim | e o

ot | - e preseore coeffcicnn, €
for use with g

B pressure coeficiente, €,

seC 13 wans 17
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=4f1) i . Apsf)
0-15 nis 153
20 0w 162
b2l (] 170
k=316 A% 179
"

\2ar s used for agricultural purpos

ing shown in Fig. |
el Winois on Mt terrsin, When the

is located eutside of Chicage,
:ml:\::r :I-.ﬂmwn determine the design wind pressire acting on the roof
and sides of the building vsing the ANSI/ASCE 7-95 Specificat

SOLUTION
First the velocity pressure will be determined using Eq. 1-2. From Fig
1-10, the hasic wind speed is V= 90 . and since the building is used
for agricaltural pusposes, the impartance factor is 1 = .87, Also, for flat
temain, K, = 1. Since only wind loading is being considered. &, = 1. There-
fore,

. = 000256 KKK, V*f
= (L0256 K411 I90F0.8T)
= IR K,

From Fig. 1-12a. ' = 75 tan 10° = 13.22 ft <o that the mean height of
the roof is b= 25 + 13.22/2 = 31,6 fi. Using the values of K in Table 1-5.
calculated values of the pressure profile are listed in the table in Fig, 1-1
Note the value of K. was determined by linear interpolation for X
llll-\l—ug;jsanw = 30) = (104 — K,)/(40 — 31.6), K, = 0990, and 50
i = 1804(0.990) = 17.9 pst. In order 1o . 1-3 the gust factor is
G =03, and (GCp) = <08, Thus, T

P

GC, = g,(GC,.)

= g(0.85)C, ~ 17.9(+0.18)
= 0854C, = 3.21

The pressure loadings are

values for g, listed in Fi

profile in Fig. 1-11,

(1}

obtained from this equation using the calculated
2. 1-12b in accondance with the wind-pressare

s and
nd is |

Winduward Wall.  Here the pressure varies with b
be used. For all values of L/B, €, =08, s that

ght = since . G0, must
om Eq. (1)

Pocis = 7.09psE or 13,6 psf

Pao=THEpst or 143 pof
Pie=B3Spst or 148 psE
Lecuward Wall  Here L/B = 275)/150 = 1, 50 that €, = —0.5. Also,
g = g and 50 (rom Eq. (1)
p=—108pd or —4.40psf
Side Walls. For all values of L/#, €, = ~07, and therefore since we

must use ¢ = q in Eq. (1), we have

p=-139ps or —THpsl

Winduard Roof. Here hfL = 31.6/2(15) = D211 <025, so that
C, = ~0.7and g = g Thus,

p=—139psf or —7.44psf

Leessard Raof. In this case C,
P -Tpsd or —135psf

= —0.3; therefore with g

- we get

These two sets of loadings are shown on the elevation of the building,
representing cither positive or negative (suction) interal building pressare,
Fig 1-12c. The main framing structure of the builkling must resist these
loadings s well as loadings cakculated fram wind blowing om the front oe
rear of the building

744t
138 put

M ps

U3
104 st e

1186
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Fig 1-13
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ton this rogf.

Snow Loads. In some parts of the country roof loading due 1o snow ¢
guite severe, und therefore protection a lure is of primar
concern, Design loadings typically depend on the building's general shape and
seometry, wind exposure, and location. Like wind, . snow Ioads are geq.
crally determined frum a zone map reporting S0-year recurrence intervals
an extreme snow depth. For example, in some mid-western states, 201,
(0.96 kN/m?) is commonly used for design. Specifications for snow Inads 2
covered in the ASCE 7-98 Standard, although no single code can cover all the
implications of this type of loading. Instead. the m-nm must use judgment
reganding the possibility of additional effects caused by rain. snow drifi
miovement, and whether the building 1o be desig n] 15 to be heated

Earthquake Loads. Eanhquakes produce loadings on a structure through its
intcraction with the ground and its response charscteristics. These Joadi
result from the structure’s distortion caused by the ground’s motion and
latesal resistance of the strocture. Their magnitude depends on the amount and
type of zround sccelerations and the mass and stiffaess of the structure. In
onder (o provide some insight as to the nature of earthquake loads, consider
the simple structural moclel shown in Fig. 1-13. This model may re
single-story building, where the top block is the “lumped™ mass of the
and the misdle block is the lomped stiffness of all the buil
During an earthquake the ground vibrates both horizontally and vertically
horizontal accelerations create shear forces in the column that put the block
1n sequential motion with the ground. If the column is s1iff and the block has
& small mass, she period of vibration of the block will be shors and the block
will accelerate with the same mation as the ground and undergo only sl
relative displacements. For a structure this is beneficial, since less stress it
deseloped in the members. On the other hand, if the column is very flexible
and the Block has a large mass, then earthquake-induced motion will cause
small accelerations of the block and large relative displacements.

effects of 4 stru
cam be determined and rep
aph s ¢

ure’s acceleration, velocity,

ncl displacement
e response spectrum. Once
ablished, the canbquake loadings can be calculated wsing s
samic anulysis bused on the theory of tructural dynasmics. This analysis
and requires the use of a computer Although this o
anulysis becomes mandatory if the tructure is large.
1o earthiuake de
. ly in areas of the coumry where strong earthquakes predominate. Als
these loads should be seriously considered when de

fise buildings
or nuelear power plants. In order to assess the importance of eanhquake design

consideration, one can m;\x a ~\<~r.mon map puhlhh 4
in the ASCE 7.98

et
of Cali

For small structures, o siatic wnafusis for e
satisfactory. This case approximaies the dynamic lnads by a set of externally
applicd siatic forves that are applied Raterally 10 the sinucture. One such method
for doing this is reporied in the ASCE 7-98 Standiard. It i based upon finding
coeff 5 determined from the soil properties, the ground iccelerations, and
the vibrational response of the structure. These coeff us are then multiplied
by the structure’s dead load o obtain the *hase shear” in the sructure. With
each new pablication of the Standard, values of these coefficients are updaed
a5 more accurate data about eanthquake response become available.

ake measured over a <I: ¥
k, such is parts of Texas, to very high risk -mh.\\ or

ns vary from
the west coast

n may be

Hydrostatic and Soil Pressure. When structures are used to retsin water.
soil, or granular materials, the pressure developed by these loadi
an important critesion for their design. Examples of such types of strsctures
include tanks, dams, ships, bulkheads, and retaining walls. Here the laws of
hydrostatics and soil mechanics are applied to define the intensity of the
ings on the structure

becomes.

Other Natural Leads. Several other types of live loads may also have 1 be
considered in the design of a structure, depending on its location or use. These
include the effect of blast, lemperature changes, and differential settlement of
the founda

The design of ihis recain
estimating the soil pressure
e gate of the lock will b su

that must b con

e wall requires

Sk

s 2
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l.4 Structural Design

portant 10 give consideration 10 boh
uncertainties occur due to va

Whenever 8 SITKIITE i€ dnnlg|m:E\lB;“

‘and Joud uncerainties. Materia e
B i ahial 3t I Talenilf, [ened measo
g e e sizes, accilental laadings due 1o vibration or

g :‘ﬂll[:-:‘mumn ar decay, Allowable-stress design methods
it -Ta:mc ftors into a single factor of safety 1o account for heir
WI“::.: es. "‘F‘»c many types of londs discussed previously cun oceur
:I:Illa‘nmusb o @ structure, but it is very unlikely that the max,
e ot will pccur at the same time. In working-stress desien the compuie
clastic stress in the material must not exceed the allowable stress along with
the following ypical lood combinations s specified by the ASCE

7-98 Standand,

* Dead load

+ Dead and wind (or eanhiuake) load

+ Dead, live, and snow losd

» Dead, live, snow, and wind {or eanthquake) load

Normally, both wind and carthquake loads do not act simultaneously on 2
structure. Also, when certain loads are assumed o act in combination, the
combined load can be reduced by a load-combination factor. For example, this
fisetor is .75 for dead load plus wind (or carthquake) and temperature.

Since uncertainty can be considered using probability theory, there has
been an increasing trend to separate matgrial uncertainty from load uncertaint;
This method is called sirengrh design or LRFD (load and resistance factoe
design}. In panicular, ultimate strength design is based on designing the
ultimute srength of critical sections in reinforced concrete, and the plastic
design method is used for frames and members made from steel. To accoust
for the uncertainty of loads, this method uses load factors applied to the loads
o combinations of loads. For example, according 1o the ASCE 7-98 Standard,
some of the load factors and combinations are

* 14 (dead load)
® 1.2 (dead load) + 1.6 (live load) + 0.5 {snow load)
* 1.2 (desd load) + 1.5 fearthguake load) + 0.5 (live load)

In all these cases, the combination of -
el oo o ! loads is thought to provide & maximurs.

ade 0f Bin -thick
a length of 10 1 o
wsed by the dead

12 The building wall consists of .in. cluy brick. In the im
the wall is made from 2 % 4 wood studs, plastered oo
the wall is 10 fi high, determine the load in poun
Jength of wall that the wall exerts on the floor,

ne sl I

13, The hollow core panel is made from plain sine coscrete
Determine the dead weight of the panel, The holes each have a

dameter of 4 in.

Prob. 1=

14,

wronEmMs 33

. clay beck and Lin,
1 high, deserming the loud

A buikding wall enwists of 1
fe. 1 the wall

il an ane

n pounis per foot that it exens aa the floor

1-5. The flooe of a classmom s made of 125-mm ihick
lightueight plain concrete. I the floor is 4 slab Baving & lengeh
& m and widhth of & m, determine the resultant force caused by the
dead load and the live load

16, The pre-cast T beam has the cross-section sharwa. Determine
s weighi per food of length if & ix minke from reinfunced stose
in. cold-formesd steel reiaforcing mds.

concaete and eight

Lisim
191 el 5

Bn in g in

Prob. 1-6
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1% Thewalls

side i scousteal Fberboard o
of lengih of wal

"

241 high and

ADS
ary bote] has inenior
spaved 20 i apart in 1
the flat 7

supporied by 3 typical in
4 (b} the second-floor ley

15, A thee
rooms that ane
Ifthe o

nd &im clay bock D _
1 hat the wall exeris on the

story scheo] has inferioe colummns in classroms jhy

culsr directions. IF e |

1-10. At

ced
Joading on the roof s @ 4
ive loadd suppored by & typical interior colums at (3) e
and [b) the second-floor level

d-floo lev

The sign is located in Minsesota an open flat emis
Determine the resubtand force of the wind acting
specify the maximum y coordinate of where this resultant acts. Use.

on its face and

an importance factor of /= D87,

Prob, 1-7

10

#1-12 A hospital bs o be built an o
Texus. If the building

external wind pressure acting
of the building, The roaf is flat

1

[
9.1 meters high, devermine 1
the windward and leeward side:
exch wall ilding is 25

Proh. 1-12

the
is 0m open

1-13. Determine the resuliant force acti the face «
tnussesupporied sign i it is locaed near Chicago, 11
flat terrain. The sign has a w 6m and a height

indicated. Use an imporance factor of £ = 087

imoas

B=ld. A ospital is fobe buili on open flat terrain i central Teass
M the building is 9.1 meters high, defermine the internal pres
withis the buildiny s fully enclosed. Also, what is the exiemal
wind pressure acting on the side walls of the building? Each wall
{ the bailding is 25 meters long

reosLEMS. 2
Wind Do om the side of the fully enchosed sgricullun
pen fLan termain o Okishoma. Determine th
. vt the windwand wall, the deeward wall
and the side walls, Also, what i te internal the buiktin
which acts am the walls? Use | s determine g,

p—

o blows an the side of the fully enclosed agriculn
ing. Jocated on apen flat termain in Oklahomes. Detenmine
extemal pressure on the maf, Alia. what is the mien
pressure in the building which acts on the mwof? Use hin
nterpolation (o determine g, and €, in Fig. 111
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structure, like the b
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analysis is stat

Analysis of Statically
Determinate Structures

In this chapter we will direct our attention (o the o
neer will have 1o o
and i subjected to a force system that lies i
ussing the importanc
astructure so that the forces in
accuracy. Then the erileria neces

Finally, the analysis of statically

-connecied structures

is presented.

2.1 Idealized Structure

In the real sense an exact a
estimates always have to be

maleriils composi

can perfc
develop the basic techniques

practical force
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B G52 ANALYSIS OF STATICALLY DETERMINATE STRUCTURES

ed to

Support Connections. St bers are jt ether in var.
ous ways depend n the intent of the designer. The three types of joint

tafn specified are the pin connestion, roller support. and the fixed join,
A pin-connected joine and roller suppe w some freedom for shighy
e Mhercas the fixed joint allows no relative rotation hevween the
comecied members and i consequently more expersive to fabricate. Exam.
pies of these joints, fashioned in metal ncrete, are shown in Figs. 2|
$n1 2.2, respectively. For most timber structures, the members are assumeg
10 be pi ace boliing or nailing them will not suff
restrain them from rotating with respect to cach other.

Ide el used in structural analysis that represent pinned and fixed
suppants and pin-connected and fixed:comnected joints arc shawn in Figs
23 and 2-3b. In reality, however, all comnections exhibit s iy
joward joint rotations, owing fe Frction and materia) behavior. In this case 3
mare sppropriate model for a support or joint might be that shown in Fig
f the tosional spring constant & = 0, the joint is a pin, and if k — =
the jount 15 fixed.

o

connected

me

typeal T supported” cosnsction (metal)

il “fised-supponed” sosection (concreic)
i

Fig. 2-2

uppont

When selecting a particular model for each support or jint. the engi
mmust be aware of how the assumptions will affect the acual per

the member and whether the assu
design, For example, consider the heam S
qipport a concentrated load P. The angle connection at support A is like that
1 and can therefore be idealized as a typical pin support. Further-

s an approximate point of smoath con

1 be neglected since
c the idealized

it is small in comparison to the :
mudel of the b own in Fig. 2-4b. The am he loadings in
this beam should give results that closely approximate the Ioadings in the
y show that the model is appeopriate, consider a specific
sicel with P = 8 k (8000 Ih) and L = 20 ft. Ose of
s maide here was assuming the suppart at A o be
es® indicates that &

case of a beam made

W 11 % 22 would be wlequite for supporting the load. Using one of the
deflection methods of Chapler 8, the rotation at the “pin” suppart can be caley
lated as 6= 0.0070 rad = 0.40°. From Fig. 2-d¢, such a rolation only moscs
the top or bottorm flange & distance of 4 = fr = 070 rad)S in.) = 0.035 in.!
This smeall amount would certainly be accommodated by the connection fabri-
cated as shown in Fig. 2-la. and therefore the pin serves as an appropeiate
model

P
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O3 ANALYSIS OF STANCA
suntered on cop

only

connections
Table 21 Itisimpe

Other types €

tobe ize the sy

for |~|n":_-iw- d the kinds of reactions they exerl on heir attachey "
mbers. This can easily be done by noling ow the connection prevents ay
3 1 or displacement of the member. In particular, the suppoy

e on of the membey, Ome unknown, The e

hat s
cabie

ember. Fy
face (3) s prevented
ormal 1o the
member in (his

a member in contact with a ooth su
rection, which is pespendicular ar

pical pociter suppar used o 4 s

e, the surface exerts onl
direction. The magnitude of this force represe Alser note thay
the member is free o rotate on the surface, 50 thit 2 moment cannot be
member. As another example, the fived
ion of a member at the paint of
1 exerts (wo f

unknown, The resc

foree that acts perpes

the surface at the pa

connection. Therefore, this type of supy ve Components and
a moment on the member. The “curl” of the mament lies e of the
page, since rotation is prevented in that plane. Hence, there are three unknoms

at a fixed suppont

Tn reality, all suppe y exert distributed surf
contacting members. The =d forces and moments shown in Tabie
1 represent the resultants of these load distributions. This representation i,
ourse, an idealization; how
distributed load acts s considersbly s
members.

loads on their

< acHu3

One unknown. The resction s

nirat

e since the surfice arca over

aller than the total su;

ver, it is used he

One unknown. The rescio
force that acts perpendic
the susface af the point of

area of the connecting

Two unknowns, The reactions are

e

e and assocuted beaing pads arc
o suppon the prestressed concrete
sl & bighway bradge

a Two unknowns. The feacti
e and & moment

o 10 connec Typacal pu s 4
allow for themmal eapanson of the ja i
deck,
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ctual suctuee

UCTURES

iys in which the con

Idealized Structure. Having stted the vo
e e now ready 10 discuss some o

fections on @ SUUCTIRE <

the sechniques used fo rEpresent vanicals su
Asa L t\.\lll]i\._ consider the jib crane

structural fect the thickpess

the jint at B is fabricated to be rigid. Furthermore, the sup.

ed support and the de

lized structure are represented

ctural systems by idealized modly

trolley exe luded. Thus, the membe
by two cansected lines, and the Joad on the hook is represented by a sin
. This idealized stru wi here as a
applying the principles of structural anal
jizn of its two main members.

coscentrated force Fy
drs now be used f
which will eventually
Beams and girders are often u:
the main load-caryi

a girder

Ofien the loads that are applicd 10 a he e transmitted 10 it by
the foce thst is supported by the heam or gider. Again, it i important o be
able 1o idealize the system as & series of madels, which can be

jetermine, 0 a close approximation, the forces acting in the members,
the framing used 1o support 2 typical foor skb in o
building. Fig. 2-6a. Here the slab is supported by floor joists located at even
intervals. and these in tum are supported by the two side irders AB and €D,
alysis it is reasonable 1o assume that the joints are pin andior roller
nnceied
this system it
wen in Fig. 2-6b. In this otice that the “lines repre-
senting the joisis do not touch the girders and the lines for the girders do nat
touch the columns, This symbolizes pin- wpported connections

For

e

Fig 2-6

O the other hand, if the fr

Similurly. 8 fixed-connected overhan
view as shown in Fig. 2-8. If reinfire
ind ginders ure represented b
ally all fixed comnected

For example, the structural graphic for the cast-in-plae

system in Fig

those made
represents bea
wood joists, which deliv
sumed to be simply s
would be like thi sh

2108,

£ Plan is intende
ul of .unp\\ halked

are welded insk
irders would touch the o
beam wawld be represented in top

bnercle construction is ased, the
These sysiems arc
nd therefore the members are draw to the supports
nfoeced concrete
. The lines for the beams

ber structures are similar tw

on, whereby the roof deck is supponed by
2 masanry The joists can be as-
1 the wall, so that the idealized framing plan
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Frved-srmnested heam

Fig 2-8

d framing plann

[
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o i
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ealized beam

STATICALLY DETERMINATE: ST

Tributary Loadings. When flal surfaces su
amc, it is necessary o deter m| v th

strwctural fr

are supported by
on these surfaces
suppont, These are generally twa ways in which th
petry of the strus al system, the ¢
{ its constriction

ol
ir
e, The chice
from which i

wansmitted to the

depends oa the
e, and the method

A slab or deck that is supported such that it delivery jg

One-Way System.
foad to the supporting members by one-way action, is often referred fo g
ah. To illusiraic the method of load transmission, consider |
framing system shown in Fig. 2-1 1o where the beams AB, O, and EF rey
an the girders AE and BF. If a uniform load of 100 b/ 1t i placed on the
slab, then the center beam CI2 i d to support the load acting on g
tributary area shown dark shaded on the structural framing plan in Fig
211 Member CI is therefore subjected [0 a linear distribution of laad
(100 Ib/fEHS ft) = SO0 ib/ft, shown on the idealized beam in Fig
The reactions oa this beam (2500 1b) would then be applied to the cent
the ginders AE and BF idealired in Fig. 2-11d. Using this same
concept, do you sce how the remaining portion of the slab loadin
transmitied o the ends of the girder as 1250 Ib?

pss

[
——

Fig 2-11

ng 1t assumcd

s

e connected (o the
¢, the slab can in some

For some

at the same ele

forced cx or the
. then one-way

poured on 4 com
A, if the slab is

d transmission can b
n and is reinforced in
sibiliry of the loud bes
5. Foe example. conside
rule, if L= Ly and if
v alaby, since as Ly be
er st

e ar two dirceti

aning plan in Fig
b (La/ks) = 2, the
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sEx FRINCIFLE OF SUPERPOSTTION 3T
ructune (o an idealized form, as shown by

ied by experience. To provide practice at doing

the problems for sofution throughaut this ook

it engineering practice, if it bee
a sructure of wransfer the loads 10 the members, it is best
1 idealized strustures and loadings and then design the acrual
it can resist the loudings in all the idealized models.

model

i |
|
{ 4 b sugonsd herween
o and ginders of s
will wansmis s Yol
Two-Way System. If the suppont ratio in Fig. 2-120 is (L 2, the load

1s assumed 10 be delivered to the supporting beams and girders in two d
tioms. When this is the case the slab is refemred 0 as & fuwo-way slab. To sh
one methed of treating this case, consider the square reinforced conerete slib 2.2 Principle of Superposition
in Fig. 2-13a, which is supported by four 10-fi-long cdge beams, AH, 8,

CA ere Ly/L, = 3 0-! 5. ction, the assumed frib-
e e e i Ths e e omth s o o e oo s
determined by constructing diagonal 45° lines as shown. Hence if a uniform ysis. [t may be stated as follows: The toral .Jup.m-.;,.,. at or intermal
load of 100 1b/ft° is applied 1o the slab,  peak intensity of {100 Ih/f)5 #)

500 In/ft will be applied 1 the center of beam AR, resulting in a frian,
losd distribation shown in Fig. 2-13r, For other geometries thal cause
two-way action, a similar procedure can be used. For example. in the case of

a point it a structure subjected to severs
rermined by adding together the displacements or
55} cansed by

ctermal loadings
nternal loadings
ting separately. For this statement
jp exist smong the loads,

can be del

s

ach of the exremal loods
be valid it is necessary that a finear rel

> . stresses, and displacements

La/Ly = 1.5 it is necessary 10 consiruct 45° lines that inlersect as shown in

Fig. 4a. A 100-1b/ft” loading placed on the slab will then produce frope Two requirements must be imposed for the principle of superposition (o
zeridal and trigngular distributed loads on members AB and AC, Fig. 2-140 apply:

and 2-

4c. respectively

1. The material must behave in o linar-elastic manner, so that Hooke™s law is
valid, und therefore the load will be proportional to displicement.
2. The geometry of the structure must not undergo significant change when
i i the loads are applied, i.c., small displacement theory applies. Large dis-
2 plicements wil sigaificantly change the position aad ericniation of the
Josds. An cxample would he a cantilevered thin rod subjected t a force at
its end,
SR SRS Fsp—+sn— Throughout this test, these (wo requirements will be satisfied. Here only
idealired heam idealien

linear-elastic material behavior occurs; and the displacements produced by the
n loads will not significantly change the directions of applied loadings nor the
ncy i dimensions used 10 compute the mameats of farces.
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2.3 Equations of Equilibrium

SEC 14 DETERMINACY AND STABLITY 39

It may be rocalled from statics. that 3 structure or one of its members ig j
equilibriam when it maintains a balance of force and moment. In gener (hiy
equire tha the force and moment equations of cquilibrium be satisf

three independent axes, namely,

EF, E
M, =0 M, =0 M, =0

{2-1)

The principal load-camying portions of most structures. however, lie in g
single plane, and since the loads are also coplanar, the abave requiremenis
for equilibrium reduce to

IF,=0
IF, =0 2-2)
EM, =0

Here £F, and EF, represent, respectively, the algebraic sums of the x and y
components of all the forces acting on the structure or one of its members,
and EM,, represents the algebraic sum of the moments of these force com.
pooents about an axis perpendicular 1o the x—y plane (the ; axis) and passing
through point O

Whenever these equations are applied, it is first necessary to draw o free
bady ditgram of the siructure ar its members. If a member is selected, it must
be isolated from its supports and surroundings and its outlined shape drawn
All the forces and couple moments must be shown that act on the member. In
this regard, the types of reactions at the supports can be determined using
Tuble 2-1. Also, recall that forces common to two members act with cg
magnirudes but apposite directions on the respective free-body diagrams of
the members.

If the internal loadings ai a specified point in a member arc 10 be
«kmnd. the methad of sections must be used, This requires that o “cul’
or section be made perpendicular to the axis of the member at the point where
:::::csm]“[mdmg i% 1o be determined. A frec-body diagram of cither segm
rodis mm;qun;:m;s :sol‘a:‘d and the intemnal loads are then determin
intemal loadings mnsﬁzr‘u‘g uu': ‘P‘F.Imd 0 the segment. [n general. the

P hap i .;d “’J.IIUUU of the member will consist I"_-‘
“%” kel - Iending moment M, as shown in Fig. 2-15
e “:1.:“!'1 imMs::M;- that are used (o determine the

iy ~5. Internal loadings in structur
ke pler 4.

2.4 Determinacy and Stability

he force analysis of o structure, it is nccessary to establish
stability of the

Before starting
the determinacy

structure,

Determinacy. The equilibrium equations provide both the mecessary and
for equilibrium, When all the forces in  structure can be
iy from these equations, the structure is referred o as stati
more unknown forces than available

determ d stric
v deierminate. Structures having
equilibrium equations sre called statieally indererminate. As a general rule, &

ciure can be identified as being cither statically determinate or statically
te by drawing free-body diagrams of all its members, or selective
pars of its members, and then comparing the total n
tive force and moment components with the total mumber of
equilibrium equations.* For a coplanar structure there are at most rh
Yibrium equations for each part, so that if there is a total of u parts and r force
and moment reaction companents, we i

r = 3a, statically determinate
r = 3n, statically indelerminate

tructure is starically indeterminate, the additional equa-
tions needed 1o solve for the unknown reactions are obtancd by relating the
applied loads and reactions 1o the displacement or slope at different points on
are referred to as comparibility equa-
inacy of the structure.

In partic

ihe struciure. These equations, whic
ticms, pmust be equal in number to the de gree of inde
Compatibility equations inv smetric and physical properties of the
structure and will be discussed further in Chapeer 9.
We will now consider some cxamples to show how to classify the deter-
minacy of u structure. The first example considers beams; the second cxample,
in-cannected structures: and in the third we will discuss frame struetores
Classification of trusses will be considered in Chapter 3.

s i et strictly socessary, wnce & “mental o
with the pumber of cquilibry

*Drawing the fres-body dixg
suamber af wnknowss can o be made and




| ANALYSIS OF STATICALLY DETERMIN

ATE STRUCTURES

=

e

“lassify each of the beams shown in Fig. 2-164 through 2-16d as sui
Uf‘d’ggmnimm or statically indeterminate. If statically indeterminate,
o ¢ the mumiber of degrees of indeterminucy. The beams arc subjected to
E:nnt Joadings that are assumed fo Ibe known and can sct anywhere on
the beams.

SOLUTION

Compaind beams, i.c., thos
posed of pin-connecicd mem!
cases, the unknown reactive
shown in equal bat opposite pairs. The free-body diagrams of each mem,
her ave dhown. Applying r = 3 or £ > 3n, the resulting classifications are
indicated.

se in Fig. 2-16c and 2-16d, which are com-
bers must be disassembled. Note that in these
forces acting between each member must he

Statically determinate Ans.

r=3%,

Fe6 n=2 6=32)

i

r=10,

=1,

5>31) Statically indeterminale 1o the second degree Ans.

Statically determinate Ans.

= e —H

A=k Ans.

10 > 3(3)

Statically indeterminate 1o the first degree
Fig. 2-16 “

SEC 24 DETERMINACY AND STARLITY 4]

Example 2-2

Classify cach of the pin-connected structures shown in Fig. 2-17a through
2-17d as statically determinate or statically indeterminate. If statically
indetermi repurt the number of degrees of indeterminacy. The strictures
are subjected (o arbitrary extemnal loadings that are a ned to be known and
can act anywhere on the structures.

SOLUTION
Classific

1 0f pin-connected structures is similar to that of beams. The

the resulting classifications are indicated

Statically indeterminate

) 1o the first degree Ans.
b4 r=9, 9=09,
b Statically determinate Ans.
r=10, n=2 10>6
Statically indeterminate
¥ to the fourth degree  Ans.

r=9 a=3 9=9,

i) Statically determinate Ans.

Fig. 2-17

free-boudy diagrams of the membess are shown. Applying r = 3 or « > 3n,

/‘~’=r

:ﬂ*I:L

N

L
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r=9,

to the thind degrec

—

956,
Suatically indeterminate
Ans.
a=3 1539
Sutically indeterminate

(This frame s mo chosed loops |

218 as
Jasxify each of the frumes shown | 184 and 2-18b a:
e erminate. 1 staically indeterminai
The frames are subject
ywhere on the

determinate OF slatic e
 of indeterminas
the number of degree: “of in 8
el loadings that are assumed 10 7 known and can act 3

frumes.

SOTION

Uodike e beais rm-»mmm wruetures of the previous exaniples
these frame structures consist of members thal are connected &
sigsd joants and the rw two fiarm closed loops. For example.
A5 forms 3 choscd Inop, In orde 1o classify these SIGITESS it is nec-
exsary to use the method of sections and” ‘cur” the loop apart. The fre y
disgrams of the sectioned parts are drawn and ihe frame can then be clas-
<ified. Notice that only ome section through the loop is required, since once
the unknorwms at the section are determined. the internal forces at any point
in the members can then be found using the method of sections and the
equations of equilibeium. The resulting classifications, are indicated.

oy

tothe sisth degree Ane.

_l

Fig. 218

o its members, it is not
only pece . but the members must
also be prope wstrained by their supports. Two sitations may
sccur where the conditions for proper constraint have not been met

me cases a structure or one of its members may
s than equations of exuilibrium that st be satis-
Iy partially constrained. For example
. 2-19 with its comespondin
0 will not be satisfied fo
member will be unstable

consider the me
diagram. Here the equation £F,
conditions and therefore the

free-hody

e loading

Improper Constr
a5 there arc equations of
structure or its members can develop because
pports. This can occur if

y unknown forces

pe cases there may be as m
b iy or movement of &

f improper constraining by the
| the sipport reactions are concwrrent at 3 point
220, From the free-body diagram of the
beam it is seen that the summation of aut point @ will nat be equal
o (Pd # 0y; thus rotation about point @ will take place
Another way in which improper constraining Jeads to instability occurs
when the reactive forces ase all parallel. An exam
Fag. 2-21, Here whe o Pis
in the horirontal direction will not equal 0.

of this case is shown in

an inclined

jied, the summation of forces

14 DETERMINACY AND STARRITY 4

5

pastial comaraiee

: Fig. 2-19

comurress TECHUm

Fig 2-20
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il be geometricatly unstable—ihat is, it wif

In general, then. a strucrin
move stightly or collapse—if there are e
tibrium; or if there are enowgh reactions, instability
Tines of action of the reactice forces intersect at @ common point or are parallel
1o ome. another. 1f the structure consists of several members o componets,
Jocalinstability af one or several of these members can gencrally be determined
i imspection. If the members form a collapsible mechanism, the structure wil
e unstable. We will now formalize these statements for  coplarar siructure
having n members or components with r unknawn reactions. Since three
equilibeium equations are available for cach member or component, we have

fewer reac

r<3in unstable

r=3n  unstable if member reactions we o4
concurrent or parallel or some of the ity
components form a collapsible

I the strocture is unstable, it does nor mager if it is statically determinate of
indeterminate. In all cases such types of structures must be avoided i practice

The following cxamples illustrate how structures or their members can be
classified as stable or unstable. Structures in the form of a truss will be dis
cussed in Chapter 3.

Classify cach of the structures in Fig. 2-22a through 2-22¢ as stable or
unstable. The structures are subjected to arbitrary external loads that are
assumed 10 be known

SOLUTION

The structures are classified as indicated.

— I

The member is aable since the reactions are GoaconcurTent and poapar
allcl. I is also statically determinate. Ans.

ser

DETERMINALY AND STABRITY

The compound beam s stable. I s also indeterminate 1o the second degree.

Ans.

#

The member is wnuable since the three resctions are concurrent & 8.

Ans.
u
4
The beam is unstable since the three reactions are all parallel Ans.

AT

The structure is uastable since r = 7, n =3, so that, by Eq. 2-4, r < 3m,
7 < 9. Also, this can be scen by inspection, since AR can move horizontally
wilhout restraint. Ans
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2.5 Application of the Equatio

DETERMINATE STRUCTURES

ns of Equilibrium

Occasianally, the members of a strucure are connected together in such o wiy
hat the Joints can be assumed as pins. Building frames and trusses are typ
{oa] examples that are afien constructed in this manncr. Provided
eoamected coplanar structure is properly consirained and CONLAINS N0 myore
supports of members than are necessary 10 prevent collapse, the
at the joints and supports £an be determined by applying the three equations
of equilibrium (SF, = 0. 3F, = 0, Thip = 0) to cach member. Understan
ably, ance the forces al the joints are obtaincd, the size of the memt
connections, and supparts can then be determined on the basis of design code
specifications

To illustrate the method of force analysis, consider the three-member frame
shown in Fig 2-23a, which is subjected to loads By and Py, The frec-body
isgrams of cach member are shown in Fig. 2-236, In total there e nine
unkuowns; however, nine equations of equilibrium can be writien, three for
«each member, 5o the problem is stalically determinate For the actual solu
it is.alsa possible, and sometimes convenient, 10 consider a portion of the frame
o its entirety when applying some of these ninc equations. For example, a free
‘body diagram of the entire frame is shown in Fig, 2-23c. One could determine
the three reactions A,. A, and C, on this “rigid” pin-connected system, then
analyze @y fwo of its members, Fig. 2-23b, 10 obtain the other six unknowns
Furthermore, the answers can be checked in part by applying the three equ
of equilibrium 1o the remaining “third” member. To summarize, this problem

as

B, A
B, [0 1 A,
n
5 D,
P
B, B
2 =
i E
F -
E e

Fig 2-13

E

SEC. 28 APRLICATION OF THE EQUATIONS OF BQUILIBRILY

can b sulved by writing at most nine equilibrium equations using free-body

s of any members and/or combinations of connected members. Any
e than nine equations writien would net be unigue from the original nine
andd would only serve to check the results

Congider now the two-member frame shown in Fig. 2-24a. Here the free-
body disgrams of the members reveal sit unknowns, Fig. 2-245; however, six

i s, three for each member, can be wrilien, 0 again the
problem is statically determinate. As in the previous case, a free-body disgram
of the entire also be used for part of the analysis, Fig
Although, as shown, the frame has 3 tendency 1o collapse without its supports.
by rotating shout the pin at A, this will not happen since the force system
acting on it must still hold it in equilibrium. Hence, if so desired, all six
unknowns can be determined by applying the three equilibrium equations 1o
the cntire frame, Fig. 2-24¢, and also 1o either one of its members.

The above two examples illustrate that if a structure is properly supported
and contains no more supports or members than are necessary to prevent
collapse, the frame becomes statically determinate, and so the unkaown forces
the supports and connections can be determined from the equations of
cquilibrium applied to each member. Also, if the structure remains rigid
(noncellapsible) when the supports are removed (Fig. 2-23c), all three support
reactions con be determined by applying the three equilibrium equations to
the entire structure. However, if the structure appears 10 be nonrigid
(collapsible) after removing the supports (Fig, 2-24c), it must be dismembered
and eguilibrium of the individual members must be considered in order 10
obtain enough equations to determine all the support reactions.

equi

it

Fig. 2-M
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Procedure for Analysis

a method for determining the

The following procedure provides
reactions for structures composed of pin-connected members.

Free-Body Diagrams
« Disassemble the structure and draw a free-body disg
Also, it may be convenient [ supplement a membe

of each membes

free-body disgram
Some or all of the
tions can then be determined using this di

« Recall that reactive forces common 10 two members act with equal mag
pinudes but opposite directions on the respective free-body diagrams of
the members

= All two-force members should be identified. These members, regardless
of their shape. have no extemal loads on them, and therefore their fr
body diagrams are represented with equal but epposite collinear forces
acting on their ends

« In many cases it is possible to tell by inspection the proper arrowhead
sense of direction of an unknown force or couple moment; however, if
this seems difficult, the directional sense can be assumed

Equations of Equilibrium

» Count the total number of unknowns o make sure that an cquivaleet
number of equilibrium equations can be written for solution. Except for
two-force members, recall that in general three equilibriom equaions can
be written for each member.

= Many times, the solution for the unknowns will be straightforward if the
moment equation M, = 0 is applied about a point () that lies al the
intersection of the lines of action of as many unknown for possible

* When applying the force equations £F, = 0 and IF, = 0, orient the £
and y axes along lines that will provide the simplest reduction of the forces
inio their x and y components.

* If the solution of the equilibrium equations yields a negative magnitude
for an unknown force oF couple moment, it indicates that its arowhead
sense of direction is opposite 1o that which was sssumed on the free-body
disgram

SEC 25 APPLICATION OF THE EGUATIONS OF EUILIBRIUM

Example 2-5

Determine Ihe reactions

the beam shown in Fig, 2-25a.

A A 50) cos B ki

Fig. 2-25
SOLUTION

Free-Body Diagram.  As shown in Fig. 2-25b, the 60-k force is resolved
into x and y components. Furthermore, the 7-ft dimension line i ded
sifice a couple moment is a free vector and can therefore act anywhere on
the beam for the purpose of computing the extermal reactions

Equations of Equilibrium.  Applying 222 in @ sequence, using
lculated results, we have
A, — 6lcos 60° = 0 A, =00k Ans.
|+ 3M, =0, —60sin60%10) + G0cos 0% 1) + Bil4) —S0=0 B =3 Ams.
+TEF =0; —60sin60°+ 385+ 4, =0 A =134k Ans.
Example 2-6
Determune the reactions on the beam in Fig. 2-26a. SANm

SOLUTION -

Free-Body Diagram.  As shown in Fig. 2-266, the traperoidal distributed
loading is segmented into a triangular and uniform load. The areas under

the triangle and rectangle represent the resultant forces. These forces act e
through the centroid of their comresponding arcas

L

Fnasir

Equations of Equilibrium

A, = 60— 60 =0 A, = 120kN Ans. bm

)
Fig. -26

— 64} — BOGBY + M, = 0 M, = 600KN-m  Ans,
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Determine the reactions on the beam in Fig. 2-27a. Assume A is 1 pip g
the support at B is a roller (smooth surface}
a
#
S v an
'
fa
Fig 2-27
SOLUTION
Free-Body Diagram.  As shown in Fig. 2-27b. the suppont (“roller”)
# exents @ normal force on the beam at its point of contact. The lin

action of this force is defined by the 3—4-5 tri

Equations of Equilibrium, Resolyi,
SNTing moments about A yields a dy
R result, we can then obtain A, and A

Ny into x and y component
et salu

L+EM, =0,

~35003.3) + (§yua) + CGIN10) = 0
No= 133151b = | 33
A -jUmS =

A= 3800 + 133155 =

n for Ny, Why? Using

E E(AIATIONS OF EQUILIBRINM

5

pxample 2-8

The compound beam in F
at A, B, and C. Assume that th

2-28a is fixed at A, Determine the reactions
conncetion st & is @ pin

i € is a roller.

200 1t

001

Fig 2-28

SOLUTION
Free-Body Diagrams, The free-body diagram of each s
in Fig. 2-28b. Why is this problem statically determinat

sent is shown

4000

s, Applying the six

Equations of Equilibrium. There are six unkni

equatians of equilibrium, using previously ealculated results, we have
Segment AC
L+HEM. =0; G000 + B (15) =0 B8, = 40016 Ans.
+T5F, =0; —-40+C,=0 C, =400 1h Ans.
SIF, =0 B =0 Ans.
Segment AB:
LrEM, =0; M, — BO0(ID) + 400620) = O
M, = 120k1 Ans,
+1 A BO00 + 400 =0 A = 160k Ans.
& A-0=0 A =0 Ans.
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Fig. -3

ports the boat and deck. An ides

The side girder shown in the photo supy
. L

2ol model of this ginder is shown in Fig. 2-29a, where it ¢
4 15 n rollor and B is 8 pin. Using 4 local code the anticipated deck: loag.
i wransmitted o the girder is 6 KN/m. Wind exerts a resul zontat
force of 4 kN as shown. nd the mass n[!hc m‘u that is supported by the
girder i fg. The boat’s mass center Is at G. Determine the reactions

at the supports.

nt ho

3@ =226 kN

SOLUTION

Free-Body Diagram.  Here we will consider the boat and girder a
system, Fig. 2-29b. As shown. the distributed loading has been re;
by its resultant,

Equations of Equilibrium. Applying Eqs. 2-2 in sequence, using
previously calculated results, we have

S EF

3-B,=0
B, =4kN Ans.

228(1.90) — A,(2) + 225.6(5.40) — 4{0.30) = O
A = 6302KN = 630 KN Ans
*1EF, =0 602-8 -n5-256=0

B, = 382kN Ans.

Note: If the girder alone had been considered for this analysis then the nomal
forces at the shoes € and D would have 10 first be calculated using a free-
body disgram of the boat, (These forces exist if the cable pulls the boat snag
agaunst them.) Equal but opposite normal forces along with the cable force
& E would then act o the girder when its free-body diagram is considered
The same resulis would have been obtained: however, by considering the
boat-girder sysiem. these normal forces and the eable force become intermal
2 do mot have to be considered.

~1

SEC. 25 APPLICATION OF THE EQUATIONS OF EQUILIBRILM. 33

Determine the horizontal and vertical components of reaction &t the pins
A, B, and € of the two-member frame shown in Fig, 2- 3

Fig 2-30

SOLUTION
Free-Body Diagrams. The frec-body diagram of each member is shown
in Fig. 2-30h.

Eguations of Equilibrium. Applying the six equations of equilibrium in
the following sequence allows a direct solution for each of the six unknowns

Member BC
L+ EM. =0 —B2)+ 6l)

=0 8,=3kN  Ans.

~8(2) - 3(2) + B15) =0 B,
A+ N8 = 14T=0 re
A, — 8y -3

C,=3kN Ans.

—
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e

The side of the building in Fi thy

creates & uniform novmal pressure of 15 kP on the windward side and 5
suction pressure of 5 kPa on the leeward side. Determine the horizontal
and venical components of reaction at the pin conncctions A, 8, and € of
the supporting gable arch

2314 s subjected to a wind loadin

SOLUTION
Since the loading is evenly distributed. the central gable arch supports 3
loading acting on the walls and roof of the dark-shaded tributary area. This
represents a uniform distributed load of (15 kN/m?)(4 m) = 60 kN/m on
the windward side and (5 kN/m*)(4 m) = 20 kN/m on the suction side.
Fig. 2-31h.

SEC 25 APPLICATION OF THE EQUATIONS OF EQUILIBRIUM. 58§

Free-Body Diagrams.

i Simplifying the distributed loadings, the free-body
diagrams of the entir c

frame and each of its parts are shown in Fig, 2-31¢

I8N

Equations of Equilibrium.  Simultancous solution of equations is avoided
pplying the equilibrium equations in the following sequence using
previously computed results *

—(180 + 60)1.5) — (254.6 + 84.9) cos 45°(4.5)
254.6 5in 45°)(1.5) + (84.9 xin 45°H4.5) + C6) = 0

C, = H0.0kN Ans.
—A, — 254.6sin 45 + 849 5in 457 + 2400 = 0

A, = 1200kN Ans.
Member AB:
LEEM, = 00 =A6) + 120.003) + 180(4.5) = 254.6(2.12) = 0

.= 2850 kN Ans.
S EF, 285.0 + 18D + 254.6cos45° = B, =0

8, S 0kN Ans.
+T2F, 1200 = 2546 5in45° + B, = 0

B, = 3000 kN Ans.
Member CB:
LEF, =0 ~C, +60+B49cos 45" + T80 =0

" = 195.0kN Ans.

“The problem can alss be sofved by applying the six equatioes of syulibrism ooly % the
twa members. If this is dose, it 1 best 10 first sufh moments sbout puint A om menster AR, then
Point € an mernber CA, By doing this tme obtains rwo equations 0 be sobved simsiaeausly for
B, an 8,
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2.6 Analysis of Simple Diaphragm and

Lateral loads, such os those
buildings by either moment
maost buildings made from light
tion from collapse due to lateral k
these loads are transmilied through
system that is designed in this manner.
shown in Fig. 2-32a, the forces

Shear Wall Systems

d carthquake, are resisted in
‘o shear walls, Since

jon we will show

1 simple statically determinate structurs

used by wind or earthguake will end
1 push on the walls of a buil between each of the Moors. These forces, in
turn., are resisted by the floors or the roof 1 digphragms, which then trans.
mil the losd 1o the side walls, Fig. 2-320. As noted, since the side walls are
subjected 1o shearing forces, they are called shear walls, Their purpase is 1o
prevent racking of the building frame which would otherwise oceur had they
ot heen used, Fig. 2-32c. Through the use of shear walls the load i 1r
4 down trough the floors 1o the foundation, This action can be moedeled
rninate system provided the foll owing essumptions are made

mi
as astatically d
» The diaphragms and shear walls are assumed 10 be rigid when resisti
shear loads
* The columns do not support any lateral load, ra
be pinncd at bath their top and botiom and to camry only axial loads.
he shear walls support lsteral load only within the plane of the wall,
and they are considered ta be pin connected to the diaphragms along their
length
= All beams supporting the disphragms are simply supported.
* The shear walls are placed somewhat symmetrically around the building
perimeter s that the shear force at any floor Jevel is shared equally by

they are assumed

each wall
ool Giaphragm
second our
displragm

Surce developed

fiarce of froms |
o floe daphragen

i sheay wall

Facking of beilding

B Fig. 2-32

APHRAGM AN SHEAR WALL SVSTEMS. 5]

To provide for these assumptions, the floor (or disp .
te, a braced steel framework. or from plywood sheathing fied
Likewise, the shear walls will maintain their rigidity if they
te. reinforced masonry, cross-braced steel framing,
or plywood sheathing. Re shear walls are assumed to be flexible and
therefore ineffective pporting a lateral load perpendicular o the wall
Thus, only walls A in Fig, 2-33a are effective at resisting the load caused by
¥, while walls & will resist the load caused by sign of shear walls requi
first finding the shear force acting along the edges of ench wall. By choosing
an o riate free-body dingram at each floor kevel, this becomes a rather
straightforward task. For example, A of the single
story building in Fig. 2-33b, is F/8 and like would be F

from coner
wood floor |

, the shear foree on wa
in walls &




58

I3 ANALYSIS OF STATICALLY DETERMINATE: STRL

ble: resuls
1y irvegular
tric lo

Althoagh th
in many cases, Re:

d in asymm

hove ist a5 W
Under such co
the wall’s rigidity e
of  wall depe
ial propenics. T

1 is covered in codes.

ins, the shei
0 the ather walls

5, the types of
ysis s @ bit more

) will require fin
ally, the rigidi

the walls have been calculated the engineer mus

des. 1 it does, the wall st be resized. Furthcrmare, desi

farthe proper

nforcement

i or joint con
where the wall me
sides if the wall
ather shamp-edge

ntrance, window, or

h o shear wall, addi

ers of the opening since

reinfor h
comers siress concentration caused by the wall
deform

The Kodwwing ca s franc pro
wides . i

T iR 1 aglod 1o e
the st b doep i fromm by 15
Saength in e evers of  fire

R MGM AN SHEAR WALL SYSTRMS 3

e

Example 212

Assume

wo-story b

shown a1 cach of the o

<h panel located

showr

ween the floo

SOLUTION o
The result m the eatire wall hetween the first and second
flaors an

+ 54 K2 = AN

1t farces act)

Fy = DBON
120108

resisted by

inFig. 2-34 b and ¢. On 4 kNT
ide resistance
34, we require,
=1 2 =0
Fy A,
Likeswise, from th floor dizphragm, 3de. for walls B, L
» TF, = 0 3(=2F,) + 80 + 224 =0 r.fffe s
Fy = 32N Ams. “
the vertical shear the columns is :
o
s
o
Ams e

Note that these same results would apply if the walls were located &t any
pevint along the sides of the building rather than at the comers. Also, realize

thist Joad reversals can pocur since the wind can come from any direction.
i




~ PROBLEMS
21 The frameis wsel o sepput the wood deck in pravale roam

e Shesch the kyating that acts along members
of sl 5 T s =4 B e See Table 1-4.

Probs. 2-1/2/3

24 The scel framewerk is used 10 support the 4in, stose
concrese slb thal it used in @ lght sioage wrchowe Skeich
e lowlemg shat scts along members BE and FB. Sex b = 10 f,
@ =i Hier- Scc Tubles 13 snd 13,

25, Salve Prob. 2-4, with b= 12,0 = 4 1.

s five doad of 125 b,
e e spce 25 e, Girmin e issed ouding

{hat acts ahom the purli DF, s the Joadings Hhat act an he bem
atd, B, € 0, nd £,

Ww@anaTen
Prob. 2-6

2. Classify each of the structures a5 ststically determinaic,

statically indeterminae, wsble, or unstable. If indetcrminaic

spesify the degree of indelerminacy. The supponts or conections
are to be assumed 35 stated

h of the sinic

-5
ticaly

€ res a5 statically deierminate
indeterminate, stable, or unstsble,

[ /j:

Prob. 2-8

29, Classify each af the structures as statically dewerminare,
sutically indeierminate, stable, or unsuble, If indeterminaic,

APELRY the degree of indeterminacy,

2-10. Classify each of the smuctares as. stabically determunate.
statically indeterminate, stable, or wmsmble. If mdeterminate,
specify the degree of indcierminacy. The supports or connections
are £o be assuned s stabed.

sl
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211 Clisify each of e
indeterminare 1{ mdceningss,

= v

DETERMINATE ST

sanictures = sitically dsterminale 01
apeciy he e af ndeteeEnicy

TURES

#3-12 Clas
statically indet

ity cach of the sinctures as st
erminste, u unstable. [F e i e

degree of indelerminacy.

Prob. 2.3

iy detemmi

jelures s

cally deterinate
e, specify the

Prah. 2-13

FROILEMS @3

" of the s s aically deemina &
ermrate.  spesify the degree

¥ Al internal joints are sed conmecred.

]

i
6
Prob. 2-14




WS FROBLIMS 65
08 G2 e o STACALLY DETERKPUATE ol 319, Deerminc the reuct

a0 the beam

& Deemine the reacticns w1 the supports A and B of the

.15, Betermine the degre o which the frames are sitically
{idesermiriate. AB ntermil jines are fired conneied

AN -

s

b 20l -

Prob, I

#2-20. Determine the reactions on the beam,
2-17. Determine the reactions oa (he beam. The support at 8 can

b msumed 2 a roller.
AN WAN WIN AN
o bon = i 4
Prob. 2-20
i
Determine the reactions at the supports A and B of the
compoursl beam. There s a pin a C. 4
18EN sm m
n
218 Determine the resctio 6
e e 2. Deiermine the reactions i the spports A and B of the
jpound beam, There is a pin ot €
sim L
3 | A
B - h e i
19 @ . | o] = 5 n— 1 tSm———t
B ks i 22, Detemmine the reacthans s the supports A st 5. The floor
S i Sesks C, DE, EF, and #6 tuansmit their loads to the girdet 40

M supparts. Assume A bs a roller and 8 is a pin.




B8 Gil12 ANALYSIS QY STATICAILY DETERMINATE STRICTL

8 Datcrmin the reacties 9 e suppects A, B, €. snd D

|
8 .3,4,,@-]‘”;_- s ETE)
a8 3

Prob. 2-25

326 Disterin the reactions at the suppeens for the compound
peam. There are pinis al A, £, and

-1, Determane (he reactions al the iruss supperts A and
desributed b 1: caused by wind i

inel vertic:

e the Borizoaial
Assume the me

#3-28. Dy
reaction at the
connected a1 A, ., 2l €.

pporis A and €

kN

m A+ lm
Prob. 2-28

339 Determine the borizontal and vertical oy

reaction i 4, B, asd C. Assunve the frume is pin connecied at these

pines and the joints at £ and £ aee fived connected

i ———

Prob. 2-29
2-M.  Determine the resctions at the supports.
Aand B, T s
a1 € and D ar fixed consectod i i
10kKm

FROIECT PROBLEM 67

FROJECT PROBELEM
P. The

ru i e phesk i supporied
x et imply suppomed
20 kN | s have 4 wesght of O3k

N e lcud imposed by & train s 7.2 &/ (See F i
s 20 1 losg, Apply the s

wer the enfire hrdge

a and meghect
asumptions?

are
bemt, Are these realist

e weight of the

e

i

32, Determine the reactions ot the supports A asd D, Assume
A s fized and B, C, and D are pins.

Prob. 2-32

7‘;_-!!- Drsermine the horizontal and venical shear acting in panclc
8 1 of the building in Fig. 2-3a, when the wind acts on the

iacent walls of the building
Project Prob, 2-1P
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Analysis of Statically
Determinate Trusses
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analysis of three form
and comy

Finally, at the eod of the chapler we w
e truss.

the ends of the
fe, s shown Fig. 3-1. or by
through each of the members. Planar trusses
often used fo suppont roofs and bridge
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TE is an exampie of 4 Prat woof wsss.
0 idemify the varos membens de-
odin Fig 32

Fig 3-2

Roof Trusses. Roof trusses are often used as part of an indusirial baild
ing frame. such as the one shown in Fig. 3-2, Here, the roof load is transmitted
10 the fruss at the joints by means of a series of purfins. The roof truss along
with its supporting columns is termed a bent. Ordinanily, roof trusses are sup-
ported either by columns of wood, steel, or reinforced concrete, or by masonry
walls. To keep the bent rigid, and thereby capable of resisting horizontal wind
forces, knee braces are sometimes used at the supporting columns. The spuce
between adjacent bents is called a buy. Bays are economically spaced at ahout
15 ft (4.6 m) for spans around 60 ft (18 m) and about 20 ft (6 m) for spans
of 100 ft (30 m). Bays are often tied together using diagonal bracing in
order to maintain nigidity of the building’s structure.

Trusses used Lo support rofs are selected on the basis of the span, the
slope. and the roof material. Some of the more common types of trusses used
are shown in Fig. 3-3. In particular, the scissors truss, Fig. 3-3a, can be used
Tor shost spans that require overhead clearance. The Howe and Pratt trusses
Fig. 3-3b and 3-3¢, are used for mofs of moderate span, about 60 fi (18 n
10 100 8 (30 m). If larger spans are required to support the roof, the fan
O Fink truss may be used. Fig. 3-3d and 3-3e, These trusscs may he b
With a cambered botiom cord such as that shown in Fig. 3-3f, If a flat roo
©rmearly flat ruof s 1o be selected. the Warren truss, Fig. 3-34, is often used
Also, the Howe and Prant trusses may be modified for flat roofs. Sawiooth
musscs, Fig. 3-3h, are oficn used where column spacing is not objectionable
#ad uniforma lighting is imponant. A textile mill would be an cxample. The
bowstring truss, Fig. 3-3i, is sometimes selecicd for garages and small aif
Plage hangars: and the arched truss, Fig. 3-3j, although relatively expensive

::; : T for high rises and long spans such as field houses, gymi

Fig 3-3
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Parterimses e e 0 foem s bride.

Bridge Trusses. The main structural elements of a typical bridge truss ase
shown in Fig, 3-4. Here it is scen that a load on the deck is
10 srringers, then 1o floar beams, and finally 10 the joints of the two suppori-
ing side trusses. The top and bottom cords of these side trusses are connected
by top and bottom lateral bracing, which serves to resist the lateral forees
caused by wind and the sidesway caused by moving vehicles on ige
Additionsl stability is provided by the portal and suay bracing. As in the case
of many long-span trusses, 2 roller is provided at one end of a brid,
allow for thermal expansion.

A few of the typical forms of bridge trusses currently used for single
spans are shown in 3-5. In particular, the Pratt, Howe, and Warren
trusses are pormally used for spans up to 200 fi (61 m) in length, The m
common form is the Warren truss with verticals, Fig. 3-5c. For larger
2 truss with a polygonal upper cord, such as the Parker truss, Fig. 3
used foF some savings in material, The Warren teuss with verticals ¢
Be fabricated in this manner for spans up to 300 ft (91 m). The g
Ecanomy of material is obuained if the diagonals have a slope between 45
2nd 60° with the horizontal. If this rule is maintained, then for spans grealer
than 300 fi (91 m), the depth of the truss must increase and consequentl)
the panels will get longer. This results in a heavy deck system and, 1o keep
the weight of the deck within tolerable limits, subdivided trusses have beer
deseloped. Typical examples include the Baltimore and subdivided Warre?
trusses, Fig. 3-5e and 3-5. Finally, the K-truss shown in Fig. 3-5g cir
alio be used in place of a subdivided truss, since it accomplishes the su<
purpose.

miticd

wss 10

SEC. 11 COMMON TYPES OF TRUSSES

n
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Assumptions for Design. To design both the members and the ¢y,
nections of & truss, it is first necessary 10 determine the force developed
cach member when the tniss is subjected o a given loading. In this regy,
two important assumptions will be made in order o idealize the truss.

1. The menibers are joined together by suooth pins. In cases where bolted o

tory provided the center lines of the joining members are concurrent a1 4
point, 3-1. It should be realized, however, that the act
nections do give some rigidity (o the joint and this in tum introdice
bending of the connected members when the truss is subjected to a legg
The bending stress developed in the members is called secondary stress
whereas the stress in the members of the idealized truss, having pin-
connected joints, is called primary stress. A secondary stress analysis of 3
truss 15 seldom performed, although for some types of tuss peomel
these stresses may be large,
All loadings are applied at the jomnts. In most situations, such as for bri
and roof trusses, this assumption is true. Frequently in the force analysis
the weight of the members is neglected. since the force supported by the
members is large in comparison with their weight, If the weight is 10 be
included in the analysis, it is generally satisfactory 1o apply it as a vertical
force, half of is magnitude applied a1 each end of th

o

mbher.

Because of these two assumptions, each friiss member acts as an avial
Jorce member, and therefore the forces acting at the ends of the member must
be directed along the axis of the member. If the force tends 1o elongare the
member, it is a tensile force (T}, Fig. 3-6u; whereas if the force tends 1o
shorten the member, it is a compressive force (C), Fig. -6b. In the ac
design of 4 truss it is important 10 state whether the force is tensile of
compressive. Most often, compression members must be made shicker than
tension members, because of the buckling or sudden instability that may occur
in compression members.

Fig. 3

‘sner-m..m. 5. amd You

ing. D.H.. Theory af Strsctures. McGraw.Hill Company. Is
e 2 of Strcsires. MG -Hill Cormpany. I

SEC 32 CLASSIFICATION OF COPLANAR TRUSSES. 78

3.2 Classification of Coplanar Trusses

Before be force
truse as simple, compou
determinacy and stability

malysis of o tuss, it is impartant to classify the
or complex, and then o be able tw specify iis

Simple Truss. Ta present collapse, the framework of a truss must be rigidk
Obviously, the 2. 3-7 will collapse unkess a diay
onal, such as AC, is added for support. The simplest framework that is rig
ar stable is u triangle. Consequently, & simple rriss is
with a basic wriangular element, such as ABC in F
members (AD and B1) to form an addition
h additic
Joints i increased by ¢

ment. Thus it is seen that as
element of two members is placed on the truss, the number

Fig, 3-8

Anexample of a simple truss is shown in Fig. 3-9, where the basic “stable™
triangular element is ABC, from which the remainder of the joints, D), E, and
F. are established in alphahetical sequence. For this method of construction,
Bowever, it is important to realize that simple 1Fusses do nar have to consist
entirely of triangles. An example is shown in Fig. 3-10, where starting with
triangle ABC, bars €D and AD are added to form joint D. Finally, bars BE
and DE are added to form joint £.

simple tuss

Fig. 3-10
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Compound Truss. A compound fruss is formed by connecting tug g
more simple trusses together Quite ofien this type of truss is used to suppoy
Joads acting over a large span, since it is cheaper to construct a somewhy
lighter compound truss than to use a heavier single simple truss

There are three ways in which simple trusses are joined together to fom
& compound truss.
Type 1. The trusses may be connected by a4 common joint and bar. Aq
example is given in Fig. 3110, where the shaded truss ABC is connected o
the shaded truss CDE i this manter.

Type 2. The trusses may be joined by three bars, as in the case of the shaded
truss ABC connected 1o the larger tuss DEF. Fig. 3115 complex s
Fig. 3~

Type &, The trusses may be joined where bars of a large simple truss, called
the main truss, have been substituted by simple trusses, called secondary
trusses. An example is shown in Fig. 3-11c, where dashed members of the
main truss ABCDE have been replaced by the secondary shaded trusses, If
this truss camied roof loads, the use of the secondary trusses might be more
economical, since the dashed members may be subjected to excessive bend

ing, whereas the secondary trusses can better transfer the load. Complex Truss. A complex fruss is one that
cither simple or compound. The truss in Fig. 3-12

annot be classified as being
an eximple

Determinacy. For any problem in truss analysis, it should be realized that
the 101l number of wnkrouns includes the forces in b number of bars of the
truss and the total number of external support reactions r. Since the truss mem-
bers are all straight axial force members lying in the same plane, the force
system acling at each joint is eoplanar and concurrent. Consequently, rots-
tional or moment equilibrium is automatically satisfied a1 the joint for pin),
and it is only necessary 1o satisfy £F, = 0and £F, = 0to ensure translational
of force equilibrium. Therefore, only two equations of equilibrium can be writ-
ten for each joint, and if there arc j number of joints, the total number of
equations available for solution is 2. By simply comparing the tofal number
of unknowns (& + r) with the 1o1al number of available equilibrium equations,
it is therefore possible to specify the determinacy for either a simple. compound,
of complex truss. We have

3 stically determinate o
b+r>2  statically indeterminate

minacy is specified by the differcnce in the

In panticulas, the degree of inde
numbers (b + r) — 2
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Stability. 1f b+ r<2
ince there will be an insufficicnt nember ¢
the joints. Also. 8 fruss can be unstal

cally indeterminate. In this case the st

by inspection or by 3 force analysis

a truss will be

External Stability. As stated in Sec. 2.4, a srunciure
] reactions are concurrent

unstabl

a that are cither concurrent or parallel

with respect 1o the other joints, then the truss will be stable. Notice

wimple trusy will choays be oeernally sable wl!l.“ﬂ\}‘{"_)],.wll!‘mf(f‘--(
# Fexquires starting from a basic risngular clement snd adding succes:
chements” exch contzining fwo addstions! members and 2 joint. The
Fig 3-14 cxemplifics this comstnxction, where, suating with the shaded
wiangle clement ABC. the socoessive H have been added

3 truss is construc
o, it will be unstable

« har

is is shown in Fig. 3-15
ded

under load
To determine the internal stab

dentify the in which the simple trusses are: connected together. For

nstable since the inner simple
DEF using thres bars, AD.

by {1 iy el
is unstable or has critical form™
it is stable.

of any f be it simple, compound, or complex.
iced by using a computer to sulve the 3 simultancous equations
f the truss. If inconsistent results are obtained. the
« have a critical form.
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aputer analysis is not pe

stability of ¢
i joints, then if

the nietheads discussed previ
summanize, if the truss hay

Ifac
can be used o che

uitstable

unstable if trUsS SUPPON reactions
are concurrent or parallel or if
same of the components of the
truss form a collapsible mechanism

Bear in mind, however, that if a trerss is unstable, it does not maser whether
it is statically determinaie or indeterminare. Obviously. the use of an unsta-

hle truss is to be avoided in practice

Classify ench of the trusses in Fig. 3-18 as suble. unstable, statically
The trusses are subjected 10

determinate, ar statically indeterminate
arbitrary external loadings that are sssumed to be known and can act

anywhere on the tnusses.

SOLUTHN
Fig. 3=18a. Externally stable, since the reactions are not concurrent of

parallel. Since b= 19, n=2

j=11, then b+r=2j or 22
Therefore, the truss is starically determinate. By inspection the truss is
internally stable

Fig. 3-18h. E
19> 18 The

russ

ont the bruss is i

nspect

I 6.then b + r =2
truss is pection the truss is
|
| Fig.3-18d. B.them b+ r= 23
or 15 < 16,
o
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3.3 The Method of Joints

1f & truss is
Hence, the methe
bl ot id SF, = 0 for the forces cxerted on

equilibriurm, then each of its joints must also be in equilibeiy,
£ the eqp
the pin

librium cong

of joints col

at each joing

Wien using the method of joints. it is necessiry (o draw e

fore applying the brium equations. Recall 1
e acting on the joint is specified fro
mber posse:

195, s are the magn
“pulling” on the pin, whics
is “pushing” o
ssian. These effe

body disgram, F

forces
dicates th n
and consequently member BC is in comp
demanstrated by using the method of scctions
11 segments of the member connected to the pin, Fig
pushing or pulling on these small segments indicates the effect of the
being cither in compression or tension,

In all cases, the joint analysis should start
known force and at most (wo unknown forces, as in
application of XF, = 0 and 3F, = 0 yields two alg
be solved for the two unknowns. Wh
sense of an unknown me
sible methods

a joint b
3196, In this way

lations that can

plying these equations, the corred
ber fiorce can be determined using one of two pos:

0N

Fy (compressiel

1
librium equations will yield

cative scalars for members in o

use its correct magnitude and

sin 45°, must

Likewise, Fiy is 2
cos 457 (ZF, = 0),
¢ of an v ber force can be
applying the equilibrium equations, the as
can be verified from the numerical results. A g
the sense is ¢
shown o

tensille force since it |
In more co

assum

licates that
the sense

rrcet, Wheress o s

Procedure for Analysis

“The following procedure pre
method of joints.

» Draw the free-body a joint having ot Jeast ane known force
i it maost
it may be necessary to know the ext

n forces. (If this joint is at one

ihe supports.

nal reactis

ns ot the support.)

described for establishing

* Usc one of the wo

nown force

* The x and y axes sho ces on the free-bidly
diagram can be easily resolved into their x and v components. Apply the
twor force equilibrium equations £F, = 0 and F, = 1), solve for the two

unknown member forces, and verify their cormect directional sense

tinue to analyze cach of the other joints. where again it is necessary
10 choose a jaint having al most twe unknowns and at least one known

force

* Once the force in ember 15 found from the analysis of a joint at one

of its emds, the result can be used to analyze the forces acting on the joint

its othes end. Remember, 4 member i compression “pushes” on o
joint and a member in tension “pulls” oa the joint,

W IORNTS,

L5l
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e

waN

ember of the roof truss shown in Fig. 3-20,

Determing the
State whether the members
the suppoets are given.

B,=4kN

SOLUTION
Only the forces in half the members have 1o be determined, since the trss
is symmetric: with respect to both loading and geometry

Joint A, Fig. 3-200.  We can start the analysis af joint A. Why? The free

body dingram is shown in Fig. 3-200
+13F =0 4 sin 30° = 0 8 kN (C) Ans
SZF =0, Fy-Bcsd0=0 F,=693KN(T Ams.

Joint G, Fig. 3-20c. In this case note how the o
avoids simultaneous solution of equations,

+8EF, =0, Fu—3cosd* =10 £
+A5F, =0, B - 3sin 30 —Fgr=0
Jaint B, Fig. 3-20d

+T2F, =0, F,, sino0

ntation of the x, ¥ axes

260 kN (C) Ans.
6SOKN(C)  Ams.

= 260} sin 60° = (
Fgy = 260N (T) A
Fic + 260 cos 60° + 260 cos 60° — 6,93 = 0

T Ans.

THE METHOD OF JOINTS

8

Detert
3-20a. §
reactic

SOLUTION
The truss will be analyzed in the fo

Joint E, Fig. 3-21b. Note that simu
avoided hy the ¥, y axes oriea

n of equations is

+AZF,=0:  191.0cos 30° — F,, sin 15° = 0
Fep = 6301 1b(C) Ans.
+% EF, =0 6391 cos 15° — £, = 191.05in 30° = 0
Fey LEIb(T) Ans.
it 1D, Fig. 3-21¢
+< IF, =0, in?° =0 F, =0 Ans,
FREF, =0, —Fp + 6390 =0 Fp = 6391 IhiC) Ans,

C, Fig. 3-21d

Feysin 45° — 639.1 sin45° = 0
Fep = 639.11b (C) Ans.

= 0 Fop = 175 + 2(639.1) cos 45° = 0
Fep=T2R8 0 (T) Ams.

Fypsin75° — 200 = 0

Fye = 7.1 16{C) Ans
639.1 + 207.1 o ” = Fay =0
Fy, = 6927 1b(C) Ans.

Joint A, Fig. 3-21f

S EF, =0, Fyoos30° - 6927 c0s45% — 1414 = 0
Fu=7289 1 (D) Ans.

+TEF, =00 1254 - 6927 sind5" + T2895in30° = 0 check

A further check of the cakulutions can be made by analyzing joint .
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3.4 Zero-Force Members

oints ally simplified if o
loading. These zern

hod of
be:

Truss analysis using the
to first determine thos
mbers may be necessary It
10 provide support if the applicd load
s generally be determined by inspection of the joints, and
s

an
bers of & tuss
they ocour in two

Case 1. Consider the truss in Fij
counected tagether at & right angle and there i r
The free-body diagram of joint 2b, indicates that the force in each
member must be 7ero in order to 1 equilibrium. Funthermore, as in the
case of joint A, Fig. 3-22c, this must be true regandless of the ang!
between the members

say A,

Case L Fero-force members also oceur at joints having a geometry as join
3-2ia e no external load acts on the joini, so that a force sum
mation in the v direction, Fig. 3-23b, which is perpendicular to the two
collinear members, requires that Fp, = 0. Using this result, C is also a zero
force member. o indicated by the force analysis of joint F, Fig. 3-23c

In summary, then, if oaly two members form a truss joint and no extersal
oad or support resction is applied to the joint, the members must be zero-
force members, Case 1. Also, if three members form 2 truss joint for which
two of the members are collinear, the third member is a ze wrce member,
provided o external force or suppon reaction is applied to the joint, Case 2
Particular atiention should be directed to these conditions of joint geometry aad
boading, since the analysis of a truss can be considerably simplificd by firl
spotting the rero-foroe members.

Foe
Byo Fal e
Yo W F, $

STIE =0, Fpin#+0=0
0 e sime )

SREF, o B Fypnt

Fig. 323

wEr i * MbvEERs KT
Example 3-4 —
Using the method of jaints, indicate all the members of the &
that have zero force ; i
// |
b .
R
%

D |
¥ E |
v T' w
¥ ﬁlﬂ ‘

4
SOLUTION |
Looking for jo those discussed in Figs. 3-22 and 3-23, we have ‘ |
. |

X/l .
Fosin =0 Ans. '\.:\
2 BF, = 0; Fo+0=0 A0
@
Joint E, Fig. 3-Mc
EEh= Fo =0 Ans. »

(Nole that Fee = P and an analysis of joint € would yield a force in mem-

ber CF)
Juint H, Fig, 3-24d

+AZF, =0 Fun = Ans.

Joint G, Fig. 3-24e. The rocker support @ G can only exemt an x
component of force on the joint. ic. G, Hen

+HIr=0 Fgy =0 Ans.
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3.5 The Method of Section The three unknown ¢

IF the forees in only a few members of a truss are "

sexct nerally provides the mos D, and E

f sections consists of pe n the wsual
trusss. thus cuting it into (wo parts. Provided the cutire russ i in el
each of the two ) be a5 @ result, the
12y be spplied to _.n._ o these two
her forces at the

aly three independent equilibrium equal 0,EF, =0, X

can be zpplied o the isolated pe select a sectic vertical comp,

in general. passes through not an three members in ..|,._h th As in the method of joints, there are two ways in W

Je, consider the truss in Fig I the foree ; nknown member
member GC is 1o be determined, section aa will be appropri
f the two parts are shown in Fig. : 3 I e that the unkn

er forces ar the ¢

on the n By doing this, the

tion of the eq s will yiekl

assumed 1o be in fen " and GC') arc subjected

- as represented
as the member in compression (GF ) is subjected tc

push™ o5 that F ereate

a moment opposite 1o that of the 1000-N f
its vertical component s

shwn on the free-body diagram. This s the method we
ns which follow

e by o avcx
m. Stni i
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THE METHOD OF sEcTioNs. 91

Procedure for Analysis

Example 3-5 "

The & procedure provides a means

tions B

nine the forces in the members ©

ine the fore

r the men

Free-Body Diggram
» Make a desis
members wh

ports have been calculated

q as o

forces 3

e section, it may
w0 that

Draw the free-body d
he least number of fo

+ Use one of the two methods described above for establis}

wn force.

Equations of Equilibrium
+ Moments should be sum:

d about a point that lies at the intersection

| of the fines of action of two unknown forces: in this way. the th SOLUTION |
|  unknown force is determined directly from the equation Member CF
‘ Free-Rody Diagram. The force in member CF can be obtained by con
« If two of the unknown forces are parallel be « sidering the section aa in Fi 6. The free-body disgram of th
‘ perpendicular to the direction of these unknosns 1o determine direct pan of this section is sh 3 0w

the third unknown fi

o n for Fep can be obtained

Equations of Equilibriu
X : Fpr 1o poini C (principle

by appl

of wansmissibil

Fep = 346418 (C) Ams.
Member GC

Free-Body Diggram.  The force in GC can be o

bh in Fig 3-26a. This section culs |

CF has bee lated. The frec-body diagram of the left portion of the
section is shown in Fig

Equations of Equilibrivm.  Moments will be summed about point A in
order 10 eliminate the unknowns nd Fep Again shiding

(346.4 1b) to point €, we have

aaTi

=0; —3006.93) + Fgr(12) — 6.4 5in 30°7012) = O
F = 34641b(T) Ans

An examgie of 3 Wasren iruss (with vesticals) -
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e

A=

e tru:

Determine the force in members GF and GD of shown in Fig
3.77a. State whether the members are in tension o compression. The

reactions af the supparts have been calculated.

For,

Foo iy,

BN

BAN

Ll
-| kN
M E=TEN
Fig. 3-27
SOLUTION
Free-Body Diggram.  Section aa in Fig. 3-27a will be considered. Why

The free-body diagram to the right of this section is shown in Fig. 3-27b
The distance E( can be determined by proportional trizngles or realizing
that member GF drops vertically 45 —3=15m in 3 m, Fig Ta.
Hence o drop 45 m from G the distance from C to O must be 9 m
Also, the angles that Fop and Fop make with the horizonml are
tan” '{4.5/3) = 56.3° and tan "' (4.5/9) = 26.6°, respectively.

Equations of Equilibrium. The force in GF can be determined directly
by applying EM,, = 0. Why? For the calculation use the principle of trans
missibility and slide Fep 1o point . Thus,

LrEM, =0 = Fiysin 266°(6) + 7(3) = 0

Foo = T8RN IC) Ans.

The force in GO is determined directly by applying ¥M,, = 0 For sim
plicity use the principle of wansmissibility and slide Fy, 1o D, Hence.

=TM3) + 26) = Fops5in 56.3°6) = 0
Fop = LBOEN (C) Ars

OF SECTIONS

BC and MC of the K-try
bers are in fen:
been cakcu

28a. State whether the m
reactions at the supports h;

or

SOLUTION

Free-Body Diagram.  Although section aa shown in Fig 3-28a cuts
through four members, it is possible to solve for the force in member BC
using this section. The free-body disgram of the lefi portion of the tnuss is
shown in F 85,

Equations of Equilibeium. Sum
three of the unknowns, so that

ments about point L eliminates

L+EM, =0; 2900615) + F

Fa Ib{T) Ans.
Free-Bady Diagrams. The force in MC can be obfained indirectly by first
obtaining the force in MB from venical force equilibrium of joint B,
Fig. 3-28c. ie. Fup = 1200 Ib (T). Then from the free-body diagram in
Fag. 3-28h

20) =0

+12F =0 2900 — 1200 + 1200 — Fyy = 0

Fy = 2900 1b (T}

Using these results, the free-body diagram of joint M is shown in Fig. 3-28d.

Equations of Equilibrium

3
\ 0
Vi
1z 2900 — 12 Moo o RN
F 2900 — 1200 l:\.LBJ"“‘ ()pn=1
Fug = 15321b(C)  Fyc=15321b4T) Ans.

Sometimes, as in this example, application of both the method of sections
and the method of joints leads fo the most direct solution g the problem

1t s also possible 1o solve for the force in MC by using the result for
Fac. In this case, pass a vertical sectioa through LK, MK, MC. and BC.
Fig. 3-28a. Isolate the left section and apply EMy = 0.

=001

29001

120m
“
Fig 3-8

Fuc
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[:ompuund Trusses

—

In Sec. 3.2 it was stated that compouni trusses are formed by connect
of more simple trasses logether cither by bars or by joints. Gecasiond
Iype of truss is best analyzed by applying boih the method of joints
method of sections. It is often convenicat o

Soction s fisted in See. 3.2 and then perform the analysis using the follawing

recognize the type of con

procedure.

