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This is a long-overdue volume dedicated to space trajectory
optimization. Interest in the subject has grown, as space missions of
increasing levels of sophistication, complexity, and scientific return –
hardly imaginable in the 1960s – have been designed and flown.
Although the basic tools of optimization theory remain an accepted
canon, there has been a revolution in the manner in which they are
applied and in the development of numerical optimization. This vol-
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approaches to trajectory optimization. The choice of authors has been
guided by the editor’s intention to assemble the most expert and active
researchers in the various specialties presented.
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Preface

It has been a very long time since the publication of any volume dedicated solely
to space trajectory optimization. The last such work may be Jean-Pierre Marec’s
Optimal Space Trajectories. That book followed, after 16 years, Derek Lawden’s pio-
neering Optimal Trajectories for Space Navigation of 1963. If either of these books can
be found now, it is only at a specialized used-book seller, for “astronomical” prices.

In the intervening several decades, interest in the subject has only grown, with
space missions of sophistication, complexity, and scientific return hardly possible to
imagine in the 1960s having been designed and flown. While the basic tools of opti-
mization theory – such things as the calculus of variations, Pontryagin’s principle,
Hamilton-Jacobi theory, or Bellman’s principle, all of which are useful tools for the
mission designer – have not changed in this time, there has been a revolution in the
manner in which they are applied and in the development of numerical optimization.
The scientists and engineers responsible have thus learned what they know about
spacecraft trajectory optimization from their teachers or colleagues, with the assis-
tance, primarily, of journal and conference articles, some of which are now “classics”
in the field.

This volume is thus long overdue. Of course one book of ten chapters cannot
hope to comprehensively describe this complex subject or summarize the advances of
three decades. While it purposely includes a variety of both analytical and numerical
approaches to trajectory optimization, it is bound to omit solution methods preferred
by some researchers. It is also the case that a solution method espoused by one author
and shown to be successful for his examples may prove completely unsatisfactory
when applied by a reader to his own problems. Even very experienced practitioners
of optimal control theory cannot be certain a priori of success with any particular
method applied to any particular challenging problem.

The choice of authors has been guided by the editor’s intention to assemble the
most expert and active researchers in the various specialties presented. The authors
were given considerable freedom to choose their subjects, and while this may yield a
somewhat eclectic volume, it also yields chapters written with palpable enthusiasm
that are relevant to contemporary problems.

Bruce Conway
Urbana, Illinois

xi





1 The Problem of Spacecraft Trajectory Optimization

Bruce A. Conway
Dept. of Aerospace Engineering, University of Illinois at
Urbana-Champaign, Urbana, IL

1.1 Introduction

The subject of spacecraft trajectory optimization has a long and interesting history.
The problem can be simply stated as the determination of a trajectory for a spacecraft
that satisfies specified initial and terminal conditions, that is conducting a required
mission, while minimizing some quantity of importance. The most common objective
is to minimize the propellant required or equivalently to maximize the fraction of
the spacecraft that is not devoted to propellant. Of course, as is common in the
optimization of continuous dynamical systems, it is usually necessary to provide
some practical upper bound for the final time or the optimizer will trade time for
propellant. There are also spacecraft trajectory problems where minimizing flight
time is the important thing, or problems, for example those using continuous thrust,
where minimizing flight time and minimizing propellant use are synonymous.

Except in very special (integrable) cases, which reduce naturally to parameter
optimization problems, the problem is a continuous optimization problem of an espe-
cially complicated kind. The complications include the following: (1) the dynamical
system is nonlinear; (2) many practical trajectories include discontinuities in the state
variables, for example, there may be instantaneous velocity changes (also known as
“�V’s”) from use of rocket motors or from planetary flyby (or “gravity assist”)
maneuvers, there may be instantaneous changes in spacecraft mass from staging or
from using the rocket motor, or there may be sudden changes due to coordinate
transformations necessary as the spacecraft moves from the gravitational sphere of
influence of one body to that of another; (3) the terminal conditions, initial, final or
both, may not be known explicitly, for example, for an interplanetary trajectory, the
positions of the departure and arrival planets depend on the terminal times, which
are often optimization variables; (4) there may be time-dependent forces, for exam-
ple, the perturbations from other planets during an interplanetary trajectory can only
be determined after the positions of the planets are determined using an ephemeris;
(5) the basic structure of the optimal trajectory may not be a priori specified but is
instead subject to optimization. For example, the optimal number of impulses or the
optimal number of planetary flybys (or even the planets to use for the flybys) may
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2 Problem of Spacecraft Trajectory Optimization

not be known. The VEEGA trajectory for Galileo [1] is an example; this was not the
only feasible trajectory but was determined to be the optimal flyby sequence.

There are many types of spacecraft trajectories. Until 1998 (and the very suc-
cessful Deep Space 1 mission), spacecraft were propelled only impulsively, using
chemical rockets whose burn duration is so brief in comparison to the total flight time
that it is reasonable to model it as instantaneous. Between impulses, the spacecraft
motion, as a reasonable first approximation, can be considered Keplerian. Interplan-
etary cases add the possibility of planetary flyby maneuvers, which again, as a first
approximation, may be modeled as nearly instantaneous velocity changes, preceded
and followed by Keplerian motion. The impulsive transfer case, even including flybys,
is thus a parameter optimization problem with the parameters being such quantities
as the timing, magnitude, and direction of the impulsive �V’s and the timing and
altitude of gravity assist maneuvers. Of course, for extremely accurate spacecraft
trajectory optimization, the resulting approximate trajectories must be reconsidered
with the perturbations of other solar system bodies, the effect of solar radiation
pressure, and other small but not insignificant effects included.

While the potential benefits of low-thrust electric propulsion have been known
for many years, it has only been relatively recently that spacecraft missions have
been flown using this technology, for example in the NEAR and Deep Space 1
missions. Electric propulsion produces very small thrust, so that typical spacecraft
acceleration is on the order of 10−5 g, and thus thrust is used either continuously or
nearly so. The continuous thrust optimal control problem is qualitatively different
from the impulsive case as there are now no integrable arcs and the control itself,
for example the thrust magnitude and direction, have continuous time histories that
must be modeled and determined. If the electric power is provided by solar cells,
the variation of power available with distance from the sun must also be taken into
consideration. A qualitatively similar continuous thrust case is that of solar sail-
powered spacecraft, which of course are also subject to variation in effectiveness as
they move away from the sun.

While orbit transfer, for example LEO-GEO transfer, and interplanetary tra-
jectories have been the focus of the bulk of research into spacecraft trajectory
optimization, there are certainly many other applications of optimal control theory
and numerical optimization to astrodynamics. Recent interesting problems include:
(1) multi-vehicle navigation and maneuver optimization for cooperative vehicles,
for example a fleet of small satellites in a specified formation [2]; (2) multi-vehicle
noncooperative maneuver optimization, for example pursuit-evasion problems such
as the interception of a maneuvering ICBM warhead by an intercepting spacecraft
or missile [3]; (3) so-called “low-energy” transfer using invariant manifolds of the
three-body problem, alone [4] or in combination with conventional or low-thrust
propulsion [5] and; (4) trajectory optimization for a spacecraft sent to collide with a
threatening Earth-approaching asteroid, with the objective of maximizing the subse-
quent miss distance of the asteroid at its closest approach to Earth [6] [7]. These are
only a few of many examples that could be drawn from recent literature and from
the programs of the principal conferences in the subject.
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Necessary conditions for optimality for every one of these types of spacecraft tra-
jectory optimization problems may be derived using the calculus of variations (COV).
Unfortunately the solution of the resulting system of equations and boundary condi-
tions is either difficult or impossible. For certain simplified but still very useful cases
of either impulsive-thrust or continuous-thrust orbit transfer, the analytical neces-
sary conditions may described using the “Primer Vector” theory of Lawden [8], as
will be described briefly in Section 1.2.1 of this Chapter and then in much greater
detail in Chapter 2. Analytical solutions for the optimal trajectory (i.e. solutions sat-
isfying the necessary conditions) can be obtained in special cases, for example for
very-low-thrust orbit raising [9], even in the presence of some perturbations [10].
However, the vast majority of researchers and analysts today use numerical opti-
mization. Numerical optimization methods for continuous optimal control problems
are generally divided into two types. Indirect solutions are those using the analytical
necessary conditions from the calculus of variations [11]. This requires the addition
of the costate variables (or adjoint variables or Lagrange multipliers) of the prob-
lem, equal in number to the state variables, and their governing equations. This
instantly doubles the size of the dynamical system (which alone, of course, makes it
more difficult to solve). Direct solutions, of which there are many types, transcribe
the continuous optimal control problem into a parameter optimization problem [12]
[13] [14]. Satisfaction of the system equations is accomplished by integrating them
stepwise using either implicit or explicit (for example Runge-Kutta) rules; in either
case, the effect is to generate nonlinear constraint equations that must be satisfied by
the parameters, which are the discrete representations of the state and control time
histories. The problem is thus converted into a nonlinear programming problem.
There is a comprehensive survey paper by Betts [15] that describes direct and indi-
rect optimization, the relation between these two approaches, and the development
of these two approaches.

1.2 Solution Methods

In just the decade since the publication of Betts’ survey paper [15], there has been
considerable advancement of direct numerical solutions for optimal control prob-
lems. There also has been even more development and improvement, in relative
terms, of a qualitatively different approach to solving such problems, one using evo-
lutionary algorithms. The best known of these are genetic algorithms (GA) [16].
Another evolutionary algorithm, the Particle Swarm Optimizer (PSD) will be dis-
cussed in Chapter 10. The evolutionary algorithms have two principal advantages
over other extant methods; they are comparatively simple and thus easy to learn to
use, and they are generally more likely, in comparison to conventional optimizers,
to locate global minima. In addition, there has been progress in analytical solutions
such as those using primer vector theory [8] [17], “shape based” trajectories [18] [19],
or Hamilton-Jacobi theory.

All of the solutions may be broadly categorized as being either analytical or
numerical, though of course the analytical solutions (with only a few exceptions
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such as the Hohmann transfer) use numerical methods and the numerical solutions
include some methods that explicitly use the analytical necessary conditions for opti-
mality. In the following sections, the analytical and numerical solution methods will
be defined and various examples, some historical and some very recent, will be pre-
sented for many of the methods that fall within these categories. This is not intended
to be a survey and will be unapologetically incomplete, as the subject is a vast one with
a large literature. Rather, the intention in this introductory chapter is to describe the
problem of spacecraft trajectory optimization, categorize the solution approaches,
provide a small amount of history, and describe the “state of the art” so that the work
of the various book chapter authors describing their approaches to the problem will
be in context.

1.2.1 Analytical Solutions

This is the original approach for space trajectory optimization, the oldest example
of which (1925) is due to Hohmann’s conjecture [20] regarding the optimal circular
orbit to circular orbit transfer. (The proof of the optimality of the Hohmann transfer
came much later [21] [22].) Most of the analytical solutions are based on the necessary
conditions of the problem that come from the calculus of variations (COV). Suppose
that the system equations may be written in form

ẋ = f (x, u, t) (1.1)

where x represents an n-dimensional state (vector) and u represents the m-
dimensional control (vector). The state vector is problem dependent; there are many
choices available. Typically, conventional elliptic elements, equinoctial variables, or
Delaunay variables are used for problems that are Keplerian or nearly-Keplerian,
for example, very low-thrust orbit raising. Another common choice is spherical polar
coordinates. Cartesian coordinates are typically used for three-body problems. The
control u is typically a control of thrust magnitude and direction or its equivalent,
for example the orientation of a solar-sail spacecraft with respect to the Sun. The
problem has some initial conditions specified, that is,

xi(0) given for i = 1, 2, …, k with k ≤ n (1.2)

and some terminal conditions, or functions of the terminal conditions, specified as
the vector

� [x(T), T] = 0. (1.3)

The objective may be written in the Bolza form as

J = φ [x(T), T]+
∫ T

0
L [x, u, t] dt (1.4)

where φ is a terminal cost function while the integral expresses a cost incurred during
the entire trajectory.
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The first step in deriving the conditions for an extremum of (1.4) subject to the
system (1.1) and the boundary conditions (1.3) is to define a system Hamiltonian

H = L+ λTf

Then, in terms of H and the other quantities introduced, the necessary conditions
become [11]

λ̇ = −
(
∂H
∂x

)T

with boundary condition λ(T) =
[(

∂φ

∂x

)
+ νT
(
∂�

∂x

)]T
t=T

(1.5)

∂H
∂u

= 0. (1.6)

The system of equations (1.1)–(1.6) constitutes a two-point-boundary-value problem
(TPBVP); some boundary conditions on the states are specified at the initial time
and some boundary conditions on the states and adjoints are specified at the terminal
time. In addition, if the terminal time is unspecified (that is free to be optimized), as
is often the case, an additional scalar equation obtains

[
∂φ

∂t
+ νT
(
∂�

∂t

)
+
(
∂φ

∂x
+ νT
(
∂�

∂x

))
f + L
]

t=T
= 0. (1.7)

For all but the most elementary optimal control problems, the solution of
this TPBVP is challenging and numerical solutions are required. Despite this, it
is interesting that when this set of necessary conditions is applied to the optimal
space trajectory problem, which is by no means elementary, several very useful
observations may be made.

The system equations of motion (1.1) may be written in the form

˙̄x = f̄ =
[ ˙̄r
˙̄v

]
=
[

v̄
ḡ(r̄)+ �û

]
(1.8)

where g(r) is the gravitational acceleration, � is the thrust acceleration magnitude,
and û is a unit vector indicating the thrust direction.

To minimize the velocity change required, one chooses the integrand in the cost
function (1.4) to be L = � the acceleration provided by the motor; then the integral
will represent the �V provided by the motor. The Hamiltonian then becomes

H = � + λ̄T
r v̄+ λ̄T

v [ḡ(r̄)+ �û] = �
[
1+ λ̄T

v û
]
+ λ̄T

r v̄+ λ̄T
v ḡ(r̄). (1.9)

Because H is linear in u, equation (1.6) does not obtain. The optimal control is
instead chosen according to Pontryagin’s Minimum Principle, stating that at any
time on the optimal trajectory, the control variables are chosen in order to minimize
the Hamiltonian. Thus the first simple observation is that the thrust pointing unit
vector is chosen to be parallel to the opposite of the adjoint (to the velocity) vector,
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i.e. −λ̄v(t). Because of its physical significance to the problem, this (adjoint) vector
is referred to as the primer vector [8]. A second simple observation is that with this
choice of thrust direction, it is then optimal in this case to choose the thrust magnitude
� at its maximum possible value if the “switching function”

[
1+ λ̄T

v û
]

(1.10)

is negative and choose � = 0 if the switching function is positive. The adjoint vector
λ̄v(t) is governed by the system equations (1.5) with the Hamiltonian (1.9).

In addition, it is straightforward to show that if the Hamiltonian H is not explic-
itly time dependent, then H is a constant on the optimal trajectory. This result is
not necessarily useful for obtaining the optimal control but can be of great use in
determining, by its use a posteriori, the accuracy of the numerical solution of the
TPBVP, that is, a good solution will have H the same, to several significant figures,
when evaluated at any point on the numerical solution [14] [23].

Finally, while the necessary conditions guarantee only that the trajectory repre-
sents an extremum of the cost, by the nature of the space trajectory problem, there
is clearly no upper bound to the fuel that could be consumed on a feasible trajectory
(other than consuming all the fuel available). So one may be confident that a solution
is a local minimum and not a local maximum.

Further results can be obtained from a description of the necessary conditions
in terms of the primer vector, and these will be described in Chapter 2. It will suf-
fice to say here that while the primer vector is defined, and has the significance
with regard to optimal thrust direction found above, this is of course true only on
the optimal trajectory. The improvement of a known, nonoptimal trajectory via
primer vector theory was first discussed by Lion and Handelsman [17]. Jezewski and
Rozendaal [24] showed under what conditions an optimal N impulse trajectory could
be improved by the addition of another impulse, and where and with what direction to
apply it.

Solution of the analytical necessary conditions is possible for some special
cases. One useful example is the case of very-low-thrust orbit raising. With certain
assumptions, it is possible to find approximate solutions of the analytical neces-
sary conditions. Many of these are found in a survey paper of the subject by
Petropoulos and Sims [25]. The most common simplifications include: assuming
that the thrust direction is always tangential; assuming that the thrust pointing is
always in the direction of the velocity vector; or assuming that the orbit is always
circular. Surprisingly, exact solutions also exist in certain cases, including this low-
thrust orbit raising, even in the presence of nonspherical Earth perturbations [10].
This will be discussed in Chapter 7. The mathematics and analysis become very
involved.

The solution of the TPBVP resulting from (or constituting) the necessary con-
ditions becomes quite difficult for other problems, particularly those with path
constraints (typically on the state variables or on functions of the state variables)
or constraints on total fuel available.
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Many methods have been developed to solve the TPBVP numerically. The most
obvious and well known is probably shooting (an archetype of shooting applied
to spacecraft trajectory optimization may be found in the paper by Breakwell and
Redding [26]) but there are other methods including finite-difference methods [27]
[28] and collocation [12] [13] [14]. The long-recognized difficulty of the “indirect”
approach to determining the optimal trajectory is that the initial costate variables
of the TPBVP are unknown and further that the nonlinearity of the problem means
that the vector flow is very sensitive to some or all of these initial costate variables.
A further difficulty is that the costate variables lack the physical significance of the
state variables so that estimating the order of magnitude or even the sign of the initial
costates is very difficult. For problems with constrained arcs, another difficulty that
arises is discontinuity of controls and costate variables at the junctions of constrained
and unconstrained arcs. This also increases the difficulty of solving the associated
TPBVP.

Another solution method that satisfies both the necessary and sufficient condi-
tions for optimality is the method of Static/Dynamic control (SDC) of Whiffen [29]
[30]. The term static refers to decision variables that are discrete, such as launch
dates or planetary flyby dates, while the term dynamic refers to controls that have
a continuous variation in time, such as thrust pointing angle time histories. SDC is
a general nonlinear optimal control algorithm based on Bellman’s principle of opti-
mality [11]. The implementation of SDC in the program Mystic is a very capable
low-thrust spacecraft trajectory optimizer.

A recent, qualitatively different approach to the determination of optimal space
trajectories is that of Guibout and Scheeres [31]. In this work, the dynamical system of
state and costate variables (the vector field) is solved for specified terminal conditions
and final time by solving the associated Hamilton-Jacobi (H-J) equation. The solution
of the H-J equation is a generating function for a canonical transformation. Once
this solution is determined, the initial value of the costate vector may be found; the
optimal trajectory and the optimal control may then be found by forward integration
of the flow field. Scheeres et al. show an example of an optimal rendezvous in the
vicinity of a nominal circular orbit [32].

1.2.2 Numerical Solutions via Discretization

Many recent methods for solving optimal control problems seek to reduce them to
parameter optimization problems that can then be solved by a NLP problem solver.
One principal way in which such methods are distinguished is with regard to what
quantities are parameterized. In one popular method, the collocation method that
will be discussed in Chapter 3, it is possible to parameterize the state variables and
the costate variables (that is, to solve the TPBVP). It is also possible in collocation to
parameterize only the state variables and the control variables, as will be discussed in
the next section. A third possibility, yielding the smallest number of parameters for a
given problem, is to parameterize only the control variables and some free terminal
states, but then the system equations must be numerically integrated (as opposed
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to the implicit integration that occurs in collocation). This is referred to as “control
parameterization” and will be discussed in Chapter 5.

Of course all of the solutions described in the previous section are obtained
numerically, that is, they will employ methods such as numerical integration, solving
TPBVP problems using “shooting” methods, or solving boundary value problems
by converting them into nonlinear programming (NLP) problems. What is meant
in this section by “numerical solution” is solutions that do not explicitly employ
the analytical necessary conditions of the COV, for example, solutions that do not
employ the costate (adjoint) variables of the problem or solutions that satisfy the
H-J-B equation or Bellman’s principle for discrete systems.

Why would one want to avoid the use of the necessary conditions, particularly
when the resulting trajectory has a “guarantee” of being a local extremum (that one
loses in a numerical solution) and has other benefits previously discussed, such as
information about sensitivity to terminal conditions and guidance toward improving
a solution by for example, adding/subtracting thrust arcs? The principal reason is the
lack of robustness of the various methods for solving the Euler-Lagrange TPBVP
stemming, as previously mentioned, from the nonlinearity of the problem and a
lack, in the general case, of a systematic means for determining a sufficiently good
approximation to the initial adjoint variables of the problem.

A variety of direct solution methods have been developed. They are best catego-
rized by the way in which they handle the discretization of the equations of motion,
which appear as function-space constraints in the original optimal control problem.
A more complete survey will be presented in Chapter 3. In the last two decades,
however, the most successful approach is arguably one in which the continuous
problem is discretized and state and control variables are known only at discrete
times. Satisfaction of the equations of motion is achieved by employing an explicit
or implicit numerical integration rule that needs to be satisfied at each step; this
results in a large NLP problem with a large number of nonlinear constraints. This
approach was termed “direct transcription” by Canon et al. [33]. While known to
mathematicians in the 1960s and 1970s, it became known in the aerospace commu-
nity principally through two papers. Dickmanns and Well [34] used the collocation
scheme to solve the TPBVP of the indirect method. This approach is significantly
more robust than shooting methods because it eliminates the sequential nature of
the shooting solution, with its forward numerical integration, in favor of a solution
in which simultaneous changes in all of the discrete state and costate parameters
are made in order to satisfy algebraic constraints (while minimizing the objective
of course).

However, the most useful development for space trajectory optimization was
the observation in 1987 by Hargraves and Paris [12] that it was not necessary to use
this approach to solve the indirect TPBVP, that in fact the adjoint variables (which
had been used to determine the optimal control from Pontryagin’s principle) could
be removed from the solution provided that discrete control variables were intro-
duced as additional NLP parameters. This significantly improved the robustness of
the method; by eliminating the adjoint variables, the problem size is reduced almost
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by half, and there is no longer a need to provide the NLP problem solver with an
estimate of the adjoint variables, something that is always problematic. A fortunate
coincidence is that at about the same time (1980s), the NLP technology required to
efficiently and robustly solve large problems became available (and has been continu-
ously improved since then) [35] [36]. The astrodynamics community swiftly embraced
this method. Many optimal spacecraft trajectories have since been determined using
direct methods. The direct method has also been significantly developed in the last
two decades. There are now many approaches, differing primarily (for collocation
methods) on how the implicit integration rules are constructed [37]. The most com-
mon approaches are to use trapezoidal [38] or Hermite-Simpson [12] integration
rule constraints, or higher-degree rules from the same Gauss-Lobatto family [13]
or a Gauss-pseudospectral method [39]. There also exist commercial software pack-
ages implementing direct methods for general optimal control problems, for example
DIDO [40] and SOCS [38], and even solvers specifically for space and launch vehicle
trajectory optimization, for example OTIS [41] and ALTOS [42] [43].

It would be accurate to say that the great majority of optimal space trajecto-
ries are now determined numerically, with methods that do not make explicit use
of the analytical necessary conditions of the problem, as will be described briefly
below and in detail in Chapter 2. However, that does not mean that the necessary
conditions are no longer useful. On the contrary, they provide useful information
that many numerical solutions naturally lack. For example, primer vector theory
can provide important information on how a solution may be improved, for exam-
ple by adding thrust arcs or coast arcs or by adding impulses for an impulsive
trajectory. The solution of the TPBVP of the necessary conditions also provides
information on the sensitivity of the solution to changes in terminal conditions and
constraints.

Fortunately, without solving the TPBVP, it is possible to make use of some
of these beneficial features of the solution of the necessary conditions, as will be
described in Chapter 3. This occurs because of a correspondence between the final
adjoint variables of the continuous TPBVP and some Kuhn-Tucker multipliers gen-
erated in (some) numerical solutions of the trajectory optimization problem [13] [14].
With these multiplier variables available, it is possible, for example, to compute the
value of the system Hamiltonian over the entire trajectory time history. For many
problems in which H should be a constant, this can provide a check on the accuracy
of the numerical solution. Or, knowing the final adjoints and final states from, for
example, a direct solution using collocation and NLP, one can integrate the E-L
equations backward to the initial time. If the initial states are recovered, one can
then say that the numerical solution satisfies the analytical necessary conditions and
thus represents an extremal path.

1.2.3 Evolutionary Algorithms

A qualitatively different approach, recently applied to spacecraft trajectory opti-
mization, is the use of “evolutionary” algorithms (EA). The best known of the EAs
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is the genetic algorithm (GA). EA’s are numerical optimizers that determine, using
methods similar to those found in nature, an optimal set of discrete parameters that
has been used to characterize the problem solution. The EA’s have two principal
advantages over all of the direct and indirect solution methods previously described
in this chapter: they require no initial “guess” of the solution (in fact they gener-
ate a population of initial solutions randomly), and they are more likely than other
methods to locate a global minimum in the search space rather than be attracted to
a local minimum.

All of the EAs require that the problem solution be capable of being described
by a relatively small, in comparison to the vector of parameters of a nonlinear pro-
gram, set of discrete parameters. This can be accomplished, for spacecraft trajectory
optimization problems, in a number of ways:

(1) If the trajectory can naturally be described by a finite set, for example an impul-
sive thrust trajectory, the parameters will be such things as times, magnitudes,
and directions of impulses. Between impulses the trajectories may be determined
by solving Lambert’s problem. In this case a small number of parameters will
suffice to completely describe the solution.

(2) If the trajectory contains non-integrable arcs, for example low-thrust arcs, it is
still the case that much of the trajectory can be described with a small number
of parameters such as departure and arrival dates and times for the beginning
and end of thrust arcs. Quantities that must be described continuously, such
as thrust magnitude or pointing time history, can be parameterized using, for
example, polynomial equations in time. Then the additional parameters are a
small number of polynomial coefficients [44]

(3) Low-thrust arcs can also be described using “shape-based” methods [18] [19]. In
this approach, a shape, which is an analytical expression for the trajectory, can be
generated from a small number of parameters such that the resulting trajectory
will actually be a solution of the system equations of motion. Unfortunately the
thrust time history that allows this beneficial result can only be determined a
posteriori. An EA is then used to choose the parameters defining the shape to
satisfy the boundary conditions of the problem and to minimize the cost. The
resulting trajectory may not be realizable, as it may require greater thrust than is
available. However the trajectory may well be satisfactory as an initial guess for
a more accurate method, for example a direct method such as collocation [12]
[13] [14].

In the simplest form of the genetic algorithm, the set of parameters describ-
ing the solution is written as a string or sequence of numbers. Suppose that this
sequence is converted to binary form; it is then similar to a chromosome but con-
sisting only of two possible variables, a 1 or a 0. Every sequence can be “decoded”
to yield a trajectory whose cost or objective value can be determined. The first step
in the GA is the generation of a “population” of sequences using a random pro-
cess. The great majority of these randomly generated sequences will have very large
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costs; many may even be infeasible. The population is then improved using three
natural processes: selection, combination, and mutation. Selection removes the worst
sequences and may also, via elitism, guarantee that the best sequence survives into
the next generation unchanged. Following selection, remaining sequences are used
as “parents,” that is partial sequences from two parents are combined to form new
individuals. Finally, mutation changes a randomly chosen bit in a small fraction of
the population.

The process is then repeated; the cost of every individual in the new generation
is determined. Since the best individual from the previous generation was retained,
the objective may improve but cannot worsen. In practice, there is generally rapid
improvement in the early generations; if the process locates the global minimum
then, of course, improvement will cease. Termination of the algorithm is usually done
either after a fixed number of generations or after the objective has reached a plateau.
Of course neither of these termination conditions guarantees that a minimum has
been found, nor are there necessary conditions for optimality with this method.
Additional shortcomings are that there is no way to enforce satisfaction of boundary
conditions; normally a “penalty function” approach is taken in which unsatisfied
boundary conditions are added to the cost, and that the solution will be less accurate
than a typical direct solution (and even less accurate than an indirect solution).
Nevertheless, the method has been very useful when applied to optimizing space
trajectories, either for finding approximate extremals [44] or when used to provide
an initial guess for more accurate methods, for example collocation with NLP.

Betts [15] notes that one significant advantage of the GA in comparison to all
other solution methods is how straightforward it is to use. There are many GA
routines available (a commonly used one is found in MATLAB) so the user need
only provide a subroutine for decoding the sequence to evaluate the cost (which for
space trajectory problems can be as simple as a routine that integrates the system
equations of motion) provide bounds on the parameters, and then provide values
for certain constant parameters that control the evolutionary processes.

There are other EAs that have begun to prove very useful in the determination of
optimal space trajectories. One qualitatively different method is particle swarm opti-
mization (PSO). In PSO, some number (say 100) of particles are randomly distributed
in a N-dimensional decision parameter space. The objective value is determined for
the solution vector corresponding to each particle. Taking an anthropomorphic view,
it is then assumed that the particles can communicate so that all know the objective
value for all the others. Let xi(n) denote the position of particle i at the nth time step.
At the next iteration, the particles take a step vi(n + 1) in the parameter space so
that the new position of particle i becomes

xi(n+ 1) = xi(n)+ vi(n+ 1) (1.11)

with (in one form of the PSO)

vij(n+ 1) = vij(n)+ c1r1j(n)
[
yij(n)− xij(n)

]+ c2r2j(n)
[
ŷj(n)− xij(n)

]
(1.12)
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where vij(n) is the velocity (step) for component j of particle i at time step n,
xij(n) is the jth component of the position of particle i at the nth time step,
r1j(n) and r2j(n) ⊂ U(0, 1) are random values in the range [0, 1] sampled from a
uniform distribution. yi(n) is the “personal best” position, the best position located
by the ith particle since the first time step; ŷj(n) is the “global best” position, the
best position located by the any particle of the swarm since the first time step. The
step described in equation (1.12) thus has three components. The first is an “inertia”
that causes the particle to move in the direction it had previously been moving, the
second “nostalgia” component reflects a tendency for the particle to move toward its
own most satisfactory position, and the third “social” component draws the particle
toward the best position found by any of its colleagues. The c’s are constants that
weight the importance of the three components and the r’s provide stochasticity to
the system.

As with the GA, the process can be terminated after a fixed number of iterations
or when the “best” solution has not changed for several iterations. This method has
proven quite robust, is also very simple to use, and is particularly good in locating
global minima when the solution space contains many local minima. A more thorough
description of the PSO method and its application to space trajectory problems will
be provided in Chapter 10.

There are many other EAs, for example ant colony optimization (ACO) or
differential evolution (DE). The interested reader can easily find information on the
use of these methods [45].

1.3 The Situation Today with Regard to Solving Optimal Control Problems

One can safely say, for example by considering papers published recently in astrody-
namics journals, that solutions using analytical methods, that is analytical solutions
of the first-order necessary conditions, are seldom found. This is due, as previously
mentioned, to the complexity of the problem when realistic terminal boundary condi-
tions and when bounds on the controls are present. Also, solutions found numerically
using indirect methods, for example with shooting methods, are also becoming less
common. This is almost certainly due to the success that has been achieved with direct
methods, particularly those using collocation via low-degree rules such as trapezoid
or Hermite-Simpson [11] [13], via the pseudospectral method [39], or by higher
degree G-L implicit integration [13]. (These collocation methods are all derivable
from the same source, as will be seen in Chapter 3.) These methods have proven
particularly robust and efficient and have been used to solve many types of prob-
lems including low-thrust orbit raising [46], Earth-Moon transfer [47] [5] [48], and
interplanetary transfers [49].

An early difficulty faced by users of these methods was that, while robust, it was
still necessary to supply a reasonable initial guess of the solution parameters, that is
a discretized form of the state and control time-histories on the optimal trajectory,
to the NLP problem solver. This, of course, is not always a simple matter. For
some cases, for example for low-thrust orbit raising, approximate analytical solutions
such as a Lawden spiral, as described in Section 1.2.1, are available and make a
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very satisfactory initial guess. For other problems, such as the optimal low-thrust
Earth-Moon transfer, obtaining a satisfactory initial guess is much more difficult.
Today, however, the situation is much improved since evolutionary algorithms such
as the GA, which can provide a solution to the problem in their own right, can also
be used as “pre-processors” to provide an initial guess of the solution from which a
method such as direct collocation with NLP can converge to a much more accurate
solution. An additional advantage of this approach is that some of the EAs are better
suited to locating the global minimum than are the methods using NLP, as the NLP
solver will tend to converge to a local minimum in the neighborhood of the initial
guess it is given. Thus starting from a guess provided by an EA is more likely to
enable the direct solver to find a global minimum. (Of course there is no guarantee
in any case.)