Procedure for Analysis

Type 1. Determine the exteral reactions on the truss, and then, using the | |
method of seciions, cut the truss through the bar connecting the two
simple trusses o that this bar force may be obtained when one of the
sectioned pants is isolaied as a free body. Once this force is obtained
proceed to analyze the simple trusses using the method of joinls. (See
Example 3-8

Type 2. Determine the extemal reactions on the truss. Use the method of
sections and cut cach of the three bars that connect the two simple truss
together, From a free-body diagram of one of the sectioned parts, del
mine each of the three bar forces. Proceed to analyze each simple truss
using the method of joints, (See Example 3-9.)

Type 3. Although many of these types of trusses can be analyzed u
the method of sections combined with the method of joints. we will inste:
use a more general method. Remove the secondary trusses and replace the
oy dashed memibers 50 as (o construct the main truss The loads that the sec-
ondary trusses exert oa the main truss are abo placed on the main truss @
the jeants where the secondary trusses are connected to the main [russ
Determine the foroes in the dashed members of the main truss using the
‘method of joints or the method of sections. These forces are then applied
10 the joints of the secondary trusses and then, using the method of joints | |
I;‘i;" forces in the secondary lrusses can be oblained. (See Example
-10.) &

Example 3-8
Indicate how to analyze the compound truss shown in F
reactions at the supports have been calculated, i

29a. The

Fig. 3-29

SOLUTION

The truss may be classified as  type | compound iruss sinee the simple

trusses ACH and CEG are connected by the pin at € and the bar HG:
Section aa in Fig. 3-29a cuts through bar HG and two ather members

having unknawn forces. A free-body diagram for the left part is shown in

Fig. 3-29b. The force in HG is detern ed as follows

(+EM, =0, —5(4) + 42) + Fldsinel’) =0
Fyg = J4BKN (C)

We can now proceed 1o determine the force in each member of the
simple trusses using the method of joints For example, the free-body
diagram of ACH is shown in Fig. 3-29¢. The joints of this tnas can be
analyzed in the following sequence:

Juint A: Determine the force in AF and AL
Jaint H: Determine the force in Hi and H
Jaint I Determine the force in 1/ and I8,

Jaint B: Desermine the force in BC and BJ.
Jaint J; Determine the force in JC.
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i

slyze the compoand truss shown in Fig. 3-30a. The

Indicate how 10
renctions at the supports have been ¢ dculated.

SOLUTI
“The truss may be classified as a type 2 compound truss since the simple
trusses ABCD and FEHG are connected by three nonparallel or noncon
current bars, namely, CE, GH, and DG.

Using section aa in Fig. 3-3{la we can determine the force in each con
necting bar. The free-body diagram of the lefi part of this section is shown

in Fig. 3-30. Hence,
PHEM, =01 —3(6) — FpglBsin457) + Fipcos 45°(12)
+ Fepsind5©(6) = 0 (1
3 =3 = Fpsind5° + F5ind5° =0 2)
=0; —Fpycos 45° & Fo — Fpcos45° = 0 (3

l-_mjl;m (2), Fiuy = Fegs then solving Eqs. (1) and (3) simulianeously
yiel

'FNI

o =268k(C)  F,

Bk(T)

Analysis of each connected simple truss can now be performed using
the method of joints. For example, from Fig. 3-30c, this can be done in
the following sequence.

Joint A: Determine the force in AB and AD
Joint D; Determing the force in £C and DB,
: Hoint €; Determine the force in CB.

SEC. 18 COMPOUND TRUSSES

Example 3-10

icate how 1o

Ha. The react

5
The truss can be
\russes are AGEF and CHED and the main trass is AHCE

By removing each secondary truss, Fig. 3=31b, one of the two rea
tians, specifically 1.5 kN, at each pin connection A and E and £ and €
be determined by symmetry or by applying the equations of equilibeium to
cach truss. The main truss with the 1.5kN loadings spplicd is shown in
Fig. 3-31c. The force in each member can be found from the method of
joints. For exsmple, for joint A the free-bady diagram is shown in Fig
3-314. We have

TIoN

154N

+TEF = 0; 462 — 1.55in 45 Fpsin45® = 0
F, = 303kN (C)

15c05 45" — 5.08cos45° + Fiy =0
o= 250KN ()

Having found Fie = 5.03 kN (C), we can now apply this load numer-
ically to the secondary truss AGEF in Fig. 3-316 and then proceed 1o
analyze the forces in the members of this truss by the method of joints.

Note that the truss in Fig. 3=31a can also be analyzed dircctly by using
the methesd of sections. For example, piss a vertical section theough F
£G, and AR, then detcrmine the force in esch of these members. Procesd
10 determine the force in each of the other members using the method of
joints

s A
N/
p
7
F, 15EN
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3.7 Complex Trusses

The member forces in a complea truss can be determined using the merhey
o joints: however, the solution will require writing the two equilibrium equ,
tions for cach of the  joints of the truss and then solving the complete ser of
2 equations simultaneaisly,’ This approach may be impeactical for §
calculations, especially in the case of large trusses. There a more
method for analyzing a complex truss, referred to s the method of sk
members, will be presented he

Procedure for Analysis

With reference to the truss in Fig. 3-32a, the following steps arc neces
sary 10 solve for the member forces using the substitute-member meihnd

Reduction fo Stable Simple Truss. Determine the reactions at the sup
ports and begin by imagining how to analyze the tr cthod of
joints, ie., progressing from for each member
force. If a joint is e

s by the

joint to joint and solvi

d where there are  three  umknpus,

5 forces
]
Fig. 3-32

“This can be readily accom

v i & compatior as will be shown i Chapier 14

remove one of the

mbers at the joi

and replace it by an (magin

¥

member clscwhere in the truss. By dc et the, triis i Be s
stable simple truss.
For example

a it i observed that euch joint will have thres
on it. He ber A

follow

wrnal Louding on Simple Truss.
twal fosd then deterr
Fig. 3-32b, provided ihe react
at joint A to the forces in AR

the forces in FE FC, then oint I 1o
DC (hoth of which are zero), then 1 E 1o
nally joint 8 1o determine the force in B¢

the simple truss with the 2
5 memb In

forces in DE and
ne £8 and EC, and fi-

Remove External Luading from Simple Truss.  Co
without
an the truss
these forces de
artion an unknown [
xs; in the ith member.

From Fig. 3-32¢ the equal but opposite unit loads will create ne:
reactions at A and C when the equations of equilibrium are applied 1o
n be deternmined by analyzing the joints
1y, joint A, then joints F. . E. and

he simple truss
e equal but opposite collinesr wnir [oads
which the member was remaved. If
the ah truss member, then by
wved member would exen a

the entire truss. The 5, forces &

in the same sequence as before, pam:
finally £

Superposition.
force in the ith me

In particulus, for the substituted member £C in Fig, 3-32b the force
Spe = S + xagg. Singe member EC does not actually exist on the ofig-
e x o have & mugnitle sach that it yields zem

S+ e =10 (84]

o ¥ = — Sy Sy~ Once the value of x has been determined. the force in
\he other members i of the complex truss can be determined from Eq. (1.

SEC 17 COMPLEN TRUSSES
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—

Determine the force in each member of the complex truss shown in F;
3-33a. Assume joints B, F, and D are on the same horizontal line. Sygg
whether the members are in [ENSION OF COMPrESSion,

Fig 3-13

SOLUTION
Reduction to Stable Simple Truss. By inspection, each joint has the
unknown member forces, A joint analysis can be performed by hand if, for
example, member CF is remaved and member DF substituted, Fig. 3-334
The resulting truss is stable and will not collapse. |

4375k 4375k

SEC 0T COMPLEX TRUSSES. |

Exterrral Loading on Simple Truss,
he truss have been der
we can first analyze joint € 1o f

joint £, where it is se
E o determine the f
¢ forces in DA
Conside

33b, the support
reactions

ethod of joints
ibers CB and CIX, then
ce members; then jo
I the
0 determi

ng fension as positive and = neg

forces are recorded in column 2 of Tak

the truss is showr
external reactions. on the truss, Th

in Fig. 3-33

e recorded in column 3 of Table 1

i discussed previously, namely, joints . F
the 5, force analysis a

Superposition.  We require

Sp = Sy + Wiy =0

Substituting the data for S, and s, where §7,, 15 negative since the force

is compressive, we have

250 +x(lI6H =0  x=214
are reconded in column 4 of Tt
51+ vy, are listed in column 5.

and the actual mem-

The values o
ber forces §,

bie 1
Member & . s
02 m
5 S05(C)
= 17 m
! M
et e 491 (€)
= e 381T)
) 3 7
it} ~250 1167
: P 198 (T}
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3.8 Space Trusses

Fig. 3-34

The mof of s pavilion i sapgcd
e —

A space truss consists of members joined together at their eads to form, ;
stablc three dimensional strcture. In Sec. 3.2 it was shown that the simples
form of a stable two-dimensional truss consists of the members amanged iy
the form of & triangle. We then buill up the simple planc truss from thi
tringular elerent by adding two members at  time to form further cl
In a similar manner, the simplest clement of a stable space truss
rerrahedron, formed by connecting six members together with four joi
shown in Fig. 3-34. Any additional members added 1o this S
wouldl be redundant in supporting the force P. A simple space truss can be
built from this basic tetrahedral clement by adding three additional members
snd sncther joint forming multiconnected tetrahedrons

husic ele

Determinacy and Stability. Realizing that in three dimensions there
are three equations of equilibrium svailable for each joint (£F, = 0, £F,
EF. = 0}, then for a space truss with j number of joints, 3j equations are av
able. If the truss has b number of bars and r number of reactions, then like
the casc of  planar tniss (Eq. 3-1) we can write

b4 r<3  unsubletruss
b+r=3  sttically determinate—check stability
b+r>3  sutically indeterminate—check stability

The exiemal stability of the space truss requires that the support reactions
keep the truss in force and moment equilibrium about any and all axes, This
can sometimes be checked by inspection, although if the truss is unstable 3
salution of the equilibrium equations will give inconsistent results. fntermal
stability can sometimes be checked by carcful inspection of the member
amangement. Provided each joint is held fixed by its supports or connccting
members, 50 thal it cannot move with respect to the other joints, Lhe truss can
be classified as internally stsble. Also, if we do a force analysis of the truss
and obtain inconsistent results, then the truss configuration will be uastable
or hive a “eritical form”

Assumptions for Design. The members of a spice truss may be resisd
as axial-force members provided the external loading is applicd at the j
and the joints consist of ball-and-socket connections. This assumption (s
Justified provided the joined members at a coanection intersect 31 8 coMMmON
paintand the weight of the members can be neglected, In cases where the weight
of a mermiber is o be inchuded in the analysis. it is generally satisfactory 0 apply
it & & vertical force, half of its magnitade applicd to cach end of the member

For the foroe analysis the supports of a space truss ane generally modeled a8
@ short link, plan roller joint, stotied roller joint, or  ball-and-socket joint. Esch
of these suppons and their reactive force components are shown in Table 3-1

shart ik

balbdaocket

skx

SEACE TRUSSES.

o
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x, ¥, 7, Force Components. Since the anily i SPOCE rUSS is threg
dimensional, it will ofien be necessary to resolve the force F in a member g,
components acting along the x, y. = aves, For example, in Fig, 3-35 membe
AB has a hength § and knorun projections x, y, = along e coordinate axes, The,
projections can be related 10 the member's length by the equation

5

I=WVxlty

Since the force F acts along the axic of the member, then the
of F can he determined by proportion as follows:

fx
=)
Notice thal this requires

y
F'r[r

F=VF +F +F 3-8}

Use of these equations will be illustrated in Example 3-12.

Zero-Force Members. In some cases the jo alysis of o truss can
be simplified if one is able 1o spot the zero-force members by recognizing two
common cases of joinl geometry.

Case 1. If all but one of the members connected 10 a joint lie in the same
plane, and provided no externzl Joad acts on the joint, then the member not
Iying in the plane of the other members must be subjected to zero force. The
Proaf of this statement is shown in Fig. 3-36, where members A, B, € lie i
the x-y plane. Since the z component of Fy, must be zero o satisfy XF, = 0.
member D must be a zero-force member. By the same reasoning, member £
will cary a load that can be determined from EF. = 0 if an external force
acts on the joint and has a component acting along the z axis.

Case 2. 1F it has been determi
connected al @ Joint support zero

d that

Al Bt two of seven il members
force, then the two remainig
must also support zero force, provided they do not e alc
This situation is illustrated in Fig. 3-37. where it is known that A and € are

me Since Fry is collinear with 1 xis, then
of ZF, =0 or EF, =D requires the  or z component
Conscquently, Fu = 0. This b

ng the same line.

ero-fon

pplication
Fy to be zero.
=0

¢ the case, Fpp = 0 since

Fu=0

Fig. 3-37

Particular atiention should be directed 1o the foregoing two cases of joint
geometry and loading, since the analysis of a space truss can be considerably
simplified by first spotting the zero-force members

Procedure for Analysis

Either the method of sections or the method of joints can be used 1o
determine the forces developed in the members of a space truss.

Method af Sections. 1f only a few member forces are (o be determined
the method of sections may be used. When an imaginary section is passed
through a truss and the truss is separated into two parts, the force system
acting on either ome of the parts must satisfy the six scalar equilibriun
equations: £F, . SF, = e, =0, M, = 0, EM, = 0. M, = 0. By
proper choice of the section and axes for summing forces and m

meny of the unknown member forces in a space fruss can be “mplﬂ:d
directly, using a single equilibrium equation. In this regard, recall that the
montent of a force about an axis is zera provided the force is parallel o
the axis pr iis line of action passes through & point on the axis.

oments,

Meihod of Joints. Generally, if the forces in alf the members af mﬂm
must be determinesl, the method of joints is mast suitable for the aai b
vhen using the method of joints. it & necessary o wl~: U!tllllﬂfs.r‘:-il i
equilibrium equations £F, = 0, XF, = 0, £F, = 0 at each join

relatively casy to draw the frec-body diagrams and apply the uations of

equilibrium, the method af joints is very consisient in its application.

SEC

SPACE TRUSSES

108
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.

e in each member of the space i 1 Fig,
?"11'"'7"{{1'.':“:??.2;3.‘,«.: by o hall-and-socket jointat A, a slotied roller

joint st B, and a cable 3t (&

)

SOLUTION

The wuss is suatically des
g 3o, Y MMe sace b+ r=13j or 9+ 6= 5).

Support Reactions,  We

n the suppon reactions fro
body diagram of the entire truss, S

8- 3-38b, as follows:

S00(4) + BEY=0 B =3

c=0
B8 —6008) =0 B =60
W0~ A, = 0 A, = 3001
A —600=0 A =g
A, — 600 =0 A =6001b

Joint B.  We can begin the method of joints a 8 since there e thiee
unknown member forces at this joint, Fig, 3-38;

can be determined by proporti

by Egs. 3-5. We have

=

components of Fe
on 1o the length of member BE, as indicated

b= Fae =9%01b(T)  Ans.
0 Ans.

600 1b (C) Ans.

—600 + Fopl
300 — Fy

Joinf A, Using the result for Fy, = 600 Ih (C), the free-body diagram of
Joint A is shown in Fig. 3-38d. We have

IF. =0; 600 = 600 + Fy.sind5° = 0
F 0 Ans.
IF. =0; —Fyp ) + 600 = 0
Fyp = 670.8 b (C) Ans.
IF, =0 —300 + Fyy + 6108 () =0
Fp=0 Ans.

Joint . By inspection the members at joint B, Fig. 3-38a, support zem
force, since the amangement of the members is similar 1 ither of the
WO cases discussed in reference to Figs. 3-36 and 3-37. Also, from Fig.
134,

a Ans.

Ik, = Fii =

2P, =, Fo =0

Joint €. By observation of the frec-body diagram, Fig. 3-38/,
Fag=0

o

SPACE TRUSSES |

———— S
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[

abers of the truss shown in Fig. 3-3%. The
; on the truss as shown.

i foroe. i
ermine the zero-force
D s conponens o ectn

SOLUTION
The frec-body disgram. Fig. 3-39a, indicates there are eight unknown
reactions for which only six equations of equilibrium are available for
solution. Although this is the case, the reactions can be determined, since
ber=3ori6+5=3K

To spos the zero-force members, we must compare the conditions of
Joint geometry and loading to those of Figs. 3-36 and 3-37. Consider joint
£, Fig. 3-39b. Since members FC. FD, FE lic in the x-y plan and FG is
not in this plane. FG is a zero-force member. (SF. = () must be satisfied )
In the same manner, from joint E, Fig. 3-39c, FE is a zero-force member,
sane it does not bic in the y-z 0 must be satisfied ) Retun
Ing W0 Joint F, Fig. 3-39b, it can be seen that Fry = Fre = 0, since
Fre = Fr; = 0, and there are no external forces. scting on the joint.
. The umerical fosce analysis of the joinis can now proceed by analyz-
g J0int G (Foy = U) to desermine the forces in GH, GB, GC. Then analyze
oind H 10 the forces in HE. HB, HA; joint E to determine the
foeces in EA. ED joint A 1 determine the forces in A, AD, and A.; joint
840 deteemine the. force in BC and B, B, joine D 10 desermine the force
.0C 284 D, D and finally, joint € o determine C,, C., €.,

PROBLEMS

vRosLEMs 109

the

determinaic, o war

g tnssses 2

3-2 Clasify exch able, unstable,
“ alby inddeternunase. 1 insdeterminate,
degeee. All members are pin connected a their erds

state its




FTERMINATE TRUSSES

CALLY

M. 3 ANALYSIS OF STATICAL allowil sses 28 statically de

I fr— cally doepni- 934, Classify esch of 12 folko ":.-I\rr:u‘ i
33, Clinify each o he ollowing veses s stfical minate, statically idetemmisale, oF LT3

i, satclly indetemiete. of stable

)

Prob.3 4

1 the following tnusses
st

s statically determ-
ahle. If indeterminate, sae it degree,

A

&

-

XX

[t
Prob. 3-5

3-6. Desermine the force in e

the thembees are in tenwion o

E

vROBLEMS 11K

h member

4 the s, S

are in tension or compression.

suding showr. Deter
€D, w0d GC. Stae i the member




PERMINATE TRUSSES
ober of the FOof s, Staje

ATICALLY DET
iz o wuLyss or ST cineschm

A0, Desermine the forc

o s o 3 kg/m Lifling erbers are i LSO O COMPAESSHIA.
w38, The mombes mmw“.m""; Eand G, Detemin: if the memibers
s done using a cable connectsd 10 10 casaan ar comgresSion 1568

e and specily if t 1 e
R et o e o b e
g exh i

311, Descrmine the force in cach member of the roof russ. S
i the membess arc in lcnsan or compression. Assunkc all aice.
bers are pis consccicd.

: g s

JOKK  10AN 10KN |
—dm e dm—t—d w4 m—]
Prob. 311

3-8, Descrmine the ficce i memmbors CB, 8, und ) of e s

Stae whether the memmibens & in fensioa o .
*3-13. Determine the force in each member of the roof truss
State if the members are in fension or compression

——taieia
INON ION MON IBON gy

3413
{fthe members are in

bers

Detemuine the force in cich member of the roaf insse. Siate
n or compression, As =

all mem

e pin connected

5 [t 225 1=

Frob. 3-13

U, Detemine the force in members GE, FC, and CD of the
canilever truss. State if the members are in lension ac compres.
sion, Assume all members are pin conneted

Prob. 3-14

315 Specify the type of compousd trss and determine the force
= each member. State if the memibers are in tension or compression

316 Do
incerior. npl

PoBLEds 113

0 cach member of the s, All
are 64F. St if ihe members wre in fension tx
POMPIENaN. Assae il members are pin o

£ s

Prob. 316
3-17.  Determine the forces in members K1, CD. asd £ of the
truss. Stae if o o o compression.

18, Detcrmine the foroes in members Jf, JD, and DE of e
5%, State if the imembers are in lension oF compression

- 6@3Imal
Probs. 3-17/18

319, Determine the force in esch member of the muss. Stste if
he tiembers are in tension or compressive. Assume all members

re pin comnecies
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Moar deck 1,

e truss showid s used 1o s
g K is 1.5 k(N This
s, whisch rest an 1

32

3 suppoet th

fowd P, Desermine the anghe
125P s mot exocedad and & matien
P s o exceadsd

Prok 3-20

}-21 Coasider the truss shown in the

s material that ks h sllowable average normal stess

321, Determine the foree i ¢ wmiss, Ste if '€ Whit s the required angle @

the members ar i lension or cormpressin %0 thit the Iniss can be coastrucied f
i yet support the losd ¥

tht s

0 8 im Compess

the least amount of

Salve Prob. 3-23 if the allowable
i s different {1

IE
100~ 10— ol gy
Proh 3-2)

Probs. 3-23/24

e

moniiss LIS

\he v

e ire in 1

The woaoden hic

329, Determine the force in members AC, AD, s HEG. State |
bers are in teasson or compression, Kenufy all the zm

nembers

ubers IH.

Determing the forces in m
55, State if the

mhers are in

i [ " G £
A
T
)
J b c B "
s
10kN BN AN
e
Frob. 3-27
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HI6 3 ANALYSIS OF STATICAL

e foece iR mem
[

Determine thy
nether

BN Saernine e fore in meshen HG. BG, and BC,of b

or camprEss
s, State I the mershers are in tensicn o COmY e
determine HG

n temsion ar o
HG. HM. MD,

mbens &e pin oo

tion the 1
Assurse all 1

=300 =301

] C n -&-‘ Frob.

HiSm Sm L m 1S me

Frob. 3-30

3-33. Deiermine the forces in all the members of the campla
truss. State if the members wre in tension o compre

3-31. Dewermine the force in each member and suie if the
membess are in lessian or compression

monEds 117

3. D

(complex) truss

sion. Suggestion: Substi
F

| the foroe in memibers A1, 8C,
1 he members

in temsion or

3-35, Determine the fc
s, Siat
all members are pin conne

f the members are in te

the force in members A8, AD, and AC of the
truss, Indicate if the members are in tension cr cam

e

ressive

- W - 200 -




sioas and the force in mermbens B4

‘.k shawn. I the framework rests an the
determine the force in members €I, D, and CH.

il trssses are conmected by ball-and-socket joints
the framework sown. If e framewark rests on the

z

jentical trusses are pin coanccied 10

Dietermiine the reactions and the foroe i cach member
space (s Inficale if the members are n fension o

 Cand E, uemnmm the farce in me;

ROCT momLEM 119

PROJECT PROBLEM

ice Jads. Neglect the

s pinned and E i

Froject Prob 3-1P
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Internal Loadings Developed
in Structural Members

simply supporicd heams ond
. of this building frame were
ed 10 resiss the inemal shear
omen acting throughoul their
.

Before 1 structural member can he proportioned, it is necessary to deter
the force and moment that act within it. In this chaper we will develo
methods for finding these loa
and for showing the variation graphically using the sh

v Bt - /) disgrams. Applications are given for both beams and fran

AW

%
the

s axis
nd moment

4.1 Internal Loadings at a Specified Point

As discussed in Sec, 2.3, the internal load at a specified point in & mem-
ber can be determined by using the method of sections. In gencral. this
10=d-ng for a coplanar structure will consist of a normal force N, shear force
V. and bending moment M.* It should be realized, however, that these load.
ings actually represent the resultants of the stress distribution scting over
the member's cross-sectional arca st the cui section. Once the resultant
inlemal loadings are known, the magnitude of the stress can be determined
Provided an assumed distribution of siress over the gross-sectional ared Is
specified

re—————STL L

Thre.
™
Pist the member hout its axis.




EMBERS

B4 INTERNAL LOADINGS DEVELOPED IN STRUCTURAL M|

Before presenting 4 method for finding the iRty

Sign Convention.
norml force, shear force, and bending moment, we will n
sign convention 10 define their “positive and “negative” values.® Alihggy
the choice is arhitrary, the sign convention 1o be adopied here has been wigoy,
accepted in structural engineering practice, and is illustrated in Fig. 4.,
On the lefi-hand face of the cut meniber the normal force N acts o the righ
the intemnal shear force ¥ aets downward, and the moment M acts coupte;
clockwise, In accordance with Newton's third law, an equal but oppoy
moment must act on o

d 10 establish ,

normal force, shear force, and bendin ght-hang
face of the member at the section. Pechaps an easy way 10 remember this
sign convention is to isolate @ small segment of the member and note thy
¢ normal force fends to elongate the segn
shear tends 1o rofate the segmend clockwise, Fig. 4-1c;
ing moment tends to bend the segment concave upward, sc
Fig. 4-1d.

M M
m “-H-D
v v

“This il be coavenient later in Sers. 4.2 and 4.3 where we will espress ¥ and M 35 A%
e

o x anud ihen plos these functions. Having a sign convention us sumilar 1 asssgmis
dlirections x positive w0 the right and y positive upwanl when ploating a uncuoa ¥

SEC. 41 INTERNAL LOADINGS AT A SPECT

D POINT

procedure for Analy

procedure provides a m
al nomal hear
n in & structural member,

The followi
tions to determine the inte
nent at a specific

Support Reactions

e the member is “cut” or sectioned. v be necessary to deter-
jine the member's Suppon reactions o that the cquilibrum equatic
used only 0 solve for the intermal loadings when the member is sectioned

« If the member is part of a pin-connected structure, the pin reactions can
be determined using the methods of Sec. 2.5,

Free-Body Diagran

« Keep all distributed loadings, couple moments, and forces acting on
the member in their exact location, then pass an im section
{hrough the member, perpendicular 1o its wxis at the point where the
internal loading is to be determined

+ After the scction is made, draw a free-body diagram of the segment that
has the least number of loads o it. At the sestion indicate the unknown
, ¥, and M acting in their positéve directions (Fig. 4-1).

resultants

Equations of Equilibrium

- Moments should be summed at the section about axes that pass through
ber's cross-sectional area, in erder to eliminate

the centraid of the m
or M

the unknowns N and V and thereby obtain a direct solution fo

+ If the solution of the equilibrium equations yields 4 quanuty having
a negative magnitude, the assumed directional sense of the quaniity is
oppasite o that shown on the free-body diagram.

123
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Example 4-2 :

: ome the cantilever

Determine the intemal shear and moment acting in the ; B
3 cie 420 at scetions passing through points € and . | Determine the inter
point € in the beam st

shown in Fi

Fig 41

SOLUTION
Free-Body Diagram. 1f we consider free-body diagrams of segments to
the right of the scctions, (he SUpport reactions at A do not have o be cal-
culated. These diagrams for segments CB and DR are shown in Fig. 4-26
and 4-2c. Note that the intemal loadings act in their positive directions.
EATE

ToN
Support Reactions. Rep the distributed Toad by its resultant focce
and computing the reactions yields the results shown in Fig. 4-3b

Equations of Equilibrinm

Segment OB, Fig. 4-2ix

+13F =0 Ve=§-5-5=0 = it
- Free-Body Diogram. Segment AC will be considered since it yiclds the

feniodl ARE simplest solution, Fig, 4-3¢. The distrbuted load intensity &t C is com-

puled by propartion, that is,

L+ M, =0, =My~ 5(1) -5 - 53) -0 =0

s Chwmelh s w = (6018 G k[T = L/
Sepment DB, Fig. 4-2c S
+TSF = Equations of Equilibrium
IF,=0; S-5-5=0 e )
SAK SN SN 3N +TEF, = 0; 0=3 =0 ¥=6k )
u 20 kN Ans. S I+ M =0 Me=dER Ans.
Moy lm 4 im §oim L+ 2, = ~M, = 5(1) = 5(2) - 5(3) - 20 =0 | ket B s S= Bl S 2 b e
)mm m My, = —S0kN-m Ani. This problem lustrates the importance of keeping the disuil L
) ¥ s ing on the beam until after the beam uwcun:l;»]l :Lm m:‘:: ‘-(x_a ok
N, 0 3 e , . aed 01 5€; AC w
2 This example illustrates that the shear force is different on cither si€ wes cctioned at €, the alleet O 0 Rl XL R T ER v b
of the concentrated force while the moment remains the same. It 5 net be recognized. and the resull Vi =

wrang

senhiguonis ko determiine the shear directly under 1 concentrated force
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iy

Fig-4-4.

44 i supported by the floor panel DE, which in
Mn its ends by floar beams. These beams ransmit
sinder A, Determine the intemal shear

The 9k force in F
turm is simply VPO
their Ioads to the simply supported
and mement scting ot paint € in th

rder,

i e R
= S |

175k

SOLUTION
S:-zun J:mmm-, Equilibrium of the floor panel, floor beams, an
inker is shawn in Fig. 4—4b, It is advisable to check these resulis.

Free-Bod

ek “L. e The free-body diagram of segment AC of the girder

T e sine it keads 0 the simplest solution, Fig. 4—4c. Noie thit
1o lnads on the flacr beams supported by AC

Equations of Equilbrium
155 = 0,
3% I -V - i
N = = : =315k Ans.
0 i Aok

4.2 Shear and Moment Functions

SHE AR AND MOMENT FUNCTIONS

2

i
The design of a beam requires o detailed knowledge of the 1
nternal shear force V and moment M act
fhe beam s

reasons: (1) in most applied to
axis and hence produce only mnal shiear f
moment; und (2), for design purposes the beam’s
particularly t0 bending, is more important |
\n important exception o this aceurs, however, when beams ire subjected 1
compressive axial forces, since the buckling or instability that may occur has
10 be investigated. A

The var
point along
discussed in Sec. 4.1. Here, howeve
section or <t at an arbitrary distance X from one end
ata specific point

In general, the internal shear
or their slope will be discon
the distributed load changes or where conce
are applied. Because of this, shear and moment functions must be d
he beam located betuween any twa discontinities of load-
or example. coordinates xi, . und Xy will have
ation of Vand M through e b
coordinates will be valid only within regions from A to B for ;. from 810 €
for x;, and from € to D for xy. Although each of coondinates has the
seme origin, as noted here, this does not have 10 be the ase. Indeed, it may
be casicr to develop the shear and moment functions using <o linates ¥y, X2
x; having onigins &t A, 8, and [ s shown in Fig. 4-5b. Here x;
pasitive 1o the right and xy is positive 10 the left.

e ac

it the length o

Fig. 4-5

mal expansion

i

rder flanges
e the ipp I
uppor caused by

af the b

5
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X STRUCTURAL MEMBERS

36 DEVELOFED

Procedure for Analysis
The following procedure provides i method for determining the vari
of chear and moment in 4 af pasition x

L4 INTERNAL LOADING

B

Deerming the shear and moment i

beam os a function
function of £
Support Reactions
+ Determine the suppont reactions oa the beam
extermal forees into components acting perpen

beam'’s xis.

ad resolve all (he
1 1o the

lar and pars

Shear and Mament Functions
e« x and associated origins, extending intg
rated forces andior couple
ity of distributed loading

+ Specify separate coordinat
regions of fhe heam between conce
discanti

moments, or where there
+ Section the beam perpendicular to its axis at each distance . and from
e free-body diagram of ose of the segments defermine the unknowns Fig 1-
¥ and A the cut section a5 functions of x. On the free-body diagram SOLUTION bty
1 and M should be shown acting in their positive dire by
Lo Mo b “mm;m ;...,m m“F:; " Il directions, in Suppert Reactions.  For the purpose of e ing the support reacti
R 8 g snee e the distributed Toad is replaced by its resultant force of dobt ey
SF. = 0 and M is obtained by summing moments is important to remember, huwever, that this res d vk
about the point § located at the cut section, EM; = 0. on the beam. gty
« The results can be checked by noting that dMids = V and dVids = —=.
These relatioaships are developed in Sec. 4.3

( e
ok n | oy ]

®)
Shear and Mowent Functions. A free-body di
ment of length v is shown in Fig 4-6c Note th

um of the be
the intenss

fmngulm load at the section is found by proportion; that i M

: = +/15. With the load intensity known, the resultant of the distmbuted

oading is found in the usual manner as shown in the figure Thus, ( l J

w0k Fidw
v=0 s Y *
|
V= 30 — 00333 Ans “
] L# 20, = o0 — 30c + [H s+ a0
215/ 13
s M = =600 + Mx ~ 00111 Ans.
Note tha dhie = V and dVide = =, which serves as o check of the resulfs
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0 4 INTERNAL LOADINGS DEVELOPED 1N STRUCTU
aample 4-6
sam shown in Fi
Determine the shear and momest o the beam sfx T e—
function of £, 1, £ and T L
SOLUTION
Support Recctioas. The reactions ot the fixed support are V = 108 k and

sk Wi

O - -

8

k1 i —— 10k

o

4
T
)

sk Y

i

e
T T

{

E "
IERT A

B

{T e r— ,,49
“

L=,

o
Fig 4-7

M = 1588 kot Fig 4-Th.
Shear and Moment Functians. Since there is a discontinuity of distrib-
utcd Joad at 1 = 12 A, two regions of 5 must be considered in order o
he shear and moment functions for the entire beam. Hese x, is :

describe

appropriate for the left 12 L, and .z, 15, 0F %, can be used for the remain- L
8 segment

0= %, = 12 fi. Notice that V and M are shown in the positive dircctions, SOLUTION

F

V=108 —

Snpport Reactions.  To determine the support

Ans. foad is divided into a triangular and rectangular loading, and these load-

in the beam shown in Fig. 4-%a as o

ions, the distributed

Nai=0 ngs are then replaced by their resultant forces, These reactions have been
| computed and are shown on the beam's frec-body diagram, Fig. 4-8b.
M= — 1588 + 108z, — Ans, Y

b
=

fi = 20 ft, Fig. 4-7d.
108

~48-V=0, V=60 Ans

A+ EM, = 0; 1588 — 108x, + 48(x, — 6) + M = 0

Ans,
0= 4y = 8 fi. Fig. 4-7e. Show that N 108 kR
Vo G Ans. o
M= 1588 + 108012 4 x,) — 48(6 + £y Shear and Moment Functions. A free-body disgram of the cut section
M = 6, — 580 Ans. is shawn in Fig. 4-8c. As ahove, the irapezodal loading is l\'pt‘ltﬂl.‘h:!j:

0=y = X s
% H:LN ice the gomect positive directions for V and M in Fig

43/, Show g
=
&0 Ans.
= — 6y, - 100 Ans.
The abo: 7 :
Ve fesls can be patially checked by noting that when

=1
';,‘;.ﬁ&;“ain‘}nu.zsn.mmv=mkmu 400 ki, Also,
A #0d dV/ds = —u when x is measred positive to the

load at the cut is found by proportion. The
loading and its location are indicated. Applying the equilibium eguations,

T3 = 10c— ];cm{;M =

V=75 — l0r— LI

1 =750 + %) + i;(:’ﬂ}[“)lj; +M=0

sangular and triangular distributions. Note that the intensity of the
resultant force of each distributed

M =T8¢ - 5¢ — 0370

Ans.

Fig. 4-%
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4.3 Shear and Moment Diagrams for a Beam

NS DEVELOPED IN STRUCTURA

L MEMBERS

The masy coacentrated faadings sCing
0. this renforced encrese beam creaie
a variasion of the iniemal loudisg in the
beam. Foe (b reson, the shear and
fmoem daprams mest be dawn in
e 10 properly (4 the beam

If the variations of ¥ and A as fupc

the g 5
o must be plodted. In this section & simpler method

s these dingrams is discused—a methcd based on differential re.
exist between the load, shear, and moment.
onsider the beam AD in 4-Ya, which is
ute) and a series of cc

scussion, the distributed load
moard a5 shown. We

To derive these relations, &
whjected 10 an arbitrary disteibied loading
centrated forses and cauples. In the following
aill be considered positive &
will consider the free-bo gram for @ small segm
a kength Ax, Fig. 4-h. Since this scgment has been chosen at  poin
the beam that is ser subjested 10 2 concentrated force or couple, any resul
obiained will nat apply ai points of concentrated loading. The internal shear
force and Bending moment shown o the free-body diagram are assumed 1o
ac if the positive direction sceonding 1o the established sign convention. Fig
4-1. Note that both the shear force and moment acting on
be increased by a small, finite amount in order 1o keep the segment in equi-
libeium. The distribated loading has been replaced by a d fioree
x) Ar that sets a1 & fractional distance e(Ax) from the right end, where
0< ¢ = I [For example, if s(x) is uniform or constant, then ae(x) A wil
actut JAr so e = ] Agplying the equations of equilibrium, we have

e right face

+TEE =0 Vst dr — (V& AV) =0
AV=—u{) Ac
W EM, = 0; VAr — M + wlddx eldx) + (M + AM) = 0

AM = VAx — uix) eids)

win

iy

| ¥+av

Fasg

by

nit a5 A —» (), these equs

=ulx)

dx

Slope of | _
| Shear Diagram | ~
istsisel

(4-1)

Slope of | _ | w2
Moment Diagra I8

As noted, Eq. 4-1 states that the slope of the shear diagram at o point (dVidch
s equal {0 the (negative) intensity of the distribuied load ufx) e the point
Likewise, Eq. 4-2 states that the slope of the momens diagram (dMidx) is
equal 1o the intensity of the shear at the paint

Equations 4-1 and 4-2 can be “integrated” from one point to another
Between concentrated forces or couples (such as from 8 1o € in Fig. 4-9a)
in which case

| Av= —Imm

; % — Arca under “-3)
u“sm‘”'”} = | Distributed Loading

| Diagram

and

(441

Asnoted, Eq 4-3 states that the change in the shear betteeen any fwo points
O3 beam equals the (negative) area under the distribured loadding diagram
Betucen the poinis, Likewise, Eq. 4—b states that the change in the monent
Betueen the two poines equals the area under the shear diogrant betueen the
Poins. If the areas under the load and shear dingrams afe cisy 1 compuic.
Eap. 4-3 and 44 provide a method for determining the numerical values of
the shear and moment a1 various points along a beam.

-

SHEAR AND MOMENT DIAGRAMS FOR A BEAM 1
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?r[ﬁb"““‘

yhard Voiv

W

Fig 4-10

From the derivation it should be noted thet Egs. 4-1 and 4-3 cannot be
used a points where a concentrated force acts, since these equations do ot
aeeount for the sudden change in shear at these points, Similarly, because of
a discontinuity of moment, Eqs. 4-2 and 44 cannot be used at poims where
& couple moment is applied. In order 1o account for these two cases, we must
consider the free-body diagrams of differentinl elements of the beam in
Fig. 4-% which arc located at concentrated force and couple moments
Examples of these elements are shown in Fig. 4—10a and 4—10b, respectively.
From Fig 4-10a it is seen that force equilibrium requires the change in shear
to be

+1EF,

AV=—F (4-5)

Thus, when F cts doumard on the beam, AV is negative so that the shear
diagram shows & “jump” deweward. Likewise, if F acts igneard, the jump
(V) is wpward. From Fig. 4-106, leming Ar — 0, moment equilibrium
requires the hange in moment (o be

L+ IM, = 0 AM =M (4-6)
0 this ease, if an extemal couple moment M is applied clovkusise, AN is

positive, so thai. the moment diagram jumps upward, and when M acts
arise. the jump (AM) must be dowmpard.

Tabic -1 illusrates application of Eqs. 4-1, 4.3
Fomman loading cases assoming V and A retain

-5, and 4-6 to some

SEC. 43 SHEAR AND MOMENT DIAGRAMS FOR A GEAM 138

Ptine docreasing sope
shope = ¥y

dlope = ¥y
My

pusting decreasing shape
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Procedure for Analysis A —|

“The fallawing procedure provides a 1 ethod for construct the shear and vd moment diagrams for the beam in Fig. 4114
1 through 4-6
|

moment diagrams for o beam using E

Support Reactions
+ Dietermine the support reactions and resolve the forces
inio components which are perpendicular and parallel to the

ting on the beam

Shear Diagram

SOLUTION
Support Reactions. The reactions have been caleulated and a

+ Estabish the Vand x axes and plot the values of the shear at the two ends

of the beam the free-body diagram of the beam, Fig. 41 1h. l 11
art
« Since dV/id .. the slope of the shear diagram ot any point is cqual
10 the (negative} intensity of the disiributed loading ot the point. (Noke Shear Diagram. The end points £ =0, V= +30 kN and 1=9 m, ' i
V= —60 kN are first plotted. Since the load w is linearly increasing. the 1N 0L

that w is positive when it acts downward. ) n
Fashion

slope of the shear diagram is linearly increasing in a

» If a numencal valuc of the shear is to be determined at the point. one can (dVidy = —)
find this value either by using the method of sections as discussed in The point of zero shear can be found by using the method of seetions
4.1 or by wsing Eq. 4-3, which states that the change in the shear force | from a beam segment of length x. 4-1le. We require V=0, so that vy
iss equal 10 the (negative) area under the distributed loading diagram. . o al
+12F, - |z \|[ 0 x=50m e
* Since ux) is infegrated to obizin V, if w(x) is a curve of degree n, then : 9, — = im|
WVix) will be  curve of degree n + 1. Forexample, if w(x) is uniform. V| —s20m

gllsts. Moment Diagram.  From the shear disgram, Fig. 411, for 0< <
520 m the value of shear is decreasingly positive and so the slope
Moment Diagra v
2 of the moment diagram is also decreasingly positive (a@h/de = V). At e}
* Establish the M and x axes and plot the values of the moment at the ends X= 520 m, dM/dx = 0. Likewise for 320 m < x = 9 m, the shear and
of the beam. 0 the slope of the moment diagram are increasingly negative.
The maximum value of moment is ot = 5,20 m since dbf/dx = V=0
= Since dM/dx = V, the siope of the mantens diagram at any point is equal at this point, Fig, 4-11d. From the free-body diagram in Fig, 4-11e we
10 the intensity of the shear at the point. o
* Al the point where the shear is zero, dM/dx = 0, and the 5.20 520
P . refore this may = 1, (5.2 5.2 ] |
e i s i ot 30, = 0; —~305.20) + 1[:(1( 2 :lla 2027 + M

* If the sumerical value of the moment is to be determined at  point, one M= IR

gnsind this value either by using the method of sections as discussed
in 4.1 or by using Bq 44, whish states that the change in the
momient is equal 18 the areq under the shear diagram,

1

* Since Vix) is integrated 1o
Mz} will be a curve of
will be parabolic.

obtain M, if Vi) is a curve of degree n, then
degree 1 + 1. For example, if Vix) is linear, Mx)
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Draw the shear snd moment diagraums for each of the beams in Fig a-12

SOLUTION
Support Reactions. The reactions ire calculated and
body diagram of each beam.

Shear Diagram. Using the csisblisbod sign convention, Fig
shesr a1 the ende of each beam is plotied first. dVide = —a
the slope of the shear disgram between these end poinis can be deteamined
and the carve skeiched.

Moment Diggram.  Again, from the cstublished sign coavention, Fig. 4-1,
the moments at the ends of esch heam are phorted first, Using dM/dx = V,
the slope of the momet diagram between these paints can then be deter-
mined.

Carefully smdy each of these examples and notice how the degree of the
curves increases gong from the load, 1o the shear, 1o the momeat diagrams.
w—xtoV—xioM -

shown o0 4 free-

v v

) e -y

ol

- pesn -
& \h"'

v
g ¥
™
@

Fig. 4-12

SEC 43
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gl 4= il

Draw the shear and moment diagrams for the be

am shown in Fig, 4- 13

SOLUTION
Support Reactions.  The reactions are caleulated and indicated on the free-
body diagram.

Shear Diagram.  The values of the shear at the end poiats A4 (v, =
+100 1) and B (Vy = 500 1b) arc plotted. At an intermediate point
petween A and € the slope of the shear dispram is zem since dVids
—u = 0. Hence the shear retains its egion. At
(¢ the shear 8 discorrinuous since there is ree of GO0 I
there. The value of the shear just 1o the rij
(ining the beam at this point. This yields the fn )
equilibeium in Fig. 4—13¢. This poini (V = —500 Ib) is plotted on the shear
diagram. As before, w= 0 from € 10 B, so the slope dVidx = 0. The
diagram closes to the value of —500 Ib at # as shown. Notice ihat no jump 16
or discontinuity in shear occurs at D, the point where the 4000t
couple moment is applied, Fig. 4-13b.

Tt may also e noted that the shear diagrim can be constrocted quickly
by “following the load” on the free-hody m, Fig. 4-13b. Beginning
atA the 100-1b force acts upwand, so V, = +100 Ib. No k
Aand C, 50 the shear remains constant. At C the 600-1b force is down, so
the shear jumps down 600 Ib, from 100 Ib to 500 Ib. Again the shear is
constant {no load) and ends at —500 Ib, point B, which closes the diagram
back 1o zero since the 500-1b force at B acts upward, J

M- 1)

ul acts between

i)

Moment Diagram. The moment at cach end of the beam i zero, Fig
#-13d. The slope of the moment diagram from A to € is constant since
dMAdx = = +100 Ib. The value of the moment at € can be determined
by the method of sections, Fig. 4-13e, or by finding the area under the

shear diagram between A and C. Since Ay = [

AM,. = Mz = 0 = (100 1b)(10 i}
g = 1000 Ib-fi
From € to D the slope is dM/dx = V = —500 Ib, Fig. 4-13c. Since
Me = 1000 I+ fi, the moment at ) is

AM,, = M, — 1000 1b-ft
M,

(=500 105 1)
— 1500 1b-t

A jump occurs a 1 due to the couple moment of 400 1b:ft The
point £ due 1o the ¢
method of sceiions, Fig, 4~ 137, gives  value of +2500 Ib-ft just  the =

Tight of D, From this point, the slope of dM/ds = =300 [b is mainkined e

0t the diagram closes 1o 7ero at 8. Fig. 4-13d.
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S —

4 1o support a partion of th

2. The idealized model for the beam

s i the phos

The beam
for the cntrance way of the buil
the load actin
diagrams for th

with
s shawn in Fig. 4-14a. Draw the shear and momey

beam

SOLUTION
Support Reactions. The reactions are calculated in the usual manney,
The results are shown in Fig. 4-146.

Shear Diagram. The shear at the ends of the beam is ploned first, ie
¥, =0 and Vo= —2.19 kN, Fig. 4-14c. The slope of the shear diagram
iis constani negative over the entire length of the bes
—10 k. To find the shear 1o the left of B use the method of sections
segment AB. or calculase the area under ihe distributed loading d
e, AV = Vg — 0 = — 10(0.75), 7.50 kN, The support rea
cases the shear 1o jump up Thereafier the
diagram slopes dowmward to —2.19 The point of ze
be from the slope —10 kN/m. or by proportional
781/x=219/(1 -2, x =078l m.

triangles,

Momeni Diagram. The moment at the end points is plotted first
M, = M =0, Fig. 4-14d. Inspection of the shear diagram indicai
linear increase in negative slope for the moment diagram, then at B 1 su
change from large negative slope 50) to large positive slope (
occurs. The slope then decreases 1o zero, Fig. 4-14c. and becom
negative until it reaches a value of —2.19. The values of —2 8] and 0.2
0n the moment diagram can be calculated by the method of sections
fisding the arcas wnder the shear disgram. For example.
My — 0= 1(~750K0 —281 Mz = —251 kN-m. Likewisc. show
that the maximum positive moment is 0.239 KN-m

04

Example 4-11

FOR & BEAM

144

Draw the shear
Fig. 4

conpect

and B and E are

SOLUTION
Support Reactions. Once the beas ons
suppon reactions. can be calculsted as shown in Fig. 4-

Shear Diagram. As usual, we stant by ploging the cod shear af A and
4-15c. Using the equation dV/dx = —u, the curves arc indicated.
Note the constant negative slope from A 1o B of dV/dr = —2 k/fi. zzro
slope from B to C., increasingly negative slope from € 1o D (0to 3 /.
and finally decreasingly negative siope from D 1o £ (3 k/ft w0 01 Try
1 establish the valies of shear using the appropriaie areas under ihe kad
diagram (v curve) to find the change in shear. The zero val
x = 2 fi can cither be found by proportional angles. or by
as was done in Fig. 4-11e of Example 47

wsing stalics,

i = -fiand Mg =0 are
Moment Diagram. The end momenis M, = 60 ki

plotied first, Fig. 4-15d, Study wmwmmmr-mm
are established using dM/dx = V. Verify the sumerical vahaes F L2
using suatics o by computing the ppropeiae areas under shear

diagram o find the change in momenL
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4.4 Shear and Moment Diagrams for a Frame

142 ous

Fig 416

Support Reactions. The suppon reas
‘ diagram of the entire frame, represented here s a centerline diagram in
Fig. 4-16b, Using these results, the frime (centerfine} is then sectioned g
into two members, and the intcrmal reactions at the ends of the members
are determined, Fig. 4-16c that the external 5k load is shown oaly
on the free-body diagram of the joint at C.

s are shown on the free-body

| Moment Diggram.  In sccondance with our positive sign comeation and
wsing the technigues discussed in Sec. 4.3, the moment disgram i shown
for the entire frame on the centerline diagram in Fig. 4-164

1t sheould be noted that the calculations of the frame’s support TEactions
are independent of the members’ cross-sectional afea since the frame is
statically determinate. Had the frame been statically indeterminate, i would
: have been necessary fo consider the variation of the memben’ crost-
tectional area 1 obtain the eactions. The methods for doing this ar
a

ussed in lates chapters of this book

apprricd
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DEVELOPED [N STRUCTURAL MEMBERS

B

|

r and moment diagrams for the frame shown in Fig. 4|7,

Draw the shea e
s a fixed joint

Assame A is a pin, € is 4 moller, and &

SN

BORN

A= 120kN

Fig. 4-17

SOLUTION

smnmm The _llm-buﬂs' diagram of the entire frame is shown

|'|':u il:gnJTb Here l!w distributed load, which Tepresents wind Joading.

- [mmplxmf by its resultant, and the reactions have been compuied
& then sectioned at joint & and the internal loadings at B are

determined, Fig. 4-17c. As 3 ch, ;
s <. eck, i
wehich is also shown in the figure equilibrivm is satisfied at joint 5

Shear and M, i

72 kNM(S mf"_":" Diagrums. The components of the disiributed load.

o8 member “,n: ‘Ju;‘;': H'rl;i TG = 192 kijm, e chowe
ah o e associated shear and moment diagrams

¢ druum for each member as shown i Figs, 4. 174 ang 4. e

1T0KN m

el

25N

¥15kN

VikN)

MNm

1
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Moment Diagrams Constructed by the Method of Superposition

VSTRUCTED BY THE METHOD OF SURERIOSITION. 147

Sice beams are used primarily 0 resist bending stress, it is impon

Wi
moment diag »
use the pri - - "
: trested separately
fer in the fext that this can be particular geu
spplyi ermic deflection methods 10 determine both the deflection
bearm and the reactions on statically indeterminate beams i "
Most Toadings on beams in siructural
the loadings shown in Fig. 4—18. Construction of the associsted mo i
diagrams hs been discussed in Example 4—7. To understand how 1o use o= S "
it 1 etpeaponilon 'lo cntsinict the omest di - "
r e
i _—— +
L - o
M !
A
o M, [ e 2 perpaifion.of gk s
' f . Fig 4-19 ]

¢ reactions have been

simply suppo
calculated o

force and
1 the 1op

it is subjected 1o the statically equivalent
pported beam. Rather than

ously when drawing the moment dia
separately om the three

laads on 1
can instead supe
cantilevered beams shown

cantilevered be
ids the resultant moment
e, from each of the sepa
—200 = 300 + 500 = 0,
1-19b. In some Cases s
Jly equivalent moment
omplicated

beams. Thus, if the moment di
Fig. 4-199, the superposition
diagram for the simply supported beam. ¢
nate moment disgrams, the mome! end A s My
& verified by the top moment disgram in Fig
ofien easier t0 construct and use a sepirale senes of st
dingrams for a beam, rarher than construct the beam’s mare

“Tesuliant” moment disgram.




i STRLCTURAL MEMEERS
s DEVELIPET

o a similir

o splify €ONMTELion of the e,
g & sUpEIPUSHION O “Sirmply sy,
e beam shown at the fep of Fig 4 o
bearns. For exampi, < shawn below it. Consequently. the g

e beam XATES ST v can be used rater than .
shown in Fig. 4-20

o4 DeTERNAL LOAD

aper, e can o
fora beam by Ul

e
o

et disgrims

1 dagram
g the sesultant momen! 322

WA -ml

Siuk DN

— tim
0 resulliat moment diagram

AN m)

B om MO8 m)

PRSI 0f as50ciated moment diagrams
b b

Fig.a-3

SEC. 43 MOMENT DIAGRAMS CONSTRUCTED BY THE METHOD OF SUPERISITION.

149

Draw the moment diagrams for the beam shown at the top of Fig, 3-21a
using the method of superposition. Consider the beam to be cantilesered
from the support at 8.

SOLUTION
If the beam was supported as a ¢ ver from B, it would be subjected 1o
the statically equivalent loadings shown in Fig. 4-210. The superimposed
three cantilevered beams are shown Below it together with their associated
moment diagrams in Fig. 4-218. (As an aid to their construction, refer 1o
Fig. 4-18.) Although nat needed here, the sum of these diagrams will yield
the resultant moment diagram for the beam, For practice,
diagram and check the results

ry drawing this

5 ki

sken

nsk 15k

,,
225k 15k
n
150k = fi Mk -1y
150|
+
Mk _ans
+
wimy
1875
of cantilevered beams wuy wiirom of associsted moment di;
B Fig 4-21 s .




Desermine U

s € 2 e hC Suppoy
jal toad, amd Bendicg i, st e of L
S Do 0 e St S0t O o s 08 Y o the 10y
siothe gk T
memcn s e €. ek S Ly e
e . which i ot 10 8¢ 10k
o mn A Sk

B

!MA-;.-;lhl

Proh. 4-1

43 Determing the interal shear, mial force, snd bending  4-5. Dt
mlﬂmﬂ'ﬂlclﬂﬂmﬂﬂwll
s wroller Point Cis Jocated jest 1o the night of the §& kad

Bk

808

Frob. 42 #

-3 Dstermine the iatemat shear, sl
3 “moment ib (he beam af poiess € and [
. mller s B i i

fofse. and beaiing

Assic e sopgan e A roller and B s & pin

]

e internal

ﬁ,»n._j.fmn +—l0n—

rminc the internal shesr, axial load. and bengy,
‘moment at point C, which is just to the right of the roller at A, xy
polat 0, whch i just 10 the lefi of the 3000.-1b concentrated fuce

4L Deicrmine the imiernal shear, axial force, and bendif
mament ia e beam at points € and [, Assume the supgort 24

Prob. 4-4

3000 o

75 it

—IA

Prob. 4-5

|
].‘T—jm_“‘—lm‘ﬁlm—'

Frob.4-5

4T
moment in the beam at po

-5,

4=,

soller,

12 kNim

Determine the internal shear, axial
Cand B

arce, and bending

point &

Determine the intermal shear, avial force.
moment in the beam

and bending

Determine the intemal shear, axial force, and beading
ImAmet 3t pot €. Assume the sUPpOM &1 A is & pin and B is 4

50 1/t

2001

PROSLEMS | S)

4-10.
u
apin and &

Deiermine the she:
x, where 12/t < 4
rolles

nd morment in the floor ginder s 4
= 2411 Assme the support at & i

411 Draw the shear and mament diagrams of the floos ginder
in Prob, 4-11. Assume there: is 3 pin o A and 1 roller ut &

A0 Th

0

LLTE S

Probs. 4-10/11

*4=12. Draw the sheas and moment diagrams for the beam

1 J P

413, Draw the shear and moment diagraies for the beam. Alsa,
express the shear and moment in the beum 35 3 funetion of © within
the region 2 m < x < 10m

1500 8




g system for o building consists of

floor beants, which in tu 4o

rally running Hoo 1 N S

i::T imply supponed floor Habs. Draw e 11
v "

g for he RUEE Asune e pinke .

FIY ]

| b
n | |
;_sa.-],—snA- SR—F—5 05

Prob. 4-17

4-18.  Drarw the shiear and moment diagrams of the beam. s,
418 Descrmine the shear and momentia the beam 63 focion b spport st 8 s i pin and A is a roller.
ol 1 200 then s the shear and momest dagrans for he beare.

415 Dra the thear and moment diagrams of the bea. Aot

Mﬁ-_g._.,hhh e S0 at Bis o pin asd A is a roller,

4-20, Determine the shear and moment in the beam 4 &
function of & Assume the support at 5 is i rofler

4-21. Draw the shear and moment dingrarns for the beam in Proh
4-20. Assume the suppoet at & i o roller

400 BT

Probs. 4-20/21

4-21. Determine the shex
of x, where 15 fi < x < 4§
s & roller

« mament in the beam as a function
Assume the support at A is 4 pin and

4-23, Draw the shear and moment diagrans of the beam in Prob,
4-22. Assume the sUppOR a1 A is & pin and B is a roller

0k 20k

— 18 ft—r— M e IS
Probs. 4-22/23

*4-24. Determine the shear and moment in the apered beam as
4 function of . where 0 = x < 12

mosLems 153

4-35.  Dercrmine the sheat wosh morment i the beam as a fanction
of x oner its entire length

4-36. Draw the shear and moment disgrarms for the bearm in
Prob. 4-2
5
00 )
) 5
S 0 S
——
Probs. 4-15/26

4=11. Determine the shear and moment in the beam as 4 function
of x. Assume the support at & is a roller

150 it

600 b 1t

— 15—

Prob. 4-27

*4-28. Determine the shear and moment in e beam a5 &
function of x

429, Draw the shear and moment diagrams for the beam.




o STRUCTURAL MEHEEES

e
e Indicse
value:

diagrams for
shear and moment diagy the y
e e ola o i ey, i

4-34, The foating under the column is subjected 1 4 wrifpy

bearing pressure due 10 the soil. If the calumn Toading is § s,
&30 Do the shear and momem disgrums for e pemd Ll g daw the shear and moment diagrams fie g,
cansiever beam ficeing.

45, Draw she shear amd. moment. diagrams for the ban
Asserme the Suppcrt i A is & roller.

FROBLEMS 155

#4-36, Determine the itemal shear, sxial lowd, ani bending
maonient in the beam at poiats 2 and £ Point £ 5 just 1o the right
of the 4k load. Assame 4 is & roller, the splice at B is a pin, ang
€ is o fixed support

4-39. Draw the shear and moment diagrams for the Besm

12 k%
A L]
—3m - im 4
Prob, 4-39
Bt 6 —d g
Prob. 4-36

AS3T, The CORCrete beam supports he wall, which 5iec's (9 w4 g0 Dy e shon S onse g Ao st
beam o the uniform Ioading shown. The beum itself has crons. g2 stk e By i

sectional dimensions of 12 in. by 26 in. and is made from concrete

having a specilic weight of ¥ = 150 1b/ft". Draw the shear and
mament dizgrams for the beam and specify the maximum and
miniimum moments in the beam. Neglect the weight of the steel
reinforcement in the beam.

200 By 1500

C B
L Al A e b it B —]

Prob. 4-40

—1non— -L7ll
Prob. 4-37

#h —

4-41.  Determine the shear and momeat in the beam 2= a function
of x
438, Draw the shear and moment diagrams for the compound
beam. The segments are connected by a pin ot B.

SN




ERS
evpeD IS STRUCTURAL P
G4 INTERNAL LOADINGS s % Determine the shear at
e s fceng i sabied 0 08 UL e el

Hﬁﬂhmﬂﬂ”ﬂ;:’:!qmdm"’

e moment in the beam us g gy
i

- 15011

| - - — 10— —
Prob. 4-45
Frob 442
4
o
-
L
—
A
= 446 Draw the shear and moment diagrams for each member el
C.__m the frame. Assume the joints at A, 8, and C are pin connecial
Fro 43
= B0 I
S48 The concret feoting supponts the teo column s, If
he sl presiat: under the girder is asuned o he

PROBLEMS |57
4-47. Draw the shear and moment
e frame. Assume the joint 3t 8 is a pi

Fims for each memiber of

A9, Draw the: shear and moment i mensber
ram fow cach of
suppoet € is i roller

the frame. Assume joints B and € wre fined connected

125Kk

Prob, 4-47
Prob. 4-49

448 Draw the shear and momeat diagrams for cach member
Ofthe frame. Assume the support at A is a pin and D s aroller.  4-8%,  Draw the shear and moment dingrams for each member of
the frame:

05km

08k 08k 12k

P—_—r

Prub, 4-47




EMBERS
= s STRCTRAL M
CHL 4 INTERNAL LOADINGS
i g s men¥r o Lo e oin
Dy the cheas and mome!

Draw ihe shear and momen s fot each e,

o mbey o
i at A, . 0 € are pin conneste s

250 1011

Prob. 4-51
Prob. 4-53

: 484, Theleg on the ramework can be designed 1o cxtend cibe
B v i Do e momeat g fov v s
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486 Druw the moment dingrams. for the heam using i
mehexd o supcrpositios. Comsider the beam o be camilevered fram
the pin at A

40 kNim
T

455, Draw the sbear anil moment disgrums for cach member of
the frame. The joint at & s fixed connected

Prob. 4-36

4-5T. Draw the moment diageams for the beam using the method
of superposition.
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i o parabalic afch suppors decks
running bodh through and over il

Cables and arches often form th

main load-carryin
r we will discuss s

s subject

uniform distributed load, Since

considered. The analysis of this srs
the fundamental behavior of all

are will provide some in

hed structures,

5.1 Cables

Cables are ofien used in engineering
laids from one member 1o another, When used
beidges, and troll

transmission lines,
and must be included in
“omsidered in the sections that follow: a cable subjected 10
nd i cable subjected to a distributed load, Provided thesc |
War with the cable, the requirements for equilibrium are 1
identical manner.

s, Two cases will be
ncentrated loads
e copla-
ulated in an




64 €15 CABLES AND ARCHES
| When deriving the pecessary refations between the force in the cable ang
i wis : is perfectly flexib
Jope, we will mke the assumption that the gable is peefectly flexible
el Dioe o its fexihlit, the cable offers no resistance 1o sh
ine
ce acting in the cable is always ¢
nd, therchore, the force acting in
:::?: ;:mm slong its length. Being inextcnsible, the cable has a co

i e esi e th
foee and afier the load is applied result, once o
il cable remains fixed, and the cable or 4 segment

applied. the geometry of the
of it gan be treated a5 4 rigid body.

.2 Cable Subjected to Concentrated Loads

When a cable of negligible weight supports several concentrated loads, the
cable takes the form of several straight-line segments, each of which is sub
jevied 1o a constant tensile force. Cansider, for example, the cable shown

Fip. 5-1. Here 8 specifies the angle of the cable’s cord AB, and L is the ca
ble's span. IF the distances L, Ly and L and the londs P and P arc knowr
then the problem is to detenmine the ine inknouns cansisting of the fen:
in each of the three segments, the four components of reaction at A and B
and the sags v ad v ol the o points C and D. For the solution we
wrile fu equations of force equilibrium at each of paints A, 8, C, and 0. This
results in & tatal of eight equations. To complete the solution, it will be nec.
essary (o know something sbout the geometry of the cable in order o obiir
the aecessary ninth equation. For example. if the cable’s total fengrh 2 is spec
ified, then the Pythagorean theorem can be used to relate ¥ to each o
three segmental lengths, written in terms of 8, v vy, Ly, L. and Ly, Un
tunstely, this type of problem cannot be solved easily by hand. Anther
pussibility, howeyes, is to specify ane of the sags, either yc- or vp, insiead of
the cable length. By doing this, the equilibrium *equations are then suffici
{or ohsaining the unknown forces and the remaining sag. Once the sag at ¢
point of loading is obtained, ¥ can then be determined by trigonometry

foenshen performing an equilbrien amalysis o problerm of this type, the
orees in the cable can also be obtained by writing the equations of equilib-

num for the entire cable ar any poric ;
3 - thereof. ¥ iy
nummerically illustrates these mme“m_\. reof. The following example

the

SEC
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Determine the tension in each segment of the
Also, what is the dimension 47

SOLUTION
By inspection, there
and three unknown cable tensions, one in each cable
unknowns along with the sag i can be determi
equilibum equations (£F, = 0. E¢

A more direct approach to the solution
of cable CD is specified, 50 4 free-body diagray
cable is shown in Fig. 5-2b. We ¢
as follows:

[+EM, =0;
Teof3/542 m) + Tip(4/5)(5.5 m) — 3KN(2 m) — 8 KN{d m)

Tep ™ 6.79kN

are four unknown extemal reactions (4, 4 1)

able shown in Fig. 5-2,

-

and [3)
segment. These seven

10 recognize that the slope
of the entire
abtain the tension in segment €O

Ans,

Now we can analyze the equilibrium of peints C and B in sequence

Point € (Fig. 5-2c);

679 KN(3/S) — Tyocos By =0
6.79 kN(4/5) = BKN + Ty.sin f. = 0
,

fac

3230 Toe = 482 KN

Point B (Fig. 5-2d);

SEF, =0; — T, €08 8, + 482KN cos 3237 = 0

HIEE =0 7, sin 0, — 482 KNsin 3235 - 3EN
gy = 538" Ty = 690 KN

Hence, from Fig. 5_24.

ho= (2m)an 53.8° = 274 m

K




6 ©H3 CABLES AND ARCHES
3 Cable Subjected to a Uniform Disti

Cables provide a very effective means of supporting the dead weight of girg
ers or bridge decks having very long spans. A suspension bridge is a typicy
example, in which the deck is suspended from the cable using a series of cloe
and equally spaced hangers.

In order to analyze this problem, we will first determine the shape of ;
cable subjected to a uniform horizentally distributed vertical load u
5-3a. Here the x.v axes have their origin located at the lowest point
cahle, such thit the slope is zero at this point. The free-body di
small segment of the cable having & length As is shown in Fig. 5
the tensile force in the cable changes continuously in both magnitud
direction along the cable’s length, this change is denoted on the free-body
diagram by AT. The distributed load is represented by its resultant force
wodx, which acts at 4.2 from point O, Applying the equations of equi.
librium yields

uted Load

~Teos 8+ (T + AT)cos(f + AB) = 0
IF, =Tsin @ — uy(dx) + (T + AT) sin(f + &6) = 0
I+ M, = w8 xHAx/2) ~ Tcos By + Tsin §Ax = 0

Dividing each of these equations by &x and taking the limit as Ax — 0, and
hence Ay — 0. A6 — 0, and AT — 0, we obtain

L ] 51
o (5-1
o diTsin @) _ :
Fie. 5-3 K &2
e 5-3
F it et
Integrating Eq. 5-1, where T = Fyy at x = 0, we have
Teosf=F, 34

which ind._u.ms the horizontal component of force at any paint along the
remains constant,

Iniegrating Eq. 5-2, realizing that T sin 8= 0 at x = 0, Bives
Tsin 8= wyx =)

; Dividing Eq. 5-5 by Eq. 54 climinates 7. i 3, we can
w.hpllwl?:’m nates 7. Then using Eq. 5-3, we

; b

tan § (5-6
dr  F,

N

SEC. $3 CABLE §i T
EL LE SUBIECTED T0 4 UNIFORM OISTRIBUTED LOAD. 16

Performing & second integration with y = 0 ui ¢ = 0 yields

0
3, 5-7)

(This is the equation of o parabala. The constant Fy, may be obtsined by
Lsing the boundary condition y = ot x = L, Thus
gt
o (581
Finally, substituting into Eq. 5-7 yiclds
I
y= o 59
i s

From Eq. 5-4, the miximum tension in the cable occurs when 6 max-
j.e. ot x = L. Hence, from Eqs. 5—4 and 5-

5-10)

Or, using Eq. 5-8, we can express 7., in temms of uy, ie.,

(5-11)

h is un

zontal projectio
3 other loads
the form of a carenary curve. Howeve
s the case for most structural applications, this curve ¢
parsbolic shape, as determined here

From the results of this an

it follows th

widge or -
i

pended girder will be uni
supported by

Jength of the cable. Hence
series of hangers, which are n
hanger must be the same so as to ensure that ihe &

Eirder or any other framework which is fr pended from the cable
In particular, if the girder is simply supported as well as supported by the
cable, the analysis will be statically indeterminate to the first degree., Fig
S=4b, Haweves, if the girder has an internal pin at some intermediate point
along s length, Fig. 5-dc, then this would provide a condition of zero
moment, and so a determinaie structural analysis of the girder can be per=
Tormed,
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The cable in Fig. 5-5a supports a ginder which weighs 850 1b/ft. Deter
mine the feasion in the cable at points A, 8. and €

Fig. 5-5

S HoN

The origin of the coordinate axes is established at point B, the lowest point
on the cable, where the slope is zero, Fig. 5-Sb. From Eq. 5-7, the para-
balic equation for the cable is:

_ B501b/ft 42

. i
Tl 2F, Fy
Assuming point € is located ' from B, we have
425 .
20 = :h.- ?
Fy= 2125 e

Also, for point A,

40

o
=yl et 1
FN

e AL - |
D= e =00 =]

% % 2008 — 10000 = 0
¥ =42

SEC. 53 CABLE SUBJEE

Thus, from Eqs. 2 and 1 (or Eq, 5-6) we have

20254142) = 364592 1
_ &0 :
~ 3pasgz” = DAINILe @
At point A
x= —(100 - 41.42) —58.5Kft
&
tan 6, = 0102331( S8.58) = — 1366
8=
Using Eq. 5-4.
Fy 304892 _ o
' eos8, cos(—5379% e
At point B, x = D,
e
=it D &
20 g oy
e e B A
cosfy,  cosl
At point €,
x = 4l42ft
1an 6, = 2| 0.02331(41.42)
dxfimaraz
8 = 40
oo 36492 _ g Ans.
€7 cosf  cos440

O A UKIFORM DISTRIBUTED LOAD. 169




M5 CABLES AND ARCHES

L

The suspension bridge in Fig. S-6a is constructed using the two i
trusses that are pin connected ot their ends € and supported by a pin ar 4
and a rocker at B, Determine the maximum tension in the cable /1 Ty,
cable has 4 prrabolic shape and the bridge is subjected to the Single Jog
of 50 kN,

e Imei2 @ 3m=12m

w0

Fig. 3-8
SOLUTION
The free-body diagram of the cable-truss system is shown in Fig. 5-6b
Atw?rdlng 10 Eq. 5-4 (T cos f= Fy), he herizontal component of cable
tension at J and H must be constany, Fy. Taking moments about B, we have
WFEM, =0, —08m) ~ A4 m) + S0KNGm) = 0
L+A =1875

SEC. 53 CABLE SUBJECTED 1O A UNTFORM DISTRISUTED LOAD. 7]

E 2m ih

If only half the suspended structure is considered, Fig. 5-6c, then sum-
hing moments about the pin at €, we hive

)~ A(I2m) =0

(+3Me = 0; Flldm) — Fi6m — 1012

I+ A, = 0667F,
From these twe equations,

1875 = 0.667F,,
Fy = B.125kN
To obtain the maximum tension in the cable, we will use Eq. 5-11, but
first it is necessary 1o determine the value of an assumed uniform disirib-
uted loading w, from Eq. 5-8:

2Fyh 228125 KNKE m) =
£ (12 m)

25 kN/m

Thas, using Eq. 5-11, we have

T = Wl VT + (L7
= 3125(12mV 1 + (12m,
= 469 kN ga




5.4 Arches

exmrate —rown

L,
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e the
s as an i

e
an arch ac! ki

slhough, boeaise of it MUSE also pegi,
enenting upon hows it 1 loaued and Shipcd

pies, arche:
saruetures, Essentill
mainly i comPIESIon
e beading and sheu depen

§ sabalic shape and it is subjected 10 a nifony
e mm:; :::::a\ foad, then from the analysis of cables i fq).
e farces will be resisted by the arch.

ressive ?
'”f\m:.i::!;::x‘: e in Fig. 57, which specifics some of the pome;,
L

Depending upon the application, severy
st s ml::::nm;umwn » Iofnli::r.‘ A ficed arch, Fig H_'
serete. Although it may require less marc:.
ial 10 construct than other types of arches, it must have solid foun
e since it i ndetcrminae 10 the third degree and, conscq
inimoduced iato the arch due 1o relative ety

o its supports A hec-hing
o timber, It s indeteminate to the first degree. and although it is not

= = fined anch, it is somenhat insensitive 10 senilement, We could make ths
ructure stsically determinate by replacing onc of the hinges with g roilc
Dhoing so. however, would remowe the capacity of the structure 1o resist b
ing alag s span, and &5 & resull it would serve as & curved beam, and
a5 an arch. A shree-hinged arch, Fig. S—Bc, which is also made from metal e
timbes, i statically deerminate. Unlike statically indeserminate
ot alfecied by setilement or temperature: changes. Finally. if two- and th
hinged sches are 10 be constrocted withoat the need for larger found
abutments and if clearance is nol a problem, then the supports can be
necied with a tie rod, Fig. 5-84. A tied arch allows the structure 1o beha
arigpd usit, since the tic red carries the horizontal component of thust ot the
suppoets. It is also unaffected by relative settlement of the supports

Bedarch
)

5.5 Three-Hinged Arch

SEC 34 arcHes 173

e

o provide some insight as o low a 5. we will now con-
ider the anatysis of a three-hinged arch such s the one shown in Fig, 5.9
1n this case, the third hinge is located ot the crown and the Supports ane
oot ai differcnt elevations. In omder 1o determine the reactions af the sup-
ports, the arch is disassembled and the free-body diagram of each member is
shown in Fig. 5-9b. Here there arc six unknowns for which six equations of
equilibrium are available. One methad of solying this prablem is to apply the
moment eguilibrium equations aboat points A B. Simultancous solution
will yield the reactions €, and The suppant reactions are then determined
from the force equations of equilibrium. Once ohtained, the internal normal
farce, shear, and moment loadings 4t any point alor
using the method of sections. Here, of course, the s
pendicular 10 the axis of the arch at the point
free-body dis

Three-hinged arches ca

he arch can be found
on should be taken per-
nsider
m for segment AD is shown in Fig. 5-9¢

Iso take the form of two pi mected trusses,
cach of which would replice the arch ribs AC and CH in Fig, 5-9a. The analy
s of this form follows the same procedure outlined above, The follow
examples numerically illustrate these concepts

For example, the

Fig. 59

An example of & two-nbboned. ¢
fived-arched bridge having a main 5
1008 1 (304 mi

pen- spandrel

Courrery




|

. SEC 5 THEEE Hix
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) arch Bridge showr in Fig. 5100 has Nt e
—— The three-hirged rI""‘m e “m;‘.m Joad, Show that the parabe) AR
' ot shape and peession at an intermediote poin £ o : P :
! o subjested 00lY 0 2L E e wansanitied 1o the arch ribs [+3My =0 —MISH) + KR - C sy =0
: C, =125k
2 %F, = 0, B, =25k
: +TZF, =0, B, =25k + 25k = 0

A section of the arch tken through point D)
¥ = —25(257/(50)* = ~6.25 f, is shown in Fig. 5-10d. The slope of the
segment at D is

Fig. 5-10 tan # = Ll 05
r
SOLUTION
Here the supparts are a1 the same elevation. The free-body diagrams ol
entire arch and pan BC are shown in Fig. 5-105 and Fig. 5-10c. Apply- | A ; .
ing the equations of equilibrium, we have: | pplying the equations of equilibrium, Fig. 5104 have
SIF, =0 25k = Njcos 26.6° — V,,5in 26.6° = 0

125K + N, sin 26.6° — Vy,c08 266° = 0

WEEM, =0 M, + 125k(125f) - 25ki625f) = 0
Np =280k Ans. 1251
V=0 Ans.
M, =0 Ams.

Note: If the arch had a different shape or if the load was nonuniform, then
the inemal shear and moment would be nonzere. Also, if & simply
Entire arch SUpported beam was used to support the distributed loading. it would have
| [0 resist a maximum bending moment of M = 625 k-ft. By comparison, it | O o

the load in direct compression
ity of buckling) than to resist the

i, =g

G0 ~ soxrso ) = g
=25k




Fig. 811

—
e tothe loading shown in Fig. 511,
e three g |..>amrn;"w":"‘;,} und CB. The dashed member GF of

¢ the force i <"

Determin force.
the truss is intended to carry 10 fi
S 0K 5N
[ im—t—im—f—3m——3m—
@
SOLUTHN

The supportreactions can be obtained from a frec-bady diagram of the en-
tire arch, Fig. 5-11b

+EM, =
A5 =0 E12m) ~ 15103 m) ~ 20 k5(6 m) — 15 KNO ™) = 0
SIF=0 aop E =25k

Y
T AT SN0 - 5k 4 25KN =0

A, =25kN

— —

SEC 46 THREEHINGED AREH 1T

The foree components acti
ering the free-body diagram of the
components fepresent the. resuli

L joint € can be determined by consid
part of the arch, Fig. 5=11c. (These
1 effect of members CF and €D scting
4t €)) First, we determine the force in the tie rod

=0, Ful5m) — 25kNEm) + 1SkNGm) = 0
Fie = 210kN
Then
% 3F, = 0 +210KN =0
C, = 21L0KN

+12F, =0: 25KN — 1SkN — 20kN + C, =0
C,= 10kN

To obtain the forces in CH and CB, we can use the method of joints as
follows:

Joint G, Fig. 5-11d,

+TEF =0, Foe — 20kN =0
For = 20kN(C)

Joint C; Fig. 5-11e.

1 [
SEF =0 2L0KN — l\;m}

- 1 (1 : -
HIE =0 Falg) + F,,,(\__T"} — 20kN + 10N =0
Thus,

Fow = 269KN(C) Ans.

¥,
15k
WiN
Frz ]
5
Fe
("
WiN
Fou
Y 20N
o .
10kN
e

L Fop = 4TAKN(T) i




cable suppans the 1o
the force af point €

5.5 The

distanee Ve

§.6. The cable suppots the

e of the vetical force P so 1
b

from D. Set P =4 ),

the boading shown. Dhees

segmerts sappen
7 Wi caic paime .5 P =4k

istance . from th farce of €
| The cable segments suppon the lasding !
magritodc of e vercal force 50 that b

jing shown. Deter

e the

o, Deermine
=bfi.

in————sA

P
Probs. 5-5/6
57, Cable ABCD suppoats the 120-kg uniform beam. Determine
the maximum tension i this cable and the sag of poini B

. The cable supports the three foads shown. Determine the
o 80 of poinis B and D, Tae #, = 415, £y = 25 kN

L The cable supports the thee Joads shown. Detormine

£ the
mitude of P if P3=3 KN asd v, = 05 m. Abo find the
Yo

03m 0.5m 0.5m

- Prab, 5-7

:;:- Determine the maximum wraform Joading o 10/
CA SUPPOT if . is capable of sustaining a maxi

OF 3 & before it will break.

<9, The cable supparts the
semie 1he tension in the ¢

1, = 60 It D
Aasd B

the mas
saximum tensi

s, Den
Juppert if the

Probs. 5-9/10

S-11. The trusses are pin connected and suspeaded feom (he par-
el cable. Determine the n force in the cable when the
smueture is subjected (0 the lading shown

i o]
[ sl
inn
L4,
[ ] @ 3
Sk 4k |
Fd@nn=48n 4@ 2R=480—

Prob. 5-11

-
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*5-12, The cable AR a r i

’ © 0 uniform fosding of

200 N/m. IF the weight of the cable is eglectad und the tipe
andl 4, respectively, determine

able shape and

AN tension

2000 N
L T 4

Prob. 5-12

5-13. The cable is subjected to the uniform losding. Determine
the equation y = f{x) which defines the cable shape AR and the
maximum tension in the cable.
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nifoems honeing. 1 the siope

o4k, The cable in suipeced 0 B d
”*lpo;mw—&wmriw arve

i e fom i the cabde 3 2ol B

45 The cale dhoms = sebyecicd 10 e ondorm b
e e fat betwers. S o b md O g Lt w1l
e 1wy e st st of makcrl L O Cabie

#s- |6 The bridge & &€
Determine the horizomsl =

e hages (P
o carry

4 vertical

517, Dewermine the borizontsl and
rection # A, B, s C of the
€ ae pan commerzed

) o A, B w0od C. The dashe

The ticd theee-hinged arch |

(=13

. De
Lenshom 8 the cable

.
sermine the compeonents o

R

e 181

= satced v e
e R S —

Prob. 5-1%

519, The three-hinged truss arch is subjocted o the loading
e Determine the honzontal and

thoms  the pins A, B, and

ol commponents of rea

Protu 520

5-21. The srch struce

fermine the hormontsl and verical
and 1), s the tension in the rod

» subyected 1o e loafing dows De

enponests of resction @ A




Mm ing hoadls cassed! by raitrs must
he comsidersd when designing the
girders of this beidzc. Th
Tines for the ginder become
i part o 1

influence
impes-

B

s have important appli for the design of structures

5. In this chapter we will disc

Influence lir
live

E

resist larg
line for a statically de
subjected to a distribute
applications to floor girders and brid
of the absolute maximum live shear and moment in a membes
the end of the chapter.

tion

discussed at

6.1 Influence Lines

Influence Lines for Statically
Determinate Structures

In the previous chapters we developed technigues for analyzing the forces in
structural members due to dead or fived louds. It was shown that the shear
and mament diagrams represent the most descriptive methods for display

the variation of these loads in @ member. If a structure is subjected 10 a
and bending moment in

oving load, however, the v
member is best described w An influence line rep-
resents the variation of either the react ent, or deflection at a
cific point in o member as a concentrated force moves over the member
ce this line is constructed, one can tell a1 4 glince where the moving lood
should be placed on the structure so that it creates the greatest influence at
the specified point. Furthermore, the magnitude of the assockated reaction,
shear, moment, deflection al the point can then be calculated from the
Ondinates of the influence-line diggram. For these reasons, influcace lines pliy
1 iMporiant pant in the design of bridges, industrial crane rails, Conveyors.
4 other structures where loads move across their span.




MNATE STRUCTURES

{ 6 INFLUENCE LINES FOR STATICALLY DETER!
Although the pro<
one should sieardy be

her bage,

anetracting an influence fine is r
cedure for canstre
g an j

difierence betwe
yr moment di
consiructing @ shear o :
e o s ot o ol o 7
whercas shear and moment diagrams represent the eff
points alang the ass of the member

Procedure for Analysis

ng two procedures can be used to construct the infly.
ina memher for any function (reaction, she,

i choose the moving force

Either of the followi
ence line ata specific point
or momeat). For bath of these procedures we W
to have a dimensionfess magmitiede of umiry.*

Tabulare Vaiues

« Place & unit foad at various bocations, ¥, along the member, and at each
Hoation use slatics 1o determine the value of the function (reaction. shes,
ar moment) at the specified point.

« If the influence line for 2 vertical force reaction at a point on a beam i
10 be construcied, consider the reaction 1o be positive at the point when
il acts wpuard on the beam.

= If a shear or moment influence line is to be drawn for a point, take the
shear or moment & the point a5 positive according 1o the same sign
convention used for drawing shear and moment diagrams. {See Fig. 4-1)

* All staically determinate beams will have influence lines that consist of
striight line segmeats. Afier some practice one should be able to m
mize computations and locate the unit load only ot points representing
the end points of esch line segment.

To wvoid ermors
:ﬂ'\'l\:l:d ™ W is recommended that one first construct a table, listieg
2t e, s the comesponding value of the funcion ealculaied

Specilic paint; that is, “reaction B,” “shear V" or *

‘member,
the thulicd values can be ploted and the influsnce-ine

ACEmeRts Construcied,
Influence-Line Equation,
* The influence |
orithle Wﬁ'ﬂ;::: ;:h be constnicted by placing the unit load 2 &
V. 8 e g g g o 224 then computing the value of K
the various fine anction of x. In this manner, the squations

- i “omposing the influence line can be determin<d

T reamcn
hmmwgumms‘ s

L |
I s e placed a1 various paints along the span of

SEC K1

INFLUENCE LINEs 18§

Construct the influence line for the vertical reaction at A of the e
Fig. 6-la.

SOLUTION

Tabulate Values. A unit load is placed on the beam at each selected point
x and the value of A, is calculated by summing moments sbout gp ",
example, when x =25 ft and x = 5 fi, see Fig. 6-1b and Fig. f-l¢
respectively. The results for A, are entered in the table, Fig. 6-1d. A ;l«l
of these values yields the influence line for the reaction at A, Fig. 6-1e,

am in

1.

(+ EMy=0: -4, (1034 § (5)= 0

) =
4
A
ALY 1 =i
sl o7s
03 .
o
15 ::25 influence line for A,
) o

Influence-Line Equation. When the unit luad is placed a varisble disiance
£ from A, Fig, 6-1f, the reaction A, s a function of x can be determined
from :

b+2g — o —A10) + (10 — 11 = 0

A=

=
wt

This linc is plotted in Fig. 6-1c.

-
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o

g e

an
@

i e fon the wemtical reaction 3t B of the beam i
infloence

Constract the
Fig. 622
w
Fig 6-1
SOLUTION

Fabulate Valuex. Using staics, verify that the values for the reaction
5, tised i the table, Fig. 625, are comectly computed for each posiion
 of the wnit ol A plot of the values yields the influence line in Fig. 62

o ine Equation. Applying the moment cquation about A. in

>J -
k=0, BiS) - 1) = 0

B,

T ploned i Fig. 62

—,

Sex FLUENCE LINES

Example 6-3

sstruci. the influcnce line for the shear at po

it C of the beam in

SOLUTION

Tabulate Values. At each selected po
of sections is used 1o calculate the valoe of V,
wnit foad must be placed just to the lefi (x = }
= 2.5") of point C since the shear is discontinuous a1 C, Fig. 6-3¢
6-3d. A plot of the values in Fig. 6-3b yields the influence line for
the shear at C, Fig. 6-3e

0 x of the unit load, the method
Notz in particular that the

Al

=1

02s 07

Influence-Line Equations. Here two equations have 1o be determincd
since there are two segments for the influence fine due (o the discontinuity
of shear at €, Fig. 6-3f. These equations are plotied in Fig. 6-3e.

o ey e

asadVe
-
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< for the shear a1 point € of the beam iy

Consiace e infleerce lint

g -4 |

¢

i
L gt —tm—p—t n—
"

Fig 6-4
SOLUTION
Tabulate Vilnes, Using siatics and the meshod of sections, verify that

e attgs of the shear Ve a point € in Fig. 6-4b correspond to each
postion  ofthe unit hoad on he bean. A plot of the values in Fig. 64
yiekds the iafluesece line in Fig. 6—4c.

o

infucace line for Ve

(e
Influence-Line Equations. From Fig. 6-4&, verify that

Ve=~jy 0=r<4m

dm<=x=12m

1

‘m—: v
i

Osicam

v,

P

SEC A1 INFLUBNCE LiNES 1RO

Construct the influence line for the me

a point C of the beam in
. b-Sar. I

soi
Tabulate Values. Al eic
M, s calculated using the method of sections. For example, se
for = 1.5 ft. A plot of the values in Fig. 6-5c yields the infle
for the moment at €, Fig. 6-54.

C

038
028

‘('I_.__ i o

Influence-Line Equations. The two line segments for the influence line
canbe determined using SMy- = 0 along with the method of sections shown
in Fig. 6-Se. These equations when plotted yield the infucnce fine shown
inFig 6-5¢

FEM.=0; M +15-D-(1=

Mo=1x 0=x<5f

05=0 |(FEM.=G

nfhmence fine for My

Moo= (1= pus=0
Sit<xs=10f
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poment ot point € of the heam i

e line for the

Consruct the infloenS
Fig. 660

(s
Fig. 6=6

SOLUTION

Tobulate Volues. LUsing s

the values of the moment M- al point C in Fig ) each

posiion  of the unt load. A plot of the values in Fig. 6-6b yields the

influence line in Fig. 6-fc.

stics and the method of sections, verif
6-6b comespond

inflaeace line for M,

Influence-Line Equations. From Fiz 6-64 werify that

dm<r=I2m

These equations are ploted in Fig. 6-6c.

ﬁli“u

Osscam

SEC 62 INFLUENCE LINES FOR REAMS  19)

4.2 Influence Lines for Beams

Since beam
(st or bridge
Jies for the reacti
Loadings. Once the influence lin
ed, it will v
i which will produe
s will now be considered

Concentrated Force. Since the nur
ine are determined usin

erical v

dimensio
N the beam

infuence |

concentrated 1
Jnerion cun b
the position x by the magni
for the reaction A for the b
x=3 L. the reaction at A is A,
Hence, of the force £ Ib is

OF course, this same
masiimium influence caused by F occurs whe
same location as the peak of the influen
the reaction would be A, (IMFYIb,

consider th
6-7. 1 the

 on the beam at the
at x = (0. where

line—in this case

a beam subjected ©
this Joad creates o concentrated force
ted at ¥, wh s influence-
n, shear, moment) is . then the value
the conce: ed forces
i of the beam, that

Uniform Load. Consider o porti
Fig. 6-8. As shown, euch dx segment
of dF = uy, dv on the beam. If dF is I
Tine onlinate for some funetion (reacti
of the function is (dF )(y) = {u dx)y. The effect of
dF i defermined by integrating over the
Juy dy = wyfy d. Also, since [y d
inflaence line, then, in general, the va
distributed load is siniply the area under the influence line for the
multiplied by the infensity of the . For example. in the case

is equivalent 10 the areq under the
wd by a wniform

e of 0 function ¢

nction
fa E

uniformly loaded beam shown in Fig. 6-9, the reaction A, can be
frum the influence line as A, = (area)uy) = [ L

b

wol. This T

nihaence finc for function

Fig. 6-8

imnuence fine for 4,

. -9
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Jive shear that can be developeq 3
6-10a due to & concentrated mayin,
ing foad of 2000 Ib/fL

asitive

cmine the maximum PrstiEE
Ddrfl ' in the beam shorwn in Fi
L“.J 5f 4000 1 and & wniform mOY

L

nfcsce lnc for Ve

i
SOLUTIDN
The influesce line for the shear 1 € has been cstablished in Example 6-3
and is shown in Fig, 6-10b.
Concentrated Farce. The maximum positive shear at € will occur whes
the 4000-Ih force is locsted af £ = 2.5 fi, since this is the positive peak of
{he infhuence line. The onfinate of this peak is +0.75; so that
= D.73(4000 1b) = 3000 Ib
Uniform Load, The uniform moving load creates the maximum positive
influcnce for V- when the load acts on the beam between x = 2.5" fit and
= 10 ft, since within this region the influence line has a positive ares
The magnitude of Ve due to this loading is

Ve = [0I0R — 25 i§0.75)]2000 Ib/ft = 5625 Ib

Totel Masimam Shear at €
(F0ew = 300016 + 5625 Ib = 8625 I Ans
Notice that once the positions of el Gt
the influence fine, pasitions of he loads have been established using

Fig. 6-10c, this value of (, elermined
i - &) €8N aiso be determin
oty um‘w?'.““"“m- Show that this is the case

H00 iy

. 62

INFLUENCE LINES FOR BEAMS

-

(LA

ample 68
Thie frame s
ferting loads for s
for a front view.) It is anticipated that the |
beam CH has o mass of 24 kg/)
can travel the ent
aroller. Determine the maximum ver
the maximum moment in the beam at £

ture sh

. Assume the

izc and
and B i
5t A and B and

e A is a pi

T A
L A I o i
1AN
Fig 6=11

SOLUTION

Maxmimum Reaction at A.  We first draw the influence line for A, If
the support at A is remaved and a vertical force is applied at A, the beam
will deflect as shown by the influence line shape in Fig. 611k Specifi
cally, when a unit load is at A the reaction at A is | kN as shown. The
ordinal 33 kN, is determined by proportion or by statics. Here the
maximum value for A, occurs when the dolly is at C. Since the dead load
(beamn weight) must he placed over the entire length of the beam. we have,

3000(1.33) +
4.63 kN

A 249.81)[L(4)01.33)]

Auns.

Maximum Reaction at B. The support at 8 is removed and a vertical
force is applied at B. The influence line (or beam) takes the shape shown
in Fig. 6-11c. The values ot C and & are determined by statics of prapor-
tianal triangles. Here the dolly must be at 8. Thus,

()., = 300001) + 249801 (1] + 24810 (1=

=331 kN Ans.
Mazimum Moment at . Removing the capacity of the beam 1o resist
moment at £ by using a pin, and applying a positive moment here, the
influence line vas the shape shown in Fig. 6-11d, The values ut C and B
dre determined from statics. Here,

(M), = 3000(0.75) + 24(9.81H3 (1N~ 050 + 249801} (D075
5 Aus

= 246 kN'm

13|
f—to—
influcnce lie for
[
a,
1o
0333
influeace line o B,
@
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Qualitative Influence Lines
= = el developed a technigue for rapidly consy

o B :

e I.Clﬂ::iiln;ﬂl;c\ Jine, Refirred 10 us the Mitier-Bresia
ape of g

e e e iffince fine for  funciion (reec

o ¢ of the beum
; e defected shape

the same iest ',"‘.,r e dw the deflectod shape properly. the capug

ipany e IR on most be removed 56 the bean .

o st the applied function anc :
n;:‘hs ht:i:n e functcn 1 agplied For example, consider the beam iy
el e e of the iflence Lne Fuc the veriical eaciion .4

I et pin s st repaced By 0 rofler guide s sho i

1 m

Fig. 6-125, A roller guide is pecessary since the be 1 still resis o .
el foce o A bt o vensical force. When the positive (vpward) foey 3 k
A_ i then pplied at W, the bearn deflects 10 the dashed posi L

epeescats the general shape of the influcnce line for 4, Fig. 6. I. I
{Numencal values for this specifi case have been calculated in Example 6 ) = I I

e for the shear st C is 1o be determined,

If the shape of the influcnce
Fi. 613 the conneceon ¢ € may be symbolized by a rofler g
i Fig. 613, This device willresist a moment and axial force bat 1o diear ; 5
Apylying a positive shear force Ve mrmj ‘tr:ﬂ" r-;' f mll 'ﬂ.k\rm“l:' the :x:u.l\ Fig, 6-13 Fig. 6-14
1o dellest “;:";f"":’”{l‘;“";"'“" H e e e The proof of the Maller-Breslau principle can he established using the
W R D140 RnIR A (1 stape ol e B DelR R Mo principle of virtual work, Recall that work s the product of either g linear dis
Fig. 6140, is o be determined, an intemal hinge or pin is placed ; - ¢ ;
b ; ) placement and force in the direction of the displacement or a
ihis connection resists axial nd shear forces but cannar resist @ . ;
b e e S displacement and moment in the direction of the displacement. If a rigid body
2 JEHSE TSR et Mo [0 the boam,  the beam (beam) is in equilibrium, the  all the forces and moments on it mist be
- on viriual dis-

ce line

ven an i
placement, the work done by all these forces and couple moments must also
be equal to zero. Consider, for example, the simply supporied beam shown in
Fig, 6-15a, which is subjected 1o a unit load placed at an arbitrary poing along
its length, If the beam is given a virual {or imaginary) displacement o at the
suppan A, Fig. 615k, then only the support reaction A, and the unit kead do
vimual work. Specifically, A, does positive work A, &y and the unit load does
negative work, — 18", (The support at B does not mave and therefore the force
at B does no work.) Since the beam is in equilibrium and therefore does not
sctually move, the virual work sums (o zero, L.,

deflccts to the dashed e e, e Do \
o 0 hed pasition. which is the shape of the influence I e s e

Ady— L&' =0

mfsence line for 4,

had 17 8y is set equal to 1. then
s
G, A =8
i In otfer words, the value of A, represents the ondinate of the influgnce live at
e Tohra e dcusion u) : the position of the unit Joad, Since this value is equivalent (o the displacement
"":':&l«n-m Meflextod pitions ars: deawn 10 an exaggeruied st By &t the position of the unit load. it shows that the shape of the influence
oy liefor the reaction ot A has been esiablished. This proves the Mulles Bresliu 5

- ymbetizy
e 21, s 13, PSPPI Bl 2y oucks Both in esion o compressis 5% Brinciple for reactions.
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For cach beam in Fig. 6-16 through 6-16x, sketch the influcnce line foe
e vertical reaction at A x line fo
SOLUTION
fe The supportis eplaced by a roler guide at A and the force A, i applid
1 th same manner, I the beam i sectioned at C, and the beam -
ot v dhplaement 8 at s pot Fig. 6= 5. then ol e vy ] .
B € and th unit Joad do wark. Thas, the virtual work equation 1 = —F
Voly— Ld' =0 oo P E‘ e -
deflecied shape A nfhaenee
Agiin, if 5 = 1, then
“\ e Fig. 6=1
g 6=16
snd the shape of the influence line for the shear at € has been ectah
Again, a roller guide is placed at A and the force A, is appl
2w, . "
i
4 i -
——
selected shape s
b}
g . e inge: o pin i inimduced ino the bean at poin €
. 1l a viniaal rotstion 86 is introduced at the pin, virual work il A double-rolier guide mest be used at A in this case, since this type of sup-
e done aall 5 pin. virmal wor ¥
y by the intermal moment and the unit Inad. So pont will then transmit bath a moment M.  the fixed support and axial
M- 18 =0 Toad A, but will not transmit A,
£ Y -
i tem than
\
M =8 4
line for the interna] n‘:u::lnu Beam has the same shape as the influence I [ =
. Obviously, the Wh-ﬂl Point C (see Fig. 6 14), Iofbocas oe fir A,
' ‘establishig the shape of (he ““'“ principle provides a quick meihod
8 the peaks can he dum.:; i line. Once this is known, the ondinie
E 61 Al by sply .Y USTE the basic method discussed in 5 ~
10 focgte the five oag, the general shape of the influcnce line. it is P
YA O the funcion by g e <" 470 then determine she maximar®
K tatics. Example 612 iflustrates this techridsé
2
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7e, skeach the is
ﬁmnm-b-”-"“"-""'l oo
For o

e shewr 5 8

o 2z B 2nd the positie S

e i1t

Faxg&rﬁh_andelsldqi):;mrpﬂsilﬂ=‘h:;r.!a’_
deflectcd stape 2ad corespondiag inflacace hne

Hmwa’ 5—1:\13—:..,

Am&ni:_-‘ﬂeaphmxs‘.umgaurpgﬂ
deflccd shuge snd ifinence fne are shown.
H!_dhie—dauﬁ]nmﬂ:mé! fixed

sapport

[
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With the hinge and p moment 2 B the deflecied shape and inflacace
line are shown. The lefi sezment of the beam is constrained from moving
e 10 the fined w
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200

D00 CHs INFLUENCE LINES FOR

can be develope,
Jm positive mament that can be develop
Dutermie the s i ‘;m 100 due 10 a concentrated moving
Din |nc||:*"‘ o moying load of 300 1, and & beam we
of 4000 I, & unif
200 WL

4 s

et §i1—

ah
Fig 6-19

SOLUTHIN
A hinge is placed at D and positive moments M., are applied to the hea

The deflected shape and comespording influence line are shown
Fig, 6-196. Immedisicly one recognizes that the concentrated moving

of 4000 [b crestes a maximum positive mament at 2 when it is placed
D, i.e.. the peak of the iaflucace line. Also, the uniform moving load of
300 I must exiend from C 10 E in order 10 cover the region where the
arca of the influence line is positive. Finally, the uniform weight of
200 IVft acts over the entire fength of the beam. The load

the beam in Fig 6-19%. Knowing the position of the loads, we can now
delermine the maximum momest at D using statics. In Fig 6-10d the
Feactions oa BE have been computed. Sectioning the beam at B and using
segment DE, Fig. 6-1%, we have

M, = M, — S000(5) + 4750(10) = O
My = 22500 1b-f1 = 225 ki Ans.

ling is shown oo

i delecied shape

1000 1 oS
GlEAtE 2 —an

4=000B B aSNB B=N0M  CesMOm E=a9n

This proble, also be worked by using numerical values for the
influence line as in Sec. 6.1, Actually, by inspection of Fig. ~19, only
the peak value f at [ must be computed. This requires placing a unit foad
o the beam at £ in Fig. 6190 and then solving for the intemnal moment
i the beam at 0. Show that the value obtained is b = 333 By proportional
triangles, 4'U(10 — 5) = 3.33K15 — 10) or k' = 333, Hence, with the
Yoading on the beam as in Fig. 6-19¢, using the areas and peak values of
the influence line, Fig. 6~ 19, we have

M, = SIO[L(25 — 1013.33)] + 4000(3.33) — 200[(10X3.33)]

=22 500 Ib-ft = 22.5 k-t Anz.
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5.4 Influence Lines for Floo
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cam be secn Hhal

i girders, and fisally SUp

wiew,

mented

anc-wil)
{loor beams. Funthermore. the

the ginders r i foad

carry

cially toe for industrial buldin
this nrnnl notice thal
anly at poits where iLis in coa
and D, Thess points are called
points is ealled a panel. s

Fig 620

n.m foads e

sirder is simply SUPPC

consiruet theit shest and

13 un I\\.n]l'\l the flo

jpor
Here the R

J inta simply supported sp

ing members in this system, it is s
ment influence lines. This is ey

s e
ated
is transferred (0 the

es subjected 10 1
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tact wilh the floor beams, i.¢.. points 4
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paned points, and the re

ure
n the Moo sl

s in Se

en for the influence line, since the

end of

d
pist's location from 1
a5 shown in F

The infer
204, This gives My = F,

jatermal shear ¥p can be determined. In this
{hroughout the panel BC Fil=F %

exact location d of P within the panel. F

e specified

in floor ginders

specific points
r. It
ngs transmitied by

The shear is then refered

is affected « s

the floor beams, the unit loz

1o establish the necessary data us ki
) ence line

The following numer
he force analysis.

Im design of the floor system of this warghouse: bui
e is of storage maicrals on the floor
Inflococe T st o e o i parpese, Pho cariesy
of Parrthand Cemen As
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L s ——mn 10K

Fig.6-21

in panel €D of the floor girder i
Jine for the shear
Draw the inflscact
Fig. 6-21a

L ion—

SOLUTION

Tabulatr Valies. The unit losd is placed at each floor beam location
and the shear in panel CD is calculated. A table of the results is shown
in Fig. 6-218. The details for the calculations when x = 00 and x = 20 ft

are given in Fig. 6-21c and 621, respeciively. Notice how in cach case |

the reactions of the floor beams on the girder are calculated first, fol
lawed by & determination of the girder support reaction at £ (G, is ool
needed). and finally, 8 segment of the girder is considered and the inter-
nal panel shear Vep is calculaied. As an exercise, verify the values for
Ve when x =10 ft. 30 fi, and 40 fr.

Influence Line. When the tabular values are plotied and the points <on-

mected with struight line segments. the resulting influence line for Vs 15
as shown in Fig. 6-21¢.

JEM, =8 F, = 0303
¥,

2, =0 Vg = - 0308

Fyeuan

-0333

influence lane fox Vi,
i

R

NCE LINES FOR FLOOR GIRDERS

08

Draw the influcnce line for the moment

Fig. 6224

Fig. 6-22

SOLUTION

Tabulate Values. The unit load is placed at x = 0 and each panel point
thereafier. The corresponding values for M, are calcul; and shown in
the table, Fig, 6-22b. Details of the calcul n are shown in
Fig. 6-22c, As in the previous example, it is first necessary to determine
the reactions of the floor beams on the girder, followed by a determination
of the girder support jon G, (H, is not needed), and finally segment
GF of the girder is considered and the internal moment M; is calculated.
As an exercise, determine the other values of M listed in Fig. 6-225.

ns for x = 2

Influence Line.
My, Fig. 6-22d.

A plot of the tabalzr values yields the influence ling for

0 z 4 w1z 3
infloznce ine for My

ulh
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Trusses are 0
for design it is importan!

206 CH6 WALEME

6.5 Influence Lin

fien wsed 35

shown in Fig J
of B DEnbe A;-}: i in tum transmit the loading 1© floor be,
s 10 STVIRER, o condof he riss. inse the truss meny
B e ot Iading we cin [relors obisin he orj

o jing cac] "
B e e fura mekor by loading cach joint
e o1 i e the method of foints o the
Aol e member, The data can be arranged

10 calculate the force in
isting “onit Joad at Joi
member force i rensile it is €

it is negarive. The influence line
date and drawing sraight lines

The following examples il

1 to be able

onsidered o positive values if it is com

. the loading on the brid

s “force in member.” As 2 conve

i« the member s constructed by p

between the paints.

e the method of construction,

1op cortd

sway
bracing

bracing

el
bracing ™

SEC. 5

INFLUENCE LINES FOR TRUSSES

m

xample 615

e the influence line for the force in member Gt of the bridge try
chown in Fig. 6-24a. I -

Flg. 6-24

SOLUTION
Tabulate Values. Here each successive joine ar the battom cord is loaded
with 1 unit Ioad and the force in member GB is calculated using the method
of sections, Fig 6-24h. For example, placing the unit load at x = 6 m (joint
B), the support reaction at £ is calulated first, Fig. 6-24a, then passing a
section through HG. GH, BC and isolating the right segment, the force in
GB is determined, Fig. 6-24c. In the same manner, determine the other
values listed in the table,

Influence Line. Plotting the tabular data and connecting the points yields
the influence line for member GB, Fig. 6-24d. Since the influence line
extends over the entire span of the trass, member GB is referred to as a
primary member. This means G is subjected to a force regardless of where
the bridge deck (roadway) is loaded. The point of zero force, £ =8 m, is
determined by similar triangles between x =6 m and x = 12 m, that is,
(0353 + 0.707)/(12 - 6) = 0354, x' =2 m, s0x =6 +2 =8 m.

—amw
influence fine for Fry

)




208 cH6 NRUE S FOR ST L ERMINATE STRUCTURES
FOR STATICALLY DETERMINA “
SFLUENCE |INES

’ srce in member €6 of the bridge petermine the lar
le fox e Fore peidge truss shown in Fig. 6-26a

est force that

Draw the infloeoce

6250 jng distributed 1oad of 06 kil The loading is applied at the top cord

shown in

influence line for Fe

4)
»
Fig. 6-25
Fig 6-26
i ot the joints of the bot e
Tabulate Valres. A table u““““‘md?m"“r ‘isr‘JUH‘; “’m e m’..r- Tabulate Values. A able of unit-load position x af the joints along the
™ cord versus the fore in member (r..[u: o w; B _mHm e '({(_ | fapcord versus the force in member BC is shown in Fig, 6- 26k, The metiod
are casily obtained by isolating joint g rrm e e of sections can be used for the calculations. For example, when the unit
Feo is & zero-force member uniess the unit Joad i applied at joint €, in which Jaod is at jaing J (x = 20 ft}, Fig. 6264, the reaction E, is determined first
case Fog = 1(T). (E, = 0.25). Then the truss is sectioned through BC. HB, and HI, and the
- ph ; Line. Ploting the tabular data and conncsting the points yickds right segment is isolated. Fig. 6-26c. One obtains Foc by summing mo-
[ w”“‘:ﬂ'u"u et s £ a5 dhiown i Fig. 6-25d. T particular meats shout point H to eliminste Fy, and Fyp In 8 s =

notice that when the uni load is at x = 9 m, the force in member G it determine the other values in Fig. 6-265

! ;;L‘:: “’::“‘“:"ﬁ“‘"‘:‘:“"”' "’:;?'Tﬁ‘;‘d ‘"l’hm:‘”l”f“ Influence Line. A plot of the tbulur values yields the influence line,
S 1 BRI s J0oc. from) Lhe €0 Fig 6=26u. By inspection, BC is a primary member. Why

the iruss is shown in Fig. 6-25¢. From this one can see that indesd

"
Feg = 0.5 by analyzing the equilibrium of joint C, Fig. 6-25f Since the Concentrated Live Force. The largest force in member BC occurs when
influence line for CG does nor extend over the entire span of the truss the moving force of 20 k is placed at x = 40 fL. Thus, Fax
2
Fig 6-254, member CG is referred t0 as a secondary member. Foe = (133)20) = 267k $
as us Distributed Live Load. The uniform live load must be placed aver the ]
= = entire deck of the truss to create the largest tensile force in BC.* Thus, e line fof Fag

Fyr = [MB0)1.33)]06 = 320k "

Tatal Maximum Force

c (Fychu = 267k + 320k = 587k dres.

*The Lasgest tensile force in member G of Example 6-15
(] 2l st o the deck of the s from 1 = Do =B m,
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Bridges

2I0 H & INFLUENCEL

vehicle lood
s for uck b

s on highu

trucks. Specifi

semed of S, B0C0 L erican Association of Sate and Highw
reported i ""_f‘l AASHTO). For two-ale trucks. these [oads are desigry
portation Officid "" o the weight of the truck 1n fons and another nupy,
with an H, followed s in which the load was reporied f

be specifi
5_,';:?_., \!rﬁm truck as reported in the 1944 spe
s vary from 10 1o 20 tons. Huweer, bridge

. which camy @ great deal of raffic, are

.".:'d,'.:g.::‘;i .plu:”.l oeanle semitmiler. These are designated us HS |
fngs, for caample, HS 2044, In general, a ruck loading sel
depends upon the type of bridge, it losatioo, and the type of traffic anticip

“The sire of the “standard truck"and the distribution of its weighi is
reporid i the AASHTO specifications. For example, the HS 204 1
s shiwn in Fig. 627, Although trucks are assumed t0 occupy 101
Junes an the bridge nead ot be fully loaded with a row of trucks
the critical load, since such a loading would be highly improbable. F
moee, rather shan determine the cnitical load usin .
\rack-wheel loads. in some cases the specifications allow a simplification
repeesenting a lane loading & & uniform load plus & single concentrated f
This is (meant to represen a distribution of medium-weight traffic with a heavy
truk placed af the peak of the influence line.

(hR-sm
selectspac

HS 3044 s

E Fig. 6-27

Railrmd Bridges. The loadi
o the £ an Railroad Eng Associati
¥ Theodare Cox

engine s de
s distribated a5 S
Copper’s load disuil dings, which are
o aeceptable for design. Since train loadings involve 2 complicate:
2 simplify hand caleulations
n with influe

of concentrated forces

sometimes used in conjun

vehicles may bounce or

[mpact Loads. Movi
overa bridge, and therefore they i
inercase of the live loads due to impact s called i
Jor i generally obtained from farmulas developed fre
Fer example, for highway bri the AASHTO specifications »

I = butnot larger than 0.3
+ 125

where L is the length of the span in feet that is subjected to the live load
For example, member BC in Example 6-17 has an impact factor computed
for L= 80 i, since the influence line fand load) e
Jeagth of the truss, Fig. 6-26d.f Hence, [ = S0K80 + 125) = 0.244 = 0.3
The additional load in member BC due o impact is thus KFp
0.243{58 7k} = 143 k. When added to the “siatic” placement of the live |
the 1ol force in BC is therefore 587 k + 143 k

3k

SEC 6 LIVE
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|
1 ardsnt—t—1-—t
5 S SASA

6-28

an Railway Engiacers Apcciation.

Sce Specifc Brifiges, Americ
[ g -
24T menber GB in Example 6-15, L=8 o for kodle fve Joadings and L=
SRR m = 16 m for compres e laxds, Fig, -25.
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6.7 Maximum Influence at a Poin
Series of Concentrated Loads

[NES FOR STATICALLY DETERM

INATE STRUCTURES

t Due to @

cace line of & fimetion has besn established for a poing 1 ,
Tt caused by a live concentrated force is gy
the peak ondinate of the influence line by the magning
howenee, several coneenrted forees mug f
nple would be th Wi
aximum effect in this case, either &
rocedure can be wsed or a method that is based on the ch .
Jace as the lood is moved. Each of these methods wij
Ity = it applies to shear and moment

Onee the nflu
structure, the maxinm

‘placed oa the stctuTe. An Exan
n orde to determine the I

e train, |
andemor
the function thal L2kes p!
now be explained specifical

Consider the simply supported beam with the associated influcne
point € in Fig. 6-29a. The maximum posiive s

Shear.
M
es of concentrated {wheel) Jo

ling for the shear at
paint € is 10 be determined due to the sen
which move from right to lefi over the beam. The eritical |
when one of the loads 1s placed fust so the right of point C, which is coinc
dent with the positive peak of the influgnce line. By trial and error each of
hree possible cases can therefore be investigated. Fig. 6-29b. We have

oading will occur

Vel = 1(0.75) + 0.625) + 4(0.5) = 525k

Case |
Case2 (V2 = 1(-0.125) + 40.75) + 4(0.625) = 5375k
Caed (Vh = 1(0) + 3(-0125) + 4(0.75) = 25k

Case 2. with the 1-k force located 5° ft from the left suppont, yields the
value for Ve and therefore represents the critical loading, Actually in
tion of Case 3 is unnecessary, since by inspection such an arrang
Jouds would yiedd a value of (V) that would be less than (V).

ok
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i
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% the trial-and-gfror computation
sl posiion of the loals can be ¢
e in shear, AV, which occurs when gh
Case 2, then from Case 2 fo Case
e compol A1 1 s the nesy |‘;!\.Ilun
shear in the beam at C than the previous position. \.ut h F\\‘\'L‘r\\.'n[ is imves
gated usil o negative change in shear [s computed. When this occurg
previaus positio of the loads will give the critical value. The chyp,
B e AV fox & lowd. P that moves ot pasition £, 1o 1, over 4 i
ran be determiped by multiplying # by the change in the ord
infiuence line, that is, sob IT the shope of the influence line is
— 1), and therefore

When many concentriled loads

E-12 load of Fig 6
sedious, Instead the cnfic
direca mannee by finding the c
are ooved from Case 1 10

T A SERTES OF CONCENTRATED LOADS. 318
1 4k

-y =
[8v=ris = x|
L Skoping Line |

IF the Joad moves past a point where there is a discontinuity or “jump” i
he influenée fine. as paint € in Fig. 6290, then the change in shear is simgly

| A¥ =Py — )

| 3

Lo e

Use of the ahove equations will be illustrated with reference (o the beas.

loading. and iaflucnce line far Ve, shown in Fig. 6-294. Notice that the
titude of the slope of the influence line is = 0.75/(40 — 10) = 0.25/10
:Jll;i. am_i the jump at C has & magnitude of 0.75 + .25 = 1. Consider the
hma of Case | mowing 5 it 1o Case 2, Fig. 6-29b. When this occurs, the 1
Iu Jumps dars (1) and all the Ioads mave up the slope of the influence
ine: This causes a change of shear,

AV = 10=1)+ [1 + 4 + 4(0.02545) = +0.125k

} Cased

Since V| is posi !
"""‘P"““m.r::::w:' Caie 2 will yield a larger value for Ve than Case
(Vs = (Vo 01083 ol 0V, previously computed, where inde
v 0 Cae 3 ;'."',’, Investigating AV, ., which oceurs when Cose
jump of the M’I‘-'\lfamlr;:‘;:t must account for the downward (negative)
slope of the influence line w;r:v":mmm movement of all the loads up ¢

A=y

“D+(1+4+ AN005)S) = — 2875 k

the position o the crilical loading. 5 £

Fig. 6-29
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i methiods to deier

onment, We can alio use the o g 1o
:al'u M:‘fla ries of concentred forces -L\]I:.u ey reste o

ok s CUIE. - 15 first nege

ific point in 4 SrC ]
e et neea e oot )
the .

& of s lne segments. For a horigoAal e
foree £, the change in moment, AM, is equivs _
ouee imes the change in the inflacoce-ine rdinate under the Joad, |
e times the o

4= Pilxs = %) o
Staping Line

As an example, consider the beam, loading, and influence line for e
xoment i poiat € in Fig, 6=30. f cach of the three concentrated forces s
placed on the beam, coincident with the peak of the influence line, w
obtain the gresdes influence from each force. The three cases. of loading are
shown in Fig- 6-306, When the loads of Case | are moved 4 ft to the kfi i
Case 2. it is observed that the 2k Ioad decreases AM, s, since the slope
(75110 is dowmwend, Fig. 6-30. Likewise. the 4-k and 3-k forces cause s
increase in AM; », sisce the sfope [7.5140 — 10)] is upmard. We b

- 1[”]..:. o e
e BT} + lw_]‘,Jed> 1.0 k-ft

i positive, we must further investigate moving the loads 6 f
from Case 2 to Case 3 - e

AM, ,= -2 15 15
oy "'[ i'u)""* ‘|: ]ui'(“ 225k At

40

Here the change is o
e s Lo s s o ErCAeSt momeat at C will pccur whe B
s therefore in Case 2, Fig. 6-30c. The maximum moment o €

M)y = 2045) + 4175y 4 360 =

The ol
WIRG xamples further ilustate this meihod,

SEC. 6.7
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SEC. 6.7

MAXIMUM INTLUENCE AT A POINT pUg

& STRUCTURES T0 A SERIFS OF CONCENTRATED LOADS. 3

—j m— _‘
e the maxinum positive shear c.cu:ullhlll ol 1 i | £t Mooenent of 15-& Load. I Lm 15k load is positioned just 1o the
D,:m:“i‘,. Fig, 6-31a due 10 the wheel loads of the | rightf £ and then the trick moves 6 fL 10 the lef, the 4.k load maves anly
show

| | ft unill it is off the beam. and likewise the 9-k load moves only 4 f
4E 9k 15k W0k il it s off the beam. Hence,

5 LINES FOR STATICALLY DETERMINAT

2IF ©H 6 INFLUEN

5

AV, = 15(= 1) + 4{ 72 (D) + : lm\l:” &

Since &V is now negative, the correct position of the loads oeeurs
15-k

of—r F3nt—6n——son ad is just 1o the right of point &, Fig. 6-31c. Cansequently,
sty S T . I
(Vighoao = 4(—0.05) + 9(—0.2) + 150.5) + 0.2
@) 15k A,
Fig 6-31

fin practice one alsa has to consider motion of the truck from left o right

The il en choose the maximum valuc between fhese
The infhirues e o e sicar a1 3 s {0 Fig. 6-31. and then choose the s

situgtions.

4k Bk sk 10k

L
™

Aft Mavement of 4-k Load. Imagine that the 4-k load acts just to the
Aight of point B w0 that we obtain its maximum positive influence.
the beam scgment BC is 10 i long, the 10-k load is not as yet on the beam.
When the truck moves 3 1t o the left, the 4-k load jumps dowmward on
the influcncs line | unit and the 4.k, 9.k, and 15-k Jaads create a positive
increase in AWy, since the slope is upward 1o the left Although the 10-k
Joad sl movees: forwand 3 1, ia sl mon. on the beam, Thus

AV, =40 b4+ 94 mi"j}
(R [}

&t Movement of -k Load  When e 4.
ﬂ.-ndllnlhmlmmnsnmlmkﬁ.

= +02k

& load acts just (o the right of

we have
; A =01y 05
' Wl @+ 5 s J"’“ "’10"‘]"“ i
N e 10, 10 @
i
E et the 10-& boad oaly moves 4 f1 on the beam. -
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s psitve moment created 1t point & in the

due 1o the wheel loads of the crane.

230 CiL's INPLUENCE LINES FOR STATICALLY DETERMINATE

Determine the maxis
shown in Fig. 6-324

“r" 130

M |
. 2 —
5

influence fine fox M

ik}
Fig.6-32

SOLUTION

The influence line for the moment a1 B is shown in Fig. 6326,

2-m Movement of 3-kN Load. IF the 3-kN load is assumcd o sct al §
and then moves 2 m o the right. Fig. 6-325, the change in moment is

12
0]IJJ= 720kN-m

Why is the &N load not included in the calculations?

e ;
wmm ::u\ Load. If the S-kN load is assumed 1o act at #
9453 m 10 the right, the change in moment is

120 ;
e e

3
=~B40kN-m

A,y = -s('

SEC BT MAXIMUM i
AXIMUM INTLUENCE AT A POINT DAE T A SEXIES OF COMENTRATED LoADS. 2

. ——

" Desermine (he max;
he truss in Fig. 6 G
he loads are applied directly

ped in member BG of
! loads of the car and trailer.
the 1

H

2N

Fig, 6-13

fluence line for £y,
SOLUTION L]
The influence line for the force in member BG is shown in Fig
Here a trial-and-error approach for the solution will be used. Since we want
the grealest negative (compressive) force in BG, we begin as follows

L5-kN Load at Poiy

33b.

€. In this case

Fp = 15 KN(—0.625) + 4(0) + 2 k>
= —0.729kN

N Loud at Point
case than the previous one.

By inspection this would seem a more reasonable

0625
Fug = 4 KN(—0.625) + 1.5 kN| 4m) + 2KN(
we = 4 kN(—0.625) + 1.5 kN P L]
= ~2.50kN
2-kN Load af Point €. In this case all loads will create a compressive

force in BC,
—0.625 0,625

Fao = 206281 + 4 (i a4 1 SN( S )

= ~266kN e

Since this final case results in the largest answer, the critical loading oceurs

When the 2 kN load is at €.
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6.8 Absolute Maximum Shear and M

In Soc, 6.7 we developed the m
romen a  fpecfied Ut 18 £ ST
p i A mare general proble gl
ebarian o the point 1n the beam an the positios 2
focarion o e PO e absolute marimum shear and moment caused
e 1 0 Iy supported, this problem

e Toad. 1f tho bea is cantlevered or S
e readily solved.
L ed bears the absolute maximum shear will o
L

For a cantilevert
Shear. For 2 o he fixed support, The maximum shear is

i located just pest 10
NN P method of sections. with the loads positioned close to the suppor,

st Iad being just next 1o the section as in Fig. 6-3
For simply supported beams the absolute maximum shear will occur jus
next o onc of the supports. In this cise the lnads are po ied 50 that ihe
% * % first one in sequence is placed close to the support, as in Fig. 6-35
* Moment. The absolute maximum moment for a cantilevered beam oco
& at the same point where absolute maximum shear o hough in this case
Fig. 635 the concentrated Joads should be positioned at the far end of the beam, as in
Fig. 6-36
For & sisply supported beam the critical position of the loads
associsted absalule maximum moment cannol, in general, be determi
inspection. We can, however, determine the position analylically. For purposes
of discussion, consider a beam subjected 1o the forces F,, F.. Fs shown i
My Fiz. 6-37a, Since the mosnent diagram for & series of concentrated forces ¢
sists of straight line segments having peaks at each force, the
Fig 6-3 maximum momeal will occur under one of the forces, Assume this maximum
moment ocurs under F;. The position of the loads F,, Fy, F, on the beam
will be specified by the distance 5, measused from F 1o the beam's center
tine 2 shawn, To determine a spexific value of x, we first obtain the res

oment

the maximum sheas gy

eshous for computi
beam due 10 a series of concenteateg
ves the determination of by
e doading on the e

the

SEC 6% ABSOLUTE MAXIMUM SHEAR AND MOMENT 208

and its distanee T measured from ¥

of the system, Fi
d about B

force his is

gote, mOMERLS
A, thit i85

h yields the beam's lefi reaction,

M, =0

Jf the beam is sectio

just 10 the lefi of F.
fiagram is shown in Fig. 6-37b

the resulting free-body
The moment M fi

Fy is there

For maximum My we require
dM, —2F,x  Fi

el ML Mement in

Hence, we may conclude that the abse
supported beam occurs wnder one of
Joree is positioned on the bean
Tent are equidistant from the be
Imds on the span {for example
have to be applied to each load comesponding maximun
mament computed. By comparison, the largest moment is the absolute max
imUm. As & general rule. though, the absolute maximum moment ofien occurs
under the largest'force lying nearest the resultant force of the system.

mcentrated forces, 5

he

a). this principle will

Emvelope of Maximum Influence-Line Values, Rules or fomula-
Yions for determining the absolute maximum shear or moment are difficult i
establish for beams supported in ways other than the cantilever or :nmp\e sup-
IRt discussed here. An elementary way to proceed to solve this problesn.

eVer, requires constructing influence lines for the shear of moment 3t
Selected points along the entire length of the beam and then computing the
aximum shear or moment in the beam for each point using the methods of
BeC. 6.7, These values when plotted yiekl an “envelope of maximums, from
Which both the ahsolute maximum value of sheir or moment and its location
&30 be found. Obyiously, 3 computer solution for this proble is desirable,
902 the work an be rather tecious if carsied out by hand caleulitions.
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R
v e simpl orted b e is a possibility tha
F—_ Determine the absolule maximim mpmeat in the Smply Supported bean Tl\c;; is :TI_‘ d,m‘: .L-Ih:\ 4
shown in Fig. 6-38 jader the 2-k load, since 2 both 2k an
hown in Fig. e 15k, To investi , -
1 1aat from the b
indicated in Fig. 6-38¢ and
M, = 204 k-1
By companison, the shsolute maximum moment is
M= 217k ft A
which pccurs under the 1.5-k load, when the Joads are positioned on the
beam as shown in Fig. 6-385.
w0
Fig. 6-38
SOLUTION
“The magnitude and position of the resuliant force of the system are deser
mined first, Fig. 6-38a. We have
+LF =R F=2415+1=45k
1+ My = M 4,55 = 15(10) + 1(15)
T=6671
Let 15 first sssume the aheolite maximum moment occurs under the =il
13-k load. The load and the resultant force are positioned equidistant from | o 13 B
the beam's centerline. Fig. 6-38, Calculating A, first, Fig, 6-38b, we have
LHEM, =0, -A(0) +451667) =0 A, =250k s L ey
Now using the lefi section of the beam, Fig_6-39c, yields (]
L+ EM; =0, ~2S(I667) + 2(10) + M, = 0
My = 21T kAt
R
1 M,
1k 15k l j
M,
1 J 11— ¥
8670 f—10 f—f Vs A= 175k
» A=25k
ich
)
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i j, the influens line f T
7. D L 11, Draw e in St A (D)
1. Do e dflurnce ines for-(a) dhe verend rooction & 71 :A”‘ T b v :‘J“ oy g B & 00
e s o C, ) e et - Solve s bl RSy i g e sing (he b od of Sec. 6.1
ing the b method of Sec 8.1 method of Sec &1 i Probi 13, using Millcr-Brest
il 8 g Milller-Brestay
&2 Solve Prob lher-Breslu' prinsiple ses, Solve Prob - using Muller Birslau’s pincipe |
)
it C - B
=i
|
Probs. 6-13/14 Prob. 6-19
&3 Draw the inflacace lines for (ap the vortical reacton & A
%) the werncal reaction at B <) the shewr o C, and id) the
et a8 € Sofve this probicen using the busic medod of Sec. 61 69, Draw lhz'l_nﬂur"u lines for (a) the A 615, Draw the influence lines for (a) the verti pports 3 uniform frve Road of 80 b/ a
%4 Solve Prod, 6.3 wsing Moller Breskau's principle """":‘;" @ :"dl & '\:'r S at ¢ e this proble b) the shear ot €, and {c) the Salve this prol e ST Dot
o Bl o of S .1 sum the basic: method of Sec. 6.1 i cnigaital T sl
e Bresh reaction ot 8. As 2 pin suppost
Salve Prob. 6:9 wing Mller-Breslaw’s principle 616 Solue Prob. 6-15 using Miller-Breslau's principle R s /L W

66 0 ——— G M ——

Probs. 6-15/16

-5 Dors the imflocnce lines for (3} the vertical reaction at B Prabs. 6-9/10 Prob.
(M) e sheas a1 03w the soment €. Assume the sopprs bt

® A is 3 pis 2t B s 5 rolles. Sobve dhis problem wi
method of Sec 6.1 Yo
617, Draw the influence lines for () the vertical reaction at C

{h) the morment at B, and (c) the vertisal reaction at [2. Assums the
SuppOMs at A, &, and € ase sollers. Solve this problem wsing e
Busic method of Sec. 6.1

631 The heam i subjected to 2 uniform dead hoad of 1.3
and 2 singhe live koad of 40 kN, Desermine (a) the mak
momest createsd by these: loods ar €, amd (b the: swximn |
tive shear a1 €. Assame A is & pi. amd 85 & mller

&L D e ifucnce fne or a)the vetcal rcton 8 4
) the shear at B, and (c) the moment a1 B. Solve this probies

ning the basic method of Sec. 6.1

#-&. Solve Prob 6-5 uning Maller-Brestau's principle

-2, Sobve Pk 6.9 g Milles Bresiou's pisciphe 18 Salve Prab. 6-17 asing Miller-Bresha's prisciple e om
4 c
N 15—
3
a Frobs. 656 A J
Prob. 621
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S22 A usiform e Jisad of 300 I and 3 single i
Sraced forcz 6 1300 Tb are 10 be placed on the beam mm:-,\
Bus & weight of 150 Ib. Desmine {a) the maximum ¥ i
Pesction s suppon 1 and (b the meximem nogative momert
i . Assus the support at A Is Fin

Proh. 6-21

%20 Draw the influence finc for the iension in cable BC
Negleet the thickness of the beam. What ix the maximum Hnsion
i the: cable duc 10 the 6k oading”

12h— —
Preb. 5-23

-4, The compound heam ix subjectod 10 3 unifiem dead liad

OF LS kN /m and & singke live koad of 10 LN, Determine (g) the

mwwmnymM-un.m
masimam positive shear at B Assume

i Al fined sopport,

AT STRUCTURES

D the infloence -

he force in the caby
st A, and (<) the m )

w25 i
b the vertical reac

[
aSf—t—d5h 3y —

Prob. 625

6-26. A uniform live foad of 1.8 kN/m and a single concentrired
live force of 4 KN are placed on ¢ beams, Determine 1) e
maximum live shear in pancl CB of the girder and (b) the
mum moment in the g

fer at €

Lol L S T S [t A R P
Prob. 6-26
8-21. Doaw the influcnce lines for (2) the moment at C i

Eitder, sad (b) the shear in panel DE

et 4 SR R

Prob. 6-27

wiform ive I
ke e o b plicei
am positive i
srmum positive li
smum positive live §

for the shear in panel AF of the
i wmd 1 1s 3 woller. Detee
anel AF if the floor slabs

eribued Tive ot of 2 &

Y632 Dvaw the

Muence fine for the mamess st point F s e
Birder. Assume the support at A is a pin and # is » roller. Deter
ve moment at F in the giner 4 the flioe slabs

ected 10 a wniform ed live s of 2 /R

+ F g
Proh. 628
—in 0 m P
Probs. 6=31/31
629, Draw the influence lines el € of of 16 KN/m and a single —
the girder, and. (b) the moment live force of 34 kN are pla he top beams. If the bearms
also support a wnifirn dead Joad of 3 kN/m, determine (a) the
ve shear in panel BC of the ginder and () he

me & s a roller

€ in the ginder a1 C. As

0 fi e | et 10 o 10 |

Prob. 6-29

Prob. 6-13

630 A uniform live load of 1.8 kit and a single concentrated

st force of 12 k are placed on the top beams. If the beams a0 g 34 Dryw the influence line for the sbear in panel SC of the

s0pport & uniform dead load of 350 AL, determane (a) e TN jiree Deiermine the maximam negaive e shear i pasel €

e live shear in panel BC of the ginler and (b) the masimum gy o uniform live load of 300 I/ scting v ihe lop beams

momen| b the girder st C Assume the sppens for these beams. can exert Doty apwand and
dowmwand foroes on the beams

e L L e L

A
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e line for the forte in member ¢ o
ol the
Diraw the §

42 Draw the influe
Baltimene Bruss.

fhe mimest 3  in the girder
Tive momene in the girdzr a1 B if

6-38, Draw the influcnce kne

Delermine the maximrs s
asinglecvmcentrated I force
Assume the supgors for thess

o 10k moves across the 109
beams can exert both upwand 4nd

.43, D the inflance line far the force in member £ ¢

Baltinsore 1russ

Ihe bridge deck sl

wmand foeve oo he beams.
fr= i st Draw the infecoce lne for the Torce in member g
(he Balsimare (russ. =
o, B S W 648, Draw the ifuence line for she force in member 7 o
i s Probs. 6-50/51/52 B0 1) et el e A
646, Draw the ifluece line for the force in member AP i ol of e
Proh. 6-35 MRS 488 Draw the influence line
idge truss. Determine the muxi

647, Draw ihe infscnce line for the force in membes Ky
Baltimore tnss,

prsaiom) that Gan be developed in she mer
Tuving the wheel Josds thown. Assume i

can be develo
8060 1b/ Tt th:

#6-36. Draw the inflacnce fine for the foece in member SU O ag48, Draw the influence line for the force in member NG o cthar direction slong the ce truss
e Baltimoe dosk s e Baltimore truss. show I8 tramsfemed 1o cach of the tw;
§-31. Drew i inflience bine for the forse in member PV of (e ¢ 49 Draw the influesce linc for the force in member C IBE ity ¥ e i, conns 1
b member €0 of &
i L Baltimore triss, -84, Draw the influence line for the force aber HiG of the "
8-, Draw the influence linc for the farce in member EF of the Iidge truss. Determine the masimurm live force (tension or o
Baltrmare deck trass peession) that ciim be devedoped in the me g
f having the wheel loads show e 20 ) e g
¥ athur direction along the P
: shomn is transferred 1o ¢ oW: -5 PHN
he member
ember 6-59. Draw the influcnce inc for the force in member M1, then
Probs. 6-42/43/44/45/46/47/48/49 6255, | Draw the infliience line fof the force in member GFof the  3c1cmine the maximun e force (iei{om' ox simpesasionh fis
/47 0k (L Datarcaio 1 7 o can be developed in this member due 0.3 el of
o b aveloped 3 N/ m ge ek alumg the bottony cond of the
fruss

b3, Deww the influctce b for the fosce in (3) member £,

sl (b) mesmber JE

0. D e infuence ine for the force in .

e S Mt A N M
WORTIR 168 100 101 108 04 107 108 100 10 10,
Probs. 6-34/37/38

:—Rmu‘r:rh;m serves 1 suppon & crune rail whic
gy om coed of the truse as shown. Determine
e m live force (lemsion or  compres: that
S’m[)wm in member HC, due o the crane load of
e position x of ihe load. Assume the truss i spportel

\ by & pim and at E by a paller. Also, assume all members o
sectioned und pin conmected as the gussel plates

laving the wheel loads shown, Assume
wther direction alung the
sherwn i transferred 1o each of the tw
the members are pin connected at the

e fot the foece in member DE. ihen
o sompression) that
m live load of
he

*6-60,  Draw the influcnce
detcrmine the maximum live fonce
can be developed im this member
N/ m that (s on the bridge deck along the bosom conl

=61, Deaw the influence linc for the force in metsbes HE. the
determine the maximum live force lemicn ar ompressan) that
can be developed in this member doe %02 unifoemn five kd of

-4l Druw the miluence |
e o the o i e . &S0+ Determine he maximum Kve foce (tension or compre
) st can be developed in member BH of the truss due 19 1 o that sels on the Bridge deck along the bomom cand of e
i ¢ BH of the truss due 10
- W Yoad of 12 k. Speciy the position  of the Ioad, Assume b
iy e LA by i & J [} H
T all omed al A by a pin and at £ by a roller. Also, assumt
=8 members e sectoncd snd g : .
- 2 connected a1 the gusset pl |
L«L f f i *6-5L Determine the am
—t e d g Kon) thal can be. maximum five force (tension of S0MFE: n
crane luad of 12 ﬂ:‘:" in member HG of the truss du 10 . J:' P
E Frobs. 6- 39/ i smpponed oY (e position ¢ of the load. Assurs % =5 ¥t
B = o meabey A Y & pin 1 £ by 3 oller. Ao, 55 I i e S T
SeCtioned and pin connected an the gussel PIEE Probs, 6-59/80/61
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y ' mbes DE of

Draw the inflance line o the foroe in o
?-‘ s, then determine the maximum five force (1ension
i i in this member duc o 3
oz

661 Draw the infloeace linc far the fovce in member C0 of the

Pran gruss. et determne he maximu five farse ftension oc

compresion) that can be devehoped in this member dus 10 8
I

ehe hattom cord.

ETERMINATE STRUCTURES

§-65. Do the influcnce line for the force in member g
e russ, Deterine Hhe MARITU live force (g

b ression) that can be developed in this member due 1

::'.:'-F) nsck having the wheel loads shown. Assume the truck .

eavelin efiher direetion lon the comter of the deck 5o 4

the Yo shown i ramsferad t0 each of the e side trusscs a)

sxsame the members are pin sumnected at the gusset places

§.66, Draw the influence line for the force in membes Cp of
{he brilge fruss, Determine the maxifnum Lve force (tensivn of
an) that can be developed in. this member duc 1o
185:k nick having the wheel loads shawn. Assume the truck ez
ravel in either firectian along the center of the deck, so
{he o shown is transferred 10 €ach of Uhe (w0 side trusses. Al
assume (he members are pin conmected at the gusset plates

667, Draw the isfluence line for the farce in member AC of
the bridge tuss, Determine the masimum live force (temivn o
) that can he developed in this member duc 1o the
185 truck havieg the wheel loads shown. Assume the truck cn
travel i either direction along the center of the deck, so that fiul
the Jaad shown is transfemmed 10 each of the twa side tusses. Al
assume the members are pin connected at the gusser plates

LIS
‘25 k H

Tion

FLing

Prabs. 65-65/66/67

r Duemﬁn_udndumm--m.mdm.g of the beam I8
mhu-uh moing ks produce the same mandimurn momett
Bi,mumuxamnrﬂk\pm Assume A is a pin 20d

!l

FrokiEms 2

The cart h 672 Th
m""w* B ol II\ el Wik and trailer cxerts the wheel reactions shown
b e deck o e <. Determine {a) the langest live e
4 reales in the Assume the trock ravels in oith

eqper of the deck, 50 that half the

cach of the two side ginders 1 1be deck, mn:mu..g transfers &

ders. Assurme |
can sopport b

ruck aned trasler excris the wheet reactions shawn
girder by Determine he langest moment

firec
Raif of
me the splice
ppon Both she

the splice. Assume the tnuck ravels i
crer of the deck, and therefore traisfers half of the load
10 each of the two side ginders. Assume the splice is

nectiin ad, ke the ginder, can support both she.

ak

T Probs. 6-72/73

=wn ann

Prob, 6-70

6-™. Determine the matinwm live moment ot € caused by o

B-Th The car s a weighe of 4200 1b und c Toads

G Determie the maximunm ive moment created in "
A€ 25 [t crosscs the bridge. Assume the car can wavel in cither 675, Determiine the maximens. live sboar at C camed by i
Secsion slong \he center of the deck, 5o that Aalf the load shown  moving loads

Hirasfermed tn each of the two side girders.

Probs. 6-T4/75

Frob. 6-71
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The trolley 10
:tm A, Determine the absolute: maximum Jive
veloped in the heam if
...ﬂ she support 01 A {5 @ pin

. bl masimam live shearand skl £
it e o in the §& boam AR duc 10 e crane kuad-
g The end comrainis rguire 0.1 m % & = 39

by
and ot Bar

i -

Proh. 67

677, Detormune the absolsic maymam e moment in the

o the pinder

*6-80. The mavimum wheel loadings for the wheels of 3 cran:
that & used i 22 industrial building arc given, The crane ravels
long the rumway girders that are simply supported on colum
Determine: (a) the sbsolie masimum shear in an in

Sinder AB, and (b the abolute maximum mament in 1h

—sn—

-~

PROICT PROBLEMS

bt

81, Determi

cacder e 10 the e € 5 10 B constrscig

Prob. 6-81

PROJECT PROB

6=1P. The chain hoist an the wall cr.
aleng the boom (0.1 m

26 KN, Use an impact
masimam Bending moment in the baom and the max
developed in the ned 1o the wall columa
atis left end A. Neglect the size of the trollcy a1 D.

Projeet Prob. 6-1F Puaject Prok it




T:.c poctal frame o this bridge
and cross hracing over its 1op form &
suatically indetermingte system. An
approximate analysis can be made for
the peeliminary design of the members
beflore & more exact structural anal
is done

pm———

e ———
Approximate Analysis of

Statically Indeterminate Structures

e

methods used e

In this chapter we will present some of the apprc
anilyze statically indeterr f : methods were
develaped o the basis of strugtural hehavior, and their accuracy 3
compares. favorably with more exac
nyes of snucural forms will be i
insight is gained from the sty
woald be the be:

e trusses T

7.1 Use of Approximate Methods

s

When & inedel is used 1o represent any sinucture
HIBEY both the conditions of equilibrium and ce
#1he joints. As will be shown in later chapters o
Eonditions for o srgric ally inceterminaie strocture can be related to the louds
PrONided we know the material's modulus of elasticity and the size and shape
we will member’s
lly indeterminate analysis cannot be considered, Fo
& Smpler model of the structure must be develop that is statical
Sleminate. Once this model is spec
s imte analysis, By performi
80 of the members of 4

his ext, ompatil

Tefiy

,_;fi"- An spproximate analysis also pre

whe FUnder oad and is beneficial when checkin
mos

or capability are not i



(ricALLY INDITERM

€7 APPRONDITE ARALYSIS OF STAT

? in o gepersl ==
simply Because

his text, however. the staticd

AT STRUCTURE 5

nse, all methods of structural analys;
the actual conditions. of loa
ad i isjance al the supports are ne

nay
ally indeterminate analysis g 5

fered [0 a8 an exct analysis, wnd he simpler stfjey),

structore will be "“ will be refiermed 1o 3¢ the appraximare analysis,

geterminste apalysi

A common type of

mate methods. In th

fmm each of the theee panels, it will render the truss statically determin
Hence. the mess is statically indeterminate (o0 the third degree (using

russ afien used for lateral bracing of a building or foc g,

botiam cands of 2 bridge is shown in Fig. 7-1a. (Also see Fig, 3-4)
m::’m o this purpose, this trss £ ot considered a primary cleret e

ure, and as 4 result it s often analyzed by approu
e case shawn, it will be noticed that if a diagonal is remoed

11 b4 s>, o 16+3>82) and therefore we must make thre

asvamptions regad

ing the bar forces in order to reduce the truss to one that

s sttically determimsie. These assumptions can be made with regard fo de
cnosediagosals, realizing that when one dingonal in a panel is in tension the

This is evident from f

T-1b, where the “panel shear” V is carvied by the wertical component of
sile force in member o and the vertical campanent of compressive fore in
‘member b, Two methds of analysis are generally acceptable.

diagonal will be in

Methad I+ I ihe diagonals are imentionally designed 1o be loig ol
slender, it is reasonable to assume that they cannor s
PO & compressive force; otherwise, they may eas
buckle. Hence the panel shear is resisted entirely by ¢
iension diagonal, whereas the compressive diagonal
assumed to be a tero-force member.
Method 32 1f the dingoml members. are intended to be constcd
o lrge rolled sextions such us angles or chanaels (Y
may be equally capahle of supporting a tensile and 0™
POSSSIV force, Here we will assume that the tensioo 20
e Sampression disgonals each carmy falf the panc! shex
OF these methe i :
nﬁm’? o approximate analysis ae illustraied numeriss!Y
Using
eacny ey *“"""h ltral g
= g
e 1 wu{g,.:‘.':' o he
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Determine (approximately) the forces in the members of the truss shown
in Fig. 7-2a. The diagonals are 1o be designed to suppont both tensile and
compressive forces, and therefore each is assumed 10 carry half the panel
<heu. The suppart reactions have been computed

20kN

W Fig 7-2
SOLUTION
By inspection the truss is statically indeterminate to the second degree. The
fwo assumptions require the fensile and compressive diagonals o cany
equal forces, that is, Frs = Fae = F. For a vertical section through the left
panel, Fig. 7-2b, we have

IR =0; M- 10-2)F=0 F=833kN Ans
0 that
Fry = BI3KN(T) Ans.
Fip = BI3RN (D) Ans.
BEM =1 —833(H3) + £, (3 = 0 Frp = 66TKN(C)  Ans,
FEM, =0; —833(3)3) + Fy(3) = 0 Fyu = 66TKN(T)  Ans.
From joint A, Fig. 7-2¢,
HEE =0, F,-Ru)-10=0 F,=ISKNM Ans

" A vertical seetion through the right panel is shown in Fig. 7-2d. Show
lat

Fyp = 6.67KN(C) Ans.
Ans,

Fon = B33KN (T),
Feo = B3IEN(C),  Fyc = 66TKN(T)

Furthermore, using the free-body diagrams of joints D and E, Figs. 7-2¢
4 7-37. show that

Foe = SEN(C) Ang
Fyy = 10KN(T) Ant.

ok
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the members of the truss showy
Jender and therefore will ot sup.
jpport reactions have been computed,

Desermine lawmlmaualyi the forces in

cume the diagonals are 5
iwe force. The s

in Fig. 7-3. A
an a COMArESs!

1850

Fig. 7-3

SOLETION

By ingpection the tnsss is statically indeterminate to the fourth degree. Thus
ibe foer asmptions 1o be used require that each compression diagonal
ssstain zero force. Hence, from a vertical section through the left pancl,

Fig. 7-3b, we have
Fu=0 Ans.
HRE §-2-Focopd5* =
Fiy = B49K(T) Ans.
L EM, =0, 8495 45015) + £, (15) = 0
Fy=6k Ans.
Py = BE(C)
Ans.
From jomt A, Fig. 7.2,

154

A wertical section of the truss through members 14, IC, BH, and BC is

shown in Fig. 7-3d. The panel shear is V = £ —2—4=2k We
require
Fay =10 Ans.

+T2F, B—2-4-Fecosds=0

Fio = 283K(T) Ans.
[ EM, = 0:  —B(15) + 2(15) — 2.835in45°(15) + F,(15) = 0

Fu=8E(C) Ans,
L+ 5M, =0, —8(15) + 215) + Fpell

Fye = 6k(T) Ans.
From joint &, Fig. 7-3e.

128, = ¢; $.495ind5° — Fp = 0

Fyy = 6kI(C) Ans.

The forces in the other members can be determined by symmetry.
EREPl Feyy: howeves, from joint €, Fig. -3, we have

Hir, = 0 2RI sind5°) = Fy =0

Fey = 4K(C)
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irders that are rigidly connected o colums
B o mm:: ::iilrd;;r 1o resist the effects of lateral force,
0 shat he caite SRS 0 ple of such o rigid framework, oftey
due o wind and IS (R Ry i thi section we wil establisy
mmm;wwuu ] approsimately ) the forces i building frames due 1y
. i mxfw and 7.6 an approximate analysis for frames
i T“ﬂ?::‘;ll:m will be preseaied. In all these cases it should be
andwﬁmwfymgmuwmm misde 0 reduce a frame from
a statically indescrminale: sructuEe (0 ane that i statically determinate ure
based o the awy the strucrure deforms under load.

Typical budcing frame.
Fig. -4

nalysis. Consider a typical girder
e ahiced & uniform venial e &

uma supports at A and 8 will each exert thre
0 the n::'w q'mw ferefons te girdr will be statcally indetermin
sinhr sl et SSons of equilibium), To mike 1
thice asungrins, 1 the PPN TE analysis will therefore requie
I e e e P no rolmion wt A and B

s presenied in Chapters 9 through 1. 47
this case inflection points, or points of 27
appu. I howeser, the column connectio™
ke asimply supported heam, zero morcst
=56 In realiy. however, the catumns 1!

locsted within 3 build
shown in Fig. -3 The

P <otuma

e I

simply supposted
(G}

Fig. 7-5

Privide some flexibility at the supports, and therefore we will assume tht
{5 moment occurs al the average point between the two extremes, ie.. at
I0211.+ OM2 = 0.1L from cach support, Fig. 7-5d. Furthermore, an exact
5lyss of frames supporting vertical loads indicates that the axial forces in
he pinder are negligible.
e mnary then, each girder of length £ may be modeled by a simply
a‘:""""ﬁ Span of length (L8 resting on two cantilevered ends. each having
e hof 012, Fig. 7-Se. The following three assumptions are incorporaied
s Mmodel:

L Toe

1 Thag 1 2510 Moment in the girder, 0,11 from the lef support

I 18 Zero moment in the girder, 0, 1L from the right support
Eirdér does not support an axial Force.

o551 Sarcs, the el adings i the giders can na b obtined

MEliminary design of their cross se be made. The following
Sl gn of their cross sections can
Ie Mustrates this numerically.

T

0211 poists of reso
mement
= i ]

Fived sapporied

%
s g |
Y i

- L |

IppeoTiman
@)
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o,

S 1N

[T

(approt 3 e joints E and C caused by
i ly) the moment at { 3

mmm;}m c”S:.'Ffm building bent in Fig. 7-6a.

members

SO0V

S0 I

[

00 It

ITlTH_I_Lg

——man

i)

=

Fig. 7=t

SOLUTION

For an approwimate analysis the frame is modeled as shown in Fig. 7-6b
Note that the cantilevered spans supporting the center portion of the girder
Bave a length of 0.1L = 0.120) = 2 f1. Equilibriom requires the end reac-
tions for the center partion of the girder to be 6400 Ib, Fig. 7-6c. The
cantilevered spans are then subjecied (0 a reaction moment of

M = 1600(1) + 6400(2) = 14 400 Ib-fi = 14.4 k-fi Ams.

ﬂ“\fm: moment, with opposite dircetion, acts on the joints at £

e

SEC T4 PORTAL FRAMES AND TRUSKES 248

4 Portal Frames and Trusses

Frames. Portal frames are frequently used over the entrance of a bridg
and 25 3 main stiffening element in building design in order to transfer hori-
qontal forees applied at the top of the frame 10 the foundation. On bridges.
(iese frames resist the forces caused by wind, earthquake, and unbalanced
e boading on the bridge deck. Portals can be pin supported, fixcd sup.
ported; o1 supported by pantial fixity. The approximate analysis of each case
will now be discussed for o simple three-member portal

Pin-Supported. A typical pin-supporied pontal frame is shown in Fig. 7-7a
Siace four unknowns exist at the supports but only three equilibrium equa-
tions are available for solution, this structure is statically indeterminate to the
fint degree. Consequently. only one assumption must be made (o reduce the
frame to one that is statically determinate

‘The elastic deflection of the portal is shown in Fig, 7-7b. This diagram
indicates that a point of inflection, that is. where the moment changes from
positive bending 1o negative hending, is located approximately at the girder's
midpoint. Since the moment in the girder is zero at this point, we can assme
1 hinge 5 there and then proceed to determine the reactions at the sup-
ports using statics. If this is done, it is found that the hori
(shear) ai the base of each column are equal and the other re
indicated in Fig. 7~Te. Furthermore, the moment diagrams for this frame are
inticated in Fig, 7-7d.

*See Fig. 34,

moment
ingram

uh




b SEC 74 PORTAL FRAMES AND TRUSNES
ALY INDETERMINATE STEL 3

T ANALYSIS OF STATIC

¢ itk o fised supports, Fig. 7-8a, are staticy,
" orted- Pﬂ?dkd;“:t ince there is 8 total of six unknows o
determinate to the th hers have equal lengihs and cross-section|

iy i Fig, 7-8h. For this case we o
g e wil ::‘:,‘T“mg midpints of al three members, g
ﬂmwumrh o 4l (hese poins. The reactions and momey

therefore hinges are plac can therefore be determined by dismembering (e
i M"; plying the egations of equilibrivm 1o ach o i
y.mpndnﬁ':: shown in Fig. 7-8¢. Note that, as in the ease of the pip
four pars, The n.:ﬂ rontal reactions (shearh at the base of each colay
mmdmm diagram for this frame is indicated in Fig. 7§t

Fig. 7-9

Trusses. When a portal is used to span large distances, a truss may be used
fn phice uf the horizontal girder. Such 3 siructure s used on large bridges and
s transverse bents for large auditoriums and mill baikdings. A typical exam
ple i shown in Fig. 7 10a. In all cases, the suspended truss is assumed to be
pin connected at its points of attachment 1o the columns. Furthermore, the
o P truss Keeps the columns straight within the region of atachment when the por-

el swbjected to the sidesway A, Fig, 7-10b. Consequently, we can analyze
r tnssed portals using the same assumptions as those used for simple porial
1 frmes. For pin-supported columns, assume the horizontal reactions (shear)
afe eyual, s in Fig. 7-Te. For fixed-supported columns, assume the horizon
Glreactions are equal and an inflection point (or hinge) occurs on each column.
measured midway between the base of the column and the
[hiss member connection to the column, See Fig. 7-8¢ and Fi

west point of
. 7-10b,

[ I3 A

3 T The following example illustrates how to determine the forces in the mem-
moment bers of o trussed portal using the approximate method of analysis described
disgram above,

iy g

sl Py Sine it i bt dificlt and conly o comsiuct 3 per
_ﬁﬂmw Toundation for a portal frame, it is conservative wid
i M:“"fm“'ﬂ.llﬂhﬂon oscurs at the supports, Fig. T
@ result, < POInS of inflestion on the columas lic somewhere betw!
""‘f“ ‘:ﬂll#wmw. Fig. 7-7a, where the “inflection
J3PBErS (e o colama, and  fisect-supported pertal, Fit. 1~
inflection Are &l the eenter of the columns. Many <0
3L Af3, Fig. 7-95, and therefuore place hins

; of the girder.
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7 ATPROXIMATE ANALY — —
: the forees acting in the members of Using the method of sections, Fig. 7-11c, we can now proceed 1 .
e by aproinate e in the forces in members CB, BD, and A jag- i)
e Waren portal show if Fig. . ‘ 0N
HEF =0 —27T5 + Fypsin 45" =0 Fan = 389 kN (ThAns 2m o
[ 2hy = 0: —200.5) ~ 402) + Feold) = 0 Fory = I5KN(C) Ans. 4 -

Ry = 0 Fry(2) — 2005.5) + 27.52) = 0 F,, = 25N (T) dne.

o similar manner, show that one obtains the results on the free-body di-

of eolumn FG/ in Fig, 7-11d. Using these results, we can now find
the force in each of the viher truss members of the poetal using the method
of jaints.