John Betts’ observation in 1988 [15] that “one may expect many of the best
features of seemingly disparate techniques to merge, forming still more powerful
methods” was clearly very prescient.
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2 Primer Vector Theory and Applications

John E. Prussing
Department of Aerospace Engineering, University of Illinois
at Urbana-Champaign, Urbana, IL

2.1 Introduction

In this chapter, the theory and a resulting indirect method of trajectory optimization
are derived and illustrated. In an indirect method, an optimal trajectory is deter-
mined by satisfying a set of necessary conditions (NC), and sufficient conditions
(SC) if available. By contrast, a direct method uses the cost itself to determine an
optimal solution.

Even when a direct method is used, these conditions are useful to determine
whether the solution satisfies the NC for an optimal solution. If it does not, it is not
an optimal solution. As an example, the best two-impulse solution obtained by a
direct method is not the optimal solution if the NC indicate that three impulses are
required. Thus, post-processing a direct solution using the NC (and SC if available)
is essential to verify optimality.

Optimal Control [1], a generalization of the calculus of variations, is used to
derive a set of necessary conditions for an optimal trajectory. The primer vector is a
term coined by D. F. Lawden [2] in his pioneering work in optimal trajectories. [This
terminology is explained after Equation (2.24).] First-order necessary conditions for
both impulsive and continuous-thrust trajectories can be expressed in terms of the
primer vector. For impulsive trajectories, the primer vector determines the times and
positions of the thrust impulses that minimize the propellant cost. For continuous-
thrust trajectories, both the optimal thrust direction and the optimal thrust magnitude
as functions of time are determined by the primer vector. As is standard practice,
the word “optimal” is loosely used as shorthand for “satisfies the first-order NC.”

The most completely developed primer vector theory is for impulsive trajec-
tories. Terminal coasting periods for fixed-time trajectories and the addition of
midcourse impulses can sometimes lower the cost. The primer vector indicates when
these modifications should be made. Gradients of the cost with respect to termi-
nal impulse times and midcourse impulse times and positions were first derived by
Lion and Handelsman [3]. These gradients were then implemented in a nonlinear

Figures 2.2 and 2.4–2.8 were generated using the MATLAB computer code written by
Suzannah L. Sandrik [13].
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programming algorithm to iteratively improve a nonoptimal solution and converge
to an optimal trajectory by Jezewski and Rozendaal [4].

2.2 First-Order Necessary Conditions

2.2.1 Optimal Constant-Specific-Impulse Trajectory

For a constant specific impulse (CSI) engine, the thrust is bounded by 0 ≤ T ≤
Tmax (where Tmax is a constant), corresponding to bounds on the mass flow rate:
0 ≤ b ≤ bmax (where bmax is a constant). Note that one can also prescribe bounds
on the thrust acceleration (thrust per unit mass) � ≡ T/m as 0 ≤ � ≤ �max, where
�max is achieved by running the engine at Tmax. However, �max is not constant but
increases due to the decreasing mass. One must keep track of the changing mass in
order to compute � for a given thrust level. This is easy to do, especially if the thrust
is held constant, for example, at its maximum value. However, if the propellant mass
required is a small fraction of the total mass because of being optimized, a constant
�max approximation can be made.

The cost functional representing minimum propellant consumption for the CSI
case is

J =
∫ tf

to
�(t)dt. (2.1)

The state vector is defined as

x(t) =
[

r(t)
v(t)

]
(2.2)

where r(t) is the spacecraft position vector and v(t) is its velocity vector. The mass
m can be kept track of without defining it to be a state variable by noting that

m(t) = moe−F(t)/c (2.3)

where c is the exhaust velocity and

F(t) =
∫ t

to
�(ξ)dξ . (2.4)

Note that from Equation (2.4), F(tf ) is equal to the cost J. In the constant thrust case,
� varies according to �̇ = 1

c�
2, which is consistent with the mass decreasing linearly

with time.
The equation of motion is

ẋ =
[

ṙ
v̇

]
=
[

v
g(r)+ �u

]
(2.5)

with the initial state x(to) specified.
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In Equation (2.5), g(r) is the gravitational acceleration and u represents a
unit vector in the thrust direction. An example gravitational field is the inverse-
square field:

g(r) = −μ

r2

r
r
= −μ

r3 r. (2.6)

The first-order necessary conditions for an optimal CSI trajectory were first derived
by Lawden [2] using classical calculus of variations. In the derivation that follows,
an optimal control theory formulation is used, but the derivation is similar to that of
Lawden. One difference is that the mass is not considered a state variable but is kept
track of separately.

In order to minimize the cost in Equation (2.1), one forms the Hamiltonian using
Equation (2.5) as

H = � + λT
r v + λT

v [g(r)+ �u]. (2.7)

The adjoint equations are then

λ̇
T
r = −

∂H
∂r

= −λT
v G(r) (2.8)

λ̇
T
v = −

∂H
∂v

= −λT
r (2.9)

where

G(r) ≡ ∂g(r)
∂r

(2.10)

is the symmetric 3 × 3 gravity gradient matrix.
For terminal constraints of the form

ψ[r(tf ), v(tf ), tf ] = 0, (2.11)

which may describe an orbital intercept, rendezvous, etc., the boundary conditions
on Equations (2.8–2.9) are given in terms of


 ≡ vTψ[r(tf ), v(tf ), tf ] (2.12)

as

λT
r (tf ) =

∂


∂r(tf )
= vT ∂ψ

∂r(tf )
(2.13)

λT
v (tf ) =

∂


∂v(tf )
= vT ∂ψ

∂v(tf )
. (2.14)

There are two control variables, the thrust direction u and the thrust acceleration
magnitude�, that must be chosen to satisfy the minimum principle [1], that is, to min-
imize the instantaneous value of the Hamiltonian H. By inspection, the Hamiltonian
of Equation (2.7) is minimized over the choice of thrust direction by aligning the unit
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vector u(t) opposite to the adjoint vector λv(t). Because of the significance of the
vector −λv(t), Lawden [2] termed it the primer vector p(t):

p(t) ≡ −λv(t). (2.15)

The optimal thrust unit vector is then in the direction of the primer vector, specifically

u(t) = p(t)
p(t)

(2.16)

and

λT
v u = −λv = −p (2.17)

in the Hamiltonian of Equation (2.7).
From Equations (2.9) and (2.15), it is evident that

λr(t) = ṗ(t). (2.18)

Equations (2.8), (2.9), (2.15), and (2.18) combine to yield the primer vector equation

p̈ = G(r)p. (2.19)

The boundary conditions on the solution to Equation (2.19) are obtained from
Equations (2.13) (2.14)

p(tf ) = −vT ∂ψ

∂v(tf )
(2.20)

ṗ(tf ) = vT ∂ψ

∂r(tf )
. (2.21)

Note that in Equation (2.20), the final value of the primer vector for an optimal
intercept is the zero vector, because the terminal constraint ψ does not depend
on v(tf ).

Using Equations (2.15)–(2.18), the Hamiltonian of Equation (2.7) can be
rewritten as

H = −(p− 1)� + ṗTv − pTg. (2.22)

To minimize the Hamiltonian over the choice of the thrust acceleration magnitude
�, one notes that the Hamiltonian is a linear function of �, and thus the minimizing
value for 0 ≤ � ≤ �max will depend on the algebraic sign of the coefficient of � in
Equation (2.22). It is convenient to define the switching function

S(t) ≡ p− 1. (2.23)

The choice of the thrust acceleration magnitude � that minimizes H is then given by
the “bang-bang” control law

� =
{
�max for S > 0 (p > 1)

0 for S < 0 (p < 1)
. (2.24)
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Figure 2.1. Three-burn CSI switching function and thrust profile.

That is, the thrust magnitude switches between its limiting values of 0 (an NT null-
thrust arc) and Tmax (an MT maximum-thrust arc) each time S(t) passes through 0
[p(t) passes through 1] according to Equation (2.24). Figure 2.1 shows an example
switching function for a three-burn trajectory.

The possibility also exists that S(t) ≡ 0 [p(t) ≡ 1] on an interval of finite duration.
From Equation (2.22), it is evident that in this case the thrust acceleration magnitude
is not determined by the minimum principle and may take on intermediate values
between 0 and �max. This IT “intermediate thrust arc” [2] is referred to as a singular
arc in optimal control [1].

Lawden explained the origin of the term primer vector in a personal letter in 1990:
“In regard to the term ‘primer vector’, you are quite correct in your supposition. I
served in the artillery during the war [World War II] and became familiar with the
initiation of the burning of cordite by means of a primer charge. Thus, p = 1 is the
signal for the rocket motor to be ignited.”

It follows then from Equation (2.3) that if T = Tmax and the engine is on for a
total of �t time units,

�max(t) = eF(t)/cTmax/mo = Tmax/(mo − bmax�t). (2.25)

Other necessary conditions are that the variables p and ṗ must be continuous
everywhere. Equation (2.23) then indicates that the switching function S(t) is also
continuous everywhere.

Even though the gravitational field is time-invariant, the Hamiltonian in this
formulation does not provide a first integral (constant of the motion) on an MT
arc, because � is an explicit function of time as shown in Equation (2.25). From
Equation (2.22)

H = −S� + ṗTv − pTg. (2.26)

Note that the Hamiltonian is continuous everywhere because S = 0 at the
discontinuities in the thrust acceleration magnitude.
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2.2.2 Optimal Impulsive Trajectory

For a high-thrust CSI engine the thrust durations are very small compared with the
times between thrusts. Because of this, one can approximate each MT arc as an
impulse (Dirac delta function) having unbounded magnitude (�max →∞) and zero
duration. The primer vector then determines both the optimal times and directions
of the thrust impulses with p ≤ 1 corresponding to S ≤ 0. The impulses can occur
only at those instants at which S = 0 (p = 1). These impulses are separated by NT
arcs along which S < 0 (p < 1). At the impulse times the primer vector is then a unit
vector in the optimal thrust direction.

The necessary conditions (NC) for an optimal impulsive trajectory, first derived
by Lawden [2], are shown in Table 2.1.

For a linear system, these NC are also sufficient conditions for an optimal tra-
jectory [5]. Also in [5], an upper bound on the number of impulses required for an
optimal solution is given.

Figure 2.2 shows a trajectory (at top) and a primer vector magnitude (at bottom)
for an optimal three-impulse solution. (In all of the trajectory plots in this chapter,
the direction of orbital motion is counterclockwise.) Canonical units are used. The
canonical time unit is the orbital period of the circular orbit that has a radius of
one canonical distance unit. The initial orbit is a unit radius circular orbit, shown as
the topmost orbit going counterclockwise from the symbol⊕ at (1,0) to (−1,0). The
transfer time is 0.5 original (initial) orbit periods (OOP). The target is in a coplanar
circular orbit of radius 2, with an initial lead angle (ila) of 270◦ and shown by the
symbol � at (0,−2). The spacecraft departs © and intercepts � at approximately
(1.8,−0.8) as shown. The+ signs at the initial and final points indicate thrust impulses
and the + sign on the transfer orbit very near (0,0) indicates the location of the
midcourse impulse. The magnitudes of the three �Vs are shown at the left, with the
total �V equal to 1.3681 in units of circular orbit speed in the initial orbit.

The examples shown in this chapter are coplanar, but the theory and applica-
tions apply to three-dimensional trajectories as well, for example, see Prussing and
Chiu [6].

The bottom graph in Figure 2.2 displays the time history of the primer vec-
tor magnitude. Note that it satisfies the necessary conditions of Table 2.1 for an
optimal transfer.

Table 2.1. Impulsive necessary conditions

1. The primer vector and its first derivative are continuous everywhere.
2. The magnitude of the primer vector satisfies p(t) ≤ 1 with the impulses occurring at those instants

at which p = 1.
3. At the impulse times the primer vector is a unit vector in the optimal thrust direction.
4. As a consequence of the above conditions, dp/dt = ṗ = ṗT p = 0 at an intermediate impulse

(not at the initial or final time).
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Figure 2.2. Optimal three-impulse trajectory and primer magnitude.

Note also that at a thrust impulse at time tk

�(t) = �vkδ(t − tk) (2.27)

and from Equation (2.4)

�vk =
∫ t+k

t−k
�(t)dt = F(t+k )− F(t−k ) (2.28)

where t+k and t−k are times immediately after and before the impulse time, respec-
tively. Equation (2.3) then becomes the familiar solution to the rocket equation:

m(t+k ) = m(t−k )e
−�vk/c. (2.29)

2.2.3 Optimal Variable-Specific-Impulse Trajectory

A variable-specific-impulse (VSI) engine is also known as a power-limited (PL)
engine, because the power source is separate from the engine itself, for example,
solar panels, and radioisotope thermoelectric generator. The power delivered to
the engine is bounded between 0 and a maximum value Pmax, with the optimal
value being constant and equal to the maximum. The cost functional representing
minimum propellant consumption for the VSI case is

J = 1
2

∫ tf

to
�2(t)dt. (2.30)
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Writing �2 as �T�, the corresponding Hamiltonian function can be written as

H = 1
2
�T� + λT

r v + λT
v [g(r)+ �]. (2.31)

For the VSI case, there is no need to consider the thrust acceleration magnitude and
direction separately, so the vector � is used in place of the term �u that appears in
Equation (2.7).

Because H is a nonlinear function of �, the minimum principle is applied by
setting

∂H
∂�

= �T + λT
v = 0T (2.32)

or

�(t) = −λv(t) = p(t) (2.33)

using the definition of the primer vector in Equation (2.15). Thus for a VSI engine,
the optimal thrust acceleration vector is equal to the primer vector: �(t) = p(t).

Because of this, Equation (2.5), written as r̈ = g(r) + �, can be combined with
Equation (2.19), as in [7] to yield a fourth-order differential equation in r:

riv − Ġṙ +G(g − 2r̈) = 0. (2.34)

Every solution to Equation (2.34) is an optimal VSI trajectory through the gravity
field g(r). But desired boundary conditions, such as specified position and velocity
vectors at the initial and final times, must be satisfied.

Note also that from Equation (2.32)

∂2H

∂�2 =
∂

∂�

(
∂H
∂�

)T

= I3 (2.35)

where I3 is the 3× 3 identity matrix. Equation (2.35) shows that the (Hessian) matrix
of second partial derivatives is positive definite, verifying that H is minimized.

Because the VSI thrust acceleration of Equation (2.33) is continuous, a recently
developed procedure [8] to test whether second-order NC and SC are satisfied can be
applied. Equation (2.35) shows that an NC for minimum cost (Hessian matrix posi-
tive semidefinite) and part of the SC (Hessian matrix positive definite) are satisfied.
The other condition that is both an NC and an SC is the Jacobi no-conjugate-point
condition. Reference [8] details the recently developed test for that.

2.3 Solution to the Primer Vector Equation

The primer vector equation, Equation (2.19), can be written in first-order form as
the linear system

d
dt

[
p
ṗ

]
=
[

O3 I3

G O3

][
p
ṗ

]
(2.36)

where O3 is the 3 × 3 zero matrix.
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Equation (2.36) is of the form ẏ = A(t)y, and its solution can be written in terms
of a transition matrix �(t, to) as

y(t) = �(t, to)y(to) (2.37)

for a specified initial condition y(to).
Glandorf [9] presents a form of the transition matrix for an inverse-square grav-

itational field. [In that Technical Note, the missing Equation (2.33) is �(t, to) =
P(t)P−1(to).]

Note that on an NT (no-thrust or coast) arc, the variational (linearized) state
equation is, from Equation (2.5),

δẋ =
[
δṙ
δv̇

]
=
[

O3 I3

G O3

][
δr
δv

]
, (2.38)

which is the same as Equation (2.36). So the transition matrix in Equation (2.37)
is also the transition matrix for the state variation, that is, the state transition
matrix [10].

This state transition matrix has the usual properties from linear system theory
and is also symplectic [10], which has the useful property that

�−1(t, to) = −J�T (t, to)J (2.39)

where

J =
[

O3 I3

−I3 O3

]
. (2.40)

Note that J2 = −I6, indicating that J is a matrix analog of the imaginary number i.
Equation (2.39) is useful when the state transition matrix is determined numer-

ically because the inverse matrix �−1(t, to) = �(to, t) can be computed without
explicitly inverting a 6 × 6 matrix.

2.4 Application of Primer Vector Theory to an Optimal Impulsive Trajectory

If the primer vector evaluated along an impulsive trajectory fails to satisfy the nec-
essary conditions of Table 2.1 for an optimal solution, the way in which the NC are
violated provides information that can lead to a solution that does satisfy the NC.
This process was first derived by Lion and Handelsman [3]. For given boundary con-
ditions and a fixed transfer time, an impulsive trajectory can be modified either by
allowing a terminal coast or by adding a midcourse impulse. A terminal coast can
be either an initial coast, in which the first impulse occurs after the initial time, or a
final coast, in which the final impulse occurs before the final time. In the former case,
the spacecraft coasts along the initial orbit after the initial time until the first impulse
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Figure 2.3. A fixed-time impulsive rendezvous trajectory.

occurs. In the latter case, the rendezvous actually occurs before the final time, and
the spacecraft coasts along the final orbit until the final time is reached.

To determine when a terminal coast will result in a trajectory that has a lower fuel
cost, consider the two-impulse fixed-time rendezvous trajectory shown in Figure 2.3.

In the two-body problem, if the terminal radii ro and rf are specified along with
the transfer time τ ≡ tf − to, the solution to Lambert’s Problem [10] [11] provides
the terminal velocity vectors v+o (after the initial impulse) and v−f (before the final
impulse) on the transfer orbit. Because the velocity vectors are known on the initial
orbit (v−o before the first impulse) and on the final orbit (v+f after the final impulse),
the required velocity changes can be determined as

�vo = v+o − v−o (2.41)

and

�vf = v+f − v−f . (2.42)

Once the vector velocity changes are known, the primer vector can be evaluated
along the trajectory to determine if the NC are satisfied. In order to satisfy the NC
that on an optimal trajectory the primer vector at an impulse time is a unit vector in
the direction of the impulse, one imposes the following boundary conditions on the
primer vector

p(to) ≡ po = �vo

�vo
(2.43)

p(tf ) ≡ pf =
�vf

�vf
. (2.44)
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The primer vector can then be evaluated along the transfer orbit using the 6 × 6
transition matrix solution of Equation (2.37)

[
p(t)
ṗ(t)

]
= �(t, to)

[
p(to)
ṗ(to)

]
(2.45)

where the 3 × 3 partitions of the 6 × 6 transition matrix are designated as

�(t, to) ≡
[

M(t, to) N(t, to)
S(t, to) T(t, to)

]
. (2.46)

Equation (2.45) can then be evaluated for the fixed terminal times to and tf to yield

pf = Mfopo +Nfoṗo (2.47)

and

ṗf = Sfopo + Tfoṗo (2.48)

where the abbreviated notation is used that pf ≡ p(tf ), Mfo ≡ M(tf , to), and so on.
Equation (2.47) can be solved for the initial primer vector rate

ṗo = N−1
fo [pf −Mfopo] (2.49)

where the inverse matrix N−1
fo exists except for isolated values of τ = tf−to. With both

the primer vector and the primer vector rate known at the initial time, the primer
vector along the transfer orbit for to ≤ t ≤ tf can be calculated as using Equations
(2.43–2.46, 2.49) as

p(t) = NtoN−1
fo

�vf

�vf
+ [Mto −NtoN−1

fo Mfo]�vo

�vo
. (2.50)

2.4.1 Criterion for a Terminal Coast

One of the options available to modify a two-impulse solution that does not satisfy
the NC for an optimal transfer is to include a terminal coast period in the form of
either an initial coast, a final coast, or both. To do this, one allows the possibility that
the initial impulse occurs at time to+dto due to a coast in the initial orbit of duration
dto > 0 and that the final impulse occurs at a time tf +dtf . In the case of a final coast,
dtf < 0 in order that the final impulse occur prior to the nominal final time, allowing
a coast in the final orbit until the nominal final time. A negative value of dto or a
positive value of dtf also has a physical interpretation as will be seen.

To determine whether a terminal coast will lower the cost of the trajectory,
an expression for the difference in cost between the perturbed trajectory (with the
terminal coasts) and the nominal trajectory (without the coasts) must be derived. The
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discussion that follows summarizes and interprets results by Lion and Handelsman
[3]. The cost on the nominal trajectory is simply

J = �vo +�vf (2.51)

for the two-impulse solution. In order to determine the differential change in the
cost due to the differential coast periods the concept of a noncontemporaneous,
or “skew” variation is needed. This variation combines two effects: the variation
due to being on a perturbed trajectory and the variation due to a difference in the
time of the impulse. The variable d will be used to denote a noncontemporaneous
variation in contrast to the variable δ that represents a contemporaneous variation,
as in Equation (2.38). The rule for relating the two types of variations is given by

dx(to) = δx(to)+ ẋ∗odto (2.52)

where ẋ∗o is the derivative on the nominal (unperturbed) trajectory at the nominal
final time and the variation in the initial state has been used as an example.

Next, the noncontemporaneous variation in the cost must be determined.
Because the coast periods result in changes in the vector velocity changes, the
variation in the cost can be expressed, from Equation (2.51) as

dJ = ∂�vo

∂�vo
d�vo + ∂�vf

∂�vf
d�vf . (2.53)

Using the fact that for any vector a having magnitude a

∂a
∂a
= aT

a
(2.54)

the variation in the cost in Equation (2.53) can be expressed as

dJ = �vT
o

�vo
d�vo +

�vT
f

�vf
d�vf . (2.55)

Finally, Equation (2.55) can be rewritten in terms of the initial and final primer vector
using the conditions of Equations (2.43–2.44) as

dJ = pT
o d�vo + pT

f d�vf . (2.56)

The analysis in [3] leads to the result that

dJ = −ṗT
o �vodto − ṗT

f �vf dtf (2.57)

The final form of the expression for the variation in cost is obtained by expressing the
vector velocity changes in terms of the primer vector using Equations (2.43–2.44) as

dJ = −�voṗT
o podto −�vf ṗT

f pf dtf . (2.58)
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In Equation (2.58), one can identify the gradients of the cost with respect to the
terminal impulse times to and tf as

∂J
∂to

= −�voṗT
o po (2.59)

and

∂J
∂tf

= −�vf ṗT
f pf . (2.60)

One notes that the dot products in Equations (2.59–2.60) are simply the slopes of the
primer magnitude time history at the terminal times, due to the fact that p2 = pTp
and, after differentiation with respect to time, 2pṗ = 2ṗTp. Because p = 1 at the
impulse times,

ṗTp = ṗ. (2.61)

The criteria for adding an initial or final coast can now be summarized by examining
the algebraic signs of the gradients in Equations (2.59–2.60):

If ṗo > 0, an initial coast (represented by dto > 0) will lower the cost. Similarly, if ṗf < 0,
a final coast (represented by dtf < 0) will lower the cost.

It is worth noting that, conversely, if ṗo ≤ 0, an initial coast will not lower the cost.
This is consistent with the NC for an optimal solution and represents an alternate
proof of the NC that p ≤ 1 on an optimal solution. Similarly, if ṗf ≥ 0, a final coast
will not lower the cost. However, one can interpret these results even further. If
ṗo < 0, a value of dto < 0 yields dJ < 0, indicating that an earlier initial impulse time
would lower the cost. This is the opposite of an initial coast and simply means that the
cost can be lowered by increasing the transfer time by starting the transfer earlier.
Similarly, a value of ṗf > 0 implies that a dtf > 0 will yield dJ < 0. In this case, the
cost can be lowered by increasing the transfer time by increasing the final time. From
these observations, one can conclude that for a time-open optimal solution, such as
the Hohmann transfer, the slopes of the primer magnitude time history must be zero
at the terminal times, indicating that no improvement in the cost can be made by
slightly increasing or decreasing the times of the terminal impulses. Figure 2.4 shows
the primer time history for a Hohmann transfer rendezvous trajectory. An initial
coast of 0.889 OOP is required to obtain the correct phase angle of the target body
for the given ila and there is no final coast.

Figure 2.5 shows an example of a primer history that violates the NC in a manner
indicating that an initial coast or final coast or both will lower the cost. The final radius
is 1.6, the ila is 90◦, and the transfer time is 0.9 OOP.

In this case, the choice is made to add an initial coast, and the gradient of
Equation (2.59) is used in a nonlinear programming (NLP) algorithm to iterate on
the time of the first impulse. This is a one-dimensional search in which small changes
in the time of the first impulse are made using the gradient of Equation (2.59) until
the gradient is driven to zero. On each iteration, new values for the terminal velocity
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Figure 2.4. Hohmann transfer orbit and primer magnitude.
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Figure 2.5. Primer magnitude indicating initial/final coast.
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Figure 2.6. Optimal initial coast trajectory and primer magnitude.

changes are calculated by re-solving Lambert’s Problem and a new primer vector
solution is obtained. Note that once the iteration begins, the time of the first impulse
is no longer to, but a later value denoted by t1. In a similar way, if the final impulse
time becomes an iteration variable, it is denoted by tn where the last impulse is con-
sidered to be the nth impulse. For a two-impulse trajectory, n = 2, but as will be seen
shortly, optimal solutions can require more than two impulses. When the times of the
first and last impulse become iteration variables, in all the formulas in the preceding
analysis, the subscript o is replaced by 1 everywhere and f is replaced by n.

Figure 2.6 shows the converged result of an iteration on the time of the initial
impulse.

Note that the necessary condition p ≤ 1 is satisfied and the gradient of the cost
with respect to t1, the time of the first impulse (at approximately t1 = 0.22), is zero
because ṗ1 = 0, making the gradient of Equation (2.59) equal to zero. This simply
means that a small change in t1 will cause no change in the cost, that is, the cost has
achieved a stationary value and satisfies the first-order necessary conditions. Com-
paring Figures 2.5 and 2.6, one notes that the cost has decreased significantly from
0.37466 to 0.21459, and that an initial coast is required but no final coast is required.

2.4.2 Criterion for Addition of a Midcourse Impulse

Besides terminal coasts, the addition of one or more midcourse impulses is another
potential way of lowering the cost of an impulsive trajectory. The addition of an
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impulse is more complicated than including terminal coasts because, in the general
case, four new parameters are introduced: three components of the position of the
impulse and the time of the impulse. One must first derive a criterion that indicates
that the addition of an impulse will lower the cost and then determine where in space
and when in time the impulse should occur. The where and when will be done in
two steps. The first step is to determine initial values of position and time of the
added impulse that will lower the cost. The second step is to iterate on the values of
position and time using gradients that will be developed, until a minimum of the cost
is achieved. Note that this procedure is more complicated than for terminal coasts,
because the starting value of the coast time for the iteration was simply taken to be
zero, that is, no coast.

When considering the addition of a midcourse impulse, let us assume dto =
dtf = 0, that is, there are no terminal coasts. Because we are doing a first-order
perturbation analysis, superposition applies and we can combine the previous results
for terminal coasts easily with our new results for a midcourse impulse. Also, we will
discuss the case of adding a third impulse to a two-impulse trajectory, but the same
theory applies to the case of adding a midcourse impulse to any two-impulse segment
of an n-impulse trajectory. The cost on the nominal, two-impulse trajectory is given
by Equation (2.50)

J = �vo +�vf .

The variation in the cost due to adding an impulse is given by adding the midcourse
velocity change magnitude �vm to Equation (2.56)

dJ = pT
o d�vo +�vm + pT

f d�vf . (2.62)

The analysis in [3] results in

dJ = �vm

(
1− pT

m
�vm

�vm

)
. (2.63)

In Equation (2.63), the expression for dJ involves a dot product between the primer
vector and a unit vector. If the numerical value of this dot product is greater than one,
dJ < 0 and the perturbed trajectory has a lower cost than the nominal trajectory.
In order for the value of the dot product to be greater than one, it is necessary that
pm > 1. Here again we have an alternative derivation of the necessary condition
that p ≤ 1 on an optimal trajectory. We also have the criterion that tells us when the
addition of a midcourse impulse will lower the cost.

If the value of p(t) exceeds unity along the trajectory, the addition of a midcourse impulse
at a time for which p > 1 will lower the cost.

Figure 2.7 shows a primer magnitude time history that indicates the need for a mid-
course impulse (but not for a terminal coast). The final radius is 2, the ila is 270◦, and
the transfer time is relatively small, equal to 0.5 OOP.

The first step is to determine initial values for the position and time of the mid-
course impulse. From Equation (2.63) it is evident that for a given pm, the largest
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Figure 2.7. Primer magnitude indicating a need for a midcourse impulse.

decrease in the cost is obtained by maximizing the value of the dot product, that is,
by choosing a position for the impulse that causes �vm to be parallel to the vector
pm and by choosing the time tm to be the time at which the primer magnitude has
a maximum value. Choosing the position of the impulse so that the velocity change
is in the direction of the primer vector sounds familiar because it is one of the nec-
essary conditions derived previously, but how to determine this position is not at all
obvious, and we will have to derive an expression for this. Choosing the time tm to
be the time of maximum primer magnitude does not guarantee that the decrease in
cost is maximized, because the value of �vm in the expression for dJ depends on the
value of tm. However, all we are doing is obtaining an initial position and time of the
midcourse impulse to begin an iteration process. As long as our initial choice repre-
sents a decrease in the cost, we will opt for the simple device of choosing the time of
maximum primer magnitude as our initial estimate of tm. In Figure 2.7, tm is 0.1.

Having determined an initial value for tm, the initial position of the impulse,
namely the value δrm to be added to rm, must also be determined. Obviously δrm

must be nonzero, otherwise the midcourse impulse would have zero magnitude. The
property that must be satisfied in determining δrm is that �vm be parallel to pm. The
analysis of [3] results in

�vm = Aδrm (2.64)
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where the matrix A is defined as

A ≡ −(MT
fmN−T

fm + TmoN−1
mo). (2.65)

Next, in order to have �vm parallel to pm, it is necessary that �vm = εpm with scalar
ε > 0. Combining this fact with Equation (2.64) yields

Aδrm = �vm = εpm (2.66)

which yields the solution for δrm as

δrm = εA−1pm (2.67)

assuming A is invertible.
The question then arises how to select a value for the scalar ε. Obviously too

large a value will violate the linearity assumptions of the perturbation analysis. This
is not addressed in [3], but one can maintain a small change by specifying

δrm

rm
= β (2.68)

where β is a specified small positive number such as 0.05. Equation (2.67) then yields
a value for ε

ε
∣∣A−1pm

∣∣
rm

= β ⇒ ε = βrm∣∣A−1pm
∣∣ . (2.69)

If the resulting dJ ≥ 0, then decrease ε and repeat Equation (2.67). One should
never accept a midcourse impulse position that does not decrease the cost, because
a sufficiently small ε will always provide a lower cost.

The initial values of midcourse impulse position and time are now determined.
One adds the δrm of Equation (2.67) to the value of rm on the nominal trajectory
at the time tm at which the primer magnitude achieves its maximum value (greater
than one).

The primer history after the addition of the initial midcourse impulse is shown
in Figure 2.8. Note that pm = 1 but ṗm is discontinuous and the primer magnitude
exceeds unity, both of which violate the NC. However, the addition of the midcourse
impulse has decreased the cost slightly, from 1.7555 to 1.7549.

2.4.3 Iteration on a Midcourse Impulse Position and Time

To determine how to efficiently iterate on the components of position of the mid-
course impulse and its time, one needs to derive expressions for the gradients of the
cost with respect to these variables. To do this, one must compare the three-impulse
trajectory (or three-impulse segment of an n-impulse trajectory) that resulted from
the addition of the midcourse impulse with a perturbed three-impulse trajectory.
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Figure 2.8. Initial (nonoptimal) three-impulse primer magnitude.

Note that, unlike a terminal coast, the values of drm and dtm are independent. (By
contrast, on an initial coast dro = v−o dto and on a final coast drf = v+f dtf .)

The cost on the nominal three-impulse trajectory is

J = �vo +�vm +�vf (2.70)

and the variation in the cost due to perturbing the midcourse time and position is

dJ = ∂�vo

∂�vo
d�vo + ∂�vm

∂�vm
d�vm + ∂�vf

∂�vf
d�vf (2.71)

which, analogous to Equation (2.56), can be written as

dJ = pT
o d�vo + pT

md�vm + pT
f d�vf . (2.72)

The analysis of [3] leads to the result that

dJ = (ṗ+m − ṗ−m
)T drm −

(
ṗT+

m v+m − ṗT−
m v−m
)

dtm. (2.73)
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In Equation (2.73), a discontinuity in ṗm has been allowed because there is no guar-
antee that it will be continuous at the inserted midcourse impulse, as demonstrated
in Figure 2.8.