Fed0MN Joint D, Fig. 7-11e
+TZF, = 0 Fpysin45° — 3895in45° = 0F,, = IRIKN(C) Ans.
43F, 75 — 2(38.9 005 45%) = Fiy =0 Fpe = KN(C)  Ams.

| Joint H, Fig. T-11f

AEm iSm
[ +T5F, = 0 Fysin45° — 3895ind5° = 0 Fy = BIEN(T)  Ans.
veuits These results are summarized in Fig. 7-11g.
N
ni L}
Fig. 711 2
@
r
SOLUTION
The truss portion B, €, F, G acts as a rigid unit. Si 2 b
. ¥ Ful rigid unit. Since the suppons are E
fined,  point of inflection s avsumed to enist 7 s

e B =0 V=40kN/2 = % L sew o pFor
St .y 71 s e

Luer el of Cotuma
WRLEE Nosspn-0 g

Upper Portion of Columa

175N

=0 -a55 s Mgy =g

N=215kN




 APPROXIMATE
Loads on

mm‘m:nmnurmn:m

INATE STRUCTURES

ilding Frames: ?0'"91 Mel!ll)d

et the action of eral loads on poctal fr
palagts fixed !:P::‘::“ jts base, points of inflection oceyy
s for 8 (e R PEC b e and coldmn and the columns cary g,
wmm“”“?—ﬂ.nhmm bent deflects in the same way R
e I“‘r’—?}a and therefore it would be appropriate 1o s
ke s the cente of e colunes and ginders. 1 we conside
ol the frame to be compased of aserics of portals, Fig. 7-12b, thei
ther assurmption. the inierir codumns would represent the effect
o ad, woukd therclore camy bwice the shear V' i the two caier,
colamins.

& = inflection poist

)
— 2
v = =
v v

SEE

o summaey, the portal method for wnalyzing fised-supported building
{amgs ruires the following assumpions:

|, A hinge in placed st the center of each ginder, since this is assumed 1o be
a paint of zero moment

2 Ahinge is placed at the center of each column, sine
 pint of zer0 moment

1. At a given _Hmv Jevel the shear at the intersor colu hinges is twice o
o the exterior column hinges, since the frame is considered 10 be a super.

position of portals,

this is assumed to be

These assumptions provids 5n adequate reduction of the frame 1o ane tha
satically determinate yet stahle under b

By comparison with ¢
pertal miethad is most suitable for buidings having
framing. The reason for this has w0 do with
In this regard, consider the fr
fised 1o the ground. Recall from m
hecomes more important in the design
mare impertant if' the bean i< fo J
(a the assumplion related to shear

The following exumples illustrate how to spply the portal method 1o ans
Iyze 2 building bent

3 perforn o laieral doad

8 Bomal methon of analysis can be
m“lhﬁ single-story frame

(appeunir

73 LATERAL LOADS 0N RUILDING FRAMES: FORTAL METHOD
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FORTAL METHOD

m- m.m.h at the base of the calumns o

e portal method of analysis

[ i o ¥ F o G
|00 1 1
ea I ’ x 1
LA C E H |
ug——on— 16 4
)
Fig. 7-13
soLCTION

Applying the first two asumptions of the portal method, we place hinges
# the ceatens of the ginders and columns of the frame, Fig. 7-13a. A sec

Gon through the columa hinges at [, J, K. L yields the free-body dugram
shown in Fig, 7-135. Here the third assumption regarding the column shears
applies. We require

LEF =0

200-—6¥=0 V=201

—

Using this result, we can
fanges and deten
watysis ur the comer where the
pody disgram of sepment mu is sh
components at ihe hinges I, M,. and M, &
SMy=0,ZF, = 0, XF, =0, m,\.meh The
amlyzed next, Fig. 7-13d, followed by se
fiually segment OGL. Fig. T-137 Using u
diagrams of the columns with their support reactions are shown in Fig. 7

I= 15010

i
4k Wik
| |
€= 40010 E, = 800
M= 1201 0 ~ —r
M= 201 M=

Aisly

10
L
o
s
H=20m
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Lsing these results, we can now procee
e, The smnalysis starts with the comer scg
e unknowns O, R, and &, have been ¢
rium, With these results segment 0 5
ig. 7-14e: RPS, Fig. 7- 145 PATKN

ions a the hase of the colum

ihe reacti
i portal method of analysis

(approvimal
Deserin (ogprOniTRERY L

frame shown in Fig. -
cquilib
ihen y:glntﬂl /

) :
L : A8 Fig. 7-14h. Complete this example and analyse scgments SI, then
N, ind fnally LC, and show thin C, = 12.5 kN, €, = 15.625 KN, and
0 sm Me= 315 kN'm.
0K T ¢
6m | |
] | |
3
I
Fig. 714 e )
SOLUTION Al

A0k

First hinges are placed st the eeniers of the girders and columns of the
frame. st-mF:Igl 7—!)‘-;.’\ séxtion theough the hinges at O, P, @ and J, K. L
yiel ree- isgrams shown in Fig. 7-14b. The colur 4

bt g 7=14b. The column shears are

V=5kN

15625 kN

12558

A= 125kN
My = FTSKNm
15828 kN
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7.6 Lateral Loads on Bui

TEAMPIATE STRUCTURES

Cantilever Method

TATICALLY INDE

ilding Frame

ction 43 4 long cantilevers

o is based on the same i
B e Toad. It may be recalled from mechunics of
caisses 4 bending stress in the beam th

e 7-1%a. In a similar mann

The cantilever metho
peam subjectnd 10 a tra
such a loading
eutral axis, Fig
e i) to lip the frame OVET, DF C2W5E & rolatian o
frame about & "nestral axis” lying in & porizontal plane that passes thr
e colamns 8 each finar el To counteract this tipping, the axial §
for stres) in the columas will be teasile on 012 side of the neutral axis and
compressive on the oiber side. Fig 7-15h, Like the cantilevered bea

et fore seenes, reasoabl 10 asgume this axial stress has a lincar
From the cearoid of the column areas or ncutral axis. T
is therefore appropriate if the frame is falf and slender. or has

matznals that
linearly from the beam's
Jateral loads on @ frme

different crass-sectiona! ares.
v
A
1
oeam
w

1

buibdig frame
m

Fig. 7-15

the cantilever method, the 1

[nmmary:
o fasdsupported 1

| A hings is pla
apoint of 2cre
5 Atinge is placed at
ament

Ares; the forre

ing equal cre
1o its distance fro

the centroid of the colum

ice the frai

These three assumptions red
i e 10 one thai

sally determinate.

The following examples hew to

aalyze o building bent

od 10

e by
i
ing frammcws
| rmcwoed. has rigid connections. A 1iteral-lnad analysis can be performed

'
i
ely) by using the cantidever method of analyss.

RAMES: ©

ANTILEVER ME

ot
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aimately) the reacti
D T 6 The colams aesssumcd
rame show g

sectional areas. Use the cantilever method of analysis

= o7 X

s
14 kN e
H 1e3m

am e t I ¥ w

i r b J
" ®

Fig. 716,

sLUTION

First hinges s placed af the midpoints of the columns and girders. The
locations of these points are indicated by the letiers G through L in F
7-16a. The centroad of the columas’ ross-sectional areas can b deicr
mined by inspestion, Fig, 7-168, or analytically as follows

Zid _ 00 + 6

i
i o

=3m
“The avil force in each column is thus prope i

otional 1o jis distance from this
m::;: a sextion through the hinges H and K at the wp story yickds
et of e 21 shioks in Fig, 7~16c, Note how the column 1o the
a0 st e sbjected o tension and the ane .
M';'u ;;“"J:’;}"m 1[":""\- necessary in order to counteract the
i, we have

Hin=g

Sumtiing moments about the neutral

A ~W2 s 3,5 3K <
unknewns can
s can be relsted by progortional triangles, Fig. 7-16c, that is

- 1%

ach part of the frame can now be analyzed wsing the ubove
A+ i Examples 7-5 and 7-6, we be the upper cor
applied loadi segment HEY, Fig. T-16u. Applying
equations of equilibrium, SM, = 0. LF, = 0. XF, = 0, y

for Hey B and £, respectively, shown on the free-body di
7-ltie, Using these results, scgment /DK is

followed by HJG, Fig. 7-16g
bottom partions of the columns, F

r wh "
he three

ceurs, 1.6

Ids the results

m in Fig

#ed next, Fig. hf,
then KJL, Fig. 7-16h; and finally the
nd Fig. 17-16/

f LATERAL LOADS ¢ PRAMES € ANTILEVER METHOD 289
— p—
ons 08 the base of the columns of the - s i
T 3N6) ~ 15(2) 4 3G, + 3L, = 0 A
Sjace Gyf3 = L,/3 0r G, = L, then
G, =L, =35kN
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calermme of

©ectional areas show in FIE

1 determine (approximately) the react

5 ) Ta. The
frame shown in Fig. -

i 7-17h. Use the cantik

N h—

m

SOLUTION

e TR

o

, L L
“ s
Y e T AP T
L
i .1
2 o
168 glhio '7':"' s | gt I5h—-
—_—

Ba—

Fig 7-17

Fint, binges e assumed (0 exist at the centers of the girders and columns
of the frame, Fig. 7-17a. The centroid of the col
ares is determined from Fig. 7-175 as follows:

+3+6+ 10

E=iany

5530 [t
—ang— 1

Sk _ 010) + 20(8) + 35(6) + 60010)
-

lumns have the crp,
er method of analygs

G, y H

o T

IATH o

—

Here the columns have dif
in s column is propartional
=28.
free-body diagram shown in Fig. 7-17c. Note he
of the centroid are subjected to

1o compression. Why? Summing

[FSM=0; —8HER) + L8531 + M8S

NI6ATI) + O314TH) =0 (1)

Since any column stress o is proporti
fal axis, we can relate the column stresses by prope
Expressing the relations in terms of the force L. we have

BIn o 853 (L \ 4 - omer ¢
w5 gin®  28.53 L10in) = b
647f W Vel B e ;
[ = = o1 o
TR 28,53 L10in*/ >
314TR 0, 347 L
P L] = ;) @, = LioaL, @
CETIID 10in* = 2853 lioint) & ”

Solving Egs. (1)-(4) yields
L=0725K M, = 0174k N, = 0.0987k 0, =030k

Using this same methiod, shaw that one obtains the results in Fig. 7-17d
o the columns ot £, F, G, and H.

We can now proceed to analyze cach part of the frame. As in the pre-
YIOUs examples, we begin with the upper comer segment LP, Fig. 7-17¢.
Using the calculaied results, segment LE i analyzed next, Fig. 7-17/. fol-
lwed by seament £A, Fig. 7-17g. One can continue o analyze the other
SEMENS in sequence, ie., POM, then MJIFI, then FB, and so 0.

£
E Ei- 1Y
an
A=2T0k
=2
A=1670
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PROBLEMS
91, Daermine (approsamunely) the (o6ce ¥

s, Assame the iaganale can swppart both
pressive foces

-8 Determine (sppronimatel
ascame the diagonals can soppart il

pestiv force

1 eachmember of the
reasile and comr

e Force i each mersber of the ik

» compressive force 5

X]I'

L

-2 Desermiine (approwimately) U
fruss, Ascume the diagonals canm SUppoTt

200208205

Prob, -5

76 Determine (spproximately) the force in e
\russ, Assume the Giagoaals camnot support

4k Bk Bk ik

L s dam—t3m—3m—

Probs. 7-1/2

-3, Denerrsine fappronimately) the force in each momher of e
truss. Assume (he diagonals can suppor cither a teasie or com.
prssive foree.

':'-l- Determine (spproximately) the faree o each member of
i . g

L3 C
et —20r— 20—

Prob. 7-6

77, Determine (approximately) the insemal moments 31 o
F 10 I o te frame.

v7.§, Detenmine

e i moment diz

T4, Determine (approximately) the interial moments at joiats A
i

PROBUEMS 263

A joints

rastiiddiididg,

0
MLLLEEELEE

7-11. Determine (approximately ) the internal momest and shear
at the ends of cach member of the portal frume. Assame the
Supports at A and D are parially fixed. such that an infles e poi
15 locuted at #1/3 from the bonom of each column.
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515, Determine (approvimately)
per of the porial fran. Al deter

oL Detcrmive (approsinately) he inieral moment and
s A asd B Assume

Assume the
e st the s of ench smember of the paral e f
supposts 4 A and D arc () pimnes e, o e parialy (e S B
ach than the S ection poist for the cobmm & locaied {3 pin <

& fuup from 4 and D

their ends

Prob. 7-15

[ — *7-16. Drew (appeuimately) the momeat disgram fo
e ) the. mement disgram o columnACE 0f = poral Assurme all truss members aud the
ol the: portal, Assume il trues members and the columas tp U P coumected af their . Al determine the
b pin connecsed an theis ends. Also determsine the foece i all the  EG: CG. 0 EF.

s members.

3-17. Salse Prob. 7-16 if the suppons at A snd B
instead of pinned

Tl Seitvr Prob 713 if the ssppos a1 A and 8 are fived

fuzn

fined

4K Detamine dapprovinately) the fore in ok
rerofthe poetal frame. A

oppas A and 8. A
accied 0L Aheir ends

Frub. 7-18

T-19, Determine (approximately) the
e ofthe ponal frame. Al
sappurts A and B. Assume all members of the
cinmected at their erds

PRUBLEMS 268

7-21. Determine (spproximasely) the force in cach truss mem-
ber of the portal frame. Alo compute: the resctions at the fixed
column supports A and . Assame all members of the s kb be
pin consected st thear ends.
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o M:"[ ¥ he  PROJECT PROBLEM
al ;

mately) the e

g aing 08 D cokamms arid 49
Dy (approsimately) b

rec are sheran, v (3 e o= ‘
i for e column ACE, The suppors ¥ - .
ol s the gross-se<tl
cam or e
7-28. D (appresimancly) the she e -
columa 807 in Prob. 1-24
LB C .
Frob. 7-26
B
. Use the portal method and detcrmine (apyy
force, shear, and moment at suppocts A, B, C | L R
w28 Use the cantilever mithad and determine (sppeoxiniscely | S 7 x
e axial force, sbes Lat supponts A, B, C, and D, All /i 1 |
colemns have the i t
12 Bial

Probs. 7-31/32

girder

730 Dmyw {approximately) the moment dig
PURST and column BGLE of the buikding frar

Use the ponal

Probe. 7-22/23 e
#7238, Determine (sppeasimately) the force s members CE, GE, P 3 r
and GH af the poral frams. Draw the moment dxgram for col T
atmn ACG. Assisme all mermbers of the trass s pin coanectad al o0 I3 1 i y _off "
their ends and (he supports @1 A and B are . |

= T T ¥ [ H ] e
-2, Salve Prok 7-22 if the suppors at A and B & i
mafepia oo i Probs. 7-21/28
G " [ N (4

18t 15

7-29. Use the ponal methiod and determine (approsima

feactions # A, B, €, and D of the frame Prob. 7-33

T3 Draw (approsimately) the moment d

M Draw (approsimately) the mament disgram for girder
EFGH, Use she portal methiod ;

PORSTand column AGLQ of the bui s have:
B Same cross-sectional area. Use the

Probs, 7-29/30
Prob. 7-34
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The aettetion o s trss bidee
st be carefilly moritored whi i
s under consnuction. (Courtesy of
Bethlehem Stcel Corporation |

structure using various peometrical
double integration will be discussed. T
consider include the momeni-area theoren
and the energy methods are based on v
Each of these methods has particular a
be discussed when each method is presented.

. which will

antages o disady

Jlastic Curve

8.1 Deflection Diagrams and the

Defletions of structures can oceur from various sources, such as loads
\persiure, fabrication errars, of settlement. In design, deflections must be
limited in onder ta prevent cracking of attached britle materials such as.
Suncrete or plaster. Furthermere, 3 structure must not vitrate or deflect me_ml;
10 ostder 1o “appear’” safe for its oceupants More impartant, though, deflections
# specified points in a structure must be determined if one is to analyze
Satically indeterminate structures.

The delcetions 1o be considered in this ieat apply only to stnucues RAVinE
linear elustic marerial response. Under this condition, a structafs subjected
18 8 koad will retu 1o its original undeformed position afier the oad is
VG, The defionsom of o Auptue is causcd by its inermal gadings sech
% tormal Toves. tiear foees, oF bending momen. For heas and franek
e the greatest deflections are st often caused by insermal berdfing,

U218 intermal axial forces couse the deflections of a rruss.
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| 07 —

a0

st ssppon

t on A

jacement of @ po
Ielpful to sketch the shape of o structure when it s
he computed results and thereby partially check y
restils, This deffection diagrot represenis the elastic curve for the poi
the centroids of the s sectional reas along each Of the members. Fos
problems the elastic curve can be skeiched without I!'|\\\|| difficulty, Wh
B 0, by s pecessay 10 koot the reswictions as 10 slope ¢
displacement that ofiea gecur a & support or a connestion, With re

Table 81, supports that resist  force, such & a pin. resirict d
and those that resist moment, such a8 & fixed wall, restrict rol,
that deflection of frame members that are fixed connceted (4 ¢
10 rotale. the members by the same amount 8 On the other hand, if 4 pin
connection is msed at the jodm, the members will cach have a differen 3
ar rotaion at the pin, sinice the pin cannot support 3 moment {5). Usin,
restrictions, typical examples of deflected beams and frames, sketc]
greatly exaggerated scale, are shown in Fig. §-1

Befire the siope of di

computed. it is ofien
in onfer 1o visuplize U

splacemer,
I

uses the joist

SEC. &1 DEFLECTION C

| the elastic curve seems m\_t‘u;ull 10 establish, i is suggested that the
i dingrm fox the beas of frame be drawn first. By our sign comvention

B s estabishicd in Chapice 4, pasitive moment i tobend i
ronal member conce

e upeard, Fig. 8-20. Likewise, 3 ne

o o

e tens to bend the beum of menbr concnve drmard. 5
Thenefre, i the moment diagram is knowm, it will be easy to constract the
dasic curve. For example. consider the beam in Fig. §-3 with its associated
(et disgram. Due (0 the pin-and roler suppar the displacement o Aand
[ must be 7ere. Within the region of negative momenl. the elastic L-m; is
oneave dowmward: ind within he region of postive moment, the lastic curve

s concave upward. In particular, there must be an point at the point
yhire the curve changes from concave down to concave up,

ol of er0 moment. Using these same principles. noke b the
o the beam in Fig, 84 was drawn based on its moment diagram.

pce this is a
tic curve

P,
8
: el )
beam
At
moment digram
— inflection poist

deflestion susve

Fig 83

beam
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SEC AT ELASTIC BEAM THEORY 3TN

it penceces [ we choase the v axis positive upward, Fig.
e (1/p) in temms of & and v, we ¢

8.2 Elastic-Beam Theory g

Bk f e boam. In most calculus baoks
i

ant differential equations that
iy 1 deyelop Two importan a
gohissectnWEWL PR e gisplacement and slope of its el

a heam
the intereal mﬁ!“ B s foe e delection methens prese

eationship 5

care. nrc:ld r::i“ o the assumptions and limiations, use - |
ihis ¢hapeer. s 4
14 e fully unde :
tennt e e wil K sl o e movt ;
“::' ‘il srlght beam that & elastically deformed by loads Therefose.
“:rp:lmi\:u'lﬂ to the beam’s & axis and lymg in the 1— v plane of symmetr i
he beam's oruss-ses ional LK. Fi, 8-5a. Dise 10 the loading, the deform - ; o
of the beam it caused by both the intemal shear force and bending mome
bumhmalzngmnuismmwr:mrmmiu depth, the greatest defo
lﬁlbeamdh) Sending and therfore we will direct our atte This equation represents a non
ions caused by shear will be discassed later in the cb solution, @ = fix). gives _m. ex
‘When the inieral moment A deforms the elemenc of the beam, the angle corse, that beam deflections occur only due to bending. In order 1o facilisaie
I" between the cross sections becomes df, Fig. 8-5b. The arc dx that repre the solution of a greater number of problems, Eq. 8-3 will be
making an important simplification. Since the slope

s porion o the elstc curve niersects the neutral axis for each cross secti
i s of e fox s ec i defined s the distance p. which i
Han e from e centerof curvaure 010 s, Any are on the ¢
i s sbectcd o orml train. For cxample, the strain in ar ds, locsted

gt struetures is very small, we will use small defection the
dofi = 0, Consequently its square will be negligible compared to unity and
{hereloce Eq. B-3 reduces o

Yhd at o position y from the neutral axis, is € - (ds" — ds)/ds. However, di s
2 ,(r L dempdbandis’=(p=y)dt i so ; oM i
i W 3 ) . ]
o pdi gy 1t should also be pointed out that by assuming du/ds = O, the original
M{uﬂ;ﬂ nhm_mm and behaves in a linear elastic manner, then length of the beam's axis x and the arc of its clastic curve will be opproximately
betore e o _:’ w applies, ¢ = a/E. Also. since the flexure formula applies e same., In other words, ds in Fig. §-5h 1s approsimately equal 10 dx, singe
= o= ~My/l. Combining these equations and substituting imo the abave
= o dr = NaE T et = VT (o) de = ds
1M
g i (L] ‘TM ul:u!l implies that points on the elastic curve will only be displaced
vertically and i
Here ly and not horizontally.
# = the radi
mﬁfntc‘;“"‘ at a specific point on the elastic curve (1/P 1
M= u‘-uum:-"""'"’ h]"b‘"a“d Results, In the next section we will show how 1o apply
S et L S etermired E3-6-4 1o he slope o a beam and the gustion cf 1 st curve. The
T il ;“: from. such an analysis for some common beam loadings often 0
Mhcimint of inertia compued about the neutral at1* w:;d in stnactaral analysis are given in the table on he inside front
i scnati | i ! i - iy
R s » ok in i cquation is referred to s the flexural rigid ad w&bﬁ“bﬂﬂlrﬂlm lsed are he slope and gisplacement atertieal poi
| positive quaniity. Since dx = p i, then from Eq. -1 (i Obviously, no single table can account for the many
) el of lading and geometry that are encountered in prctice: When i table

itad H

M 2 valable or is incomplete, th:digphcemcmwdwﬂn‘lwﬂpﬂlﬂ

ey 8 R oty gt doulie g st
e * ome y using

of the ather methads discussed in this chopler.




Once M is exprosiod 553 fu
of g, 84 will yic the
8.71 and the oquation of the elastic ¢
aespectively. For cach imegration il is necesry W imtroduc
= and then solve fox the constants 1o obtain 3 ut
partcular problem. Recall from Sec 4.2 that if the loading
discomtinpous —that is. it consists of 3 series of wvenal d
oeeptrsted Joads—then several functions must be wri
) alid within the rezion between the discont
. §-6. The intemal ma
BC. snd €D mast be writien in terms of the 1y, x3. and «
these fancions arc imegraicd through the application of Eq. §
constams of integration detcrmined. the functions will g
deflection (eksstic curve) for each regaoa of the beam for which th

Sign Convention. When applying Eq. 8. it is important 0 use t
proper sign flor M as established by the sign convention that was t

derivation of this equation, Fig. 8-7a. Furthermore,
defllection. =, is upward. aad 2 2 result. the positive
messared couneerclockwise from the x axis. The reason for this @
Fig. §-Th. Here, positive increases dv and dv in x and v create an inc
s coumerelockwise. Also, since the slope angle # will be very smal
vali in radians ean be determined dirccily from @ = tan 8 = dv/de

undary and Continuity Conditions. The constoats of i

:ugm“ ined by evaliating the functions for slope or displacement & &
Pt om the beam where the value of the function s kaown. T

values a#c calicd bowndary conditions. For example. if the beam is supponied
by a rollcr oe pin. then it is required that the displacement he zer a1 1B

T 0. 8 fed suppert the: slope and displacement are both 0
m:$  coondinate cannot be used to express the equation for %
evabute .._"::'.“"‘ curve. then continuity conditions must be used :
Hete the 1, and 5, $ N:;:'Lll Consider the beam .:Brﬁ;é(
espestively. Once o are valid only within the regions
“Wht';n for the sbope and deflection are optained- B
0 4 e e X e slop:and defletion at point 8.1 = %~
his v 8(a) = iy ::‘“"y continuous. Expressed m
ot o 1) = B These equations can

procedure for Analysis
proced

The follow
geflection of 2 beam (or shaft) usi
puld be realized that this methe
forwhich the beam

displacerment occurs at pin
» Esmablish the x and v coon
undeflected beam and its
fiive direction (o the

« Ifseveral discontinuous lnads are present, establ

valid for cach region of the beam between the discontinus

# In all cases, the associated positive » axis should be directed upwand

Load or Momens Funciion

* FFor each region in which there is an x coordinate. express the intcrmal
moment M a< a function of .

* Abways ascume that M acts in the positive direction when applying the
equation of moment equilibrium to determine M = fix)

Slope and Elastic Curve

* Provided E7 is constant, apply the moment cquation Ef ¢ /e’ = Mix)
which requires two integrations, For cach integratioa it is important 1o
inciisde  constant of integration. The constants are determined using the
Boundary conditions for the suppors and the continuity conditions that
apply 10 slope and displacement at points where two functions meet

* Doce the integration constants arc determined and substituted back it
the slope and deflection equations, the slope and displacement at specific
Points 0n. the elastic curve can be determined. The samerical valoes

ined can be checked graphically by comparing them with the sketch
of the clastic curve.

b :mhw Valucs for slope are counterclockmise 1nd positive displacement

spesard,
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e,

88 is subjected 10 a couple m

w +
The & equation of the elustic curve El'is const
M, @i @

M,
=)
L e |
)
]
Fig. 8-9.
SOLUTION

Elastic Curve,  The load tends to deflect the beam as shown in Fig, -5
By inspection, the niemal moment can be fepresented throughout the bean
asing a single x coordinate,

Moment Function, From the frec-body dingram, with M acii
positve direction, Fig. 8-95, we have

M= M,
Slope and Elasiic Curve.  Applying Eq. B-4 and integrating twice yie
B m
“
I =M+ C, 2)
e
By=" i cas (t]

Using the bounntay sonditions /e = Diat x = Oand v = Ot x = 0. 0%

G=0C= i /
wm= 0. Substiting these sesults inio Eqs. (2) and (3) with 6 = dv/d%
g=Mox
£l

Maximuni slope nd displacement occur at A (x = L), for which
5 = Mok
A Ef £
M,
u, ()
2E1 2

The positive result for y indicales counterci
pasitive result for uy indicates that v, is upward T
sketched in Fig. 8-

rotation and the
ees with the results

In order 1o obigin some idea as 1o the actual magninude of the slope
a0l displacement a the end A, consider the beam in Fig. §-9a t have a
Jeagth of 12 i, support a couple moment of 15 k11, and be made of steel
having £, = 29(10%) ksi If this beam was de
safety by assuming the allo
SIESS Wy = 36 ksi, then a W6 % 9 would be found 1 be adequate
(I'= 164 in*). From Eqs. (4) and (5) we get

/M _ 0545 md

Sitce @ = .00297710 %) rad® < 1, this jusifies the use of Eg. 84, rather
than sppiying the more exact Eq, -3, for computing the deflection of

Also, since this numerical application is for a canrilevered beam,
we have obgained farger saluex for maximum 8 and v than would have
Been obtained if the beam was supported using pins, rollers, oc other fixed
Suppons.

THE DOUBLE INTEGRATION METHOD




$8 ci 8 DERLECTIONS

Joad P at its end. Dete

1 Fig, §-10a is subjected 10,8
Fis constant

The bearn in Fig.
displsccrnent ot €. E

SOLUTION.
:.;bm Curze. The beam deflects into the shape shown in Fig, 8-102
ue 10 the loading. two x coordinates must be considered.

Mament Functions. Using the free

we have ~body diagrams shown in Fig. 8- 100

P
==t

D=y =2

P
o n —2a)

TPa-a m=y=ia

P
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e and Blastic Curve.  Applying Eq. §-4
gl
for-ci S 1
dv bid
El & el 1
P
— A C + C ¥
Hikin. Pa
_P P,
—x — 3Pax, + 3
T
Efe o = = Pax} + Oy + €, (0
ey
The faur constants of integration are determined sl
conditions, namel Oatxy =0, v =0atx
£ = 24, and one conlinuiry equation. Here the

x e that contingity
tly considered in the boundary
2a.) Applying these four

roller requires dv, /dx;
displacement at B
conditions, since
coaditions yiclds

w=0ax, =

0=0+0+C

v = Qatx, = 2a; 0=

B
g2+ 6,

Pal2a) + Ci2a) + €y

3
o= Oatx, ¢

0= Pl?m —
5

) _

s (2a) + C; = G (2a)* — 3Pal2a) + €y
s, 1 2

Solving, we obtain

Gy 2 Wep or-2a
3 3
Substituting €', and €, into Eq. (4) gives
3P, \OPE pt P’
“am™ T am o E

The displacement at € is determined by setting 4; = Ja. We get
_ At Ans.
El




s theorems were
sl |d¢:l.\'{ll”€[ moment-arc :
3;»:”.‘:.: ster stated formally by Charies E. Gn 18
rmwdngmwyuphimh:chlm]u: fior determ
s deflection due o beading They are part ,
v problems imvolving beans: ‘especially those subjected
i gments with differcat
ce is made o the beam in F
Sevelop the theorens, referense 15 I
we :;- mm fiagram for the beam and then divide it
igiity, 1, the "M/ El diagran” showm £1 Fig. 8110 results. By Eq, §-2

W

arly avantageous when use:

MY
HlJu

e seca that the change d@'in the slope of the tanger
I to the dark-shaded area under the M/ET
to point B, Fig. §-11

di= |

Thus # can
cide of the element dr is equal
diagram. Integrating from point A om the elastic curve

we have
8, ’J"M.L‘ 5
= | (B-5)
= |, Er

This equation forms the basis for the first moment-area the

Thearem 1: The change in slope between any two points on the
clastic curve equals (he area of the M/EJ diagram between these
two points.

The motation B, is refened o as the angle of the tangent a1 B measared
with respect 1 the tangent a1 A. From the proof it should be evident that
this angle is measured counterclockuise from tangent A to tangent B if L
area of the M/EI disgram is positive, Fig. 8—11c. Conversely, if this an
negarive. o below the ¢ axis, the angle fy,, is measured clockuise from
e “‘::‘5"“" Futhermore, from the dimensions of Eq, 85, i

i

u
i
b

#
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nd mament-ares theorem is b

The seco
(g 1 he lastc curve Shown in F

o of the verfical deviati
N s, T eviation is me
st A, Since the slope of the elast

P e very small. it
Jngentling by x and the arc d
where ¢ is of length . W
54 (M/E1) ds, the veriical deviation of the tang
g 3 B can be found by integration, in which case

()
T -6 o

ined from [ dA =

m, we can also - .

geall from staties that the centroid of an area i dete
Jdh Since | M/EI ds represents an area of the M/E]
whke

Ay
iy d :
g =X | o I

Here ¥ is the distance from the vertical axis through A 10 the centroid
area between A and B, Fig. 8-12b
The second moment- a theorem can

Theorem 2: The vertical deviation of the tangent at a point (A) on
the elastic curve with respect to the tangent extended from another
point (8} equals the “moment” of the area under the M/ El diagram
between the two points (A and B). This moment is computed about
puint A (the point on the elastie curve), where the deviation fyy is to
be determined.

Provkded the moment of a positive M/EI area from A to B is compued,
a5in Fig. 125, it indicates that the tangent at point A is above the tangent
10/ the curve entended from point 8, Fig. B-12c. Similarly. negative M, E
213 indicate that the tangent at A is belouw the tangent extended from B. Note
W8t in general 1,y is not equal 10 Iy, Wwhich is shown in Fig. 8-12d.
Specfically, the moment of the arca under the M/EJ diagram between 4
84 B is computed about point A 1o determine fau. Fig 8-12b, and it is
“omguied about point B to delerming fu-

ILis important to realize that the moment-area theorems can only be used
10 delerming the ungles or devialions between (wo tngents o the beam’s
2_‘“‘ warve. In general, they do nof give a direet solution for the slope or
h':_tmm at a point on the beam, These unknowns must first be relted
1 angles or vertical deviations of tangents at points o6 the elastic curve.

ally the tangents 3t the supports are drawa in this regard since fhese
360 ot underga displacement and/or have 2¢10 slope. Specific sases
m‘;‘:h*hu these geometric. relationships are given in the cxample

be stated as follows
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[ — mre. Wien appiied property. # will osly £ 5%
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e can e vy 10w Theomes 2. the alpebenc sgm of &
o e o e s or deviarion s indicmied 38 %

angie berwees two tmgents. = |

SOLLTION
M/El Disgrom. This &
fhe problem im ecrms of Ef and sebrain

Bl

e mangems a1 A (e ssppon
€ me abso indicassd. We are rex
soe. the smgic between o A

ko,

Mosment-Area Theorem.  Applying Theo
mder the M/ EJ dixgram betwoen points 4 aad B: da

30k-f

L

e

Ams.

The acpuive sign indicates that the asgic i measared clockwise fom 4,
e ’
T & simmiller: monney. e area onder the M/ El diagram between pots
A2 € cxals 8., We have

@A _ ki

e )mmf =

Sebsticsting pumerical values for B, we bave
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in Fig, K-14q

ed i the fig

15 & and € of the beam

elecsion at pois
Determine the deflection 8 PO C o0 et aee indi

Vabues flr the moment af inerta o
Take £ = 200 GPa.

WN -
SOLUTION
M/ET Diggram. By inspectio
rectangle, Here we will consiruct the
ingihathus = 2lacs Fig B-14b: Numeri
a5 0 last step

. the mameat disgram for the bean
1 the M/E! dingram relative o fy. e
cal dto for ETge will be substituted

The couple moment at € causes the beum 1o def)
The iangents at A (the sapport), B, and €
These dis

s, 50 that from
tive to tan A; that is

Elgstic Curve.
s shiown in Fig. 8-14¢.
inficsted. We are roquired 10 find 3y and 3¢
selated directly to the deviations between the tng
o the deviation of tan B re

somstruction Ag is equal |

Alsa,

Moment-Area Theorem. Applying Theorem 2, fy, is equal 10 the
moment of the M/l diagram between A wnd

compated about point B, since this is the point whe
ation s 10 be detemined. Hence, from Fig. &-14b,

he tangential devi-

@
Fig 5-1 LN P LS
c Ely
Substititing the numerical data vields
A 2000 N-m’
R200K0°) N[44 10°) mam( 1 m*/(10°)* mim))
= 00025 m = 2.5 mm Ans.

- Likewise. fi 1y, we mest compute the moment of the entire Af/Elc
diagrain from A to € about point €. We have

20N
A=y, = |22 "_'“m]w S00N-m
+ |- - 5
Elo m) Ely (3mpf(1.5m)
:!1 ___)_‘_'ﬂ

- TN
Bl [ROKIWN/m )40 10 T m')
= 000906 m = 9,06 mm i

Since bt i
Al the agenan g P they indicate that poiots 8 and C lie
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point € of the bear

Determine the slope Fig. B-1%a. £

= 6010%) mm*.

200 GPa.

Fig. 818

SOLUTION
M/EI Diagram.  Fig. 5156

Elstic Curve,  Since the loading is applied sy
the elastic curve is symmetric, as shown in Fig. 8-15¢. We are required to
find B This can easily be done, realizing that the tangent at D is hori
aanmial, and therefore, by the construction, the angle e between tn C
aad tan D is equal 10 6, that is,

metrically o the beam,

.= Oy
Momenr-Area Thearem. Using Theorem 1, ¢ is equal to the shaded
eaUnder the M/ET diagram between points C

2 [ We have

30 KN-m

L o[ G0N m
} +30 mll ] &

0=

JOKN-n
=
”'( E

=0012rd  Aws

200010 KN /m 601010 ']




P
— —
in Fig. 8- 16a. £ = 20(10
sint € of the beam in Fig. 3 Vs
gk Determine the slope & P
1= 600 in’.
5
Lent——in P —
o M/El Diagram. Fig. §-165
e aw 8- 16c. We are requi
lastic Caree. The lstic carve is shoun . biulred
mef::;dm». eutablish tangents &t A, 8 (the supports), and C ang
e i i the angl fetueea the tangeats at A and €. Also, e |
':n‘kd'll Fx.g !‘-!&'cankh-mﬂu&m;d = fgafLan. This equation is
8 o s i actually very small 50 that faux €1 be ApproRimated by
v e gt of a circulr ar defined by 8 Tadits of Ly = 24 ft and swcep
4 of & (Recall that 5 = Br) From the geometry of Fig. 8-16¢, we have

'
b= = )~ B )

" Moment-Area Thearpms.  Using Theorem 1, A, is equivalent to the arca
usder the Af/ET diazram between points A and C that is.

—on e 68
™ i 12k 36 k-
fu= 360 I
Applying Theorem 2, 1y, is equivalent o the moment of the arca under |
the M/El Gisgram between B and A about point B, since this is the point
where the tangentil deviation is 1o be determined. We have
pey 1 1 (36 k-f
A 1 6+ . Sl
E S8 ._,usru[ =
e 2 1 36 k- ft
~ s + St
;. lmﬁ){:mmf 5 H
-y | X
1 ) [ ry
Fig 518 7 i
Slhﬂmqgmnﬂllnmmh].ill‘waiml
g = BNER 6LE 144k
” @GME g g
o thay

8 T e L1 5
. i /HEI00 in'(1 16 /(124" in®)

= 000119 g

y
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petermine the deflection at C of the beam shown in Fig. $-17a. Take
= 29(10") ksi, 1 = 21 in
"
¥
5
8 1 an_ |
SOLUTION
M/Ef Diagram. Fig. 8-17b.
Elastic Curve. Here we are required to find A, B This is

ot necessarily the maximum deflection of the beam, since the loading and
thence the elastic carve are ymmetric, Also indicated in Fig, 8=17¢ are
e tangents at A, B (the supports). and C. If 14y is determined, then 4"
e found from proportional triangles. that is, A'/12 = 14x/24 or
A' = 1y5/2. From the construction in Fig. 8-17¢, we have

1
Ao Ay, ]

Moment-Area Theorem. Applying Theorem 2 to determine fym and fom

we have
1 1 (S keft)] _ 4800k fi
fw = me][zuqmt = ]J -2
1 i (25Kt _ S0kA'
r(,=[jl]lt'n“5|lllll{ - ]J— =

Substiuting these results into Eq. (1) yields

Fig. 817

kN’ _ IS0k A
T H Er

1 (480 k-t
TF )

Working in units of kips and inches, we have

180 K AP(1728 in'/1t

2910°) k/in’(

= 0.5 in.




Fig 818

=,
of the beam shown in Fig. B-|g.

£ kNim

8]

SOLATION
M/EI Disgrarm.
el and parabolic segments.

Flastie Carve. The loading causes the beam 10 deform as shown in
Fig. 8186, We e required 10 find 3. By comstructing tangents at A, B

s shown in Fig. §- 185, this diagram consists of ian

(the suppors), and €. it is seen hal Ac =t = A'. However, A can
be related 10 fr by propartional trizngles. that is, &'/16 = 1y, /8 or
A" = 2y, Henee

Bo= tey = Ly 0

Momentdrea Theorem.  Applying Theorem 2 (0 determine fss and .
we have
n | 192 kN-m
'f-""[]‘“n“g's"”(_ = }]

1 1

'lils m) + shn][2 ® msk

18N
]
& m]][; ® m]{ Al m ” _ 2048 kN
El ! El
Why are these terms negative? Substituting the resulis into Eq. (1) yieks
sy
&

LT
8 ey

- T

—
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8.

5 Conjugate-Beam Method
fEm—

determine a beam's slope or def

e ms
':T.: only on the principles of statics, and b
nilins
Mnu— pasis for the method comes from the
Bt Eqg. 8-2 and Eq. 8-4 To show this simr
equations @ follows
av _
v
48 M v
dx  El & H
(r integrating,

Here the shear V compares with the stope @, the mosment M compares with w

\be ditplacement v, nd the external foad w compares with the M/Ef dizgrum T o
T make wse of this comparison we will now consider & beam having the sume Rk
lengih a5 the real beam, but referred to here a3 the “conjugate beam,” Fig.
H19, The conjugate beam is “loaded” with the MF/EY diagram derived from
the Ioad 0 on the real beam, From the above comparisans, We can Stale two
theorems related to the conjugate bearm, namely,

Thearem I: The slape at a point in the real beam is numerically equal
10 the shear at the corresponding point in the conjugate beam.

o the real beam is numeric

Thearem 2: The di af i
rem e displacement a poin i Sl paf

cally equal o the moment at the correspont
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01
conpite B
ot 4 e comep
beam at its supparts consequen<e 0
chown in Table 8-
provies zem displacetlens it
from Theoreens 1 and

ance this 44
ol s 0 e e

a1 the suppost are 2610

cone
ol force, statcally
conjen
/B Toading will provide the necessary

beam stable
elibe

E

|n E

3 =
i et
LS —_—
% e
n L
.0
(mmemmal pin
L] L]
a=0
Iernal wolley
n L) e

ris. When draw
developed
ding slope and displace:
of Theorems 1 ind 2

it a1 the end of the r
1 the heam hias & nonzero slope. Con
am must be Supf

pin or roller SUPPO

d 2, the conjugalc be:
has zern moment but his

Here the canjugate beam
d zec0 moment. Comesponding v
i caber cases are lsizd in the table. Exumpl
<hown in Fig. B-20 Nt that, as a rule. nc
Sctermingie. real beams have statically detern
e heams; and statically indeterminite real beams, as in the
i Fag. B2, besame wnsible conjugate bears. Although ihis occues
“equilibrium’” to hold the conjug

bath the

the supports of |

ried
1 shear or e

hinge

internal mlle

real beam

procedure Tor Analy

The following procedure provides @

the conjugate-beam method

Canjugate Beam

+ Draw the conjugate bearn fo

he real beam. This beam has the same length
25 the real heam and has comresponding supports. as listed in Table §-2.

RS .

Fig. 5-20

ethod that may be used to determine
lacement and slope at a point on the eli

curve of o beam using

« I general, if the real support allows & sfape, the comjugae SUpport must
develop a shear; and if the real support allows a displacemer the conju-
gate support must develop a montent

+ The conjugate bear is Inaded with the real beam’s M, /ET diagram. This
Joading is assumed 10 be distributed over the conjugate beam and is
directedd wmuand when M/E/ is pasitive and dounward when MEI is
segathue. Tn other words, the loading always ocis away from the bean.

Equilibrium

+ Using the equations of equilibrium, determine the reactions at the con-
Jbate beam'’s supports.

+ Section the conjugaie beam ot the point where the slope 8 and displace-
ent A of the real beam are to be determined. AL the sestion shaw the
unkngwn shear V' and moment M' acting in their positive Sesc.

* Determine the shear and moment using the equations of equilibru. V7
M cqual fand , respectively, for the real beam. In paricular if these
:’: e pasiive, the slope is coumercivetuise unl the dispiacament i

irud.
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ST

» fection s point B of the stecl beam sh

w-ﬂ““ﬂ:‘;ﬂ compuied. £ = 2(10°) k. =
gy

[ 15 -

207 s DERECTIONS

the maximum deflection of the siee] beam shown in Fig. 8-22a
have been computed. E = 200 GPa, | = 60107

Determine
The reactions

g
nm*

Determine the
Fi, 8- The peaction

L compigale eal®.
(L1
—— M,
b a1
- Yo @
L1 soLuTION Fig. 8-12
o | Canjugate Beam. The conjugate beam loaded with the M/ET diagram is il +
soumoy | n in Fig. 8-22b. Since the M/EI diagram is positive, the distributed HI E i
j Joad gets upward (away from the beam)

Coningaie Brem. The conjugate beam is shown in F:

gale
3 " and B! comespond 10 supports A and B on the real b
upports 8t A" and i e Fquilibrium.  The extermal reactions on the conjugate beam are deter

Tuble §-2. 11 is impartant to understand why this is so. The M/ El d 0 bm I +2
s megurive, 30 the distibuted lood acts dvrwiard, ie., away from mined st and are indicated on the free-body diagram in Fig. §-22c i -

¥ Maimim deflection of the real beam occurs at the point where the slope 45 )

&

of the beam is zerp, This corresponds 10 the sume point in the conjugate £
beam where the shear is zero, Assuming this point acs within the region
0= x=9 m from A', we can isolate the section shown in Fig. 8-21d

Equilibriam. Since B and 3, ore 1 be determined, we must computc
Vi 288 My in the conjugate beams, Fig. 8-21c.

65 ki
+1ZF, =0 el Eeala =0 Note that the peak of the distributed Ioading was determined from propor-
T fional triangles, that is, w/x = (18/E/1/9 We require V' = 0 so that
: bt
e AR +TEF, = 0 B2 0
r- a2 \al

x=6Tlm (0=x=9m0OK

20010°) k{144 i A)BO0 ' £/ (12)° in’)

Using this value for x, the maximum deflection in the real beam cormesponds.

= 000349 rad Ans.
ey 3 1o the moment M". Hence,
=0
(256) + My = 0 | . B !{2*6-_7"}”,J‘(a7:14u‘—-||
_ 40625k f E el 3
-——— L ] o
I " s _ 2012 kN-m
Ty Eae . oM 1%
g
. i‘é'};’llmt 1800/4121°] fr* e gy e
; o i [200(10°) KN/ m{(10% inm)
; The veguive = —00168m = =168 mm s

A3 indicae the slope of the beam is easured clockui®
d. Fig. 8-21d.

e the i

The negative sign indicates the deflection is downward.
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—

e if the pin at B and the slope of cach
Dt A m;?;m.h':;.: o the compound bearn shown in Fig, &3,
menl con
;:: o1 ksl [ = 300’

elaste curve

1

Flg. 8-

SOLUTION
‘upate Beam. The clastic curve for the beam is shown in Fig, &

Conjugate
in order to identify the usknown displacement Ag and the slopes ( ),
{fehe o the let and right of the pin. Using Table 82, the conjugate be:
s shown in Fig. 8-23c. For simplicity in calculation, the M/ET di; |
his been dewwn in parts using the principle of superposition as described

in Sex. 4.5, In this regard, the real beam is thought of as cantilevered fr

the left suppon, A. The moment diagrams for the 8-k load, the reactive
force C, = 2k, and the 30-k-ft loading are given. Notice that negaive
regions of this diagram develop a downward distributed load and posiuve
regions have a distributed load that acts upward.

i

SEC 85 CONUGATE REAM METHOD 298

Equiltbriumm.
{he results are indicated in F
jugite beam is sectioned just 10 the right of B
is computed, Fig, 8-23¢. Thus,

1 v 225 450 36

2F, = 0: (Vade + 2 i

i L e i
_ 286kA°

El
2286 ki

12901073 144) ke /0] 30,/(12)°] it
= 00378 rud Ans.

ul the shear force (Vg e

The internal moment at B' yields the displacement of the pin. Thus,

450 36
=0; — My -+ (o) (15)=0
El E
2304 k-
8= My = - 221
— 2304 ket
= [20(10° 144) /e 30/ (12)°)
= 0381 = —4.58in. Ans,

The slope (#); can be found from a section of beam just 1 the left of
B, Fig, 8-23f. Thus,
2286 225 450 36
+ = -

0
g B H O H

+15F,

(B = (Vh =0 Ans
Obviously, A,y = M, for this segment s the same us previously calculated.
-23¢ and 8-23f

[Lnce the moment ars are aly sightly different in Figs. 8
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o o continuous beam and

24 i made fr
s m ent of inertin s lar

Jates where ils Mo
have a moment of inertia of [

aof = 900 in'. Determi
D e “:::;tlr‘: ksi, The reactions have been cal

The ginder in Fig: 8-
ai 15 center with covet Pl

portion
st the center €. Take £
Mk

Lojn—shmshr—120—
conjugaee beam
©
Fig. 8-24
SOLUTION

Conjugaie Beam. The moment diagram for the beam is determined first,
Fig. 8-24b. Since I = 2/, for simplicity, we can express the load on the
conjugale beam in terms of the constant EY, as shown in Fig. 8-24c

Equilibrium. The reactions on the conjugate beam can be calculated
by the symmetry of the loading or using the equations of equilibriom. The
results are shown in Fig. B-24d. Since the deflection at C is to be deter-
mined, we must compete the intemal moment a1 C”. Using the method of
sections, scgment A'C” is isolated and the resultants of the diswributed loads
nd their locations ave determinaid. Fig. 8-24¢. Thus,

- g 116 720 360 6
PN = 0 () =2 (1 - O F @+ M =0
= - MT6k-1
El

Substituing the numefical data for EJ and converting units, we have
k11728 in /1)
T N Py = - i Ans.

B0 k0w~ A
e negatove sign indicutes that the deflection is downward

8.6 External Work and Strain Energy
S —
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The semigraphical methods
ffective for finding the displ pe:
o rather simple loadings For more complicated Ic such
o rrusses und frames, it is suggested that energy methods be used for the
mpuiations, Most encrzy methods are base
y states that the work done by
F aructute, U, is transformed into intemal
i« developed when the structure defo
exceded, Uhe elastic sirain encrgy will rewrm the strucrure
quste when the Joads a
pe statcd mathematically as

The conservation of energy principle can

L=y (B-8)

Before developing any of the energy methods based on this principle,
bowever, we will first determine the extemal and strain energy coused
by a foece and @ moment. The formulations to be presented will provide 2
basis for understanding the work and enerzy methods thar follow.

External Work—Force. When a force F undergoes a displacement de
in the same direction as the force, the work done is dU, = F dr. If the total
displacement is x, the work becomes

U, -[ Fv (8-9)

Cansider now the effect caused by an axial foree applied to the end of a
Bar as shown in Fig. 8-25a. As the magnitude of F is gradually increased
fr0mn 2670 10 5o limiting value £ = P, the final elongation of the bar becomes
A If the material has @ linear elastic response, then F = (P/A)x Substituting
i Eq B-9, and imegrating from 0 to 4, we get

u=1ira (8-10)

hich represents the shaded triangular aree. ¥

We may alop, canclude From this that s a force is gradually applied 1o the
Bt 30 its magnitude builds lincarly from zero to some value P, the work done
184l 10 the average force magmitude (P2 times the displacement (A1



208 o DERBCTION o i already applied 1@ the har

— A, Fig. g

SR P deflccis furhes by on amount :
i ‘r!‘-j\ ;::-r F') when the bar undergoes the further deflecy,,
The work done

" 1 then ;
An - .

s the shuded rectang X

* js caused only by F', Th

1 magnitude since A is caused only 5
Jmmm‘frjm-; magnitude (P) times the displa
hen a force P is applied to th

' one by both

cation o e F', the total work done by bot

i [;’:J:\Affmng.u-zﬂ- The triangular arca ARG r

it —used by its displacement &, the triangular ;

Here the work e

casc P
work is smply
I summary, then, W/

External Work—Moment, The work of & moment is defined by e
product of the magritade of the moment M arl the angle df throu

i rotates, that s, 07 = M dE. Fig. 5-26. I the total angle of ro
@ radians, the work becomes

(817

U, J Md#

As in the case of force, if the moment is applied gradually 1o a stnuctusz
having linear elastic response from. zero 0 M, the work is then

Howene, if the moment is already applied to the structure o her loadings
Further diston the structure by an amount &', then M rotates # , and the work

U =My (B-14)

4
\i.

al Force. When
B=27, it will stra

Strain Energy—A; St P Mg
iy fo the bar in Fig

gork done bY N will b
o (Eg. 8-8). Provided the
7= e, and if the har has
{he normal stress is @
NJA = EUA/L), and the ff

the

erial such that |
nverted into siruin

aterial is

gubuituting into Bq. 810, with P = N the strain energy in the

NL
UE

pplied
the beam at a

cresle an internal
from the left support. The resulti
Fig, #-28b, can be found from Eq. 8-2, that is, ¢ = (M/ET) dv. Conse-
qeently, the sirain energy, or work stored in the element, is desermined from
fig 813 since the internal moment is gradually developed. Hence

ance ©

al element d,

_Mids

dl)
L 2E!

8-1T

The strain energy for the beam is determined by integrating this result over

the bearm’s entire length L. The result is

(8-18)

(ar (L
Fig. 8-28

NORE AND STRAIN ENERGY ]




300 OF DEFLECTIONS

8.7 Principle of Work

i and sinain energy for & foree
il illastrate B the conserY

licd to determine
g g the displacer

. To do this. coassder findi

on 3 sUE
::;:-: the farce P is applied to 1:‘_
Eg. 8-10, the everma! work i U= { b ¢ !
m:mux(nmaﬂmnincmtmlmu\ -:nmcn 4‘\’\ \||i lom of posi
e ig, 8-18. In this case —Pr. 50 that
i e heam and thea 3pply E4
£ Li-potde 1P
U‘:LEE J. 28 T
o internal strain energy and solvi G

Equating the external work I
unknown displacement 4, we have

Although the solution here is quite direct, application of this 1
fimited 10 only a few select problems. It will be noted that only one
e applied 8o the strecture, since if more than one load was applied, there
would be an unknown displacement under each load, and yet it is possible
wiite only ome “work” equation for the beam. Furthermore, only i
displacement under the force can be obiained, since the extemal work depen
wpon both the force and its womesponding displacement. One %3)
circumvent these limitations s © wse the method of virual work @
Castighianc’s theorem, both of which are explzined in the following bt

<
o

48 principle of Virtual Work
. —

PRINCIPLE OF VIRTUAL WOk 300

principle o
{5 sometimes 1<
o obaining the displacement and slope at 3

{1 beam, frame, or (russ

Before deseloping the principle of vinual work,
qome general stateme egarding the principle of energy, which
o discussed in the previous section, IF we aructure of

sy shape or size and apply a series of &
intermal J0ads w at points th the s
extemal and internal loads be related b
exlen

it, it will cause

It is mecessary thar the

€ equatio
consequence of these loadi displ e
Jouds and internal displacements & will oceur at each point of ini
o general, these displacemients do not have 10 be elasiic, and th
e related to the loads; however, the exte nal and internal displacement
e velatedl by the compatibility of the displacements. In other words, if the
euemal displacements are known, the comesponding internal displacements
areuniquely defined. In general, then, the principle of work and energy states

s of equilibrivm. As 3

ZPA
Work of
External Loads

Eud
Work of
Internal Loads

(8-19)

Based on this concept, the principle of virtual work will now be developed
Todo this, we will consider the structure {or body) to be of arbitrary shape as
shown in Fig. B-30b.* Supposc il is necessary to determine the displacement
3.0f point A on the body caused by the “real loads” P, Pz, and Py, It is to be
wndenstond that these loads cause no movement of the supports; in general,
berwever, they can strain the material breyond the elastic limit. Since no extemal
1oad acts on the body at A and in the direction of 4, the displacement Acan
e determined by first placing on the body a “virtual” foad such that this force
P 3085 in the scme direction as A, Fig. 8-3a. For convenience, which will
be apparent lates, we choose I to have a "unii” magniwde, that is,
P'= |, The term “virtual” is usel to describe the load, since it Is imagindry
and does ot aciually exist as part of the real loading. The unit load P’} does,

- ercatc an internal virtual load u in & representalive clement of fiber
of e oy, a5 show in Fig. 8-, Here it is required that P* and u be relaced
By the equations uf equilibrium.t Once the vinual loadings are applicd. fen

“This arbitrary shape will later represcet s sgecific s, beam. or (Tame.
g b hese o will cousc virtas piacemerts, we will s be concersed with haie
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Fel
gty vl kad P it

3
oo sply e bonts P P Py

[
Fg -3

v el oo P Ba, and P, Pig. 8-

sing the ele
«¢ P and internal virtua!

e body is subjected 1©
will be dﬁphﬁ(zd an n:mnnl .‘\I =
lt, the externa’ ral 10 :
£ A o i respestvely.and therefore pefom e ]
m y A work of a-dL on the element. Re
o intemal vimal work ¢
on e bt sl 1o e memal it o
ments of the by e virtual-work equation 15
elemer

menl 1o deform an

 we can write U

__ virtal loadings

Zuedl {8-20)

. real displacements

where
P = 1 = exjernal vt it load acting in the direction of &
ateraal virtual Inad acting on the element in the direction

u

A = external displacement caused by the real Joads

dL = internal deformation of the element caused by the real loads

By choosing P = 1. il can be seen that the solution for & follows directly,

since & = Zu dL.

& similar muner, if the rotational displacement or slope of the 1
1 8 poiint on & structuee is 10 be determined, o virwal couple mome
having a “unit” mageitude is applied at the point. As a conseguence, this couple
momient causes 3 virtual 1oac wgin one of the elements of the body. Assumitg
that the real Ioads deform the element an amount dL, the rotation & cin be
found from the virtual-work equation

wvirtual loadings
1-0 = Xugdl.

real displacements

i :‘“‘" virtual wnit cougle moment acting in the direction of #
;: internal virual foad acting on an element in the direction of dl-
:: val rotarionl displacemest er slape in radians caused by the =l

X
.= fmerml deformation of the element cawsed by the real loads

b :;’ 9o the raciple of viual work s it efered
the calculstion of ;' [ forces, since 3 virual force is applied resolling
case eepcsents 4 real displacement. The equation of virtaal work 10 this.
important here m"’m‘w requirement for the strucwre. Althoush 2

4 we can also apply the principle of vinual work

4 method of wirtial displacements. In this case vinual displacements are
2 e on the strocture while the scvcare issubjectd 1 real foading This
acihod can PE used o determine a force on or o that the
cqualion of vinual work is then expressed as an equilibrium requirement

& structure

8.9 Method of Virtual Work: Trusses

03

METHOD OF VIRTUAL WORK: TRUSSES

e

e cam se the method of virtual work to determine the displacement of a
s joint when the truss is subjected 10 an external loading. temperature
thange, or fabrication errors. Each of these situations will aow be discussed

External Loading.  For the purpose of explanation let us consider the
sertical displacement & of t 8 of the truss in Fig. 8-31. Here a typical
et of the truss would be one of its members having & length L If the
applied loadings Py and P cause & linear elastic material response, then this
element defonms an amount AL = NL/AE, where N is the normal or axial
foece i the member, caused by the loads. Applying Eq. 8-20, the virtual-work
equation for the truss is therefore

(8-22)

where

| = external virtual unit load acting on the truss joint in the stated direc-
tion of A

= intemal virtual normal force in a truss member caused by the extemal
virtual unit load

A= exiernal joint displacement Caused by the real loads on the truss

¥ = inteenal normal force in a truss member caused by the real loads

L= length of a member

A= coss-sectional area of a member

E = modulus of elasticity of a member

. The formulation of this equation follows naturally from the development
in5¢c, 85, Here the external virtual unit logd creates intemal virtual forees
Bin each of the truss members. The real loads then cause the truss join 1o be
Gsplaced A in the same direction us the virtual unit Joad and edeh memmbet
B displiced NL/AE in the same direclion as its respective B force,
oty the extomal virtual work 1-A equals the internal virtual work
MJ:EW (virtual) strain energy stored in al the truss members, that is.

*H v s i s e in S, 3 il refrenes 1 the M- Brlas pincpl:




russ members iy change their lengih g

o the cocicient of thermal expans
- e. the change in le

nec in its temperuure. ¢ 3
e A 5 the change 10 1 =TECRCL 1 splacement of 2 selest

 we can
AL = a AT L Henee mm;‘ change from Eq. 8-20, written as

SO CAES.

Temperalure. In
semperare: If @

joink due w B3 tempes
S
‘.Aziﬂﬂﬂrfa -1
where
1 = cxteenal viroal st Joad acting on the (s JOIEL 38 the stated direc
tion of 4
n = intenal virtual pormal force in 3 MUsS member caused by the extema
virtual unit oad

A= extcmal joint displacement caused by the temperature change
a = coefficient of thermal expansion of member

AT = change in temperature of merber
1 = length of member

Fabrication Errors and Camber. Occasionally, ermors in fabrica
the lengths of the members. of & st may occur. Also, in S0me cases
members must be made shightly longer or shorter in order (o give the fnuss 2
camber. Camber is oficn builk into a bridge truss 5o that the botiom cord w1l
curve upward by an amount equivalent 10 the dovnward deflection of the cond
when subjected 1 the bridge’s full dead weight. If a truss member is shorit
or longer than intended. the displacement of 3 truss joint from ats expectsd
position can be determined from direct application of Eq. 820, writen 3

1 naﬂ_ (8-24)

where

i mmw?m*"“ the truss it n the staed darection of &
Vil 1k lomd force in  truss. member cagsed by the €U
:'-== &lu;:';md“":‘:::!‘ the fabrication emrors
a fabrication ermur from its intended size as caused ™

.,:_r"‘-"""ﬂh; of the right sides of Eqs. 8-22 through 8-24 will ™
e i o s e s ad o of 0 P
change or have heen fabricated with the wrong dimen® o™

procedure for Anal

Ihe following procedure may be wsed to determ,
 joink un 3 truss using the method of

work

of 8

Virtual Forces

. place the unit load on the truss at th
inent s t0 be determined. The load should be in the same dir
{he specified displacement,

+ With the unit load so placed. and all the real load ed from the
russ, use the method of joints or the method of sections and gl 4
{he intemal m force in each truss member. Assume t
positive and compressive forces are

horizontal or vertical

sile forces are

egative

FReal Forces N

+ Use the method of sections or the method of joints to determine the N
force in cach member. These forces are caused only by the real loads
acting on the truss. A assume tensile forces are positive and
compressive forces are negative.

Virmal-Work Equation

+ Apply the equation of vinual work,  determine the desired displace
ment. It is important to retain the algebraic sign for each of the
cormesponding n and N forces when substinuting these tenms into the equa-
non.

* I the resultant sum SaNL/AE is positive. the displacement A is in the
same direction as the unit load. If a negative value results, A is opposite
19 the unit load.

* When applying 1-A = Ena AT L, realize that if any of the members
undergoes. an increase in femperanre, AT vill be positive, whereas &
decreuse in remperature resulls in 4 negative value for AT

* For 1A = S AL, when a fabrication emor increases the length of &
member, AL is positive, whereas 3 decrease in lengih iis negative.

* Whea applying any formula, aniention should be paid o the units of cach
Bumerical quantity. In particulr, the virtual unit load can be assigned
any arbitrary unit (Ib, kip. N, ete , since the n forces will have these
seme wonit, and as o result the units for both the vimual unit load and the

A forces. will cancel from both sides of the equation
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pss—

eniber of the tniss shown in T
il area of each member of 1
4 m;}:;ﬁ:::"‘.‘w:q ' = 200 GPa, () Determine the vertical dis
:4'. o i 3 442 force is applied 1o the tmuss 3t C. (b) I o I
J:h” russ, what woald be he vertical displacement of joint € if
oa the

AB were § mm too shoet?

SOLUTION
Part {a)

Virtual Forces n. Since the wertical displacement of joint € is 10 be
determined, a vimal force of 1 KN is applied a1 C in the vertical dircction
The units of this force are the same as those of the real loading, The sup
port reactions at A and 8 are calculated and the  force in each member is
deseemined by the method of joints as shown on the free-body diagrams of
joints A and B, Fig. B-325.

083 EN

11607 kN ———

OB e 05N

Roal Forces N, The i . :
s 00t s g P a0y of A 3 8 when the eal foad of 4 KN

s s given in Fig. 8-32c

J—

SEC 89 METHOD OF VIRTUAL WORK: TRUSSES. 300

Virmal-Work Equation.  Since AE is constant, cach of the (e
be arranged in wabular form and computed. ¥

\ensile Forces and neative numbers indica

L can
positive numbers indicate

Member n (kN) ¥ (KN) L m
Al 0667 ) 5
AC -0833 25 5
c# SLES] ~25 ;
1067
Thus,
l 1067 kN*m
N =5 " L8 szt

“ AE AE

Substituting the values A = 400 mm’ = 400(107°) m’, £ = 200 GPa =
20010°) kN /m?, we have

KN, 10,67 KN*m
BB T 10001077 mA200(107) KN/m’)
-_\I = 0000133 m = 0.133 mm Ans.

Port (b). Here we must apply Eq, 8-29. Since the ventical displacement
of C s 1o be determined, we e the results of Fig. 8-32k. Only mem-
ber AB undergoes a change in length, namely. of AL = ~0.00S m. Thus,

1-A=ZndL
TEN-A. = (0.667 kN)(— 0.005 m)
A, = -000333m = -333mm Ans.
The negaive sign indicates joint C is displaced ipreand. opposie o the LN
$ericalload. Nt thatif the 4-kN Joad an fabiication errorare both sccusified ;
Ix, the resultam displacement is then A =0.133 — 338 =320 mm 4
lopward). ¥
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—

ment of joint € of the steel truss o

Determine the vertical displace!
Fig, 5-33a. The cross-sectiers
£ = 29(10) ki

| area of ach member is 4 = 0.5 in? o,

SOLUTION.
Virsoal Forces . Only & venical 1ok load is placed at joini C. and
e Force in each messher 18 cakulsied using the method of joints. The
resuls e shaven in Fig. 8-336, Positive numbers indicate tensile forces
and negative numbers indicale compressive forces.

Real Forees . The real forces in the members are calculated using the
rethod of joints. The results are shown in Fig. 8-33c.

Virtual-Work Equation. Armanging the data in tabular form, we have

asrs Member (k) Nk Lif
A8 0333 4 10
#C 867 4 10
(e} 0867 4 10

nE 0843 ~5 66 1414
e 033 4 0

i 0471 ] 1404
BF 0133 4 10

:Jz -0471 ~566 1414
1 4 10

Thus. k-4, = Er[hﬂ, _ 647K N
AE -~ AE

Sumerical values for A and E, we have
124647 K )12
1k, . — il
A 05 (0
A = 0202in, Ams.

4y Comening the unis of member length 10 inches and substitting B¢

——

SEC N9 METHOD OF VIRTUAL WORK: TRUSSES . 300

petermine the v
Fig 8-3a. Due o 13 i
1ot increase in temperature of A7
£ = 20(10°) ksi. The cross
jn the figure

Take a = 0.6(107%)/°F

cction ea of each member is indicated

W

SOLUTION
Virtual Forces m. A vertical 1-k load is applied
and the forces in the members arc computed, Fig

the truss at joint €,
—3db

Real Forces N. Since the n forces in members AR and HC arc zero, the
N forces in these members do nat have to be compuied, Why? For com-
pletion though, the entire real-force analysis is shown in Fig, 8-3c

Virtual-Work Equation, Both losds and temperature affect the deforma-
tion; therefore, Eqs, 8-22 and 8-23 are combined. Working in units of kips
and inches, we have

niL

1A, =30 + SnadTL
_ (0.75)(120)(6)(12) ,_ (INEOXEX12)
229010Y1 2200101

—1.250=H0ONIOKID) | g0 610711 20)BK12)
1.5729¢10%)]

0.658 in. Aus.
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.10 Method of Viri

al Work: Beams and Frames

of virsl work can uB

0 be applied to deflection pros,
ins due to bending arc the
. frames. Since strain g he
imolving beams an " cflections, we will discuss their
* 1o shear, axial and torsional laadings, and temper:

m#:‘:,zpe;\l\lual work, OF more exictly, the method of virtual forg
.,.,....melm for beam and frame deflections by considerir

baown in Fig. 8-330. Here the displacement A of paint A is 1o be
o cormpue A  viral it Joad peting in the direction of & is g
beam ot A, ad the iernal virmial momeris m 1% determined by the med
of spetians at an arbitrary Jocation x from the left .u;_\p‘m Fig. 8-35b. When
e real loads 1 om the beam. Fig §-35a, point A is displaced A. Pro
these Joads cause linear elastic marerial réesponse, then from Eq. 8-, the
element dv defomns of rawics dt = (M/EI} dx* Here M is th
momest at x caused by the real loads Consequently, the external v
done by the unit lad it 1-A, and the srermal virt sk done by th
m s f = m(AM/ET) . Summing the effects on
{Be beam pequires an iniegration, und therefore Eq. 8-20 becomes

| = eatermal wirnaal it koo scting on the beam o frame in the direction of 4

m = internal virtual moment in the beam or frame, expressed 3s a functios
of x and caused by the extermal virtual unit load

A = external displacersent of the point caused by the real loads acting o the
beam or frame

M = iniemal mamet.in the beam of frame, expressed as  function of raed
camsed by the real lnads

E = modulus of clasticity of the matenial

I'= moment of inestia of cruss-sectional area, computed shout the neulil 255
nh il manaer, i the tangem rotation or slope angle f 4l 2 paint 00
nwm_ "hsu“ i curve i to b determincd, a unit couple momen is 3ppl!
SM"‘;" the comesponding intemal moments my have 10 be determined:

work of the unil coaple is 1-8, then

(8-20)

Bl e el
vt Sl s s claic i 1 m.n;kvh‘“"“"
0 6 e & mainear oe plastic anlyvis st b6 5

b

Fig. 8-35

When applying Eqs. 8-25 and §-26, it is imporant (o realize that the
deiite Intzgrals on the right side actaally represent the amouat of virtal
utsin encrgy that is stored in the heam. If concentrated forces or couple
moments act on the beam or the distributed Joad is discontinuous, @ single
inegration cannot be performed across the beam's entire kenzth Instead,
sepanate ¥ coordinates will have 1o be chosen within regions that have no
dicontinuity of loading, Also, it is ot ecessary that each ¢ Fave (he e
oigin, however, the x sclected for dctermining the real moment A n &
piticular region must be the same x as that selected for determining the virtual
moment m or ing within the same region. For example. consider the heam
down in Fig, 836, In oeder to dctermine the displacement of D). folt regions
ofthe bearn must be considered, and therefore four integrals having the form
JMAEL) dx must be evaluated, We can use x, 10 determine e S energy
I8 region A, 1 for region BC, x, for region DE, and x for regioa e in
ey cas, each 1 coordinate should be selecied 50 tha both M and m fo0 )
o be gasily formulated.

When the structure is subjecied 1o a relatively simple Joading, and yet the
salution for a displacement requires several inlegrations. a tabular method may

ued 10 perform these integrations, To do so e momeat diagrams for each
member ate drawn first for both the real and virual loscings. BY matching
thesc diagrams for m and A with those given in the whle on the inside front
@er, the integral [ e can be determined from the SpPOPAFE Formuls.

es §-17 and 819 illustrate the application of this method.

METHOD OF VIRTUAL WORK: BEAMS N0 FRAMES

i
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Eoli;ﬂlr“ﬂn\h“myku L
xdqtnapunmm:euminmn
of virtual work.

sed 0 determine the displace:
f 2 beam or frame usi

Virtual Moments m o ™g
« Place & wnit foad on the beam
of the desired displacement.

or frame a1 the point and in the dire

it sope s o be deseemived, lace 2 it couple momen at the

+ Bablish spproprisic x coondinates that are valid within re -
heam ox frame: where there i no discontinuity of real or virtual joed

« With the virmal koad in place, and all the real loads removed from me
beam or frame, calculate the intemal moment m Of my 85 & function o
each x coordinaic.

» Assume m OF M, 3% in the conventional positive direction as indicaied
inFig 41

Real Moments

» Using the same x coordinates as those established for m of m, determine
the imemal moments M caused oaly by the real loads,

* Since m or mg was assumed 10 adt in the comventional positive direction
4 is imporiand that positive M acts in this same direction. This s seces
- “"; Hmwme internal work depends upan the directions!
g tdefined by =m or =m,) and displacement (defined by
=M do/ElL ppoctia

Virtwal- Wark Equation

: _:..,’,:-_.m.- of virtual work 1o determine the desired displacem=s
o el 1t impartant 1o resin the algebraic sign of each BE
ilhin s spesified region
* 1 the sipehexic
ponitig. & g g oL il b inkcgrls for the enire beam or e 0
15 in the same direction as the virtual unit load oF 5%

momen, respectivel i
A i : '¥.If a negative value results, the directio®
% Opposias 40 that of the it load or unit couple momeat

A ORK REAMS AND smavEs M

Determine the displacement of px
§ 37a, Teke E = 200 GPa. [ = 5

tecl beam shown in Fig

SOLUTION

Virtual Moment m.  The vertical displacement of point B is obtained by
placing 2 virtual unit load of 1 kN at B, Fig. 8-37b. By inspection there <
are o discontinuities of loading on the beam for bork the real and virtal Fig 857
Joads. Thus, a single x coordinate can be used (o determine the virual strain

energy. This coordinate will be selected with its origin a1 B, since thea the

reactions a1 A do not have 1o be determined in order 1 find the intemal

moments m and M. Using the method of sections, the intcmal moment m

is formulated as shown in Fig. 8-37b.

Real Moment Using the same x coordinate. the internal moment M
is formulated as shown in Fig. 8-37¢.

Virtual-Work Equation. The vertical displacement of 8 is thus

™ " (— Laf — ) dv
1, = | - [ 55
s, =2 '"’—J‘E':N-! st
o
150105 kN-m*

e = I NS00 10F) K10 )

= 0.150m = 150 mm Am
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—
the slope a1 point B of the <ee] beam shown in Fig. &3,
nine !
'?:::r: — 200 GPa, | = 60(16°) mm
|y
iy
N
| o
)
! i )
E Sm - " 4v
)
3
Fig. Real Moments M. Using the sume coordinates =, and x., the internal ey
moments M are computed a5 shown in Fig. 838 o

Virwal-Work Equation. The slope at B is thus

SOLUTION
Virmual Moment mp. The slope at B is determined by placing a virtual mM
unit couple moment of 1 kN - m at 8, Fig. 8-38b. Here two x coordinates El
st be selected in order to determine the total virtual strain energy in the J0)—3x)dr, | (FOH=35 + 5
beam Coordinite %, accounts for the strain encrgy within segment AB and = + | = myN-m)
coordinste 13 accounts for that in segment BC. The internal mameats my i 9
within esch of these segments are computed using the method of sectioas goo —L12S KN m :
as shown in Fig 8-385. Ei h
sy
We can also evaluate the integrals [m M dx graphically, using the table L)

given on the inside front cover of the book. To do so it is first necessary 1

10 draw the moment diagrams for the beams in Figs. 8-38h and §-38c.

These are shown in Figs. B-38d and §-38e, respectively. Since there is no

moment m for 0 = 1< 5m, we use only the shaded rectangular and

trapezoidal areas to evaluate the integral. From the appropriate row and

colamn of the table, we have

w“
[ metrds = mioe, + bt = J1=15 = 308
3 Sy MON-m)
= —1125kN"m
This is the same value as that determined in Eq. (1). Thus,
2, 3
— 1125 kN"m’ - )
:
(1 kN-m)-, = — = ey e
18 = o108 kNS 10%) men K10 m/mm) =
By = — D.00938 rad Ank. e
3 viralusit cougle The negarive sign indicates By is epposite 1o the direstion of the yiitual
L] couple moment shown in Fig. 8-38b. o




- ansandl
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B Ci4 DEFLECTIONS

t Det (he displacement ot D of the steel beam in Fig. 8-3%. Take |
termine

e, 1= 800 in"

E= 2901
ot

0k

Lt |
|—jpp—s—t108—T = -
Fig. 8-
SOLUTION
Vil Momtencs . The beam s subjected to a virial undt load at £ s
shree caordinates, such as xy, x;, and

shown in Fig, 8-39b. By inspection,
2. nauet be wses 10 cover al the rogions of the beam. Notice ihat these
coordinates cover regioas where no discontinuities in either real or vimal
Toad vccur. The intemal moments m have been computed in Fig. 8-39

using the method of sections.
i
|
feg it ]
LBk
3
Al

i 075k

[ ( T‘—

Bk

an L

Real Moments M. The reactions on the beam are compuied first, then.
wing the seme x coordinates as those sed for m, the internal moments M
sre determined s shown in Fig. 8-3%

Virmual-Work Equation. Applying the equation of virial work 1 the
beam using the data in Figs. 8-30b and 8-39c, we have

B
1, = | ";‘; dr
g I"(—u,xrw.\-; L [ 05y — 1505 g
Ef Ei
0 {—0.75x,)(80 — Legddey
+ \
fo= =
1
4, =

= 0466 in. Ans.
The negative sign indicites the displacement i pward, opposite 1o the
did not actually hive

dovmward unit load, Fig. 8-39b, Also note that a1y

10 be calculated since My = 0.
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——

|

» jint € on the fram:

zonial displacement of poinl L

g‘”‘;“’,'l,i":nm — 20(10°) ksi and | = 600 in' for both members
ig. 840

& —,

Fig. 3-40

SOLUTION

Vietual Mamenss m. For comvenience, the coordinutes x, and x; in Fig
8400 will be used. A horizontal unit load i applied at C, Fig. B-40b.
Why? The support reactins and internal virtual momenis are computed &
shown.

.
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Real Moments M. In & similar manner the support reactions and eal
fmoments are computed as shown in Fig. 8-401c )

VirtuaieWork Equation, Using the duta in Fig. 8300 and 8-40c. we \
have

3 (1250258, ey

d

£l
§3313 53333 _ 136667k

El Ef El

If desired, the integrals [ /dx can also be evahiated grophically using
e table on the inside front cover. The mament diagroms for the frame in
Fig. 540 and 8-40c are shown in Fig. 8- 40 and 840, respectively:
Ths, using the formulas for similar shapes in the rable yields

Lo " (L 2y
- Ei"’J

12910%) k/in'(012
=013f0=13in




—

Determine the ungential rotation at paant c" of the frame shown in Fig
8-l Take £ = 200 GPa. 5(10°%) mm”.

SOLUTION

Virtual Moments e
will be msed. A unit couple maine
moments i are calculaed, Fig, 841

| iN-m

o~

The coontinates xy and 32 shown in Fig. §-4
ot is applied at C and the in

virasal loads

®
Real Moments M. In a similar manner, the real moments M are ci
lated as shown in Fig. 841c.

AN ek Bt Usiog & cata in . 8415 and 641, we

25k, ) adx; T (1)(7.5) dx,
1LY
£l J,, El
2625 kN -m*

- R
VRN 15010P) mar) 10 m*famm
= 000875 rad Y mm*|(10° 7 m*/mm*)

L3

Ams.

-

SEC 811 VIRTUAL

GY CAUSED BY AXIAL
XIAL LOAD, SHEAR, TORSION, AND TEMPERATURE

gl yirtual Strain Energy Caused by
Axial Load, Shear, Torsion, and Temperature

k1)

ns of beams and

a—
Aphough defle
qirain COETEY, in ST
e, torsion. and perhaps temper
fects will now be considered

structures th

o axial loads, and the
ablished in Sec. 8.9

Axial Load. Frame members
irual st energy caused by these |
Far members having a constant

AN
U, = §-27)
AE r
= internal virtual axial load caused by the extemal virtual unit load
— ifternal axial force in the member caused by the real loads

rial

™=

~ madulus of elasticity for the 1
A = cross-sectional area of the member
L = member’s length

2l strain energy in & beam due 1o shear,
g 842 The shearing

Shear. In order to determine the
we will consider the beam clement dr shown in Fig
Sistortion dy of the element as caused by the real loads is dy =  dx. If the
shearing strain  is caused by finear elasiic mate al response, then Hooke's
law applies, ¥ = #/G. Therefore, dv 7) dr. We can express the shear
siress as K(V/A), where K is a form factor that depends upon the shape
of the beam’s cross-sectional area A. Hence, we can write dy = K{V/GA) d
The finternal vimual work dune by a vinual shear force v, acting on the
element uhile it is deformed d, is therefore dU, = vdy = WKV/GA) dx. For
theentire beam, the virtual strain energy is determined by integration

18-28)

w=intemal virwoal shear in the member, expressed as a function of x and
caused by the extemal virtual unit load

V= intemal shear in the memiber, expresséd as & fupction of £ and caused by
the real loads

A = eross-sectional area of the member

K= form fagtor for the eross-sectional area:
s for rectangular Cross sections

K= 10/9 for circular cross sections

K= | for wide-flange and I-beams, where A s the arca of the web

G = shear molulus of elasticity for the material




e dimensional framewoeks are subected 10 torsiony

i
;l:::::ru f::c:wkm has a eircular crOss _\ﬂ-im.ll‘-l ;r-c.l 10 Warping of it
crows section will oceur when it i Toudded. As a result, the virtual strain energ
in the member can easily e derived. To do so cansider an element du of il
member thal s subjected toan applied torque T, Fig. 8-43. This torque causes

hear sirgin of ¥ =€ jy/dx. Provided lincar <-Fu.-_m maferial re;
i then y = 7/G, where 7= Tie/ 4. Thus, the angle of twist b = (y
(r/Ge) d =,(rf(‘._n . 1F 4 vinwal wnit load is applied to the structure i,
causes an intermal virtual (ongue ¢ 10 the member, then after applying 1
real Joads, the virtual strain energy if the member of length dv will be Jt.
18 = (T di/GJ. Integrating over the length L of the member yields

oo,

"L

Gl (8-29)

{ = internal virual torque caused by the external virtual unit load
7= intemal torque in the member caused by the real loads
G = shear modulus of elasticity for the material
J = polar moment of incrtia for the cross section, J = ¢ 443, where ¢ is the
radius of the cross-sectional area
L = member's length

The virmual strain energy due to torsion for members having noncircul
cross-sectional areas is determined using & more rigorous analysis than that
presented here.

Temperature. In Sec. 59 we considered the effect of a uniforni en
ature change AT on a truss member and indicated that the mem
elongate or shonen by an amount AL = a ATL. In some however. &
;n;:m member can be subjected 10 4 femperanure differen

.‘-’:k;n the case of the beam shown in Fig. §-44a. If this ocours, it 1%
m . determine the displacement of points along the elas
- innn::ﬂ: the principle of virtual work. To do so we must first computé
G Fz"’:':" of a differential element dy of the beam as caused DY
mﬁmﬁm g that acts over the beam's cross section. For the sake of
s # hﬂmm the most common case of a beam having a neatrd!
M'L‘“:Fl:: Eic s -depth (c) of the beam. If we plot the temperiiér
i will be moted that the mean temperature 5 T
el mma‘;u.u: :_lm.unu.m difference at the top of the clement
S ::e that at the bottom causes ;m_‘..;.m:m;“ s..uI:

mpersture is AT,, = T,

<

SEC B0 VIRTUAL STRAIN ExgRe

AUSET BY AX1AL

e thermal change of length at the top and hottom is & = AT, dr, Fig

§-ddc, then the rolation of the element is

= TAT e

1 we apply & virtual unit load at a point on the beam where a disp
s (0 be determined, or apply a virtual unit couple moment at a point where a
rotational displacement of the tangent is 1o be desermined, then this loading
creates a virtual moment m in the beam at the point where the element dx is
Iocated. When the temperature gradient is impesed, the virtual strain energy
in the beam is then

J ma AT, dx i

¢

where

internal virtual moment in the beam expressed as 3 function of x
and caused by the external virtual unit load or usit couple moment
@ = coefficient of thermal expansion
AT, = temperature difference between the mean
perature at the top of bottom of the beam
€ = mid-depth of the beam

emperature and the tem-

Unless otherwise stated, his fext will consider only beam and frame
deflecties dute 10 bending, In general, though, beam aad frame members mey
besubjected o severa] of the other loadings discussed i this section. HOWEYSe
5 previously mentioned, the additional deflections caused by shear and avial
e altex the deflection of beams by only 4 few percent and ae therefore
Benerally ignored for even “small” two- of thiee-member frame analysis of
sty height I these an the other effects of orsion and (eTEREE P
10 be considered for the analysis, then one simply sdis theie Vil ik
Eergy as defined by Eqs. 8-27 through 8-30 1o the equation of virtual

ed by Eq, §-25 or 8-26. The following examples illustrate application
“Mhese equations.

LOAD, SHEAR. TORSKIN, AND TEMPERATURE &




4 Cus DERECTINS

i
o .

==

e horizontal displacement of point € on the frame she
e, Bdte, Take £ = 290107 kst & = 1200% ksi. 1= 600 in’, and
R " for both members. THE cposs-sectional area s 2
I‘;M:zuxrﬂmmmuwnlﬂ Joad and shear.

Fig 545

SOLLTION
e we mast spply & borizostal wsit Joad at €. The necessary free-body
agrams fox the teal and virual losdings ase shown in Fig. 8436 and

$-45¢

VIRTUAL STRAIN ENER

BY AXL A SHEAR TORSKON AND TEMPSRATVEE  BS

esding. The virmal simin cnerp
B ipie 819 There it wes showa

13eee T 136667k

£ b dx _
b= L E E 10

n Fig. § 45b and B35c, we have

Asial logd.  From the data i

aNL

_EAE

_ 12525 kK120 in)
S0 2(10°) k/in] B0 | 2107 k/in

1 K(OX96 in

= 0.001616 in. k

s SECHONS.

2% with K = 1.2 for rectangular
-, we have

Shear. Applying Eq. 5-28
and using the shear functions shown in Fi

- [ e
b ‘ \Gal ™
2140 — Axpdn [ 1.2~ 125K~ 25)dx;

GA GA
_ 540 120/ _ o o678 in &
[12010%) k/in"}(80 i)
Applying the equation of virnual work. we bave
 + 000675 ink

k&, = 1357ink + 0.001616 i
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sEC & ASTIGLIAND'S THEOREM 32T

&

ano’s Theorem

—— 512 Casl

. I sed in @ building subjected o 1y

peam:shown in Fig: B-46a s U wo
:,T..\.m hermal environments, Ifthe temperiure 3 the top surface of the
e it 80°F and at the boriom surface 160°F, defermine the verica)

ey
1§79 Alberto Castigliano,
aich e outlined & method &
i sructure, be it 8 irus, bes

its midpoint duc to the lemperature gradient. Take | 3 5

deflction of he beam a6 ipoi ok 4 Custgltana’s second

=y B eares hat have constant temperst i
iz material response. 1F the displacement of a paint is to be deter

e teomm states that i is equal
gy i the structure with respes
irection of displacement. Ina simil
is equal 10 the first partial
espect (0 & couple moment actin

o derive Castigliano’s second theo
abitrary shape which is subjected
| Since the enternal work done by these
energy stored in the body, we can write

| derivative o

ries of n forces P
ads is cqual 1o

internal strain

U=,
The external work is a function of the external loads, (U, = Z [ P dx). Thus,
U, = U, = ftP,, P+ P

Now. (Fany one of the forces. say Fi. is increased by a differential amount 4P,
e intérmal work is also increased such that the new sirain energy becomes

au,
U+ du, = U+ J]'eU" (8-31)

) ?

=pL This value, Bowever, should ot depend on the sequence in which the n forces
SOLUTION are applied (0 the body. For example, if we apply d; (o the body firsl, then
Since the def B . s will cause the body to be displuced a differcntial ameunt da, in the
it Jod a?ﬂﬁ::ﬁ:{mﬂm bean i o be detzined, a virnal Hiection of dF; By Eq, 810 (U, = } PA). tbe incremeat of siruin sacty
calelted, Fig. 8360, B e i e ben B ol b 1P, 0, This quaniiy, howeser, & scomd-onde Giererial 18

msy be neglected. Further application of the Toads Fy P . P, which

The
mean temperature af the center of the beam is (160° + 807)/ A,, yields the strain enerey.

I -y
20, 0 tha for mpplication of Eq, 831, AT, = 120°F — RO°F = AD'F

Also, ¢ = 10 i =5 B
©=10in/2 = 5 in. Applying the principle of virtual work, we have 4 dU, = U+ dPA #-32)
. wused

""'ﬂ<.=]; na AT, & Here as b fore, U i the ioternal stsin enerey i the Lo, eated Y
7 Wads Py, Py, . - ., P, and dU, = dPA, 1 the additianal stz SACTEY L

) o [ (650107 F0°F by dP, (Eq. 8-11, U, = PA')

2 )
: e o I summay, then, Eq. 8-31 represents e sirin SR l:;b::i
’ e Aermined by first applying e louds Pry Pa o o oo B (0 B0
i tenil 5 Ans. Eq B-32 represents the strain energy determined bY Bt spplying Py g
g result indicates a very negligible deflection then the loads Py, Py, . . ., Py Since these To equations must Be equal, we
Teaine 5
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i is similar 10 that wsed for the method of virual work,
('l-[':.-mum. T:ql nis mllh;:ad by N/aP. Notice that mE;d‘:;:i
ine this partial derivative it will be necessary 1o treat P as 3
;6. e displaccinent &, in the dircction of 7, , ;:, spsific nurnerical quantity), and furhermore, each e i
derivitive of the serain energy with respect 1o P+ it d as a function of P As a result, computing 38/aF generally
that Eqg. §-33 is a stasement regarding the srrcir, muis!ﬁ!“b‘ more calculation than that required (o compute each n force
5 ; ies hit only conservaive forc recily, These termms will of course be the sume, since m or AN/aF is simply
mmﬁ\m& :in_wwk that is lnds:pcm!tm of e change of the internal member force with respect to the load P, or the
o enerey Joss. Since forces causing a linesr change in member force per unit load.
. the thearem i restricted 10 finear clasic
. This is unlike the method of virtual force discusseq
which applied to boh elastic and inelastic behavios

- a,
: g o

Anal:
T Procedure for lysis

the subscrips ‘The folloing procedure provides 1 method that may be used o determine
the displacement of any joint of a truss using Castigliano's theorem.

Exiernal Force P

* Place a force P on the truss at the joint where the desired displacement
15 10 be determined. This force is assumed 1o have a variable magnitude

should be directed along the line of action of the displacement.

tion prior to summation. I the
given member, and therefore we

Internal Forces N

* Determine the force N in each member caused by both the real (numer-
al) Joads and the variable force . Assume tensile forces are positive
and compressive forces are negative

fpute the respective partial derivative aN/aF for each member.

1 N and AN/AP have been determined, assign P its sumerical value
5 replaced a real force on the truss, Otherwise, set P equal o zero.

(8-34)

direction of &
the force P and the loals o0

liano's theorem {0 determine the desired displacement 3. It
0t (0 rotain the algebraic signs for comesponding values of N
% when substituting these terms into the equation.
esultant sum EN(IN/AP)L/AE is positive, A i in the same difec-
AL I a negative value results, & is oppesite to £




e ment of joint € of the truss sho
W_%fﬁ!ﬁ?":mmurmh member 5 A = 400 mp?
£=2000P.

CsoLEmoN A ventical force P is applied to the truss at join ¢,
-:mwﬂiemi“ (he sertical displacementis o be determined, Fig §-475,
3 < N, The resctions ai the truss supports at A and £ e
 Farces e resuls are shown n Fig. 8475, Using the iethod of

a

P

0667 2 B 1067
~0833 25 5 —lo4
—0333 —25 5 1042

‘s real load on the truss, we require £ = 1)

AE

work method of Exampl:

st the 3-kN load e 1, O
e added togethes 10 5 ™

|
EI067 kNm

BB L - 000

SEC 11 CASTIGLIANG'S THECREM FOR TRUSSES.

Deiermie the horizontal displacement of joint 2 of e truss shown in Fig.
348 Take E = 29(10") ksi. The cross-sectional area of exch member ts
ndicated in the figure.

=
\“6\
4
-3
1040757
)
Fig, 448
SOLUTION
External Force P. Since the horizontal displacement of D is o be
determined, a horizontal vanable force P is applied to joint ©, Fig. 8485,
Mwnm N. Using the method of joints, the force N in cach mem-
ber s computed * The results are shown in Fig. 848, Amanging the data in
Ishular form, we have
aN [N
N(P=0) M '
Mersber N = NP=0) L {55
AR [} 1333 12 o
o o -1333 12 0
cn o 1667 15 0
135 1667 15 31250
B ~075 -0 9 13500

‘?ﬁﬁ_ﬂw'& Theorem. Applying Fg. B-34, we have
al

. & may be prefieable 1o perform e pusade analyis f the

the pecceding example.
FWith 10k aad baded wilh P and thea saperimpase he resscs

20.+0758

i)

Ans.




———

/ of i € of the truss shown i f;
M-hﬁ_wm,m,m' E = 290107 ksi. L

e P, The 4k foree at C i replaced with o variable g,
P . i 350

] The meihod o joints is used 1o determine the force
‘WW“ e truss. The resulls are in Fig. 8-49h

eah 0 2
: tablated form as follows:
required data can be amunged in

4 L
W (P=ak
o 4 10
0667 4 10
0667 4 10
—0943 =566 1414
I — 10
Bonl sk 10
o3 4 10
—0471 0 1414
1 4 10
§ = 24647 kR

SEC L4 rmﬂmum-xmmmﬂ BEAMS AND FRAMES. :
814 Castigliano’s Theorem for Beams and Frames
— .

{pernal bendling strain encrgy for a beam

The imsem
rb’f"f""! dr/2E). Substituting this equation
ol miting the subscript i, we have

o frame s given by Eq. 81§
into Eq. B-33 (4, = aln/apy

Awl (M
*k 2
Ralfer n squaring the expression for imemal moment Y, integrating, and

e king e partial decivativ, it is gencrally casier to diferentiste prior 1o
integration: Provided £ and [ are constant, we have

where

A = extemal displacement of the paint caused by the real loads acting on
the beam or frame

P= external force apy to the beam or frame in the direction of A

M= intemal moment in the beam or frame, expressed as a function of x
and eased by both the force £ and the real loads an the beam

= madulus of elasticity of heam material

Moment of inertia of cross-sectional area computed about the neutral axis

If the slope @'t a point is to be determined, we must find the partial
Walive of the intermnal moment M with respect o an external couple moment
M acting at the point. i e,

(8-36)

The above equations are similar to those used for the method of virtual
UKl 825 and §-26, except #M/#P and M /9N’ replace ni and me
MREENEL) A in b case for (russes, slightly more calculation is gencrally

18 determine the pantial derivatives and apply Castigliano’s theorem
01 i 5 the et of vinmual wark. Also. recal dhat his heorem applics
MAIEnia] having o linear elastic response. If a more complete

ty of strain enetgy in the structure i desired. the strain evergy due

. and torsion must b included. The derivtions for shear

0 follow the same development as Eqs. 8-28 and §-29. The sirain
their derivatives are, respectively,




av, _ b v favy
I _L AG irw]'"
Wt T ar}
a kG (JP o
. .mwcuimlm in the analysis of the problepy, ,
mmm“ caused mainly by bending gy,
s thise with uAlsual geometry, con be analyzeq |,
can readily be incorporated into the ang|

a method that may be used (o determine
ra poinLin a beam o frame using Cast gliasg

le Mament M’
am o¢ frame &t the point and in the directon of

place & couple moment M' at the pont
have & varishle magnitude.

functon of £ or M’ and esch 1 o
tive A8 /@ or aM /M’ forext

A been determinad, assign P or
real force or couple ™

displacement 4 077
signs for comesponding valect

or Bisi0

is positive, &

SEC. 814 CASTIGLIANGD'S THEOREM FOR BEAMS AND FRAMES.

the displacement of point B of the beam show,
iz E= 200 GPa, /= S00(10°) m, il

12 K8/

SOLUTION

External Force P. A veniical force P is placed on the beam at B s shown
in Fig. B-50.

Tnternal Moments M. A single  coordinate is needed for the solution,
since there are no discontinuities of loading between A and B, Using the
method of sections, Fig. §-50c, we have

oM =u —M—uz.J[;J—PFu
aM
M= 62— p —=-g
T
Setting P = 0 yiekds
aM
M=-6 et

| Caslgliano’s Theorem.  Applying Eq, 8-35, we have

R aM\dx _ (" (—60K-5) dr
""J ”( P)El o

]
_ 1500°) kN-m*
3 El
15(10% kN-m*
200(10) kN/m1500010°) mamI(10™" m/mar’)
= 0.150 m = 150 mm Ans.

ity Between this solution and that of the virual-work method,
8-16. should be noted.

[
Fig 8-50




. besm showm in Fig. 8-51a. Take £
Dectermine the skope au point B of the
200 Ga, / = 60107) mon

Since the slope st point B is io be deter
{1 pliced on the beam st this point, Fig

Evtral Couge Moment M
mined, an extemal couple M
et

; Two coordinates, £, and x3, must be used 1y
g :‘-‘:dlmmwilﬂnmmdnm there is a discoati.
iy, AF, 31 B. As shown {8 Fig. 8-31b, 5, ranges from 4 1o § ind 1,
nnges Bt C Using the method of sections, Fig. 8-51c, the
b i . and the partial derivatives are computed as follows:

Farx:

(HEM = M +3y=0
My = =3
a,
=t

SEC K14 CASTIGLIANIY'S THEOREM FOR BEAMS AND FRAMES. 337

:‘mms- 200 GPa, [ = 150(10°) mm*,

Farce P. A vertical force P is applicd ar point
Latex this force will be 5et equal 10 a fixed value of 20 kN

Iruernal Moments M. In this case two v coordinates are
integration, Fig. 8-52b, since the load is discontinuous o
method of sections, Fig. 8-52¢, we have

S e T =T
© 200010 kN/m(150¢10%) mm*J(10
= 00142 m = 14.2 mm

' eemine the vertical displacement of point € of the bearm show,

ninFig v

€. Fig. 8-525

needed for the
t €. Using the

Fo 5yt
)
LI =0; (24 + 05w, + 8“‘{1J + M =0
M, = (24 + D5P), - 442
My s
T
Forx:
LHEM =0 — M, 4 (8 + 05P, BERIEIR
M, = (8 + 0.5P)x,
8-35 yields
dr
- A A P).Ef
e J'c:ux. — An)0Sn)dy rﬂﬂ-zﬂﬂﬁl;_léz
i El s El
L 1RENm  26TkNm
Eiddige X
4267 kN-m'

Basp




s |

two-member feame shown in f
e slope 3 pint € “f.lg F = 29(10°) ksi, { = 600 in?

P T gt .13

soLmoN i iable moment M is applied (o e
M"U““’,L",h;.mmn paint is ta be determined, Fig
B

1 DO i e discontinuity of intemal loading ai 1,
M%ﬂ;ﬂnmm in Fig. 8-536. Using (he
oo e, g 851w e

=242 -0 -0
M= 02 M)

PROBLEMS

1, Determise the slope and displacement st A, Assome g1
jojbe & fixed Suport. £1 is constant. Use the methad of doable
imegration

B-L. Detertine the displacemmcat at the center of the beam f snd
el il . Assume the support at A is 4 pinand € s 5 roler.
Ells constant. Use the method of double istegratian

IR TRIne (he cqustiar of the elssic curve for the simply
beam, which is subjected 1o the couple moments. My

£ Maximam slope and the maximum deflection of the

5 consiant,

“B=4 Deterrmine the desplasement at the camicr B of the e
i the slope af A, Assume the SUppan st A is » pi 1nd € e
rolfet. E1 i constant. Use the method of double integration

¥

=3

Prob. 84

i

85 Determine the equation of the elastic curve far the beam

using the x cooedinatc. Specify te slope st 4 snd the maximum
deflection, £1 is constast.

-6, Determine the deflection at the center of the heam and e
shpe at 8 £1 is constant. Use the method f double imsegration.

Probs. 8-5/6

8-7. Determine the equations of the elastic curve fioe the beam
asing the t, and x; coondinates. Specify the slope 3t A asd the max-
imum deflection, E s constant.

Frob. §-7




e method of double nMegration. Detesmmine i,

TROBLEMS
IR Determine the displacement st B snd the slape ur ¢ g 1y
it s comstant. Use. the methoud of

astie. Use the moment-area theorems ;::u mmm"‘ slope ai B and displcerens €. 81 s
-1, Solve Prab. B 18 using the conjugate-beam meghag B-35. Soive Prob, 8-24 using the conjugare-beass
meshest.

 DEFLECTIONS .
i astic curve for e can- (i peil €
 the. equarion af the he maimum  placemen

the xcooedinie Alsodetermise: miegmation.
um deection. £ in consan!.

L
%
3 -nr_l!.'lll

able

) e e shope 81 B T 5 constant, Use the ey
of doshle imegration:

[
L

e

SN

Probs. 8-24/25

Probs. 8- 18/19

*8-20.  Determise the slope at B and the maxinsum deflection of 26 Determine the slope at A and displacement at €. £/ con-
B-14. Determine the displacement at the center of the beam un! ihe beam, Take £ = 29010°) ksi, £ = 500 in® Use the oment. 3L Use the ki
he slope at A, ELis consant, Use the moment-area theorems ey heorems. s kg

B-27. Solve Prob. 8-26 using the conpugates beam method.
18, Sabve Prob. 8-14 using the conjugaic-beam metbisd B21. Solve Prob. B-20 using the conjugate-besm method r

>
e

“8-28. Solve Prob. 5-29 using the conjugate- beam roethod

#-29. Derermine the slope and the displacement at the end

ine the displacement at the center # of the e L Determine the displucement and slope at € 7 s constant fk':‘I"" cam. £ 1= 200 GP /= TR0 mon'. Use the monsess
B constant. Use the moment-area theree 14 e momeataea 2

SRIVE POk 523 using the conjugate-beam method.




e
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PROBLEMS

; tacemient 1t € and the slope i | g g Deierming the di!l’l-ﬂ-‘\ﬂm"l 0D and the slope ol € B-47.  Deser . ¥ ‘1
e o e s oo ~f '. :-.‘ o fned support and € isa rller, 2 s comint Use  sectionsh s ot g pee it e “‘“
s constant. e muncniinea theorems. the memiters are pan consected st ihir end poims, £ = nm‘

; {Be conjlge-beasn meihod :
37, Solve Prot B-34 wisg g4, Solve Prob B-42 ing ihe conogate-beam mebod Voo o e i o

"848 Salve Prob. K-47 using Cosighianc'’s ieorem.
]

B T

43 Deterinc the displacement s & and the slope a1 4
suppoetaL A i a pin und C it w roller. £ is consuan
*“::.“' ey 4. Determine the slope at € and the displacement a1 B, £

1 & cunstaat; Uise the moment-rea theorems
-39, Sobe Prob. 8-38 using the conjugate-beam method

B85, Salve Prob. §-#4 using the conjugste-beam method Probe $-47/48

849, Determioe the vertical displacement of joint B of the truss,
Each A-36 stecl membxer bas a cross-sectional area of 300 mm’.
Use the method of virual work

B-50. Salve Prob. 849 using Castiglian's theorem.

Bs1. Bofihe
Esch A-36 steel member has & crows sectional arca of 300 mm’. Use
the mthid of vimual work.

8-52. Sulve Prob. 8-51 using Castiglisne’s theorem

R e e mancat-rea theorees jetemmine the displiceinent at D, Assume the
Sipgoted at . and € is o roller £1 i constant. Use

the displacement i A, Assome 8 i : iﬂim the slope juss 10 the left and just to the right of
Alsa,



e the erscal displscement of join E. For ey
W&"!W‘ T, = 29(10) . Use the Mmethod of yieyy
werk.

Safve oh. 839 usig Cstipliana’s theorem

the serical displacement of joint B. For e,

el _""’“A_u""i.:.g.zmnh k. Use the method f vinyy
2 Sclve Prub §-61 ssing Castghano's thorern,

2% 2k 2k

8 —-l-— s
Probs. 8-59/60/61/62
83, Dctermanc the vertical displacement of joint £ of the s
has @ erosssectional ares of A = 300 mm

 the method of virual work
- §-63 using Castigliano's theorem
the vertical displacement of joint € of the tuss
1 emoss-sectional area of A = 30 oo
Use the method of vimal work.

g, Ditermine the vertical displacement of the s at joine F-

all members are pin connected a8 their end points. Take
A.n.sh‘mﬂi = 29(10"} ksi for each member. Use the method
vl werk.

5. Soive Prob 5-67 using Castigliana’s theorem,

gotf, Determine the vertical displocement of the truss at joint 8
Assime all members are pin connected at their end points. Take
A =080’ nd E = 20(10") ksi for each member. Use the meihod
of virual work-

§-7. Salve Prob, B-69 using Castigliano’s thearem

5001

Probs, §-67/68/69/70

L Determine the vertical displacement of jaint A of th russ.
Exh member has the cross-sectional area shown. Take
E=210). Usc the methud of virtual work

"BIL Solve Prob. B-71 using Castighiano's theorem.

Probs. 5-71/72

B-73  Remove the loads on she russ i Prob. §-75 and deters
func the vertical divplacement af joent A if members AB und BC
experience a temperaturc increase of AT = JO'F Take A = 2 in’
and E = 290107 ksi. Also, a = 660107 *)/F.

E-74, Remove the loads on the truss i Prob & 78 and deiermine
the vemical displacemenn of joint A If member AE is fabricatsd
015 ia. 100 shon.

B-75. Determine the vertical displacement of joint A, Assume the
members are pin connected ot their end points. Take A = 2 in” and
£ = 29010°) ksi for cach member. Use the method of virteal work.

*B~76. Solve Frob. §~75 using Castiglians’s theorem.

sonin

Probs. B-73/74/75/76

B-T1. Determine the venical displacement of joise H. Each
member has a cross-sectional ares of 4.5 in”, £ = 20107 kei. Use
the method of vimusl work

8-78. Solve Prob. 8-77 using Castigliano's theorem.

8-79. Determine the vertical displacemest of joine € Each
member has 3 crows-sectional area of 4.5 in’. E = 2010°) kei. Use
the method of virtual work.

*B-§0, Solve Prob. 879 using Castiglianc’s thearem.

Probs. §-77/78,7% 50




51 Determine the stope of the bearm at 8. £ is conssan 11,
e methed of viral week!
Sea Sotie Pioh 891 ssing Castiglanc's theoreen

he displacement of the besm a1 B. £ s oy,
a, Use the method of vingal work
&M, Salye Prob 893 using Castighianc's theocem

M,
coment s e end € of the )
U e method of virtual 3 B

l,:___i:.

Probs. 8-91/92/93/94

Prob, 855 wsing Castigliano’s theurcin
e the slope at A, El is constant. Usc the meshid

£-47 using Castigliano's theorem.
slope at B. I is constant. Usc the method

using Custigliano's theoren

o

., The top of the beam is subjected 10 & lemperatare of  K-105, Deterns 3 :
1'{1% ‘il the temperaure of it Bosom is Ty = SFC. & = 300 GPa 1 o A et e i,
1= 120107")/°C, determine the vertcsl diplacement of it of vietal i e
tad € e 1o the temperatore gradical. The bear hus a depth of %

-t B-106.  Solve Prob. 8105 uing Castiglana's theorem,
e 4
wn m(
a » T
§-10. The botsem of the beam is subjected 10 3 lemperature of
7= 290, while the temperature of its top i T, = SO°F. If L
= 6,50107%)/°F, determine the vertical displacement of its end
pradient. The beam b cross
scction with @ depth of
o .
A
Probs. 8- 10/ 106
L— L1 -

Prob. $-102
8-107. Determiine the horizontal and venical components o

displacement 3t €. Take £ = 29{10%) ksi, I = 80 in' for cach

B-18) Determsin the hortzonta) and venical displacement com-  T<eber. Use the methad of virtual work

Poncats 21 C. 1 is consiam. Use the meiod of virul
*5-104. Sulve Prob. B-|

*3-108. Solve Prob. 5-107 also sccounting for the additional
strain energy due 10 axial load. Take A = 14 in* for sach member.

5 using Castigliano’s thearem.
8-108. Scive Prob. 8- 10T using Castiglianc’s thecrem.

Probs. §- 107,168, 169



she harizoatal displacement at €. E7 i oy, 120, Determine the horizontal displacement of the rofler €

Desermine

xmwn_m-i\mlwﬂ gisconsane. Use the metbod of vimial work
e §:116 using Castighiana’s theorem. Prob. 8- 120 using Castighano's theorem.
$-117, Solke Preb. ge1ll. Soive

1215

5 Probs. 8-120/121
Probs 8-116/117

“The frame is subjected to the load of 5 k. Determine the
mical ¢ ment at C, Assume tht the members are pin son-
neced ac A, €, and £, and fixed connected af the knee joints 8 and
D BT is canstant. Use the method of virual work.

B-IB. Solve Prob &-122 using Castighioso’s theorem.

B-118. Determine the slope 814 and the vertical displacemes: =
B Use the method of virtaal work.

8118, Salve Proh. 8118 wsing Castiliano’s theveer.

PRORLEMS
"B-124. The bent rod has s radios of .75 s Muq'

placement at € in the direction of the 150 force. Inclsde the
‘effects of bending. wxial, shear, and sorvional strain energy. Use the
= 110" i,

method of virtual work. Take £ = 210"} kei, G
B-125.  Salve Prob. §-124 using Castigliane's theorem.

¥ Probs. §-124/125

8-126. The bent rod hus o radius of 30 mm. Determine the.
vertical displacement at €, include the effects of hending. shear,
and torsivnal strain coergy, Use the method of vimual work. Take
E =200 GPs, G = 75 GPa.

8-127. Solve Prob 8-126 using Castighana's theorem.




Tm: welded joints of the beans
sl colamns of s builing
framework make this 3 staically
isdcterminste structure.

e — .

Analysis of Statically Indeterminate
Structures by the Force Method

E——— - B ki S

In this chapser we will apply the force
satically indetermin
apphication of the three.
wmalyre mdeterminate bear
method for drawing the influence
frame.

9.1 Statically Indeterminate Structures

Recall from Sec. 2.4 that a s sified

indeterminate when the nun

Mrtuees designed today arc
2§ arise 2 a result of added supports
"“_"t-lm(mm For example, rein
Mically indcterminate since the o
"bers through the joinis and over suppe




5 0F 0 statical),
than that of 4 statically determing,

SEC O STATICALLY INDETERMINATE STRUCTURES.

jpotant reasons for choosing this e of
wma:\;fh'm portat, o a ven foading I maximur e,

m:ﬂl‘ g&’u indescrminate sirchare ar generally smatler than thos.

atnterpant. For example, the statically indei.
= m in Fig. 9=1a will be subjected (o a maximu,

‘whereas the sam beam. swhen simply supporcs, Fig, 9-1
o twice (he moment, that is, Meay = PL/4. Ag
Wl‘wlfnurﬁl the deflection and one haly
one that s simply supporicd. i
the for selecting u statically indeterminate siructure Methods of Analysis. When analyring any indeterminate sructure, it

mecessary 1o satisfy egeilibrivem, comparibility, and force-displacement
requircents for the structure. Equilibrivm is satisfied when the reactive forces
“and collapse is prevented. This is panticularty Hdﬂti“"‘“"f at rest. and compatibiliry is satisfied when the varous seg-
Al Ioads, such as wind or earthquake, are imposed meats of the structure fit ogether without intentional beeaks or overlaps, The
consider again the fixed-cnd beam in Fig 9- farce-displocerment requirements depend upan the way the material responds;
s moterial ot the walls and at the center of the & text we have assumed linear elastic response. In general there are
forms localized “plastic hinges,” which causes the mniltm-: ways (0 salisfy these requirements when analyzing a statically
"wwpnmmdnmm points. Although te structure: the force or flexibility method, and the stiffness or

‘ﬂuﬂs will develop herizontal force and mirmmi melhod.
it from totally Force Method. The force method was originally developed by Tames
Clerk Maxwell in 1864 and later refined by Otto Mohr and Heinrich MUller-
Breslaw, This method was one of the first available for the analysis of starically
structures. Since ility forms the basis for this method,
i has sometimes been referred 10 a5 the comparibiliny method or the method
U’med‘ufmumm This method consists of writing equations that
sl the ilicy and force-displave for the strucrure
t:k'm to determine the redundant forces. Once these forces have been
5 mined, the remaining reactive forces on the structure are determincd by
The cost sayings in material must be comparcd ke salisfying the ; The principles involved
U snmes i1 bm'l"m jing this method are easy to understand and develop, and they will be

of an indeterminate struci R chaprec

Mm Method. The displacement method of analysis 15 based
force-displacement relations for the members and then satis-
ibiium requiremests for the stnucture. In this case the nknoans
alions are displecentents, Once the displacements are obtuined, the

from the comps and force dispk equa-
study some of the classical techniques used 1 apply the
rmhnd in Chapters 10 and 11. A matrix formulation of the

tendency 1o redstribute its load to its redundant suppons
ke ‘ot overloding eccurs. In these cases, the sinic-

jon, the supports will not develop the
ns that may be necessary to preven! ol

Sruclures can support a loading Wil
stability compared 1o their stati
‘when these advantages may instesd

strueture. For example, if ¢
9o were to seftle, stress w0ud
‘deformation. On the olber

determinate, Fig. %-1"
the beam to deform. ©/

of these two methods of analysis, which are outlined in Fig. 9-2,
Ir advantages and dissdvantages, depending upon the geometry of
and its degree of indeterminacy. A discussion of the usefulness
will be given affer each has been presented




bt ay s the principles molved in the force meibog
fer the beam shown in Fig. 9-3e. 1Fits free-body diagram
mmh'h four unknown SUppOrt reactions; and since three

s TS

"'wﬁ\r:dlihunw that the beam then becomes siatically

und steble. This beam s referved 10 as the primary struciure. ere

oad

- displaced downward by an amount A g as shown in Fi

hawerer, the unknown reaction ot B, i.c., B, causes

upwand, Fig. 9-3c. Here the first letier is

n refers 1o the point (5) where the deflecton is

letter refers 1o the point (8) where the unkaosn
Jositive displacements

act upward, then from Fig
mecessary compatibility equation al the

coefficient fug, Fig. 9-3d. Usnt
poation as ahove, fus i+ 1°
Since the material behives 1 2
B, instead of the unit load. =/

write

{ the linear flexibility <0<
e, and so its units i°
2 can therefore be wrifc?

s ghve methods of Chapter 8, or the deflection table an the inside fromt
coner of the book, the appropriate boad-displacement relations for the deflec-
iom A Fig, 9-3. ond the flexibility coefficient fyy, Fig. 0-3, can be
e and the solution for B, determined. that i, &, = 3, fy. Once this
s accomplished, the three reactions at the wall A can then be found from the
equitions of equilibrium.

‘As stated previously, the choice of the redundunt is arbitrary, For exam-
e, the moment it A, Fig. 9-da, can be determined directly by removing the
caacity of the beam [0 support a moment at A, that is, by replacing the fixed
suppen by & pin. As shown in Fig. 9-4b, the rotation at A caused by the Joad
Pis B and the rotation at A caused by the redundant M, at A is ),
Fig. 9~de. If we denote an angular flexibitiny coefficient ery, 05 the angular
displrcement at A caused by a unit couple moment applied 1o A. Fig. 9-4d,
then
@, -

o = Mgy,
Thus, the angular flexibility coefficient measures the angular displacement per
usit coaple moment, and therefore it has units of rad/ N-mor rad/ Ib-fL ete
The compatibility equation far refation al A therefore requires

I+
Inhis ase, My = — 8/, a negative value, which simply means that M,
et in the oppasite dircction to the unit eouple moment,

= 8, + May,

SEC. 92 FORCE METHOD OF ANALYSIS GENERAL PROCEDURE. |



o

it
redundans C, applis
1)

A td example hat llaiates application of he force method is g
in Fig. 9-Sa. Here the beam i indeterminate to the second degree and there
fare two compatibility equations will be necessary for the solution. We will
forces at the roller supports, B and C, as redundants. The

umwbm deflects as shown in Fig. 9-5b when the
qhﬂmmmmmmrm which is assumed to act down
 deflcts this beam & shown in Fig. 9-Sc and 9-Sd. respectively. Here
foir 04 fcg are found from a unit load acting at £

+8,fua + Cfoc )
HBfep + Cofec

 relations are established using the methods <

involving trusses, beams, and frame:
since the method depends
shat rhe mae rial remain I r-I
determined by first releaing
loading and then wriling !

the deflecsion at € cuee ™!

SEC. 92 FORCE METHOD OF ANALYSIS: OENERAL PROCEDURE

procedure for Analysis

The rhlh-mg procedure provides a general method for determining the
or intemal loadings of statically indeterminate structures using
e force o flexihility method of analysis

Principie of Superposition. - Determine the number of degrees n to which
\hestructure is indeterminate, Then specify the 2 unknown redundant forces
or moments that must be removed from the structure in order to make it
seatically determinate and stable. Using the principle of superposition, draw
the statically indeterminate structure and show it o be equal to a sequence
‘fm-ding statically deferminate structures. The primary structure
the same external loads ax the statically indeterminae structure,
mﬂ each of the other structures added to the primary siructure shows the
stnscture loaded with a separate redundant force or moment. Also, sketch
the elastic curve on each structure and indicate symbolically the displace-
menl or rotation at the point of each redundant force or moment.

Equations. Write 3 compuibility equation for the dis-
placement or rotation at each poim where there is a redundant force or
moment. These equations should be expressed in terms of the unknown
sedundants and their corvesponding Rexibility cocflicicats obtained from
unit loads or unit couple moments that are collinear with the redundant
forees or moments.

Determine all the deflections and flexibility coefficients using the table
| on the inside front cover or the methods of Chapter 8.* Substitute these

| displacement relations into the compatibility equations and solve for
the unknown redundants. Tn particular, if a numencal value for a redundant
s negative, it indicates the redundant acts opposite 10 its comesponding unit
force or unit couple moment.

Equilibrium Equations. Draw a free-body disgram of the strus ture. Since
e redundant forces and/or moments have been calculated, the remaining
inknown resctions can be determined from the equations of equilibrium.

It should be realized that once all the support reactions have been
obiained, the shear and moment diagrams can then be drawn, and the
tion at any point on the structure can be determined wsing the same
- mawhods outlined previously for statically determinaie structures

\m comsists of sirgle segmens, the.
complicated M/EV
lll s, thase with many curved segme
the meihed ef viral work o by r..mg\um»



 FORCE METHOD!
T STRUCTURES BY THE F
STATICALLY INDETERMIRA

rocal Displacementss

developed the force method of analysis, he 8150 publishe)
s the Meabilty coeficients of any two points ¢

9 * QLY ANALYSISOF
9.3 Maxwell's Theorem of Recip
When Maxwell

Betti’s Law

a theorem that rel: fi This theos

: e s tris, a beam, o a frame. This theorem ic e
,um:uw :m displacements and may be stated as follo
1o as thea

int B on a structure due (o @ wnit load acting ar
xwwmﬂi:"':ﬂ'd“““ wihen the unit load s acting ar po
e rm;ﬂduis{;;nm is easily demonstrated using the principle of viriua|
woek. For cxample,consider the beam in Fig. 9-6. When & real unit a5
a1 A, assume that the internal moments in the beam arc represented by m,
determine the flibility cocHicient at B, that is, fou. & virtual unit lo
at B, Fig 9-7, and the internal moments my are computed. T

pying Eg. 6-25 yieds

S [T

Likewise, iFthe flexibiliry coefficient fus is to be determined when g real uni
loud acts st B, Fig, 97, then m represents the internal moments in the be
dve 10 8 real unit load. Funthermore, i, represents the intermal momeats duc
10 @ virtual wnit boad at A, Fig. 9-6. Hence,

o250

=5

SEC 94 FORCE METHOD 0F ANALYSIS: BEAMS.

gt inegrals obviously give the same resul, wi
pearen also applies for reciprocal rota
e rataton at point 8 on a srucrure due
viat A i3 egual 10 the ratation at paint A when th
gt point B. Futhermore, using s wnit force a
4 separale points on the structure, we m
ot point 8 on @ sruciure due i gl o
diplacement an point A when o unit t it B,

“u¢ a consequence of this thearem, some work can be saved when apply-
fagthe force methad ta problems ¢ lcterminate to the second
depree ox higher. For example, only he twa flexibility coefficients fie
o fp 135 10 e calculated in Eqs. 9-1, since fue = foy. Furhermore, the
@eorem of reciprocal displacements has applications in structural model analy
sis and for constructing influence lines using the Miiller-Bresla principle {see
Sec. 9.10).

When the theorem of reciprocal disp
general sense, it is referred to as Berri's
30y done by a system of

h proves the theorem. The
d may be stated as follows;

unit couple moment, applied
also state: T

atien in radians

ents s fo

nalized in a more
Briefly stated: The virtual work
rees Sy that undergo a displacement caused by
 sysiem of forces TP, is equal to the virual work 8L, caused by the forces
5P, when the stueture deforms due to the system of forces £Py. In other
wonds, U = U, The proof of this statement is similar 1o that given above
for he reciprocal-displacement thcorem

94 Force Method of Analysis: Beams

The force method applied to beams was ined in Sec. 92 Usi
“procedure for analysis™ also given in Sec we will now present
exemples that illustrate the application of this technigue

jeally imdeterminste sisce ihey

piers

These bridge girders s
are cantinous over O
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I STRUCTURES BY THE FORCE METHOD

e

atthe roller support & of the beam shown in Fiy,
Determine the reaction
$-!|.!|'W

l ,._ims l mml,omﬂlul!

WA By inspection, the beam is statically inde-
g"-hmgmmm will be taken as B, so that this
WM Figure 9-8b shows application of :he

I wnﬂ:’m action of the beam in the direc-
maved. Here we have assumed that B, acts upward on the

{1}

using the table on the inside front
= k*’ el m). Thus,

SEC 4 FORCE METHOD OF ANALYSIS: BEAMS

Determine the moment ot the fixed wall for the beam shown in Fig. 9-9g.

Elis constant.

prirsary sructure

SOLUTION

Principle of Superposition.  The redundant here will be taken as M, since
this moment can then be determined directly. Application of the principle
of superposition is shown in Fig. 9-9b. Here the capacity of the beam 1o
suppant & moment st A has been removed. This requires substituting a pin
for the fixed support at A. We have assumed M, acts counterclockwise.

Compatibility Equaiion. Taking positive motation as counterclockwise,
Fig. 9-0b, we have
t+) 0= 8, + My, m
The terms 8 and a, can e determincd from the table on the inside front
cover, We have

o, ML _ 20k:A(101) _ 33kt

ekl B EE Ll

i LML _100m 330 3

T 3EI E MM,
wﬁl these results into Eq. (1) yields

Ans.

333 '3‘)
- M, = — 10k
e L [Er 4

is shown in Fig. 9-9d

tive sign indicates that M, acts opposite to that shown in Fig
‘When this reaction is placed on the beam, the other reactions can
ined from the cquations of equilibrium, Fig. 9-9¢. The moment

wif)




—— ATE STRUCTURES BY THE FORE METHOD

SEC 94 FORCE METHOD OF ANALYSIS: EEAMS

——

lliq‘rlﬂl for the beam shown in F.l_ 9104,
::‘m;ﬂaummx = 20107 ksi. = 750 in".

= i AN — 13
primary s rodundant B, apliod
' ®
i 10

q)‘wﬂm By inspection. the beam is indeterminate o
cenier support B will be chosen us the redundant, <o

mrq 9-100 Here B, is assumed to act down-
. With reference to point 4 in Fig. 9105, wsing

L%-‘.‘l"'%’n 1)

method to compute Ag and fup sinoe
aht line segments. For &, verify the

T . f’ - at y_‘Jﬁ
i o
- ] p : 1
un—--L—nn—J 1’ 2 T—H— w2 -1
05k 144
g i -
(]
Verify the calculations in Fig. 9-10d for calculating fiy. Note that
144 14
4 EM, = 0 —my o (B -2 =0
2304 234
P R
E  E
Substituting these results into Eq. (1), we have
15 31680 {um]
B O [t
12 El ™\ Ef
4 Mk
| Expressing the uriits of E and / in terms of k and i, we have
c
En K/ 1 in? 12 I 2
g (2900 ki (12) i/ (750 im0/ (12 ) i) R i
« 31680 + B2304) @
B, = 556k
e Eguations. The negative sign indicatcs that B, acts upward i
| St beam, From the frec-body diagram shown in Fig. 9-10¢ we have 1
3"4" o —20012) + 5.56(24) + €,(48) = 0 m' “_ o
G, =222k -
’ 187
=0 A, -20+556+222=0 5
: = 1222k 2 X!
2 N g
these resulis, verify the shear and moment diagrams showmn in
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SEC 04 FORCE METHOD OF ANALYSIS. BEAMS. |

p—

shown in Figure 911,
<hear and moment diagrams for the beam g
ET;... Tﬂm e effects of xial losd.

SOLUTION : dncted. the ben
' i Since axial load is neglected. the beam 15
2 wd‘ nmwﬂm,mm:nd moments at A and 8 will
sidered redundants. The beam’s capacity 10 resist these
hmﬂ!" 3_:.::,- placing a pin at A and a rocker at B The principle
dwwkdmllhlmi! shown in Fig. 9-110.
Campasihility Equations. Reference 1o points A and B, Fig. 9- 115, requires

™ 0= 8 + My + M (]
(+ 0= iy + My, + Mytie (21
26N

The required slopes and angular Mexibility coefficients can be determined
asing the table on the inside front cover. We have

Jml’ _ WY _ 315

12881 1BEl  E
Twl) _ H2N20P 2917
IME T IME B
o, = ML _100) 667
A NEEL AR El

ML 120) 667
oS 3E O H
e ATED R
“tTSEI 6El  EI

Note that eras = s, @ consequence of Maxwell’s theorem of reciprocal

displacements.
Substituting the data into Eqgs. (1) and (2) yields
375 6.67) f k)
g ‘“-‘('F.i i '"“( I
333 6.67)
+ MA[ E.i_] + .ld',( =

Canceling ET and solving these eguations simultancously, we have

My = —458 kAt = - 208kt
Using these results, the end shears are calculated, Fig, 9-11c, and the shear
and moment diagrams plotied,
Vik)
16.25]
i) I (m
ans
MRy 3

%éntl—mr—l», i _‘ﬂ:a::-n

2k
A
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SEC 94 FORCE METHOD OF ANALYSIS: BEAMS.

mlhemppunruru-bﬂmshwn in Fig. 9-124

Determine the reactions
s constant.

ction, the beam is indeterminate 1o
m mam]nmm.mwull choose the internal
“redundant. Wnlly, the beam is cut open
p._,uawnﬂ""’" Minge aue plsced at B in order (o releasc anly
end | 'ghhﬂ'“"“mm point, Fig. 9-125. The

¥ X ¢ B it dpylied 10 the beam i Fig. 9-12c.
h From Fig. 9-120 we require the relative ron
mdﬂ*""’ il sspee 10 he e of the other beam 10 be

i By + My = 0
g 0= 0+ 0
= opy Ay

01

p—

* The slopes and angular flexibility coefficients can be determined from
e table on the inside front cover, that is,

wl’ 120012 86401667

o an t m
o PU_ SOKI0F _ 3125 et
"TleET 6B T H

o = ML_10D _an

3B E
ML 100 AR
= =35~ 3 El

B640 Ib-fi 3125 Ib-fi* 4Rt 333N
Ea g '”’(m T
My = = 1604 1b-fi
“The negative sign indicates My octs in the opposite direction to that
:hm in Fig. 9-12¢. Using this result, the reactions at the supports are
as shown in Fig. 9-12d. Funthermore, the shear and moment
are shown in Fig. 9-12e.

N




5 ful for solving problems involving siatica,
The foree melh that e 8 <ingle story and unusual geometry, such 4
4% . {volving multistory frames, oF those with u higy
gabiled fram are hest sohved using the slope-deflection, momenr
¢ “method discussed in later chapters
memmumm foree method using
L in See. 9.2

'wmm«;mmedm i Fig. 9-13a. El is

n the frame is statically indeter

10 puint B in Fig. 9= 130 requires
+ B W

SEC 93 FORCE METHOD OF ANALYSIS: FRAMES.

The terms Ay and S will be computed using the method of vimsal
work. The frame’s x coordinates and intermnal moments are shown in Fig
9-13¢ and 9134, It is imporant that in each case the selected coordinate
x ¢ 3 be the sarme for both the real and virtual loadings. Also, the posi-
five directions for M and m must be the same

For A we require application of real loads. Fig. 913, and o virtual
it hoad at B, Fig. 9-13d. Thus,

- M * (20, — AN08x) dr, (01
| el v ] AL R 53 ey
& L £l J“ &l j ]
_ 1667, 1667
£l - "

‘Far fuy We require application of a real unit load acting at 8. Fig. 9-13d.
and & virtual unit load acting at B, Fig. 9- 13, Thus,

L (0.8x,)* dlx, * (1xy)? e,
o [ 1) dxy {ry); d;
= el W 'Jf,, )

_7 213480

et Bl EL.

Substituting the data into Eq. (1) and solving yields

166.7 48,0
i +B,lﬂ) B, = ~34TkN Ans.

Equilibriem Equations. Showing B, on the froe-body diagram of the
[ in the correct direction, Fig. 9-13e, and applying the cquations af
Equilibrium, we have

S =0 A -34T=0 A, =34TEN Ans.
UFS, =0 —40(25) + Bg5) - 34741 =0 B, = 228KN Ans.
#TZF =0 A —d40+228=0 A, =I172kN Ans.

v

)
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e at the fixed suppait A for the frame shown in Fig

fa
g 914

. The frame is indeterminate 1o the finl
«can be obtained by choosing this as the
 the frame to support a moment at A is
ed at A for support. The principle of su-
is shown in Fig. 9-14b.

16 point A in Fig. 9-14b requires
My, (1

, and ay, will be computed wsing the
and internal moments

e P

For 8, we require application of the real loads, Fig.
virtual unit couple moment at A. Fig. 9-14d. Thus,

F Minedx
b= ZI El

_JP

0833 dry

(29, h, S0 N006671,) s
El
- _ 5185 302 8ns
B m E
) ‘MM we require application of 4 real unit couple mament acting at
and a virtual unit couple moment acting at A, Fig. 9-14d. Thas,

g,
= EL £
Hl — 008335 ) d, I'rn
Ef b
-~ LR
B B E
these results into Eq. (15 and solving yields

¥ dey




NDETERAINATE STRLCTURES B THE POl ETH0

of Analysis: Trusses
 russ can usually be determined by inspec.

detenminacy of
mﬂwnh; o econes diffcul, use B -1, b+ 7> 2. Here the
g |., number of bar forces (6) plus the suppon
reactions (7 ST i the nismiber of available equilibrium equations s 3/ since

writien For gach of the () joints.

can be
1,,::;; {s quite suitable for analyzing musses that are saticaly
dcterminate to the first or second degree. The following examples illustrue

92

application of this ‘methvod using the procedure foe analysis outlined in &

g ., .

Determine the focce in member AC of the truss shown in Fig. 9-15a. 4 |
is the same for all the members.

Principle of Superposition. By inspection the truss is indeterminate to
the firut degrec.* Since the force in member AC i to be determuned me -
ber AC will be chosen as the redundant. This reguires “cutting™ this member
s thar it cannol sustain a force, thereby making the truss statically deter-
minate asd sisble. The principle of superposition applied (o the truss i
shown in Fig. 9-15h.

Comparibility ‘With reference 1o member AC in Fig. 9-150,
 we roguire the relative displacement A ¢, which occurs at the ends of
* the cut member AC due (o the 400-1h load, plus the relarive displacement
M;gu by the redundant Farce acting alone, be equal 10 2em.

U= A+ Fuchicac

58,9~ 8= Ju depree.

SEC 94 FORCE METHOD OF ANALYSIS: TRUSSES. |

—

Here the Aexibility coefficient fu . represents the relative
of the cut ends of member AC caused by o “real” unit |mu':::?ru:
gut ends of member AC. This term, fuc e, and Ay be computed
using the method. of virtual work. The force analysis, using the method of
jaints, 18 summarized in Fig. 9-15¢ and 9154,

For & We require application of the real load of 400 I, Fig. 9-15¢, 401
and a virtual unit force acting at the cut ends of member AC, Fig. 9-154.
Thus,

nNL
Ke=3 AE
z[(—nagqmya,] 5 (=0.6)0X6) | (= 0.6N300)(6)
AE AE AE
o+ (L SO0N10) | (1ONID
AE

Bt fuc 4 we reguire application of real unit forces scting on the cut
nﬂs of member AC, and viroal unit forces acting on the cut ends of
member AC, Fig. 9-154. Thus,

ficac =

Foe = 3241b(T) s

ithe numerical result is positive, AC is subjected 1o tension as
Using this result, the forces in the other members
librium, using the method of joints.
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. 4 SEC 97 COMPOSITE STRUCTURES. 378
BNAE S g7 Composite Structures ‘
et of the truss shown in Fig. 9-16g if =
P ;‘ﬂmwdmc_‘ ey Gorpasie trictures are composed of some members subjected oaly
e & o secional e of 02 I, and £.= 25010 i e 03x member s b b, e e
narnbuc jeally indeterminate, the force method can conveniently be used for its

paalysis. The following example illustrates the procedure

The beam shown in Fig. 9-17a is supported by a

1 A pin at A and ¢
pconnectzd bars at B. Determine the force in member BD. Take =
20¢10) ksi, J = 800 in* for the beam, and A = 3 in® for each bar

redurdnt F applied

(L]

y This tuss has the same geometry as tha
%ﬂfaﬂ. been shortened, we will choose it as the

. Sisce no external loods act on the primary L

will be na relative displacement between the ends

caused by load; that is, 8,c = 0. The flexibulity
computed in Example 9-8, s0

_— e
% Fuopsplied

Fig, 9-17

of Superposition. By inspection, the beam is indeterminate 1o
degree. For solution the force in member BD is chosn &

it ! (im.r This member is therefore sectioned (o reduce its capacity 1o

Fue 4 foree. The principle of superposition applied to the structure i

] | S in Fig. 9-175.

per unit force, we have

W jan.  'With reference to the relative displacement of
dy of member 4D, Fig. 9176, we requie

A,

reactions arc #<1° =4 + Fupfeorn (1]

od of virual work will be used 1o compute &xn and fon s The
farce analysis is shown in Fig. 9-17c and 9-17d.




application of the real loads, Fig. 9-17c, 2nd
0 e cut ends of member BD, Fig. 9-17d. Here
i encrgy in the beam and, of coursc.,

30°12) _ (0)(1)(6/cos 25°K12)

unit load and a virtual unit load
Thus,

b
3210

= 0.0018 07

Ans.

sam and show thil

SEC 0.8 ADDITIONAL REMARKS 0N THE FORCE METHOD OF ANALYSIS

98 Additional Remarks on the Force Method of Analysis

—
o that the basie ideas regarding the force method have been developed, we
il proceed 10 generalize its application and discuss its usefulness

When computing the flexibility coefficients, f, (or a,), for the structare.
will be neticed that they depend only on the material and geometrical pmp-
s of the members and not on the loading of the primary structure. Hence
these values, once determined, can be used 1o compute the reactions for any

For a structure having n redundant reactions, R, we can write n compal-
shility equations, namely:
Aj + iRy ol + o kR =0
Ay o+ SRy + fofy + o+ LR,

Ay fafy oty ¥+ R, =0
Here the displacements, A, . . ., A, are caused by both the real loads on
the primary siructure and by supporr sertlement or dimensional changes due
10 temperature differences or fabrication errors in the members, To simplify
eomputation for structures having a large degree of indeterminacy, the above
etpiations can be recast into & matrix form,*

B fie o ][R 4,
for S

@-2
AR | £ R

fR= -4

. note that £, = £, {fiz = fa,. etc.). a consequence of Maxwell's
reciprocal displacements (or Beni's law). Hence the flexibiliry ma-
Symmetrie, and this feature 1s beneficial when solving large sets
Uations, as in the case of a highly indelerminate strusture.

ut this chapter we have determined the flexibility coefficients
methiod of virtual work as it applies to the entire strucnre, It is
however, 1w obtain these coefficients for cack member of the sinic-
len, using transformation equations, to obisin their values for
structure. This approach is covered in books devoted 1o matrix
sructures, and will not be covered in this text.T

is pevicwed in Appendin B.
ple. H. €. Manis, ferrodecrion i Maris Metbeds of Srwctors! Asalysis,
York.



lemmm

ﬁ.ﬂ““h“m ahie force method of analysis using cop,

o be omied here, we can make some genery

-\d that apply when using this method w solve proy,

are highly indetermimiie and thus invalve Targe sets of equations. 1,
| sccuracy for the solution i improved if the Aexibiliy,

i‘ﬁ 5  neithe main diagonal of the F mairix are larger than (o
..m!m this, some thought should be given

. To facilitate compatations of [, it is sis

the primary structure so that it is somewhat symmetric

e fexibility coefficients that are similar or may be

leflected shape of the primary strusture should be sonilar 1o

1fthis occurs. then the redundants will induce only

?.(mu i structure, which results in o maore accure

conjugate beam (intermal moments)
e}

ion was developed by the French engineer Clapeyron
int 'mumls ina bum o

Fig. 9-18

AL (M)
+1.LE2 (sr }"“Jf L)+ (
A
BIL, " 6K, = 3K
L. €, and R. The loads between the suppen: Ly, f ]
infernal imamens at the supports will b spec- A simming moments about paint R for the right span yiekds
the lefi part of the beam has geometricl

Tﬁ;ﬁ::iﬂ;ﬁ.’"m‘m . _[ () b 5 () (B

g MLy Mcly
EIL, - G, 3E,
€, + €)= —(C, + €, and simplifying yields

©-3)

General Equation

igns have been added o the terms o the right 5o that the H{’EI
or each type of applicd load can be weated scparately. In practice,
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m!—ll

i d arc and uniform
wm-mmﬁ;D ~ 19, IF the areas and centroidal distance; 15k
*for their M)/ E disgrams arc substituted into the above equation, we have

Canceling vut the comman term, 1, and solving, we bave

‘assumed fo act in the positive sensc on the My = 17715kt
in Fig. 9-1¥a

‘beam moments of ineria and span lengths

moment at the section.

1 ‘beam concentrated loads and uniform
| loads, assumed 10 act in the positive sense on
5 in Fig. 9-19

Jengih where the concentrated load -

[0.25 - ©.25)') -

vaine the reactions at the supports for the bearn shown in Fig, 9-20a.
*The moment of inertia of span AB is one hulf that of span BC.

SOLUTION
Hre we must use Eq. 94 for the solution. The data are 15 follaws:

302sp
050

ﬁm\e 9-20b shows the free-body diagrams of spans AB and BC, with

—A(25) — 1775 + 15(125) =0 A, =304k Ans.

right suppon, Fig. 9- 1% B =0; 304 - 15+ ¥, = 0 =H6k
i constant for the entire span, 1% nBC:
=0 1775 — 15(15) + €200 =0
C, =238k A,
e 11+ 2A% =0
= 126k
althossh ody diagram of the differential segment of the beam that passes

er at B is shown in Fig. 9-20c.
B, = 512k

Fo=0; B -446-126=0

Ans.

3 LTS
A
@5i) o
st
o s

e )mn "

nsn—nsa v,

5L

lﬂjl-n(l?!)l"jl-ﬂ

sk | 126k

b
i 920




STRETURES BY THE FORCE METHOD

peam ol the supports, Fig. 9-3)

20 kNim

o the ntemal momens in the
o BrmREtTL

o ’l&m\@u use Eg. 9-5. By inspection,
M=o =l .
, Mg and M hence, two applications of Eq. 9-5

ABC i Fig 9-21. in which cuse
M = My
L=8m
Py = 60KN

SEC 99 mmmm 3

 ris constant.
SOLUTION

. M. =0

9-225.
First we consider A*AB, Fig. 9-22b, in which case

| petermine the internal moments in the beam at the supports, Fig, 9-22a.

Equation 9-5 can be used for the solution since [ is constant By

Ams.

moments at A and B will be determined by two spplications of
-5, The fived support ar A can be ireated as a roller support

— 10—

00—

=0 Me=M, M= My
» ke Lyl S o0
B Py=0
=0 wy = 800 Ib/ft A
& = Fo——mnn i T
G %
§ (L1
i the da 9-5, we ha
silmm-.-, ta into Eq. we have L
. s00(12)*
)+ 24, (0 + 12) + M(12)=-0-0-0- =
P M, + 12M, = - 345 600 m
Weemmwc Fig. 9-22b. Then
M, =M, My = My M =10
L=11 =20t
B.=0 Py = 4000 Ib
wy, = B00Ib/ft  w, =0
k k=0 kp=8=05
tuting the data into Eq. 9-5, we have
2) + 2M,(12 + 20 + O
80(12)"
=0 = 4000207°[0.5 — (051 - =, -
12M, + B4M, = — 345 600 2
Eqs, (1) and (2) simultaneously yields
M= -4k M= —133k0 Ans.




: mm".mmm
Jlly Indeterminate Beams
cussed the use of the Miller-Breskau principle for druwin,

i reaction, shea, nd moment at & point in a staical,
section we will extend this method and apply iy 1,

ow [reaction, shear, or mOMENt) is 10 the same scaly
he beam shen the beara 5 acted wpon by the funcrin
shape properly, the capacity of the beam to resist n,
@mh beam can deflect when the functioy

fy deserminate beams, the deflected shapes (o ihe
series of straight line segments. For staticell;
arves will result. Copstruction of each of the thee
(reaction, shear, and moment) will now be discussad
i Iin each case we will illustrate the validiy
: using Maxwell's theorem of reciprcl

the influence line for the reaction at A n
the beam at successive points, and at each

e load is at point D,
of the influence

9-23¢. The compatibility cquation
= —fun/fun; however, by Maxwells
o = ~fa, Fig. 9-23d. so that we can
nce line at D) using the equaticn

& requires removal of the s
0ad. The resulting deflection cers.
 influence ling for A,. From e
ale factor i 1/fax:

Shear at E. If the influence line for the shear at point E of the beam in
Fig. 9-24ais 1o be determined, then by the -Breslau principle the beam
is imagined cut open a1 this point and a siiding device i inserted at E, Fig.
-24h. This device will transmit a moment and normal force but no shear.
When the beam deflects due o positive unit shear loads acting ot E, the slope
on each side of the guide remains the same, and the deflection curve repre-
enis 10 some seale the influence line for the shear o E, Fig. 9-24¢. Had the
atic method for establishing the influence line for the shear ar E been
splied, it would then be necessary to apply a unit Joad at each point £ and
compete the intemal shear at £, Fig. 9-24a. This value, Vy, would represcnt
‘the ordinate of the influence line at D). Using the farce method and Maxwell’s
‘heorem of reciprocal displacements, as in the previous case, it can be shown
that

1
: Vo= (5 )re
This again establishes the validity of the Mulles-Breslau principle, namely. &
0 unit shear load applicd 10 the beam at E, Fig. 9-24c, will cause the
beam o deflect into the shape of the influence line for the shear at £ Here
‘the ssale facton is (1/fie).




SEC. 011 QUALITATIVE

0.1l Qualitative Influence Lines for Frames

-

e Miller Breslau principle provides a quick method and i of great value
for establishing the general shape of the influence ling for building frames,
hge e influence-line shape i known, one can immediately specify the
Jocarion af the live loads so as 10 create the greatest influence of the function
freaction. shear, or moment) in the frame. For example, the shape of the
iafuence line for the positize moment at the center 1 of ginder FG of the frarse
ia Fig. 9266 is shown by the dashed Tines. Thus, unform loads would be

oaly on girders AR, €D, and FG in order to create the largest pos

Toment at [. With the frame loaded in this manner, Fig. 9-26b, an indeter-
‘winale analysis of the frame could then be performed to determine the erifical

mament ot /.

Fig 925

’ at E. The influence line for the moment at E in Fig. 9-254 ¢
:W. : 4 e by placing a pin G hinge al E, since this conmection rann

3 ,ldmwm“"‘" resist & moment, 9-25b. Apply
tive unit couple moment,the beam then deflects 10 the dashed pocion in F
925, whish yields 1o same scale the influenice line, again o consequer
Wﬁﬂll‘m““- Using the force method and Maxwell's recipo
cal theorem, we can show that

AT 3 it

provides a method for establishing the influcoe
. 0F moment &t a point on a beam using the Miller (h
Fig 9-26

ertical rolfer guide; if the funct

s momment, use 3 pin of ¢

of
load placed at the conne<!™
. By W‘hi d.T;:MM" : Inflacnos lines fo the continuous ginder of
“mnmﬁ: shis mesle were comsinwcicd in onder w0

the i ine.

ey

propstly design the gisles




THE FORCE METHOD

snfluence line or the vertical reaction at A for the beam iy,
m‘;-m Plo¢ pumerical values every 6 ft. g

[
Fig 9-27

SOLUTION

mwummn resistthe reaction A, is removed. This is dose
g metical ol dice shovs i Flg. 9-275. Applying a vertica i
1 the skape of the influence line shown in Fig 9
mmmn:mnum line we wU use the

Mk Lo & A, e i in Fig, 9-27b. The correspand
beam is shown in Fig, 9-27d. Notice that the support =t 4
J-;.hﬁnu:mﬁ& 9-27b. This is because  vertical
on the conjugate SUPparts i moment but no shear,

aisplacement but i slope at 4 on the real beam, Fig, 9-21c
s of the conjugale beam have been compated

The displacements of points on the real bear.

SEC 901 QUALITATIVE INFLUENCE LINES FOR FRAMES

prm—
For B', since no moment exists on the conjugate beam ', Fig. 9-27d, e i
hen 1
Ay=My =0 s,
For Y, Fig. 9-27e: ] "
162 g -
By =0 Bo=My= o 6~ Er] @ =20
for €', Fig. 9-27f
=0, A =M. =——(12)
Far A, Fig. 9-27d-
1944
=My =—r

Since a venical 1-k load acting ai A on the beam in Fig. 9-276 will

mawmral reaction at A of | k the displacement at 4, 4, = 1944/EL

to a numerical value of | for the influence-line ordinate

at A Thas, dividing the other computed displacements by this factor, we
abtain

x
A 1
1 0§52
1] 0481
& 0

A plot of these values yiekds the influcnce line shown in Fig. 9-27¢.

1 0352
3
[ 1 "

0.481

quantiestive influence line
for reaction at
i)
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piaTE STRLCTURES BY THE FORCE

——

e e line for the shear at D for the beam in Fig 938, r;
i constant Plos namerical valucs every 9 fl.
]

the beam fo resist shear at D is removed. This s done

device shown in Fig. 9-285. Applying a positive unit shear
shape of the influence line shown in Fig. 9-28c.

sctions 3t A, B, and € on the “real beam” when subjected

are shown in Fig 9-28b. The corresponding conje.

/in Fig. 9-28d, Here an extemnal couple moment M,,

" in onder to cause a different internal moment just o

of D', These internal moments cormespond &

stio the lefi and just 10 the right of D on the real bears,

c the supports A', B', €' and the externi

- beam have been computed and are shawn

werify the calculations.

)
SEC %11 QUALITATIVE INFLUENCE LINES FOR FRAMES.
—
Since ther s a discontinuity of moment at £, the intermal moment just ns
1o the left and right of ' will be computcd. Just 1o the kft of 1, Fig i
9-28f, we have 1 Wy
= A5 =M, F:l wy,
My, 'n, ; ang )
Just o the right of D', Fig. 9-28g. we have A
L
40.5 20 38BE _ 15795 n
- = - 3) = — -l
By =0 O, s A El s
R
From Fig. 9-2Be, ; _Ed.w'n'
A= M, Ae=Mo =0 EQ )’
hi ™,

Far paint E, Fig. 9-28b, using the method of sectioas ot the correspond- PPT) Ll
ing point E' on the conjugate beam, Fig. 9-28#, we have =

405 54 3645 o
gu,.=0; Ap = My :F"‘"E”]:'T o

‘The ardinates of the influence linc arc obtained by dividing each of the .

above values by the scale factor My = 3388/E1 We have ) 51

st inlucace %€
S o shear




“real beam™ when subjected to the

in Fig. 9-29b. The comesponding
shown in Fig 9-29d. It is suggesied
cases, From Fig. 9-29d, notc that

For point 0, Fig. 9-24e:

45
Wrml =M= b+ pe=D
For point £/, Fig. 9-29f
Sip=t 4 =M= 0 Sm -

The angular displacement ay,p at £ of the “real beam” in Fig, 9-29¢ is
defined by the reaction at [’ on the conjuguse beam. This factor, D] = 48/E1,
s Gl it the: above values 0 give the ondinates of the inluence line,

x My
A o

b 3656
B o

E —0
v o

Jase

pil

e

snyative infueece lise
o momeat 3.1
]




¢ the reactions #t the supports, then draw o

9-10. Detcrmine ihe reactions suppor.
tiagram. s sume the support ok s a rollee £1 s constast,  moment diagram, Assume the w';: muu::d::imc!

are rollers. £ is constant

n.h‘ﬁnqwnlswnhﬂ_‘ in.. determiie the may gy
. Take £ = 29010%) ksi. 4 = vy g1

0k

— 100k 10

25 -

Prob, 410

-1, The compound beam segments meet in the cesler using &
W3, Defermine the reoctions ot the supports, then draw (he U coniact froller). Determine the reactions ot the fived
momca disgraen, The moment of incrtia for ech segment is shown /PP 4 A0 B whe the load P is spplicd. £ is constnt.
2 82 lgure. Assume A snd C e rollers and A is 3 pin Take
=200 GPa.

(pe the reactions it the suppons. Assume (o
my of inertia for cach segment is show,
-y

a0k

kN WEN

Toa = 120000 man®

-
]

Yoo I motdm e

Prob. 8-11
Prob. 9-%

*9-12. Dielermine the reactions o the beam. The wall 3t A moves
e value of @ 30 that the maximem positive  upuand 30 mim. Assume the upport 21 A i 2 pin and & and © are
 same magnitude s the maximum negasve  rollers Take £ = 200 GPa. /= S107) ma*



s oY THE FORCE METHOD 2
msﬁiﬂ‘m PROBLEMS ]
y e e e in ach mermbes of the russ T Determine the foree in member BE. AE iy conetant,
B L D ach member s indicated in the figure R e
the members are pin conacsted at their ends. £ = 29010

*$-10. Detcrmine the force in member HB of the e AR
constant, |

9=21. Dewrmine the force in member HG of the s, A is
constant

Prabs. 9-20/21

9-22. Detcrmine the force in member HG AE is constant.

Prob. 9-18

foree in member AD. AE is constnt

819, Deiermine the force in member DF of the muse. AE is
coastant.
the force in member BC, AF is consast

B-23. Determine the reactioes at the sugports if the support st €
s forced wpwards 0013 in. Take £ = 2N 10°) ks, / = 600 in*

— 08—



ryCTURES BY THE PORCE METHOD
ihe resctions ot the SPPITS. then dry
for each member. Assume A and C are gupe
_]lmmai!mmt .

4938 Deiermine the reactions st the suppons, then draw the
et diagram for each member. £1 is canstant

Detenmine the reactions sl the fixed support A and rocker
(. Elis constant.

compression in the beam.
E-zmn‘muﬁnmnmummr..-m‘z

5-52 e masimum moment
e n e beam in

A-M. The canbilevered beam AR is additionally supported ssing 933, The structiral assembly supports the losding thown. Draw
ulic rods. Determine the force in each of these mds. Neglect axial  the moment diagrams for cach of the bearms. Take F = 100(10F) mm®
s and shear in the beam. For the beam. /, = 200(10°) mm’,  for the beams aad A = 200 m for ihe tie rod. All members ae
=i tie rod, A = 100 may’, Toke £ = 300 GPe. made of sieel for which £ = 300 GPa.




ATE STRUCTURES Y THE FORCE METHOD

37, Draw the moment GagEna o the beam, Ay,
54 m M"“kﬁ,:gasﬂlevllm.ﬂncw‘:u:a:
: s e fhree-moment equuation.

. D the iaflucnce line for the shea i €. Plot purmerical
s exery 5 1. Assume the support aL B is a rolle. EJ is comstan,

Prob. §-40

gdl, Druw the influence line for the moment ot . Plot
americal values every § L T is constane

9, Deuw the influence line for the vertical reactivn s €. Ploy
mamerical valucs exery & IL £1 is comstant

I

w0R————— o
Pruls. 9-41/42

#4% Drw the influence linc for the reaction st €. Pl
mmerical values every § fL £1 is constant

E fi————— 151

Proh. 9-43

Skeich the influesce line for (a) the vertical reaction st
Sheir it 5, and (<) ihe moment at £, In each case, indicie
of the beam where a wniform distributed lood theald
dl 16 cause & maximum positive value of these functions.

at the supports, then drw
ris 4 A, B, and € are o0
Use the thrce-moment cguai®

ST
.

PRomLENS 4000
=48, Sketch the inflcnce line for ihe sbear at D wing the
Maller- Bresta peinciple. Determine the miximm positive sbeas

o D due 10 3 uniform load of 5 EN/m Assume 4 is & pinand 8
and € act 3 rofler supponts. £1 is constant

| —— Sm g

Prob. 9-43

946, Sketch the influeace line for the moment 3t B 1f a uniform
Bive load of 6 KN/m is placed om the heam. descrmine the ma i
positive moment r B. £/ is constnt.