Equation (2.73) can be written more simply in terms of the Hamiltonian function
Equation (2.22) for pm = 1: Hm = ṗT

mvm − pT
mgm (for which the second term pT

mgm

is continuous because pm = �vm/�vm) and gm(rm) are continuous).

dJ = (ṗ+m − ṗ−m)Tdrm − (H+
m −H−

m)dtm. (2.74)

Equation (2.74) provides the gradients of the cost with respect to the independent
variations in the position and time of the midcourse impulse for use in a nonlinear
programming algorithm:

∂J
∂rm

= (ṗ+m − ṗ−m) (2.75)

and

∂J
∂tm

= −(H+
m −H−

m). (2.76)

As a solution satisfying the NC is approached, the gradients tend to zero, in which case
both the primer rate vector ṗm and the Hamiltonian function Hm become continuous
at the midcourse impulse.

Note that when the NC are satisfied, the gradient with respect to tm in Equation
(2.76) being zero implies that

H+
m −H−

m = 0 = ṗT
m(v

+
m − v−m) = ṗT

m�vm = �vmṗT
mpm = 0 (2.77)

which, in turn, implies that ṗm = 0, indicating that the primer magnitude attains a
local maximum value of unity. This is consistent with the NC that p ≤ 1 and that ṗ
be continuous.

Figure 2.2 shows the converged, optimal three-impulse trajectory that results
from improving the primer histories shown in Figures 2.7 and 2.8. Note that the
final cost of 1.3681 is significantly less that the value of 1.7555 prior to adding the
midcourse impulse. Also, the time of the midcourse impulse changed during the
iteration from its initial value of 0.1 to a final value of approximately 0.17.

The absolute minimum cost solution for the final radius and ila value of Figure 2.2
is, of course, the Hohmann transfer shown in Figure 2.4. Its cost is significantly less
at 0.28446, but the transfer time is nearly three times as long at 1.8077 OOP. Of
this, 0.889 OOP is an initial coast to achieve the correct target phase angle for the
Hohmann transfer. Depending on the specific application, the total time required
may be unacceptably long.

(As a side note, a simple proof of the global optimality of the Hohmann transfer
using ordinary calculus rather than primer vector theory is given in [12].)
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3.1 Introduction

A spacecraft in flight is a dynamical system. As dynamical systems go, it is compar-
atively straightforward; the equations of motion are continuous and deterministic,
for the unforced case they are essentially integrable, and perturbations, such as
the attractions of bodies other than the central body, are usually small. The
difficulties arise when the complete problem, corresponding to a real space mis-
sion, is considered. For example, a complete interplanetary flight, beginning in
Earth orbit and ending with insertion into Mars orbit, has complicated, time-
dependent boundary conditions, straightforward equations of motion but requires
coordinate transformations when the spacecraft transitions from planet-centered
to heliocentric flight (and vice versa), and likely discrete changes in system states
as the rocket motor is fired and the spacecraft suddenly changes velocity and
mass. If low-thrust electric propulsion is used, the system is further complicated
as there no longer exist integrable arcs and the decision variables, which pre-
viously were discrete quantities such as the times, magnitudes and directions of
rocket-provided impulses, now also include continuous time histories, that is, of
the low-thrust throttling and of the thrust pointing direction. In addition, it may
be optimizing to use the low-thrust motor for finite spans of time and “coast”
otherwise, with the optimal number of these thrust arcs and coast arcs a priori
unknown.

Since the cost of placing a spacecraft in orbit, which is usually the first step in any
trajectory, is so enormous, it is particularly important to optimize space trajectories
so that a given mission can be accomplished with the lightest possible spacecraft
and within the capabilities of existing (or affordable) launch vehicles. Determining
the necessary conditions (the Euler-Lagrange equations, possibly supplemented by
Pontryagin’s principle) for the optimization of a continuous, deterministic dynamical
system of the type corresponding to a spacecraft in flight is also a straightforward
problem, although the result, especially for the common case in which staging

37
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or impulsive �V ’s are used, is a sophisticated two-point-boundary-value-problem
(TPBVP) with interior point constraints.

As described in Chapter 1, the solution of this TPBVP, except for certain special
cases, is very difficult. The principal difficulties are attributable to the costate or
Lagrange multiplier variables of the problem, equal in number to the system state
variables. The use of the analytical necessary conditions of the problem immediately
doubles its size; in addition, the costate variables lack the physical significance of the
state variables, may differ by several orders of magnitude from the state variables
and may have discontinuities at the junctions of constrained and unconstrained arcs
in the solution. As also described in Chapter 1, the common approach to the solution
of a TPBVP, some form of “shooting,” is thus very problematic.

Thus, beginning in the 1960s, new approaches to the solution of the TPBVP
resulting from optimization of the dynamic system were sought. Many solutions
were developed; the common principles were to convert the continuous problem
into a parameter optimization problem and to eliminate the “shooting” approach in
favor of a solution method in which all of the free parameters are adjusted contempo-
raneously. Methods of this type include solutions using finite differences [1] [2] and
the collocation method [3]. Collocation is perhaps the best known and most imple-
mented direct transcription method. The state and control histories are represented
by discrete values on a mesh. In one basic form of collocation [4], the state history
between mesh points (for each state variable) is then represented using Hermite cubic
polynomials. The control history may be represented using discrete control param-
eters or, for example, with a cubic polynomial (in time). The equations of motion
are enforced at the mesh points, that is, the slopes of the Hermite cubic polynomi-
als representing the states are in agreement with the system differential equations
evaluated at the mesh points. The equations of motion are further enforced using
a collocation scheme; a collocation point is chosen at the center of each mesh seg-
ment, that is, the Hermite cubic state polynomial is constrained to satisfy the system
differential equations between mesh points as well as at mesh points. This yields
nonlinear constraint equations involving the state and control variables. If these
constraints are satisfied, the system is said to be “implicitly” integrated. Additional
constraints, linear and nonlinear, equality and inequality, may be present involving
(typically) initial and terminal values of the states and magnitudes of the controls.
A nonlinear programming (NLP) problem solver is used to enforce the constraints
while simultaneously minimizing the problem objective.

In its original form, for example in the work of Dickmanns and Well [5], the col-
location method employed the analytical necessary conditions and thus required
a system of governing equations including the costate variables. It was thus, as
described in Chapter 1, an “indirect” optimization. It had previously been shown,
however, that by discretizing the problem, specifically by representing the states by
patched Chebyshev polynomials [5] [6], and by constraining the discrete parame-
ters to satisfy algebraic equations that caused the system to be integrated implicitly,
the problem could be converted (or “transcribed”) into an NLP problem. That is,
the continuous dynamic system could be optimized without the use of the necessary
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conditions or the costate variables in, as described in Chapter 1, a “direct” opti-
mization. Progress in direct optimization was then rapid. Hargraves and Paris [4]
simplified the direct optimization process considerably. They recognized that the
collocation method, in the indirect form as developed by Dickmanns and Well, could
be converted into a direct optimizer if the NLP problem solver were to be used to
minimize the objective directly, in part by adding the controls to the system as param-
eters to be determined rather than to solve a discrete form of the TPBVP resulting
from the analytical necessary conditions, in which the controls are found indirectly
through the Maximum Principle.

The collocation method developed by Hargraves and Paris became rapidly
adopted. A fortunate circumstance was that at precisely the time when a need arose
for efficient NLP problem solvers, capable of solving the large, sparse NLP problems
resulting from the application of the collocation method to sophisticated problems,
new solvers were developed [8]. The method was further developed and improved;
to include other more accurate implicit integration rules [9] [10], to refine the dis-
cretization time steps to accommodate the dynamics, for greater accuracy [9] [10],
and to enable the use of multiple time scales for problems with both slow and fast
dynamics (such as six degrees of freedom vehicle motion) [11] [12].

Other collocation methods have also been developed, the most popular alternate
method being a Gauss pseudospectral scheme [13]. However, all of the direct collo-
cation methods that assume the states are represented by basis functions (in time)
can be shown to be derivable from the same analysis [14]. Other direct transcription
methods have been developed that employ implicit integration but not collocation,
that is, those that do not assume that the state variable histories are described by
polynomials. One such method is based on explicit Runge-Kutta (RK) integration
and parallel shooting and has been shown to be particularly beneficial for very-low-
thrust orbit transfers where the states change only very slowly but the controls change
rapidly within every revolution [15].

Direct transcription schemes have a number of advantages over other numer-
ical optimization methods. Since there are no costate variables, the problem size
is reduced by a factor of two, and the problematic estimation of initial costates
is avoided. Also, to a degree, one does not have to specify a priori the precise
structure of the problem. For example, for a spacecraft trajectory problem, if a
solution structure of multiple coast/thrust arcs is assumed, unneeded arcs will col-
lapse to zero length. Similarly, if an impulsive thrust solution is assumed, unneeded
impulses will be given zero magnitude. Direct transcription schemes also generally
show much better robustness, that is, show ability to converge to an optimal tra-
jectory from poor initial guesses, in comparison to other numerical optimization
methods.

This chapter will begin by introducing the direct transcription process in several
of these implementations and it will describe how a potential user might choose
the most advantageous method for a given problem. Then the method, which has
up to then been applied to an arbitrary dynamical system, will be specialized to
the case of spacecraft trajectory optimization. This requires a discussion of choice
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of coordinates, for example polar or Cartesian coordinates, conventional elliptic
elements, or Delaunay variables, for a given problem. It also requires discussion
of control modeling and parameterization, grid refinement, and transformations of
coordinates required for interplanetary flight when a spacecraft leaves the sphere
of influence (SOI) of one body and enters another. Another important topic is the
successful generation of an initial guess of the solution, that is, a guess of the optimal
trajectory that is sufficiently accurate that the NLP solver can improve on it and
converge to the local minimum of the objective.

3.2 Transcription Methods

3.2.1 A Basic Collocation Method (Using Hermite Polynomials)

This classic approach transforms an optimal control problem into a nonlinear pro-
gramming problem. To do this, the state functions x(t) and control functions u(t) are
represented by piecewise polynomials and collocation is used to satisfy the differen-
tial equations of motion. The first step with this approach is to subdivide the problem
into a sequence of smaller trajectory arcs, which we will call phases. The length of
each phase is defined as Tpi = Ei+1 − Ei. For each phase, the interval [Ei, Ei+1] is
further subdivided into N segments, as shown in Figure 3.1.

Let the ratio of the length of the jth segment to Tpi be denoted as τji. Thus,
the length of the jth segment in the ith stage is τji Tpi. Using Hermite interpolation,
cubic polynomials are defined for each state on each segment using values of the
states at the nodes (the boundaries at the segments) and the state time derivatives,
as defined by the equations, at the nodes. The values of the states are then selected
(by nonlinear programming) to force the interpolated derivatives to agree with the
differential equations at the center of the segment. This procedure is illustrated
in Figure 3.2.

s1 s2 s3 s4 s5 s6

State
Values

Divide the Phase into Segments

Figure 3.1. Trajectory optimization problem broken into phases.
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Figure 3.2. Illustration of implicit integration.

The basic procedure can be derived for any polynomial order. The classic cubic
derivation is as follows. Let the states x be represented on each segment by cubics
of the form

x = C0 + C1S + C2S2 + C3S3 (3.1)

where to simplify the discussion, the segment length S is transformed such that S ∈
[0, 1]. Let x(0) = x0, x(l) = x1, dx/ds(0) = x′0, dx/ds(l) = x′1. Differentiating
Equation (3.1) and evaluating at S = 0 and S = 1 yields⎡

⎢⎢⎢⎣
1 0 0 0
0 1 0 0
1 1 1 1
0 1 2 3

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

C0

C1

C2

C3

⎤
⎥⎥⎥⎦ =
⎡
⎢⎢⎢⎣

x0

x′0
x1

x′1

⎤
⎥⎥⎥⎦ . (3.2)

Inverting the 4× 4 matrix yields⎡
⎢⎢⎢⎣

C0

C1

C2

C3

⎤
⎥⎥⎥⎦ =
⎡
⎢⎢⎢⎣

1 0 0 0
0 1 0 0
−3 −2 3 −1
2 1 −2 1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x0

x′0
x1

x′1

⎤
⎥⎥⎥⎦ . (3.3)

Now using Equation (3.3), evaluating Equation (3.1) at S = 1/2, and transforming
to segment length T = gτji Tpi, we see that the interpolated value of x at the center
of the segment is

xc = (x0 + x1)/2+ T(f0 + f1)/8 (3.4)

where fi, is the time rate of change as defined by the equations of motion evaluated
at xi.

(Note x′0 = Tf [x0, u(t0), t0,ω].) In the same way, the slope at the center

x′c = −3(x0 − x1)/2T − (f0 − f1)/8

is obtained. Evaluating the equations of motion at xc gives fc. We can then define
the defect (the error in representing the dynamics) at the center of the segment as

� = fc − x

= fc + 3(x0 − x1)/2T + (f0 + f1)/4 (3.5)
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x0 and x1 are varied to enforce� = 0. If the cubic polynomial is capable of represent-
ing the solution on the given segment, then selecting x0 and x1 to drive � to zero will
produce an accurate approximation to the solution of the state dynamics. The defects
for each state evaluated at the center of each segment constitute a set of nonlinear
algebraic equations that are a function of the states and controls at each node, the
events E, and the design parameters ω. The controls are defined at S = [0, 1/2, 1].
The boundary conditions and the path constraints evaluated at both the nodes and
centers of the segments provide additional equations (constraints) to be satisfied. All
of the independent variables may be collected into a single vector P defined by

PT = [ZT , ET ,ωT ] (3.6)

Where

ZT = [xT
0 , uT

0 , xT
1 , uT

1 , . . . . . . xT
N+1, uT

N+1). (3.7)

Collecting all of the nonlinear equations into a single vector equation yields

CT = (�T , BT
N ,H

T
N) (3.8)

with

�T = (�00,�01, . . . ,�ij . . .) where �ij = defect for ith state at jth node
BN = collection of all boundary conditions
HN = collection of all path constraints

The performance index J is just a function of P. The trajectory optimization problem
stated above can be expressed as: minimize 
(P), subject to

l ≤

⎧⎪⎨
⎪⎩

P
AP

C(P)

⎫⎪⎬
⎪⎭ ≤ u . (3.9)

AP is composed of all the linear relationships from Equation (3.8), l and u are the
upper and lower bounds for the parameter vector. For equality constraints l = u. The
upper and lower bounds for the great majority of the nonlinear constraints are usually
set to zero, because this forces the solver to choose values for the parameters that
satisfy the EOMs. (There may be a small number of additional nonlinear constraints,
for example boundary conditions).

System (3.6)–(3.9) constitutes a nonlinear programming problem.
The extension of the preceding analysis to higher order integrators is straight-

forward. Again, a phase is subdivided into segments. The segments do not need to
be of equal length. The rule of thumb, analogous to multistep explicit integrators,
is that more segments should be placed where there are rapid changes in the states,
controls or constraints.
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Within a segment, the values of the states and controls are defined at discrete time
points called nodes. For convenience, we define the placement of the nodes relative
to the normalized segment lengths. An example set of nodes within a segment is
shown in Figure 3.3.

The placement of nodes within a segment can be arbitrary; however, experi-
ence has shown benefits to placing the nodes at the Legendre-Gauss-Lobatto (LGL)
points. This is accomplished by mapping the segment onto the interval −1 to 1 and
using the LGL points in “standard” form. The odd points are called cardinal nodes
(τ1, τ3, τ5), while the even points (τ2, τ4) are labeled interior nodes. Typically, the
number of cardinal nodes per segment is constant within a phase.

The state values specified at the cardinal nodes will be used as parameters for
the resulting nonlinear programming problem, while the state values at the interior
nodes will be obtained by interpolation. The equations of motion are evaluated to
provide time derivative values at the cardinal nodes. Making use of both states val-
ues and their time derivatives at the cardinal nodes, Hermite interpolation is used
to construct a polynomial representation of the states. This polynomial representa-
tion is then evaluated at the interior nodes to compute interpolated values of the
states, which in turn are used to compute the state time derivatives at the interior
nodes by evaluating the equations of motion. The polynomial representation is also
differentiated and evaluated at the interior nodes to compute yet another set of time
derivatives. The differences between the slopes as defined by the state representa-
tion and the equations of motion at the interior nodes are called the defects. The
control functions are represented by values at both the cardinal and interior nodes.
This procedure is illustrated in Figure 3.4.

xi +  4

xi  + 2

xi

τ1 τ3 τ5τ2 τ4

Figure 3.3. Cardinal node segment structure.

Δ = P’ − f = 0 

Δ1
Δ2

xi + 4

τ i + 4τ i + 2τ i τ i + 3τ i + 1

xi + 2

xi

xi + 3

xi + 1

–1 1

fi + 3

fi + 1
fi + 4

fi + 2

f i

Figure 3.4. Collocation defect development.
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This procedure can also be summarized as:
Using a Hermite interpolating polynomial, for each state, we can write

x(τ ) = {u(τ )}T {x} + {v(τ )}T {f } =
(n+1)/2∑

i=1

ui(τ )x(τi)+
(n+1)/2∑

i=1

vi(τ )f (τi). (3.10)

The state values at the interior nodes can then be computed as

{x∗} = [E] {x} + T
2

[F ] {f } . (3.11)

The matrices [E] and [F ] are determined from the Hermite polynomial; T is segment
length in “dimensional” time. This also allows

x′(τ ) = {u′(τ )}T {x} + {v′(τ )}T {f } =
(n+1)/2∑

i=1

u′i(τ )x(τi)+
(n+1)/2∑

i=1

v′i(τ )f (τi) (3.12)

Applying our definition of defect, the vector {�} of defects at the interior nodes is

{�} = [A] {x} + T
2

[B] {f } + T
2

[C] {f∗} . (3.13)

with

{x} states at the cardinal nodes
{f } slopes from the equations of motion at the cardinal nodes
{f∗} slopes from the equations of motion at the interior nodes, x∗
T segment length (needed to convert from “τau” space to “dimensional” time
[A] Matrix of constants
[B] Matrix of constants
[C] Identity Matrix multiplied by −1

The elements of [A] and [B] are just

ai,j = u′j(τi)

bi,j = v′j(τi)

which are easily built by applying the product rule of differentiation to ACM
algorithm 211 [16] (used to compute u&v)

uj(τ ) =
⎡
⎢⎣(n+1)/2∏

i=1
i �=j

(
(τ − τi)

(τj − τi)

)2

⎤
⎥⎦ ·
⎛
⎜⎝1− (τ − τj) · 2 ·

(n+1)/2∑
i=1
i �=j

1
(τj − τi)

⎞
⎟⎠

vj(τ ) =
⎡
⎢⎣(n+1)/2∏

i=1
i �=j

(
(τ − τi)

(τj − τi)

)2

⎤
⎥⎦ · (τ − τj). (3.14)
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Notice that the elements of [A], [B], [C], [D], [E], and [F ] only depend on the
values of τ (the node locations), which are fixed. This means that the matrices
need only to be computed once and stored. Combining the segments results in the
matrices taking on a banded structure, as shown below for a 2 segment, 3 cardinal
node case

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
�1

�2

�3

�4

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
=

⎡
⎢⎢⎢⎣
−1.6654 1.4963 0.1701 0 0
−0.1701 1.4963 1.6654 0 0

0 0 −1.6654 1.4963 0.1701
0 0 −0.1701 1.4963 1.6654

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x1

x3

x5

x7

x9

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+ T
2

⎡
⎢⎢⎢⎣
−0.1386 −0.6530 −0.0450 0 0
−0.0450 −0.6530 −0.1386 0 0

0 0 −0.1386 −0.6530 −0.0450
0 0 −0.0450 −0.6530 −0.1386

⎤
⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f1
f3
f5
f7
f9

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+ T
2

⎡
⎢⎢⎢⎣
−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎥⎦
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f2
f4
f6
f8

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.15)

Again we combine the state values at the cardinal nodes, along with the event
times and design parameters, in a single array Z. A constraint array is assembled
from the boundary conditions, defects, and path constraint. This results in a tractable
nonlinear programming problem.

3.2.2 Pseudospectral Methods

Pseudospectral techniques have gained popularity within the last several years [17]
[18] [19] [20]. They are very similar to the method of collocation. The major
differences are with the manner in which the representative polynomial is con-
structed and the computation of the defects. When the pseudospectral method
is employed, a polynomial representation of the states is formed and a number
of constraints are enforced so that the slopes of the polynomials agree with the
differential equations at a finite number of points. Values of the states are estab-
lished at the cardinal and interior nodes. Making use of the state values, Lagrange
interpolation is used to construct a polynomial interpolation of the states. This
polynomial is differentiated and evaluated at all the nodes to compute interpo-
lated time derivative values of the states. The equations of motion are evaluated
to provide the values of the physical time derivatives. The difference between
the two sets of time derivatives forms the defects. The procedure is shown in
Figure 3.5.
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Slope of the polynomial, P’ = state time derivative, f(x)(rhs) 

Form polynomial, P from states

At each node require 

Δ = f(x) – P’ = 0

P’

f(x)

Define states at the nodes

Time

State
Values 

Figure 3.5. Illustrating the pseudospectral procedure.

To summarize, knowing the values of x at discrete time points τi, then

p(τ ) = {w(τ )}T {x} =
n∑

i=1

wi (τ ) x (τi). (3.16)

This is simply the Lagrange form of the interpolating polynomial where

wi (τ ) =
∏n

j=1,j �=i
(
τ − τj
)

∏n
j=1,j �=i
(
τi − τj
) . (3.17)

The derivative is simply

p′(τ ) = {w′(τ )}T {x} =
n∑

i=1

w′i (τ ) x (τi). (3.18)

Since we want the form

{p′} = [D] {x} (3.19)

([D] is known as the derivative matrix). The defects, for a first order system, can be
written as

{�} = {p′} − {f } = [D]{x} − {f } = 0. (3.20)

The elements of [D] are just di,j = w′j(τi), which are easily computed by using the
product rule of differentiation applied to wj(τi).

Using this formulation for the pseudo-spectral method, the values of [D] are
dependent only on the chosen node spacing. This allows for other pseudospectral
variants to be generated by simply changing the nodal distribution.



3.2 Transcription Methods 47

The methods described in this section generally use a limited number of cardinal
nodes per segment (<5) and use many segments. Historically the pseudospectral
methods use many nodes per segment (>20) with a limited number of segments
(1 or 2).

3.2.3 A Direct Method Not Using Collocation: R-K Parallel-Shooting

The collocation method has proved to be useful and robust for many problems,
however, there are some problems that are best transcribed with a different approach.
The method of direct transcription with Runge-Kutta (RK) integration and parallel-
shooting is a direct method that also converts the optimization problem into a NLP
problem [15]. For an optimization problem formed by a single arc, this method
discretizes time into a sequence of stages that can be described by the partition
[t0, t1, . . . , tN ], with t0 = 0, tN = tf , where t0 < t1 < · · · < tN and letting hi = ti − ti−1

for i = 1, . . . , N . The mesh points ti are called nodes, and the [ti−1, ti] intervals are
termed segments. The state variables are approximated by parameter values at the
nodes. Considering a single integration step per segment, the control variables are
approximated at the nodes ti, and at the center points, ti−1 + h/2, by ui = u(ti)
for i = 0, . . . , N and υi = u(ti−1 + h/2) for i = 1, . . . , N . It is possible, however,
to use multiple integration steps within each segment. This allows a decrease in
the size of the time interval without significantly increasing the size of the NLP
problem.

Let p be the number of integration steps in each segment. As before, the states
and control variables are provided at the nodes. The controls within each segment
are provided by υij = u(ti−1 + jh/2p) for j = 1, 2, . . . , 2p− 1 and for i = 1, 2, . . . , N ,
as shown in Figure 3.6 for p = 3.

p = 3

xi–1

u i–1

t i–1 t i–1 + h /3 t i–1 + 2h /3 t i

v i1

v i2
v i3

v i4
v i5 u i

xi*

xi

RK step

RK step
RK st

ep
i

Figure 3.6. Structure for 3-step RK parallel-shooting scheme.
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During the first RK step of this case, the governing equations are integrated
forward from ti−1 to ti−1 + h/p using the controls ui−1, υi1, and υi2, and the fourth-
order Runge-Kutta process [15]

y1
i1 = xi−1 + 1

2p
hf (xi−1, ui−1) (3.21)

y2
i1 = xi−1 + 1

2p
hf (y1

i1, υi1) (3.22)

y3
i1 = xi−1 + 1

p
hf (y2

i1, υi1) (3.23)

y4
i1 = xi−1 + 1

6p
h
[
f (xi−1, ui−1)+ 2f (y1

i1, υi1)+ 2f (y2
i1, υi1)+ f (y3

i1, υi2)
]

. (3.24)

The second step makes use of the result of the first step, that is, it uses as initial
states the values provided by the forward step Equation (3.24) and performs the
integration from ti−1+ h/p to ti−1+ 2h/p using the controls υi2, υi3, and υi4. Finally,
the third step utilizes the result of the second one and executes the integration from
ti−1 + 2h/p to ti using the controls υi4, υi5, and ui, yielding an approximation of the
state, x∗i , at the node ti as shown in Figure 3.6. The constraint equation

�i = y4
i3 − xi = 0; for i = 1, . . . , N (3.25)

is then applied at the right side node. If Equation (3.25) is satisfied, the system
differential equations have then been integrated using the RK method.

Although p − 1 estimates of the state vector are computed inside each seg-
ment, they do not appear explicitly as parameters in the NLP problem, generating
significant savings in the number of variables employed. System control variable
parameters are specified much more frequently than system state variables. This is
especially beneficial for problems, such as low-thrust trajectory optimization, where
the control changes rapidly while the states, for example the orbit elements, change
only slowly.

The NLP parameters can then be arranged as a single vector P that collects all
the independent variables and the problem again becomes a NLP problem of form
(3.6)–(3.9). Once the NLP problem is clearly defined, it can be solved by using dense
or sparse solvers such as NPSOL and SNOPT [21]. SNOPT is prefered because it
can take advantage of the sparsity present in the constraint Jacobian.

The advantage of the RK parallel-shooting method in comparison to collocation,
for certain problems, is seen in the cartoon of Figure 3.6. For the three-step form of
the algorithm shown in the figure, note that the control variable is specified at seven
points but the state is an NLP parameter at only the left node and the right node of the
segment. In comparison to H-S collocation or even the G-L higher-degree collocation
described in Section 3.3, there are many more opportunities to insert controls in the
mesh, that is, at points where the states need not also be defined. This becomes
advantageous for problems in which the state variables change on a much slower
timescale than the control variables. An obvious example is very-low-thrust orbit
raising [22]. In this trajectory the states, if modeled for example using elliptic elements
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or equinoctial variables, change only slowly (excepting of course the longitude) but
the optimal thrust pointing angle changes with a period corresponding to the orbit
period. Thus a discretization similar to that shown in the cartoon, with a segment
width corresponding approximately to one revolution, would be a satisfactory and
economical (in terms of number of NLP parameters) one for that problem.

3.2.4 Comparison of Direct Transcription Methods

When applying direct transcription methods, there are several important things the
user should be aware of. First, the discretization in time must be sufficient to ade-
quately capture the problem dynamics. Second, care needs to be taken to verify
that the optimal solution is actually found. As will be shown, a solution to the NLP
problem is not necessarily the optimal trajectory. To illustrate these points we will
examine a simple low-thrust transfer.

The objective of this problem is to maximize the final radius for a spacecraft with
constant thrust to journey between two circular orbits (nominally Earth & Mars) in
fixed time. The initial position and velocity are fixed. The final location is free. The
final velocity vector is constrained to reflect circular motion at the final position. This
problem has been solved by a variety of methods [3]. The vehicle characteristics are
taken from Bryson & Ho [22]. Thrust = 0.85 lbs, propellant flow = 13.9 lbs/day,
w(0) = 10, 000 lbs, r(0) = 1.0 AU and tf = 193.0 days. The thrust vector has a
constant magnitude and a variable direction described by the control φ. The system
is converted to canonical form. The dynamics are

u̇ = v2

r
− μ

r2 +
T sinφ

m

v̇ = uv
r
+ T cosφ

m

ṙ = u

θ̇ = v
r

ṁ = constant

(3.26)

where

u radial velocity
v tangential velocity
r radius
θ heliocentric longitude
m mass

The initial estimates of the trajectory and thrust vector history are shown in Figure 3.7.
One can see that this initial guess is deliberately poor; it does not get even close to
the terminal orbit.
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Table 3.1. Collocation results

Method

Total
Number
of Nodes

Number of
Nodes Per
Segment

Number of
Segments

CPU
Time

Final Radius
(performance

Index)
Position
Error

Explicit
Integration
Step Size

Collocation 13 2 6 0.17 1.52539406 −7.92E-03 .03
13 3 3 0.29 1.52268557 −1.63E-05 .03
13 4 2 1.05 1.52522892 −1.25E-05 .03
9 5 1 0.28 1.51559982 5.00E-03 .03

11 6 1 0.51 1.52035844 −1.25E-03 .03
13 7 1 1.03 1.52247855 −2.43E-04 .03

25 2 12 0.36 1.52525097 −1.62E-03 .03
25 3 6 0.50 1.52521362 −2.16E-04 .03
25 4 4 0.98 1.52522380 −3.32E-05 .03
25 5 3 0.66 1.52504836 −1.34E-03 .03
21 6 2 0.92 1.52523630 −4.59E-05 .03
25 7 2 1.01 1.52524626 −6.13E-05 .03

49 2 24 0.85 1.52523062 −1.44E-04 .03
49 3 12 1.22 1.52524185 −3.60E-05 .03
49 4 8 1.45 1.52524666 −1.34E-03 .03
49 5 6 1.96 1.52524714 −2.86E-05 .03
51 6 5 1.59 1.52525042 −3.84E-04 .03
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Figure 3.7. Initial Earth-Mars trajectory estimate.

Trajectories were generated using collocation, the pseudospectral method, and
multiple shooting. The results when using collocation are shown in Table 3.1. The
number of segments and nodes per segment were chosen to give a total number of
nodes (both cardinal and interior) to be equal to 13, 25, and 49. Due to the integer
relations of the segments and nodes per segment, it is not always possible to generate
a specific number of total nodes, so the closest pairing were used. Table 3.1 reports
the CPU times, optimal final radius value found, and a position error. This position
error is the difference of the final radius as defined by the direct transcription method
and the result of explicitly integrating the controls to the final time. A fixed-step,
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Table 3.2. Pseudospectral results

Method

Total
Number
of Nodes

Number
of Nodes

Per
Segment

Number of
Segments CPU Time

Final Radius
(performance

Index)
Position
Error

Explicit
Integration
Step Size

Pseudo- 13 13 1 1.23 1.52379869 −1.48E-04 .03
Spectral 25 25 1 2.67 1.52524543 −3.67E-06 .03

25 13 2 3.95 1.52515095 −6.24E-06 .03
49 49 1 44.35 1.52198836 −3.01E-03 .03
49 25 2 25.79 1.52510706 −2.27E-03 .03
51 17 3 16.64 1.52524408 1.06E-05 .03

0

1

2

H
el

io
ce

nt
ric

 Y
, A

U

Heliocentric X, AU
0 1 2–2

–2
–1

–1

Solution

Figure 3.8. Optimal radius raising trajectory.

fourth-order Runge-Kutta method was used for all explicit integration (both for the
check case and the multiple shooting scheme). The position error term is the sum
of the differences between the position and velocity at the final time generated by
the implicit integration and the same quantities obtained by explicitly integrating the
optimal controls.

The collocation results show that a good solution can be achieved with a mini-
mal number of nodes, however, care must be taken to ensure that sufficient nodes
are used.

The results from using the pseudospectral method mirror those from collocation.
Adding nodes in general improves the solution. One noticeable difference from the
collocation results is in the amount of time needed to produce a solution. This increase
is mainly caused by the less sparse nature of the pseudospectral approach.

If possible, for all of the methods, once an optimal solution is believed to have
been found, a second solution using more nodes is recommended.
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3.3 Selection of Coordinates

3.3.1 Motivation for Choice of Coordinate System

The choice of a coordinate system on which to express the trajectory optimization
problem is fundamental and strongly influences the solution process. The main choice
is whether to use coordinates, for example Cartesian or polar coordinates, in which
case the system equations become

˙̄x = f̄ =
[ ˙̄r
˙̄v

]
=
[

v̄
ḡ(r̄)+ �û

]
(3.27)

or to use some form of orbital elements, for example conventional elliptic elements,
Delaunay variables [24], or equinoctial elements [24]. In the latter case, there is no
simple form of the system equations corresponding to Equation (3.27).