847 Use the Muller-Breslan principle 0 shesch the general
shape of the influence line for (a) the momeat st A and (b) the
shear al B.

A

Prob 847

945, Use the Mller-Breshau principle fo skeich the general
shape of the influence line far (a) the moment at A aad (b ibe
shear at 8.
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Dlsplacement Method of Analysis:
Slope-Deflection Equations

TM members of this conaei
ilding are all fived connected, 5o
the framework is statically indetenmi-
mate. It can be analyzcd using the
method of slope deflection.

n this chapter we will briefly outline
uiing the displacement method of analysi
presenied, we will develop the general egy
use them te analyze statically indeter

bearns and

10.1 Displacement Method of Analysis: General Procedures

All strecrures must satisfy e acement, and <o
of displacements requirements in arder

Sec 0| that there are two

fety, 11 was state

sirements when

redusdant forces. and then s
This is dine by expressing the
the kad-displacement relations. The solut
e redundant reactions, and then the eq
kfemine the remaining reactions on the s
The displocemens method works the opy )
Iying equilibrium cquations for the structure. To
Splacements are writien in ter g

e nesultant equations yields

Pcedure will be gencralined 1o produce the slope-de

1. the moment-distrbution method will be deve
“‘“m the caleulation of the displ
& senies of convery

g comestions that 2




ECTION EQUATIONS

i Chapters 14, 15, and 16, we will llusirate o,
e momeats FUSHE Bty making it suiable for uie g

apply this medhod wsing
w:di hat follows we will show Bow 10 Sdentify the unkpy,
A e and we will develop some of the impuryy
relasions for beam and frame members, The results will 3,
o ection and 3 Iaer chapiers as the basis for applying s,
of analysis.

. When a struchire s loaded. specificd poins
displacements. These displacements are refermed 1
dom fox the sructure. and in the displacement mehog
i 10 specify these degrees of freedom since they
the methed is applied.
of degrees of freedom we can imagine the «

ich are usual

d by the supports, or due to assumptions baa!
For example, if the structuse is 3 beam and
oonsidered, then there can be 0o lnes
Beam since this displacement is caused by

and €, and 50 hias four degress
displacernents fy, B, o, and B¢
frame in Fig. 10-Ic. Again, 1f ¥¢
1S, an arbitrary loading P sppl
and these nodes can be disple!

therefore has three degrees

ined degrees of e
g a displacement 1<

the problem, based 00 ™
vior of the structure. Fo°
he deformation o "
the loadings wibir ™

10.2 Slope-Deflection Equations

——
s indicated previously, the method of consistent displacements snudied in
Cagter 9 is called a force method of analysis, because it requires writing
ions that relate the unknown forces or moments in & structure. Unfortu-
nskely, its use is limited to structures which are nor highly indeterminate. This
s heeause much work is required (0 sei up the compatibility equations, and
furthermore each equation writien involves all the smkneuns, making it diffi-
calt 10 solve the resulting set of equations unless & computer is available. By
comparisan, the slope-deflection methad is not as involsed. As we shall see,
{t requires less work bth 10 write the necessary equations for the solution of
o prublem and to solve these equations for the unknown displacements and
sociated internal londs. Also, the method can be easily programmed on
compuier and Used to analyze a wide range of indeterminate stnuctures.

‘The slope-deflection method was originally developed by Heinrich Man-
detla end Otto Mohr for the parpose of studying secandiry stresses in trusses.
Later,in 1915, G. A. Maney developed  refined version of this technigue and
applied it to the analysis of indeterminate beams and framed structures.

General Case. The slope-deflection method is so named since it relates
the wrknown slopes and deflections 1o the applied losd on a structure. Tn
ouder 10 develop the general form of the slope-deflection equations, we wi

consider the typical span AR of a continuous beam as shown in Fig. 10-
Which is subjected 1o the arbitrary loading and has a constant £1, We wish to
relate the beam’s intemal end moments Mg 8nd M, in terms of its three
degrees of freedom, namely, its angular displacements 8, and fy. and linear
displacement A which could be caused by a relative semlement between the
supparts, Since we will be developing o formula, momenis and angular dis-
plicements will be considered positive when they act clochvise on the span,
a8 shown in Fig 10-2. Furthermore, the linear displacement 3 is considered
pasiite & shawn, since this displacement causes the cond of the span and the

coed angle 1o rotate clackuise.

 The slope-deflection equations can be obtaincd by using the principle of
Superposition by considering separately the moments developed ar cach
"Jg"“( due 1o each of the displacements, 8, 8y, and A, and then the loads.

Elis somstant
ponitive siga conveation

Fig. 10-2




Relative Lincar Displacement, &. 11 the far node B of the member is dis-

plced reltive to 4, 5o tht the cond of the member roates clockwise (posiive

Giplacement) and yel both ends do not rotse, then equil but opposite

gecl and shear reactions are developed in the member, Fig. 10-5a. As

e, the moment M can be relited 10 the displacerent & using the conjugate-

e thed. In this case, the conjugate beam, Fig. 10-5b, is free ot both

the real beam (member) is fixed supporied. However, due 1o the

4 of the real beam at B, the moment 2t the cad B of the conjugate

| %ﬁun magnitude of & & indicaled * Summing moments about
(h s

- [%z(IJGL‘}] - H g:u(;r.}] a0

(A, 8. Cosider node A of the member shown in
its far-end pode B s held fixed. To determine the
this displacement, we

conjugitc bear is howwn in i
ts downward on the beam, since fl, is clockwic
*in Fig. 10-3a is to be zero at A and B, and
‘the momtents st each end A’ and B’ of the

This yields

[y

(10-5)

moment is negative since for equilibrium it acts counterclock-
member.

= [

s A e i

resl beam

(10-)) )

Fig. 0-§

4
Ui thagrams shawa en i conjugsis beam were determined by the meod of

8 wknply suppomed beam, as explained n Sec. 4%




Moments. In the previous cises we have considered rels
in anid the pecessary moments M, and iy,

| B, respectively. In general, however, the linear o
nﬁt?.iﬂls are caused by loadings acting on the span
moments acting A its nodes. In order to desclop the
, we must transform these span loadings into cqur-
“al the nodes and then use the load-displacement
(18 done simply by finding the reaction moaent
P the nodes. For example, consider the fivel-
” 10-6a, which is subjected 10 a concentrusd
gate beam for this case is shown in Fig. 1065

g problems, fixed-end moneits
are tabulated on the inside bxk

SEC 102 SLOPE-DEFLECTION BQUAL

on Equation, IF the end moments due 10 each displ
. 10-1 through 10-5) and the loading (Eq. 10-6) are added n:;:"“::
o uat maments at the ends can be writen s .

M= E‘:i]i”‘ + 0, - \[:}] + (FEM)y

{10=T)

My = E[I}[zs.. + 0,33 + e,

Since these two equations are similar, the result can be expressed as a single
quation. Referring to one end of the span s the near end (V) and the other end
5 the far end (F ). and letting the member stiffuess be represened as k = J/L,
and the span’s cord rotatian as & (psi) = A/L, we can write

(10-8)

where
My = intemal moment in the near end of the span; this moment is
pusitive clackuise when acting on the span

f,lx modulus of elasticity of material and span stiffness & =

ly, 0 = near- and far-end slopes or angular displacements of the span at
the supports; the angles arc measured in rodiars and are positive
- clockwise

= gpan rotation of its cord due (o a linear displacement that is,
Q‘.’ k= AJL: this angle is measured in radions and is pasitive clockle

-end moment at the near-end support; the moment is pasiive
clockuise when acting on the span. 10 the table on the inside
cover for various loading conditions

vation Eq. 10-8 is both a compatibility and load-displacement
found by considering only the effects of bending and neglecting
deformations. It is referred 10 s the general slope-deflection
hen used for the solution of problems. this equation is applicd
mcmber span (AB); that is, application is from A to B and from
0 AB in Fig 10-2.




o)
Fig. 104

Fin:Supporied End Span. Occisionallyan end sgan of s bea
by & pin or roller ot #s feor emd, Fig. 10-8a. When this ocgyn,
i mummﬂrwpﬁ st be zero; and provided the anpulas s
* placement , at this support does mot have to be determined, we (‘fn m...l.-\
: Hian equation so that it has 1o be applied wnly once 1,
W ser than twice. To do this we will apply Eq. 10-8 or Eqs. 10-7
.wqﬂwkimillﬁ 108 This sesults in the following two cq
Aty = 26428, + 0, ~ ) + (FEM),
0= 26126, + 6, — 34) + 0
B equal ko zero since the fur end is pinncd, Fig. 10-8 .
cam be obtained, for example, using the table in the
ok the inside back cover of this baok. Multiplying the fine
lﬂﬁ:\; the sccond equation from it elimincics b

%

(10-9)

{10-10

the amalysis since the pencrsd

i applications for this span and thercfore
By for #,) at the end seppor

on equations, consider the
four degroes of freedom. Here
o spans, e, from A 10 4, 5104
I would inyohve the
‘momens ot A and 0 are

s Q,Aslmsejwm-\w*'
apply Eq. 10-§ fron £

only: the unknown roisic

10.3 Analysis of Beams

SEC IS ANALYSIS OF siavs A1)

e
rl'ﬂ.l:id“" for Analysis

of Freedom. Lubel all the suppots and joints {nodes) in onler
o identify the spans of the beam or frame between the nodes. By drawing
the deflected shape of the structure, it will he possibie to idenify the num.
b of egrecs of frecdom. Here cach noik cim possibly have an angular

and a lincar di t at the nodes is main-
{ad pworided e members thit are rmd connected 1o a node underga
he sume displacements as the noxle. If these displacements are unknown,
and in general they will be, then for convenience assume they act in the
positive directlon so as 10 cause clockuwise rotation of a member or joint,

Fg. 10-2,

ion Equations. The slopefeflection equations relate the
tinknown moments applicd to the nodes o the displacements of the nodes
for iy span of the structure. If a load exists on the span, compute the FEMs.
Using the table given on the inside back cover. Also, if a node has a linear
displacement, A compute & = A/L for the adjacent spans. Apply Eq. 10-8
10 ésch end of the span, therehy generating feeo shope-teflection eguations
‘ich span. However, if a span at the end of a contineous beam or frame
supported, apply Eq, 10-10 oaly to the restrained end, therehy gen-
ating oae slope-deflection equation for the span

| Equilibrium Equations.  Write an cquiliorium equition for esch unksown

e of freedom for the structure. Each of these equations should be

K in terms of unknown internal moments as specified by the slope-

Ection equations. For beams and frames write the moment equation

Equilibyium st each support, and for frames also wrile joint moment

@Hm:aqmb‘mm If the frame sidesways or deflects horizontally,
Shears shoulid be related 1o the moments al the ends of the column.
s discussed in Sec. 10,5

i i‘umu the slope-deflection equations into the exuilibrium equations
for the unknown joint displacements. These results are. then
nta the slope-deflection equations (0 determine the internal
al the ends of cach member. If any of the results ure negative,
eoumnterclockwise rolation; whereas positive: moments and
Kints ane applicd clockisise.




)

acigms.  Two spans mast be considered in this prop.
0 span having the far end pinned or roller supposied,
s 10 the solution. Using the formulas. for the FEMs
tmangslar loading given on the inside back cover. we hye
'
W-—L;: = -% = —72%m
w:

-%’1=lﬂ.8mm

1 icts counterclockwise on the heam
[since there is mo load on span A8,
awns, the elastic curve for the bean is
there are four unknown intermal

15 unknown. Since A and € are fiscd

o j,-nmmL P—

Equilibrinm Equations. The above four equations cantain five unkaowns.
The necessary fifth equation comes from the condition of moment equilib-
s at support B. The free-body disgram of  segment of the beam 3t &
is shown in Fig. 10-10¢. Here My, and My, are assumed 10 sct in the
pasilive direction 1o be consistent with the slope-deflection equstions.® The
beam shears contribute negligible moment about B since the segment is of
giffererial length. Ths,

+EM; = 0; My + My =0 18)
1o solve. substitute Egs. (2) and (3) into Eq. (5), which yields
617
==
BT

Resubstituting this value into Egs. (11-(4) yields
My = 154 kN-m
Mg, = 109 kN-m
My = ~309kN-m
Mgy = 1286 kNm
“The megative value for My indicates that this moment acts counteschock-
Wise on the beam, not clockwise as shown in Fig. 10-106,
Using thesc results, the shears st the end spans are determined from the
‘equilibrium cquations, Fig. 10-10d. The free-body disgram of the entire

| beam und the shear and moment diagrams are shown in Fig. 10-10e

13488 .m 13638
N=@mﬂ
DS

B,y =03
==

VIkN)

Ci kN lgll Ir.j- 1363AN ™

309 kN ml, o 123kN 0

h

5 o the beaem scgment. bui—by (b priscipie af stiom, egual bet cppasile re-
cielihmise on the sepgeet

)]
i

435N
FE
s b ()
533 1363
o
= o
-is
S




T spans st be considered in this

10 span AB, We can use Eq. 10-10 for spy,
er. Using the farmulas for the FEMs taby.
‘we have

1 S
13 2X4Y = 96 k-1

ve since they act counterclock-
Als0, since the supports do not
8 fir span AB and realizing that

Equilibrivm  Equations. The above three equations cantain four
qaknowns, The necessary fourth equation comes from the conditions of
equilibium &t the support B. The free-body diagram is shown in Fig
10-116. We have

LSk, = U; Myt My =0 0
'%hnlw. substitute Egs. (2) and (3) into Eq. (4, which yiclds
1440
L g

Since By is negative (counterclockwise) the elastic curve for the beam has
wmﬂlr dravn in Fig. 10-11a. Substituting 6y inte Eqs. (1)-(3)
St

My = = 080K 1L

 Using these data for the moments, the shear reactions at the ends of the
beam spanss have been determined in Fig. 10-11c The shear and moment
- dingrams are plotted in Fig. 10-11d

“emtmlc.on

2EA

e S
anan




¢ ANALYSIS: SUOPE-DEFLECTION BQUATIONS

M Wndmammunsm:m Fig. 10| p”m
"wmmmmc mcm.- iy snu".n m'

b e J
0
Fig. 10-12
 Equations. Only one span (AB) must be considered in

cethe moment Mge: due 0 the overhang can be calculated
u-msmlmdiuan span AB, the FEMs are zero A«

L

4m
N equation. Eg. 10-8, to span AB, wilh

4

28, +0 = 300 +0 2
diagram of the heam at suppart

" petermine the iternal moments at the supports of the beam shown in Fig.
10-13a msuwmllt’.‘n displaced {settles) 0.1 fi. Take £ = 29¢10%) kui,
1= 1500 8",

Fig, 10-13

SOLUTION

ion Equations. Three spans must be considered in this
problem. Equation 10-8 applies since the eod supparts 4 and D are fred.
Also, only span AB has FEMs.

(FEM),; = = |11u SNUY = ~T20kfi

1 ¢
(FEM), = “ = 5 (L5249 = T20kR

s shown in Fig. 10-13b, the displacement (or seltlement) of the support

Causes g 1o be positive, since the cord for span BC rofates clockwise,
1 dhe, (0 be negative, since the cord for span CD rotates counterclock-
wise. Hence,

0Lt O
T = = — (00667 rud
o= oon 0005l = g = 000K

| eXpressing the units for the siiffness in feet, we have
1500

= = 0003014 f° Ky = 1T = 0003617 0

that By = G, = 0 since A and D are fined supports, and apglying
eflection Eq. 10-8 twice 1o each span, we have




N2 HD0030I 2 + 8, — 3] - 72

o
12FHO003014)[28, + 0 — HOI + 72

— DN OBEITEE, + B — 30.005)] <
ﬁﬂ,_ﬁ,_ﬂ':*jnmus(—%ll 3
= 2I0NI2F 00361 TH2E, + B, = 30005)] + 0

(5)

1200080, + 0 ~ (- 0.00667)] + 0
0+ 3056
KO UHE20) + B, = H—000667)] + 0
-+ 8056 6)

equations contain cight unknowss.

ym equations for the suppons at & and

kwise rotation of the L
it Egs. (13-16) yiekd

——
k yme will not sidesway. or be displaced 10 the lefi or nghs, provided it is.

SEC 104 ANALYSIS D0F FRAMES: NO SIDESWAY

104 Analysis of Frames: No Sidesway E .

restrained. Examples are shown in Fig. 10-14. Alw, o sidesway

Bl ecur in an unresieained frame provided it is symmetric with respect

both looding and geometry, as shown in Fig. 10-15. For both cases the term

v in the sope-Jeflocton ecpations 1 equal o sero. since hending does oon
canse the joints 1o have 3 linear displaceme

" The following examples illustrate application of the slope-deflestion equa-

o using the procedure for analysis cutlined in Sec. 10.3 for these iypes of

frames.

Fig. 10-14

(T g O




¢ 5L OPEDEFLECTION BQUATIONS

——

mmnm:ﬂmmm shown in Fig. 10, 16,

Egquations, Three spuns must be considered in gh,
" and CD. Since the spans are fixed supported w A and 1
the solution.

e om the inside back cover, the FEMs for BC ure
Sul?
e

B e SRAEP
- FRMg % g~ WKNm
= a0 by = iy = hep = 0, since no sidesway will
we hine

2EK(H, + #, — 3y} + (FEM),

m

SEC. 104 ANALYSES OF FRAMES: NO SIDESWAY.

=
Equilibrivm Egquaions. The preceding sin equations. coniain: cight
nknowns. The remaining two equilibrium equations come from moment
equilibrium at joints B and C. Fig. 10-164. We have
My + My =0 @
Moy + Mew =0
Z @)
To solve these gight equations, substinute Egs. (2) and (3) into Eq. (7)
and sobstitute Egs. (4) and (5) into Eq. (8). We get
0:X3AENG, + 0.25ElG = 80
OKIIEI, + D2SEIf, = 80
Solving simultaneously yields
137
El
which conforrs with the way the frame deflects as shown in Fig. 10-16a.
Substituting into Eqs. (1)-16), we get
My = 29K m
My, = 45TKNm
Mye = —45.7kN-m
Moy =457 kN-m
Mo = —45.7kN-m
My = —229KkN-m
Using these results, the reactions ot the ends of each member can be
" from the equations of equilibrium, and the moment diagram for

 the frame can be drawn, Fig. 10-16¢.
B3 RNm

L

FERFEE




u‘l’hmndl—ﬁnhmh member i given in the figu

moments at cach joint of the frame shown iy 15,

= 0002612 fr

_ 65
b = Ty

noting that & =

SEC D4 ANALYSIS OF FRAMES: NO SIDESWAY 403

M, = 2ER(20, + 0, — 3y} + (FEM),
Mys = 202901001 2)7100.001286)[200) +
= 1074076,

My, = 21 48156,
My = 22900 ) 127000241 1)(26, + 8. — 3]
My = 4027786, +20 13896, — 12

Mgy = 2029010} 12FH0.002411)[26,. + &, — 3O)] + 12
&1 e + B, I

Mgy = 2013676, + 40 273,36, + 12

My = 3Ek(H, — §) + (FEM),

fep = 3210 X12F](0.000643){8 — 0] + 0
My = 8055.68,
Meg = 3[29010°)125)(0.002612) 8. — 0] — 5
Mg = 3272578, — 54

Equations of Equilibrium.

lii—m We have
My, + Mg =10
en + Mg + Mep = a

In order to solve, substitute Egs. (2) and (3) into Eqj. (7), and Egs. (4)-{6)

inio Eq. (8). This gives
61 759,34, + 20 13894, = 12
2013674, + 81 05908, = 42

Solving these equations simultaneously yields

. By = 2758010} rad

These values, being clockwise, tend o distant the frame as shown in Fig.
10-17a. Substituting these valucs into Eqs. (1~(6) and solving, we get

My = 0296 kAt

Mep = 412K
My = —313 kR

= HO) + 0 L’
M,
My, = 2(29010") 12F)0.001286)20, + 0 — 30)] + 0

12

These six equations contain eight unknowns.
Two moment equilibrium equations can be written for juins & and €, Fig.

= 5113010 rad

Mgy Moy

)

)]
8

Ans.

Ans.
Ans.
Ans.
Ans.
Ans,




ar be displaced to the side, when it of the loagin .,
Py ic. To illstrate this effect, consider the frame .5
in Fig, 10-18. Here the oading P gauses wiequal moments M and vy
the ot B ) G, respectively. Mac lends to displace joint B 10 the rig,
bereas Mg tends 1o displace joint € 10 the left. Since Mac is larger s,
ﬂ',hldlﬂﬂlimﬂ of both joints B and € 1o the righ; ,,
b in the figure.* When applying the slope-deflection equation 1 .,
Jum of this frame, we must fhercfore consider the column rotation § (s,
W= A/L) as pknown if the equation. As a result an extra cquilibnum cq..,
tion must be incladed for the solution. In the previous sections it was dhowy
that unknown wigular displacements  were related by joint moment o
rium eguarions. In 3 similar manner, when unknown joint linear displacement.
A (or span roeations §) eceur, we must write force equilibrium eguations i
1o obiain the complete solution. The unknowns in these equations, hia
X ibe e ing at the ends of the columss,
-deflection equations inyolve these moments. The technique for
for frames with sidesway is best illustrated by examples
members duc i thear and avial force is negieced

A frame will sidesway.

B

=W,

L Since the ends A and D are fixed, Eq 105

trame. oceurs here since bath the
 frame are nonsymmetric. Here the losd
oo FEMs act at the joints. As shown
assumed 1 be displaced an equa!
od i = A/18. Both terms ae po
d €D “rotme” clockwise. Relating 1.
pplying Eq 10-8 io the frame, we have

|+ 0= ENO16878, - 07561 o
0= EROINIS, — 0759, 2)

SEC 105 ANALYSIS OF FRAMES. SIDESWAY |

of Equilibrium. The six equations contain nine unknowns,
Two moment equilibrium equations for joints B and €, Fig. 1019, can
My, + My

e
be written, namely. P
m Moy
Mo + M, =0 (®) -
o Mo,
>

Since a horizontal displacement A occurs, we will consider summing
farces on the enrire frame in the x direction. Th 1ds

HIF =0 W0-Y,-V,=0
The horizontal reactions or column shears V,, and ¥y, can be related to the

iniemal moments by considening the free-body diagram of each columa My, M.
separaicly, Fig. 10— 19c. We have < E

Y= T

Mo+ Moy 1
M, =0; Vpm — X
13 v,
; L
() ©

do o Mo M o+ Moo _

In order to solve, substitute Eqs. (2) and (3) imto Eq. (7), Eqs. (4) and
{5} into Eq. (8), and Eqgs. (1), (2), {5), (6) into Eq. (). This yields
068, + 01336, — 0.75¢pc =0
01338, + 0.4896, — 0333y, =0

480
056, + 0.2226, — 19444 =~

Solving simultancously, we have
Elf, = 43881  Elf, = 13618 Elfye = 37526

| Finally, using these results and solving Eqs. (1)-{(6) yiekds
ke o My = — 08k

My, = — 135 kA1
My = 135KA
My = M Kft

FEERHE

M, = —MBkf
My = =110KR




sL0piE DEFLECTION EQUATIDNS

.,

s a1 each joint of the frame shown in Fig. 0- 3¢,
A and [ are fixed and joint € is assumed pin connecye
cach member.

Bquatians.  Wewillapply Eq. 10-8 to member AR sup,
ot both ends. Equation 10~10 can be applied from g
since the pin at € supports Zero moment. A showy
gram, Fig. 10200, there is an unknown linear dic.
frame and unknown angular displacement 1 a1 joing
i members AB and CD ratate clockwise, & = 4, -

 that fly = B =0 and that there are no FEMs fie

=gt 00 e,
I .
. !E‘_[%)E'!_.+n—3m+u

M =0 (5)

in the horizontal direction.

(6
mn, Fig. 10-20d, we have

SHE 105 ANALYSIS OF FRAMES: SIDESWAY.

My = —1T1KN-m My = —114KN-m

My = 114 KN'm M, = ~114kN'-m

Using these results, the end reactions on each member can be determined
*from the equations of equilibrium, Fig. 10-20e. The moment diagram for
the frame: 15 shown in Fig. 10-207

381N 181EN 181N
. 236kN 5
kN 28641 286N
A KNm 14k m
181N
114 kN
s 286N
4 3BLRN
| 286N
| 114kNm
i 181N
H 1 kNa
s fe)

—
Thus, from Eq. 6, -
Mg * My | Moc _
IOFF =4 il (] v
Substituting the slope-deflection equations into Egs. (5) and (7) and
smplifying yields v
0
v
Thus, s
2 3
0 3
21E 2E A8
Substifuting these values into Egs. (1)-(4), we have b
w
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Explain haw the moments in each joinl of the two-story frame shown i
Fi 10-31a e deermined. £1 5 i o ”:.j Moy ("“
ﬁ”
e el e Mo
Slope-Deflecion Equation. - Since he supports 81 A and F are finey, i Vo
Mﬁ..unupun{mefﬂm No FEMs have to he M My
applied loading acts at the joints. Here the loading S o
ﬁﬂnmﬂ,.mfandﬂalamwm.\, i & )u,., M“(l{][
members AB und FE undergo ratations of iy = &, /5 and e — BT o
My =
o )
Jr.,u::(?)wu B3]+ 0 o ’ L
r)I‘-IM 0-3g)+0
i  Bquilibrium Equations. Moment equilibrim of joisis 8, €, D, and E, A i
; 1021, requircs N ™
May + My + My =0 13) o
Moy + Moy =0 4
ae Mpe + Mpe =0 s
Mye + Mgy + Mg, =0 (16)
Asin the preceding examples, the shear at the base of all the columns for
story must balance the applied horizontal loads, Fig. 10-21c. This
40 Vo~ Vep =0

My + M, Mg +

40 + 'V:——Sf+ =0 m

40+ 80 = Vi — Vi = 0

s, M.,. + My ‘fu;_".’ﬂ =0 (18}

requires substituting Eqs. (1)-(12) into Eqs. (131-(18), W
equations having six unknowss, dy, e, . b "v""“r'
can then be solved simultancously. The results are fesul
{1)={12}, which yields the momsats at the joints.




o ANALYSIS: SLOPEDEFLECTION EQUATIONS

j’kmﬂnhnﬂxmm

m-

Detcrrmine the mameats at each joint of the frame shown in Fig, 10-22,

 Equations.  Equaion 10-8 applies to each of the thre

'Mmul:u,,.m;,

(elockwise) and

w-3

€Al can be related. For exam
‘il_tdmuequnﬂnn; we have

SEC. 105 ANALYSIS OF FRAMES. SIJESWAY

’
u,,-:z(—"[nm +0,- Wy +0 o

Lu]l’a +0- 3¢+ 2
.<=z£'(;zjlzs.+o,—1r AT - 34 @
Moy = 26( )20, + 8, — -tz 4 20 @
Moy = 2631120+~ 3043361 +0 )
My = z:( ][um B - W04 + 0 6)

These six equations contsin nine unknowns.
Equations of Equilibrium. - Moment equilibrium a joints B and C yields
Mgy + My =0 (]
M+ Moy =10 i#)

The necessary third equilibrium equation can be oblaned by summing
‘moments about point O on the entire frame, Fig. 10-224. This eliminates
the unknown normal forces N, and Ny, and therefore

[+EM, = 0

s
[, - ( ” )m; =
5 —nm,,—sm,;zmn‘n—lm“

Subiuting Eqe. (2) and (3) inio Eq. (7), Eqs. (4) and (5) into Eg. (). aod
Egs. (1), 21, (5), and (6) into Eq. (9) yields

b £ 8er) a0 7 - 246) =0

14 =0 &)

07338, + 0.1676, — 03924, =
01678, + 0.5336; + 00784y, = —

— 18408, — 05120, + 38800, = o
equations simultaneously yields

El, = 8767 Elg. = —813
these values into Egs. (1)-(6), we have

DIKf My =563kft Mg = —2IER Ans.
Sseaks M, =253kh M= -170kR Am

Elg, = 6783

;rv




? s Al Cobendom: #19=4 Deiermine the momcals ut B and C, then dran, g, 7. Determine the momenis at A, B, and €, then druw the 109, Dese
iyt ',""WWA' B, anid € are rollers 0d D is pinpey et Giagram for the beam. Assume the support at A is fised.  disgram for :(r...::k.m.,f"zp:,: .n:",: .:m.‘
gt e kit s consta. and  are pinncd and & i a fixed joint. £1 is comtunt.

G ] Prob. 107

: AN me the su) A e

; e Edﬁ;-:. beam. Pports a1 A ad € are pinned
W

ISIN  20kN
Prob. 10-9

*1-8 Determine the moments ai 8, C, and D, then draw e
oment diagram for ABDE. Assume A is pinned. D is 3 roller, and
i flsed. E1 is constant

10-10. Determine the moments at 5 sad D, then drw the
morment diagram. Assume A and € are pinned and B and [ e
inemal maments at the supports A. B a0 ) canicoRLEUEEE

nt disgram. Assume A is pinned. and B ar

Prob 1018




VA[S: SLOREDEFLECTION BQUATIONS

e e igpars .4 jm.mg-:ﬂ[lo’lk-

Proh 10-13

13, Dermioe the Boskzn0tal and vercal compr,
e ot 1813 ST Gl C e pins a1y 5,

10-14. Determsine the inemal moments at A and A e
the mement digram, Assume B and € e rollers. £1 1 conian

10 kN#m

<16, Defeainic the mamests a the ends of cach mernbr of  10=18.  Dutenmine the moments J—
m,,wm.lemdmmlmrwnmm the battered-column frame. m:—::u”:p-:--n:
gmnﬂﬂ““l cameected. £1 is constant

4 |
PIENL]]R—:—I}I—‘

Prob. 10-1%

Prob. 10-16

10-19.  The frame is made from pipe that is fixed consested. I
it supports the loading shew, deteming the momenis developed
M1, The contiaucis beam supposts the three conceatrated 3 cach of ihe joints and wpports. £1is comstant
%ﬂ. e the maximum moment in the beam and then draw.
the moment diagram. £ s constant.



0N EQUATIONS
W ouw (RS ACEMINT METHOD OF ARALYSIS SLOPE-DERLECTH
408, D e momens 2 ach oot and St pRt D
e e the o iagram, /i comstanl

! A B, C, and [ thy
1822 Desermine ihe moments at en deuw
dingram, The menbers s fred Somnecied ut he .,

_“.,m, Ef s comstant

5 =

Prob. 10-22

1828, The side of the frame 1 Sebjectad 1o the hydre
loading shon. Deterrmine the moments 2t euch joint and gt
El is constant.

2. M-mnaﬂmnmh
e fised comnections at § and C and fired suppons at A and
B consa. &

peomcy monLes AT

e mioe e morsen st cich Jin o e gble e 10-37.For e bt ree, dermio e et
roof Joad is transmitied t0 each of the parlins ver simply  a each joint and at the fived supports X
e O sections of the wof decking. Assume the supports o A an che fixed supports A and D. EF i consmm
SITE e pins and the jonts ar fied connected. £ i constant aum
J0-36.  Solve Prob, 10-24 assuming the supports st 4 and E are
Lisnd—a0a—tasnd
Prob 16-27
PROJECT FROBLEM

M-I The roof is supponed by joists that rest on fwo ginders
Each joist cus be considered simply supporiod. iwsd the front g
can be comsidered amached 10 the three columns by
rollers it 8 and C. Assume the mof will be made
cimder conrete, and each joist has a weight of
o code the roaf will be subjected 1o 3 snow
joists have a length of 25 ft. Draw the shear and
fur the girder. Assume the supporing ol

Probs. 10-24/25

oment disgrams.

rigid.

10-26,  Determine the moment ot each joint of the baticred
colimn frame. The supports a1 A and D are pins. EJ 1 constant

Projoct Prob, 10-1F




Displacement Method of
Analysis: Moment Distribution

E— -

T. inders an thes building frame
arc sutcally indesermizase. The force
‘enalysis can e done using the methed
af moment distibution

The moment-distribution method is 4 di
sy Io apply once certain elastic

chapter we will first state the impe
distribution and then spply the method (o
Indeterminate beams and frames. Applica
i the Tast part of the chapte

s imvolving &

0 multistory frames is discussed

les and Definitions

11.1 General Princ

nd frames usie
n 1930, At the tim

The mcthod of analyzing be
developed by Hardy C

lished it anracted imme
the most motable

rotated (o their fir

of calculation is both repe
techaiques of ¢
Mt be presented




SEC. 111 GENERAL PRINCIPLES ANG DEFINTIONS.

{ Factor. 1f several members are fixed connected to a joint
lla=u far ends is fixed, then by the principle of saperposition, the
Jfiactor at the joint is the sum of the member siffness factors at
iuua Ky = EK. For example. consider the frame joint A in Fig,
numerical valie of each member siffness factor s determined
in the figure. Using these valucs, the total siffness

the amount of moment needed to rotate the joiat through an angle

tion Factor (DF). If a moment M is applied 10 a fixed-
[joint, the connecting members will cach supply a porsion of the
mement necessary (o satisfy moment equilibrium at the joint. That
the total ing moment supplied by the member is called the P
facior (DF). To obtain its value, imaginc the joint i fied
members. If an applicd moment M causes the jaint (0 rotate
3, then each member f rotatcs by this same amaunt 1f the stiffness.
i

the same sign convention s thy
13 mcments that act on
5 counterelockuise moments ur:

M= 2000 N

. Since. eq-un-hnum requires M = M, + -+ M+ -+ M, =

= §EK, then the distribution factor for the

FEM = PL/8 = 500(10)/% g L)

on the beam and spplying ver
N

= L
T T
F u-my« -
the common term #, it is seen that the distribution factor for a
qmllo!ﬂ:uﬁuus!nrmdlkmmk’dmd&l by the total m'«n
far the joint: that is, in gencral,
umﬂ m

)

(11-2)
the distribution fuctors for members AB_AC. usd AD at joini

DF,, = 4000/10000 = 04
DF, = S000/10 006 = 0:5
= 1000/10000 =
1 H-mmeu st joint A, Fig. 11-48, the equilibrium
the members on the joint. Fig. 11-4¢, o

My = 0.402000) = 800 N-m

My = D.5[2000) = 1000 N-m

My = 0102000} = 200Nm




- Moment Distribution for Beams

SEC. 112 MOMENT DISTRIBUTION FOR BEAMS. 443

istribution is based on the peinciple of successively locking and
{he joints of & structure in osder 0 allow the moments at the joines o
d and balanced. The hest wy to cxpiain the method is by examples
she beam with & constant modulus of elasticity £ and having
jons and loading shown in Fig. |1-Sa. Before we begin, we must
prmine the distribution factors at the two ends of each span. Using
=1, K = 4EI/L, the stiffness factors at these ends are

L ot 300} % ARG
o Ka= M—T, = 4EQ0) in'/ft Kye = I’nm = 4EN0) i/
4 2

i pess Factor. Quite often a continuous beam
e made from the same material 50 its modulus of clasticiny
i same for all the members, [F this is the case, the common

, for the ends connected 1o joint &, we have

(11 will cancel from the Aumerstor and denominaior of i ARy
ribution facior for & joint 1s determined. Hence, i AE(20) + 4E(30)

he member's relutive-siffiiess fuctor e E(30) L

B QE0) + 4EGD)

 joint 4 and joint C. the distribution factor depends on the mem-

factor and the “stiffness factor” of the wall. Since in theary it

{= an “infinite” Size moment 1 rotaic the wall one radian, the wall
tor is infinite. Thus for joints A and € we have

AE2M

PHy s ——c Dl
inFig 11-3. 1t was shows e = + 4E(20)
REH/ Lt 8 . B
we get My, / ’ DFes ™ 0
ment of M' = M 2
e " e above results could also have been obtained if the relatrve stffness

= IfL (Eq. 11-3) had been wed for the calculstions. Furdienmore,
consisient set of uaits is sed for the stiffress factor, the DF wil
dimensionless, and at a joint, except where it is located at @ fived wall,
the DFs will always equal 1.
computed the DFs, we will now determine the FEMs. Only span
"and using the tablc an the inside back cover for 3 unifoer load.

beam with the fur end
tes both moments act
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-assuming joint & is fixed or locked. The fixcd-end  gamider now the same beam, except the support at € is a rogker. Fig. 11-6a
“"T& xc'jm this fixed or locked position as \l\.“.,. 4 il cae only ane memiber is at joint €. so the distribation m.::,, -
of course, does not represent the actuzl equilibeiuy, or CH i Joint C s
mm moments 0 each side of this joint must be cqe : -
. To correct this, we will apply an equal, but opposite momey, - DF¢y =

Joint and allow the joint to miale frecly, Fig. 11-5, Sy
of this moment are distributed in spans BC and 84 er distribution factars and the FEMs are the same as computed
- DFs {or stiffness) of these spans at the joint. Specif. ly. They are listed on lines 1 and 2 of the table in Fig. 11-6b. Initially,
 BA is 0A(SDO0) = 3200 Ib-ft and the moment in AC {ll assume joints B and C are locked. We begin by unlocking joint C and
mmsmlb-n. Finally. due to the refeased rotation that take, ‘an equilibeating moment of —S0001b-ft @t the joint. The entire
moments must be “eamied over” since moments s s distrbuted in member CH since (1§~ 000) Ib-fi= — 5000 b fi
on line 3 indicates that 1(—5000) Ib-ft = 4000 -1t is carried
B since joint € has been allowed 1o rotate freely, Joint € is now
Since the (0tal moment ot © is halarced, a line is placed under the
Maluul moment scting at the initially k % now consider the unbalanced — 12 00G-Ib-ft
n_l apply an equal but opposite unbalsnced o joint B. Here for equilibrium, a +12 000-Ib- ft mement is applied 1o
disiribuie the moment among the con- this joint is unlocked such that portians of the moment are distributed
in each span over o its other end The and BC. that is, (0.4)(12000) = 48001b it and (0612 000) =
form a8 indicated in Fig. 11-5c. Here fi s shown on line 4. Also note that -+ of these moments must be
 where moments are distributed. then car- over to the fixed wall A and roller C since joint B has rotated. Joins B
oaly one eyele of moment distribution s Again joint C is unlocked and the unbalanced moment at the
and € “absorh” the moments and ro ibuted s was done previously. The results are on line 5. Succes-
10 satisfy joint equilibrium ing und unlocking joints 8 and € will essentially diminish the size
3 it be balanced unil it becomes negligible campared with the
mements, line 14 Each of the sicps on lines 3 through 14 should be
understood. Summing the moments, the final resuls are shown on

e 18 ne..am:, ﬁns mﬂm:nl B
e sense as shown on free-body

Fig 11-6



10 each

af3 jon process vy
d| s allsin passible 10 Apply it 10 all joints at the o,
s shown in the wble in Fig. 11=6c. 1n this case, we
ts and then Balancing and distributing the fived o
and €, line 3. Unlocking joints B and C simulias,.

fixed), the moments are then carried over to the ¢
gain the joints are relocked. and the moments 2

line 5. Unlocking the joints once again allows i),
o5 shown in line 6. Continuing, we obtan, the
on line 24. By comparison, this method givc,
than does the previous method: howe
‘mare efficient 1o apply. and for this reae

 follow. Finally, using the resulis in ener

SEC UL MOMENT DISTRIBUTION FOR BEAMS.

* Aliipugh several steps were imvolved in obiaining the fi
Wmmml is rather methodical since it mqiurrs awla‘::onur.:;:
arithmetical steps. rather than solving u set of equations as in the slope-
method. It should be noted, however, that the fundamental process of
gat distribution follows the same procedure s any displacement methed.
process is to establish load-displacement relations at cach joint and
y joint equilibrium requirements by determining the comect angu-
for the joint (comparibility). Here, howcver, the equilibriam
of rotation at the joint is satisfied direcily, using a “moment
process that incorparates the load-deflection relations (stiffness fic-
i for using mament distrbution is possible, and this

ther
discussed in the next section.

i shauld e calculated. Using these values the distribation factors
be ined from DF = K/SK. Remember that DF = i for a fised
ad DF = | for an end pin or roller support

e fixed-end moments for each loaded span are determined using the

| en on the inside back cover. Positive FEMs act clockwise on

n and negative FEMs act counterclockwise. For convenience, these

e recorded in tabular form, similar (o that shown in Fig. 11-6¢

e Distribution Process. Assume that all joints at which the

i in the connecting spans must be determined are inrially lcked

pine the moment that is needed (o put esch joint in equilibrium

or "unlock” the joints and distribute the counterbalancing
into the connecting span at each joint

ese moments in each spun over (o its other end by multiplying

ament by the carry-over factor +1.

his cycle: of locking and unlocking the joints, it will be

‘moment comections will dimminish since the beam tenids

final deflected shape. When u small enough value for the

 abtained, the process of cycling should be stopped wgﬂ- o

of the laai moments, Each column of FEMs dissributed

« moments should then be added. IF thes is done

al equilibrium at the joints will be achieved




ats at joints B and
ts are then carried
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F ANALYSIS: MOMENT DISTRIBUTION

he internal moment at cach support of the beam shown i
= &.ﬂ-hmmmmdu:hspu s indicated.
L

 moment docs not get distributed in the overhanging
distribation factor (DF)a, = 0. The stiffness of span
'uz)inwdnnnuuthmznuolmbcm
ibution factors, and fixed-cnd moments are com

SELCOT

SEC 112 MOMENT DISTRIBUTION FOR HEAMS

40 b
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mmn




hw cxamples of moment distribution we have considered eay
-hm;ﬂhw fixed support (locked joint) at its far eng
,hm ﬂm“u‘m!" For this reason we have
[ ;mm distribution factors, and the carry-over facion,
“ wm-n,.:u.mum the stiffness factor
‘and the carry-over factor is +).
jtpuﬁtknnuﬂiydusnﬂ'um rncluma‘a particular
wwmmnf moment
occurs in practice will now be considered

Beam and Loading. If a beam is symmetric with respect
loading and geometry, the bending-moment diagram for the beam
e symmetric. As a result, a modification of the stiffness factor for
span can be made, so that moments in the beam only have o be
through joints lying on cither halfl of the beam. To develop the
0 stiffness-factor modification, consider the beam shown in Fig.
Ia Due to the symmetry. the iniernal moments at B and € are cqual.
this valuc to be M, the conjugate beam for span BC is shown in
11=11b. The slope 8 at each end is therefore

by an end pin (or roller) as in the case of
m:mﬂlmsdu mdA by an

—Vyily + gru(gj =0
ML

TR
5 26!



SEC. 113 STIFPNESS-FACTOR MODIFICATIONS.

Determine the iremal maments ai the sipports for the beam shown in
P 11-13a, E is constant

tric Loading. If a symmevic Fig. 11-13
Toading, the resulting moment diagram
previous case, we can modify 5
EATE b beam hiymh;:t::‘..; ipection, the beam and loading are symmeirical. Ths, we will apply
Consider the beam in Fig. 11-1% 2EHL w compute the stiffness factor of the center span AC and there-
BC i shown in Fig. 11~12b. Duc 10 use only the fefl half of the beam for the analysis. The analysis can be
moment at B is equal, but opposile o even further by using & = 364/L for computing the stiffness f
o egment AB since the far end A is pinned. Furthermare, the distribution
: ament al A can be skippes) by using the FEM for a wisngular loading
1 span with one end fixed and the other pinned. Thus,

L) (2L | 31
s Ky=js (wing By 119

2El
Kpe=T  (wingEq 11-5)

EIf1S
(DFly, = szj l:s.t:i,':u i
x B_H”?;E_ifilm = 0333
ren, = 5 - 4 =
w4207 aaapn

(FEM),c = -5 =~ 2

listed in the table in Fig, 11-13b, Compating the stiffacss
abave eonsiderably reduccs the analysis, since oaly joint
and carry-overs (o joints A and € arc not necessary.

C is subjected to the same inernal moment of 1089 k-fi.




ANALYSIS: MOMENT DISTRIBLTION
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‘moments al the suppons of the beam shown in Fig
 of inertia of the two spans is shown in the figure.

=
E

5 | <

1<t

AR BC "
0 | oane fosam | |
T

L“E

(]

260168

7

)

35471t




0 mmm SEC. 114 MOMENT DISTRIBUTION FOR FRAMES: N0 SIDESWAY 4500
for Frames: No Sidesway =
 Applcation of e moment isiburio et Fo [mes s o o sl ) o
ol the sime procedure s that given for eams. To minimize th chasc, s 5 =" Ffe ke =
is suggested that the analysis be amanged in a tabular fonm. 4 i (DF), =0
arples, Also, the distribution of moments can be shorere gy s
of u span can be madified as indicated in the previo, - AE JALERE
il L eyion DR = s « agiie = "
DF)ye = 1 — 0545 = 0455
L6 A
B PFlcs = i + 38y
ot 3
B (PFleo = Jeiis +
" e
St 4 . = |- 0330 - 0298 = 0372
nal moments at the joints of the frame shown in Fig i 3m“=i
‘and D) ant o fixed support at A. EF is constant &)
| EM = — =~ 135k
| E d 2 :
e - wt? S8
| gl e
| | B=5 135 k-4t
e | e dita ave shown in the table in Fig, 11-155. Here the distibucion
- — | nents successively goes 0 joints # and €. The final moments are
- £ oL [ 00 the last line
co s these data, the moment diagram for the frame is coastructed in
e ! -15¢.
|
- § 10k
_|
-
f
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460 5 11 DISPLACEMENT METHOD OF ANALYSIS: MOMENT DISTRIELITIGN
Unfortunately, these displacements are not known initilly. o the analysis

11.5 Moment Distribution for Frames: Sidesway s prosee on he bass 0 sperposion, i thesame munnt 4 dncusd

—

viously. In this two restraining forces Ry and R, are applied, Fig
i has been shown in Sec, 10.5 that frames that are nonsymmetrical of sab, 11-17b, and the lixed-end monients are determined and distribated. Using the
jected 1o nonsymmetrieal Ioadings have 3 tendency 10 sideswiry. An example equations of equilibrium, the mumerical values of R, and R, ase then deter

it the M
wement A, This
. h can be assigned specific numerscal values. By
ments and using the equations of equilibrium, the asso-
an be determined. In a similar manner,

of one such case is shown in Fig. 11-16a. Here the applicd loading P wij mined. Next, th
create unequal moments at joints B and € such that the frame will deflect ag foor is given a
amount A o the right. To determine this deflect the internal momenis (FEMs) in the fra
a the josnis using moment distribution, we Jistrimting these m
pasition. [n this regard, the frame in Fig. 11 cisted numerical v
sidesway by applying an artificial joint support at € the floar of the sccond story s then given a displacement A",
applied and then by statics the restraining force R 15 J s for the fixed-end momenis, the o
bat opposite, restraining force is then applied to the | tian and eq m analysis will yield spo
the maments in the frame are calculated. One m e last two steps tated with Fig. 11-17¢ and o depend on arsumed val-
requires first asnuming i numerical value for one of the ues of the FEMs, cor factors " and C must be applied 1o the distributed
M}, Using moment distribution and statics, the def oments. With refe to the restraining forces in Fig. 11-17c and 11-17d,
force R’ comesponding to the assumed value of M we require equal but opposite application of R, and R, to the frame, such that
Since linear clastic deformations occur, the force R
frame that are proporsional o those developed by . F
R’ are known, the moment at B developed by R will by
Addition of the joint moments for both cases. Fig. 11-16
the actual moments in the frame, Fig. 11-16a. Applicatic
is illustrated in Examples 11-6 through 11-8

oc of the first story i removed and the
splacement causes fined-end moments

st
A

R C°R, + CR;
R, +C'Ry — CRY

1f these equations yields the values of €' and C7, These
then multiplied by the internal joint moments found fram
Fig. 11-17c and 1117, The resuliant moments
hese correcied moments to those obtained for the

the moment djsrib
are then found by
frame in Fig, 11
Other types nes having independent joint displacements can be
analyzed using this same procedure; however, it must be admitied that the
foregoing method does require quite a bit of numerical calulmion. Although
some fechnigues have been developed to shorten the calculations, it is best
10 salie these types of problems on a compater, preferably using & matrix
analysis. The techniques for doing this will be discussed in Chapter 1

13
L R 8] 2 [}
LY Py
= + x| & ol
r S 3 s o
D by ! it F ] !
(o] il 5 b+ | : s

o d il o appliey aruticea ot cemon,
st semaned
180 ddeswny) Anideyway) - -

Multistory Frames. Quite oficn, multisiory
v;md Joint  and o !

distribution analysis using the shove techniques will involie r
Consider, for example, the two-story frame shown in Fig 11

a. This stne:
ture can have two independent joint displacements, since the sidesway &,

of the first story s independent of any displacement A, of the second siory.

sh ta) b

B [
Fig. 11-16.




mnm .
" g-ﬂ:_hfﬂmhdd from sidesway as shown in Fig. 11-135

_16R0
(O}

(FEM), = 1A [;‘;“’ = 256 kN-m

mwmnmwed on the basis of 4£4/L or by

re applied 1o the free-body diagrams of m: columns in
< i!c'l\ﬂl-ﬁ- 11-18e. From the free-body disgram
: (not shown) the joint restraint R in Fig. 11- 185 has o

(.81 KN = 092 kN
R = 0.92 KN must now be applicd 10

computed, Fig. 1118 To solve
ats, we will assume a force R s
1A .hlllnmﬁg 11-18f, Here

‘I’IIIDCIM\'IE.!WEJ.WLﬂll?EMlllABudlbe:?wumr

in DC. As shown in Fig. 11- 18/, we will arbitrarily assume this

d moment 1o be
(FEM), = (FEM),, = (FEM), = (FEMy. =
sign is necessary since the moment Must act counie rclockuise
umn for deflection A’ to the right. The value of R’ associaied
= 1001 kNem momeni can 6ow be determined. The moment dis-
of the FEMs is shown in Fig. 11-18g. From equilibrium, the
tal reactions ot A and D are calculated, Fig. 11- 184 Thas, for the

=100 kN-m

R =28+ 28 = 56.0kN

"Mmcmlhemmmmnlnbdmr; 11-18g. Come-
192 KN can be determined by proportion.
- 18a, is equal to the

calculated for the frame in Fig i 185 plus the proportionate
those for the frame in Fig. 11-18c, We have
My = 258 + 4% (—80) = 1.57kN'm Ans.

MG, = 378 + LE (—60) = 4.79kNm Ans.
fyc = —5.78 + LB (60) = 479 kN-m Ans.
n‘u 1_12+m(ﬂl)—37lmm Ans.
e~ znﬂ-“( 60y = — 371 KN-m :n-.
ins.

-yx-—u.auwt —80) = —263kKN-m

M| -6000] 6000] 0 | 600 | i




SR ALS MOMENT CASTHIBTION 0 PAses. sy M5

“w-ﬁﬁdhhﬂmnmh. 1
“The mament of inertia of each member is indicated in the figure

|

b1 T 5 T [
Momter ax | A B | 08 D o |
DF | o lamsloms| a3 |83 4 |
b t_jase sl as fes 10 1

(11
25 630_A1 | S| 4

W |-wyw|-mm| @i B0 D 8

L

force is now applicd W the frame = shown in Fig. 11-1%

previous example, we will comsider 3 force R’ scting 8 shern

=19 As 2 result, joints 5 and € we displaced by the same smos

d-end mements for BA ste computed from

SEIS SEL2000)8
(FEM),, = (FEM), =~ 5 o
£, from the table on the msde back cover, lor CLF we have
LIS IEIHOS
g i8¢

the FEM for AB is — 100 k-fi s shown in Fig. 11-19, e cor-

(FEM),, = —

4 C, causing the same &', is found by comparnon. 6. g0y~ Py
B _|-lm,|||rrr' _ _PEM), 157
BEC000) IE2500)
(FEM),, = ~21TREA - s
tion foy these FEMs s tabulated in Fig. 1119z Comps- ania
hﬁlﬂmi].ﬂhnhmnﬁl” 1ok Thes, -y gp e
A

B =110+ 155 = 1255k
i the frame ate therefors -

By = 958 + (L2 - 6991) = ~0M8LA Ans.

BBy, = 1934 + (L2 y-4001) = 133 K4 A
.

Mo = — 1934 = (L2 ps001) = - 1330H Ams.

= 1500 + () ,‘j!!‘}lua 1Bk Ams.

Ams.

[ --umq Sy 23)) = -1k




restraining force R, Fig. 11-206. The

B10)
- = 10k fi
E

ends, the stiffness facior i
tion is shown in Fig. 11-204
8t A and [ must be deter-

lysis of each member, Fig
C on each feg, we he

A, =275k

SEC. 113 MOMENT DISTRIBUTION FOR FRAMES. Seswiny 467

ol

The opposite force R is now applied 10 the frame as shown in Fig
% In order i deiermine the internal moments developed by R we
Il first consider the force R’ acting as shown in Fig. 11-204; Here the
bed lines do mot represent the distortion of the frame members;
fnstead, they are constructed as straipht lines exiended wo the final positions
€' of points # and C, respectively. Due w the symmetry of the
. the displacement BB’ = CC’ = A'. Funhermore, these displace-
BC to rotate. The vertical distance between &' and ' is 1247,
on the displacement diagram, Fig. 11-20g. Since each span
‘endergoes end-point displacements that cause the spans to rotate, fixed-end
~ moments are induced in the spans. These arc: (FEM)g, = (FEMjpy =

EIA'/110)7, (FEM)yc = (FEM)cx = 6EI(1 24} /(10F

" Notice that for B4 and C) the moments are negative since clockwise £

of the span ciuses a counferclockuie FEM. ; A
If we arbitrarily assign a value of (FEM)g, = (FEM)cp = = 100 kfi, rys
| equating &' in the above formulas yields (FEM)y, = (FEM)cq = i
kfl. These moments are applicd 1o the frame and distribused,
20k, Using these results, the equilibrium analysis is shown in
2. For each leg, we have

—Aj(8) + 19.36(6) + 146,50 = O A
= [}(RB) + 29.36(6) + 146,80 = O D}

]

ket

4037k
4037k

R = 4037 + 4037 = BO.T4 &
moments in the frame are therefone

u.,:s_w”;’ M= 146.80) = — 304 k-t Ans.
My = =597 + (G N146.80) = 304k Ans.
My = 597 + (1 146.80)'= 423 k-t Ans.
Moy = —5.97 + (22 )= 14680) = —423 kMt Ans.

mk
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118, The b is pin comnected at each indicmied poine, If the  *11-13,

nal foree in the bar can be neglected, determine the vertical
resetian 0l each pin. E¥ is constant

Determine e moments scting w the ends of
marmber, then draw the moment dlgram. Asssme & o
and A and 0 are pin supporied and € is fised. £ =

- e
SUPPOrts at A nd it duge = 100 in', 50 fug = 1100 in’,

e 115, Deiemine the maments ot A, B, and C, they
‘l—" = ‘:ﬁnﬂmm moment dingram for the beam. Assume

fised. £1 is constant.
wpponu Bl prollerand A7 d T TRV

T LT S T S T T

Prob, 11-5
11-6. Determine the moments ot A. B, and €, then i i
 mement diagram for the girder DE. Assume the xullm\“n Wl Determine the moments. at the supports, then draw the
o e e IR 98 A and € s rolers. The disiibuted ond rests on simgiy et diagram, Assume A snd D are fived £ is consiann
Auad § *upporicd oot boants thal iransmit the load 10 the flor .
s constant

Rl

i

Prob. 11-12

1B ———IH -+
Prob, 11-10

. Determine the moment o 8, then drow the moment  11-13, Determine the indernal moments acting o cach joint
for each member of the frame, Assume the suppont al A Assume A, 0, and £ are pinned and & and C are fived joists

€ in fincd. £ s constant. The moment of inertia of each member is liied i the fgure
£ = 210" sk

ol ab B, then draw the momest
mes the suppons at A and & e pinicd

3 ,a‘l'c;- ralkers and
o
r
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A i 16 Determine the maments acting at the ends of gy,
G::ﬁ ::l”ﬁ' mermber of the frame. E1 s the constant g

{1-18. Determine the moments at B asd € and then draw the
Assumme A and [} are pins and B and C are fived.

*11-20. Desernsine the mosnents acting at the supports & snd £
connested jounts. E1 is constant

of the battered-colamn frame. Ef is constant.

15— 20 h——— 150 —
Prob. 11-20

moments acting at the esd of 9. Delenmine the moments scting st the ends of cach
supponts st A and 0 anc fined The ne the joints are fised connected snd A and [ arc

member is indicated in the fizus ET s constant.

11-21. Determine the harizonal and versical conponests of
reactian al the pin suppons A and D. B is constant.




Beams and Frames Having
Nonprismatic Members




4 CH.12 BEAMS AND FRAMES HAVING NONPRISMATIC MEMIERS

saepped hawches “

12.1 Deflections of Nonprismatic Members

Often, 10 save material, girders used for long spans or
are designed to be noaprismaic, that is, to have 3 var
The most common forms of structural members (¢

haunches that are cither stepped, tapered, or pa
the principle of virtual work or Castighian
ter 8 (0 compute their deflections. The equatic

M
K
l. s

iges and buikdmgs
ent of inertia
nprism:

121, We canuse
s discussed in Chap-

e

s theo:

M
o A= d
Iy aP Et

For & nonprismatic member the integration requires / 1o be expressed a &

function of the length coordinate «. Consequently. the m

nber’s geometry and

Ioading may require evaluation of an integral that will be impossible 1o cval

uate in closed form. In this case, Simpson's rule or some ©

her pumencal

technigue will have 10 be used to carry out the integration. It is also possible

10 use a geometrical lechnique such as the moment-

theorems or e

comjgae:bearm methd 1o determine the eppronimate defloction of a nonprismi

member The following cxample illustrates the use of the.

conjugate-besm method

Timber frames having a varisble mo=ett
ol mertia are oficn used in the consructiot
of mader churches.

RENBENRRRESE

SEC 21 DEFLECTIONS OF NONPRISMATIC MEMBERS. 475

) method 1o determine the
apered beam shown in Fi

Substituting £ = 4000 kfin® (144 in/fi’). we have
A, = 00358 [t = 0429 in.

12-2a. Assume that the

SOLUTION M (k.
The beam ted every 2 ft and we will identify the segments
numerically o g, 12~ 2. The moment diagram is shown in Fig. — i)
12-28. Us the moment of inertia of the bean is compated - i
at the 2-ft intervals an -0
diagram is determined and shown on the conjugate beam in 2 a0
We are required to find Ay = My To do this, the load is assumed (ap- (]
c ular areas, indicated by the dashed
mplify the calculation it is seen that there are three poirs of h-
angles, each pur having base” aml the same 2-ft T
horizantal “height” The centroid location of these paies and of the right- L
most triangle is indicated by dots. Hence, sy el
o0 ] i

M, = 0;

e

50 1471174\
J(4)(2) + :|| f; I\m.u
1 /67114 L(600) 2o 2y
i |46 + :{ P J(2HT.33)
0596
L3 E

pprovimate defliction
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tations for the stiffness and comyover factors can be checked,
moting an imponant relationship that exisie between them. In this
r the beam in Fig. 12-4 subjected w the loads and deflections

gation of the Maxwell-Betti reciproal theorem requires the wark
= B e Mouds in Fig. 12-da scling through the displacements in Fig, 1245
I .V‘"mm Stilfness nd carmy.oser facions for 5 the work of the loads in Fig. 12-4b scting through the displace:
s » variable moment of inertia. Although the work my be » l R 10, it e,
< is iflustrated here so that one can understand how 1, -

for loading properties of a particular member that m.,
published

hed literature.
swilll serve 10 illustrate the method. In this regard,

Usp = Uny

Ky0) + CoKi(1) = Coplil) + Kl

5 Carky = Cork -1
5]:;""“”" eckions of & beam (hat s " e detesmincd, the stiffacss and camy-over factors must satisty

de of moment that must be applicd
wotates through an angle of # = | rd
support of the beam, while the uher

the numerical fraction (C) of the
suppornied end of a beam 1o the



Determine | sd moments for the beam shown in Fig. 12-Sq The
crossesectionsl area N & constant widih of 1 L E is constant

supports at A and J# are fixed, the conjugate bean i
B, The moment diagrams will be plotied in pan,
itjon discussed in Sec. 45, These parts shiwn

nd
 and Mg, For span AC, Lo = ’\FZl -
= L)1) = 00833 . Using these val-

the conjugate beam are shown oa the lefy
wesultant forces eaused by these “dis




SEC. 122 LOADING PROPERTIES OF NONPRISMATIC MEVBERS USING THE EONIUGATE SEAM METHOD.

Determine the stiffness and carry-aver factors for the end A of the hear
a in Fig. 12-6a. The cross-sectional area has a constant widih of | f
o) kai.

R

the deflection at A must he 2er0, we require
M, M, M, CaM,
—5062 A3y - 3375 M g 5y - g5 M Laty
.E‘, 355{‘_‘] 455(II])+1C62 E 6)

CuMy
E

+zﬂ(9£'—‘|m.s;v4.5 an=o

ag out M, /E and solving for the carry-over factor, we have
—7531 + 36337C,, =0 €,y = 0207 Ans.

into Eqg, (1), setting £ = 10010°) ksi = 1440{10°) k/f’, and
for the stiffaess factor yields

M, = K, = 26810") k-t Ams.

15
33—

i
sme2 4

Lo




and earry-over factors for the ead A of the apereg
ﬁ'ﬂ:ﬁ% The crussesectional aren has a constant wifiy
v

1N 138K 1SH LIsh

1) are shown in Fig. 12-7d
factors require a summation

SEC 122 LOADING FROPERTIES OF NONPRISMATIC

MEMBERS USING THE CONIIGATE REAM MiThon 483

* From this it will be noted that puirs of riangles have a common vertical
| *hase™ and horizontal “height” (2 fil. The centroid of these pairs is indi-
cuted by @ ot in the Bigure. The area (force) and moment computations are
Emuﬂ in g 12=Te. Using these resulis and applying the equilibrium
| equations (o the conjugate beam yiclds

8 My Cap M\
EF, = -|1B~lm"_ JH.-\Z{ F ]-n

fesr
—asam s . .ws.sr.( & r":| =0




HAVING NONPRISMATIC MEMBERS

Properties of Nonprismatic

. Yhﬂabie from Publications

o
As noted in the previous section, cor?sidcmble labor is often involyeq in
determining the fixed-end moments, stiffness factors, and carry-over fabted
for a nonprismatic member. As a result, graphs and labigs have been Mmade
available fo determine this data for common shapes used in structura) design,
One such source is the Handbook of Frame Constants, published by the poy.
land Cement Association®* A portion of these tables, taken from
publication, is listed here as Tables 12-1 and 12-2. A more complete tabyjy,
form of the data is given in the PCA handbook along with the releyap
derivations of formulas used.
The nomenclature is defined as follows:

a,, ag = ratio of the length of haunch at ends A and B to the length of
span

b = ratio of the distance from the concentrated load to end A to the
length of span

Cap, Cga = carry-over factors of member AR at ends A and B, respectively
Iy, hy = depth of member at ends A and B, respectively
h¢c = depth of member at minimum section
I = moment of inertia of section at minimum depth
Kag, kg4 = stiffness factor at ends A and B, respectively
L = length of member

M5, Mp, = fixed-end m:?menl at ends A and B, respectively; specified in
tables for uniform load w or concentrated force P

Fpy Ig = ratigs for rectangular cross-sectional areas, where
Ta=(hy — hC)/hC- rp = (hg — hc)/h(;

As noted, the fixed-end moments an

the tables. The absolute «(; d carry-over factors are found from
- : stiffness factor can b ; : lated
i stiffness factors and found from e determined using the tabula
k. .El .
= fapZle kL
K4 i, B _MZ—C (12-2)

= ;
. the use of the tables i} e illustrated in Example 12-5.

Table 12-7

2-1 Straight Haunches—Constant Widih

bl
‘AFuJ«‘ i 1;.%3

A

Comcentrated Load FEM—Coel < PL
Unif. Load b
Carny-over Stiffress FEM
Factors Factors Coef. X wl’ ol ar 0%
Co Cm |ba Ia Moy Mg Mys My, My My, My My,
ay =03 ay = wariable =10
~Toa|ose3 [oes [ 919 [ 652 forrsa fooran [oooas Toooss [o2rss [oomes o168 [o1ar [ooes
06| 0576 | 0758 | 953 | 7.24 101152 10.0851 | 0.0934 | 0.0038 | 0.2158 | 0.0422 | 0.1ksd | oonzse | aorss | o s Lasos o | ol
a2 [10] 0622 |0748 | 1006 | 837 101089 | 0.0942 | 6.0031 | 0.0042 | 02118 | 0080 01771 |0 tans | oees | o vers | oo Lo e amn
1.5 | 0.660 | 0740 | 10.52 | 938 101037 | L1018 | 0.0927 | 0.0047 | 0.2085 | 0.0530 | 01678 | 01550 | onsse 02078 | 00008 | aosel | Woi
200684 | 0.73 | 10.83 | 10.09 {01002 {01069 | 0.0924 | 0.0030 | 0.2062 | 0.0%6S | 01614 {01648 | 0.0es7 | 021ks | aoors [ apes a0
04| 0579|0741 | 947 | 740 [QHITS | 0.0522 | 00934 | 0.0037 | 02164 | 00419 | ooreoo | o122s O08S6 | 01649 | 007100 | Oss)
0.6 0629 |0.726 | 998 | B6d 10.1120 10.092 | 0.0931 | 0.0042 | 0.2126 | 0.0477 | ouisos {013 | 00747 | oasor | ooosn mu: :::g
0310|0705 | 0.705 | 10.85 | 10.85 {0.1034 | 0.1034 | 0.0924 | 0.0052 | 02063 | 0.0577 | 0.16%0 | 01640 | 0.0577 | 02083 | ousa | aiosss | ooy
1.5]0.771 | 0.689 [ 11.70 | 13.10 {00956 |0.1157 | 0.0917 | 0.0062 | 0.2002 | 0.0675 | 0.1483 | 01892 | ooazs | 022ee | ooany 008N | oo™
20| 0817 [ 0.678 [ 1233 | 14.85 |0.0901 |0.1246 | 0.0913 | 0.0069 | 0.1957 | 0.0750 | 01368 | 0.2080 | ooz | 02455 | ooz | aoses a.mS:
=g e 4 ay =02 ay= wariable =15 ry = variable
~ [oa|ose n_‘m] 797 | 635 |0.1166 |0.0799 | 0.0966 | 0.0019 | 0.2186 | 00377 | 01847 | 01183 | 00821 | 01626 | oooss | aos7s | oooes
0.6 | 0603 | 0707 | 826 | 7.04 |0.1127 | 00858 | 0.0965 | 0.0021 | 02163 | 0.0413 | 01778 | 01288 | 00736 | 01752 | aooss | aosos | o ooss
02/ 1.0 0652|0698 | ET70 | B12 10,1069 |0.0947 | 0.0963 | 0.0023 | 0.2127 | 0.0468 | 01675 [ 001449 | 00616 | 01560 | oooet | Gos37 | oooss
150691 [0.691 | 908 | 908 {01021 [0.102]1 | 0,0962 | 0.0025 | 0.2097 [ 0.0515 {01587 [ 01857 | 0518 | 02097 | oon2s | oo | 0o0es
200716 | 0.686 | 934 | 975 10.0990 |0.107] | 0.090 | 0.0028 | 0.2077 | 0.0847 | 01528 | 01681 | 0.0849 | 02202 | 00017 | DOSTS | Bove: 't
040607 | 0692 | 521 | 721 (01148 | 0.0829 | 0.0965 | 0.0021 | 02168 | 0.0409 | (LISD1 | 01263 | OOTES | 01674 | 0009] | OuoSss | Oo0es | oo a0 !
0.6 | 0.659 | 0.678 | 565 [ 8B40 |0.1098 10.0907 | 0.0964 | 0.0024 | 0.2135 | 0.0464 | 0.1706 | 01418 | 00688 | 01831 | 00072 | Q0S92 | 00064 | oo | 0017 F O %
03100740 | 0.660 | 933 | 10.52 |0D.1018 |0.1037 | 0.0961 | 0.0028 | 0.2078 | 0.0559 | 0.1550 | 0.1678 | 00530 | 0208S | Q0047 | OUOSET | O.0064 | 00002 FOLOKIES PO
15| 0809 | 0.645 | 10.09 | 12,66 |0.0947 | 0.1156 | 0.0958 | 0.0033 | 0.2024 | 0.0651 | 01403 | 0.1928 | 0.0393 | 02311 | 00029 | 0080 | 0083 | 00008 | A000S | DL i
20| 0857 | 0.636 | 10.62 | 1432 |0.0897 | 0.1242 | 0.0955 | 0.0038 | 0.1985 | 0.0720 [0.1296 {02119 | 00299 | 02469 | 0.0020 | G086 | (O0KY | 00008 | AO00S | OOINE
. al T j
Table 12-2 Parabolic Haunches—Constant Width ;
Note: All camy-over factors are negalive and
all stiffoess factons are positive.
Concentrated Load FEM—Coef. * PL Hasmch Lol at
Unif. Load : -
(! AT
: 4 £ FEM FEM
Right | Carry-over Stiffness FEM 1 0s ar av Coefe 2 X wpld
Haunch|  Factors Faclors Coef. X wl* o & Ll "!.-'
9 rp | Cip Caa kin kpy Man Mg Mg Mgy Mg Mgy Mis M Mys My M Mas Hia Ny &
ay =02 ay = warioble =10 rp = vanable
040558 | 0627 | 6.08 | 5.40 [0.1022 (0.0841 | 0.0938 | 0.0033 | 01891 |0.0502 | (L1572 | 0,136 ﬂ.l:mf‘i Rm: &ﬁ :mm"’ gmm mm:
06| 0582 |0.624 | 6.21 | 5.80 [0.0995 |0.0887 | 0.0936 | 0.0036 | 0.1872 | D.053S | (L1827 01339 | 0064 a0 [ 0095 | aom2 |00001
0210f0619 0619 | 631 | 641 00956 00956 f0093s 00038 Ik 0SS 1453 O R SE | vos fogass fooass f ol
150,649 | 0,614 | 659 | 6,97 |0.0921 |0.1015 | 0.0933 | 0.0041 | O : g - ~ 71 | 0.o0a2
ol o | e Bl et 0.1056 | 0.0932 | 0.0044 | 0.1801 | 0.0660 | 01358 QL1638 L0472 | 002 ll::; am7l ¢
686 | O Q0877 | 00042
040588 [ 0616 | 622 | 593 |0.1002 [0.0877 | 0.0937 | 0.0035 | 01873 (D.0537 |(LIS32 u{:; gm 3:2“ 0057 | aeeoa
06| 0625 |0.609 | 641 | 6.58 [0.0966 |0.0942 | 0.0935 | 0.0039 [ 0.1845 | 0.0537 | 0.1467 (O 36 [ 0031
: X : 165 |0U1e43 | 0.0502 | 0.2000 | 0.0037 | O
031100683 [ 0598 | 673 | 7.68 [0.0911 [0:1042 [ 0.0932 | 0.0044 | 01801 | 0.0669 ) (L1363 01819 [ 0.0410 | 02170 | 0.0023 | 00839 | 0031
1510735 | 0589 | 7.02 | 876 |0.0862 [0.1133 | 0.0929 | 0.0050 | (L1760 | 0.0748 uls;; 01081 | oms [a2 |omis 00972 | 0.0031
200772 [ 0582 | 7.25 | 9.61 [0.0827 01198 [ 0.0927 | D.0054 [ 0.1730 | 0.0805 0,12 :
ay =05 ag = variable ra= 10 ra = wiriehle
B b L] 00108
0.4 0488 0807 | 985 [ 597 [o214 [0.0753 | 0.0929 0034 | 02131 fooazn 02021 fooal | 00T SR FERC
: 3110 [ 0.0404 01969 | 01138 [O0917 | O 1600 | 0.0031
0610515 | 0803 | 1010 | 6.45 [0.1183 | 0.0795 | 0.0928 | 0.0038 [O2L1 0809 | 01740 [ 00036 -
9210 | 0347 {0796 | 10.51 | 722 [0:1138 [0.0865 00926 [0.0040 | 02079 |00ss |10 AT FRERE ENCE o oans | 00001 | 0.00
15[ 0571 | 07 50 01003 [0,0922 | 0.0923 | 0.0043 | 0.2085 | 0.0485 OISIS |01 o028 RRI |y
0.786 | 10.90 | 7.90 |0. 5041 | 00500 |0.1764 | 01417 [0.0681 OIS | O
200,590 | 0.784 [ 11.17 | 8.40 |0.1063 |0.0961 | 0.0922 | 0.00MG | O3 i R i
|y
0410554 10,753 [ 10,42 | 7.66 [0.1170 | 0.0811 | 0.0926 | 0.040 uzus: &m &:m 010 Dol |oins
i 0610606 10,730 [ 1096 | 9.12 [0.1115 | 0.0889 | 0.0922 u.w:o gll;\-;‘-' ooaze | 01639 [0.1639 [ 00826 | 01970
10 110,694 | 0.694 | 12,03 [12.03 |0.1025 [0.1025 | 0,0915 | 0.0057 1 {00759 [0 1456 [01939 | 00479 (D287
15| 0,781 547 [0.0937 01162 | 0,098 [0.0070 f0.189 > 0376 |02
0,664 (1312 [ 154 o2 | 0.1825 [ 0.0877 {01307 J02193 | 0 .
20/ 0850 (0,642 | 14.00 | 18.64 [0.0870 01275 | 0.0801 | O
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Beam and Loading. Here we must determine the moment
A0 rotate end A, fy = +1 risd, while By = ~ | rad, Fig. 12-9, In
(e we first assume that end #F is fixed and apply the moment K, ot A,
. Next we apply a negative moment K ; (0 end B assuming that end
This results in & moment of Cpak y atend A s shown in Fig. 12-%
of these two applications of moment at A yields the results of
. We requine

m m, the same procedure ux o
the distribution of moments may be -hm(m
jﬂgﬂﬁdu account for conditions of end. span
M oF antisymmetry. Similar modificsiion,

| al Far End. Consider the beam in Fig 12-%,
‘end 8, The absolute stiffness factor &) is e
 that it rotates the beam at A, 0, = | rad. It can be
that B is tempararily fixed and o momen
“The moment induced o B is Cy,K,, where
10 . Second, since B is not o be fired
Canky 10 the beam, Fig. 12-5c, wil
By superposition, the result of thew
beam loaded as shown in Fig. 12-4
iffness factor of the beam at A is

&5 K = X; = CuKy

Usiog B4, 12-1 (CupKiy = Cak . we can aho write

mﬂ (12-4)

eie of i prismatic beam, K, = 4E1/Land Cyy = o that K= 261/L,
s the same as Fq. 11-5.

[the beam, assuming it 10 bt fixed
e
yields K} = 3E//L, m
01 ket
o

h(‘. e =
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Relative Joint Translation of Beam. Fised.cod moments ane deseloped
T eon atic member if it has a relative joint translstion & between its ends
mm 12-11a. In order W determine these moments, we proceed as fol-
jows. First consider the ends A amd B w be pin connected and allow end 8 of
ean o be displased a distance & such that the end oo are 6, = G =
A/, Fig. 12-11. Second. assume that B is fised and spply a moment of
M= —Kal8/L) 10 end A such that it rotates the ead 4, AJL, Fig 12-11c
“Third, assume thai A is fixed and apply a momeni M= —Ky(A/L) 10 end #
‘Hhat it rotases the end A, = —A/L, Fig. 12-11d. Since the 1ol sum of

 three operations yields the condition shown in Fig. 1211, we have ot A
! A A
ar " Cukay

(FEM),, = — &,
Applying Eq; 12-1 (CasKp = CnKy) yiekds

{12-6)

symmetric Loading. In the casc of o
loading, we must determine K such thal
of the beam. Fig. 12-10a. To do this, e
Ky arA, Fig. 12100, Likewise, appl
is fixed is shown in Fig. 12-10c
,ﬂlllll Of Fig. 12-10a. Hence

far ex pression can be written for end B Recall that for  prismatic mem-
AE/Land Cyu = L Thes (FEM )y = —6EIA/L%, which is the same
0-5.

d B is pinned rather than fixed, Fig, 12-12, the fixed-cnd moment at
b determined in o manner similar to that deseribed above. The result is

z-n ==

=y O |

for the absolute stiffncs: (FEMY s

(12-5) 4 :
seen that for a prismatic member this equation gives (FEM)ys = Fig 1212

L2, which s the same as that listed on the inside back cover
following example illustrates application of the moment-distribution
10 structures having nenprismatic members, Once the fixed-end
s and stiffness und carry-over factors have been determined, and the
factor modified tecording 1o the equations given shove, the proce-
- analysis is the same as that discussed in Chapter |1

Ry = AEILund Cpy = }. yiells

LS

Yok

and 4
W

Fig. 12-11




Determine the intermal moments 2t the supparts of the beam shown jq
Fig. 1213 The beam bas a thickness of | ft and E is constan.
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3 s
“l’“r_ﬁ‘:“! p=——=10
. s-2
| fe= =15

- From Table 12-2 we find

_ kEl,  1SATE(NINZY
Tl 10

= LBIE

(FEM ) = —0L1891(30)(10) = — 5673 k:fi
(FEM), = 0.075930)(10) = 2277 k-ft

the foregoing values for the siiffness factors, the distribution factoss

omputed and eatered in the table, Fig. 12-135. The moment distri-
n follows the same procedure outlined in Chapter I1. The results in
are shown on the last line of the tablc
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12.5 Slope-Deflection Equations for Nonprismatic Members

The slope-deflection equations for prisi
Chapter 10. In this section we will generalize s
that they apply us well 1o nonprismatic membees. o do this, we will use r)
results of the previous section and proceed to formula
same manner discussed in Chapter 10, that s, considerin,
by the Joads, relative joint displacement, and cu
and then superimposing the results

the fixed-el
d B of the s

Lowds. Loxls are s

Relative Joint Transla
the joints occurs, the induced n
At end A this mo

[KaB/LI1 + Cay)

Rotation at A. If end A rotates 8, the requ
is Ky, Also, this induces a moment of €
Rotation at B. If end & rotates iy, o moment «
and the moment induced at end A is C,K o

The total end moments couscd by these effects yicld
deflection equations, which can therefore be writlen s

M= K|

gt

8,
anfly

* Cuiby

Variabde-motpen o st com e
ﬁ--hu::-«u:.ﬁ,:

-
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sinice these tw similar, we can express the as i single equa

soa. Referring to one end of the span s the near end (V) and the other end
a8 the fur end (F nd represeating meimber mdation as & = A/L, we have
v = Kylly + Cole = 1 + CJ) + (FEM), (12-8)

Here
My = inte momeat at the near end of the span; this moment is posi

n the span
nd determined from tables or by

itive cl

§ support; the
1 tables or

n the span snd is obtained fro

yws the same procedure d in Chap-
that Eg, [2-8

t be discusse
pplied to me

oo concress highway bridge
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PROBLEMS

131, Determine the fincd-cnid moments s A wed  fie the
componite beam, £ = 29(10') ksi

12-3. Determine the sffness K and carry-over facior Cuc for
the beam. Assume A and C arc fiscd supports.

13-, Desermmine the slope at the end B of the cantdever beam. The
ross section it rectangutar and has 3 constant widthof | fL Segment
the beaim every 5 i for the calcalation. Take £ = 29010 ks

*12-4. Dewrmine approximately the stiffncss and camy-over
fachons for he end B of the beam. Segmens the beam every 5 f for
he calculation.

12-6, Determine the fisedend moments at A ond € for ihe
composite beam, £ = 39(10°) ksi

12-7. Determine the stiffness facior &
Cac for the beam. A and € are con
E = 2910 ki

A fgesmmt 8 o= 450 i
12— 5 :

Probs, 12-6/7

#12-8. Descrmise the siffness and
beam having a moment of inertia of 6
‘The beam is partially reimforced by | in. % 10
ateach end, Take E = 2910} ksi

er factars far the siel
nd a depeh of 10in

e cover plaes

L el paies

A Gl 1) .

—woa L 150— 1108 —|
Prob. 12-8

125, Determine sppeotimately the siffness & and car
Fnctoe €y foe the laminated wood benm. The beam has a t
OF 0 mm. Segment the bearm every | m for the calcul
E=11GPa

150w v
—
L
Pl =
Prob. 12-9

1200, Determine the siffness and carry-over factors for the el
Beaim having & mernent of ineria of 94 910} mm* and a deph o0
222 . The beam is purtially reinforced by 15 ma % 200 1%
Mg cover plate. Take E = 200 G

1311 Apply the moment-distribution method 1o dewermise the
moment af each joint of the symmetric parabolic hasnched frame.
Suppacts A and [} arc fived. Use Table 12-2. The members are
each |t dhick E is constant

#1212 Salve Prob. 12- 11 using the slope-deflection equations.

Probs. 12-11/12

gram for the fixed-end straight-

Baunched beam. £ = 1.9(10") ksi,

13-4, Desermise the moments at A, B, and € by the mamsal-
dinribution medvod, Assume the supports a1 A and C are fised and
the roller support at B i on & rigid base. The girder hus » thickness
SF1 R Use Table 12-1. £ is constant. The haunches are sraight

1315, Solve Prob 12-14 using the slope-deflcction quations.

Probs. 12-18/15
#12-16. Use the moment-distribution method tn determine the
moment a1 each joint of the symmetric bridge frame. Supposts
and £ are fixed and B and C are fised consected. Use Table 12-2.
Assume £ is constant and the members are cach | fi thick The
haunches are straight

12-17.  Solve Preb. 12-16 using the stope-deficction equations

12-18 Use the moment-distribution methi to desermine the

moment at cach joint of the frame. The seppors at A and € are

pinned and the joints at B and [ arc fixed connected. Use Table:

12-1, Assume that £ is constant and the members have 3 thickness

of 1 ft The haunches are stmight

12-19. Solve Prob. 12- 18 using the slope-deflection oquations.
300




i

Truss Analysis Using
the Stiffness Method

e spuce e sty of e
cal wunsmission fowers can be
performed using the siffpess method.

 basic fundamentals of using the stiffness
i that this method, although
nputer. Examples of
The method will then be
and framed structures will

In this chapter we will expl

tedious 1o do by h
specific appl
expanded 1o include sp

be discussed in the next chapters

13.1 Fundamentals of the Stiffness Method

There are essentially two ways in which structures can be analyzed using
mairix methods. The stiffness method. o be used in this and the following
chapiers, is a displacement method of analysis. A force method, calied the
Mexibility method. ax vutlined in Sec. 9.1 alsa be used to analyze
siructures; however, this method will not be presented in this text. These are
several reasons for this. Most important, the tiffness method can be used 0
Smalyze both statically determinate and indelerminale structures, whereas the
Dexibility method requires a different procedure for gach of these o cuses.
Abo, the stiffness method viclds the displacements and forces dincctly.
‘Whereas with the Meaxibil iy method the displacements s ot obtiined directly
Furthermore, it is generally much easier to foemulaie the necessary matrices
fox the computer operations using the siffiiess method; and once this is done,
the computer calculations can be performed efficies
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Applcation of the sifness method requires ubdividing the sructure gy
a series of discrete finite elements und identifying their €nd poins s nodey
For truss analysis, the finite clements are represented by each of the nemher,
that compose the truss, and the nodes represent the joints. The forge
displacement properties of each element arc deteriir related g

one ancther usig the force equilibrium equations w These
relationships, for the entire structure, are then grouped fogether mto wha s
called the structire suffness malriv K. Once it is est d, the unkngun

w1

displacements of the nodes can then be deter
the sinucture. When these displacements arc
forces in the structure can be calculated using the force dis
fog each member.

ment relations

1iffness method
s and concepts

Before developing o formal procedure for apply
irst necessary 10 establish some preliminary

Member and Node Identification. Onc of ine i seps when appline
the siiffess method is 0 identify the elements or members of the structure and
their nodes. We will specify each member by & puniber sed within a square
nd use 3 pumber enclosed within a circle 10 leniify e nodes, Also, the “near
and “far" ends of the member must be ideniified. This will be done using
o writken along the mernber, with the head of the arrow directed tward the
far e, Examples of member, aoe. and “direction’” identification for o s
shown in Fig. 13-la. These assignments have all been done arbitrarity.*

Global and Member Coordinates. Since fouds and dsplacenans
;!mm!;q mitics. i is necessary w0 establish a coordinate system in ork

+ heir comect seme of direction. Here we will use two differes
e porate sy, . single globul o siucture coordinte 571
Haeement oo 0 specify e séie of axh of the cxemal force ool Ui
i al the nodes, Fig. 13-1a, A local or nembe?
direction of o e b wied for each member 1o specify the sease o
'Kumnﬂ-m ool and internal Joadings. This system I!I\ be
m'.,: '.:"":‘“,"“" the origin ai the “near” node and the 5' £
in Fig, 13- 1p the *Far” nodde, An example for truss member 4 is 047

ot b s, i
msipul e e

ubeing o e et it K are acully more efficices wing

e 18 8 wave paters, i st from 1 o o, thes boe ¥

Degrees of Freedom. The unconstrained degrees of freedom for the russ
represent the pnmary unknowns in the stiffness method. and therefore hese
mast be identified. As a general rule there are two degrees of freedom, or two
possible displacements. for esch joint (node). For application, each degree of
freesdom will be specified o the truss using a code number, shown at the joint
or node, and referenced Lo its positive global coondinate direction using an
associsted arrow. For cxample, the truss in 13-l his cight degrees of
freedom, which have been identified by the “code sumbers™ | through 8 as
ahawn. OF thes: Jisplacements, | through § represent unknown
ox imconstrained de 1. and 6 through B represent comtruined
degrees af freedan raints, the displacements here are rero.
ion, the ers will always be used 1o identify

Far later applic
the wasknoton displc

st code mambers wii! be used 10 identify the knosn displacemen

degrees of freedom) The reason for choosing this method of identification has

o do with the later partitioning the structure stiffncss matrix,
50 that the unknown displacements can be found in the most dircet manner.

Once the truss 1+ labeled and the code numbers are specified. the structure
stiffness matrix hen be determined. To do this we must first establish
amember stiffn arix k' for each member of the trass. This matrix is used
0 express the member's load-displicement relations in terms of the local

coondinates. Since all the members of the truss are not in the ssme direction,
we must develop & means for transforming these quantisies from cach
member's local . ) coodinale system o the siucwre’s ghobal

& ¥ coordinate system. This can be dome using force and displacement
rransfarmation matrices. Once established, the elements of the member
stiffiess matrix. are transformed from Jocal W global coardinates and then
asembled to create the structure stiffness matrix. Using K, as stated
previously, we can determine the node displacements first, followed by the

support resctions and the member forces. We will now elaborate on the
development of this method

SEC 131 FUNDAMENTALS OF THE STIFFVESS METHOD. 499



I this section we will essblish the stffess matrix for  single truss by
niuhﬂlw“‘-fm aricnied as shown in Fig. 13-2. The terms o
this matri will represent the load-displacement relations for the member
;’Fﬁm ember can oaly be displaced along its axis (' axis) since ihe
- - i f are therefare
= ‘When a positive displacement dy is imposed on the near end of ihe
¢ far end s held pinned, Fig. 13-2a, the forces developed »
he ends of the members arc

G=Fd o=
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the force ut joint § when o unit displacement is impased st joint j. For example,
'é‘},xl_ﬂ-n k' is the e at the near joint when the far joint is held
feed, and the near joint undergoes 4 displacement of dy = 1, ic.,

. _AE
L
Likewise, the force at the far joint is determined from i = 2,
_AE
L

These two tesms represent the first column of the member stiffness matrix
I the same manner. the second column of this matrix represents the forces
i the member only when the far cod of the member undergoes a unit

13.3 Displacement and Force Transformation Matrices

€6 8 trsss is composcd of many members (clements), we will now develop

ethod for transforming the member forces g and displacements d defined

loeal eoordinates (o global coordinates. For the sake of convention, we will

the global coordinates positive x to the right and positive y upward.

st angles between the positive x. y global axes and the positive 1’

local axis will be defined as 8, and 6, as shown in Fig. 13-3 The cosines of

‘angles will be used in the matrix analysis that follows. These will be

s A, = cos 6, A, = cos #, Numerical valucs for A, and A, can

generated by a computer once the x, y coordinates of the near ead

id fiar end F of the member have been specified. For example, consider

WVF of the truss shown in Fig. 13—4. Here the coordinstes of N and
) and (xp. y), respectively. Thus.

L

(13-5)

A, = cos 8,

Ve Nl (13-6)
L Vg, — 5 F + (0 — 5l

signs in these “gencralized” equations will sutomatically

‘members that are oriented in other quadrants of the -y plane.

A =cos 8, =

e e 0 any comericm point. Ussally hweet, 8 i o where the
the nodes will b pesiie. as shown @ 34



Displacement ent Transformation Matrix. In glabal coondinares cacy
end ¢ the member can have two degrees of freedom or independent gis-
placements; nts; mamely, juint N has By, and Dy, Fig. 13-5a and 13-5b, ang
m,rm "n"“wﬂr Fig. 13-5 and 13-5d. We will now consider cacy

these ‘lq].h!mll- sgynlely. in order to determine its component diy. . = -
o When the far end is held pinncd and the ey y Qu = queos 8, Oy, = qycos B,

‘iﬂ‘-“m Dy, Fig. 13-5a, the cormespondiny dis.
) wlong the member is Dy, cos 8.7 Likewise, o
R 'v}il «cause the member 0 be displaced Dy, cos 8, alimy

global force componcnts of gy at N are

Or = qro080, Q5 =gpeosf,

- g = Dy o8, + Dy, cos 6,

positive displacements Dy, and Dy, successively b
uhﬁ. the near end is held pinned, Fig. 13-5c and
displaced
[ @ = 94,
Cr=ah.  Op =k,
35
‘which can be writien in matrix forn =5

a3-1n

Morms the e [ocal ) forces § acting f the s of the
hbul omponents Q. By comparison, this
B ) ovpnie. of the diplaeinnt

sing the direction cosines A, = cos #,, A, = cos 6, these equations

I:"‘} (13-10)
r.
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ce Transformation Matrix. Consider now spplication of the force.
the near end of the member, the far end held pinned, Fig. |3-6. Here
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3.4 Member Global Stiffness Matrix

We will now combine the resulis of the preceding sections and determine gh
Ltiffness mairix for a member which relutes the member's plobal fos
s Q o its global displacements D. I we substitne Eq 135

@ =TD) it Eq. 13-3 (g = k'), we con determine the member's forces
qin terms of the glabal displacements D at its end points. namely
K'TD | 1313
Substituting this cquation isto B 13-11, Q = Ty, viclds the final resul
Q=TkTD
o
Q=kn (13-14)
where
I_k-ﬁ”l‘l (13-15

The matrix k is the member sifiness matrix in global coordinates. Since T,
T, and k' are known, we have

A0

o 4{[ 1 =1][ar007
0 AL 1 1iLooaa ]|
0 A

Perfonting the mairix. operations yields

'1

| e

The focasion of cach clement in this 4 X 4 symmetric matrix is referenced
with each global degree of freedom associated with the near end ¥, followed
Dy the far end £ This is indicated by the code namber potation along the rows
and columns, that is, N, ¥.. F.. F,. Here k represents the force-displacement
rebations for the member when the componeats of force and displacement at
the ends of the member are in the global of x, v directions. Each of the terms
i the matrix is therefore & stiffiness influence coefficient K, which denoes
the x or y force component at i needed to cause an associated wnit ¢ or y
displacement componcat at /. As a result, each identificd column of the matrix
fegresents the force components developed at the ends of the member
when the identified end undergoes a unit displacement related to its matnix
column. For ex a unit displacement Dy, = | will create the four force
mber shown in the first column of the matrix

13.5 Truss Stiffness Matrix

SEC 115 TRUSS STIFFNESS MATRIX  SO5

Once all the member stiffness matrices are formed in global coordinates, it
becomes necessary Lo assemble them in the proper order so that the stiffncss
matix K for the cntire truss can be found. This process of combining the
member matrices depends on carcful identification of the elements in cach
member matrix. As discussed in the previous section, this is done by
designating the rows and columas of the matrix by the four code numbers N,,
N, F., F, used 1w identify the two global degrees of freedom that can occur
ateach end of the member (see Eg. 13-16). The structure stiffness matrix will
then have an order that will be equal to the highest code number assigned to
the truss, since this represents the total number of degrees of freedom for the
structure. When the k matrices are sssembled, each clement in k wil then be
Phaced in its same row and column designation in the structuse stiffness matrix
K. In particular, when two or more members are connecied 10 the same joint
0 mixde, then some of the elements of ach of the members' k masrices will
be assigned to the same position in the K matrix. When this occurs, the.
elements assigned (o the comman location must be added twgether
algebraically. The reason for this becomes clear if one realizes that cach
eleonent of the k mairix represeats the resistance of the member 1o an applied
force at its end. In this way, adding these resistances in the £ or y direction
when farming the K matrix is symbolic of determining the foral resistince of
€ach joint to 3 unit displacement in the x o y direction

This method of a:';emﬂlng the member matrices to form the structure
Siffaecs mairix will mow be demonstruied by two mumerical examples.
Ablhough this process is somewhat tedious when done by hand, it 15 raher
&y 1o program oa s computer.
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Determine the structure wtiffness matrix for the two-member truss shown
in Fig. 13-Ta. AE is constant.

@ will have two unknown displacement componens.
i Ci

nts at oint (3)are code numbered first, follows
g_‘lh_nlidnnrme global coordinale

Member 2. Since (@ is the near end and (1) is the far end, we have

A= 08
Thus Eq. 13-16 with L = 5 ft becomes
1 2 5 &
0072 D0% -0072 -0096 |1
Bi=Ax 00% 0028 -0.09 -0128[2
=0.072 0.0% 0072 0096 |5
—0.0% —0.128 0.096 0128 |6

‘the rows and columns are identified as 1.2, §, 6, since these numbers
i, respectively, the x, v degrees of freedom at the near and far ends
member 2.

Stracture Stiffness Matrix.  This matrix has an order of 6 6 since there
 5ix designated degrees of freedom for the truss, Fig. 13-7b. Come-
elements of the above two mtrices are added algebraically to
the structure stiffness matrix. Perhaps the assembly process is easier
e il the missing numerical columns and rows in k; and k; are expanded
th zeros o form two 6 % 6 mawices. Then

=Ktk
1 2 3 4 56 1 2
0333 0 0333 0 0 0]t 007z 009
GG 0 0 0.0 2 009 0128
—0333 0 0333 0 00 |3, .| 0 0
00 0004 0 0

8 o0 0 0005 -0072 -0096
W00 o006 —0086 —0.128
0405 0096 0333 0 -0.072 —009%

009% 0128 0 0 -00% 0128
-0333 0 03 0 0 o

o o 0 [ I 0
—pom -oe 0 0 0072 0086
—00% -0a28 0 0 00% 0128

s used for this operation, generally one sturts with K having
ens; then ns the member global stifffess malriccs are
are placed directly info their respective element pasitions

rather than developing the member stiffmess matrices,

sescacco s

0072
=009

o072
0056

6
~0.09
—0128

0096
0128

TR ir—

n, then assembling: them.
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m"!m’m matrix for the truss shown in Fig. 13-g,
AE is constant.
Alihough the tnuss is statically indeterntinate 1 the first degrec, this wil
present no diffieulty for obtaaning the structuré stiffess matrix. Each join:
n mm.ﬁmly identified numerically, and the near and far ends
are indicaied by the amows along the members. As shown in Fig, 1386

i s are code numbered first, There are eight
of freedom for the tnsss. and so K will be an 8 > 8 matrix. enin

coordinales positive, the origin of the global coordinsies

4. Here L= 10, 5o that
10-0

T T
e oo -nms
oo oms —nos |

L oms -oms -ooas oo s
6. Here L= 01, so that
10 - 10 0
= 10 10 =5
10 g 10
5 7 &
m o0 o oo
e
o a1 e e

. Stiffness Matriz. The foregoing six matrices can now be
d into the §x &K mawix by alzcbraically adding their
ing  elements. For  example,  since (ki = ABD.1),
CAB(D.035), (kyy )y = (kiyhy = (hinds = Gyl = O, then, Kup =
0.035) = AE(0.135), and 50 on. The final result s thus,

7 3 @ 5 6 7 B
00 0 o ) S| nos - s
(TEC ol 0 o -Dms -00s
0 o35 —oms aoas —00s -0l o

-0 =038 Qs -0 Oms 0 o
oo -oms  oi3 -omds o o010
- 0.035 om@s -ams s o 0
~01 [ 0 0 g 003
o 0 -0l (i oS 0,

Ans.

T




(CH.13 TRUSS ANALYSIS USING THE STIFFNESS METHOD

W of the Stiffness Method for Truss Analysis

{ Once the stmucture stiffness matrix s formed, the global force components g
- acting on the truss can then be related 1o its global displacements ID using
Q=KD (13-17)

This equation is referred 1o as the structure stiffaess
always assigned the lowest cade pumbers to identify th
of freedom, this will llow us now to partition this cquat

Since we have

nconstrained degrees
|

ollowing form®

(13-18)

Here

Q. D, = known external loads and displucements; the |«
truss s part of the problem, and the dis
specificd as zero due (o support constraints

Q.. D, = unknoun loads and displacements; the
unknown support reactions, and the disy
where motian is unconstrained in a parti

K = structure siiffness matrix, which is partiti
the partitioning of Q and [}

Expanding Eq. 13-18 yiclds

hiere exist on fhe

L} o rollers
represent the
re al joints

ipatible with

Q=KD - K.D, (13-19)
Q=KD + KD 13-20)
Most ofien I, = @ since the supports are not displaced. Provided this is the
case, Eg, 13-19 becomes
Q =K;n,

; Sinee the elrnents i the partitoncd maris K., represcet the oral resisanie
<3 tuss joint to @ unit displacement in either the x or v direction, then the

I he colfec Fall the force equil tini

' applicd to the joints where the cxemal | i
: 00 oty o Whese e cxtemal s s zcr o have « keowr e
D, = Kyl g, (13-21)

$1oem UKl equition we can abiain a direct solution for ail the unknown joi
i then using Eq. 13-20 with I = 8 yields

- QKD
8 oo v 5
& hmm::.,,m.“ T SUppon seactions can be determined. The member
B incd using [Eq. 1313, namely
S
i 9=k
s =TS = ‘““”-"ﬂlh-».mn»muwmmm

nly one of the forces hus to e found. Here
a1 exerts lension in the member, Fig. 13-6b,

By,
AE
gr ==L =) Dy (13-28)
“ D,
Dh
T particular, if the computed result using this equation is negative, the member
is then in ¢ vession

Procedure for Analysis

The follow
placeme;

ad provides & means for determining the unknown dis-
support reactions for & tnuss using the stiffness method

Notation

* Establish the « bal coordinate system. The origin is usually located
at the joint for which the coordinates for all the other joints are positive

and member numerically, and arbitrarily specify the

ends of each member symbolically by directing an amow

along the member with the head directed towand the far end

wbers at each joint, using the lowest nanbers to

Ilowed by the highe st aun-

de
¥ unco ned degrees of freedom,

bers 10 identify the constrained de;

sblem, establish Dy and Q;

* From th,

Structare Stiffness Matrix

* For cach member determine A, and A, and the member stiffiess matrix
using Eq. 13-16.

* Assemble these matrices to form the stiffness matrix for the entire tuss
8 explained in Sec. 13.5. As a pantial check of the calculations, the mem-
ber and structure stiffness matrices shauld be symmsernic

Displacements and Loads
= Partition the structure stiffoess matrix as indicaied by Eq. 13-18

* Determine the unknown joint displacements D), using Eg. 13-21, the sup-
PO reactions (Q, using Eq. 13-22, and each member force g using

Eq 13-23,




SEC. 136 APPLICATION OF THE STIFFNESS METHOD FOR THUSS aatysss $13

Determine the force in each member of the two-member truss shown iy
Fig. 13-9a. AE is constant,

SULUTION

Notation. The onigin of x, y and the numbering of the joints and men,

s are show in Fag, 13-9h, Also, the mear nd far ends. of cach membe;

are identified by arrows, and code numbers are used at cach join. B,
f it seen thut the known external displacements are 1), - , -

Dy = Dy = 0, Also, the known extemnal loads are @, =0, 0, = -2}

Hence,

0072

0096 | 0
0128 || 0

-F}U\ written in the form of Eq. 13-20 (or Eq, 13-22) as

; Expanding and solving for the reacti

0
|0, = —0.006(4,505) ~ 0.128(— 19.003) = 2.0k
| The force in cach member s found from Eq. 13-23. Using the data for

sically these equations represent EF, = 0 and XF, = () applied 1
R e » = Dapplied 1o joint
b= 308 -19m
AE = AE

By inspection of Fig. 13-4, une would indeed expect » rightward and
downward displacement 10 occur at joint (2 as indicated by the positive
and negative signs of these answers.

Using these results, the support reactions are now oblained from

[ 033 0 o

2 o o | es08], |0
=AE

o ~0072 009 | A | -10m3] " |0

@5 —00% —012% 0

5.

= —D3II4505) = — 15k

= —0,072(4.505) — 0.096(~ 19,003} = 1.5k

A, in Example 13-1, we have
A=, =0,0=1

4505 |1
13 34
Tl
Y=

AE 19.003 |2
RO L kx| o oja
L o s

ué[—e.sw- ~15k Ans.

2 A, =06 A, =08L=5f

1 - .
= - 08
0.6 08 06 oy

b %['Dﬂ‘ﬂ“] ~ 08— 19.003)] = 25K Ans.

«can of caurse be verified by equiliboum, applied at joiot (2




 sapport sesctions and the force in member 2 of 1
i ™

are numbered and the origin of the
3=10b. Also, arrows are used 10 refer
Using the code numbers, where

Multiplying 5o as to formulaie the unknown displacement equation 13-18
i 8

0 0135 0035 0 0 0 0] [o

0 0035 0a3 0 -0l 0 b, |e
2|=aE|0 ] 0135 003 005 || b, [+ 0
4 ] =01 —0.035 0135 -0035 || D, 0
0 0 o 0035 -0035  0.135 [5, Lo

 Eapanding and solving the equations for the displacements yields

D, LT
D, -69.20
D, -2.06
[D. —87.14
D, | —22.06

e g
| Developing Eq. 13-20 from Eq. (1) using the calculated results, we have

degrees of frecdom, Fig ek
oh =01 0 —0035 0035 0.035 | - 69.20
= AE| —0.035 -0m35 -0l 0 0 AE ~2.06

—oms 0035 0 0 -0l —g714

| —22.06

g and computing the support reactions yickds

0, = -40k Ans.
0, =20k Ans.
0, = 40k Ans.

ive sign for @ indicates thal the rocker suppant reaction acts in
e x direction, The force in member 2 is found from Eq. 13-23,

n Bxample 13-2, A, = 0707, A, = 0707, £ = 10%2 0. Thus,
1784
_AE | | ~69.20
W.:,I-Dﬂm —0707 0307 0707 Ef o
o

SEC 136 AFPLICATION OF THE STIFFNESS METHOD FOR TRLSS Asatyss 515




Determine the force in member 2 of the assembly in Fig. 13-11e if the
suppor at joint (1) settles doumsard 25 mm. Tuke AE = 8010%) kN,

 Natation. For conveniene the origin of the global coordinates in Fig
13114 is established at joint (3, and as usual the lowest code numbers
 are used to refercnce the unconstrained degrees of freedom. Thus,

SEC 136 APPLICATION OF THE STIFFNESS METHOD FOR TRUSS aNALYSS  $17

nts and Loods.  Here Q = KD yiclds

0378 0M96i0 0o -0128 -025 0 D,
006 040500 -031 —oo% o| o,
0 0 0 0 0 off o
i - o 033310 om0 0 o 0f -oos
—0I28 00960 O 0128 0 0 0 o
=096 -0072:0 0O 0me 00712 0 L 0
=125 0 g g 0 a 0 o 0
o o fo o 0 0 0 0 0

the solution for the displacements, Eq. 1319, we have

AT 0.09 || D, AE [T ~0128 =009 -02§ !I] o
n, 0 -0333 —00% -0072 0 o

0 = AET(0.378D, + 0.096D;) + 0]
0 = AE[(D.0960, + 0.405D;) + 0.00833]

these equations simultaneously gives
D, = 000356 m
D, = —0021875m
the support reactions do not have 1 be calculated, if necded they
e found from the expansion defined by Fy. 13-20. Using Eq. 13-23
ermine the force in member 2 yields
06, L = 5m, AE = B0 KN, so that

A= 08,4, =
000556
s010") i ~ 0021875
: =—-[08 06 —0&8 —08]
(ot
o -
ILIEN D
= 10D gy — 00131 = - 19N Ans.
A
<how that the fosce in member 1 iy = 834 kN BN F

"1 KN, The resuls arc shown on the free-body

. which cian be chiecked fo be in equilibrium. W




17 NODAL CooRDmaTES  $19

2 (b,
O pocasion a fruss can be supporied by a roller placed o0 an incline, ang A
 when this pecars the consiraint of zem deflection it the suppurt (node) conr [d”] = [*' S Ul Os
i - dy 0 0 A Al D
Dy,
_mmndmwmm * axis, and because :
“along the =" axis this node will have displacemes  forces —
! : wat the near and far ends of the member, Fig, 13124, b ® i
jong bah glabal coardinate axes, x. . For this reason we sy ts Q along the global axes of - e .':." :

ment condition at this node when writing the globa)
for the truss using x,y axes withoul making some

Oy = aueosd, Q= gutos §,
a A0 & computer . Qe = groos By Dy = gpoos B,
of nadal eoordinaies x°, ¥ located at the inchined
oriented such that the reactions and suppoa
of the coordinate axes, Fig. 13-12a. In order 1o
equation for the fruss, it then becomes necessary
n matrices for each of the
that the results can be summed within
 system. To show how this is done, consider
‘haying a global coordinate system x. ¥ at he
system 1, v" at the far node (F). When

ﬂl.l!‘! expressed as

L A0
[g::.' [ ;.1[:::]

displacement and foree transformation matrices in the above equations
1o develop the member stiffiess matrix for this situntion. Applying

R

mitrix operations yields,

A Al chAe A
BHEl A 4 - AWML
T [ R W PR Ak

a2

—dAy =NA Ay

i mber that is connected w an
s then used for cach me o el 8

the process of assc! mai
"'m: rnum he standird procedure. The following




METHOD.
i SEC 137 NOBAL COmRDATES $21

atrix, we have

e oen o Fig. (313, “‘m Stiffmess Matrix. Asscmbling these matrices 1o determine the
crure stiffness m

SOLUTION. g
Natation. Since the rolker sappoct at @) s on an incline, we mist y .
- nodal coordinates at this modc. The joints and members are numbered ang ¥ 0 0128 008

YRR 0

johal , ¥ axes are es(sblished at node (@), Fig. 13- 136, Notice iy o Lo

* the code numbers 3 and 4 are along the 4%, 3" axes in order (0 use the cup " g D036 04E3 -02157 b D,

dition that Dy = 0. - LA D,
) : ps 0, 0417 [ ik

e . ~017675 | 0.
i The stiffaess malrices for members 1 ang 2 = g: 0 i :ITGT! g;: g‘o"‘g:: i
d using Eq. 13-24 since these members have code - s : el
ction of global and nodal axes. The stiffness matrix foc |/

ermined ia the usual manner. i

u out the matnx multiplication of the upper partitioned matrices,
e (hree unknown displacements D are determined from solving the
simultaneous equations, ie.

13e13c A= 1, A, = 0. A, = 0.707, A= —0.707
SR 3 4
0 017675 047675 |
i o i

3525
(i
e B
AE

-1213
e

m reactions () are obtained from the multiplication of the lower
i d di we

in Eq. (1). Using the comp! have,

0, = 0(352,5) — 02357~ 157.5) + (00417~ 127.3}
~ =313kN Ans.
= 0,126(352.5) — 0.096(— 157.5) — (0.IT675K~ 127.3)
==75kN

- (L096(352.5) = 0.072(~ 157.5) + 0(= 127.3) 4‘
—25kN Ans.

Ans.
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rmal Changes and Fabrication Errors

Emﬂmm

11 same of the members of the truss are subjected 10 an Incréase or decrease
i length due o thermal changes or fabrication erTors. then it is necessary to
wse the method of superposition 1o obtain the soluion. This requires theee
sieps, First, the fixed-end forces necessary t pre ement of the modes
a5 cansed by temperature or fabrication are cal the cqual bt
opposite forces arc placed on the truss it the nodes and the displacements of
{he nodes are cakulated using the matrix analyses. Fin 1l
in the members and the reactions on the trsss arc o ed by superposing
these two resalts. This procedure, of course, is only necessary if the truss i
sutically indeterminate. If the trass is satically deten e, the displacements
at the nodes can be found by this method; however, the rature changes
and fabrication errors will not affect the reactions an: ember forces smce
the truss s free to adjust 1o these changes of le

Thermal Effects. If a truss member of length £ 1 s

tre increase AT, the member will undergo an increase in length

where a s the cocflicient of thermal expansion. A com

0 the member will cause a decrease in the member's |

1f we equate these two displacements, then g, = ALaAT

the nodes of the member fixed as shown in Fig, 13
{axky = AERAT
taply = —AEaAT

Realize that if 3 temperature decrease occurs then AT becomes nogative and

d 10 a tenpers
AL = AL

@yl | _ {1 |1 |
@ ‘-JM“T[’ ‘J = AEaAT ;
i Q) A, =N,

Etﬂ;-_ﬁm Errors. 1f a inuss member is made 100 long by an amount AL
o mliumnauuss.mmﬂul.m.mw‘..krpmmmmwl‘
design length L is gy = AEAL/L, and so for the member in Fig. 13- 14, we have

AEAL
an, = 258
fayly = - A58

If the member is or;

formes il ginally too short, then AL becomes negative and hese

SEC 118

i global coorlinates, these forces are

113-26)

Matrix Analy
forces, tempersy
ment relationship 7t

the general case, with the truss subjected t0 applied
and Fabrication erroes, the initial fosce-displace-
hen becames

Q =KD~

(1321

Here Qy i & column matrix for the entire truss of the initial fixed-end farces
caused by the (erperatare changes and fabrication errors of the members
defined in Eqs. 13-25 and 13-26. We can partition this equation in the
following form
K. [0, [@n]
o T T
Carrying out the multiplication on the right side, we obiaia
Q =KD, + KD, + Q) (13-28)
Q, = KuD, + KD, + (@) (13-29)

Acconding to the superposition procedure described above, the unkmown
displacements D, are determined from the first equation by subtracting (Qulo
from both sides and then solving for D, This yields,

D, = K}(Q, - K;D, — ()

obtained, the member forces are then

Once these nodal displacements

determined by superposition. i
q=kKTD + g

this equation is expanded (o determine the force atthe far end of the member.

we obtain

except here we have the additional term
ial Fined-cnd member foroe due o emperatur
ned previously. Realize that if the
he member will be in

This result is similar 1o Eg. |
{9rky which represents the initi
thanges and /or fabrication error as defi
Compuied result from this equation is negaiive, !

B o of this procedure
The following two examples illusteate application of tis p ¥

THIISSES HAVING THERMAL CHANGES AND FARRICATION (RRRS. 503



force in miby d assembly of Fig
13-15 if member 2 mmumm wnstm before it was fitted ingo
place. Tuke AE = §(10% kN,

m, and therefore applying Eq.
=06, we have

0.0016
0.0012

SEC. 113 TRUSSES HAVING THERMAL CHANGES AND FABRICATION sxis 09

fioaing the matrices as shown and carrying oot the multiplication 1o
i  the equations for the unknewn displacements yields

0378 0096 | [ o 00 -oi -006 -03s 0|0
Bl M '} HU.[ o wh| e
m [n.o% 0405 || b, 0 003 -oms -omz o o)l o o

—
co

 gives
0 = AE[0378D, + 0.096D,] + AE[0] + AE[0.0016]
0 = AE[0.096D, + 0.4050,] + AE[0] + AE(0.0012]

| Solving these equations simuliancously,

(85

D, = ~ 0003704 m
D, - 0.002084 m

igh not needed, the reactions  can be found from the expansion of

4 11) following the format of Eq. 13-29
‘order to determine the force in members | and 2 we must apply

L A, =04, =1, L=3m, AE = 810" kN, so that

0
B(I0Y) 0
=% —1 0 1| _Goe [t
— 0002084,
g, = —S56KN Ak

L A= ~08, A, = -0, L = 5 m.AE = §(10°) kN, s0

— 0003704

p — 0002084 | S(I0°H-0.01)
(08 06 08 -08) = s

0




force developed in member 2. Tuge
R E = 29(10°) I/ Each member has s cross sections

'wmmmulﬁs 13-16 is subjected to an increase iy
the.

SEC.

134 TRUSSES HAVING THERMAL CHANGES AN FARRICATION ERioss §37

ng (o determine the equations of the unknown displacements, and
these equations simultaneously, yields

Dy = - 0000027 ft
D, = —0.01187 fi

—0.002027
L e, n —0a11E? o
s 0707 o707 0707] | — SERHI076.5(0107(150)
o
=~ 6093 I = —6.09 k Ans.

that the temperature increase of member 2 will not cause any
on the truss since extermally the truss is statically determinate. To
¢ this consider the matrix expansion of Eq. (1) for determining the
. Using the results for the displacements, we have

AE[—0.1(— 0.002027) 4 0 — 0.035(— 0.002027)
+ 0.035(— 0.009848) ~ 0.035(—0.002027)] + AEI0] = 0

—0.035(— 0.002027) — 0.035(— 0.01187)
= 0.1{—0.002027) + 0 + 0] = AE]-0.000689325] =

0.035(~ 0.002027) — 0.035(—0.01 187) + 0
+ 0 - 0.1(—0002027)] + AE]-0.000689325) = 0
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S8 €M 13 TRUSS ANALYSIS USING THE STIFFNISS METHOD

13.9 Space-Truss Analysis Carying

The analysis of both satically dererminate and indeterm

ateix. multiplication yields the symumetric matrix

e SpACe Inissey

can b performed by wsing the same procedure discussed previously. Ty A,
account for the three-dimensional aspests of the problem. however, additiony
elements must be included in the transformat X In this regang A: M,

consider the truss member shown in Fig. 13-17. The Dt Fog i

meinber defised in terms of the focal coordinate +' is given by Eq. 134 A,
Furthermore, by inspection of Fig 13=17, the direction cosines berween the Lirg LRI {13-34)
lobal and local caordinates can be found wsing equa L Ay A
135 and 13-6, that is. =
= -
A =cosd = :
= cos 8, == ri 48
= 33y This cqualion rep r stifftess matrix expressed in global
coordinates, The ¢ loag the rows and columns reference the

& 3, 2 dhrections N, N, followed by those at the far end,
= F. F, F,

For computer tis generally more efficient to use Eq. 13-34
- than 10 carry out the matrix multiplication T'k‘T for each member. As stated
= previously, compaier S1orape space is if the “structure” stiffness matrix

K is first initialized
Pl 1217 member stiffness matrix are generated, they are placed directly into their
A =cosd = fespective positions Afier the structure stiffness matrix has been

developed, the same procedure owlined in Sec. 13.6 can be followed to
determine the joint displacements, support wactions, and intemal member
Forces.

As 3 result of the third dimension. the transformation matrix, Eq. 139, becomes

,_[A, A ko o0 o]
0.0 0 A A A

Substinsing this and By, 13-4 into Eq. 13-15, k = Tk"T, yichds

oo o

-

s comsurcind entiely of
of the sructare. {Coartesy

>

4“.[’-! AL A0 0 O
=T T T W S

The stictural framewosk of this aircrait hasgsr
15k in onder fo rodece significantly (e weght o

9 I of Retklehem Siccl Carporanon)

"
v
s e e -~
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131, Determine the siffoess mamin K for the sssembly. Take
A =05in’ and E = 29(10") ksi for each membcr.

13-2_ Determine the horizoatal and versical displacements at
joint () of the assembly in Prob. 131

13-3. Determine ihe foree in each member of the assebly in
Prob 13-1

e o]

Probs. 13-1/2/3

13-4 Detormene the siiffoess mawix K for the s AF js
canstant.

138 Dermine e fors i meriers (1] s [5]. i

13-6. Determine the stiffaess matnx K for the
A =00015 m and E = 200 GPu for cach member

s, Toke

13-
force i momber

Descrmine the vertical di
Take A

lacement at joint (8) and e
00015 m° il £ = 200 Gy

*13-8 Determinc the stiffoess mat
A = 00015 m’ and £ = 200 GPa fos

K for the truss. ke

39, Determine the force in member [6 ] Take 4

L
und E = 200 GPs for each member

13-10. Determinc the force in member [1] if this
10 rmm t00 long before it was fined i
femove the 10-kN load. Take
exch member.

B001 S

cmber was
1 the truss. For the soluton
00015 m* and £ = 200 GPa for

i

Determine the stiffncss mairix K for the tnsss. Take
o,

20010°) ks 13-16.  Dctermine the reactions on the truss. AF is constast.

#1312 Determine the forec in per [Z] if its temperature
s imcreased by 100°F. Take A i E = 2910%) ki, =
850007 V°F.

p-13 Drter horizontal displacement of joint (]

T
[2] Take A 2H10%) ksi

e force in me 075", E

Probs. 13=11/12/13

B-14.
comtant

Determmine (he siffness matrix K for the tuss. AE is

D15 Determine the horizontal displacensent of joint (Dana 1317, U
e foree in member [ 1] AE is constant




Tie statically indeicrminate loading
in bridge girders thal are continuous
over their piers can be deferminod
using the stiffness metho

Stiffness Method

Beam Analysis Using the

The concepts pr m the previous chapter will be extended here and

applied to the 15, It will be shown that once the member
diffpess matrix sforma ix have been developed, the
procedure fi ication is ex for trusses. Special

T
comsiderntion will be given to cases of JIII« ntial settlement and temperature.

14.1 Preliminary Remarks

s 1o beans, we will first
ibers,

the stiffness method app
¥ concepts and definitions related to these me:

Before we show
discuss some pr

cation. In order to apply the stiffness
m into its

Member and Node Identi
method to beam t first determine how to subdivide the be:
component finite it be free from load
and have a prismatic cro: reason the nodes of each clement
are located at a suppon of at points where members are conected together,
where an eaternal where the cross-sectional area suddenly
changes, or w | displacement at a point is to be
remined For example, consider mr beam in Fig. 14-1a. Using the same
scheme as that for trusses, fous podes are specified numerically w
and the three clements are idents nu ally within a square. Also,
naice the “near” ends of each element arc identified by the amows
Willen alongside each element

eral. cach
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| CH 18 BEAM ANALYSIS USIVG THE STIFTNESS METHOD
V Global and Member Coordinates. The zloh

coordinate system wij

i be identified using 7, v. T axes that generally have their origin at a node g
are positioned so that the nodes at ather points on the beam all have po
(0] ‘coordinates, Fig. 14~ 1a. The local or member &, ', 2" conrdinates have
—_ oriin . the “near” ead of each element, and the positne «* axis s
\owands the “far” end Figure 14-1b shows these coor oy
I both cases we have used a right-handed coordinaie system, so 1
iz fingers of the right hand are curled from the x (') axis towards they (y'} anis,
L i the thurab points in the positive direction of the is, which is dirested

ot of the page. Notice that for each beam clement the & and 1* aves will
be collinear and the global and member coordinates will all be parsiicl
Therefore, unlike the case for trusses, here we will notl need 1o develop
transformation matrices between these coordinate systems

of Freedom. Once the elements and nodes have been identified.
and the global coordinate system has been established, the o s of froe
{or the beam can be determined. If we consider the effects of both bending and
shear, then each node on o beam can have two degrees of freedom. namely, &
vertical displacement and  rotation. As in the case of irusses, these displace
ments will be identified by code numbers. The lowest code numbers will be
used 10 identify the unknown displacements (inconstrained degrees of freedon
and the highest nursbers are used to identify the known displacements (con-
sirained degrecs of freedom). Recall that the reason for choosing this method
of & has o G with the of later g the st
ture stiffness matrix, <o that the unknown displacements can be found in the
most direct manner.

To show an example of code-nurmber labeling, consider again the continuous
beam in Fig. 14-1a. Here there are eight degrees of freedom, for which code
mumbers | through 4 represent unknown displacements, and numbers § throagh
8 repeesens known displacements, which i this case are all zero. As ancther
example, the beam in Fig. 14-2a can be subdivided into three elements amd four
modes, In particular, notise that the intemal hinge ot node 3 deflects the same o
both elements 2 and 3; however,the rotation at the end of e h element s differere
Fox this reasan thees cods numbers are used 10 show these deflections.
’I'E:! hine degrees.of freedom, five of which are unknown, as shown i

and four known; again they arc all zero. Finally, consider the sider
m’fﬁ' used on the beam in Fig. 14-3a, Here the deflection of the beam i
:“ﬁ&u.l;-“!; :.dt .: there m five unknown deflection componens
e m ofthe siffess method foe beams follows o similar prm'”':
7 “h"‘;':;ﬁll_wmn cstablish the stiffpess matrix for NC“
et matris, U m":llnuas are mmllhlmd to form the beam of SIWUWW
e . Sinig the structure matrix equation, we can then pmcredu
e nknown displacements at the nodes and from this deler
¥ T 0n the beam and the internal shear and mament at the 1006
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14.2 Beam-Member Stiffness Matrix

In ihis section we will develop the stiffiiess matrix for 3 beam element or
member having a constant cross-sectional area and referenced from the local
¥, ', coordinate system. Fig. 14-+. The origin of the coordimates is placed
at the “near” end N, and the positive ' axis extends toward the "far” end F.
There arc kwo reactions at each end of the elemens, consisting of shear forces
Qv &0 gy and bending moments gy, and g These loadings all act in the
positive coordinale directions, In particular, the moments gy and gy are
positive cowterclockuise, since by the right-hand rule the moment vectors are
then directed along the positive 2 axis, which is out of the page

Linear and anguler displacements associsted with these loadings also
follow this same positive sign convention, We will now impose each of these
displacements tely and then determine the loadings acting on the
member caused by each displacement

Fig. 14-4

psilive $ign convention

' Displacements. When a positive displicement dy, is imposed while
otber possible displacements are prevented, the resulting shear forces and
beading moments that are created are shown in Fig 14-5a. In particular, the
moment has been developed in Sec. 10,1 as Eq. 105, Likewise, when dy y it
imposed. the required shear forees and bending moments are given in Fig.
14-55,

4 i
(II.
= GEF 200
= ity o= L,

¥ displacements

Fig 14-5
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Fig 14-6

e ’fiﬂ\n

n

.
ol 3

£ Gisplacements

z' Rotations. 1f a positive romtion dy. 5 impe M other possi
ble displacements are prevented, the required she Wi
necessary for the deformation are shown in Fig, 14-6a In pasticular, (i
moment resalts have been developed in Sec. 10.1 as Eqs. 10-1 and |
Likewise, when d, is impased, the resubtant koadings arc shown in Fig. 14-65

By superposition, if the abave results in Figs. 14-5 and 19-6 are ad
the resulting four losd-displacement relations for the member can be expre
in matrix form as

These cquations ean alsa be written in abbreviated form as
ok (142

The srmeric mats K n Eq. 14-1 i efered 10 s the member st
mm“ l,gnimm.g..m soefficients k that comprise it aiccount for the shear
o i bending moment displacements of the member. Physically hes

licients represcal the foad an the member when the member undergees &
ww unit displacement. For example, if dy, = 1, 14-3a. white al
m:'!“fmﬁ are tero, the member will be subjectcd only to the ot
ol "““""d i the first column of the k matrix. 1n o similar manner, ¢
wﬂhﬂ; b the k mtrix are the member Ioadings for unit displacements

-frecuom code numbers listed above the colami™
iom, e developracas, bosh couilibrium and compatibylity of displcemeTt

14.3 Beam Structure Stiffness Matrix

e—

Once all the member stiffness matrices have been found, we must assemble
fhem into the structure stiffness matrix K. This process depends on first
knawing the foc f each element in the member stiffness matrix, Here
the rows and columns of each k matrix (Eq. 14-1) are identified by the two
code numbers at ber (N, N, followed by those at
e far end (F, . .. Therefore, when assembling the matrices, each element
must be placed in the same location of the K matrix. In this way, K will have
an order that will be the highest code number assigned 1o the beam,
since this represents the total number of degrees of frecdom. Also, where
several members are connected 10 a node, their member stiffsess influence
coefficients will have the same position in the K matrix and therefore must
be algebraically : together 1o determine the nodal stiffess influence
coefficient for the structure. This is necessary since each coefficient represents
the nodal resistance: of the structure in 4 particular direction (y' or 2') when
aunit displacement (3 or ') occurs either at the same or at another node. For
example, Ky represents the load in the direction and at the location of code
mumber 2" when 4 unit displacement occurs in the direction and at the location
of code mumber

144 Application of the §

ness Method for Beam Analysis

Once the structure stiffness matrix s determined, the loads at the nodes of the
beam can be related 1o the displacements sing the structure stifffiess equation
Q=KD
Here Q and I are column matrices that represent both the known and unknown
loads and displacements. Partitioning the stifffess mairis into the known and

unknown clements of load and displacement, we have

0,7 [® M_v.?
[0, ) Lx o
when expunded yields the two equations

Q= KD, + KD,
Q, = Kb, + KD,

(14-3)
(14-4)

have been wtisied. Also, it dhou st of ih
3 1 shoshd be noted tha this matrix is the same The mknown dis are determined from the first of these
> Hﬁhﬁuﬂh 4 unknown displacements I, are

- A b, racalormuarion i 2 A Pl I Suations, Using these values, the suppart eactions Q are compted fo the

mairices are nod meeded berween the coordinales:

Second equation.



Fig. 14-7

Intermediate Loadings. For application. it 15 im nt that the ele-
menls of the beam be frec of loading along ifs length. This is necessary since
the stifffess matrix for each element was developed for loadings applicd only
AL its ends. (See Fig, 14-4.) Oftcntimes, however, heams will support a di
tributed Ioading, and this condition will require modification in order to perfar
the matrix analysis.

. Tohandle this case, we will use the principle of superposition in a manacr
similar to that used for wrusses discinsed in Sec. 13-8. To show its application
coasder the beam element of length L in Fig. 14-Ta, which is subjected 1o
the uniform distributed load . First we will apply fixed-end moments and
Teactions 1o the element, which will be used in the stiffness method, Fig
14=7b. We wdllm:r o these loadings a5 a column matix —q,. Then the
distributed loading and its reactions g, are applied, Fig. 14-7c. The actusl
- "““"‘l:‘:'" is determined by adding these two resalts, The fre-
%m:"“ ¥ Other cases of loading are given on the inside back cover. It
i ving problems involving latcral loadings such as this, we can

2 m::"“’ 4o solve problems involving temperature changes o

m"““m The shear and moment at the ends of each beam el
i the elemman 1 g ein8 E. 14-2 and adding on any fixed-<nd reaction”
18 subjected 0 an intermediate loading. We have

= q=kd+q, (14-5)
“-ilinn;;ﬁ" e icates the oading acts i the openilc direcie?

Procedure for Analysis
The following method provides a means of determining the displacements,

et resctions, and internal loadings for the members or finite elements
of a statically determinate or statically indeterminste beam,

Ntation

+ Divide the beam inio finite elements and arbitrarily identify each element
and its nodes. Use a number writien in a circle for a node and a aumber
written in a square for a member. Usually an element extends between

d loads, and joints, or to points

where internal loadings or displacements are o be determined

« Specify the near and far ends of each element symbolically by directing
am arrow along the element, with the head directed toward the far end

int specify nur

wally the y and r code numbers, In all
1 code numbers 1o identify all the unconstrained de-
ed by the remaining or highest numbers to
reedom that are constrained

, establish the known displacements Dy and known ex-
s Q. Include any reversed fixed-end loadings if an element
termediate Ioad

Structure Stiffness Matriv

* Apply Eq. 14-1 to determing the stiffness matrix for each element ex-
pressed in global coordinates

= Afler each member stiffness matrix is determined, and the rows and
columns are identified with the appropriate code numbers, assemble the
matrices lo determine the structure stiffness matrix K. As a partial check.
the member and stracture stiffness matrices should all be symmetric.

Displacements and Loods
malsix multi-

» Partition the structure stiffess equation and camy oul the e

Plication in order to determine the unknown displacements D,
Teactions (),
ryds of each beam glement can

iy i ai the ¢
The internal shear and moment 4 e e additional sed-cad

be determined from Eq. 14-5, sccounting
Ioaudings.

SEC. M4 AFPLICATION OF THE STIFFNESS METHOD FOR BEAM ANALYSIS 530
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a and Loads. We can now assemble these elements into
 structure stiffness matriv. For example, element K, =042 =2,
. 15+ 1.5 =3 cw. Thus, 3

9T
15 asi-is asflo

A

s are partitioned as shown, Carrying ou the mul
our rows, we have

0=2D — 13D, + D, + 0

= — 15D, + 15D, — 150, + 0

0= 1, ~ 13D, + 4D, + D,
0=0+0+D+2D,

_1667

iy

L

sesults, and multiplying the last two rows, gives

M(A%] i l_:.,\;,( 3“”) r0- |.m{]—;

El
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'5.-'[., u—-hﬂ'i: comsianl

m n this case the beam lias only W0 unknown degrecs of free

the code sumbers shown in Fig. 14-9b, we have

2 6 _x
i
Lt L 1
S
2 5 1
T v .
L 2
i T E

matrix is formed by

shear and moment in member | of the beam shown

mumm“-mls 1and 2, Fig. 14-95. Notice that the loading
ive quantity. The known load and displacement matrices are

Mairices. Applying Eq. 14-1 10 each member, in

s
plying the first two rows 1o determine the displacements, yields

BEI 261
0= L D, + T D,
2E1 4Er
My= T b, + L o,
ML
D, ol
1487
ML
TEI

g the last example, the reactions are obtained from the multiplication of
ining rows. For example, the force reaction st the right support is

“J.,L} _ GBI :.w_" M,
14ET & L TL

intemal loadings ot nodes | and 2 are determined from Eq. 14-2. We

g=kd
et e i |
P &5 1" 6}
el = - 3 o |5
s | L T e }
6 4 6 2
o 0 o (5
| |
e 6 1 6oy
i a g pp |
§ 2 _6 4 |[ME],
Loy - IR | YR
wa_:,) B! Ans.
- T
ZEI ) M Ans.
%= raEr - 7
6£r ML My A,
%= 2 14BN T
" ﬂ(ﬂ«‘-] 2 ik
0= LA, 7

shown in Fig. 14-90
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me

. i Fig. 14-10a is subjected 10 the two couple moments. If the
pes () settles 1.5 mm. determine the reactions af the supporss
Take E = 200 GPa and "

105 m

SOLUTION

Nototion. The beam has two elements and three unknown
dom. These are labeled with the lowest code numbers, Fig
the known load and displaccment matrices are

rees of free
106. Here

6 3 5 2
[E R KB i
(R
Kk, = EI - 1 !
13- =L5 15 =18
L 1S S S
5 2 4 1
[ s s =15 1s]s
il 3
Ky = EI| | LA
-15 -15 15 -15]4
(e 15 2 1

Displacements and Loads.  Assembling the structure stiffness matrix and

wriling the stiffncss equation for the structure, yields

e

41 0 14
Q,=| 0|2 D,=|-00015|5
=413 0 |6

m.ﬁ,,wsq“_"u_""l in*“ The member stiffess matrices are ik,
directions shown in Fig, l':"lm‘f'ﬂw‘:':‘lh code numbers and mem

1 2 T L
[ « 2 1 o 15 15 o D,

o 1 4 13 0 D,
T G 3 - LA Ly
0, 15 -13 i3 218 i

Q. 15 0 15 2 —08015
L el (1 15 (] 15 o

Solving for the unknown displacements,

20, + D, + 0D, - 1.5(0) + L5(-00015) + 0
El :
0=1D, + 40, + 1D, = 1.5(0) + 0 +0

0D, + 1D, + 2D, + 0 — L5(-00015) + 0

Substituting EJ = 200(10°H22)(10” ), and solving,
D, = —0.001580 rad

D, = 0001580 rad, D=

Using these results, the suppont resctions are therefore

= = ~DSISKN Ams
0, = 200(10922(10-% ~ 1 5(0.001580) — L0 + 0 + L3O = 1X 00015 + 0l B -
05 = 20010%2210° (1. 5O.001580) + 0 — 1.5(=0.001580) = 150) + 11—0-00‘:5' L3 “
0, = 2001052201050 + 1.5(0) + 1.5(~0 0015804 + 0= 1300




(a)

. ‘beam 1o be analyzed by stiffness method
i (b)

actual load and
| reactions

e
6EL _ 6(29)(10%(510) _
12 k-ft= 144 k- in. L [24(12)12 i
4EI _ 4(29)(10°)(510)
o, 205417
2E1 _ 2(29)(10°)(510) 102708
L —_—— -
. 24(12)
4 3 5 2
e mﬁgi;ﬂo 1069.9 = 7.430 1069.9 | 4
i X 205417 = 1069,
12 k-fi= 144 k - in, L =7430 —1069.9 ]%979.430 —]?(f;gg ;
1069.9 102708 -~ 1069.9 205417 | 2
Member 2:
12E1_ 12(29)(10%)(510)
R o P - 200602
OEL _ 6(29)(10°)(510)
bing 2 ‘———————ﬁ[s(m], = 9628.91

'BEAM ANALYSIS USING THE STIFFNESS METHOD

Determine the moment developed at suppjm A of the beam shown in Fig.
14—11a. Take E = 29(10") ksi, / =510 in".

SOLUTION
Notation.
identified by the code numbers | and 2.

The matrix analysis requires that the external loading be applied at the
nodes, and therefore the distributed and concentrated loads are replaced by
their equivalent fixed-end moments, which are determined from the table
on the inside back cover. (See Example 10-2.) Note that no external loads
are placed at (D since the reactions at code numbers @ and @ are to be
unknowns in the load matrix.Using superposition, the results of the matrix
analysis for the loading in Fig. 14-115 will later be modified by the loads
shown in Fig. 14-11c. From Fig. 14-115, the known displacement and

load matrices are

Here the beam has two unconstrained degrees of freedom,

gl 14471
2 R LLI:I(J(}RI‘
06 12

Member Stiffness Matrices. Each of the two member stiffness matrices
is determined from Eq. 14-1.
Member 1:

12E1 _ 12(29)(10°)(510)

40229)(10°K510)

= (1625
| 8(12) 16250
2EI 2(29)(10°)(510)
= J0B 125
I 8(12) 1
3 2 6 1
00602 962891 200602 9289 15
k 962891 616250 962891 W 128 12
200.602 962891 200,602 062891 |6
062891 308 125 Q6289 616250 |1
Displacements and Loads. We require
Q = KD
2 i 4 5 6
144 16 250 08 1251 0 0 92891 -962891 ][ D,
1008 08 128 02708 loees  oeamol -seasl | |0
0, 102 708 ¢ 205417 10699 1069.9 0 0
0, | 10699 10699 7430 - 7430 0 0
Qs 0628.91 062891 | —1069.9 7430 20803  ~ 200,602 ln
o 062801 962891 | 0 0 - 200,602 200602110

Solving in the usual manner,
144 = 616250D, + 308 125D,
1008 = 308125D, + 821667D,

D, = —04673(10 ) in.
D, = 1.40203(10"Y) in.

Thus,

(2 s 102 708(1.40203)(10° Y = 144 kein. = 12kt

ude the fixed-supported reaction of
ated result for Qs

The actual moment at A must incl ‘
+96 k-ft shown in Fig. 14-11¢c, along with the calcul
Thus,

Ans,

M = 12k:-ft + 06 k-ft = 108 k-fth

ned in Example 10-2.

determine the internal moment and

This result compares with that determi

Although not required here, we can e e e AR
shear at B by considering, for example, member 1, node 2, Fig:
The result requires expanding
Uy k,d i (qu)l
2
4 3 5 2 i
0
4 7430 10699 ~7430 u:a:;.:m : | e
g | | 10699 205417 — 10699 lw 3 (oh M
g | | =740 -10699 7430 _l?ﬁ{m a0 - 1152
L Lol Lioess 102708 - 10699 2




into two elements and the nodes and mem-
th the directions from the near to far ends, Fig

shown in Fig. 14-12c. In paricular,
D does not oceur because of the roller
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" umn,@mﬁwﬁmnnmhm shown in

ents and Loads.  Assemblin,

men E the member stiffness matrices
structure stiffness matrix, and -

applying the structure stiffness

6
15[ b,
1 ||e
0 |lp
o |
-5l 0
15 2 |0

the displacements vields

_.':;:F = 3D, + 0D, - 13D,

0= 0D, +4D, + 13D,
0= —15D, + 130, + 130,
£ EonE
o
P

Ans.

. 14-12c. Using these results, the reactions therefore are
667P\ (P ¥ z«mv]
= )+IH(£;[)+I5H( e

L667F P L
_w(—T) = 1-55'(;(,) *“( E }




(CH, 14 BEAM ANALYSIS USING THE STIFFNESS METHOD
L. Determine the reactions at the supports. Assume (3) is 0
er. i i comstant

*14-4. Determine the reactions af the supports. £1 s constan

14-5. Determine the moments ot (3) Assume () and
2 Determine the internal moment in the beam ot (D and (D are roliers and (D) and @ are pins £7 15 constane
Assime (2 nadt (3) are rollers. £ is constant

..

Pra. 142 Bk b5

14-6. Determine the reactions at the supports. Assume
pinned and (D) and (3) arc rollers. £1 is canstant

FROBLEMS 55

ions ol the suppons. There is & smaoails

uppocts. 1 is comstam. =11, Desermine the react
stider at (1) £ is constant

t 1
N
T
e | m —
Prob. 14-7

14-12. Use the STRAN or other suitable program fo detenmise

g 0] o - &) 3
c oo at (D) and (). Assurme @is3 e iernal omests a ach odat i, Astane (01 @), Qe

#4-B. Determine

sllerand () and () are fixed. E1 is constant rollers and (3) is a pén. EJ is constant
9, Determine the moments 3t (1) and (3 if the sappon @)
setes 0.1 ft. Assume (2) is ler and () and (3) are fined

; N
£ = 900k s

Proh 14-12

14-13, Use the STRAN of other suitablé program o deiemunc
s, I contand, e imemal moments at cach nodal point. Asseene XA D
the reactions at the supports. £ s e e e e

Prob. 14-10



of this concrete build-
ed connected, so the
erminate analysis of
can be done using the
d

e

Plane Frame Analysis
Using the Stiffness Method

The concepts pres
eatended in this chap!

that the proced

the use of transfo

us ch rs on trusses and beams will be
he analysis of frames. It will be shown
beams, but will require
mbers are oriented in

nd applied e

different directions

15.1 Frame-Member Stiffness Matrix

In this section we will de
member referenced from the loca
Here the member is subjected 10 axi
and bending moments gy, . 8t its near a
Koadings all act in the positive coordinaie direc
displacements. As in the

Counte:

unterclockwise, since by the

directed along the positive ' axis, which is oul @
We have considered cach of the load-disi

these loadings in the previous chapiers.

Telerence 1o

e<s matrix for a prismatic frame
15-1.

the stiffm
+* coordinate system, Fig

Joads gy G shear 10ads Gy di

i ends, respectively. These
« with their associated
arc positive

\ms, the moments gy. and 4
nd rule the moment vec
of the page:

ment relationships caused by
oad was discussed in
Fig. 14-5, and the

of

tors are then
b

axial |
in reference 10

13-2, the shear load
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LY Jn\

Qe

poitive sign coevention

Fig. 15-1

beading moment in reference to Fig. 14-6. By superposition. if these resslis
are added, the resulting six load-displacement relations
be expressed in matnx form as

the member can

¥
(1} dy,
BE!
| [dw
2E¢
L |%
o dy |
6EN
Z(|*
AET
Tl
(15-1)
or in abbreviated form as
9=k'd (15-2)

;:wm” matrix k' consists of thirty-six influence cocflicen®
A ' epreseot the oad on the member when the member underiect
e splagemeal. Specifically, each column in the malis

member loadings for unit displacements identified by ¢
&hﬁm the columns. From the assembly, both
lity Of displacements have been satisfied.

SEC. 152
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15.2 Displacement and Force Transformation Matrices

—

As in the case for russes, we must
Jasdls @ and deformatio
coordinates. For this reason

1€ (o transform the internal member
A ¥'.2" coordinates 1o global x, y, 2
ansformation matrices are needed ¢

Dpisplacement Transformation Matrix. Consider the frame member
shown in Fig. 15 Here i1 is seen that a global coordinate displacement
Dy, creates local dinate displacements

dy, = Dycusé,  dy = ~D coud,

Likewise, a global coordinate displacement Dy, Fig. 15-2b, creates local
coardinate displacements of

d Dycos8,  dy, =Dy, cs,

Finally, since the = and 2 axes are coincident, that is, directed out of the page.
2 mtation By, ahout 2 causes a comesponding rotation dy,: shout z'. Ths,
dy = Dy

In a similar manaer, if global displacements Dy, in the ¥ direction, Dy, in
the y direction, and a rotuion Dy imposcd on the far end of the member,
the resulting transformation cquations afe, respectively,

dpy = Decos, dy = —Dp 008,
dpy = Dy, 056,  dyy = Dy cost,
dye = Dy

Letting A, = cos #,, A, = cos 6, represent the direction cosines of the member,
WE can write the superposition of displacements in matrx form as

D,

e A A0 0 0 0Dy
o —h A 0 0 0 0Dy
deal- [0 0 LT R (15-3)
e | | 00 D0k e 0P
B 0 0 0 -A A 0Dy
dp 0o 0 0 0 0 L|[DP
ar
L (154
By inspection, T transforms the six ghobal . 3, £ displacemens E::"m”:':
Siklocal ',y 5" displacemens . Henee T is refored fo s the disp

it pricifrix.

gy = Dhyys0m B,
dyy = Dy cos 8,




\CH 15 PLANE FRAME ANALYSIS USING THE STIFFNESS METHOD

: Force Transformation Matrix. [f we now apply each component o
Jowd 10 the ncar end of the member, we can determine how 10 transform
Jaad components from local to global conrdinates. Applying qu,, Fig, 153,
it can be scen that

Qo = quecost, Oy = e cos B,
If gy is applied, Fig. 15-3b. then its componenis are
O = —guem @, Oy = gy cos 6,

Finally, since gy is collinear with Q. we huve

Or: = g

In & similar manoer, end loads of grc. geo. g Will yield the following
W respective components:

O = g eos 6, Or, = grco8 6,
Op = —gpecos B, ), =g, con 6,
@ = 4r

Tpu: equations, assembled in matrix form with A, = cos A, A, = cos &,
yield

Q=10 (15-6}

.' 'E lransforms the six member loads expressed in loci!

s
g e,

¥

- loadings expressed in global coordinaics

SHC. 157 FRAME MEMBER GLOBAL -
153 Frame-Member Global Stiffness Matrix

e
e results of the previous section will now be combined in order jo determine
{he sifness, matrix. for 3 member that reluies the global loaings Q 1 the

yobal displacements 11 To do this, substitute Eq. 154 (d =
f_._: (= K'd). We bave T into kg

a=KTDh {15-7)

Here the membe

es q arc related 1o the global displacements D
Sebstituting this res: D ;

tinto Eg. 15-6 (Q s the

resull,
Q- TkTD (15-8)
o
Q = kD
where
k=TkT (15-8)

obal stiffness m:

menber. We can cbtsin
1. and 15-3 and performing

Here K represcnts i
its value in generaliz

v F, K,

(e )

A, 1261

_[AE,s | 126
( Jolueie)

-(‘E __’1_‘“}‘
IR

AN e (15-10)

Mete that this 6 x  mairin is symmerric. Purthermore, the location of each

element is associated with the coding at the pear end, N N, ¥, follwed by

¥t of the far cnd, F,. F.. F.. which is listcd at the top of the colummns and

along the. rows. Like the k' matrix, each cohmn of the k matrix represents

the coartiinate loads on the member at the nades that ure necessary Lo m::l

et displacement in the direction defined by the cading of the eulurin F
SKaple, the firs calunn af k represents the globul coondinaie loadings 3

e near and far ends causcil by a anit displaceinient st 1he near end in the ©

direction, that is, A,
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154 Application of the Stiffness Method for Frame Analy:

Once the member stiffness matrices are established, they may be assembieg
into the structure stiffness matrix in the usual manner. By writing the sery,.
fure mikrix equation, the displacements a1 the trained nodes can py
determined, followed by the reactions and intemal Ioadings at the noge

eral loads neting on a member, fabrication emors, temperature
inclined supports, and internal supports are handled in the

wis outlined for trusses and beams.

!
Change

e manner gz

Procedure for Analysis
The following method provides a means of finding the displacemens
suppon reactions, and internal loadings for members of sty
determinate and indeterminate frames.
Notation

* Divide the structure into finite elements and o identify each
clement and is nodes. Elements usally extend between points of suppor
points of concentraied loads, comers or jomts, vhe
nal Joadings or displacements arc to be determine

* Establish the x, v, z global coordinate system, usuall
with the arigin focated at & nodal point on one
axes locsted such that all the podes have positive c.

* At each nodal point of the frame, specify numerically the three . v, 1
coding components. In all cases use the (or cde ruwmbers 1o identify
:_I the unconsrained degrees of freedom. followed by the remainis

ighest code mumbers 1o identify the constrained degrees of free

. ::I:l.:.bclrb:-wkn establish the known displicements D, and known
i 5 Q. When establishing Q be sure to include any reversed

oadings if an element supports an intermediate load

Structure Stiffness Marix

* Ay Eumlﬂ—;f 10 determine the stiffness matrix for cach element
"“ﬂ‘:ﬂﬂﬂ r?omlhc:rﬁ:'n:m In particular, the direstion cosings A, and

the x, y coo ¢ c
oy 13*-5“'”" o ¥ coordinates of the ends of the elemerl.

+ Afer .
mhn::cm"?m WSl i written, and the six rows and

s with the near and far code numbers, merge e
"'hﬂl o s:::l Srecture stiffness matrix K. As a partial check, the
elemen e stiffess matrices should all be synunetric

Displacements and [ ods

« Pastiion (be r .

i Siffoess matnx as [ndicaed by Eq. 1318 Expansion thet

T

he unknown displacements D, are determined from the frst of
cquations. Using these values, the support reactions Q) are mw“:;
from the second equation. Finally, the internal loadings q at the ends of
the members can be computed from Eq. 15-7, namely

q = kT

1f the resuits of any of the unknowns are calculated as negative quantities,
it indicates they act in the negative coordinate directions

Determine the loadings at the joints of the two-member frame shown in
Fig. 15-4a Take /= 500in", A = 10in, and E = 29{10°) ksi for both
members.

SOLUTION
Notation. By inspection, the frame has two elements and three nodes,
which are identified as shown in Fig. 15-4b. The origin of the global

coordinate systerm 15 located at (1) The code numbers af the nodes are

specified with the unconstrained degrees of freedom numbered first. From
the eonstraints 2t (1) and (3), and the applicd loading, we have
G EIE
ke 0|2
| 0|8 O 08
09 e
. 045

Structure Stiffness Matrix. The following terms are common both ele-
ment siiffness matrices:

AE 1029010 _

= = 1208.3 k/in.
L 20012)
12El 12[29010°)(3001 _ 126 k/in.
it [20012)1
BE! _ GRHIPHSON _ ;5104
[20012))°
. AN _ ) 70108y i
L 20(12)
2E1 _ 2029010N5000 _ 12 g3110%) k-in.

0 fi——f

i

Fig 154

7 7 20012)
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201t

5k
11[!
s ¢ (@)
Fig. 15-4

METHOD

Member 1: '
) <
¢ 20
Substituting the data into Eq. 15-10, we have

4 6 3 1 2 3
12083 0 0 ~ 1208.3 0 0 14
0 126 15104 0 126 15104 6
0 15104 241.7(10%) 0 1510.4 120.83(10") | 5
k= _j083 0 0 1208.3 0 0 l
0 —126 -15104 0 12.6 1510.4 [2
0 15104 120.83(10%) 0 -15104 241.7(10°) |3

The rows and columns of this 6 X 6 matrix are identified by the three
x, v, z code numbers, first at the near end and followed by the far end, that
is, 4, 6, 5, 1, 2, 3, respectively, Fig. 15-4b. This is done for later assembly

of the elements.

Member 2:
_20—___2_0_0 20 =0
=7 T
Substituting the data into Eq. 15-10 yields
1 2 3 7 8 9
126 0 15104 - 126 0 15104 1
0 1208.3 0 0 —12083 0 2
_ | 15104 0 241.7(10°)  — 15104 0 120.83(10°) |3
e
12.6 0 15104 126 0 15104 7
0 —12083 0 0 1208.3 0 8
15104 0 120.83(10%) —1510.4 0 241.7(10%) |9

As ubs:rz;l,' column and row identification is referenced by the three code
AUMDETS 1n x, y, z sequence for the near and far ends, respectively, that is,

1,2,3, then 7, 8, 9, Fig. 15-4b

The structure stiffness matrix is determined by assembling k; and K.

The result, shown partitioned, as Q = KD, is

2 3 4
5 5 o
0 15104 =i 8 9
12209 15104 10:3 mﬁ_q P -126 0 15104 ][]
—15104  4m3 ~126 0  —12083 0 D,
4] 0 R0ENI0Y | 15104 (5104 12083010" | | D
0 Dy
0 D[
0 0
~15104 0
0 0
- 241.7010% ) | 0]

SEC. 154 APPLICATION OF THE
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Using these result

| 3 4 5
G| (0 1510.4 0 15104
| 12.6 1510.4 0 0
O | =0 1208.3 0 0 0
Q] 15104 120.83(10%) 0 0

Furthermore, the origin of the local X'

member, In a similar manner, the free-
In Fig. 15-44.

[

The above results are shown in Fig. 15-4¢. The di

are in accordance with the positive directions |
Ly, 2 axest

body diagram of mem

0.69 -
isehom |0 - 1.87k
ﬁnsuu ]ll + O]
:lo% 0 1.87k
5 3 0 750 k-in.
1.234(107%)

The internal loadings at node (@ can be determined by applying Eq.
15-7 to member 1. Here k| is defined by Eq. 15-1 and T, by Eq. 15-3.

Thus,
4 6 5 | 2 3
1208.3 0 0 - 12083 0 0 1 0
i 1] 12.6 1510.4 0 -12.6 15104 01
o l 0 15104 241.7010%) 0 - 15104 120.83(10) || 0 O
G0 = _onga 0 0 12083 0 0 00
0 =126 1510.4 (1] 126 —15104 0 0
Ll
Q0 1510.4 120.83(10°%) 0 — 15104 241.7(10%) 00
Note the appropriate arrangement of the elements in the matrices as l?:m[ed
by the code numbers alongside the columns and rows. Solving yields
94 0
~ 187k
44
Ayl | == 0 Aﬂs-
4 0
0 187k
@ — 450 k+in.

rections of these vectors
ons defined in Fig. 15-1.
s at the near end of the
ber 2 is shown

0

= 15104

12083 10%)

241.7010%

coo—-c0

0

}

1.87k

pisplacements and Loads. Expanding to determine the displacements yields
s1 [ 12209 0 1510.4 ~ 12083
| 1)1 0 12209 - 15104 0
| 35| 0 | 15104 -15104 483.3(10% 0
0 } | —12083 0 0 12083
o) | 0 1510.4 120.83(10%) 0
Solving, we obtain
Dl [ o069%in
D | = 1.55(10 ") in
D, : 2.488(10" %) rad
ll‘ 0.696 in
D] | 1.234(107") ad

the support reactions are determined from Eq. (1) as follows:

Ans.

[~ ~ B )

= Cc oo

-0 o o oo

v 0
D, 0
D,|+ |0
Dl 0
Dy 0

187k

(€)

0.696 4

0 6

1.23410°% |5

0.6% 1
— 155107 |2 1.87k
-2488(107" |3

450 ki




Determine the loadings at the ends of each member of the frame shown i

Fig. 15-5a. Tuke [ = 600 in', A = 12in’, and £ = 29010") ki for euch

member.

SOLUTION

Notation. To perform 4 matrix analysis, the distributed loading acting on

the horizontal member will be replaced by equivalent end moments ang

shears computed from statics and the table listed on the inside back cover,

Then using superposition, the results obtained for the frame in Fig, 15-54

will be modified for this member by the loads shown in Fig. 15-5¢.