Using Cartesian coordinates is the simplest choice. It is a particularly natural
choice for the three-body-problem as the Cartesian form of the system equations,
with the system origin at the center of mass of the two primary bodies, is the most well
known. Unfortunately this is also the most disadvantageous choice for describing a
trajectory to be determined using direct transcription and NLP. This is due to the fact
that the resulting numerical optimization problem is an NLP problem and the NLP
solvers are most robust and efficient when the underlying state variable parameters
change slowly and within a limited range. In Cartesian coordinates, all of the position
and velocity state variables change rapidly (and most likely change sign periodically).

Another difficulty is that for the common case in which the term �û describes
the magnitude and direction of the low-thrust propulsion applied, which direction is
usually roughly parallel to the velocity, the unit vector will have measure numbers
that rapidly change and change in sign. The control parameters in the NLP parameter
vector are thus also problematic.

The situation is significantly improved if polar or cylindrical coordinates are
used. The radius will always be positive and change only slowly. Angular position
coordinates also change either slowly or rapidly (with the mean motion of the orbit)
and predictably. For the usual case in which there is no retrograde motion, the
angular velocities are also generally of one sign and do not change rapidly. The
thrust pointing direction control, being primarily tangential, usually (for example
for the case of low-thrust orbit raising) is described by small angles that change sign
periodically, with a frequency related to the orbit frequency (or not at all). The system
control parameters are thus in a form that improves or maintains the robustness of
the solution using NLP.

The most advantageous choice is some form of orbital elements. The most com-
monly used are conventional elliptic elements, but if there is the possibility that
the orbit will become circular or equatorial, a nonsingular set of elements such as
equinoctial elements is a good choice [24]. Even when there is no possibility of a sin-
gularity, equinoctial elements are a very good choice to use for describing the orbit.
When using orbital elements, it is generally the case that five of the six elements
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change only slowly (either due to perturbations or to the application of low-thrust
propulsion) while the sixth element, which might be true anomaly, mean anomaly, or
mean longitude, changes rapidly but with a mean value equal to (or approximately
equal to) the mean motion. Of course all of the elements will be positive and can
normally be assumed to lie within a quite restricted range, all of which improves
the robustness of the numerical solution. When or if the position and velocity of the
spacecraft are needed, for example, to satisfy a constraint representing interception
or rendezvous with a target, these are easily obtained with analytical expressions
relating the elements to Cartesian coordinates and velocities [25]. Another circum-
stance in which a transformation is required is if an impulsive velocity change of
specified magnitude and direction is made. The elements after the impulse can be
obtained by evaluating the position and velocity immediately prior to the impulse,
then adding the impulse to the current velocity to obtain the post-impulse veloc-
ity, and then transforming from the post-impulse position and velocity to the new
elements, also using a straightforward procedure [25].

When using orbital elements, the system variational equations are most com-
monly written in a form in which the thrust term �û is expressed using components
in a satellite-fixed radial, tangential, and normal (to the instantaneous orbit plane)
basis. Thus, as described above, for cases often encountered, the thrust pointing is
nominally tangential (or anti-tangential) so that for the orbit element formulation
also, the system control parameters change predictably and within a modest range
and improve or maintain the robustness of the solution using NLP.

The equinoctial elements are simply related to the conventional elliptic elements;
the semimajor axis a is a common element, the mean longitude λ and the parameters
P1, P2, Q1, and Q2 replace the classical orbit elements e, i,�,ω, and f . The parameters
P1 and P2 are defined by

P1 = e sin ω̄ (3.28)

and

P2 = e cos ω̄ (3.29)

where ω̄ is the “longitude of pericenter” defined by ω̄ = �+ ω. The parameters Q1

and Q2 are defined by

Q1 = tan
(

1
2

i
)

sin� (3.30)

and

Q2 = tan
(

1
2

i
)

cos� (3.31)

The mean longitude � is defined by � = ω̄+M = ω̄+n�t where M is the mean anomaly
defined by M = E − e sin E (which is Kepler’s equation) and E is the eccentric
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anomaly. The parameter n is the mean orbital motion and �t is the time elapsed
since periapse passage. Now, the eccentric longitude K is defined by K = ω̄ + E.
Substituting for M = �− ω̄ and E = K − ω̄, Kepler’s equation becomes

� = K + P1 cosK− P2 sinK (3.32)

which is the augmented form of Kepler’s equation. The true longitude L is defined
as L = ω̄+ f , where f is the true anomaly, and L is related to the eccentric longitude
K through

sinL = a
r

[(
1− a

a+ b
P2

2

)
sinK+ a

a+ b
P1P2 cosK− P1

]
(3.33)

and

cosL = a
r

[(
1− a

a+ b
P2

1

)
cosK+ a

a+ b
P1P2 sinK− P2

]

where

a
r
= 1/(1− P1 sinK− P2 cosK) (3.34)

and

a
(a+ b)

= 1/
(

1+
√

1− P2
1 − P2

2

)
. (3.35)

The classical orbit elements e, i, �, and ω may be recovered from the relationships

e2 = P2
1 + P2

2, tan2
(

1
2

i
)
= Q2

1 +Q2
2, tan ω̄ = P1

P2
, and tan� = Q1

Q2
. (3.36)

The variational equations for the equinoctial elements may be found in Battin [24]
and are given below. The time rates of change of the semimajor axis a, mean
longitude l, and the parameters P1, P2, Q1 and Q2 are

da
dt
= 2

a2

h

[
(P2 sinL− P1 cosL) AR + p

r
AT

]
(3.37)

dl
dt
= n− r

h

{[
a

a+ b

(p
r

)
(P1 sinL+ P2 cosL)+ 2

b
a

]
AR

+ a
a+ b

(
1+ p

r

)
(P1 cosL− P2 sinL) AT + (Q1 cosL−Q2 sinL) AN

}
(3.38)

dP1

dt
= r

h

{
−p

r
cosL AR +

[
P1 +
(
1+ p

r

)
sinL
]

AT

− P2(Q1 cosL−Q2 sinL)AN

}
(3.39)
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dP2

dt
= r

h

{p
r

sinLAR +
[
P2 +
(
1+ p

r

)
cosL
]

AT

+ P1(Q1 cosL−Q2 sinL) AN

}
(3.40)

dQ1

dt
= r

2h

(
1+Q2

1 +Q2
2

)
sinL AN (3.41)

and

dQ2

dt
= r

2h

(
1+Q2

1 +Q2
2

)
cosL AN (3.42)

where b = a
√

1− P2
1 − P2

2 which is the semiminor axis and h = nab which is the
specific angular momentum. The useful ratios p/r and r/h are defined by p/r =
1+ P1 sinL+ P2 cosL and

r/h = h
μ(1+ P1 sinL+ P2 cosL)

(3.43)

respectively. The mean orbital motion is given by n = √μ/a3. The variables AR,
AT , and AN represent the perturbing accelerations; the components of the real
forces acting on the spacecraft, apart from the central body attractions in the radial,
transverse, and normal directions relative to the instantaneous orbit plane.

If the perturbing accelerations AR, AT , and AN are all zero, then the differen-
tial equations (3.37–3.42) describe the trajectory of a spacecraft traveling in an orbit
whose elements a, P1, P2, Q1, and Q2 are fixed but with mean longitude λ advancing
at a constant rate. This will of course be the case for a spacecraft coasting, in one
gravitational field, between the application of impulses. That might correspond to
an interesting orbit transfer problem but, since the coasting arcs are integrable, it
reduces to a parameter optimization problem that does not require the direct tran-
scription that is the subject of this chapter. A more interesting and common case,
which does require the tools developed in this chapter, is a finite-thrust transfer of
a spacecraft that departs one body’s gravitational field and enters that of another
body (perhaps while en route to a third body as in an interplanetary transfer). The
perturbations are best divided into two parts, one due to operation of the low-thrust
propulsion system and the other collecting all the other disturbing accelerations, for
example, oblateness and other higher-degree terms in the potential of the central
body, “third-body” attractions, or solar radiation pressure, that is

AR = � cosα sin β + ϒR

AT = � cosα cosβ + ϒT

AN = � sin α +ϒN

(3.44)

where � is the spacecraft’s instantaneous thrust acceleration magnitude, α is the
thrust acceleration pointing angle measured out of the instantaneous orbit plane,
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and β is the in-plane thrust acceleration pointing angle. The angle α is positive if the
thrust has a component in the direction of the orbit angular momentum vector. The
angle β is zero if the thrust is directed normal to the radius vector and is positive if
the thrust has a radially-outward component. The thrust pointing angles α and β are
thus control variables for this problem. The thrust magnitude may also be a control,
over a continuous range if the engine is throttleable or turned on or off if it is not.

3.3.2 Coordinate Transformations

When the spacecraft leaves the sphere of influence of one body and enters that
of another, for example, for an Earth-to-Moon trajectory, the equations of motion,
(3.27) or (3.37–3.42), become extraordinarily sensitive to changes in some or all of the
state variables, which, as described in previous paragraphs, is very disadvantageous
for a numerical solution using direct transcription and NLP. The obvious solution is to
switch from one set of coordinates, centered on the body the spacecraft is departing,
to a set centered on the body to which the spacecraft is arriving, with the switch
occurring at the boundary of this body’s sphere of influence.

The system equations (3.37–3.42) will not change because of the transformation,
but the equations need to be re-initialized with new values for a, �, P1, P2, Q1, and Q2

appropriate to the change from one central body to another. The most straightfor-
ward way to do this is to note that the six equinoctial elements completely specify the
position and velocity (vectors) of the spacecraft with respect to the central body (and
vice versa). Therefore, the transformation follows this simple process (at the point
or time at which the space craft (s/c) leaves the SOI of body 1 for that of body 2):

1) Determine r and v of the spacecraft with respect to (w.r.t) central body 1 using
the instantaneous values of a, �, P1, P2, Q1, and Q2.

2) Determine the position and velocity of the s/c w.r.t central body 3. This will
require knowledge of the position and velocity of body 3.

3) The position and velocity found in step (2) uniquely determine the values of the
equinoctial elements appropriate for the case in which body 2 is the central body
(and body 1 now the perturbing body).

This process is illustrated in the following example of an Earth–Moon low-thrust
transfer. At any time

rES = rEM + rMS (3.45)

vES = vEM + vMS (3.46)

where rMS and rES are the positions of the spacecraft relative to the Moon and Earth,
respectively, rEM is the position of the Moon relative to the Earth, vES is the velocity
vector of the spacecraft relative to an Earth-centered inertial (ECI) coordinate sys-
tem, vEM is the velocity vector of the Moon relative to the ECI system, and vMS is the
velocity vector of the spacecraft relative to a Moon-centered nonrotating (MCNR)
coordinate system.
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Vectors rES and rMS may be found from the following equation

r = [R]
⎡
⎢⎣r cosL

r sinL
0

⎤
⎥⎦ (3.47)

where r = a(1− P1 sinK− P2 cosK) and

[R] = 1

1+Q2
1 +Q2

2

⎡
⎢⎣1−Q2

1 +Q2
2 2Q1Q2 2Q1

2Q1Q2 1+Q2
1 −Q2

2 −2Q2

−2Q1 2Q2 1−Q2
1 −Q2

2

⎤
⎥⎦ (3.48)

but with each position vector found as a function of the local equinoctial elements.
Similarly, the velocity vectors vES and vMS of the spacecraft may be determined

using

v = [R]
(u

h

)⎡⎢⎣−P1 − sinL
P2 + cosL

0

⎤
⎥⎦ . (3.49)

but again with each velocity vector found as a function of the local equinoctial
elements. The position of the Moon relative to the Earth, rEM , may be found as

rEM =
⎡
⎢⎣

aM(cos EM − eM)

aM

√
1− e2

M sin eM

0

⎤
⎥⎦ (3.50)

in the MCNR basis. It can be expressed in the ECI reference frame as

rEM = [S]
⎡
⎢⎣

aM(cos EM − eM)

aM

√
1− e2

M sin eM

0

⎤
⎥⎦ (3.51)

where

[S] =
⎡
⎢⎣c�McωM − c�MsωMsfM −c�MsωM − s�McωMcfM s�MsfM

s�McωM + c�MsωMcfM −s�MsωM + c�McωMcfM −c�MsfM
sωMsfM cωMsfM cfM

⎤
⎥⎦ (3.52)

is the transformation matrix from the MCNR basis to the ECI basis, as described
in references [9] and [37]. Note that c denotes cos( ) and s denotes sin( ). The orbit
elements �M (longitude of the ascending node), ωM (argument of perigee), and
fM (true anomaly) for the Moon at any instant in time may be obtained from an
ephemeris.
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The velocity of the Moon, vEM , may be determined using

vEM = [S]

⎡
⎢⎢⎢⎢⎣
−μE

hM

√
1− e2

M
sin EM

1− eM cos EM
μE

hM
(1− e2

M)
cos EM

1− eM cos EM
0

⎤
⎥⎥⎥⎥⎦ (3.53)

where hM is the specific angular momentum of the moon.
When Equations (3.47) and (3.49) are used to determine rMS and vMS, these

vectors will be expressed naturally on the MCNR basis. So that all of the vectors in
Equations (21) and (22) are expressed on the same (ECI) basis, rMS and vMS should
be premultiplied by the [S] transformation matrix.

Now Equations (3.45, 3.46) may be written as

rES − rEM = rMS (3.54)

vES − vEM = vMS (3.55)

Then Equations (3.54) and (3.55) yield six nonlinear constraint equations involving
the two sets of equinoctial variables; in these equations, only the variables appropri-
ate to the Earth (body 1) as the central body appear on the LHS, and only the variables
appropriate to the Moon (body 2) as the central body appear on the RHS. Enforc-
ing these constraints when the problem is solved accomplishes the transformation
of variables from the Earth-departure phase to the Moon-arrival phase. Fortunately
the direct transcription with NLP formulation makes this transformation straight-
forward; these constraints need only be added to the many-times-more-numerous
“defect” constraints accomplishing the implicit integration.

The implementation of this transformation in the direct transcription requires
the use of a “knot,” that is, a segment of zero width in which the state variables (here
the equinoctial elements) are discontinuous.

There are some additional considerations with regard to the formulation of the
system governing equations on each side of the knot. First note that defining ϒ =
{ϒR,ϒT ,ϒN}T as the “third-body” component of the disturbing acceleration on the
motion of the spacecraft

ϒM = −μM

[
rMS

r3
MS

+ rEM

r3
EM

]
(3.56)

will be the perturbing acceleration of the moon during the Earth-departure phase
and

ϒE = −μE

[
rES

r3
ES

− rEM

r3
EM

]
(3.57)

will be the perturbing acceleration of the Earth during the Moon-arrival phase. With
rES and rEM found, as described above, on the ECI basis, ϒM found as the right-hand
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side of (3.37) will also be expressed on the ECI basis. The gravitational perturbation
ϒM must then be resolved into components in the spacecraft-fixed radial, tangen-
tial, and normal directions for use in equations (3.44). This is accomplished by the
transformation

ϒM (local) = TTRTϒM (ECI) (3.58)

where
T =
⎡
⎢⎣ cosL − sinL 0

sinL − cosL 0
0 0 0

⎤
⎥⎦ . (3.59)

Similarly, when rMS is found as described above, on the MCNR basis, and with rEM

determined on the MCNR basis through

rEM =
⎡
⎢⎣

aM(cos EM − eM)

aM

√
1− e2

M sin EM

0

⎤
⎥⎦ (3.60)

then ϒE found as the right-hand side of (23) will also be expressed on the MCNR
basis. As described in the previous paragraph, the gravitational perturbation ϒE

must then be resolved into components in the spacecraft-fixed radial, transverse,
and normal directions for use in equations (3.44). This is accomplished again by the
transformation (3.58–3.59) with the only difference being that the true longitude L
is now determined using (3.33) using equinoctial variables appropriate to the Moon-
centered orbit.

An additional consideration with regard to the system equations is that it is nec-
essary to convert the length, mass, and time units from one local set to the other
across the knot representing the coordinate transformation. The most common sit-
uation, and perhaps the best in terms of scaling to improve the robustness of the
numerical solution, is to use canonical units in which the gravitational parameter
μ = 1. However, this does not remove the need for the conversion of elements such
as the semimajor axis or accelerations such as the thrust acceleration. Also note that
when the transformation is accomplished as described in this section, the choice of
the location or the time at which the knot occurs does not affect the accuracy (legit-
imacy) of the equations of motion; the problem is always a three-body problem.
It is probably reasonable to perform the transformation at the SOI of the body of
arrival; the precise location may affect the robustness of the numerical solution but
in principle should not change the optimal trajectory.

3.3.3 Interplanetary Trajectories

For an interplanetary trajectory, it will normally be the case that two coordinate
transformations will be required. The first will be when the s/c leaves the SOI of the
departure planet and enters heliocentric flight. The second, of course, is when the
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s/c transitions from heliocentric flight to arrival within the SOI of the target planet.
The example in the previous section for an Earth–Moon trajectory applies directly
to these two transformations with an obvious change in the subscripts identifying
the bodies.

Another situation often encountered in interplanetary trajectories is the use of
planetary flybys or “gravity-assist maneuvers.” If these are feasible for the inter-
planetary flight under consideration they are often fuel-minimizing (though perhaps
not time-minimizing). While the method of the previous section could be used to
describe the encounter with a planet used for a flyby this is seldom done because
as a (good) first approximation the hyperbolic flyby can be described analytically
[25]. In particular, this analysis provides the absolute (that is, heliocentric) post-
flyby velocity as a function of the pre-flyby velocity and the flyby altitude. With a
knowledge of the post-flyby heliocentric position and velocity, it is straightforward
to determine the corresponding new orbit elements [25]. The flyby can thus appear in
the direct transcription as a knot with the states discontinuous across the boundary.
An approximation that is thus made is that the flyby occurs instantaneously, but this
is not unreasonable as a first approximation because the flyby certainly does occur
rapidly in comparison to the many years required for the complete interplanetary
trajectory, for example, of spacecraft such as Galileo or Cassini.

3.4 Modeling Propulsion Systems

3.4.1 Impulsive Thrust Case

This case is quite straightforward. The mass remaining (mf ) following an impulsive
�V is related to the mass immediately prior to the impulse (mi) and the exhaust
velocity (c) of the rocket according to the Tsiolkovsky equation

�V = c ln
mi

mf
. (3.61)

The exhaust velocity is related to the specific impulse (Isp) of the rocket motor
through

c = Ispg (3.62)

where by convention g is the value of the acceleration due to gravity at the Earth’s
surface.

It is thus a simple matter to account for propulsive mass, which is often the
objective function to be minimized for space trajectory problems. If the vehicle has
stages, the mass of the discarded stage needs to be deducted from the total mass prior
to the application of the next impulse or prior to the next use of an electric low-thrust
motor, if a combination of impulsive and continuous-thrust maneuvers is used for
the trajectory. Note that if there are multiple impulses applied, and the trajectory
uses only impulsive �V ’s, then minimizing the sum of all the �V ’s will minimize the
propellant consumed, or maximize the final mass.
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3.4.2 Continuous Thrust Case

There are several options for formulating an objective function when continuous
thrust is used. First it is important to know if the engine is to provide a constant
thrust or is throttleable. In the former case, the rate of mass ejection is constant
so that minimizing the total time of operation is equivalent to minimizing the total
propellant consumed.

For the (perhaps piecewise continuous) constant thrust case, since the mass of
the vehicle is decreasing, the acceleration provided by the thrust will monotonically
increase. This can be modeled by adding the equation

d�
dt
= 1

c
�2 (3.63)

to the other system equations. Of course if, as mentioned above, a combination of
impulsive and continuous-thrust maneuvers is used for the trajectory, then the value
of � will need to be re-initialized following each impulsive �V , to account for the
instantaneous change in spacecraft mass. Similarly, if the spacecraft ever ejects some
part during the flight, for example, a fairing or a solid rocket motor shell, the value
of � will need to be re-initialized. Minimizing propulsive mass consumed is then
equivalent to minimizing the final value of the acceleration �.

If the engine is throttleable, it is necessary to add the mass variation equation to
the system equations

ṁ = −T/c (3.64)

where thrust magnitude T is chosen by the optimizer within the feasible range. Then
instantaneous thrust acceleration is given by � = T/m. Mass now becomes a state
variable so that the objective can be the value of m at the final time (mf ).

3.4.3 Power-Limited Case

The thrust T may be written using (3.64) as T = |ṁ| c. The power required for a
given thrust T is

P = 1
2
|ṁ| c2 = 1

2
cT ≤ Pmax. (3.65)

Then, as shown in [26]

d
dt

(
1
m

)
= − ṁ

m2 =
|ṁ|
m2 =

�2

2P
since ṁ ≤ 0. (3.66)

Integrating yields

1
mf

− 1
m0

= 1
2

∫ tf

t0

�2(t)
P(t)

dt. (3.67)
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Thus maximizing final mass mf is accomplished by minimizing the integral in
Equation (3.67). The power used should thus be the maximum available at any
time t. If the available power is constant, for example, at a value Pmax, the objective
function to be minimized is then

J = 1
2

∫ tf

t0
�2(t) dt. (3.68)

If the low-thrust electric motor is powered by solar energy, there will be a change in
thrust magnitude and effective Isp as the spacecraft’s distance from the sun increases,
since the solar panels then receive less sunlight. It is reasonable to assume that
available power decreases as

P = Pmax

r2 (3.69)

where Pmax is the maximum rated power and r is the distance from the sun (in AU).
The NSTAR engine, used for several interplanetary missions, has a specific impulse
of 3120 sec and a thrust of 93.4 mN when supplied with 3.52 kW of power (nominal
available at 1 AU). Polk et al., in their study characterizing NSTAR’s performance
[27], include a table of thrust and specific impulse versus available power. Englander
[28] has modeled the table results. A power law fit is used to model Tmax, and a
quadratic fit is used to model Isp, in canonical units, where the distance unit is 1 AU
and 2π time units correspond to the period of an orbit at 1 AU (that is 1 year)

Tmax = 15.5852r−2.03 (3.70)

Isp = −2.9862r2 + 6.1813r + 7.0073. (3.71)

Exhaust velocity c is then given by

c = Isp
g0

= −0.3044r2 + 0.6305r + 0.7143. (3.72)

Similar modeling can be done for whatever engine is chosen for the spacecraft.
Another type of low-thrust propulsion is that using a solar sail. When a solar sail

is used, its effectiveness also decreases with distance from the sun, but in this case
because the total insolation is decreasing. It is reasonable to assume that available
thrust decreases with the inverse square of the radius, just as power decreases in
Equation (3.65).

3.5 Generating an Initial Guess

Solution via the method of direct transcription with NLP requires that the NLP prob-
lem solver be given an initial guess of the vector of NLP parameters. This vector
contains the discrete time history of the state and control parameters, which nor-
mally number in the hundreds or few thousands, and a small number of additional
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parameters, for example, times of certain events and possibly the final time. While
modern NLP solvers are typically quite robust, it has nonetheless been our experience
that a “reasonable” initial guess needs to be provided, especially for large problems.
Of course “reasonable” is not a very precise term. In our experience, initial guesses,
that is, approximate candidate optimal trajectories, are more “reasonable” to the
extent that they:

(1) satisfy, at least at the 0th iteration, the system EOM, so that initially all of the
nonlinear “defects” are very small;

(2) satisfy any specified initial and terminal constraints;
(3) satisfy the boundary conditions given to the NLP problem solver for the upper

and lower bounds for all of the parameters.

Creating an initial guess that does all three of these things would be very difficult in
most cases; fortunately that is seldom necessary. There are several approaches for
the generation of a satisfactory initial guess.

3.5.1 Using a Known Optimal Control Strategy

Many problems one may encounter are similar in some way to problems whose
solution has already been obtained. Of course the precise circumstances will be
different but the problems may be similar enough that the optimal control strategy
can be approximately determined.

There are a number of obvious examples. One very useful example is low-thrust
orbit transfer, sometimes called orbit raising. Analytic solutions are available for a
number of cases. Edelbaum [29] derived solutions for transfer from one circular orbit
to another, for non-coplanar cases, with continuous, constant acceleration. However,
he assumed a constant yaw profile. Wiesel and Alfano [30] generalized this result to
allow the yaw angle [α in Equation (3.44)] to change each revolution. Kechichian, in
a series of papers [31] [32], has generated analytic solutions that correspond very well
to exact solutions for cases even including the effect of Earth shadow on electrically
propelled spacecraft and Earth oblateness.

None of these solutions will yield precisely an optimal trajectory because of the
assumptions or constraints on thrust acceleration and pointing angle that are made,
but they would nonetheless likely be very good suboptimal approximations from
which the NLP problem solver could converge to an optimal trajectory without such
constraints.

A related but less accurate approach is to assume a control strategy qualitatively
similar to that found in these analytic solutions. That is, one finds for many cases of
low-thrust orbit transfer or orbit raising, especially for cases where the eccentricity
remains small, that the optimal thrust direction is approximately along the velocity
vector. There is a simple reason for this; it maximizes the rate of change of the
kinetic energy. Thus one way to generate an approximate optimal trajectory is to
do a forward numerical integration of the system equations assuming that the thrust



64 Spacecraft Trajectory Optimization

is aligned with the velocity (or tangentially) and continue the integration until the
desired orbit is crossed. Of course the terminal boundary conditions will not be
satisfied but the initial guess may still be “reasonable” by the definition above, since
it will satisfy two of the three conditions given.

3.5.2 Shape-Based Methods for Generating Suboptimal Trajectories

Another approach is to use “shape-based” methods for generating guesses that satisfy
the EOM and the boundary condition [33]. The basic concept is that the trajectory
is described by a geometric shape, for example a logarithmic spiral, a Cartesian oval
or an exponential sinusoid. The shape can be made to satisfy both the equations of
motion (in one gravity field) and most or all of the boundary conditions. The thrust
magnitude and direction are then determined a posteriori; this may be problematic
because the required thrust magnitude may not be feasible for the actual spacecraft
propulsion system. It may also be the case that the actual spacecraft may have only
constant thrust capability but modulated thrust is required for the spacecraft to travel
the path of the shape.

Petropoulos and Longuski [34] derived a method capable of satisfying all of the
orbit transfer boundary conditions for an orbital interception with a shape that is
an exponential sinusoid. Petropoulos and Sims [35] have written a survey of such
methods. Wall and Conway [33] extended the method to the case of satisfying ren-
dezvous boundary conditions. They also made the shape “more” optimal by using a
genetic algorithm to optimize some of the free parameters of the problem, such as
departure and arrival dates and number of spacecraft revolutions about the central
body. Their paper contains a number of examples (circle-circle transfer, low-thrust
escape, low-thrust interception, low-thrust asteroid rendezvous) showing how the
shape-based approximation is found, followed by its use as the initial guess for a
direct solution using nonlinear programming. In all of the examples the shape-based
suboptimal trajectory provides a very satisfactory initial guess for the more accurate
direct solution.

3.5.3 Using Evolutionary Methods to Generate an Initial Guess

Using evolutionary algorithms (EA), the best known of which is probably the genetic
algorithm (GA), is another approach to finding optimal spacecraft trajectories.
Because of the limitations of GAs, these trajectories will necessarily be more inac-
curate than trajectories found using direct transcription with NLP or even indirect
methods, for example, methods based on shooting. However, for the purpose of
providing an initial guess for a direct solution, the suboptimal trajectory found using
GA may be completely satisfactory. Chilan [36] has developed a method of using
GA to generate initial guesses for the spacecraft trajectory that are always feasible.

An additional benefit of using a GA or some other EA is that an EA is initialized
with a population of candidate solutions that is generated randomly. The EA will
also explore the parameter space (in part) with randomly generated directions. In
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combination, this yields an ability to find global minima that may be much improved
over methods that begin with a prejudiced initial guess and then use gradient informa-
tion to improve their objective. This can yield an improved initial guess in comparison
to any of the methods described in Sections 3.5.1 and 3.5.2; that is, the NLP prob-
lem solver used in the direct method has a tendency to converge to a solution in
the neighborhood of the initial guess. This can be a problem when there are many
local minima, so an initial guess generator that has already searched the space and
(perhaps) found the neighborhood of the global minimum (even if that guess has the
inherent inaccuracy of an EA) is potentially very beneficial.

3.6 Computational Considerations

Direction transcription methods are not without issues with “real world” problems.
In particular, problems need to be scaled and the width and location of the segments
need to be managed to achieve accurate solutions.

3.6.1 Equation Scaling

Our experience with using nonlinear programming for trajectory optimization has
shown that realistic trajectory problems must use some form of equation scaling.
Most academic problems (Brachistochrone, Van der Pohl, among others) work well
without scaling because all variables in the problem have similar magnitude. Trajec-
tory equations expressed in traditional English or metric units have variables with
widely varying magnitudes (for example, controls of order 1 and positions of order
108). One approach to scaling would be to use a system of units that produce variables
with similar magnitudes (the canonical variables described in [37] are one such set
of units). Another approach is to keep the force computation in familiar units and
scale only the optimization calculations. The computations required are illustrated
in Figure 3.9.

The symbol S denotes the scaling transformation, Z represents the unscaled
variables, and X represents the scaled variables.

The dimensional states, zijk, are related to the nonlinear programming states by

zijk = xmSijk with

z dimensional state
i state index
j node index

S

S–1

Xi

Xi+1

Zi+1

Zi

Optimizer

Figure 3.9. Illustration of equation scaling.
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k phase number
x nonlinear programming variable
S state scale factor

Typically the user is responsible for inputting values of Sijk. The variables associated
with time do not use the offset, but use

tik = xm ∗ tscale

tpk = xm ∗ tscale

with

ti initial phase time
tscale time scale factor
tp phase time length

Additionally the defects, �ijk, are scaled as

�ijk = �d
ijk/dscaleij

with

� defect (scaled)
�d dimensional defect (include both implicit integration defects and general

defects)
dscale defect scale factor (user input)

In general, the user can set tscale to be a bit larger than ti and tp.
When the defects divided by the corresponding dscale element are less than a

given tolerance (usually 1.E-06), the defect is considered to be zero. Remember that
the defects are the state integration errors over a segment. In picking values for dscale,
one is defining an acceptable integration error.

We have generated an autoscaling technique that is roughly based upon the
above advice and computational experience.

For time, we use

tscale = 10INT(log10(max(INT(ti))))

Recognizing that not all state values are of equal importance, (is a 30-meter altitude
error the same as a 30-degree flight path error?), we have generated a procedure to
relate dissimilar states. Our solution is to employ what we have termed the method
of equivalent position. We scale the state variables so that the change of a scaled
variable maps to a change in position (equivalent position scaling). This procedure
has provided improved convergence and accuracy.
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For example, when Cartesian coordinates are used, the scaling, in the phase of
interest, is constructed from

UVWscale = |Vmax − Vmin|
XYZscale = UVWscale ∗ Tp

where

Vmax maximum velocity component during the phase
Vmin minimum velocity component during the phase
Tp phase length (dimensional time).

Then the scaling factors are

Sijk = UVWscale for the Cartesian velocities

Sijk = XYZscale for the Cartesian positions.

A similar procedure can be used for other coordinate frames.

3.6.2 Grid Refinement

To achieve accurate implicit integrations, segments need to be placed in the regions
where rapid changes in the states or controls occur. Unfortunately, this knowl-
edge is normally not available until after a solution is found. The procedures for
refining an existing grid structure to form a new computational grid are heav-
ily based on methods used for adaptive step size control for explicit numerical
integration.

The fundamental procedure used for grid refinement is:

(1) generate a trajectory;
(2) compute the implicit integration errors;
(3) evaluate the errors;
(4) build a new grid.

This process is repeated until the integration errors are driven less than a tolerance
or the desired number of grid have been computed. There are many techniques for
computing the implicit integration errors. A rather simple but effective procedure
used in OTIS [38] is shown in Figure 3.10.

Explicit integration is viewed as the “truth.” Explicit integration is started using
the states as defined at the beginning of a segment. Those states are propagated to
the end of the segment using the currently selected explicit integrator, equations of
motion, and vehicle models. The controls are defined using a polynomial represen-
tation based on their node values. At the end of a segment, errors are computed for
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Explicitly Integrated
Trajectory Arcs

State
Value 

Segment 1

Implicit
Trajectory

Segment 2 Segment 3

Figure 3.10. Implicit integration error evaluation.

each state as

e = zexplicit − zimplicit

zexplicit are the values of the states as a result of the explicit integration;
zimplicit are the implicit integration state values.

As with scaling, a potential problem with this approach is that not all state errors are
of equal importance, so we use the scaled variables to compute relative errors.