As shown in Fig. 15-5b, the nodes and members are numbered and the

-8 gﬁnnf coordinate system s placed at node (D As usual, the
-~ code numbers lﬂ%ﬁad with numbers assigned first (o the unconstrained

SEC. 154 APPLICATION O
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AE _ 12[29010Y] _ i
B

1261 121290101600

= 15,10 k/in,

12

L

] [20012)1*

OEL _ 6[29(10%)]600
R0(12)]
AEL_ 429010%)1600

20(12)

= 181250 k

= 2.90(10°) k-in.

261 2(29(10%)]600 5
& = = 1.45(10% kein.

L 20012)
ua A0 20, Lol 150
x 20 i i
. 1510 becomes
1 2 3 1 (] 0]
o 0 0 ~ 1450 0 0 |
0 1510 1812.50 [} = 1510 181250 2
" 0 1%1250 200(10") 0 -181250 145010% |3
=150 0 0 1450 0 0 1
0 =1510 ~1812.50 0 1510 -181230 B
0 181250 145(10") 0 - 181250 290(10Y) |9
ructure stiffness matrix, included in Q = KD, hecomes
1 2 1) 4 - f ] 7 8
209508 55009 696 | -T4S18  —sS309 696 ~ 1450 0
5500 437,65 8845 | —85309 42255 -0 o =150
#84.5 S22(10°) | -696 928 Hs(10Y 0 -—181280
B Y N YU TR L R 0 (]
~ 42255 928 553,09 A1S5 9 0 0
~928 116(10Y | - 696 9K 232010 0 0
0 (Yol L 0 0 1450 0
1500 -2 § 0 0 (1 0 15.10
1812.50 as(0h 0 ] 0 0 -181250
ents and Loads. Expanding o determine the displacements,

1200

0 210518 55309 696
a0 | =| 55309 43765 8B4S
606 8845

0.0247 in.

DI
By [ =| -oeostin
b, ~0.00217 rad

)

n,
D, [+
522000 LDy

o
0
0

|

0
181250
18500,




Using these results, the support reactions are determined from Eq. (1)
as follows:

) SIS - $I -69% [ 'ﬂ DSk
0y ~§5309 -42255 928 a: 0| .63k
e 696 -ok K10 [ 0.0247 0 | 146,00 k-in
(o8 = 1450 (i} 0 00954 + 10 35,85 k

o 0 1510 —1812.50 0.00217 | 0 537k

0 0 81250 14510 Lo | 487.60 k-in

The internal loadings can be determined from Eq. 15-7 applied 1o
members | and 2. In the case of member 1, q = KiT,D, where k] s
determined from Eq. 15-1, and T, from Eq. 15-3. Thus,

s 6 1 2 3
D 0 160 0 0 [ o8 06 0 0 0 0 "
.1 1160 0 =173 1160 | 06 08 0 0 0 0 0 <
160 23200 0 160 Hsi0Y T 0 k| {1 E 0 6
0 o ney 0 0 0 0, 0 08 05 0 00247 |
~773 1160 0 7273 1160 0 0 0 -06 08 0f|-009s4 [
180 1610y 0 =160 28%10% )| 0 o0 0 N 000217 [

Here the code numbers indicate the rows and columns for the near and far
ends of the member, respectively, that is, 4, 5, 6, then 1. 2, 3, Fig, 15-5h
Thus, 3 i

P. [ 435k
L -1.81k

9 | | =146 kin
@ ST Ans.
@ 181Kk

N [ in. |

These results are shown in Fig. 15-5d.
A similar analysis is performed for member 2
it r 2. The results are shown
at the left in Fig. 15-5e. For this member we must superimpose the

loadings of Fi -
o f'lsg:I. Fig. 15-5e. so that the final results for member 2 are shown

» (LS .ty
85k ” n =35‘E‘H_35.3k

1200k g
= 1200 k-in. 398 kein. 1688 k.in

(e)

PROBLEMS

ine the stiffness matrix K for thy g
15-1. Determine th f or the frame. Assume
@und @are pins. Tuke E = 29(10") ksi 1= 600", 4 = 10 n
for each member.

15-2. Determine the intemnal loadings at the ends of each member.
Assume (D and are pins. Take E = 29(10%) ksi, I = ) in
4= 10in’ for each member, g

200 Ih/fu

Probs. 15-1/2

15-3. Determinc the structure stiffness matrix K for each
member of the frame. Assume @i.\ pinned and @is fixed. Take
E=200GPa, [= 200(10° mm*, A =21(10°) mm® for each
member.

*15-4. Determine the support reactions at (1) and @). Take
E=200GPa, 1= 300(10°) mm?*, A =21(10" mm* for each
member,

b— 5m -
P
9
1)

-

©

Probs. 15-3/4

15-5.  Determine the structure stiffness &
matrix K for cach member

of the frame. Take E = 29(] 5 Fa o

member, 2XI0) ki, = T A 30in’ for cach

15-6. Determine the Support reactions at @ and @ Take
E = 29010%) ksi. I = 700 in*, A = 30 in? for each member.

Probs. 15-5/6
15-7. Determine the structure stiffness mamx K for each
member of the frame. Take E = 29(10%) ksi. [ = 450", A = § in*
for each member. All joints are fixed connected.

*15-8. Determine the horizontal displacement of joint @ Also.
compute the suppont reactions. Take E = 2910°) ksi, [ = 450in",
A = 8in’ for cach member. All joints are fixed connected.

2 3
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mmmnﬁmmmxl(rnrmcﬁmz.
imtv-:mo’;km 1= 650in", A = 20 in’ for cach member.

~10. D ine the of disp

= 29(10°) ksi. / = 650 in*, A = = 20in’ for cach member.

[——H}I‘!

Probs. 15-9/10

11, Determine the siructure stiffness matrix K for the
-member frame. Take £=200GPa, /= 350(10°) mm®,
=20(I%:;m’ for cach member. Joints @and (@ are pinned

1 D < s D

15-13. Determine the stiffness matrix k for each member of the
frame. Take E = 29(10%) ksi, /= T700in*, A = |5in? for ek
member.

15-14. Determine the reactions at the \upé)-m ®1m1 @ loints

@and @ale pin connected and @And are fixed connecied
Take E = 29(10°) ksi, / = 700 in*, A = 15 in” for each member

- - Bt =
Probs. 15-13/14

15-15. Use STRAN or a similar program to determine the
internal moment at each nodal point. AE and Ef are constant.

Proh. 15-15

Matrix Algebra for
Structural Analysis

A.1 Basic Definitions and Types of Matrices

With the recent accessibility of microcomputers, application of matrix alge-
bra for the analysis of structures has become widespread. Matrix algebra
provides an appropriate tool for this analysis, since it is relatively easy to for-
mulate the solution in a concise form and then perform the actual matrix
manipulations using a computer. For this reason it is important that the struc-
tural engineer be familiar with the fundamental operations of this type of
mathematics.

Matrix. A marrixisa rectangular arrangement of numbers having m rows
and n columns. The numbers, which are called elements, are assembled within
brackets. For example, the A matrix is written as:

a; 4z 7 9

4 Op L]
A=

O G2 =" Oen

n). Notice that the first
and the second subscript
s the element located in the

Stch a matrix is said to have an arder of m X n (m by
Subscript for an element denotes its TOW P""“[m
'.E"'“‘s its column position. In general, then, d;; 15

ith roy and jth column.




I the matrix consists only of in asi ¢
nsis| of elements in a single row, j{ i  or Identity Matrix. The wiir or idensiry
Y matrix is

matrix. For example, a | X 1 row matrix is wri i
For examp is wrilten as _ I the diagonal elements equal 10 unity, Fo : a diagonal
. For example,

Hd el

A—[ﬂ, v ﬂul I=l0 1 0

0 0 1

ed to denote an element, si i i
3 » since the row sub- . Matrix. A square matrix is symmetric provided a, = a,,. F

ij = . For

vays under _'tnh_e.equal 0 1, that is, @, = @y, a; = a5, and
itevien A s oo A ¢
o ERET 1 Rl il d

&
A mi th elements i

: stacked in a sing] ;

trix. The m % 1 column matrix is R

SEC. A2 MATRIX OPERAT! 569

example, if
2 6 G
A= =
[4 -3] 4y [4 —3}

N i Equals the num- '_!ld Subtraction of Matrices. Two matrices can be added
a5 a square matrix. An n X n square é l;lhl.mcled from one another if they are of the same order. The
. ed by adding or subtracting the corresponding elements. For

A
B ] [0

When a matrix is multiplied by a scalar,
For example, if

4y = a5, 4z = dy), and 50 on.

unning re malrix are Zcro by a Scalar.
SR o right, the matrix f the matrix is multiplied by the scalar

e
— &= 6
-. L]

_[-24 -—b]
kA= a5 12
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. MATRIX ALGEBRA FOR STRUCTURAL ANALYSIS
Matrix Multiplication. Two matrices A and B can be multiplicg

only if they are conformable. This condition is satisfied if the num-
ber of columns in A equals the number of rews in B. For example, if

_ | au alz] 0 |:-"|1 by, b.;:l

A= B=

[ﬁn ax by by by
‘m_gp‘ﬁ_];.canz:bpde‘lennined since A has two columns and B has two rows
Notice, however, that BA is not possible. Why? ;

If matrix A having an order of (m X n) is multiplied by matrix B having an
order of (n X g) it will yield a matrix C having an order of (m X g), that is

| example, consider

5
A= 41 n=[27]
ke =t

the product C E AB can be found since A has two columns and
o rows. The resulting matrix C will have three rows and two columns.
nents are obtained as follows:

AR b C (D

i x o '_) +3(-3) =1 (first row of A times first column of B)

'_.+ 3(4) = 47 (first row of A times second column of B)
P 1(=3) =5 (second row of A times first column of B)

S R e sl nents o, of A and b, of B ; )+ 1(4) = 32 (second row of A times second column of B)
-2(2) + 8(—-3) = =28 (third row of A times first column of B)
2(7) + B(4) = 18 (third row of A times second column of B)

n
= 2 auby (A-2)

fology Dﬁ:ﬂﬁ:i formula can be explained by a few simple cxamples. for multiplication follows application of Eq. A-2. Thus,
1 47

C= 5 32
-28 18

ssible si h i con- A i in thi 1
ossible since the matrices are con ot exist, since written 1n this manner the matrices

and B has three rows. By Eq. A-1,

that BA does n

the product of two matrices is not commutative:

of A by corresponding elements

; that is,
(A-3)

AB # BA

 distributive law is valid:

A(B +C) = AB +AC (i

ative law is valid:

A(BC) = (AB)C
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Transposed Matrix. A matrix may be transposed by interchanging it

rows and columns. For example, if
a, ayp 4,

A=lay ap ay

4y Gy 4y

B=[b b, b

a, 4 43
a, @, ay B =5,

ay Gy 4y by
Notice that AB is nonconformable and so the product does not exist. (A has
three columns and B has one row.) Alternatively, multiplication AB” is pos-

AT=

sible since here the matrices are conformable (A has three columns and B’

has three rows). The following properties for transposed matrices hold:

(A+B)Y =AT+B" (A-6)
(kA) = kAT (A=T)
(AB)T - BTAT (A—E]

{ identity will be illustrated by example. If

a=[ 3] =53]
[ -
]

matrix algebra apply to partitioned matrices provided the parti-

formable. For example, corresponding submatrices of A and B
d or subtracted provided they have an equal number of rows and
ise, matrix multiplication is possible provided the respective
Jumns and rows of both A and B and their submatrices are equal.

duct AB exists, since the number of columns of A equals the num-
B (three). Likewise, the partitioned matrices are conformable
ation since A is partitioned into two columns and B is partitioned
ws, that 1s,

N

L §F
AR = |:Au Au:“:ﬂn] b [AIIBH & A|2B2I]
All Au BZI A]IB” + A}!BZI

Iiplication of the submatrices yields

B -
S e

2 —-1]_
AyBy, = [6 31[0 81—“2 18]

AyB, = [8]7 4]=[56 32

Thus,

.1 T ’4] | -39 -18
B4 0 -3 -20 68 S0

[12 18] +I[s6 32

SEC. A2 MATRIX OPERATIONS  §73




Tn the next section we will discuss how (o invert a matrix. Since this opera-
tion requires an evaluation of the determinant of the matrix, we will noy
discuss some of the basic properties of determinants.

A determinant is a square array of numbers enclosed within vertical burs,

For example, an nth-order determinant, having n rows and 1 columns, is
ay dp T A
G e T

A = : (A-9)

aﬂl all: ik anﬂ

ation of this determinant leads to a single numerical value which can be

nined using Laplace’s expansion. This method makes use of the deter-
minors and cofactors. Specifically, each element ay; of a determinant
of nth order has a minor Mj; which is a determinant of order # — 1. This
determinant (minor) remains when the ith row and jth column in which the
:lement is contained is canceled out. If the minor is multiplied by (—=1)""
ed the cofactor of a,; and is denoted as

c, = (—1)*'m; (A=10)
nsider the third-order determinant

a4y dp dg

r n, Eq. A9, states that the
to the sum of the prod-
pective cofactors, 1.6.

tion, it is seen that due to the cofactors .

n determinants (cofactors) of on.‘.::or:‘—mr ::cf:be'i';i)x lsa:cﬁnw
ach be reevaluated using the same formula, whene';sy url-eem T
1) determinants of order (n — 2), and so on. The pmccssm,fl "
nues until the remaining determinants to be evalugted mzueva!-
“order, whereby the cofactors of the elements are single elcn[-:e v.
ider, for example, the following second-order determinant i

S|
o (]

D=

luate P along the top row of elements, which yields
D =3(—1)'"'2)+ 5= D=1 = 11

Ple' using the second column of elements, we have
DI='5(— D)=+ 2(- 173 = 11

an using Eqs. A—11, it is perhaps easier to realize that the eval-
cond-order determinant can be performed by multiplying the
“the diagonal, from top left down to right, and subtract from
oduct of the elements from top right down to left, i.c., follow the

‘><]|=3(2)—5(—11=|1

t the third-order determinant

D=

173 ~1
l|=| 4 2
~-1 0

1, we can evaluate |D| using

142

g il 2
+ (31 Al (-0t ‘\_l 0|

2
—0)—3(8+6)—l(ﬂ+2)=*40

ible ta evaluate |D| using the elements alol

2 6
0

3
%

=]
'_l 3+l
(= D=1 i
gl 8

3
el
5 + 41 lﬂ

[)H'l
0)— 46— 0)— 118+ =

—40

{0 evaluate |D| using the elemen

the elements along the top row,

ng the first column, Le

1s along the second row.
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evaluation of the determinant of the i

e coeffi ich i

.sl_ng the Laplace expansion discussed in Sc:m;;f %:mh .

taining the cufnct?rs Cjj is called the adjoint mam.x B i
se;.n that thehm\rerse matrix A" is obtained ﬁ‘.)m)'::;lp;:‘

: : 4 ch element a;; by its cofactor |C,| i

) . : Lay : il then trans i

s ﬂ.m': ¥ 3 i ding the adjoint matrix, and finally mulﬁpiyinpﬁ:igm' resultlr!g

ayx T apk 0% = G ; o

ayx; T ap¥y T Ak = 6

following set of three linear equations:

trate how to obtain A~ numerically, we wi i
. ill co i
ing set of linear equations: i

which can be writien in matrix form as ; Tl
¥ - Xy =

ay :IZ ajy ;1 4 —nt n4 p=-1 (A-16)
a) dp 9y || X2 H+y—2n= 5
a3 dy Gy L5 ; :
=l 1
(A-13) A=|-1 1 1
 that  solution for x could be determined by dividing C by : i
not possible in matrix algebra. Instead, one multiplics i ;
1 ;r}:ggrsg"uf the matrix A is another matrix of ; Qs orAs
written as A~ . It has the following propeny, Y A0 = | o
—27‘ 1 —2' 1 1 21
e : =i ] | B
ying both sides of Eq. A—13 by A", we - D ] L VS 2
([t [ S| 1 - l\
i [ R ] ol

e determinants the adjoint matrix is

(A-14) =G )
cr'=|-1 -3 -2
late A" can be developed gl ey
- given here; instead, only
the matrices of Eq. A-14
; =1l
Pl =
1 =2
is, therefore,
S =2
Ae=i 1 =3 =2

SEC.A4 INVERSE OF A MATRIX 377
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Solution of Egs. A-16 yields

¥, [ o <2 -
s e [ -
5 == st il s

Il;_i"_‘m—n+0c--lj+(-2)f5}1= 1
X=—HEDED A+ (3D + (28] = i
6= =D+ (31 + (0)5) 1

Obviously, the numerical calculations are quitc expanded for larger sers

of equations. For this reason, computers are used in structural analysis 1o
determine the inverse of matrices.

\.5 The Gauss Method for Solving Simultaneous Equations

When many simultaneous linear equations have to be solved, the Gauss elim-
ination method may be used because of its numerical effic 1ency. Application
of this method requires solving one of a set of n equations for an unknown,
say x, in terms of all the other unknowns, x5, xs, , %, Substituting this
so-called pivoral equation into the remaining equations leaves a set of n — |
equations with 2 — 1 unknowns. Repeating the process by solving one of these
equations for x, in terms of the n — 2 remaining unknowns xs, xy, . . ., X,
forms the second pivotal equation. This equation is then substituted into the
other equations, leaving a set of n — 3 equations with n — 3 unknowns. The
process is repeated until one is left with a pivotal equation having one
unknown, which is then solved. The other unknowns are then determined by
successive back substitution into the other pivotal equations. To improve the
accuracy of solution, when developing each pivotal equation one should
always select the equation of the set having the largest numerical coefficient
for the unknown one is trying to eliminate. The process will now be illustrated
by an example.

Solve the following set of €quations using Gauss elimination:

=2x) +8x; + 25, =2 (A-17)
2q- nt r=2 (A-18)
AViisiSE o+ Ar = (A-19)

We will begin by eliminatin, i is i i
b i 2 ). The largest coefficient of x, is in Eq. A-19:
hence, we will take it o be the Pivotal equation. Solving for x,, we have

X =1+ 1255, - 075, (A=20)
Substituting into Eqs. A~17 and A—18 and simplifying yields
2755, + 1.75x, = 2 (a=21)
L5, ~ 05y, =0 (a-22)

Next we eliminate x;. Choosing Eq. A~21 for the pivotal equation since the
coefficient of x, is largest here, we have

X, = 0.727 - 0.636x, (A-23)

substituting this equation into Eq. A-22 and simplifying yields the final piv-
il equnliﬂn- which can be solved for x5. This yields x, = 0,75, Subslituting
this value into the pivotal Eq. A-23 gives x, = 0.25. Finally, from pivotal
Eq. A-20 we get x; = 0.75.

PROBLEMS

sl (s : | -2 41
- and B =  detel 2A +B
A=l IFA [ : ]] n, [2 _J etermine -l B A= -1 (2l e E= | R
and 4A — B. 2 fdi
- determine BA.
4 | R G i
T 6 2 mohS ORI | gl A-13. Show that the distributive law is valid, i.e., A (B + C) =
A+Band A — 2P 3 )
-4 8
5 AB+AC.|fA=[3 6 2.H= -2|C= 4
A=) IFA=[0 land B =[1 6 4], show that(A + B) 2 7 e
=A" + B,
2 5 5 A-14. Show that the associative law is valid. ie., A(BC)=
*A-4, ITA=[-4 3], and B = P determine AB. .
3 48 5 i
' (AB)C,ifA:[Z 6 2.B= -2/, C=[2 4 -6
A=5. IfA = 2 |and B=[2 -1 35],determine AB. 4
2 2 4
the d inants i 2| and|6 8 1
23 A-15. Evaluate the determinan! L
A-6. IfA = [ e g]' determine A + A 6 3 3 5
4.5 o 3 2 determine A~
A-7. ITA= 5 } . determine AA". *A-16. IfA= Eo=nl etel .
2 3
o A determine A '
'A-B. IfA=|6 2 -1 | determine AA”. A-l7. Fa=|2 13 : f L
=3
iy 0 L
6 A-18. Solve the equations 2t —Zhl"(').—‘.w‘- m k°
Ao tia=| 27 aan=| 9| determine AB. 2y 420 =2 and 2 +dn—dn using the matrix
2 =0 equation X = A C.

A-19. Solve the equations in Prob. A-18 using the Gauss elim-

ination method.
ntdptn= =1 21‘:."

the ualons Z
e " 5 :fff,'ffﬁm.-;lm,=ammsumm
Gt soly-dhiw T=A G g 2
AL A=l 1n| ot Bl 20 1Ly Sove e cquionsia Mok A-Z0 iag e SHESSIE
0 -3 1 s fdon method.




The STRAN
Computer Program

o M

The disk enclosed in the back cover of the text contains a computer program
that can be used to solve structural analysis problems involving a plane truss,
space truss, beam, or plane frame. This program, called STRAN 4 (S Tructural
ANalysis, version 4.0) is based on the theory of the stiffness method explained
in Chapters 13 through 15. The following is a discription as to how to apply
this program.

Preliminary Steps. Before using the program it is first necessary to
numerically identify the members and joints, called nodes, of the structure and
establish both global and local coordinate systems in order 10 specify the strue-
ture's geometry and loading.

On a sketch of the structure, specify each member with a number enclosed
within a square, and use a number enclosed within « circle to identify the
nodes. Also, the “near” and “far” ends of the member must he identified. This
is done using an arrow written along the member, with the head of the arrow
directed toward the far end. Member, node, and “direction” identification for
a plane truss, beam, and plane frame are shown in Fig. B—1. Here, node (2)
15 ut the “near end” of member [3] of the truss and node @ is at its “far end.”
These assignments can all be done arbitrarily. Notice, however, that the nodes
on the truss are always at the joints, since this is where the loads are applied
and the displacements and member forces are to be determined. For beams
and frames, the nodes are at the supports, at a corner or Jjoint, or at a point
where the linear or rotational displacement is to be determined.

Since loads and displacements are vector
establish a coordinate sy
Here we must use two
ture coordinate system,
location of each node

quantities, 1t 1s necessary (o
stem in order to specify their correct sense of direction
types of coordinate systems, A single global or struc-
using right-handed x, ¥, 2 axes, is used to specify the
and the sense of each of the external load and dis-
pl?cemm_mmp““’““ at the nodes. It is convenient to locate the origin of
this n?o:dmnle SYstem at a node so that all the other nodes have positive
ks, 1. P_l‘.A local or member caordinate system is used to specify

the location and direction of external loadings acting on beam and frame mem-

AL
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pers and for any SUCIUTE, L0 provide a means of interperting the computed
results of internal loadings acting at the nodes of each member, This e
will be identified using right-handed x', 3", 2’ axes with the origin at the “near”
node and the x* axis extending along the member toward the “far” node. An
example for truss member 4 and frame member 3 is shown in Fig, B—|.

Program Opc.ratiun. thn lhg program is excuted a menu will appear
which allows variou ctions for inputing the data and getting the results.
The following explains the items used for input data. For any problem, be sure
10 use a consistent set of units for numerical quantities,

General Structure Information. This item should be selected first in
order to specify the problem title and identify the type of structure to be analyzed.

Node Data. Start by clicking “Add New Node.” Then enter, in turn, each
node number and its global coordinates,

Member Data. Start by clicking “Add New Member.” Then enter, in turn,
each member number, the near and far node numbers, and the member prop-
erties, £ (modulus of elasticity), A (cross-sectional area), and/or I (moment
of inertia). If the member properties are unknown, for statically determinate
structures, or for indeterminate structures with no support setlement and hav-
ing members with the same cross-section and made from the same material,
these values can be set equal to one. The results will then give the correct
reactions and internal forces, but not the correct displacements.

If an internal hinge or pin connects two members of a beam or frame,
select “Release Moment at Near Node” or “Release Moment at Far Node.”
For example, member 3 of the frame in Fig. B=1 has a pin at the far node, 4.
In a like manner, this pin can also be identified at the near node of member 4.

Support Data. Start by clicking “Add New Support.” Then enter, in turn,
each node located at a support, and specify the called for global chordmate
directions in which restraint occurs. For example, since node 5 of the frame
in Fig. B-1 is a fixed support, a zero is entered for the x, y, and 2 (rotational )
directions; however if this support settles downward 0.003 m then the value
entered for y is —0.003

Load Data. Start by clicking “Add New Load.” Loads are spccﬂ'?ed elll'llcr
at nodes, or on members. Enter the algebraic values of und{r.f :‘nf:dfr]lag_rlrel;e-
live to the global coordinates. For example, for the truss in l:g,mmmrs
loading at node 2 is in the y direction and has a_vulue of —200. 31:1 s
the loadings and their location are referenced using the lacal coort liﬁed .wi:h
example, the distributed loading on member 2 of the f:zu;e Izsfjcm b
an intensity of —400 located 0,75 m from the near node 2 an

3m from this node.

Results. oOnce all the data is entered, select -'Ru::;c an
There one obtains the external reactions on the ““";l i of !
and internal loadings at each node. As a partial chec
theck is given at each of the nodes.

' then select “Results.”
d the displacements
he results a statics
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The reactions and member forces in the structures shown in Fig. B~ can
be determined using the STRAN program. Application would be as follows,

Truss.

General Struetural Information—Select Plane Truss.

Node Data. The node numbers and global x, v coordinates are (1)(0,0),

@14.0), @(2.2), @4.2).

Member Data. Here we can use a modulus of elasticity of | and cross-
sectional area of 1 for all the members. Also, since no member was fabricated
too long or too short the member length fabrication error is 0. The member
numbers, along with their near node and far node numbers are [1](D(®),

ZIowBIA0. 00, (10@.

Support Data. Here there are supports at nodes (1) and (4) each having
zero (0) displacement since these supports do not move (e.g., settle). Node

is restrained in the x and y directions (pin) and node () is restrained
in the x direction (roller).

2 Load Data.  The load is acting at node (2) along the global y axis and is
0] entered as 200,

Al'terA running the program, verify that the pin reactions are 400 N in
N tI:e “x direction and 200 N in the +y direction, and using local coordinate
X', y" axes that there is a tension force of 282 N in member Note that

the results will give very large displacements since £ and A were
entered as 1.

¥ Beam.
General Structural Information—Select Beam.

a%;‘e Data. The node numbers and global x coordinates are: (D0, @3,

Membe; Data. - We can use a modulus of elasticity of 1 and moment of
mem};:rgl o m.“" members. There are no member end releases since the
are not pinned together at any node. The member numbers along

with their near node and far node numbers are M. Z]12.

Wsw‘_'"";:ﬂmﬁm_ there are supports at all the nodes. Node (D) is
e vty . direetion and rotational direction (fired), @ and @
& in the y direction (roller). Each restraint has zero movement.

—_—

Data. The load acts on member m in' the y direction and et

value of —300, located 1.5 from the near node, (1)

Run the program and verify that the vertial reaction at the roller, @

is 15331 N, and that in member the internal shear is 138.97 N up-
wards, and the internal moment is 59.56 N-m, clockwise.

Plane Frame.
General Structural Information—Select Plane Frame.

Node Data.  The node numbers and global x, y coordinates are (1D(0,0),

@04, @34, @3.2). ®B30S5).

Member Data. Use a modulus of elasticity of 1, cross-sectional area of
1, and moment of inertia of 1 for all the members. Here members and
[&] are joined by a pin. This can be identified as a “member end release
gither of the far node of member or the near node of member The
member numbers along with their near node and far node numbers are

o, 2120, (0@ e

Support Data.  Here there are supports at nodes @ and ®. Node (D is
restrained in the x and y direction (pin), and node (8) is restrained in the
x, y and rotational directions (fixed). Each restraint has zero movement.

Load Data. The concentrated load acts at node (2) and is entered twige
as (3/5)500 N = 300 N in the x direction and —(4/5)500 N = —400 in
the y direction. In addition there is a distributed load on member T;h:ls
is reported as —400 N at 0.75 m from the near node and —400 N at 3 m
from the near node.

vertial reaction at the pin (D is

e i the
Run the program and verify that \s

516.81 N acting upwards, and the moment at the fixed support
403.45 N-m acting counterclockwise.




. Answers to Selected Problems

‘hapter 1

1-1. DL =432k LL =100k

1-2.  9101b/ft 1-3. 529kip
1-8. Fop =90 KN Fy, = 922kN F = 1822 kN
1-6. 633 Ib/ft 1-7. 1008 Ib/ft

1-9. F, =320k F, =220k

-10. a) 112k b)450k

—11. F=4221b,y = 1221

-13. p,, = 652 N/m' Pay = 90 N/m’, p;, =
Pey = 751 N/m?, p = —470 N/m’

-14. p= F19N/m’, p = — 657 N/m*

-15. 104 psf, —6.69 psf, —9.36 psf, +2.83 psf

721 N/m?

hapter 2
-1.  One-way slab 2-2.  Two-way slab
-3, One-way slab 2-5.  One-way slab

-6, 5001b/ft, 6.25 k, 12,5k
7. a) statically indeterminate to 2°,
b) statically indeterminate to 1°,
€) unstable (parallel reactions)
-9, a) statically indeterminate 1o 2°, stable,
b) statically determinate, stable,
©) statically indeterminate to 3°, stable,
d) unstable concurrent reactions
a) statically determinate,
b) unstable,
~ ©) statically indelerminate (o 3°
a) statically determinate,
;“J statically indeterminate 10 2°,
Statically determinate,

2-15.

2-17.
2-18.
2-19.
2-21.

2-22.
2-23.
2-25.
2-26.

2-27.
2-29,

2-30.

2-31. A, =24kN A =308kN B, = 24 kN,
B, mzw D = 24kN D, = 308 kN
2-33,. F, lﬂ{]l\N Fo = 24.(”.1\, Fg, = 48.0 kN,
F,‘, = 64.0 kN
2-1P. 797k
Chapter 3
3-1.

3-2

33,

3-5,

:.mm

€) indeterminate to the 9°,
d) indeterminate to the 6
a) statically indeterminate to 24°,
b) statically indeterminate to 147,
¢) statically indeterminate to 63
B, = T82kN A =4kN A, =871 kN
Fp =520k A, =260k A, =45}
Fy =390k A, =480k A, = 20,0kN
A =12kN C, = 12kN.C, = D
My =84kN-m B = 30 kN
=1625k B, =0 B, = 5.75kN
Fr=158kN C, = 10.5kN C, = 7.9kN
=16k A, = 10k C, = 30k D, = 12k
C, =450k D =475k B, = 95.0k
A= 175k A, =0
B, =5.102kN,A = I47kN, B, = 200kN
A =2484k A, = 2208k B, — 2484k
15k € = 31.92k
Fy = 938 kN, A, =225kN, A, = 563 kN

a) statically determinate,

b) statically determinate,

©) unstable

a) statically determinate,

b) statically indeterminate 10 4°,
©) suatically determinate,

d) indeterminate 10 3°

a) unstable,

b) stable, determinate,

€) unstable

a) sutically determinate,

h) statically indeterminate to 188

3-6.

2y,
3-9.
3-10.

3-1L

313

314,

3-15.

in

3-13,

¢) statically indeterminate to 1°,
d) statically indeterminate to 1°

Fep= 113 kN (C), Fiy = BKN(T), Fp, = 113 kN (T),
¢ = 16 KN (C), Fy = LLIKN (C), Fy, =24 kN (T),

A, = 16kN, A, = BkN

Fep = 6.67 KN (T), Fp = 12.5kN(C), Foe = 0

Fep = 11.4KN (C), F; = B.AO KN (T), Fy, = 0

Fyo = 8.66 kN (C), Fy, = B.66 kN (T),

Fgy = B.66 KN (T), Fyr = 29.4 kN (C),

Fig = 344KkN(C)

Fur= 25 kN (C), Fip = 20kN(T),

Fyc = 20 kN (T), Fgy = 10kN(T),

Fyg = 16.7 kN (C), Fye = 8.33kN(C),

Fgr = 16.7 kN (C), Foe = 20 KN(T)

1.OE k (C), Fyg = 90016 (T), Fyp=3611b(C).

Fep = 400 1b (T}, Fgr = 0, Fgy = 2001b (C),
Fpe = 6711b(C)
Fgr = 33.0kN (T), Fee = 6.71 kN (T),
Fep = 40.2 kN (C)
Fge = 100N (C), Fi = 10.0KN (C),
Fip = 16.0kN (T), Fy, = 8.00kN (C),
Far = 200kN (C), F,, = 100kN (T),
Fpe = 10.0 kN (T), Fop = 200kN(C),
Fep = BOOKN (C)

= 115kN(C), F; = 21.0kN (T),
Fep = 91.5kN (T)
Fy = 117.5kN (C), Fppe = 97.5 kN(T),
Fip = 61.7kN(C)
Fip= 1875k (T), Fye = 3375 K(T), Fyy = 4.50 k(C)
Fer = 117K (C), Fyp, = 8875k (T),

or = 0, Fpe = 8875k (T),

Fur = 215k (C), Fyy = 1375k (T),
Fye = 1375k (T), Fgy = 0.
Fre = 404 k (T), Fr = 167k (C),
Fou = 1.6Tk (C), Fyy = 586 k(T)
Fay = 90.0k (C), Frg =0
Fyp = 106 k (T), Fyy = 750k (©)
F,, = 75.0 k (C), ;s = 300k (C)

= 63.6k (C), Fgr = 120k (D)
F.,; = 120k (T), Fe =0
Fip =212k (T), Fy, = 135 k(C)
45°

721 1b(C), Fye = 600 Ib (T), Fy = 2001b (T),
Fgo = 3001b (€), Fop = 361 1b (C), Fopy = 300 1b (T),
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3-.28 F,,:z&Ok(C)_rm.o_qu
Fcn = 2905k (C), F), = 0417k (M)
3-26. =056?k(C) F"’HBTHC’-FQ=EJH@
3-27 = 10KN(C), Fpe = 1BRN (T),
F4,,=394kN(C)
3-29. FAG:FDF=U-Fm=Fnz=9KNlC.I.
Fus = Fe = Fgp = Fo = B49KN (),
Fiig = Fgr = 6kN(C), Fyg = Fip = 12KN(C)
-0, Fy; = 9.01 kN(T), Fye = 0.25KN(C),
Fyg = 1525kN (C)
33, Fyy=0.F,; = 400kN (C),
Fip = BO4KN (T), Fye = 113KN(€),
Feg = B4 KN (T), Frp = 11.3KN(C)
3-33. DE = 500(C), DC = 683 (C), AD = 612(T)
3-M. JH = 283(T),DC = 0,CF = 283(T),
BF = 283 (T), LI = 2.83(T),JE = 20(C)
3-35. CB = 129(T), DB = 0, AE = 15.7(C),
CF = 157(C)
3-31. F,p=24Tk(T), Fyy = 102k(C),
Fc 102 k(C)
3-38. C,=3601b,A, =200, B = 401b, B, = 0.4, =0,
C. =0, Fy = 101b(T), Eyy = 236 1(C),
Fep = 38216 (C)
3-3. E = 693kN,F, = 346 kN, F, = 200 kN,
A, = 0,4, = 346N,
A, = 200N, Fop = Fop = Fen = 0
Fye = 416 kN (T), Fgc = LISKN(Ch
Fyy = 346 kN (C), Fye = 23LRN(C)y
Fu = LISKN (T), Fe = 246 KN(C),
Feg = 416 KN (T), Fpe = 231 kN (C)
341, Foy=245k(C).Feg=Fep = 0.817k(T), Fyp =0
3-42. F, =245k (C), Fpr =0, Fiy = 0817k (C)
=0
3-43. = 120kN(C), Fgp
3-45. F,—I[K)kN(T}Far'“Fw'metc"
= L.OOKN(C)
= = 840k (T),
-1P. F-—F = Fpc = Fxc i
3 '"sr — 105 k(C), Fg = For = 0.
e = 350k (C)
Chaplﬁr'l B
4 Nrso,vr:—IOiN.Mf**EW-Nn o
Vp=0.Mp = 12 kN-m e
A Nc:o.vrs—ll,.v.--sﬁl'&"n"o-"n ]
,uus-lxk‘ﬁ.



586
4-3
4-5.

4-6.

4-31.

E=3T5M,V=0M=781kft

ANSWERS TO SELECTED PROBLEMS

N-=0,V. = — 100k M. = —4.00k:ft, N, = 0,
Vi = 0750 k, M, = — 1,00 k-fi,

Ne=0,Ve =201k M= =15k, N, =0,
Vo= 111k, M, =371kH
Vo=—15M-= —15KkN:m V, =
M. =75kN-m

Np=0,V, = d5kN, M, = ~4.5kN:m, N = 0,
Ve = =750 kN, M. = 225 kN:m

Ne =0,V =0,M=5501b-ft

V = 4001b, M = (400x + 9600) Ib-fi
=12,V =400,M = 144
M=(-99c+1600)N-m,x=2", V=191, M =
V=1kN,M=(x+ 28)kN'm
x=15"V==212,M=712

x= 125,V =0,M=281251b-Nt

x= 145t V=0,M = 3912.5b-ft

x =740,V =0,M = 11552

V= (120 = 4x) k, M = (=2 + 120 1650) k-ft
x=30,V=0M=150
0=x<5f,V=419kM= (4190 k-f,

25 kN,

1682

SR<x<IS, V=—0812k M=(-08125x +25)k-ft,

15t < x < 201, V = (=0.7x + 9.6875) k,

M = (=035¢ + 9.69x — 53.8) k-ft,
x=5"V=-08125M=209

V=(1125 ~ 1500 Ib, M = (11255 — 75 + 600) Ib-fi,
= 0.5774L,V = 0, M = 0.06415 wl®

=LY V=uwa M= —udf2
x=0V="12M=-672

X = (a/2L)(2L=a),V=0,M = el (2L-ay

X=37, V=82 M = 3135

'Wi-éusss. V=0,M=511

=0,M=10kN-m
V= —IBKN. M = 18kN'm

5-3. y, = 0.867m,)y, = 0.704m
5.5, y.=4361 5-6. P=7l4k
5-7. 858N, 1.67Tm
5-9, T,=9.09kT, =773k
5-10. 264 1b/f 5-11. 109k
5-13. 12.0kip
5-14. T,=1703k T, =103k,
5-15. h 0433 L
5-17. B, = 147k, B, = 477k A, = 477k A, = 647k,
C, =163k C, =333k
5-18. A, =0,C =955A =155kN, T =432kN
5-19. A, =167k A, =525k C, = 167k C, =375k
5-21. T, =408k A, =3k D, =B06k A, = 1.94k
Chapter 6
6-1/2. a) x=6,8 =1

6-3,

6-5/6.

6-7.
6-10.

6-14,

6-15,

b) x=4", V.=

—';".r‘— 4%y
©) x=2,M,-:i

8) x=4,A, =05,x=8 A = 5
by x=4,B. =05x=8§8, =
c]x'4|f£-—-[15r—?‘.v 0.5
d) x=4M.=lLLx=8M.= 1|

a) (10, 0.286), (10, —0.286), (10, 7.14)
a) (10,0), b) (15*, 1), €) (10, 0)

8) =24 =lx=10A = —|
b) x =8, Vo=0,x=8"V.=1
) x=2M.=0,x=10,M,= -2

- a):—4A-]

blix =45 v_,_7|,1_.rv,g
cJJ—OM,——dx-dM —0

8) x=d M, =4x=12,M, =

b) x=4" Vo= —l,x=4", v,fu
tlx-dM-];-sM =1

) x=6A = Lx=12,4 =05

b x=127,V.= —05 x = 12+, Ve = 0.5
€ x= DM(-=—31-—I2M¢ d

6-17/18. a) (3, 1.4),b) (2,3), ¢) (2.04)

6-19. 1856 kN-m, 23.2 kN

621 (M), = 1416 kN (V). = 20kN

6-22. 124k 375kt 6-23, 156k

6-25. Atx=12,7,, = 161,A, = —0333, M, = - 1.5
6-26. ) 103kN b) 2u|mm

6-27. Au=B.M..-=267 Vi = —0.333

6-29, Atx-lD,Vm——OAtM =4

m 217k b) - 111 k-ft 6-31. 106k

9) 109kN b) 196 kN-m

oM. 250K 6-35. 120 k-fi
g1 x=50Fp = -1 638 x=80F, =13
§-19. Atx= 16, Fgy = 1.11, Fjp = 0.556
edl. Atx=16,F, = ~1778
642 (75,1.25)
4l ALz =125, Fpg = —05
§-45. (50, 1) 6-46. (125, 0.707)
§-47. (125,0.825) 6-49. (75, —0.707)
§-50. 12ft, 13.4k(C)
=51 x =121 (Fgg)p., = 120k (T)
6-53. 1.92k(C) 6-54. 237k(C)
=55 0
657, (Fuhmar (C) = 320K (C), (Fyg)p, = 0
6-58. 33.9k(C).0 6-59. 27.0kN(C),0
6-61. 28.1kN,0 6-62. 117kN(T)
§-63. 35.7kN(C) 6-65. 17.1k(C)
6-66. 17.1k (T} 6-67. 118k(T)
6-69. T.36KN-m 6=-70. 262k 525k ft
6-71. 284 k-ft 6=73. 18.25kN
6-74. 149k-fi 6-75. 692k
6-77. 8.04 kip-ft 6=78. 1l4k-f
6-79. 165k ft 6-81. 130k-ft
6-1P. 30.5kN'm, T, = 169 kN
&2 a) F,, = F, = 123kN(C),
g = Fae = Fep = Fpe = 8TLKN(T),
b) F; = Fge = 123kN(O),
e = Fop = 1L6KN(T)
Chapter 7
T-. F, = Fp = 1.875kN(C),
Fpe = Fpe = 1.875 kN (C),
Fy = Fo = L8I5KN(T),
Fiet = Fo = L8ISKN(T),
BR= F. = 3125kN(C),
F, = Fg = 3.25kN (D),
Fic = Fge = 3.125 kN (T),
Foy = Fup = 3.125 ch[;?).
Fiu = Fge = 2.50kN (
Fu = Fop = SKN(C), Frc = SEN©)
L F, = F,, = 375KkN(C)
Fz = Fo = 375kN(C) Fy = FmN’lT';
;ﬁ & i;’: 2l ;” 2 ,:Fm = 625KN(T)
Fay = Fyy = b B = fee = SKN©)
Fy = Fpg = DkN(C) Fue = 10kN(C)

7-9.
7-10.

7-11.

7-14.

7-15.

7-17.

7-18.

7-19.

7-21.

-

= 3331b M), Fee = 2671(C),
gy = 2671 (T), Fie = 6001b(C),
Fap = 3331b(T), Fpe = 333 Ib(C),
Fu = 2671b(C), Fype = 267 1),
Fye = 40016 (C), Fye = 333 1h(C).
Fep = 8001b(C)
Foy = 495k(T), Fg = 455k(C),
Foy = 6.50k(C), Fyy = 6.50k(T),
Fay = 150k (C), F,, = 0707k (T),
Foe = 0907k (C). Fe = 9.50k (C),
Fye = 950K (T), Fy; = 4Kk(C), Fy = 6.36k(T)
Frp = 636k(T), Fpe = 450k (0), A
Fep = 450k, For = 4K(C), Fpe = 8.50k(C)
Fau= 0, Fyy = 950K (T), Fyy = 100Kk (C),
Fu = 3k(T), Fiy = LK(C), Foe= 0,
Fye = LAIK(T), Fop = 10K(C), Fge = 9K(T),
Fyo = BX(C), Fry = 0, Fep = 127K (T),
Fep = 9K(C), Fp = 0, Fp = 9K(C),
Foe = 13k(C)
M, = 405k-ft, M, = 120kt
M, = 1215kN-m,M, = 0.945kN'm
My = 2025k, Mz = 354 Kk:ft

Ph P 2Ph
M, =My = Ve SR

6 " b
vA=v = v(—v,,-i

= 433K(C), Fop = 358k (D),
F = 495K(T), Fyy = 6251b(C).

= 6251b(C), Fyp = 495K (C), Fep =0
.cu, = 267K(C), Fpr = 287k(T)
For = 6251b(C),Fgp = 0
Fop = 102k (D), Frp = 144K (C), Frs = 3K (C),
Foy=3K(C), Fgp = 0, Fpy = 144Kk (T,
Fpe = 102k (C), B, = A, =3kB8 =4 = 102k
Fye = 219KN(C), Feg = 12,5 kN (T),
Fep = 250kN(C)
For = 0 Fy = 0,Fz = 10.7 k(T),
Foy = 116k(C)Fep = 21=(C)
M, = My = 36kftA, =B, =
4,-3 L 760Kk Fry mnm.Fu.v 107k (C),
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= 360k (T), FH.I= 107k(C)
M, = My = 20KN'm, A, = B, = 900KN,

.-1. -3_= 1BSKN, Fp = ZO.SkNm-

Fer

A o = AR
342k (D, Fis = SOORN(CL
262KkN (C) Fyy = 175 KN (T,
318 kN (C), Fy = SEORN(C)
641K (D, For = 18BK(C)

LU T



5 k(T).

3k (C), Frg = 0
S8k (T), Fyn = 350K (C),
K (T), Fy, = 641 K(C),

rl
810, O = %{'E

13 6=
o P
B-14N15. 8= o By = AREI
- ML}
8-17. 4= Tg‘f;

o P
BAB/19. 6= s B = B

8-21. 6, = 268010 ") rad, A; = 0.322in.|
_AML ML
BUAL o ey e e
- 1Pd 9pa’
gt T i T
Pa’ 2pd" = 2P
B-26. 0, = oo Ac = S 8-27. M. = o
8-29. A, = -386mm, 6 = —0.00171 rad

8-33. 6, = —0.00348 rad,

Ap = —0.576in.

3
\l-ﬂ.lﬁl. a= EL

(A, = 0063Lin.

= oEr > " s

5-93/04, A=tk
261
L)
B-97/98. 8, = -
4El gl T
wl'
Bl e —101. ,
= SEl 8 93.3 mm
Lol el
4EP % BE!
B89 mm 8-107. 0238 in.
Ap = 0458in, A, = 0.238in.
1. 9.00mm 8-113. 191in.
. 330 8-117. (Ag = 3
233in. SITIRAR &
G TN 181 KN’
B T ©
2500 k-ft*
El
; 417 k-ft*
(B, = ¢
= 1.70in. §-126/127. 544 mm
M M
_3M =T =0
21.""' ot
wl? _ Sul A.=0
|

8-61/62.
8-65/66.
8-69/70. 0.0224 in.

(L0132 in,
20.4 mm

-~ 0.0341 in. 8-75. 0507 in.
0,156 in.
BLY PL

8-87. 0.00216 rad
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::: ‘C._zﬁau KA, = 0,4, =359k M, = 118 kft
+ X =6m M = 108 kN:m
9-T. x=975/ft, M = 1901 k:ft
9-9. = 0414L
9-10. B, =35kA, =04 = 127k C, = 144k
911 A, = g-ﬁ. =0, M, =P—:',B, = ;.a, =0, M, = %
CETEL -’-’;ﬂ,M. = ’.';.u
9-14, ¢, = - 929k
9-15.  Fop = 392K (T), Fay = 314K (C), Fyc = 165Kk (T),
Fop = 215%(C), Fep =220k(T), Fp = 165k (T)
9-17. 3T0KN(C) 9-18.  Fy, = 362KN(C)
9-19, F,, = 0482KN(C)
9-21. 232kN(C) 9-22, 762K(C)
9-23. C, =513k A, =573k A, =0, M, =493kft
9-25. A, = 24kN,A, = 208 KN,
B, = 208N, M, = 166 KN-m
9-26. M, =~ 131 KN'm
9-27. C,= 1875k A, =3k, 4, = 3125k M, = 625kt
9-20. €, =300kN, A, = 40kNm, A, = 330KN,
M, = 450kN-m
930, Fpp = 192KN, Frp = 534 kN
9-31. Fup=324Kk(C) Fey = Fep = 421K(M
9-33. Fp= 151 kN(T)
9.3, Fop = M5k(T) Fye = Fye = 431 kM.
Feg = Fep = 259K(C)
9-35. 302k
9-37. M= 1071k M, = —3214kft
9_38, A =0, A =3k C,=3k B, =10k
9-39. A =635k D,=0 D, =129k &= 187k
C, =341 k
9_41, x =10 My=312kf
0-42. 1= 15ft, C, = 0914k
9_43, Atx=10,C, = —00928
945, 107KN
Chapter 10
= — 18.5kN'm, My = 20.4 kN'm,
el t:ﬁ = 1925kN'm, My = — 195 ":"'"‘
A
10-2. My = 7MaMu= = 7o M = ~3%
o L105kR My = HEDR

10-3. My
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10-5. My, = SkN:m, My, = 10kN:m
Mye = — 10KN'm, My, = 25 kKN'm
10-6, My = =24 K-fi, Mgy = 12K:11, Mpe = = 12K,
My = 24kt
10-7. A =107k B, =144k C,=0.C=-107k
10-9, Mpc= — 290k, My = 290kN
10-10. My, = 878 k-ft, My = —2341 k'l
My = 1463 k10, Mpp = 132Kt
10-11. My, = 9ATKN'm M,y = 474 KN-m
Mye = 94TKN'm, My = 26.52kN'm
10-13. A, =295k A, = 410k C, = 455k C, = 0902k
10-14. My, = 225 k:m, My, = 4.50kN-m,
My = = 4.50kNm
10-18. My, = 104 k1, My, = 207 k-ft,
Mye = — 207kt Mgy = 7.50k:ft
10-17. My, = }Oﬂ.
1018, M, = 393 k-fi, My, = 185K,
Mpe= = 185kft, Moy = - 785k,
Moy = T85K:N, My = — 393k:ft
10-19. My, = 206 kN'm, My, = 411 kN-m,
Mpc = = 4L1KN'm, M., = 41.1 kKN'm,
Mgy = = 4L1KN'm, M, = — 206kN'm
10-21. M, = — 464 kM, My, = — 110k-R,
Myc = 10K, M, = 155K M, = — 1SSk,
My = =243kt
10-22. M= - 242kN, My, = 475k-h,
My = =475k, M, = 66,0 k-ft,
Mep = = 660K M1, My = = 472kt
10-23. M, = = 225010 kft, My, = — 493 kI,

Mye = 493K My = 49T KoM, My, = = 497 k-fr
My, = 556k, My, = 11,1k,

My = — ILLKk:I, Mg, = 244 k-1,

Mep= = 244k1, My = 101 k-,

My = = 1L1kR, My, = - S56k:h

My = 240 My = — 24k0t, My = — 24k
Moy = 24kt G :
25AkN, My, = 643 k-1,

= - 3K M, = 998 ko,

= =098 kN. M= — 567kt

11-3.
11-5.

11-6.
11-7.
11-9.
11-10.

11-11.
11-13.
11-14.
11-15.
11-17.

11-18.

11-19,

11-21.
Chapter

12-1.
12-2.
12-3.
12-5.

12-6.
12-7.
12-9.
12-10.
12-11.
12-13.
12-14.
12-15.

12-17.

My, = 38.7 kN m, My = — 387kN'm

My = G6TKA My = 133 K0t My = — 133 k-,
Mg = 233 kMt

My, = =24k ft

My, = 555 kAt

A, = 6KN, D, = 6kN

My = 444 kft, My, = 888 kN,

My = — BBB kM, My = 724 k:f,

Moy = — 124kM, Mpe= — 362k ft

My, = 161 kN-m

My, = 76.2k Mt

Mq, = 185KkN'm

My, = 149k ft

My = 128 k:ft, My, = 218 k-fi, M, 218 k-fi,
Moy = 175 ket Mo, = — 175 K:1t, M),, 55.7 k-ft
My, = 168 k-fl, My, = — 168 k-t

Mpg = — 478 k-fl, M, = 478 k-1t

M= — 248k-ft, My, = 26.1 k-t

M= — 261 kft, M.y = 50.7k-fi,

Mep = — 507 k-ft, My, 40.7 k-ft

A, =244k A, =650k D, =244k D =350k
12

Me= —264kft, M, = —269k-ft

18.9(10°) k-ft, 0.579

— 0.000551 rad

Cyp = 0707, K, = M, = 108(10") k-ft, C,, = 0.315,
Ky = My = 24.1(10%) k-t

M, =135k ft, M= 132k f

0.579, 9.46(10°) k-ft

192, K, = M, = 1.97 (10')kN'm

Cyp = 0451, K, = M, = 721 MN'm

My, = 351 k-t

x=12fi,M=516kfi

Mg, = 301 kRt

My = =348 k:ft, My, = 301 k-f1, M, = — 301 k-It.
My = 348 k-t

My = 0. My, = 604 k-ft, M, = —610k i,

My, = 553 k:ft, My, = 2.77 k-fi, My = 610k,
Mep = —604k-fi, M, = —5.53 k-,
My = —277k:R M, =0

12-18/19. My, = 283 k-ft, M,, = —283 k-1,

Mg = B3k-ft, My = —283k-ft,
My =M, =0

Chapter 13
[ 5102 0 019 0 -15467 -116 —1%67 |16
0 174 0 0 6 -87.0 16 “wa
‘ —20138° 0 2001307 08 ) 0 0 0
0 0 i 0 0 o
13-1. K=| _jsa67 -16 0 0 Is467 116 0 o
| 116 R7.0 0 0 116 §1.0 0 0
15467 116 0 0 0 0 15467 —-116
(56 & =gi0 (S T (] 0 ~16 870
- W
13-2. D; =0, D, 0.02300in. 13-3,
=5 D= 0.45 mm, g, = 6,67k (T)
0,256 0 0 0 ~0.028  0D.09%
0 04173 0 03333 0096 —0072
0 0 0.50 (1] 0.25 0
0 0.3333 0 03333 0 0
13-6. K=4AE _, % qm6 025 0 0378 0.096
0.096 0.072 0 0 - 0096 0072
0.128 0,096 = 023; 0 0 0
| 0096 - D072 0 0 0 ]
13-1. D, = —0.45mm,q, = 6.67k(T) 13-9. T30kN(C)
13-13, D, = —0.00172in, g, = 1271b(C)
0.03536 0.03536 0 0 -00353%  0.03536
003536 003536 (1] -0.10  D03336 0.03336
) [ 0.10 0 -0.10 0
0 0.10 0 020 0 0
003536 003536 -010 O 017071 0
13-14. K=AE .00 —g05% O 0 0 0.17071
0 0 0 0 0 0
| (1] 0 0 0 0 010
o 0 a 0 -0.03536 -0.03536
= 0 0 010 -003536 003536
13-15. 113k (C)
Chapter 14
3 = N-m
14-1. 0, =17.5kN, 0s= — 7.50kN, @ = S00KN'm
14-2, g, =22.5kN'm, q; = — 1125 KN-m
143, @, = M, = 964 kN'm, Q; = My = 161 KN '“M i
o =@ =
Bos ) — g, = = 200k =y 7 SOORLALEE
4-6. 0,= Q, = 255k, 05 =210k
= -2M
14-7. Q§=M_Qn=fM.Q;[ 24
14-9. = 122 k:Mt, Qs = 230Kkt
S O 575k, g = A28 KN
H4-10. 0, = 4.125kN, Qs = 15 s 2’
2 w...
14-11, 0, = -26!7. L0y =wl, 0,=~ 3

AN
¢ = IBKC), g = 0, g, = 333K
—0028 - 009
- 0.09% 0072
= 0.25 (1]
0 0
(] 0
0 0
0378 0,096
0ms 0072
13-10. 625kN(C)
0 0 0 0
0 0 0 0
(] 0 (i
0o 0 0 ~0.10
0 0 -00353% -0035%6
0 =010 -00353 -00353%
(L} (] 0
o olo 0 o
0 o 003536 003536
0 0 003536 0.03536
- 0.0k ft




[ 229w 0 131 12K 0 ~ 236,00 (] -01389 0 3
nge  -S0472 0 — 72 D -umey D -6 12023 3077
i 38077  521.54

0
NAmID -0M7I 1WA 6200 WI6EET 11RO 0 sm4an 1617 2625 -1008 —38077
0 s 725000 0 -lamn o 0 0 ‘ s 17 14 as W 1M
ST 24 66667 0 45330 0 0 0 s04m L. 0 A L 0 0 0
1 BT I TP E R 21600 0 0 0 ML K=(07| 1344 1008 28 0 % -1
0 (] 0 302083 0 0 i —2023 -38077 -1344 0 -1 3
) 0 0 0 0 2013 o 'd —~38077 -51442 1008 0 1008 3077
- sum 0 M7 0 0 0 60.93 q ~ 1000 0 0 0 0 0
‘LM"HJ_’*- Qe =0, gy = ~ 0260k, q,,-=l-37|ﬁ. G = — 208Kt 0 — 13125 -2625 -2625 O 0
K Gy = 260K, gy = 208K°N, gre = =137k gpy = = 0260k, gy =0
I 461222 0 B458.31 —4531.25 U]
0 3000.34 13216.15 0 ~2154

—0.608in, D = = 1.12in, B, = 0.0100 rad

44 0 B4 -3

B4SAA3 1321615 1522500 0 ~13216.15
—4531.25 0 1] 467222 0
0 —27534 -13216.15 0 3900.34
0 1321615 42291667 B45833 - 1321615
0 0 0 845833 1]
B458.33 1] 33833333 n o
o U] 0 - 14097 o
0 0 0 0 —3625
— 14097 0 ~p4s8.33 0 0
0 —3625 (] 0 o

0 11 -3 g e
n=[s | 12]‘A'2n_[2 1814

4 3 To 4 17
A’:I::‘_ ]a] A=T. AA [.', 13

2 48 2

N7 2
-6 -5 2
—0.15 065 025

0.05 —0.05 -025

0.15 -0.15 025
1 e
| A, sl = A

=1
~ 0333

=380.77
=51442
10.08

10,08
380.77
51442

0
0

o
13216.15
422916.61
B458.33
= 13216.15
1522500
33833333

o
—B458.33
0
0
0

= 11k O = 250k, 0, = —289K,Q; = —230k

=

A-9.

A-15.
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= 1000 0
0 - 13125
0 -2
0 -2628
0 0
o 0
0 0
1000 0
0 13125
o B458.33 1] o ~ 14097 L
o o [} ] - 3625
0 331833333 0 o —BASEY o
B458.33 0 - 14097 0 o o
0 o 0 -1625 0 o
33833333 0 —B45R33 0 0 0
67666667 ] —B45833 ] 0 0
] BT6666.67 [ [} e R 0
- 845833 [} 14097 o (] 0
0 0 ] 3625 [} 0
0 = §458.33 0 0 14097 o
0 0 a 0 0 3628
-3 4 -2
AB=| 4 -2 10
=50 2
72 I
AB = _3] A-10. AB [_ 1 I]
At
K i\-s, 68 —1|=M
A 350 3



Index

:dd.lr.iun of matrices, 569
imerican Association of State Highway an i
ﬂm:l;l:{MSH’lO). IJ.!IOlh i
A= ilway Engineering Associati
Angular flexibility coefficient, 5 & nan
ANSUASCE 795 Standard, 22
Approximate methods, use of, 237 - 38
Arches, 7, 172 - 77, 180 - 81

fixed arch, 172

three-hinged arch, 172, 173 - 77

tied arch, 172

two-hinged arch, 172

using stiffness method, 533 -
of, 537 - 38 33331

concrete, §
conjugate-beam method, 289 - 96
conjugate-beam supports, 290 - 91
procedure for analysis, 291
and force method of analysis, 361 - 69
influence lines for, 191 - 94
laminated, 5
member stiffness factor for, 443 - 51
with nonprismatic members, 473 - 95
g:-.cai: c;ncrul:, 5
€ also Beam anal i |
B e mamxly?;?nsmg stiffness method
Hending, 299
Bent, 68
Beuti's law, 361
Boundary conditions, 274
Bridge loads, 13
Bridge trusses, 70 - 71
Building loads, 12 - 13

Clb!he_s. 7.163-171, 178 - 80
Subjected to concentrated loads, 164 — 66
o ubjected t0 uniform distibuted load, 166 - 71
un;y-oyu factor (COF), 442 ¢
nprismatic members, 476
Cuughm Alberto, 327
Castigliano's theorem, 327 - 28
for beams and frames, 333
procedure for analysis, 334
for mmu.fazn
or analysis, 329
Code-number labeling, 534

Com|
Complex (rUSSES. 75
Composile SLUCIUTes:
defined, 377
and force method of analysis, 377 - 78
Compound
Concrete beams, 5
Conjugate-beam method, 289 - 96
conjugate-beam supports, 200 - 91
procedure for analy sis, 291
Consistent displacements, method of, 355
Conlinuity conditions, 274
Coplanar structures, supports for, 31
Cross, Hardy, 439

9
Eﬂof::"n matrix, 568

jumns, 6
Egmpﬂl y of displacement, 356
Compatibility equatic . 358

;:lihihly method, 355

russes, 74, Y2 - 95

Dead loads, 10~ 11
Deflection per unit force, 356
Deflections, 269 — 344

axial load, virtual strain energy caused by, 321
Castigliano’s theorem, 327 - 28
for beams and frames, 333
for trusses, 328 - 29
conjugate-beam method, 289 — 96
conjugate-beam supports, 290 - 91
edure for analysis, 291
deflection diagrams and the elastic curve, 26971
double integration method, 274 - 79
boundary and continuity conditions, 274
procedure for analysis, 275
sign convention, 274
elastic-beam theory, 272 - 73
external work:
force, 207 - 98
moment, 298
method of virtual work, 303 - 20
beams and frames, 310 - 20
trusses, 303 — 10
moment-area theorems, 280 — 88
procedure for analysis, 282
principle of work and energy, 300
shear, virtual strain energy caused by, 321
strain energy:
axial force, 299
bending, 209
lemperature, virtual strain energy caused by,
Iorsion, virtual strain energy caused by, 322
vinual work, principle of, 300 - 302
See also Method of virtual work
ions of nonprismatic members, 474 -75

322-23

Degree of indeterminacy, 39
Degrees of freedom, 404, 499, 534
Design codes, 9
Determinacy, 39 — 42
Determinants, 574 - 75
Diagonal matrix, 568
Displacement method of analysis, 355 — 56, 403 - 37
beams, analysis of, 411 - 18
defined, 403 — 4
degrees of freedom, 404
frames, analysis of, 419 - 31
general procedures, 403 - 4
moment distribution, 439 - 71
for beams, 443 - 51
carry-over factor, 442
defined, 439
distribution factor (DF}, 441
fixed-end moments (FEM). 440
for frames, 458 - 67
general principles/definitions, 439-42
Joint stiffness factor, 441
member relative-stiffness factor, 442
member stiffness factor, 440
sign convention, 440
stiffness-factor modifications, 452-57
nodes, 404
slope-deflection equations, 405 — 10
angular displacement, 406
fixed-end moment (FEM], 408 =9
general case, 405 -7
pin-supported end span, 410
relative linear displacement, 407
Displacements, 355
Displacement transformation matrix, 501-3
and plane frame analysis, 555
and truss analysis, 501 - 3
Distributed surface loads, 30
Distribution factor (DF), 441
Double integration method, 274-79
boundary and continuity conditions, 274
procedure for analysis, 275

sign convention, 274 : g
Dyninmit analysis, calculating earthquake loadings using. 21

Earthquake loads, 20-21
Earthquake responds spectrum, 21
Elastic-beam theory, 272 ~73

\abulated results, 273

uations of equilibrium, 38 = 39
External stability, 76

of space truss, |
External work:

force, 297 - 98

moment, 298



‘Fixed arch, 172
mmﬂ moments (FEM), 408 - 9, 440

_ nonprismatic members, 476
Fixed-supported portal frames, 246

Flanges, 5

Flexural rigidity, 272

Floor girders, influence lines for, 202 -5
Force-disp qui 355
Force method of analysis, 353 - 402

~ beams, 361 - 69

eral procedure, 356 - 59
 trusses, 374 - 76
Force transformation matrix, 501, 503
and plane frame analysis, 556
and truss analysis, 501, 503
Frame, nonprismatic members in, 473 - 95
htme-m;mber global stiffness matrix, 557

Frames,
analysis of, 419 - 31
no sidesway, 419 - 23
sidesway, 424 - 31
building, vertical loads on, 242 - 44
Castigliana’s theorem for, 328 - 29
displacement method of analysis, 419 - 31

fixed-supported portal, 246

and force method of analysis, 370 - 73
member stiffness factor for, 458 - 67
moment distribution for, 458 - 67
multistory, 460 - 61

with nonprismatic members, 473 - 95
pin-supported portal, 245

portal, 245 - 49

qualitative influence lines for, 389 - 95

sauss method for solving simultancous equations, 578 -

iencral building codes, 9 il
coordinate sysiem, 498, 534

iussel plate, 67

JM of Frame Constants (Portland Cement Association),

Influence lines, 183 - 235
for beams, 191 - 94
defined, 183
for floor girders, 202 - 5
impact loads, 211
live loads for bridges, 210 - 11
highway bridges, 210
railroad bridges, 211
procedure for analysis, 184
qualitative, for frames, 389 - 95
qualitative influgnce lines, 194 <201
for statically determinate structures, 183 - 235
for statically indeterminate beams, 386-88
for trusses, 206 - 9
Influence lines for beams, 191 - 94
absolute maximum shear and moment, 222-25
envelope of maximum influence-line values, 223
moment, 222 - 23
shear, 222
loadings, 191
concentrated forces, 191
uniform load, 191
maximum influence at point due to series of concentrated
loads, 212-21
moment, 216 -2
shear, 212 - 15
Internal loadings, 121 - 61
at a specified poimt, 121 - 26
procedure for analysis, 123
sign convention, 122
moment diagrams construeted by the method of
superposition, 146 - 49
shear and moment diagrams for a beam, 132 - 42
procedure for analysis, 136
shear and moment diagrams for a frame, 142 - 44
shear and moment functions, 127 - 3
procedure for analysis, 128
Intemal stability, 76 - 78
of space truss, 100
Inverse of the matrix, 576 - 78

JDinl:. methad of, 80 - 83
Joint stiffness factor, 441

K-truss, 70

Laminated beams, §
Il-.:::nl bracing, 70
ral loads on building fy -
eandlever, 285651 o !
upotu]ﬂmlhod. 250-55
tnear flexibility coefficient, 35
Live loads for bridges, znr)'w nﬁ
highway bridges, 210
impact loads, 21|

jlroad bridges, 211
ilfo jidl

ing properties:
Lﬂ;ucli_ll:lgnr;ri;ma nembers, 476 - 43

camy-over factor (COF), 476
fixed-end moments (FEM), 476
giffness factor, 476

5!
Iﬁdgﬂ: loads, 13
puilding loads, 12 - 13
dead loads, 10 1 1
earthquake loads, 20-21
hydmalulic and soil pressure, 21
live loads, 12 - 21
natural loads, 21
snow loads, 20
types of, 325
wind loads, 15 - 19
Local coordinate system, 498
LRFD (load and resistance factor design), 22

Manderla, Heinrich, 405
Matrix:
column, 568
defined, 567
diagonal, 568
identity, 569
row, 568
square, 568
symmetric, 569
unit, 569
Matrix algebra, 567 - 79
basic definitions, 567 - 69
column matrix, 568
determinants, 574 — 75
diaggonal matrix, 568
G:ﬁss method for solving simultancous equations, 578-79
identity matrix, 569
inverse of the matrix, 576 - 78
matrix, defined, 567
matrix operations, 569 - 73
addition of matrices, 569
malrix multiplication, 570 - 71
matrix partitioning, 572 - 73
multiplication by a scalar, 569
subtraction of matrices, 569
transposed matrix, 572
TOW matrix, 568
Square matrix, 568
symmetric matrix, 569
types of matrices, 567 - 69
unit matrix, 569
atrix multiplication, 570 - 71
latrix operations, 569 - 73
addition of matrices, 569
matrix multiplication, 570 - 71

matrix partitioning, §72 - 73
multiplication by a scalar, 569
subtraction matrices, 569
transposed matrix, 572
Matrix partitioning, 572 - 73
Maxwell, James Clerk, 355
Maxwell's thearem of reciprocal displacements, 360 - 61,
386

Member coordinate system, 498
Member global stiffness matrix, 504 - 5
Member relative-stiffness factor, 442
Member stiffness factor:
for beams, 443 - 51
carry-over factor, 442
defined, 439
distribution factor (DF), 441
fixed-end moments {FEM), 440
for frames, 458 - 67
multistory frames, 460 - 61
no sidesway, 458 - 59
sidesway, 460 - 61
general principlesfdefinitions, 439 - 42
joint stiffness factor, 441
member relative-stiffness factor, 442
member stiffness factor, 440
moment distribution, 439 - 71
sign convention, 440
stiffness-factor modifications, -lmftzd—si?
mber pin supported at far end,
:;r‘:nmeln'pc beaﬁ!p:ilh anti-symmetrical loading, 454
symmetric beams and loading, 4§J
Member stiffness influence coefficients, 500 - 501
Member stiffness matrix, 500 = 501
Method of consistent displacements, 355
Method of joints, 80 -)IIEJ
thod of sections, 12
::lhud of substitute members, 96 - 99
Method of virtual work, 303 = 20
beams and frames, 310 - 20
procedure for analysis, 312
(russes, 303 - 10
external loading, 303
fabrication errors and camber, 304
procedure for analysis, 303
rature, 3
M:?rlnp:m concentrated live loads, 12
Minimum uniform loadings, 12
Mohr, Otto, 355, 405 "
Moment-area theorems, 280~ §
cdure for analysis, 282
Moment distribution, 439 = mn
for beams, 443 31
ca:ry-ovcr“;mnr. 442
fined, 43
ﬂ:sl.rihulion factor (DF), 441



~ fixed-end moments (FEM), 440
~ for frames, 458 - 67

general principles/definitions, 439 - 42

 joint stiffness factor, 441

‘member relative-stiffness factor, 442

‘member stiffness factor, 440

sign convention, 440

‘stiffness-factor modifications, 452 - 57

structures with nonprismatic members, 486 - 91

beam pin supported at far end, 486

relative joint translation of beam, 489

1 with anti-sy ic loading, 488

symmetric beam and loading, 487
Muller-Breslau, Heinrich, 355
Muller-Breslau, M., 289
Muller-Breslau principle, 194, 386 — 88, 389
Multiplication by a scalar, 569

Nodal coordinates, 518 - 21

Nodes, 404

Nonprismatic members in beams and frames, 473 - 95
deflections of, 474 - 75
loading properties, 476 - 83
nonprismatic by il
‘momenl distribution, 486 - 91
beam pin supported at far end, 486
relative joint translation of beam, 489

beam with anti-sy tric loading, 488

symmetric beam and loading, 487
slope-deflection equations, 492 - 93

Mﬂl trusses, 70, 71
Pin-supported end span, 410
Pin-supported portal frames, 245

Planar trusses, 7
Plane frame analysis using stiffniess method, 553 - 66

application of, 558 - 64
[ Aransformation matrix, 555

.'I__l'lwlrmfm'mn%iun matrix, 356

frame-member global stiffness matrix, 557
 frame-member stiffness matrix, 553 - 54

from publications, 484 - 85

Reciprocal displacements, Maxwell's theorem of, 360 - 61, 384

Roof trusses, 68
Row matrix, 568

Shear and moment diagrams:
for a beam, 132 - 42
for a frame, 142 - 44
Shells, 8
Simple diaphragm and shear wall systems, analysis of, 56 - 57
Simple truss, 73
Simultaneous equations, Gauss method for solving, 578 - 79
Slope-deflection equations, 405 - 10
angular displacement, 406
fixed-end moment (FEM), 408 - 9
general case, 405 -7
for nonprismatic members, 492 — 93
pin-supported end span, 410
relative linear displacement, 407
Snow loads, 20
Space-truss analysis, 528 — 29
Space trusses, 7, 100 - 106
Square matrix, 568
Stability, 43 - 45
improper constraints, 43 - 44
partial constraints, 43
Statically determinate structures, 27 — 65
determinacy, 39 - 42
equations of equilibrium, 38 - 39
application of, 46 - 55
idealized structure, 27 - 37
influence lines for, 183 - 235
mmp;; di;ghragm and shear wall systems, analysis of,
stability, 43 — 45
improper constraints, 43 — 44
partial constraints, 43
superposition, principle of, 37
Statically determinate trusses, 67 - 117
bridge trusses, 70~ 71
complex trusses, 75
procedure for analysis, 96 - 99
compound trusses, 74
procedure for analysis, 92 - 95
coplanar trusses, classification of, 73-79
design assumptions, 72
determinacy, 75 - 76
Joints, method of, 80 - 83
method of sections, 86 — 91
68

simple truss, 73

space trusses, 100 - 106
stability, 76 - 79
external stability, 76
internal stability, 76 - 78
trusses, types of, 67 - 72

seno-force members, 84 - 85
See also Trusses

gatically indeterminate beams, influence lines for, 386 — B§
satically indeterminale structures:

/ L antages of, 354
:dﬂn:(ui%;i"' analysis :f, 237 - 67
pnnsl frames and trusses, 245 - 49
(russes, 238
nppmximmu methods, use of, 237 - 38
Beuti’s law, 361

ilding frames
mcrat ;b.uads on, 25055
vertical loads on, 242 - 44
composite structures, 377-178
defined, 353 - 56
displacement method, 355 - 56
farce method of analysis, 353 - 402
frames, 370 - 73
geru:ral procedure, 356 - 59, 361 - 76, 379 - 80
teams, 361 - 69
(russes, 374 - 76 ;
frames, qualitative influence lines for, 389 - 095
Maxwell’s theorem of reciprocal displacements, 360 - 61
methods of analysis, 355
Muller-Breslau principle, 386 - 88, 389
satically mdeterminate beams, influence lines for, 386 - 88
three-moment cquation, 380 - 85
Static analysis, for carthquake design, 21
Stiffness factor, nonprismatic members, 476
Stiffness-factor modifications, 452 = 57
member pin supported at far end, 452 A I
symmetric beam with anti-sy mmetrical loading, 454
symmetric beams and loading, 453
Stiffness method:
beam analysis using, 533 - 51
degrees of freedom, 499
displacement transformation matrices, 501-3
force transformation matrix, 501, 503
fundamentals of, 497 - 99
global and member coordinates, 498
local coordinate system, 498
mémber coordinate system, 498
member global stiffness matrix, 504-5
member and node identification, 498
member stiffness influence coefficients,
member stiffness matrix, 500 - 501
nodal coordin 518 - 21
space-truss analysis, 528 - 29
structure stiffness matrix K498
truss analysis using, 497 - 531
application of, 51017
fabrication errors, 522 - 23
matrix analysis, 523
thermal effects, 522
truss stiffness matrix, 505 -9

500 - 501

See also Beam analysis using stiffness method; Plane frame.
analysis using stiffness method
Strain energy:
axial force, 299
bending, 299
Stress distribution, resultants of, 121
Structural analysis, matrix algebra for, 567 - 79
Structural design, 22
Structural system, 6
Structure coordinate system, 498
Structures:
classification of, 4 = §
codes, 9
defined, 3
wdealized, 27 - 37
structural elements, 4 - 6
beams, 4 - 5
columns, 6
lie rods, 4
structural system, 6
types of, 3 =23
arches, 7
cables, 7
frames, 8
surface structures, 8
trusses, 7 ;
See also Idealized structure; Load structure stiffness matrix
K, 498
Subdivided trusses, 70, 71
Subtraction of matrices, 569
2rposilion:
Suromnl diagrams constructed by the method of, 146 =49
principle of, 37
Surface structures, §
Sway bracing, 70
Symmetric matrix, 569
Temperature, virtual strain energy caused by, 32223
Tetrahedron, 100
Thin plates, 8
Three-hinged arch, 172=17
Three-moment equation, 380 - 85
Tied arch, 172
Tie rods, 4 ) ;
Torsion, virtual strain energy &
Transposed malrix, 572
Tributary loadings, 34 = a7
one-way system, 34 = 35
[wo-way systen, 36-37
es, 7
Tr:;;:mimm: analysis of, 238
Baltimore, ?(;.I‘“
idge, 70-
I(,‘?:Figliam:u's \heorem for, 328 =29
complex, 75

aused by, 322



| 74,9295
 assumptions, 72
method of analysis, 374 < 76
0¥ 'ml _'”
~ influence lines for, 206 - 9
; mou ?r virtual work, 303 - 10
EWAI frames, 245 - 47
- mes, 245 - 47
Pratt, 70, 71
simple, 73
space, 7, 100 106
Aypes of, 6772
Truss stiffness matrix, 505 - 9
Two-hinged arch, 172

Uniform live loads, 12
Unit matrix, 569

Vertical loads on building frames, 242 - dd
approximate analysis, assumptions for, 242 -3
Virtual work:
principle of, 300 - 302
See alse Method of vinual work

Warren trusses, 70, 71
Wind loads, 15~ 19
design wind pressure:
for buildings, 16
Tor signs, 1619

Zero-force members, B4 - §5
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