For Cartesian coordinates

epeu = e∗ut∗p(segl/2)/Sx converted x-dot error

epev = e∗vt∗p(segl/2)/Sx converted y-dot error

epew = e∗wt∗p(segl/2)/Sx converted z-dot error

epex = ex/Sx converted xerror

epey = ey/Sx converted yerror

epez = ez/Sx converted zerror

With

eu x-dot error
ev y-dot error
ew z-dot error
ex x error
ey y error
ez z error
tp phase time (dimensional)
Sx positional scale factor
segl normalized segment length

Again, similar procedures are used with other coordinate frames.
Recall that with the form of implicit integration being used, the states are repre-

sented as a polynomial of order n. This allows us to conclude that the interpolation
error for the jth segment is

εj ∝ (segl(n+1)
j ) (3.73)
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so in theory

εj

εdesired
=
(

seglj
seglnj

)(n+1)

(3.74)

where segln is the new segment length required to produce the desired error, εdesired.
Solving for segln

seglnj = seglj

(
εdesired

εj

)1/(n+1)
. (3.75)

Recall that the segl’s are normalized. (A phase, in nondimensional time, runs from
−1 to +1.) Thus

NP_SEG∑
j=1

seglj = 2 (3.76)

which allows us to conclude, that if

NP_SEG∑
j=1

seglnj ≥ 2

then there are sufficient segments (more of the existing segments can be expanded)
to allow the desired error tolerance to be met.

Directly using Equation (3.75) to define the new segment lengths, segln, can
cause problems as shown in Figure 3.11.

Experience has shown that grid refinement works better if the amount a segment
is changed is limited. By using limit functions, local segment normalization, inverse
interpolation, and the above equation for segln, we are able to limit the expansion
and contraction of the segments. This is illustrated in Figure 3.12.

NP_SEG∑
j=1

seglnj < 2

Grid 1

Grid 2

Figure 3.11. Improper segment redistribution.

Grid 1

Grid 2

Figure 3.12. Effective grid refinement.
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Tau, Normalized Phase Length
1–1

Equal Error

segl2

segln5

Running Sum of

ε1/(2*ncn)

Figure 3.13. New segment distribution procedure.

When the majority of segments should be contracted to met the error tolerance
(more segments areneeded). Somemethods simplyhalved the segments indicated for
contraction. In the worst case, this would double the number of segments and nodes.
With higher-order defects, this approach would rapidly overwhelm the available
array storage. A different approach must be used. The new number of segments,
nsegn, is estimated by

nsegn = nseg

⎛
⎝2

/NP_SEG∑
j=1

seglnj

⎞
⎠+ 1. (3.77)

The new segment spacing is obtained by equally distributing ε1/(n+1). This is
graphically illustrated in Figure 3.13.

In practice the above procedures work well. The early grid refinements tend to
gradually add segments, with subsequent grid refinements transitioning to the pure
redistribution mode.

3.6.3 Other Grid Refinement Strategies

Betts [39] describes a mesh refinement strategy for use with direct transcription via
collocation. In this strategy, two approaches are used in combination to reduce the
error below some user-chosen tolerance. One tool is to increase the order of the
discretization selectively. Based on the estimated error in a given segment, Betts’
method may first improve the result by switching from a low-order-of-accuracy
implicit integration rule (for example, the trapezoid rule) to a better rule such as
the Hermite-Simpson rule of Equation (3.5). If that is insufficient, additional grid
points (nodes) are added within segments that contained the largest error at the
most recent solution. Betts recommends placing an upper bound (in fact, five) on
the number of new grid points that should be placed within the original interval.

Herman [9] and Herman and Conway [40] propose a grid refinement strategy
using an algorithm based upon a method used for step size control in some numerical
integration software. This method is known as adaptive quadrature and is described
in many numerical analysis textbooks, for example, in that of Conte and de Boor
[41]. This automatic node placement (ANP) algorithm examines the accuracy of a
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solution by comparing subintervals of a time history of two solutions found using two
different node distributions. The automatic node placement (ANP) process begins
with an arbitrary, initial node distribution. Then an optimal solution is found using
this distribution (ANP iteration #1). Next each of the subintervals in the initial dis-
tribution is split in half with additional nodes placed at the previous midpoints, and
a second solution is found (ANP iteration #2) using this node distribution.

Let A(n,b,i) represent an approximate integral at the nth iteration over subin-
terval i using the Simpson system constraint (3.5) with integration subintervals of
equal length b. Then A(k + 1,�ti, i) is the optimal state solution over subinterval i
on distribution k+1 using two subintervals of length �ti (corresponding to ANP iter-
ation) and A(k, 2�ti, i) is the optimal state solution over subinterval i on distribution
k using one subinterval of length 2�ti. These two solutions are compared using the
relationship

E(i) ≈ A(k + 1,�ti, i)−A(k, 2�ti, i)
(2p−1 − 1)

(3.78)

If |E(i)| is larger than a user-specified threshold, then the subdivision is retained.
The process continues until a node distribution is found that provides a solution that
satisfies the relationship given for each system equation on every subinterval.

3.6.4 Solving Problems with Variables That Change with Significantly
Different Timescales

Another computationally difficult case is the case in which a large proportion of the
states change significantly but on different timescales. An example is the combined
translational and rotational motion of a space vehicle. The translational motion of
the vehicle’s center of mass experiences change much more slowly than the coupled
rotational motion (about the center of mass). Ordinarily, when using a direct tran-
scription method, the grid on which the problem is to be solved will need to use a
segment width appropriate to capture the most rapid (in this case the rotational)
motion. Specifying the slowly changing translational states at these grid points is
clearly wasteful and yields a much larger, more computational time consuming and
less tractable NLP problem than is desirable. Desai and Conway [42] [43] show how
it is possible to use two different discretizations for one problem, that is, a fine grid
for the rapidly changing states and a coarser grid for the slowly changing states. The
very-accurate fifth-degree Gauss-Lobatto transcription [10] is employed. For a chal-
lenging example, a reentry vehicle similar to the Space Shuttle, a dramatic reduction
in NLP problem size is achieved without loss of solution accuracy.

3.7 Verifying Optimality

3.7.1 Optimality of Assumed Control Switching Structures and the Discrete
Switch Function

When a solution is obtained using a direct transcription method, the analytical neces-
sary conditions for optimality are of course not satisfied; there is no certainty that the
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solution to which the NLP problem solver has converged represents a local minimum
of the objective function.

One situation in which this is likely to occur is if the optimal control switching
structure is not known. As described previously in this Chapter and in Chapter 1,
for the continuous thrust case, it often occurs that the optimal control consists of a
sequence of maximum-thrust (MT) arcs and coasting (zero-thrust) arcs. The problem
can be solved using direct transcription if a switching structure is assumed a priori. If
an erroneous structure is assumed, the problem is transcribed, and the corresponding
nonlinear programming problem is solved, the result is a suboptimal solution. Thus a
method is needed to determine whether a given control structure is indeed optimal.

First consider the case where one of the phases is extraneous, for example, sup-
pose one guessed a three-burn structure, whereas the optimal solution had only two
burns. This mistake is indicated when the nonlinear programming routine drives the
corresponding MT-arc phase duration to zero. This collapse of an MT arc renders the
transcription inefficient, because the variables for the state and control over the zero-
duration phase become extraneous, and it may be desirable to re-solve the problem
using the corrected structure. The problem of detecting the opposite situation, where
the assumed structure does not contain enough phases, is much more difficult. Sup-
pose one guessed a two-burn structure, when in fact the optimal solution included
a third burn. The optimal two-burn solution would be obtained, which may be very
suboptimal generally, and there would be no immediate indication that a third burn
should be added. (In the implementation of their hybrid method, Zondervan et al.
[44] encounter similar difficulties and recommend assuming a conservatively large
number of burns to avoid this situation.) To solve this problem, Enright and Con-
way [15] developed a method that uses the fact, determined by Enright [45], that at
the solution of the nonlinear programming problem, the (Kuhn-Tucker) multipliers
conjugate to the defect constraints in the NLP problem solution provide a discrete
approximation to the adjoint variables of the continuous optimal control problem.
In conjunction with the primer vector theory presented in Chapter 2, this allows one
to determine the optimality of the assumed structure in a very precise fashion.

The key to the method is the observation that if the assumed structure is correct,
then the assumed-structure solution must satisfy the general necessary conditions
(Section 1.2.1), including the switching condition (1.10). The procedure is as follows:

(1) Assume a particular control switching structure. Transcribe and solve the
nonlinear programming problem.

(2) If any phase collapses, eliminate that phase and re-solve the problem, or proceed.
(3) Evaluate the switch function (1.10) over the MT arcs using the discrete approxi-

mations to the states and the discrete approximations to the adjoint variables
obtained from the multipliers of the nonlinear programming problem. This
evaluation of (1.10) is referred to as the “discrete switch function.”

(4) If the switch condition (1.10) is violated (for example, if the discrete switch
function is negative anywhere) over one or more of the MT arcs, modify the
assumed structure (for example, add an MT arc) and re-solve the problem.
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This procedure is repeated until the discrete switch function has the appropriate
behavior.

3.7.2 Example: Two and Three Thrust-Arc Rendezvous

The next problem considered was a time-fixed circle-to-circle rendezvous. The space-
craft is initially in a circular orbit and is required to rendezvous with a second
spacecraft in a coplanar circular orbit of different radius within a specified final time.
The impulsive version of this problem has been studied extensively [46] [47], and the
optimal number of impulses has been shown to be dependent on the relative phasing
of the spacecraft and the final time constraint.

Canonical units normalized to the initial orbit were used. The transcription
was performed using the Hermite-Simpson method with cubic controls. Analytical
expressions for the problem derivatives were used with the exception of the derivative
of the final time constraint, which was handled by finite-differencing. (This constraint
involves the calculation of the coast-arc durations from the orbital elements and the
initial and final state vectors, and is algebraically intensive.)

It was first assumed that the solution consisted of two MT arcs separated by a
coast arc. Initial and final coasts were also allowed and were handled through the
initial and final conditions. With 8 segments per phase, there were a total of 18 nodes.
The NLP state vector consisted of the states (n = 5), controls (m = 1) and control
derivative (m = 1) values at each node, and the MT-arc phase durations (2), resulting
in a dimension of 128. There were 8 defects over each of the MT arcs and a single set
of matched-integral defects over the coast arc, resulting in 84 nonlinear constraints.
The final time constraint and the rendezvous constraint (the spacecraft must be at the
same longitude as the target at the final time) provided 2 more nonlinear constraints,
resulting in an NLP nonlinear constraint vector of dimension 86. There were also
14 linear constraints for the splines. Initial conditions were fixed, and the other final
conditions were simple bounds.

The initial guess had no initial or final coasts. The state over the first burn was
set on the initial orbit, and the state over the final burn was set on the final orbit.
The thrust angle was initialized to zero. The target radius was 3, the initial thrust
acceleration was 0.1, the exhaust velocity was 1.5, the initial lead angle of the target
was 4.5 radian, and the final time was 10.0. (All units are canonical with respect to the
initial orbit.) The tentatively optimal trajectory is shown in Figure 3.14 and includes
an initial coast. The cost was 5.226, with an equivalent �v of 0.6425.

The discrete switch function was then examined. This is the switch function (1.10)
evaluated with the discrete approximations to the adjoints and the states during the
MT arcs. If the two-burn structure were optimal, the discrete switch function would
remain above zero over the MT arcs (cf. Chapter 2). Figure 3.15 shows the switch
function for the first burn and clearly indicates the nonoptimality of the assumed
structure.

A three-burn structure (three phases and two sets of matched-integral con-
straints) was then assumed and the problem was re-solved. This structure required
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Figure 3.14. Two thrust-arc rendezvous.

–0.3

–0.2

–0.1

0

0.1

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (Burn 1)

D
is

cr
et

e 
S

w
itc

h 
F

un
ct

io
n

Figure 3.15. Two thrust-arc rendezvous; discrete switching function for first burn.

27 nodes, generating an NLP problem with 192 variables, 129 nonlinear constraints,
and 21 linear spline constraints, and requiring 24.6 seconds of CPU time for solution.
The optimal trajectory is shown in Figure 3.16. The cost was 4.976, with an equivalent
�v of 0.6045. The impulsive cost, according to Prussing and Chiu [48] is 0.4872 so
the gravity loss was 0.1173 or 24%. The first burn is essentially a retro-burn and is
driven by the time constraint. Figure 3.17 shows the switch function obtained by a
backward integration of the state and adjoint equations for this solution, and verifies
the optimality of the assumed burn structure.

3.7.3 Verifying Optimality by Integration of the Euler-Lagrange Equations

As mentioned in Section 7.1, the discrete-adjoint approximation may be exploited
to test whether the discrete-approximate solution adequately satisfies the indirect
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Figure 3.16. Three thrust-arc rendezvous.
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Figure 3.17. Three thrust-arc rendezvous; optimal switching function.

TPBVP. After the correct control switching structure has been confirmed, the
adjoints at the final time can be extracted. For the Runge-Kutta parallel-shooting
method, these are simply the multipliers corresponding to the last defect (which
occurs at the final time). If the Hermite-Simpson collocation method or any of the
higher-degree Gauss-Lobatto collocation methods are used, obtaining the adjoints
at the final time is problematic because the last defect is located within the last seg-
ment, near but not precisely at the final time. If the segment widths are narrow, this
small difference may be inconsequential. However, for a precise evaluation, one can
use the multipliers corresponding to the terminal constraints (the ν’s) and calculate
the final adjoints from the terminal conditions (1.5). Then the state equations (3.6)
and the adjoint differential equations (1.5) can be numerically integrated backwards
from the final time to the initial time using the controls generated by the control opti-
mality conditions (1.6). If the initial state conditions are accurately recovered then
the discrete-approximate solution satisfies the optimal control necessary conditions,



76 Spacecraft Trajectory Optimization

for example, the Euler-Lagrange TPBVP is solved. This verifies optimality as well as
feasibility of the discrete-approximate solution, and provides the ultimate evaluation
criterion.

If the system Hamiltonian (1.9) does not explicitly depend on time, which is often
the case for spacecraft trajectory problems, then it is known that the Hamiltonian is a
constant on the optimal trajectory. Knowledge of the adjoint variables, extracted at
discrete points in time from the solution obtained by the NLP problem solver, allows
the system Hamiltonian to be evaluated along the trajectory. Of course it should also
have a constant value; the degree to which it varies about some nominal value will
provide additional information regarding the accuracy of the optimal trajectory that
has been obtained. In our experience, it is normally the case that the Hamiltonian
will have only a small variation in a good solution, perhaps only in the fourth or fifth
decimal place.
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4 Elements of a Software System for Spacecraft
Trajectory Optimization

Cesar Ocampo
Department of Aerospace Engineering and Engineering Mechanics,
The University of Texas at Austin, Austin, Texas

4.1 Introduction

This chapter presents the main elements associated with a general spacecraft trajec-
tory design and optimization software system. A unified framework is described that
facilitates the modeling and optimization of spacecraft trajectories that may operate
in complex gravitational force fields, use multiple propulsion systems, and involve
multiple spacecraft. The ideas presented are simple and practical and are based in
part on the existing wealth of knowledge documented in the open literature and the
author’s experience in developing software systems of this type.

The goal of any general trajectory design and optimization system is to facilitate
the solution to a wide range of problems in a robust and efficient manner. A trade
off exists between scope and depth. An attempt is made to strike a balance between
the two and describe an approach that has proven to be robust and useful for a broad
range of spacecraft trajectory design problems. The ideas and techniques presented
here have been implemented in a working operational system known as Copernicus
[1, 2]. This system has been used to support the detailed and comprehensive mission
design studies associated with NASA’s Constellation program [3, 4]. It has also been
used to design and optimize the LCROSS [5] mission trajectory which was launched
on June 18, 2009.

The system can be used to do any or all of the following:

• Open Loop Simulation: The system can simulate open loop trajectories in any
force field, using one or more spacecraft, and including impulsive and/or finite
burn maneuvers.

• Nonlinear Root Finding: The system can search for the values of independent
variables to satisfy a set of equality constraint functions. This is required for
general spacecraft targeting problems such as orbital boundary value problems
or determining the initial conditions for periodic orbits in the circular restricted
three body model, for example.

• Optimization: The system can extremize the value of a function consistent with
general nonlinear constraints. A typical cost function is propellant consumption,
but any other computable function can be extremized.
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The key component of the system is the trajectory model that is used to con-
struct simple to complex missions. The secondary components include the equations
of motion, the propulsion system models, the control parametrization, the selection
of the independent variables, the computation of the dependent constraint functions,
and the objective function. The third set of components are the fundamental algo-
rithms used to solve the nonlinear equations of motion, the root finding problem,
and the optimization problem. This chapter presents an overview of the trajectory
model and some of the secondary components of the system.

Two example missions are designed, illustrating some of the capabilities of the
system. The first example illustrates the design of a lunar free-return trajectory. This
is a simple example where most of the trajectory is ballistic. The second example mis-
sion is more complex and involves the placement of one spacecraft into a polar lunar
orbit and a second spacecraft on a trajectory that collides with the lunar north pole.
In this example one spacecraft performs impulsive maneuvers and the other space-
craft performs low-thrust maneuvers. Both spacecraft are injected into a translunar
trajectory by the same booster.

4.2 Trajectory Model

The trajectory model uses a fundamental building block called a segment.A segment
is a trajectory arc that can have velocity impulses and/or a finite burn maneuver.
The basis for the segment model is derived from the simplest type of trajectory
arc that connects two non-intersecting orbits. Depending on how the relationship
between different segments is defined, single or multiple spacecraft trajectories that
may interact can be modeled. The generality of how segments are related to one
another facilitates the modeling of complex missions.

A segment arc connects two node points. The node points are tagged with an
epoch that is referenced to a specified, but otherwise arbitrary, reference epoch,
tepoch. The reference epoch is chosen to be close to the time frame of the mission
being considered. For any segment, the epoch of the initial node is t0 and the epoch
of the final node is tf . There is no restriction on the values for t0 and tf (t0 = tf ,
t0 < tf , t0 > tf ). The segment duration is defined as �t = tf − t0. The segment
terminal nodes are uniquely defined by specifying the values for any of the pairs
(t0, tf ), (t0,�t), (�t, tf ).

The state vector x consists of position r, velocity v, and mass m,

x =
⎛
⎜⎝ r

v
m

⎞
⎟⎠ . (4.1)

If t0 and tf are distinct, the segment is integrated numerically from t0 to tf using the
equations of motion. The equations of motion include natural accelerations and can
include controlled accelerations due to an engine. Figure 4.1 illustrates the possible
segment types showing the possible combinations of coast arcs, finite burn arcs,
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Figure 4.1. Possible segment types.

and impulsive maneuvers. Referring to this figure, it is necessary to be precise in
distinguishing between segment types 10 and 12. In segment type 10, t0 is specified
and �t = 0; in segment type 12, �t = 0 and tf is specified. Though these are
qualitatively similar, the bookkeeping associated with the time tagging of the state
input and function output data is different. Similar arguments apply to the impulsive
maneuvers shown as segment types 9 and 11.

For any segment, the initial position vector is r0. The initial velocity vector is v−0 .
The initial velocity impulse, if it exists, is�v0. The velocity vector after this impulse is

v+0 = v−0 +�v0 (4.2)

Due to the velocity impulse, it is necessary to distinguish the state before and after
the impulse. The time tags t−0 and t+0 refer to the state before and after the impulse,
respectively. The same attributes apply at the tf node. The initial value of the mass is
m−−

0 . The meaning of the double superscript ‘−−’ becomes clear after the following
description. Before the first velocity impulse, �v0, a non-maneuver mass disconti-
nuity �m−

0 is allowed. This is used to account for either a positive or negative mass
discontinuity associated with acquiring another spacecraft or discarding a component
of the current spacecraft. The velocity impulse itself introduces a mass discontinuity
�m0 due to the propellant mass consumed. After the impulse, an additional mass dis-
continuity �m+

0 is allowed. For example, �m+
0 could be used to represent the stage

mass used to perform the impulsive maneuver, in which case �m+
0 is a negative
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quantity. At the t0 node mass evolves as follows

m−−
0 −→ m−+

0 −→ m+−
0 −→ m++

0

where

m−+
0 = m−−

0 +�m−
0 (4.3)

m+−
0 = m−+

0 +�m0 (4.4)

m++
0 = m+−

0 +�m+
0 . (4.5)

Recall that�m−
0 and�m+

0 areexplicit vehiclemassdiscontinuities thatdonotdepend
on the maneuver itself. The impulsive maneuver mass discontinuity is computed from
the rocket equation

�m0 =
(
m−+

0

)
(e−�v0/c − 1) (4.6)

where c is the exhaust velocity of the engine performing the impulsive maneuver.
The state vector at the beginning of the segment is

x−0 =
⎛
⎜⎝ r0

v−0
m−−

0

⎞
⎟⎠ (4.7)

After accounting for the potential state discontinuities at the t0 node, the initial
condition for the state vector that is numerically propagated from t0 to tf (if t0 �= tf ) is

x+0 =
⎛
⎜⎝ r0

v+0
m++

0

⎞
⎟⎠ (4.8)

The state vector after the propagation and before possible state discontinuities at
tf is

x−f =
⎛
⎜⎝

rf

v−f
m−−

f

⎞
⎟⎠ (4.9)

The same description regarding the use of an impulsive maneuver and the mass
discontinuities at the t0 node applies to the velocity and mass evolution at the tf
node. Therefore, the final value of the state vector of a segment is

x+f =
⎛
⎜⎝

rf

v+f
m++

f

⎞
⎟⎠ (4.10)
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Figure 4.2. The expanded segment showing the evolution of state variables.

In summary, the state elements evolve across the segment as follows

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r0
integrated=⇒ rf

v−0 −→ v+0
integrated=⇒ v−f −→ v+f

m−−
0 → m−+

0 → m+−
0 → m++

0
integrated=⇒ m−−

f → m−+
f → m+−

f → m++
f

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

State functions can only be computed from these state vectors and are
tagged with the epochs t0, tf for position, t−0 , t+0 , t−f , t+f for velocity, and

t−−0 , t−+0 , t+−0 , t++0 , t−−f , t−+f , t+−f , t++f for mass. Figure 4.2 illustrates the segment
structure in detail and shows the evolution of velocity and mass across the segment.

Assuming for the moment that the trajectory arc between t0 and tf is purely
ballistic, the key independent quantities of the segment are

(
t0, r0, v−0 ,�v0, m−−

0 ,�m−
0 ,�m+

0 , tf ,�vf ,�m−
f ,�m+

f

)

and the dependent quantities are

(
v+0 ,�m0, m++

0 , rf , v−f , v+f , m−−
f ,�mf , m++

f

)
.

Sets of segments are used to construct complete trajectories for one or more space-
craft. Segments can be connected to other segments by forcing the initial state
of a segment (or a subset of the initial state) to inherit the state (or a subset of
the state) associated with either node of a previous segment. Segments can also
be completely disconnected to model independent trajectories. These segments
can later be constrained to be connected via continuity constraints to other seg-
ments. A mission in this context is defined to contain the set of all segments that
are present.
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A base frame is chosen for a mission and is required to be non-rotating and
centered at a celestial body. All state transformations use the base frame as the hub
through which all state, maneuver, and state function transformations are made.
Each segment has a state input frame, a propagation frame, and a function output
frame. The propagation frame is the frame used for the integration of the equations
of motion and is required to be non-rotating and centered at a celestial body. The
state data that specify the initial conditions for a segment, (x−0 ), are referenced to
the state input frame. The function data for a segment includes all functions that
can be computed from the distinct segment states (x−0 , x+0 , x−f , x+f ) and are refer-
enced to the function output frame. The state input and function output frames
are required to be centered at a celestial body and can be either fixed or rotating.
Each segment is allowed to have its own state input, propagation, and function
output frame.

The individual segment impulsive maneuvers �v0 and �vf are each referenced
to a unique impulsive maneuver frame. The impulsive maneuver frame can be
either fixed (non-rotating) or osculating along the trajectory path. In either case
the frame is defined relative to a celestial body centered non-rotating or rotat-
ing frame. An example of a common osculating impulsive maneuver frame is one
with its first axis along the instantaneous velocity vector; the third axis is along the
instantaneous angular momentum vector and the second axis completes the right
handed system.

A segment vector si is defined for segment i to be a mixed variable type vector
containing all of the independent and dependent variables and functions associated
with the segment. Additionally it contains all the frame definitions, how and what
data is inherited from other segments, what functions need to be evaluated from the
state vector at the distinct time tags, and which variables are search variables, etc.
This list of information is large, and in this discussion it is limited to only what is
relevant. The reduced list includes the state vector at t−0 and t+f and all of the velocity
and mass discontinuities that may be present,

si =
(

t0, r�0 , v−�0 , m−−
0 ,�m−

0 ,�v�0 ,�m+
0 ,

tf ,�m−
f ,�v�0 ,�m+

f , rf , v++f , m++
f , . . . . . .

)�
. (4.11)

The mission can be computed uniquely in open loop by processing all of the informa-
tion contained in the set of segment vectors si(i = 1, . . . , n) for a mission containing
n segments.

Every segment also has a search vector si
x and a function vector si

f . si
x is a subset

of si and contains only the independent variables that have been tagged to be search
variables. si

f is a subset of si and contains only the functions that have been tagged

to be constrained or optimized. si
f can contain state functions computed from the

segment states x−0 , x+0 , x−f , x+f . For example, si
x could contain the components of �v0,

and si
f could contain a subset of the orbital elements computed from x+f .
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4.3 Equations of Motion

The state vector for any segment i is governed by the first-order vector equation of
motion,

d
dt

⎛
⎜⎝ r

v
m

⎞
⎟⎠

i

=

⎛
⎜⎜⎜⎜⎝

v

g(r, v,m, t)+ T(t)
m

u(t)

−T(t)
c(t)

⎞
⎟⎟⎟⎟⎠

i

(4.12)

where g is the ballistic acceleration per unit mass, T is the finite engine thrust force,
u is the unit thrust direction, and c is the engine exhaust velocity. T , c, and u are
possible control functions. These equations are evaluated from t+0 to t−f . The only
allowable discontinuities are associated with the control terms.

An example expression for g is the acceleration acting on a spacecraft due to a
main gravitational body cb and possibly including the gravitational acceleration due
to nb additional celestial bodies whose time dependent positions rj(t) with respect to
cb are obtained from a precomputed ephemeris

g(r, t) = −Gmcb

r3 r−G
nb∑
j=1

mj

(
r − rj(t)∣∣r − rj(t)

∣∣3 + rj(t)

r3
j (t)

)
(4.13)

where G is the universal constant of gravitation, mcb is the mass of the main celestial
body, and mj is the mass of celestial body j. Depending on the problem, additional
terms accounting for other common accelerations such as atmospheric drag, solar
radiation pressure, and non-spherical celestial bodies need to be added to the vector
function g. These additional parameters associated with g also form part of the
segment vector si. The reduced form for g used in Equation (4.13) serves only as an
example and is used in the example missions to be discussed.

4.4 Finite Burn Control Models

A finite burn arc is based on one of two possible models. The first model is the param-
eter model that uses a finite set of parameters to describe the time evolution of the
control variables. The second model is the optimal control model using the analytical
necessary conditions of the problem and thus requires the vector of Lagrange mul-
tipliers adjoined to the state vector. The system described can accommodate several
types of engine models [2], but only a simple constant exhaust velocity engine model
is used to illustrate both methods. In this engine model it is assumed that the exhaust
velocity c is known and constant. The control variables are then the thrust force T
and the unit thrust direction u with constraints

Tmin ≤ T(t) ≤ Tmax (4.14)

|u(t)| = 1. (4.15)
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4.4.1 Thrust Vector Parameter Model

For every finite burn segment it is necessary to determine the value of the thrust
T(t) and the unit direction u(t). It will be assumed that once the value for T(t) is
determined, it remains constant for that segment. The reference frame for u(t) is the
steering frame which can be specified; alternatively, its basis unit vectors û0, v̂0, ŵ0 can
be determined as part of the solution process. If the basis unit vectors are specified,
common sets of basis vectors are:

• û0, v̂0, ŵ0 aligned with the basis unit vectors of the propagation frame;
• û0, v̂0, ŵ0 aligned with one of two possible sets of basis unit vectors:

(a) velocity referenced framed

û0(t) = v
v

(4.16)

(b) or position referenced frame

û0(t) = r
r

(4.17)

with the remaining basis vectors for both frames given by

v̂0(t) = ŵ0 × û0 (4.18)

ŵ0(t) = r × v
|r × v| (4.19)

where r and v are the instantaneous position and velocity along the
trajectory.

If the basis unit vectors are to be determined as part of the solution process they
are constrained to be an orthogonal basis∣∣û0

∣∣ = ∣∣ŵ0
∣∣ = 1 (4.20)

ŵ�0 û0 = 0 (4.21)

v̂0 = ŵ0 × û0 (4.22)

Within the steering frame the unit thrust direction is parameterized by the spherical
angles α and β,

uûv̂ŵ =
⎛
⎜⎝cosβ(t) cosα(t)

cosβ(t) sin α(t)
sin β(t)

⎞
⎟⎠ (4.23)

The spherical angles are assumed to be functions of time of the form

α(t) = α0 + α̇0(t − t0)+ 1
2
α̈0(t − t0)2 + aα sin(ωα(t − t0)+ φα) (4.24)

β(t) = β0 + β̇0(t − t0)+ 1
2
β̈0(t − t0)2 + aβ sin(ωβ(t − t0)+ φβ) (4.25)
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where t0 ≤ t ≤ tf . The thrust direction unit vector in the propagation frame is

u(t) = [cosβ(t) cosα(t)] û0+ [cosβ(t) sin α(t)] v̂0 + [sin β(t)] ŵ0. (4.26)

Each of the constants in Eqns. 4.24 and 4.25 can be part of si
x. As defined, the

functions for the spherical angles α and β admit constant, linear, quadratic, and
sinusoidal terms. For most practical applications the constant and linear terms are
sufficient. However, for some low-thrust applications, the sinusoidal terms may be
important. An example is the oscillation of the thrust direction vector relative to the
velocity vector for a low-thrust, long duration, spiral escape or capture trajectory
about a celestial body [6].

4.4.2 Thrust Vector Optimal Control Model

An alternate steering profile for the thrust vector is based on Optimal Control Theory
[7–11]. In the system under discussion it is only necessary to understand and solve
the equations that govern the behavior of the thrust vector. The formulation of the
multi-point boundary value problem that results from the complete optimal control
solution is not required in the approach described here. This removes the necessity
of deriving and including the associated transversality conditions in the solution
process.

In the Mayer form of the optimal control problem, the control Hamiltonian is
defined as

H ≡ λ�f (4.27)

where λ is the costate vector of Lagrange multipliers adjoined to the state vector and
f is the vector field that governs the evolution of the state vector x

ẋ = f(x, t, uc) (4.28)

where uc is a vector of control variables. A first-order necessary condition is the
vector differential equation for λ

λ̇ = −
(
∂H
∂x

)�
(4.29)

Additionally, the control vector uc is chosen to extremize H at all points on a solution
consistent with the control constraints if they are present. Recall the state vector

x =
(
r� v� m

)�
. (4.30)

Adjoined to this is the costate vector

λ =
(
λ�r λ�v λm

)�
. (4.31)
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Using the example force model described in Eqn. 4.12, for a spacecraft with a constant
exhaust velocity engine, the vector field is

f(x, t, uc) =
⎛
⎜⎝ v

g(r,t)+ T(t)
m u(t)

−T(t)
c

⎞
⎟⎠ (4.32)

The Hamiltonian is

H = λ�r v + λ�v
(

g(r,t)+ T
m

u
)
+ λm

(
−T

c

)
(4.33)

and the costate vector equations are

λ̇r = −
(
∂H
∂r

)�
= −
[
∂

∂r

(
λ�v g
)]�

=
(
∂g
∂r

)�
λv (4.34)

λ̇v = −
(
∂H
∂v

)�
= −λr (4.35)

λ̇m = −∂H
∂m

= T(t)
m2 λ

�
v u. (4.36)

Using the form of the ballistic acceleration given in Eqn. 4.13 the gradient term in
the equation for the position costate vector of Eqn. 4.34 is

(
∂g
∂r

)
= −Gmcb

r5

(
3rr� − r2I

)
−G

nb∑
j=1

mj

(
3
(
r − rj(t)

) (
r − rj(t)

)�∣∣r − rj(t)
∣∣5 − I∣∣r − rj(t)

∣∣3
)

(4.37)

where I is a 3× 3 identity matrix. Extremization of H with respect to the thrust unit
vector results in the thrust unit vector steering law [12, 13]

u(t) = ±λv(t)
λv(t)

(4.38)

and is referred to as the Primer Vector (cf. Chapter 2). The choice of sign depends on
whether H is required to be maximized or minimized. In this discussion it is assumed
that H is maximized. The assumed engine model admits the well known switching
function S which is the coefficient of the thrust term in H after substituting for u(t),

H = λ�r v + λ�v g(r,t)+
(
λv

m
− λm

c

)
T (4.39)

S ≡
(
λv

m
− λm

c

)
. (4.40)

Maximization of H with respect to T yields the well known thrust magnitude
control law

T =
{

Tmin if S < 0
Tmax if S > 0

}
. (4.41)



4.4 Finite Burn Control Models 89

A switching between the thrust limits occurs instantly when S = 0 and Ṡ �= 0. A sin-
gular arc occurs when S = 0 and Ṡ = 0 for a finite duration. In this latter case the
value of the thrust magnitude is undetermined and a higher order analysis is required
to determine the thrust magnitude [9].

In the optimal control model, one of two methods can be used to determine T
for a given segment. The first method does not use the switching function and lets the
optimization algorithm treat the thrust magnitude as a search variable. If a series of
segments are connected sequentially then a trajectory with different values of thrust
(some may be coast arcs) is produced. Alternatively, segments can be forced to be
either finite burn segments or coast arcs. Since the durations of the segments are
search variables, a sequence of sequentially connected segments can be generated
representing a string of thrust and coast arcs. Some of these segments may converge
to arcs with zero time duration for cases where that particular segment should not
exist with the thrust value that was assumed for it.

The second method uses the switching function in one of two ways. A series of
segments can be constructed with an assumed thrust and coast switching structure.
Again since the durations of these segments are variables the start and end times of
the segments can be constrained such that S = 0 and Ṡ > 0 if the switch is from Tmin

to Tmax and S = 0 and Ṡ < 0 if the switch is from Tmax to Tmin. The simplest way
to determine the thrust magnitude, albeit more numerically sensitive, is to monitor
the switching function during the numerical integration of the segment and apply the
thrust control law in Equation (4.41). This introduces a discontinuity in the equations
of motion which may be a problem for most numerical integrators. The DLSODE
numerical integration routine from the ODEPACK suite of numerical integration
routines [14] has proven to detect the time of this discontinuity accurately and for
this reason it has been selected as the main general purpose numerical integration
routine in the system.

4.4.2.1 Adjoint Control Transformation
In the optimal control model the costate vector λ(t0) forms part of si

x. An estimate for
λ(t0) is facilitated by using control related quantities instead of the actual costates.
This is accomplished with a simple technique known as an adjoint-control trans-
formation [15]. Using the control optimality condition for the thrust pointing unit
vector, the value of the velocity costate vector is

λv0 = λv0u0 (4.42)

where u0 is given as a function of the two spherical thrust direction angles α0 and β0.
The time rate of change of λv0 is

λ̇v0 = λ̇v0u0 + λv0 u̇0. (4.43)

The velocity costate vector at t0 is required to satisfy Eqn. 4.35

λ̇v0 = −λr0 (4.44)
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so that the the position costate vector at t0 becomes

λr0 = −λ̇v0u0 − λv0 u̇0. (4.45)

This is the basic transformation and is summarized as follows⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λv

λ̇v

α

α̇

β

β̇

λm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=⇒

⎛
⎜⎜⎜⎜⎜⎝

λv

λ̇v

u
u̇
λm

⎞
⎟⎟⎟⎟⎟⎠ =⇒

⎛
⎜⎝λv

λr

λm

⎞
⎟⎠ . (4.46)

The necessity of explicitly specifying all of the components of the costate vector has
been removed in favor of specifying the four control related variables (α,β, α̇, β̇)
and three costate related variables (λv, λ̇v, λm). These remaining variables are still
generally non-intuitive. However, further relationships can be derived that remove
the necessity of these being specified. These relationships are problem dependent
and require knowledge of the transversality conditions that result from the complete
formulation of the solution of the optimal control problem [2]. The use of the trans-
formation replaces the explicit costate vector in si

x with the adjoint control variables.
Using costate variables or adjoint-control variables without explicitly enforcing the
transversality conditions in a parameter optimization solution procedure is referred
to here as a hybrid optimal control method and is the basis for all the solutions that
use the optimal control model for the thrust vector.

4.5 Solution Methods

All the information necessary to perform an open loop simulation is contained in si.
If a targeting or optimization problem needs to be solved then it is necessary to cast
the given data into a standard format. Let xp be the n× 1 problem search vector. It
contains all of the elements in si

x (i = 1, . . . , ns) for a ns segment mission. Let c be
the m× 1 problem function vector that will contain the objective function, all of the
equality constraints and all of the inequality constraints. It is based on the elements
in si

f (i = 1, . . . , ns). Let meq be the number of equality constraints and mineq be the
number of individual inequality constraints so that m = 1+meq+mineq. An element
j of si

f is required to either

• satisfy an equality constraint (
si
f

)
j
= feq

• or satisfy a lower and/or an upper bound inequality constraint(
si
f

)
j
≥ fl and/or

(
si
f

)
j
≤ fu fu ≥ fl
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• or be added to the objective function. An element that forms part of the objective
function can also have specified lower and/or upper bounds.

The first element of c is c1, the objective function, fobj , which is the sum of all of
the elements in si

f (i = 1, . . . , ns) that have been tagged to be part of the objective
function. If no element has been tagged to be part of the objective function, then c1

is zero. The next part of c is ceq(meq×1) which contains all of the equality constraint
functions. The last part of c is cineq(mineq × 1) which contains all of the inequality
constraint functions. All inequality constraints are re-written with a specified upper
bound of zero

−
(
si
f

)
j
+ fL ≤ 0 (4.47)

(
si
f

)
j
− fU ≤ 0. (4.48)

In summary

c =
⎛
⎜⎝

fobj(
ceq
)
meq×1(

cineq
)
mineq×1

⎞
⎟⎠

m×1

. (4.49)

The elements of c are assumed to be consistent and independent. For any gradient-
based solution method it is necessary to obtain an estimate of the Jacobian matrix
∂c/∂xp. Numerical finite difference methods [16, 17] are the most common and
accepted methods used to estimate ∂c/∂xp. For example, the (i, j) element of ∂c/∂xp

can be approximated using a forward difference approximation

∂ci

∂xpj

≈ ci(xpj +�xpj )− ci(xpj )

�xpj

(4.50)

or a more accurate central difference approximation

∂ci

∂xpj

≈ ci(xpj +�xpj )− ci(xpj −�xpj )

2�xpj

(4.51)

where�xpj is the positive perturbation stepsize for the xpj element of xp. A generally
accepted rule of thumb for the value of �xpj is 10−8|xpj | for a forward difference
approximation and �xpj = 10−4|xpj | for a central difference approximation [16, 17].
Unfortunately, for many problems it is often necessary to experiment with different
values because they are problem and process dependent. The choice for �xpj is
sometimes based on experience and can be considered more of an art than a science.
There are more accurate variational methods based on the use of state transition
matrices [18–20] that have proven to be effective for very specific problems, but
these are not practical for a generalized system because of the overhead required to
derive all of the required relationships between the large number of search variables
and constraint functions. The accurate estimation of ∂c/∂xp is perhaps the single
most important calculation for any gradient-based solution method.
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4.5.1 Root Finding Problem: fobj = 0.0, mineq = 0, meq = n ≥ 1

This is a nonlinear root finding problem for a system of nonlinear equations

ceq(xp) = 0 (4.52)

which is solved with standard gradient-based nonlinear root finding algorithms [16].
There is no guarantee that a solution exists, and multiple solutions are possible.
Many algorithms are available for the solution of this problem. The NS11 and NS12
algorithms from the Harwell Subroutine Library [21] have proven to be very robust
and efficient routines for the class of problems considered here. The NS11 algorithm
is a Newton-Raphson and steepest descent method which uses Broyden’s method
for extrapolating the Jacobian array of the system. The NS12 algorithm is based on
a trust region method coupled with the Powell dog-leg algorithm.

4.5.2 Mini-Max Problem: fobj = 0.0, mineq = 0, meq ≥ 1, n ≥ 1

This is a standard mini-max problem where it is desired to find a local minimum of
the function

max
∣∣∣[ceq(xp)

]
j

∣∣∣ , j = 1 . . .meq. (4.53)

If meq = n then the solution is equivalent to the zero of a set of nonlinear equations as
described above. If meq > n the system is overdetermined and the local minimum of
the function can be expected to be nonzero. This is equivalent to nonlinear mini-max
data fitting. If meq < n the system is under determined, the minimum of the function
is zero and the solution is the minimum norm solution from the initial value of xp.
The VG11/12 algorithms from the Harwell Subroutine Library [21] have proven to
be effective in solving problems under this mode.

4.5.3 Nonlinear Programming Problem: mineq ≥ 0, 0 ≤ meq < n, n ≥ 1

This is the general problem of nonlinear functional optimization with nonlinear
equality and inequality constraints and whose solution methods have been well doc-
umented in the literature [17, 22]. The problem is to minimize or maximize the
objective function (which can be zero)

fobj(xp) (4.54)

subject to both the equality and inequality constraints

ceq
(
xp
) = 0 meq × 1 (4.55)

cineq
(
xp
) ≤ 0 mineq × 1. (4.56)
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The sequential quadratic programming (SQP) routines VF13 [21] and SNOPT [23]
have proven to be effective in solving the types of problems that can be cast in
this system.

4.6 Trajectory Design and Optimization Examples

To illustrate some of the ideas presented in this chapter, two trajectory design exam-
ples are presented. These examples capture some of the key elements of the system
and are not meant to be comprehensive. It is not possible to formulate one or
two examples that make use of all of the ideas presented here. The first example
involves the design of a simple free-return lunar flyby trajectory from the Earth. The
second example illustrates the procedure used to design a dual spacecraft mission
where the first spacecraft is inserted into a lunar orbit and the second spacecraft
is required to perform a lunar flyby so that it impacts the lunar north pole approxi-
mately half a month later. Both examples will use the VF13 SQP routine in obtaining
the feasible and optimal solutions. The procedure is described as an experimental
process, and it is the actual procedure used to construct the final solution for both of
the examples.

4.6.1 Free-Return Lunar Flyby Mission

Free-return lunar flyby trajectories are well known and have been used since the
Apollo era. A new automated and robust procedure not requiring a user-provided
initial estimate was recently developed to construct families of these types of trajec-
tories [24]. In the example presented here no special information is assumed and the
system will be used without the aid of an initial estimate generating algorithm. The
spacecraft is injected impulsively into a trans-lunar trajectory from a low Earth orbit.
The spacecraft performs a flyby around the Moon with a specified periapsis radius
and returns to the Earth where it is captured impulsively into a low Earth orbit. The
objective function is the time of flight.

There are many ways to construct this solution. The method chosen for this
example is to divide the trajectory into four segments. The first pair of segments
(S1 and S2) model the departure and capture phases at the Earth, respectively.
The Earth departure segment (S1) is propagated forward in time and the capture
segment (S2) is propagated backward in time. The second pair of segments (S3 and
S4) model the hyperbolic flyby at the Moon. A spacecraft state vector is defined at
the Moon with a true anomaly of zero and a specified periapsis radius; the remaining
orbital elements (e, i,�,ω) are search variables. The hyperbolic trajectory (S4) is
propagated backward in time and represents the lunar approach. The other segment
(S3) is propagated forward in time and represents the lunar departure. A sketch
of this segment model is shown in Figure 4.3. The relevant data associated with
each segment is tabulated in Table 4.1. In this table all times are referenced to the
reference epoch. The reference epoch is April 3 2009 00:00:00.000 UTC (Coordinated
Universal Time).
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Figure 4.3. Segment Model for the Free-Return Lunar Flyby Mission.

Table 4.1. Segment Data for the Free-Return Lunar Flyby Mission.
Starred quantities denote search variables. Definitions: ns = not specified,
na = not applicable. The left double arrow indicates data is inhereted from
the specified node and segment given.

Segment→ S1 S2 S3 S4

t0 (day) 0.0 8.0∗ 4.0∗ ⇐ t0 S3
�t (day) 1.0∗ −1.0∗ 1.0∗ −1.0∗
a (km) 6578.0 6578.0 ns ns
rp (km) ns ns 10000.0 ⇐ t−0 S3
e 0.0 0.0 1.0∗ ⇐ t−0 S3
i (deg) 0.0∗ 45.0∗ 0.0∗ ⇐ t−0 S3
� (deg) 0.0∗ 0.0∗ 180.0∗ ⇐ t−0 S3
ω (deg) 0.0 0.0 0.0∗ ⇐ t−0 S3
ν (deg) 0.0∗ 0.0∗ 0.0 ⇐ t−0 S3
�v0x (km/s) 3.2∗ −3.2∗ na na

The base frame is ECJ2000 (Earth centered J2000). The state input and prop-
agation frames for S1 and S2 are both ECJ2000. The state input and propagation
frames for S3 and S4 are both MCJ2000 (Moon centered J2000). The function output
frame for all segments is ECJ2000. The estimates provided for some of the segment
data are consistent with the time duration of a typical free-return trajectory. The
time estimates are based on the duration of a Hohmann-type transfer from a low
Earth orbit to the lunar radius which is about four to five days. The departure and
capture maneuvers are consistent with the magnitude of an escape maneuver from
the Earth from the specified altitude. These are only estimates and they need not be
exact. The initial epoch (t0)S1 is fixed. The final time of the trajectory is the initial
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time of S2, (t0)S2, and is the objective function to be minimized. The injection and
capture maneuvers at Earth are required to be along the velocity and anti-velocity
directions. The directions of these maneuvers in the base frame are controlled by
the orientation of the departure and capture orbits. A subset of the angular orbital
elements (i,�,ω, ν) of these orbits are search variables. Mass variables play no role
in this example. The time equality and inequality constraints are

(
tf
)S1 = (tf )S4

(
tf
)S2 = (tf )S3

(�t)S1 ≥ 1.0

(�t)S2 ≤ 1.0

(�t)S3 ≥ 1.0

(�t)S4 ≤ 1.0

and the state equality constraints which are referenced to ECJ2000 are

(
rf
)S1 = (rf

)S4

(
vf
)S1 = (vf

)S4

(
rf
)S2 = (rf

)S3

(
vf
)S2 = (vf

)S3 .

All segment durations are constrained to be at least one day so that the matching
of the state constraints is forced to occur far from the Earth and the Moon. The
objective function is

fobj = min (t0)S2 .

The problem contains 18 search variables, 14 equality constraints, and 4 inequality
constraints.

All required gradients are approximated by a forward difference approximation.
All time values have a perturbation step size of 1.0× 10−4 days and a maximum per
iteration bound of 1.0 day. All orbital element angular values have a perturbation
step size of 1.0 × 10−3 deg and a maximum per iteration bound of 5.0 deg. The �v
magnitude values have a perturbation step size of 1.0 × 10−6 km/s and a maximum
per iteration bound of 0.1 km/s. The eccentricity value of S3 has a perturbation step
size of 1.0× 10−4 and a maximum per iteration bound of 1.0× 10−2.

The initial estimate and final converged solution for the trajectory are shown in
Figure 4.4. From this estimate, the solution procedure used the VF13 algorithm with
a convergence tolerance of 1.0× 10−4. The solution converged in 210 iterations with
a minimum flight time of 7.543312 days. The data for the converged optimal solution
is tabulated in Table 4.2.
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Figure 4.4. Initial estimate and final solution for the Free-Return Lunar Flyby Mission.

Table 4.2. Converged Segment Data for the Free-Return Lunar Flyby Mission.

Segment→ S1 S2 S3 S4

t0 (day) 0.0 7.543312∗ 3.690074∗ ⇐ t0 S3
�t (day) 2.68947∗ −2.848924∗ 1.004313∗ −1.000607∗
a (km) 6578.0 6578.0 ns ns
rp (km) ns ns 10000.0 ⇐ t−0 S3
e 0.000 0.000 2.620∗ ⇐ t−0 S3
i (deg) 26.676∗ 27.664∗ 153.287∗ ⇐ t−0 S3
� (deg) 351.027∗ 350.499∗ 171.634∗ ⇐ t−0 S3
ω (deg) 0.000 0.000 12.117∗ ⇐ t−0 S3
ν (deg) 354.460∗ 343.112∗ 0.000 ⇐ t−0 S3
�v0x (km/s) 3.139∗ − 3.137∗ na na

4.6.2 Lunar Orbiter and Lunar Impacter Mission

This example illustrates the design and optimization of a lunar bound mission where
two spacecraft are launched from a low Earth orbit. This mission is similar in con-
cept to the actual LRO (Lunar Reconnaissance Orbiter) and LCROSS (Lunar Crater
Observation and Sensing Satellite) mission launched on June 18, 2009 [25, 5]. The
first spacecraft (the Orbiter) is inserted into a lunar polar orbit and the second space-
craft (the Impacter) performs a flyby of the Moon to increase its inclination relative
to the Earth-Moon plane so that it impacts the north pole of the Moon exactly ver-
tically about half a month later. It may be possible for the Impacter to collide with
the north pole of the Moon without first performing a flyby of the Moon, but the
impact angle may then be shallow. The vertical impact requirement makes the mis-
sion challenging from a design and performance perspective. It is anticipated that
a flyby combined with a maneuver after the flyby is needed to satisfy this require-
ment. The example is intended to illustrate the use of the system in the formulation,
design, and construction of this type of mission. It is not intended to describe the
actual LRO/LCROSS mission, even though the Copernicus program was used as the
primary mission design and optimization tool for the actual mission.
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4.6.2.1 Problem Statement, Data, and Model Setup
The problem description is as follows:

• The Orbiter and the Impacter, each with initial masses of 1000 kg, are attached
to a booster rocket in a low circular Earth parking orbit with a radius of
6578.137 km.

• The booster performs a single impulsive maneuver along the velocity vector
that injects both spacecraft towards the Moon. This maneuver is the translunar
injection (TLI) maneuver. From a fixed inclination parking orbit, the ascending
node �, argument of periapsis ω, and epoch are search variables.

• The Orbiter performs one impulsive capture maneuver to a lunar orbit. The
Orbiter orbit is circular and polar (i = 90◦) with respect to the lunar equator
with a radius of 2000 km.

• The Impacter performs a maneuver sometime after injection but before it
encounters the Moon that places it into a hyperbolic lunar flyby trajectory. The
flyby is designed to change its inclination relative to the Moon’s orbit plane about
the Earth to facilitate a collision with the north Pole of the Moon about half a
moon revolution later (∼14 days later). The impact at the lunar north pole is ver-
tical; this means that the impact angle is 90◦. The Impacter is allowed to perform
at most one maneuver between the flyby and impact.

• The Impacter separation maneuver must occur no earlier than 6 hours after the
injection maneuver performed by the booster. The Impacter separation maneu-
ver is also constrained to occur no later than 12 hours before perilune. The
Impacter post flyby maneuver, if needed, is required to occur no earlier than
12 hours after the perilune time and no later than 12 hours before impact.

• The Impacter maneuvers are finite burn maneuvers with a low-thrust engine.
The engine is a constant specific impulse engine with specific impulse Isp = 1000
seconds and a maximum thrust of 0.5 Newtons.

• The objective function is the sum of the final masses of the Orbiter and the
Impacter and is maximized,

fobj = max(mfOrbiter +mfImpacter ). (4.57)

The initial estimate of the mission is constructed using a series of segments.
Some of the segments are sequentially connected to other segments and some are
completely disconnected. Some segments are propagated forward in time and some
are propagated backward in time.

Obtaining the optimal impulsive/finite-thrust solution is a four stage process.
Stage 1 produces an impulsive solution that satisfies most or all of the constraints.
Stage 2 optimizes the impulsive solution by minimizing the sum of the magnitudes
of the impulsive maneuvers performed by both the Orbiter and the Impacter. This
is equivalent to maximizing the objective function given in Equation (4.57) because
both spacecraft use an engine with the same specific impulse. With a converged
optimal impulsive solution, Stage 3 converts the Impacter impulsive maneuvers to
finite burn maneuvers using the parameter model. This solution is reconverged and
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optimized with the explicit cost function given in Equation (4.57). Finally, in Stage
4, the thrust vector is reconstructed using the optimal control model and the mission
is reconverged and optimized. The final solution is a trajectory that has impulsive
maneuvers (for the booster and the Orbiter) and optimal control based finite burn
maneuvers for the Impacter. Due to space limitations, Stage 1, which is the most
important one, will be described in detail whereas the solution procedure for the
remaining stages will only be summarized.

4.6.2.2 Stage 1: Feasible Impulsive Solution
The initial estimate is constructed using 12 segments (S1, . . . , S12). A conceptual
sketch of this estimate is shown in Figure 4.5. Some segments have zero time dura-
tion and are in some cases just single impulsive maneuvers. The arrows along the
propagated trajectory arcs indicate the direction of the time propagation. In this pre-
liminary solution, the Impacter separation maneuver is constrained to occur at least
one day after TLI but at least two days before perilune and the Impacter impulsive
maneuver after they flyby is constrained to occur at least two days after perilune
and at least one day before impact. Later, the actual start and end times of the
Impacter finite burn maneuvers will be constrained as dictated in Step 5 in the final
solution. The tight constraints on the impulsive maneuver times is intentional and
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Figure 4.5. Segment Model for the Lunar Orbiter and Impacter Mission.
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the reason is to allow a for a padding that may be necessary when these are converted
to finite burns.

The reference epoch for this mission is 2011 January 1 00:00:00.000 Barycentric
Dynamical Time (TDB). All mission times are given with respect to the reference
epoch in days. The base frame is ECJ2000. All distance quantities are in kilometers
(km), all velocity quantities are in km/s, all mass quantities are in kilograms (kg),
and all angular quantities are in degrees. The segment description list follows. Only
the pertinent data is listed. All starred quantities are search variables. Only the state
input data is listed here. The equality and inequality constraints follow after the
segment description list.

• S1: Low Earth Parking Orbit for the Booster + Orbiter + Impacter stack. Orbit
state is in ECJ2000.

(
t∗0
tf

)S1

=
(

0.0∗
0.0

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a
e
i
�∗
ω

ν

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

S1

t0

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

6578.137
0.0
28.5
0.0∗
0.0
0.0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

• S2: Translunar Injection Maneuver (TLI). This maneuver is defined in a velocity
referenced frame relative to ECJ2000

(
t0
tf

)S2

=
((

tf
)S1

0.0

) (
r0

v−0

)S2

=
⎛
⎝
(
rf
)S1(

v+f
)S1

⎞
⎠
⎛
⎜⎝�v∗x0

�vy0

�vz0

⎞
⎟⎠

S2

=
⎛
⎜⎝3.2∗

0.0
0.0

⎞
⎟⎠ .

• S3: Translunar Initial Coast. This segment represents the initial coast for both
the Orbiter and the Impacter; at the end of this coast the Impacter performs the
separation maneuver which is done in S12.

(
t0
�t∗

)S3

=
((

tf
)S2

1.0∗

) (
r0

v−0

)S3

=
⎛
⎝
(
rf
)S2(

v+f
)S2

⎞
⎠ .

• S4: Translunar Cruise. The Orbiter flies along this segment towards the Moon.

(
t0
t∗f

)S4

=
((

tf
)S3

2.5∗

) ⎛
⎜⎝ r0

v−0
m−−

0

⎞
⎟⎠

S4

=

⎛
⎜⎜⎝
(
rf
)S3(

v+f
)S3

1000

⎞
⎟⎟⎠ .
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• S5: Low Lunar Orbit (LLO). The initial condition for the orbit is referenced to
MCJ2000. The mass of the Orbiter at the Moon is unknown, and hence it is a
search variable.

(
t∗0
�t

)S5

=
(

5.0∗
0.0

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a
e
i∗
�∗
ω

ν

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

S5

t0

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2000.0
0.0

90.0∗
0.0∗
0.0
0.0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(
m−−∗

0

)S5 =
(
1000.0∗

)
.

• S6: Lunar Orbit Capture Maneuver. This segment models the capture maneuver
at the Moon for the Orbiter. After the maneuver, the segment is propagated
backward in time. The impulsive maneuver is a velocity referenced frame relative
to MCJ2000.

(
t0
�t∗

)S6

=
( (

tf
)5

−2.5∗

) ⎛
⎜⎝ r0

v−0
m−−

0

⎞
⎟⎠

S6

=

⎛
⎜⎜⎜⎝
(
rf
)S5(

v+f
)S5

(
m++

f

)S5

⎞
⎟⎟⎟⎠

⎛
⎜⎝�v∗x0

�vy0

�vz0

⎞
⎟⎠

S6

=
⎛
⎜⎝−2.0∗ km/s

0.0 km/s
0.0 km/s

⎞
⎟⎠ .

• S7: Lunar Orbit Capture Approach. This is a simple node segment that inherits
the final state from S6. It will be constrained to be state continuous with the end
of S4.

(
t0
�t

)S7

=
((

tf
)6

0.0

) ⎛
⎜⎝ r0

v−0
m−−

0

⎞
⎟⎠

S7

=

⎛
⎜⎜⎜⎝
(
rf
)S6(

v+f
)S6

(
m++

f

)S6

⎞
⎟⎟⎟⎠ .

• S8: Lunar North Pole Impact. The initial condition is defined relative to a Moon
Centered True Equator of Date reference frame. This segment is propagated
backward in time. The Impacter final mass is unknown at impact and is therefore
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a search variable.

(
t∗0
�t∗

)S8

=
(

18.0∗
−5.0∗

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

rx0

ry0

rz0

vx0

vy0

v∗z0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

S8

t0

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0.0
0.0

1738.0
0.0
0.0
−3.0∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(
m−−∗

0

)S8 =
(
1000.0∗

)
.

• S9: Perilune and Forward Flyby. This segment models the hyperbola at the
Moon. The initial state is defined in MCJ2000.

(
t∗0
�t∗

)S9

=
(

5.0∗
2.0∗

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a∗
e∗
i∗
�∗
ω∗
ν

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

S9

t0

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−10000.0∗
1.5∗
90.0∗
0.0∗
0.0∗
0.0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

• S10: Pre-impact Coast and Impulsive Maneuver. The impulsive maneuver is in
ECJ2000.

(
t0
�t∗

)S10

=
((

tf
)S9

−6.0∗

) ⎛
⎜⎝ r0

v−0
m−−

0

⎞
⎟⎠

S10

=

⎛
⎜⎜⎜⎝
(
rf
)S9(

v+f
)S9

(
m++

f

)S9

⎞
⎟⎟⎟⎠
⎛
⎜⎝
�v∗xf

�v∗yf

�v∗zf

⎞
⎟⎠

S10

=
⎛
⎜⎝0.0∗

0.0∗
0.0∗

⎞
⎟⎠ .

• S11: Perilune and Backward Flyby.

(
t0
�t∗

)S10

=
(
(t0)S9

−2.0∗

) ⎛
⎜⎝ r0

v−0
m−−

0

⎞
⎟⎠

S10

=

⎛
⎜⎜⎝

(r0)
S9(

v−0
)S9(

m++
f

)S12

⎞
⎟⎟⎠ .

• S12: Impacter Separation and Coast. The impulsive maneuver is defined in
ECJ2000.

(
t0
�t∗

)S12

=
((

tf
)S3

2.0∗

) ⎛
⎜⎝ r0

v−0
m−−

0

⎞
⎟⎠

S12

=

⎛
⎜⎜⎝
(
rf
)S3(

v+f
)S3

1000 kg

⎞
⎟⎟⎠
⎛
⎜⎝�v∗x0

�v∗y0

�v∗z0

⎞
⎟⎠

S12

=
⎛
⎜⎝0.0∗

0.0∗
0.0∗

⎞
⎟⎠ .

The open loop mission based on these segment definitions is shown in Figure 4.6.
By any standard the initial estimate provided can be considered a bad initial guess.
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Figure 4.6. Initial estimate for the impulsive Lunar Orbiter and Impacter Mission. The straight
dotted lines connect the node points that need to be connected in time, position, and velocity
in the feasible solution.

The inequality constraint functions for the segment durations are (all values are
in days)

(�t)S3 ≥ 1.0

(�t)S4 ≥ 0.0

(�t)S6 ≤ −1.0

(�t)S8 ≤ −1.0

(�t)S9 ≥ 2.0

(�t)S10 ≥ 0.0

(�t)S11 ≤ −2.0

(�t)S12 ≥ 0.0

In Stages 3 and 4 of the solution procedure, these constraints are adjusted accordingly
to meet the maneuver time constraints associated with the Impacter as described in
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item 5 of the problem description. The equality constraint functions are

⎛
⎜⎜⎜⎝

tf
rf

v+f
m++

f

⎞
⎟⎟⎟⎠

S7

=

⎛
⎜⎜⎜⎝

tf
rf

v+f
m++

f

⎞
⎟⎟⎟⎠

S4

(
m++

f

)S9 =
(
m++

f

)S8

⎛
⎜⎜⎜⎝

tf
rf

v+f
m++

f

⎞
⎟⎟⎟⎠

S10

=

⎛
⎜⎜⎜⎝

tf
rf

v+f
m++

f

⎞
⎟⎟⎟⎠

S8

⎛
⎜⎜⎜⎝

tf
rf

v+f
m++

f

⎞
⎟⎟⎟⎠

S12

=

⎛
⎜⎜⎜⎝

tf
rf

v+f
m++

f

⎞
⎟⎟⎟⎠

S11

.

The problem as stated has 31 search variables, 25 equality constraints, and 8 inequal-
ity constraints. A feasible solution is first obtained using the VF13 algorithm with the
cost function set to zero. The converged solution that results required 102 iterations
and is shown in Figure 4.7. The search variable values for the both the initial estimate
and feasible solutions are listed in Table 4.3. The data listed has been rounded to
six significant figures. Note that the results for some of the angular quantities are
not modulated since these data are extracted as-is from the final solution iterate
generated by the system.

4.6.2.3 Stage 2: Optimal Impulsive Solution
In this stage, the feasible impulsive solution is optimized. The objective function to
minimize is the sum of the impulsive maneuvers made by both the Orbiter and the
Impacter. This is equivalent to maximizing the sum of the final masses of both space-
craft. The Orbiter makes a single insertion maneuver at the Moon. The Impacter
makes a separation maneuver before the lunar flyby and an impulsive maneuver
prior to impact. Based on the segment model described above, the objective function
is explicitly

fobj = min
[
(�v0)

S6 + (�vf
)S10 + (�v0)

S12
]

.

The value of the objective function of the impulsive feasible solution is 2.850 km/s.
The optimized result required 138 iterations and yielded an objective function value
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Figure 4.7. Feasible solution for the impulsive Lunar Orbiter and Impacter Mission. The total
velocity maneuver impulse required is 2.850 km/s.

of 1.187 km/s. The optimized impulsive solution is shown in Figure 4.8. Using the
rocket equation and a specific impulse value of 1000 sec. for all maneuvers results in
a combined final mass for the Orbiter and Impacter of 1882.954 kg. This value is an
upper limit for any finite burn solution and the quality of any finite burn solution is
measured by how close it can get to this value. For this example, obtaining the optimal
impulsive solution is the most important phase in arriving at the final finite burn
solution. The results for the optimal impulsive solution are tabulated in Table 4.3.
The last few rows of Table 4.3 lists the magnitudes of the impulses performed by the
Orbiter and the Impacter along with their associated final masses. It is the sum of
their final masses that will be maximized in the finite burn solutions to follow.

4.6.2.4 Stage 3: Finite Burn Solution using the Parameter Model
In this stage the optimal impulsive solution is used as the basis for a solution that has
the Impacter performing low-thrust maneuvers. The applicable segment duration
constraints are set to produce a solution that satisfies the maneuver start and end
time constraints as listed in Step 5 of the problem description. Also, in the impul-
sive solution described in the previous sections, a mistake was made in specifying
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Table 4.3. Impulsive Lunar Orbiter and Impacter Mission Data.

Variable Estimate Values Feasible Values Optimal Values Units

1 (t0)S1 0.000 −0.833156e+ 01 −0.974303e+ 01 day
2 (�)S1 0.000 +0.3437234e+ 03 +0.345934e+ 03 deg
3 (�vx0 )

S2 3.200 +0.321438e+ 01 +0.312655e+ 01 km/s
4 (�t)S3 1.000 +0.100000e+ 01 +0.100000e+ 01 day
5 (tf )S4 2.500 −0.733156e+ 01 −0.637816e+ 01 day
6 (t0)S5 5.000 −0.633156e+ 01 −0.537816e+ 01 day
7 (i)S5 90.000 +0.200787e+ 02 +0.387285e+ 02 deg
8 (�)S5 0.000 +0.420167e+ 03 +0.403068e+ 03 deg
9 (m−−

0 )S5 1000.000 +0.886661e+ 03 +0.921474e+ 03 kg
10 (�t)S6 −2.500 −0.100000e+ 01 −0.100000e+ 01 day
11 (�vx0 )

S6 −2.000 −0.117966e+ 01 −0.801997e+ 00 km/s
12 (t0)S8 18.000 +0.831994e+ 01 +0.805582e+ 01 day
13 (�t)S8 −5.000 −0.120323e+ 01 −0.100000e+ 01 day
14 (vz0 )

S8 −3.000 −0.231773e+ 01 −0.246334e+ 01 km/s
15 (m−−

0 )S8 1000.000 +0.8434035e+ 03 +0.961480e+ 03 kg
16 (t0)S9 5.000 −0.531623e+ 01 −0.532782e+ 01 day
17 (�t)S9 2.000 +0.124189e+ 02 +0.200000e+ 01 day
18 (a)S9 −10000.000 −0.101072e+ 05 −0.699220e+ 04 km
19 (e)S9 1.500 +0.155698e+ 01 +0.174934e+ 01 –
20 (i)S9 90.000 +0.894873e+ 02 +0.922372e+ 02 deg
21 (�)S9 0.000 +0.477525e+ 03 +0.437921e+ 03 deg
22 (ω)S9 0.000 +0.324308e+ 03 +0.326995e+ 03 deg
23 (�t)S10 6.000 +0.139905e− 01 +0.103836e+ 02 day
24 (�vxf )

S10 0.000 −0.209686e− 01 −0.404867e− 01 km/s
25 (�vyf )

S10 0.000 −0.690054e− 01 +0.316228e+ 00 km/s
26 (�vzf )

S10 0.000 +0.827989e+ 00 +0.152771e+ 00 km/s
27 (�t)S11 −2.000 −0.200000e+ 01 −0.200000e+ 01 day
28 (�t)S12 2.000 +0.153349e− 01 +0.141521e+ 01 day
29 (�vx0 )

S12 0.000 +0.314938e+ 00 −0.113901e− 01 km/s
30 (�vy0 )

S12 0.000 −0.706849e+ 00 +0.512349e− 02 km/s
31 (�vz0 )

S12 0.000 −0.324319e+ 00 −0.291293e− 01 km/s

n/a �vOrbiter 2.000 +0.117967e+ 01 +0.8019976e+ 00 km/s
n/a �vImpacter 0.000 +0.167017e+ 01 +0.385216e+ 00 km/s
n/a �vtotal 2.000 +0.284984e+ 01 +0.118721e+ 01 km/s
n/a mfOrbiter +mfImpacter 2000.000 +0.173006e+ 04 +0.188295e+ 04 kg

the Orbiter’s lunar capture orbit. The requirements dictated a lunar polar orbit. In
the impulsive solution, the orientation of the lunar capture orbit was referenced to
MCJ2000 and the inclination was allowed to be a search variable. This is corrected
in this stage by fixing the inclination to be 90◦ in a Moon centered true equator of
data reference frame.

The Impacter impulses are converted to finite burns using the rocket equation
to estimate the start and end times of the maneuver. In this conversion gravity losses
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Figure 4.8. Optimal impulsive solution for the Lunar Orbiter and Impacter Mission. The
objective function value is 1.187 km/s which corresponds to a combined final of 1885.784
kg for the Orbiter and the Impacter.

are assumed to be zero. The thrust direction is estimated to be along the impulsive
maneuver direction. The thrust direction is initially assumed to be held inertially
fixed. Following convergence, the thrust direction is allowed to change by allowing
it to have a constant linear rate in both the right ascension and declination vari-
ables. The thrust steering frame is chosen to be ECJ2000. Recall that the times and
components of the impulsive maneuvers for the Impacter are search variables. In
the finite burn model, the start and end times of the maneuvers, the two spherical
angles, and their rates are now search variables. The thrust level for the finite burn
maneuvers is Tmax = 0.5 Newtons. The impulsive to finite burn conversion is simple
and is described as follows. Assume the impulsive maneuver is �v and occurs at ti.
The estimated start time ts and end time te are

ts = ti − �t
2

te = ti + �t
2

(4.58)

where

�t = me −ms

ṁ
(4.59)
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where ms is the mass before the impulse which is known and me is the mass after the
impulse

me = mse−(�v/Isp/g0) (4.60)

where g0 is the value of the surface gravity at the Earth’s surface, and ṁ is the mass
flow rate

ṁ = −Tmax

Ispg0
. (4.61)

The thrust vector direction is estimated to be along the impulsive maneuver unit
vector

û = �v/�v. (4.62)

The spherical angles α and β are computed from û. For each of the Impacter maneu-
vers, the linear terms α̇ and β̇ are included as search variables for each of the
maneuvers and their initial values are estimated to be 0.0 deg/day.

Using a similar segment model as before, the two impulsive segments are
replaced with two finite burn segments. The optimal solution converged with a final
objective function value of 1858.075 kg and is shown in Figure 4.9. The optimal
Impacter finite burn maneuver data for this case is listed in Table 4.4. Recall that
the optimal impulsive solution had a final objective function value of 1882.954 kg,
which, as expected, can not be achieved with a finite burn solution.

4.6.2.5 Stage 4: Finite Burn Solution using the Optimal Control Model
For this solution, the two finite burns performed by the Impacter are converted to
optimal control finite burns via an adjoint control transformation. By optimal control

Impact

TLI

Separation

Post Flyby
BurnPre Flyby

Burn

Flyby

LLO
Insertion

Figure 4.9. Optimal finite burn solution using the parameter model for the Lunar Orbiter and
Impacter Mission. The objective function value is 1858.075 kg.



108 Software for Spacecraft Trajectory Optimization

Table 4.4. Impacter maneuver data for the parameter model finite burn.

Impacter Maneuver→ Finite Burn 1 (S11) Finite Burn 2 (S13)

t0 (day) −8.456392 −0.468141
�t (day) 3.198987 11.177308
tf (day) −5.257405 6.495897
α (deg) −122.805 120.562
β (deg) −81.388 −68.974
α̇ (deg/day) 7.608592 −4.683136
β̇ (deg/day) 16.490283 9.376933
m−−

0 (kg) 1000.000 985.908
m++

f (kg) 985.908 936.670

in this context, it is meant that the thrust vector will follow the primer vector as dic-
tated by the costate differential equations. As presented previously the transversality
conditions are not enforced and this is intentional. Additionally, for this example,
the switching function will not be used to determine whether a segment should be a
coast arc or a thrust arc. Because of this the mass costate variable λm plays no role in
the solution process. For each finite burn segment the magnitude of the primer vec-
tor is set to unity and this sets the scaling for the costate vector. The adjoint control
variables λ̇v,α,β, α̇, β̇ form part of the list of search variables and these replace the
parameter model based thrust vector variables used in the previous solution. The
initial estimate for λ̇v is taken to be 0.0. The angular quantities and their rates, along
with the estimate for the start and end times of the maneuvers are taken from the
previous solution that used the parameter model for the finite burns. The implemen-
tation of this procedure yields a solution only slightly better in performance with
respect to the previous solution so that both solutions are nearly indistinguishable.
The final converged solution yields a value for the objective function of 1858.424 kg. It
was expected that the optimal control solution would have offered a more significant

Finite Burn

Finite Burn

EARTH

Maneuver 2

Maneuver 1

Impacter Flyby
Trajectory

Orbiter
Trajectory

MOON

Figure 4.10. Optimal finite burn solution using the optimal control model for the Lunar Orbiter
and Impacter Mission. The objective function value is 1858.424 kg. The trajectory is shown in
a MCJ2000 frame.
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improvement over the more-constrained finite burn model of Stage 3, but it was not
the case for this specific example. The converged solution is shown in Figure 4.10.
The optimal Impacter finite burn maneuver data for the parameter model is listed in
Table 4.5. Figure 4.11 shows a near Moon view of the same trajectory showing the
Impacter flyby and vertical north pole impact. Table 4.6 summarizes and compares
the objective function for the three main solutions; these are the optimal impulsive
solution, and the two finite burn solutions.

Table 4.5. Impacter maneuver data for the optimal control finite
burn model.

Impacter Maneuver→ Finite Burn 1 (S11) Finite Burn 2 (S13)

t0 (day) −8.477456 −4.265911
�t (day) 3.212911 11.084013
tf (day) −5.264544 6.818102
λ̇v 0.839533E− 05 −0.164419
α (deg) −109.474 113.160
β (deg) −106.052 −62.349
α̇ (deg/day) 19.111 1.907
β̇ (deg/day) 99.654 6.518
m−−

0 (kg) 1000.000 985.847
m++

f (kg) 985.847 937.020

MOON
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Figure 4.11. Near Moon view of the optimal finite burn solution using the optimal control
model for the Lunar Orbiter and Impacter Mission.
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Table 4.6. Performance comparison between the optimized impulsive
solution, the parameter model finite burn, and the optimal control
finite burn solutions.

Parameter Impulsive Parameter Model Optimal Control Model

mfOrbiter (kg) 921.474 921.405 921.405
mfImpacter (kg) 961.480 936.670 937.020
total (kg) 1882.954 1858.075 1858.424

4.7 Concluding Remarks

The key elements associated with a general trajectory optimization system have been
presented. It is a system that can be used to analyze a large range of problems. The
system facilitates the solutions to these problems because it uses a segment-based
trajectory model as the building block to construct simple to complex trajectories.
With the trajectory model in place, the fundamental process that follows is the iden-
tification of the set of search variables, the set of functions to be satisfied, and the
function to be extremized, in the case of an optimization problem. Depending on how
these are identified, the process is followed by casting the problem into one of the
three solution methods: nonlinear root finding, a mini-max problem, or a parameter
optimization problem. The emphasis is placed on the modeling and casting process
and less so on the actual numerical methods used in the solution processes which are
assumed to be well understood.

Two example missions were used to illustrate some of the ideas presented. It is
clear that the approach taken to solve these examples with the described trajectory
model is only one of several possible strategies. It is the responsibility of the analyst
to identify the best strategy that produces a valid solution with the least amount of
guessing and with a high level of robustness and efficiency.

The system described then can be considered as an experimental toolbox that
requires the analyst to be an integral part of the overall solution process. For very
specific problems, algorithms for initial estimate generators can be developed so that
the analyst is removed from the solution process (see for example [20, 24, 26, 27]).
However, for a general system that solves general problems, the analyst will always
be in the solution process loop. The goal then, which may not be achievable for a
while, is to develop a system intelligent enough so that it does not need an analyst to
provide an initial estimate and interact with it in order to obtain a converged solution
for any spacecraft trajectory optimization problem.
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5.1 Introduction and Background

It is well known that spacecraft propelled by low-thrust electric propulsion (EP)
can potentially deliver a greater payload fraction compared to vehicles propelled
by conventional chemical propulsion. The increase in payload fraction for EP sys-
tems is due to its much higher specific impulse (Isp) or engine exhaust velocity,
which is often an order of magnitude greater than the Isp for a chemical system.
However, optimizing low-thrust orbit transfers is a challenging problem due to the
low control authority of the EP system and the existence of long powered arcs and
subsequent multiple orbital revolutions. Therefore, obtaining optimal transfers is
sometimes tedious and time consuming. In his seminal paper, Edelbaum presented
analytical solutions for optimizing continuous-thrust transfers between inclined cir-
cular Earth orbits [1]. These results serve as an excellent preliminary design tool
for estimating �V and transfer time for low-thrust missions with continuous thrust
and quasi-circular transfers. Real solar electric propulsion (SEP) spacecraft, how-
ever, experience periods of zero thrust during passage through the Earth’s shadow,
and this major effect is not accommodated in Edelbaum’s analysis. Colasurdo and
Casalino [2] have extended Edelbaum’s analysis and developed an approximate ana-
lytic technique for computing optimal quasi-circular transfers with the inclusion of
the Earth’s shadow. Only coplanar transfers are considered, and the thrust-steering is
constrained so that the orbit remains circular in the presence of the Earth’s shadow.
Kechichian [3] also developed an analytical method for obtaining coplanar orbit-
raising maneuvers in the presence of Earth shadow where eccentricity is constrained
to remain zero. Both References 2 and 3 develop suboptimal solutions for the copla-
nar circle-to-circle transfer problem with Earth-shadow arcs, since steering the thrust
vector to maintain zero eccentricity ultimately leads to steering losses compared to
the minimum-time transfer.

SEPSPOT [4] is a widely used program for computing optimal Earth-orbit trans-
fers using SEP, and it obtains the optimal trajectory by using a calculus of variations
approach and a shooting method or the so-called “indirect method.” However, the
problem is sensitive to the initial guesses for the costate variables, and oftentimes

112
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a converged solution can only be obtained by using known solutions for the initial
guess. Kluever and Oleson [5] and Ilgen [6] have developed methods for obtaining
optimal Earth-orbit transfers using a direct optimization approach. In Reference
5, weighting functions for various control laws serve as optimization parameters
in the nonlinear programming (NLP) problem. Ilgen uses a “hybrid” approach
where the costate histories are directly parameterized by piecewise linear func-
tions, and the optimal transfer is obtained by using NLP methods. Jenkin [7] applied
Ilgen’s trajectory optimization program to perform trade studies for orbit-raising mis-
sions that combine chemical- and electric-propulsion stages. Scheel and Conway [8]
used a direct-transcription method for obtaining optimal, many-revolution, planar
low-thrust Earth-orbit transfers for the case of continuous thrust. In this approach,
both the state and control time histories are discretized, and the optimal transfer is
determined using NLP methods.

In this chapter, we present a direct method for obtaining optimal Earth-orbit
transfers. The approach presented here is related to the technique in Reference
5, where the control time history is parameterized and the subsequent constrained
parameter-optimization problem is solved using NLP methods. The thrust-steering
parameterization is based on the necessary conditions from optimal control the-
ory, and the resulting NLP problem has relatively few free design variables (on the
order of 10) for low-thrust transfers that require hundreds of days. Orbital averaging
methods are used to quickly and efficiently compute multiple powered trajectories
during the optimization process. The optimization technique is also able to easily
accommodate other control variables, such as specific impulse modulation during
the orbit transfer. Numerical results are presented for a range of minimum-time and
minimum-propellant problems, with three-dimensional, Earth-orbit transfers in the
presence of Earth-shadow arcs.

5.2 Low-Thrust Trajectory Optimization

5.2.1 Problem Statement

A general problem statement for low-thrust trajectory optimization can be stated as
follows: determine the optimal transfer time tf and optimal thrust-direction program
u(t), 0 ≤ t ≤ tf , that minimize the performance index

J = J
(
x(tf ), tf

)
(5.1)

subject to the equations of motion

ẋ = f(t, x, u) (5.2)

and the terminal state constraints

ψ
[
x(tf ), tf

] = 0. (5.3)
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The 7 × 1 state vector for the general problem is comprised of the classical orbital
elements and spacecraft mass, x = [a e i � ω θ m]T . The equations of
motion (5.2) are governed by the Gauss form of Lagrange’s planetary equations [9],
plus the appropriate differential equation for mass-flow rate

da
dt
= 2a2v

μ
at (5.4)

de
dt
= 1

v

[
2 (e+ cos θ) at + r

a
an sin θ

]
(5.5)

di
dt
= r

h
ah cos (ω + θ) (5.6)

d�
dt

= r
h sin i

ah sin (ω + θ) (5.7)

dω
dt
= 1

ev

[
2at sin θ −

(
2e+ r

a
cos θ
)

an

]
− r

h sin i
ah sin (ω + θ) cos i (5.8)

dθ
dt
= h

r2 −
1
ev

[
2at sin θ −

(
2e+ r

a
cos θ
)

an

]
(5.9)

dm
dt

= −2ηP(
gIsp
)2 (5.10)

where [an at ah]T represent the perturbing acceleration components. Tradi-
tionally, the perturbing forces (or accelerations) for the variational equations are
expressed in an orthogonal radial-horizontal (RSW) frame, where in-plane unit vec-
tors R and S are along the local radial and horizontal directions, respectively, and the
out-of-plane unit vector W is along the angular momentum direction. Here we use an
orthogonal normal-tangential (NTH) coordinate frame where the perturbing accel-
eration component an lies in the osculating orbital plane and is normal to the velocity
vector (where the radial outward direction is positive), at is the component along
the instantaneous velocity vector, and ah is along the osculating angular momentum
direction. Therefore, rotating the RSW frame about the negative angular momentum
direction (orbit normal) by the flight-path angle will produce the NTH frame. Per-
turbing accelerations are due to low-thrust propulsive forces and Earth-oblateness
(J2) effects. Terminal state constraints (5.3) represent a desired target orbit after the
transfer is completed.

Our approach is to use a direct optimization method to solve the trajectory opti-
mization problem. One potential direct-solution technique is to parameterize the
state x(t) and/or control profiles u(t) and use nonlinear programming to solve the
subsequent parameter optimization problem. Scheel and Conway [8] have success-
fully used collocation methods to parameterize the states and controls in order to
solve low-thrust orbit transfer problems. However, the nature of low-thrust flight
mechanics complicates this approach since the thrust-to-weight ratio is typically on
the order of 10−3 to 10−5, and therefore the desired orbit transfer usually requires
a trip time of tens or hundreds of days and subsequently hundreds or thousands of
orbital revolutions. Hence a collocation method can lead to large NLP problems, with
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hundreds or thousands of free variables and constraints. Since one of our principal
goals is to develop a low-thrust trajectory optimization method that can quickly solve
a wide range of problems, we choose to only parameterize the control profile u(t)
with as few optimization variables as possible, and numerically integrate the state
equations (5.4–5.10) as efficiently as possible.

The computation load of any method that relies on orbit propagation based on
accurate numerical integration of the full variational equations (5.4–5.9) would be
considerable. For example, a time step on the order of minutes would be required to
accurately capture the periodic fluctuations of the orbital elements during a transfer
that might require a trip time of six months or more. The computational load of
propagating the orbit is significantly reduced by using the method of orbital averaging
[4]. Because the five orbital elements a, e, i, �, and ω vary slowly with time due to
the small perturbing accelerations, each element’s average time rate-of-change can
be computed, and subsequently the orbital transfer can be propagated ahead in time
by using large integration time steps on the order of several days. A consequence of
using the orbital averaging method is that knowledge of the “fast” orbital element (for
example, true anomaly θ) is lost, and therefore the exact location of the spacecraft
in the osculating orbit cannot be determined. Orbital averaging determines each
element’s mean time rate-of-change, which is done by calculating the incremental
change in an orbital element over a single revolution and dividing by the orbital
period. For example, the averaged time rate for the mean state vector due to thrust
acceleration is

˙̄x = 1
Tp

∫ Een

Eex

dx
dt

dt
dE

dE (5.11)

where x̄ = [ā ē ī �̄ ω̄ m̄
]T

is the mean state vector (note that true anomaly
has been removed), and Tp is the orbital period. The overbar indicates the mean
or averaged value. The first five elements of the integrand term dx/dt are computed
by evaluating the variational equations (5.4–5.8) with the orbital elements fixed at
their mean values over a single orbit; the mass-flow rate equation (5.10) is used for
the last element of dx/dt. The time-rate of eccentric anomaly is used to change the
independent variable from time to position variable E

dE
dt
= na

r
(5.12)

where n = √μ/a3 and the limits of integration for the orbital-averaging integral are
the Earth-shadow exit angle Eex and Earth-shadow entrance angle Een, respectively.
We assume that thruster power (and hence thrust) is zero when the spacecraft is in
the Earth’s shadow. If no shadowing conditions exist for a particular osculating orbit,
then the integration limits are Eex = −π and Een = π .

Earth-oblateness effects are modeled by including the secular rates of change
for longitude of the ascending node and argument of perigee, which are determined
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by averaging the J2 zonal harmonic perturbation over one orbital period [10]

˙̄�J2 = −3nR2
EJ2

2a2(1− e2)2
cos i (5.13)

˙̄ωJ2 = 3nR2
EJ2

4a2(1− e2)2
(4− 5 sin2 i). (5.14)

These secular rates from oblateness are added to the mean rates of change for� andω
caused by thrust, that is, the fourth and fifth elements of ˙̄x in Equation (5.11). There-
fore, it should be noted that the perturbing acceleration components [an at ah]T

in Equations (5.4–5.8) and hence the orbital averaging integral (5.11) are only due
to the propulsive thrust.

5.2.2 Thrust-Steering Control Laws

Evaluating the orbital-averaging integral (5.11) requires knowledge of the thrust
acceleration perturbations in the NTH orbital coordinate frame as a function of
eccentric anomaly E. Furthermore, our direct optimization approach requires that
we (somehow) parameterize the thrust-steering direction u(t) over the entire orbit
transfer. In addition, it is advantageous to parameterize u(t)with as few optimization
parameters as possible in order to pose a small-scale NLP problem that can be quickly
and efficiently solved. One technique is to use the thrust-steering control laws that can
be derived by applying the necessary conditions from optimal control theory. In the
derivation that follows, keep in mind that we do not intend to develop all first-order
necessary conditions and solve a two-point boundary-value problem; instead, we only
wish to use the structure of the optimal control in order to efficiently parameterize
the thrust direction.

We begin by defining the Hamiltonian function for the optimal control problem

H(x, u,λ) = λa
da
dt
+ λe

de
dt
+ λi

di
dt

(5.15)

where Equations (5.4–5.6) represent the three differential equations for orbital
elements a, e, and i. Three costate variables λ = [λa λe λi]

T are introduced.
We choose to only include three time-rate equations in H because our orbit-
transfer problems typically only involve target conditions for semi-major axis,
eccentricity, and inclination (keep in mind that trajectory propagation is per-
formed using Equation (5.11), which involves orbital averaging and all five classical
orbital elements). The thrust acceleration components in the normal-tangent orbital
frame are

[an at ah]T = aT [sin α cosβ cosα cosβ sin β]T = aTu (5.16)

where the in-plane (pitch) thrust-direction steering angle α is measured from the
velocity vector to the projection of the thrust vector onto the orbital plane, and the
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out-of-plane (yaw) steering angle β is measured from the orbital plane to the thrust
vector. Thrust acceleration aT is a function of input power P, thruster efficiency η,
specific impulse Isp, Earth’s gravitational acceleration at sea level g, and spacecraft
mass m

aT = 2ηP
mgIsp

. (5.17)

The optimality condition can be used to derive the structure of the optimal control
laws. Optimal pitch steering is determined from the derivative of H with respect to α

∂H
∂α

= −λa
2a2v
μ

aT sin α cosβ + λe
aT

v

[
−2 (e+ cos θ) sin α + r

a
sin θ cosα

]
cosβ = 0.

(5.18)

After some algebraic manipulations, Equation (5.18) can be written as

tan α∗ =
λe

r
a

sin θ

2

[
λa

a2v2

μ
+ λe (e+ cos θ)

] . (5.19)

At this point, the derivative of Equation (5.18) must be computed in order to deter-
mine the proper signs for control law (5.19) so that ∂2H/∂α2 > 0 and the Hamiltonian
H is minimized. Analysis of the second partial derivative leads to

sin α∗ =
−λe

r
a

sin θ√
4
[
λa

a2v2

μ
+ λe (e+ cos θ)

]2
+ λ2

e
r2

a2 sin2 θ

(5.20)

cosα∗ =
−2

[
λa

a2v2

μ
+ λe (e+ cos θ)

]
√

4
[
λa

a2v2

μ
+ λe (e+ cos θ)

]2
+ λ2

e
r2

a2 sin2 θ

. (5.21)

Equations (5.20) and (5.21) constitute the optimal steering law used to parameterize
the pitch angle profile for the orbital averaging integral (5.11). Recall that orbital
elements a, e, and i are held constant over the averaging integral, and that eccentric
anomaly E is the integration variable. True anomaly θ can easily be determined
from E

cos θ = cos E− e
1− e cos E

sin θ = sin E
√

1− e2

1− e cos E
.

(5.22)
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Radius and velocity magnitudes can be computed from the trajectory equation and
energy integral, respectively

r = a(1− e2)

1+ e cos θ

ξ = −μ
2a

= v2

2
− μ

r
.

(5.23)

Equation (5.19) can be simplified for the case of “quasi-circular” orbits, where eccen-
tricity remains small throughout the transfer. Therefore, if we set e = 0, a = r and
v = √μ/a (circular orbital speed), Equation (5.19) becomes

tan α∗ = λe sin θ

2 (λaa+ λe cos θ)
. (5.24)

Edelbaum [1] derived this control law for quasi-circular low-thrust orbit transfers
with continuous thrust (that is, no periods of zero thrust due to the Earth’s shadow);
however, Edelbaum set λaa = 1 in his analysis.

Optimal yaw steering is determined from the derivative of H with respect to β

∂H
∂β

= −λa
2a2v
μ

aT cosα sin β − λe
aT

v

[
2 (e+ cos θ) cosα + r

a
sin θ sin α

]
sin β

+ λi
aTr
h

cos (ω + θ) cosβ = 0. (5.25)

After some algebraic manipulations, Equation (5.25) can be written as

tan β∗ =
λi

rv
h

cos (ω + θ)

λa
2a2v2

μ
cosα∗ + λe

[
2 (e+ cos θ) cosα∗ + r

a
sin θ sin α∗

] . (5.26)

After checking the second partial derivative in order to ensure that ∂2H/∂β2 > 0,
we find

sin β∗ =
−λi

rv
h

cos (ω + θ)

d
(5.27)

cosβ∗ =
−λa

2a2v2

μ
cosα∗ − λe

[
2 (e+ cos θ) cosα∗ + r

a
sin θ sin α∗

]
d

(5.28)

where the denominator term d is

d =
√
λ2

i
r2v2

h2 cos2 (ω + θ)+ λ2
a

4a4v4

μ2 cos2 α∗ + λ2
e

[
2 (e+ cos θ) cosα∗ + r

a
sin θ sin α∗

]2
.

(5.29)

Equations (5.27–5.29) constitute the optimal steering law used to parameterize the
yaw angle profile for the orbital averaging integral (5.11). The in-plane normal and
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tangent components (sin α∗ and cosα∗) are determined by Equations (5.20) and
(5.21), respectively.

Edelbaum derived a similar yaw-steering law for quasi-circular orbit transfers
with inclination change. Because tangent steering is optimal for quasi-circular trans-
fers (that is, align the in-plane thrust component with the velocity vector), we can
set λe = 0 so that α∗ = 0 for every position in the orbit [see Equations (5.20) and
(5.21)]. Therefore, Equation (5.26) can be reduced to

tan β∗ = λi cos (ω + θ)

2λaa
. (5.30)

If we set the magnitude of λaa to unity, Equation (5.30) becomes Edelbaum’s
optimal yaw-steering control law for quasi-circular transfers [1]. Equations (5.20),
(5.21) and (5.27–5.29) are the “complete” optimal pitch and yaw control laws,
whereas Equations (5.24) and (5.30) are the optimal pitch and yaw controls for
“quasi-circular” orbit transfers where eccentricity remains nearly zero.

An alternative method can be applied to derive the optimal control laws. To
begin, write the three differential equations for the classical orbital elements in a
matrix-vector format

ż = aTMu = aT

⎡
⎢⎢⎢⎢⎢⎣

0
2a2v
μ

0

r sin θ

av
2 (e+ cos θ)

v
0

0 0
r cos (ω + θ)

h

⎤
⎥⎥⎥⎥⎥⎦ u (5.31)

where z = [a e i]T and u = [sin α cosβ cosα cosβ sin β]T is the unit vector in the
thrust direction. Now, the Hamiltonian can be written as

H(z, u,λ) = aTλ
TMu (5.32)

which is equivalent to Equation (5.15), the previous definition of the Hamiltonian.
Clearly, the control law

u = −MTλ∥∥MTλ
∥∥ (5.33)

minimizes the Hamiltonian H. Equation (5.33) is equivalent to the pitch and yaw
control laws summarized by Equations (5.20), (5.21), and (5.27–5.29).

5.2.3 Analysis of the Control Laws

Before we apply the thrust-steering laws to the orbital averaging integral (5.11) in
order to solve the optimal orbit-transfer problem, it is instructive to analyze the
various optimal control laws. Both the “complete” and “quasi-circular” control laws
demonstrate a feedback structure, where the pitch and yaw steering angles depend
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on the osculating orbital elements and the spacecraft’s current position in the orbit
(true anomaly θ). In addition, the three costate variables λ = [λa λe λi]

T act as
“influence coefficients” or “weighting functions” for each control law. For example,
setting a particular costate variable to a “large” magnitude relative to the other
costates (for example, |λi| >> λa and |λi| >> λe) results in a steering program that
maximizes the magnitude of the average rate-of-change for the corresponding orbital
element (for example, dī/dt). Furthermore, setting a costate value to zero (or a small
number) causes a zero (or small) average rate-of-change for the corresponding orbital
element. Pitch steering laws (5.20) and (5.21) clearly show that if the eccentricity
costate (λe) is zero and the semi-major axis costate (λa) is negative, then pitch angle
α is zero over the orbital revolution and the in-plane thrust remains aligned with the
velocity vector (that is, “tangent steering”). Tangent steering provides the maximum
instantaneous increase in energy (semi-major axis), and for the case of continuous
thrust (no Earth-shadow effect) and a nearly circular orbit, tangent steering results
in a zero net change in eccentricity over one orbital revolution.

Figure 5.1 shows the optimal pitch steering program for a low-Earth orbit with
a = 1.1568 Earth radii (7,378 km), e = 0.05, and λa = −0.8645 (that is, λaa = −1)
for λe = [0, 0.5, 1, 1.06, 2, 106], while Figures 5.2a–5.2d show the thrust direction
over a single orbit for eccentricity costates of 0, 1, 2, and 106 (the orbit is direct, and
perigee is located on the right-hand sides of Figures 5.2a–5.2d). Note that all pitch
steering programs exhibit tangent steering (α = 0) at apogee (θ = 180 deg), which
results in de/dt < 0, and that pitch steering is “anti-tangent” (α = 180 deg) at perigee
when λe ≥ 1.06. Hence, as the eccentricity costate is increased, the steering effort is
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Figure 5.1. Pitch-steering program over one orbital revolution for range of λe.
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Figure 5.2b. Pitch-steering direction for λe = 1.
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Figure 5.2c. Pitch-steering direction for λe = 2.
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Figure 5.2d. Pitch-steering direction for λe = 106.
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concentrated on reducing eccentricity. We can determine the net changes in elements
a and e over a single orbit by substituting the optimal pitch-steering program into
Equations (5.4) and (5.5) and evaluating the orbital-averaging integral (5.11) with
integration limits of [−π ,π ] (that is, assume continuous thrust). The net changes in
semi-major axis and eccentricity are always positive and negative, respectively, for
λa = −0.8645 and λe ≥ 0. It is interesting to note that the semi-major axis rate da/dt
remains positive everywhere in the orbit until the eccentricity costate is increased to
approximately λe = 1.0526. When λe = 1.0526, the thrust direction instantly switches
from pointing radially outward (α = 90 deg) to radially inward (α = −90 deg) as
the spacecraft passes through perigee; hence da/dt = 0 at perigee passage since the
tangential acceleration component is zero. When the eccentricity costate λe is greater
than 1.214, the eccentricity rate de/dt is negative at every location in the orbit. It is
important to note that the limiting values presented here only apply to a specific
orbit (a = 1.1568 Re and e = 0.05) and a specific value λa = −0.8645; however, the
same general trends can be observed for other combinations of these parameters.

A range of yaw steering programs can be determined using Equations
(5.27–5.29) for a range of values for the inclination costate λi. Figure 5.3 shows the
optimal yaw steering program for a circular low-Earth orbit with a = 1.1568 Earth
radii (7,378 km), e = 0, ω = 0, λa = −0.8645 (that is, λaa = −1), and λe = 0 for
λi = [0, 1, 2, 4, 10, 106]. Note that the optimal yaw angle always passes through zero
at ±90 deg from the nodal crossings since di/dt = 0 at these orbital locations (the
“anti-nodes”) regardless of the magnitude of the out-of-plane thrust acceleration
component [see Equation (5.6)]. Figure 5.3 also clearly shows that the yaw steering
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Figure 5.3. Yaw-steering program over one orbital revolution for range of λi(ω = 0).
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angle is symmetric about the orbital plane. A symmetric yaw program occurs only
if the eccentricity and eccentricity costate are both zero. If the orbit is eccentric and
λe = 0 (that is, little emphasis on reducing eccentricity), then the yaw-steering ampli-
tude is greatest at apogee, since di/dt is maximized at this orbital location. Figure 5.3
also clearly shows that yaw-steering amplitude (and hence the magnitude of di/dt)
increases with increasing inclination costate, and that when λi is an extremely large
positive number then the thrust vector is always normal to the orbit plane (β = ±90
deg). The net change in inclination from the orbital averaging integral is always neg-
ative for all positive values of the inclination costate; furthermore, when λi > 0, the
instantaneous inclination rate di/dt is negative at every point in the orbit, except at
the anti-nodes.

5.2.4 Solution Method

Recall that this chapter focuses on solving low-thrust orbit transfer problems using
control parameterization coupled with a direction optimization technique. Sections
5.2.1 and 5.2.2 have outlined the general problem statement, and the control laws
as derived from optimal control theory. The optimal control laws for in-plane thrust
steering, Equations (5.20) and (5.21), and out-of-plane thrust steering, Equations
(5.27–5.29), all depend on the current orbital elements, position in the orbit, and
the costate vector λ = [λa λe λi]

T . Section 5.2.3 described how the pitch and
yaw steering programs vary by adjusting the costates. Therefore, the control param-
eters for our trajectory optimization problem are the time histories of the costate
variables. We choose to parameterize aλa(a), λe(a), and λi(a) with linear interpo-
lation among n discrete “nodes” evenly spaced along semi-major axis, a ∈ [a0, af

]
.

The “design parameters” or free optimization variables are the discrete nodal val-
ues for aλa, λe, and λi, and the free final time, tf . We choose to parameterize the
product aλa (instead of costate λa) since this product appears in the optimal pitch
and yaw steering programs [see Equations (5.20), (5.21), and (5.27–5.29)]. Recall
that Edelbaum [1] set the product aλa equal to unity for the case of quasi-circular
transfers.

Our approach is somewhat related to the classical indirect approach used in the
program SEPSPOT [4] where the costate differential equations are derived from
the Hamiltonian, the mean costate histories are determined by numerical integra-
tion, and a shooting method is employed to meet the desired boundary conditions.
However, the indirect technique of SEPSPOT relies on a good initial guess for the
costate vector and hence often exhibits poor convergence properties. Our direct
method offers distinct advantages over the SEPSPOT (indirect) approach: (1) only
three costate histories need to be parameterized with linear interpolation, as opposed
to integrating all five costate equations; (2) as shown in Section 5.2.3, the user has
some intuitive feel for selecting initial nodal guesses for the costates since the magni-
tude and sign has a direct relationship with the time-rate of the corresponding orbital
element; and (3) the costate profiles are selected by the user and do not depend on
numerical integration of the adjoint system, which aids convergence properties. It
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is likely that if the NLP problem is expanded to include parameterization of all five
costates with a fine grid of nodal values, then the resulting solution may approach
the corresponding indirect solution produced by SEPSPOT. However, the compu-
tational time will be greatly increased and the convergence properties will likely be
degraded for the expanded problem.

We replace the original optimal control problem with a nonlinear programming
problem, which is solved using a gradient-based optimization technique. Sequential
quadratic programming (SQP) is used to solve the constrained parameter opti-
mization problem. The SQP algorithm used here is fmincon from the Matlab®
optimization toolbox, which computes the gradients using a finite-difference method.
Terminal states constraints are enforced through SQP equality constraints.

5.3 Numerical Results

Several optimal low-thrust orbit transfers are presented in this section. Before pro-
ceeding with the examples, a few details regarding the numerical simulation are in
order. The averaged state equations (5.11) are numerically integrated using a second-
order Euler method (or Huen’s method) in order to determine the averaged or mean
state trajectories. The fixed integration time step is determined by dividing the time
axis into 40 equal steps (therefore, the time-step is 5 days if the transfer time is 200
days). Evaluation of the orbital-averaging integral [the right-hand side of Equation
(5.11)] is required at each time step, and trapezoidal-rule integration is used to inte-
grate dx/dE with 20 equally spaced steps between the integration limits Eex and Een.
Finally, Earth-shadow exit/entrance angles (Eex and Een) are determined by find-
ing the intersection between the osculating elliptical orbit and a cylindrical shadow
model; this procedure requires the solution of a fourth-order polynomial in cos E
and sorting out spurious roots (see Neta and Vallado [11] for details).

5.3.1 Minimum-Time LEO-GEO Transfer

The first case involves finding the low-thrust transfer from circular low-Earth orbit
(LEO) to circular geostationary Earth orbit (GEO) with minimum transfer time, and
the orbital conditions and vehicle parameters are taken from Kluever and Oleson
[5]. Hence, the performance index in Equation (5.1) is J = tf . The initial orbital
elements for LEO are a0 = 6, 927 km (1.086 Re), e0 = 0, i0 = 28.5 deg, �0 = ω0 = 0
deg, and the target elements for GEO are af = 42, 164 km, ef = 0, and if = 0 deg
(therefore, the terminal state constraint vector ψ[x(tf ), tf ] in Equation (5.3) is 3× 1,
which is enforced by three equality constraints for the SQP algorithm). Initial mass in
LEO is 1,200 kg, and the constant SEP parameters are Isp = 3, 300 s, P = 10 kW, and
η = 65%. These SEP parameters are representative of a xenon ion thruster system.
Departure date is required for Earth-shadow calculations, and it is arbitrarily set at
January 1, 2000.

Edelbaum’s analytical method for optimizing continuous-thrust, quasi-circular
transfers is used to provide good initial guesses for the inclination costates (yaw
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steering program) and final end-time tf . A good initial guess for λi(a) is determined
from Kechichian’s extension [12] to Edelbaum’s original formulation [1]. Kechichian
[12] derived analytic formulas for the initial and final yaw amplitudes based on the
required plane change, the initial and final circular orbital speeds, and transfer time.
The corresponding initial and final inclination costates are easily determined from
Equation (5.30)

λi(a0) = 2 tan β0

λi(af ) = 2 tan βf

(5.34)

where β0 and βf are the initial and final yaw-steering amplitudes, respectively,
as determined by Kechichian’s method. Initial guesses for the inclination costates
nodes are linearly spaced between λi(a0) and λi(af ). Transfer time for Edelbaum’s
continuous-thrust, quasi-circular transfer can be analytically computed from the
required propellant mass (computed from �V and the rocket equation), and the
constant mass-flow rate. Because Edelbaum’s solution assumes no shadow-eclipse
periods, we set the initial guess for transfer time (with Earth shadow) to 1.2 times
the continuous-thrust transfer time. Finally, the initial guess for the nodes for the
product aλa is set to −1 (following Edelbaum’s technique), and the initial guess for
the eccentricity costate nodes is simply a linear distribution between two arbitrary
small values (that is, the initial trajectory essentially uses tangent steering for the
pitch-steering program).

For the first LEO-GEO solution, we use three nodes for aλa, λe, and λi, and
therefore the NLP problem has a total of 10 optimization parameters (final time
tf is the tenth parameter). Table 5.1 shows a comparison between the minimum-
time LEO-GEO transfers computed by our control-parameterization method and
by using SEPSPOT. Unfortunately, the �V and final mass values are not available
for the SEPSPOT solution. The minimum transfer time differs by only 0.2 days,
or 0.1%.

Figures 5.4 and 5.5 show the time histories of a, e, and i for the minimum-time
LEO-GEO transfer. Clearly, all three elements are simultaneously adjusted during
the orbit transfer until they meet their desired targets. Figures 5.6 and 5.7 present the
optimal costates and the corresponding (maximum) pitch- and yaw-steering ampli-
tudes, respectively. Note that the optimal costates λe and λi (as determined by the
NLP solver) are nearly linear with semi-major axis, whereas the product aλa remains
close to −1. The initial rise in eccentricity in Figure 5.5 is due to the Earth-shadow
effect; because apogee lies in the shadow as the spacecraft spirals away from circular
LEO, the low-amplitude pitch steering program (see Figure 5.7) produces a positive

Table 5.1. Minimum-time LEO-GEO transfer solutions

Optimization method Minimum tf (days) �V (km/s) Mass ratio mf /m0

Control parameterization 199.0 5.675 0.8392
SEPSPOT 198.8 N/A N/A
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Figure 5.4. Semi-major axis versus time for minimum-time LEO-GEO transfer.
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Figure 5.5. Eccentricity and inclination versus time for minimum-time LEO-GEO transfer.

eccentricity rate. Figure 5.8 shows that the angular arc of the Earth shadow is about
134 deg in LEO and eventually goes to zero at about 91 days into the transfer, and
therefore the remainder of the orbit transfer involves continuous thrust. This exit
from shadowing periods at 91 days is seen in Figure 5.5, since the eccentricity steadily



128 Low-Thrust Trajectory Optimization

6

5

4

3

2

1

0

–1

–2
1 2 3 4 5 6 7

Semi-Major Axis, Re

O
pt

im
al

 C
os

ta
te

s

�i

�e

a�a

Figure 5.6. Optimal costates for minimum-time LEO-GEO transfer.

90

80

70

60

50

40

30

20

10

0
0 20 40 60 80 100 120 140 160 180 200

Transfer Time, Days

Maximum Pitch
Amplitude, α

Maximum Yaw
Amplitude, β

O
pt

im
al

 M
ax

 S
te

er
in

g 
A

m
pl

itu
de

s,
 D

eg

Figure 5.7. Maximum steering amplitudes for minimum-time LEO-GEO transfer.

decreases once apogee is no longer eclipsed. It is interesting to note that the optimal
pitch steering program essentially becomes tangent steering (α = 0) as the spacecraft
no longer experiences eclipse periods (see Figure 5.7). Therefore, semi-major axis (or
energy) rate is maximized while the orbit is “naturally” circularized. Pitch amplitude
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Figure 5.8. Earth-shadow angle arc for minimum-time LEO-GEO transfer.

is increased at the end of the transfer in order to complete the circularization (how-
ever, pitch amplitude remains small), while yaw amplitude steadily increases during
the transfer since it is more efficient to perform plane changes at lower velocity.
The initial and final yaw amplitudes are 23 deg and 84 deg (see Figure 5.7); the yaw
amplitudes predicted by the analytic Edelbaum/Kechichian method are β0 = 22 deg
and βf = 60 deg, respectively.

Next, we analyzed the effect of the number of control parameters (costate nodes)
on both solution accuracy and the computational load. Table 5.2 presents the optimal
transfer time and run-time for several minimum-time LEO-GEO solutions. Run-
time is the “real time,” or “wall time” as computed by the Matlab tic/toc commands.
All numerical computations were performed on a Pentium M laptop with a 2 GHz
processor. Initially the two-node solution is obtained with an initial guess derived
from the analytic Edelbaum/Kechichian solution, and then each subsequent problem
uses the previous optimal solution as its initial guess (it should be noted that the three

Table 5.2. Minimum-time LEO-GEO transfers with an increasing number of costate nodes

Number of
nodes

Number of
SQP variables

Minimum tf
(days)

Run-time
(sec)

Number of SQP
iterations

Time/iteration
(sec/iteration)

2 7 199.0401 33.68 23 1.46
3 10 198.9901 59.83 30 1.99
5 16 198.9898 3.01 1 3.01
9 28 198.9898 5.47 1 5.47
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costate profiles always have the same number of nodes). The extra nodes are placed
linearly at the midpoints of the prior solution, so that the initial guess produces
a trajectory identical to the one from the previous converged solution. Table 5.2
shows that very little performance is gained by increasing the number of nodes, at
least for this LEO-GEO problem. Furthermore, when the number of nodes (for
each costate variable) reaches five, the problem converges after a single iteration
without any improvement in transfer time. Therefore, for this standard LEO-GEO
problem, a simple linear parameterization of the two costates (that is, seven total
optimization parameters) produces a sufficiently accurate optimal transfer with very
minimal computational load.

5.3.2 Minimum-Time GTO-GEO Transfer

The second case involves finding the low-thrust transfer from geostationary-transfer
orbit (GTO) to circular GEO with minimum transfer time. The initial orbital ele-
ments for GTO are a0 = 24,364 km (3.820 Re), e0 = 0.7306, i0 = 28.5 deg,
�0 = ω0 = 0 deg, and the target elements for GEO are af = 42,164 km, ef = 0, and
if = 0 deg. Initial mass in LEO is 1,200 kg, and the SEP parameters are Isp = 1,800 s,
P = 5 kW, and η = 55%. This particular set of SEP parameters is representative of
a Hall-effect thruster. Departure date is arbitrarily set at March 22, 2000, so that the
initial perigee direction is approximately aligned with the Earth-Sun vector.

The minimum-time transfer is readily obtained by using simple linear profiles
as initial guesses for the costate profiles (note that the analytic Edelbaum solution
cannot be used to provide initial guesses for flight time or yaw-steering amplitudes).
A series of solutions were obtained for a range of number of costates nodes as
summarized in Table 5.3. The two-node case converged in 23 iterations; trials with
additional nodes converged in 40–60 iterations. Clearly there is no advantage to be
gained by increasing the number of costate nodes, since the two-node solution is
within 0.2 days (or 0.2%) of the five-node solution.

Figures 5.9 and 5.10 show the time histories of a, e, and i for the minimum-time
GTO-GEO transfer with five nodes for each costate variable. Note that eccentricity
(Figure 5.10) steadily decreases despite having the apogee of the GTO initially in
the Earth’s shadow. Figure 5.11 presents the time histories of the maximum steer-
ing amplitudes. Note that maximum pitch-steering amplitude steadily increases and
reaches 90 deg (inward/outward radial steering at perigee) when transfer time is

Table 5.3. Minimum-time GTO-GEO solutions

Number of
nodes

Number of SQP
variables

Minimum tf
(days)

Run-time/iteration
(sec/iteration)

2 7 118.494 2.13
3 10 118.415 2.79
4 13 118.375 3.60
5 16 118.357 4.66
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Figure 5.9. Semi-major axis versus time for minimum-time GTO-GEO transfer.
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Figure 5.10. Eccentricity and inclination versus time for minimum-time GTO-GEO transfer.

approximately 55 days. At this same instant, the maximum yaw amplitude is also 90
deg, and also occurs at perigee. Therefore, at t = 55 days, the radial thrust com-
mand at perigee is not a wasted effort, since all of the thrust is normal to the orbit
plane (that is, yaw amplitude is 90 deg). Immediately after 55 days, the maximum
pitch-steering amplitude is 180 deg (antitangent steering), which occurs at perigee
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Figure 5.11. Maximum steering amplitudes for minimum-time GTO-GEO transfer.

(similar to Figure 5.1 with λe > 1.06). After 55 days, the maximum yaw amplitude
decreases. It is interesting to note that the maximum yaw amplitude is generally
larger during the initial phase of the transfer, where the maximum yaw amplitude
occurs near apogee. Figure 5.12 shows the time history of the Earth-shadow angle
arc. Note that the initial shadow arc angle is small (about 18 deg), since the calendar
date for the start of the transfer is March 22 and �0 = 0 deg. Earth-shadow periods
do not exist after t = 57 days, which corresponds to the transition to antitangent
steering (maximum α = 180 deg, see Figure 5.11) at each perigee pass.

The minimum-time GTO-GEO transfer was obtained for the case where ini-
tial argument of perigee is ω0 = 180 deg (starting calendar date and �0 remain
unchanged). Therefore, apogee is now initially in sunlight and perigee is in the Earth’s
shadow. The minimum-time transfer (using five costate nodes) is 112.11 days, which
is more than 6 days faster than the previous solution where perigee is initially in
sunlight. For this case, with apogee initially in sunlight, the initial Earth-shadow arc
angle is 107 deg (centered at perigee), and Earth-shadow periods do not exist after
70 days. Despite the larger shadow angle, the actual time spent in eclipse is smaller
for the second case with a perigee shadow, since perigee speed is significantly larger
than apogee speed.

5.3.3 Minimum-Propellant LEO-GEO Transfer

The third case involves finding the low-thrust LEO-GEO transfer that minimizes
total propellant usage instead of trip time. We use the same initial LEO, target
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Figure 5.12. Earth-shadow angle arc for minimum-time GTO-GEO transfer.

GEO, and EP spacecraft parameters as case 1 (minimum-time LEO-GEO transfer)
described in Section 5.3.1. The only difference is that the performance index J to be
minimized, Equation (5.1), is now the negative of the final mass

J = −m(tf ). (5.35)

As before, transfer time tf is a free design variable. For this problem one additional
trajectory propagation is required during the SQP search in order to compute the
performance index (final mass).

The minimum-propellant problem is readily solved using the direct optimization
method with three nodes for each costate profile (10 total optimization variables),
and Table 5.4 compares the minimum-propellant and minimum-time solutions. Note
that the minimum-propellant solution increases the final delivered mass to GEO by
about 0.6 kg with a corresponding increase in transfer time of 1.2 days. The two
trajectory solutions are nearly identical; the slight difference in transfer time is due
to slight differences in the Earth-shadow profile during the LEO-GEO transfer. The
minimum-propellant solution seeks an Earth-shadow profile that minimizes the so-
called “geometry losses” associated with thrusting during nonoptimal orbit locations
of the transfer [13]. Computation time (run time per iteration) is approximately dou-
bled for the minimum-propellant problem compared to the minimum-time problem.
This case demonstrates the direct optimization method’s ability to easily accom-
modate a different performance index; in practice, a mission designer would likely
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Table 5.4. Minimum-propellant and minimum-time LEO-GEO solutions

Performance index
Propellant mass mprop

(kg)
Transfer time tf

(days)
Run-time/iteration

(sec/iteration)

Minimum propellant 192.40 200.16 3.96
Minimum time 193.01 198.99 1.99

solve the minimum-time problem when electric power and Isp are constant (that is,
constant mass-flow rate) since this problem requires half the computational time.

5.3.4 Minimum-Propellant LEO-GEO Transfer with Variable Isp

The fourth and final numerical example involves finding the minimum-propellant,
low-thrust LEO-GEO transfer with variable specific impulse (Isp). Input power is
assumed to be constant at 10 kW, and we use the same initial LEO, target GEO, and
EP spacecraft parameters as described in Section 5.3.1. Specific impulse is allowed to
vary during the orbit transfer, and its profile is defined by linear interpolation among
five nodes equally spaced between the initial and target semi-major axis. Thruster
efficiency is modeled as a simple function of Isp

η = b1V2
ex

b2
2 + V2

ex
(5.36)

where Vex = gIsp is the engine exhaust speed, and b1 = 0.73 and b2 = 10, 400 m/s
are engine parameters [14] used to model a typical ion thruster efficiency variation
with Isp. Specific impulse is constrained to be between 2,000 and 5,000 s by using the
“box” limits on the free SQP variables, and therefore maximum efficiency is 70%
(at Isp = 5, 000 s), while minimum efficiency is 57% (at Isp = 2, 000 s). Because
propellant usage is always minimized by using the highest possible Isp, the transfer
time must be fixed for each minimum-propellant problem. Hence, the subsequent
NLP problem has 14 free optimization variables: three nodes each for the three
costates, and five nodes for Isp.

Several minimum-propellant (maximum final mass) problems are solved using
the direct optimization method for a range of fixed transfer times. Figure 5.13 shows
the maximum final spacecraft mass for the various transfer times, where each solution
is indicated by a symbol. Figure 5.14 shows the optimal Isp profile for selected transfer
times (all Isp profiles are plotted with semi-major axis as the independent variable).
Specific impulse approaches the lower boundary (2,000 s) in order to produce a
higher thrust magnitude as transfer time is reduced; the converse is true as transfer
time is increased. Figure 5.13 shows that final mass increases with transfer time and
reaches a maximum value at a transfer time of about 300 days when the optimal
Isp profile is constant at 5,000 s. The smallest final mass value shown in Fig. 5.13
demonstrates the case where the resulting optimal Isp profile is constant at its lower
bound of 2,000 s, and the corresponding transfer time of 132.4 days is the fastest
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Figure 5.13. Minimum-propellant LEO-GEO transfers with Isp modulation.
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possible LEO-GEO transfer for this particular SEP system. Specific impulse cannot
be modulated for improved efficiency when transfer time is fixed at 132.4 days; if
Isp is increased above the lower limit of 2,000 s then the thrust decreases and the
spacecraft cannot complete the LEO-GEO transfer in the given trip time.
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As a final comparison, note that the previous minimum-time LEO-GEO transfer
with fixed Isp = 3, 300 s resulted in a final mass of 1,007 kg and minimum transfer
time of 199 days. Figure 5.13 shows that when transfer time is 199 days, varying
Isp during the LEO-GEO transfer will result in a final mass of 1,012 kg, or a 5-kg
(0.5%) improvement over the fixed-Isp transfer. Although this mass improvement
is essentially negligible, modulating specific impulse may provide advantages for
scenarios that involve solar cell degradation from particles trapped in the Van Allen
radiation belts. Using the lowest possible Isp during passage though the heart of
the radiation belts will maximize the rate of energy gain and therefore reduce the
power loss.

5.4 Conclusions

This chapter presents a direct optimization method for solving low-thrust, Earth-
orbit transfer problems. The technique relies on two key features: (1) orbital
averaging and (2) control parameterization. Orbital averaging allows relatively effi-
cient numerical propagation of the low-thrust orbit transfer, which greatly reduces
the run time of the optimization process. Control parameterization utilizes the
optimality condition (derived from the necessary conditions from optimal control
theory) to define the thrust-direction program. However, the method makes no
attempt to solve the corresponding two-point boundary value problem, but rather
uses the structure of the optimal control to conveniently and efficiently parame-
terize the thrust-steering profile. This approach reduces the dimensionality of the
optimization problem. The histories of the Lagrange multipliers (costates) serve as
the optimization variables, and optimal low-thrust transfers can be quickly obtained
using nonlinear programming methods, namely sequential quadratic programming.
Minimum-time and minimum-propellant transfers are obtained for NLP problems
that typically have 10 free optimization variables. The numerical examples show
that very little performance is gained by increasing the number of free variables,
even for low-thrust transfers that require hundreds of days. Earth-shadow effects
are included in all orbit-transfer cases presented in this chapter. The specific impulse
profile can also be optimized for orbit transfers with fixed transfer times. In addi-
tion, this direct optimization method demonstrates rapid convergence in all test
cases attempted. Because this optimization technique is fast and efficient, it provides
mission designers with a useful tool for performing preliminary trade studies for
electric-propulsion spacecraft.

Nomenclature

a = semi-major axis, km
aT = thrust acceleration, m/s2

an, at , ah = perturbing accelerations in NTH frame, m/s2
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e = eccentricity
E = eccentric anomaly, rad
f = vector of orbital equations of motion
g = Earth’s gravitational acceleration at sea level, m/s2

h = angular momentum, km2/s
H = Hamiltonian function
Isp = specific impulse, s
i = inclination, rad
J = performance index
J2 = Earth oblateness constant
m = spacecraft mass, kg
n = mean motion, rad/s
P = input power, kW
r = orbital radius, km
RE = Earth radius, km
t = time, s
u = unit vector in thrust direction
v = orbital velocity magnitude, km/s
x = state vector of classical orbital elements and mass [a, e, i,�,ω, θ , m]T
z = state vector of orbital elements, [a, e, i]T
α = in-plane pitch steering angle, rad
β = out-of-plane yaw steering angle, rad
�V = velocity increment, km/s
ξ = orbital energy, km2/s2

η = thruster efficiency
λ = costate vector associated with orbital elements, [λa λe λi]

T

λa = costate associated with semi-major axis
λe = costate associated with eccentricity
λi = costate associated with inclination
μ = Earth’s gravitational constant, km3/s2

θ = true anomaly, rad
ψ = vector of terminal state constraints
� = longitude of the ascending node, rad
ω = argument of periapsis, rad

Subscripts
0 = initial value
en = Earth-shadow entrance
ex = Earth-shadow exit
f = final value
max = maximum value
min = minimum value
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6 Analytic Representations of Optimal Low-Thrust
Transfer in Circular Orbit

Jean A. Kéchichian
The Aerospace Corporation, El Segundo, CA

6.1 Introduction

The analysis of optimal low-thrust orbit transfer using averaging methods has ben-
efited from the contributions in [1]–[5]. In particular the minimum-time transfer
between inclined circular orbits was solved in [1] by rotating the orbit plane around
the relative line of nodes of initial and final orbits using a piecewise-constant out-
of-plane thrust angle switching signs at the relative antinodes while simultaneously
changing the orbit size from its initial to its final required value. The original analysis
in [1] was further reformulated in [6] in order to arrive at expressions that depict
the evolutions of the transfer parameters in a uniform manner valid for all trans-
fers. Further contributions using both analytic and numerical approaches were also
carried out in [7] and [8] to solve increasingly more difficult problems, such as by con-
sidering realistic constraints and orbit precession due to the important second zonal
harmonic J2, while also considering various averaging schemes for rapid computation
of the solutions.

The first part of this chapter presents the reformulated Edelbaum problem of the
minimum-time low-thrust transfer between inclined circular orbits by further extend-
ing it in order to constrain the intermediate orbits during the transfer to remain below
a given altitude. The minimum-time problem involving an inequality constraint on
the orbital velocity is shown to be equivalent to one involving an equality constraint
in terms of the thrust yaw angle representing the control variable that is optimized
resulting in the minimum-time solution. The transfers are shown to comprise an initial
unconstrained arc followed by a constrained arc where the altitude remains constant
while pure inclination change is effected, and terminating by a final unconstrained
arc with simultaneous altitude and inclination changes as during the first arc.

Edelbaum’s optimal low-thrust orbit transfer problem between inclined circular
orbits [1] is reformulated within the framework of optimal control theory [6]. This
is done in order to cast the transfer problem as a minimum-time problem between
given noncoplanar circular orbits and obtain a single analytic expression for the
orbital inclination involving a single inverse-tangent function uniformly valid for all
transfers. Edelbaum’s original treatment considered the time-constrained inclination

139
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maximization with velocity as the independent variable allowing the use of the theory
of maxima.

Because the independent variable used by Edelbaum is double-valued for some
transfers, two expressions for the inclination change involving inverse-sine functions
were needed to describe all possible transfers. Besides achieving this simplification of
uniform validity through the use of the optimal control theory formalism, additional
expressions for the initial value of the control parameter needed for a given transfer,
as well as its functional dependency on time, are also derived [6] using inverse-tangent
functions without any quadrant ambiguity.

This linearized theory [1] and [6] averages out the spacecraft position and reduces
the Lagrange Planetary Equations to a set of two coupled differential equations for
the relative inclination i and orbital velocity V inasmuch as the orbit is assumed to
remain circular during the transfer. These two differential equations describe the
evolution of the orbit size and orientation without regard to the actual position of
the spacecraft. The out-of-plane or thrust vector yaw angle β is the control variable
that is optimized during the transfer to minimize transit time.

For large relative inclination changes, the intermediate or current circular orbits
during the transfer can grow to very large values due to the unconstrained nature
of the transfer because the extra effort spent in growing the orbit size to those large
values and then shrinking it back to its final value is more than compensated by
spending much less effort in rotating the orbit plane at those higher altitudes versus
the less efficient lower altitudes. It is within this framework that the analysis of
Reference 6 is extended by also constraining the maximum altitude reached during
the transfer to a user-defined value.

Because the altitude or semi-major axis is related to orbital velocity, the problem
is now cast as a minimum-time problem with an inequality constraint on functions of
the state variables, which is reduced in this case to S = Vlimit − V ≤ 0. The control
β appearing in the first derivative of S, namely Ṡ, the problem is now of the type
involving an equality constraint on functions of the control and state variables [9].

A variable Lagrange multiplierμ(t) is used to adjoin the constraint Ṡ to augment
the original Hamiltonian of the unconstrained problem, leading to an optimal solu-
tion involving three phases during the constrained transfer, with the second phase
holding the altitude constant at the limiting altitude while purely rotating the orbit
plane, whereas the initial and final legs expand and shrink the orbit respectively
from its initial size to the limiting size and from that limiting size to its final size
while simultaneously contributing to the overall orbit plane rotation in an optimal
manner as well. References [10] and [11] are representative of the many excellent
texts published recently on the theory of optimization and its applications, while an
example on the use of the averaging technique for rapid integration in optimal orbit
transfer is depicted in [3].

For the sake of completeness and clarity of the presentation, the analysis of the
unconstrained transfer that appeared in [6] in great detail is shown briefly in the
next section because the subsequent section dealing with the constrained transfer
is based on this first analysis. The analysis of the constrained transfer is based on
[12] and [13] where the necessary conditions for an extremal solution with a state
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variable inequality constraint are fully derived. It is shown in [12] that one or more
functions of the state and time must satisfy equality constraints at the beginning of an
inequalty constraint boundary arc. These constraints are responsible for the presence
of discontinuities in the Lagrange multipliers at the constraint boundary entry point.

The completely closed-form analysis of the constrained transfer is presented
with all the necessary details for rapid implementation on a computer. These ana-
lytic theories are of great benefit for preliminary spacecraft systems analyses and
design optimization applications, as well as for future autonomous onboard guidance
implementations.

This chapter later revisits the original analytic formulation of [1] and [6], and in
anticipation of folding the J2 perturbation, by considering a split-sequence transfer
where either the inclination variable or the right ascension of the ascending node is
controlled first while simultaneously adjusting the orbit size in an optimal way. The
original (V , i∗) analytic theory, where V is the varying orbital velocity in circular orbit
and i∗ the varying relative inclination measured at the relative line of nodes, is now
replaced by the sequence (V , i), (V ,�) or (V ,�), (V , i) where i is now the varying
equatorial inclination, such that analytic descriptions of all the pertinent parameters
are still achieved even though the combined two-step transfer is now near-optimal
because i and � are not allowed to change simultaneously.

The remaining part of this chapter dwells on the numerical solution of fixed-
time continuous-thrust transfers whereby the final equatorial inclination must be
maximized for general circular orbits. A specific averaging scheme that rotates the
orbit plane around the equatorial line of nodes is considered and the node is allowed
to precess due to J2. Thus the thrust acceleration is used only to change the orbital
inclination while optimally varying the orbit size in order to carry out the transfer
in an efficient manner. These various simplifications and assumptions lead to robust
computer codes that converge rather easily to the optimal solutions of interest, and
in the purely analytic theory of the first part lead to near-optimal solutions that are
generated essentially in no time.

6.2 The Optimal Unconstrained Transfer

6.2.1 The Linearized Reduced Equations of Motion

The thrust acceleration vector f is assumed not to have any radial component fn = 0,
and with the thrust yaw angle β defining the angle made by the thrust acceleration
vector with the current orbit plane, the tangential and out-of-plane components of
f are simply given by ft = fcβ and fh = fsβ , with f = |f| the acceleration magnitude,
such that the simplified equations of motion can be written as

ȧ = 2aft
V

(6.1)

i̇ = cθ fh
V

(6.2)

θ̇ = n (6.3)
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These equations are obtained directly from the full set of the Gaussian form of the
Lagrange planetary equations for near-circular orbits [6] after setting e = 0 and
α = ω +M = ω + θ∗ = θ = nt and holding β piecewise constant switching sign at
the orbital antinodes such that the fhsα terms will be eliminated from the original
equations because their net contribution will be zero. Here n = (μ/a3)1/2 is the
orbit mean motion, a, i, and θ are the orbit semimajor axis, inclination and orbital
position, with α, ω, M, and θ∗ standing for the mean angular position, argument
of perigee, mean anomaly, and true anomaly respectively. V and μ are the orbital
velocity also equal to na = (μ/a)1/2 and the gravity constant respectively. From the
energy equation V2

2 − μ
r = − μ

2a with r = a, r being the radial distance, Equation (6.1)
can be written as

V̇ = −ft = −fcβ . (6.4)

6.2.2 The Averaging Out of the Orbital Position

The angular position θ can effectively be averaged out in Equation (6.2) by
integrating this equation with respect to θ while holdingβ, f , and V constant such that

˙̃i = 1
T

∫ T

0
i̇ dt = n

2π

∫ 2π

0
i̇
r2

h
dθ∗

and because r = a, and the angular momentum h is equal to na2(1 − e2)1/2 = na2,
the above averaged inclination rate is reduced to

˙̃i =
(

di
dt

)
= 1

2π

∫ 2π

0

(
di
dt

)
dθ

= 2fsβ
2πV

∫ π/2

−π/2
cθdθ

= 2fsβ
πV

. (6.5)

β can now be considered as a continuous function of time due to this averaging
operation. T is of course the current orbit period at the time of the averaging, and i
can now be considered as the relative inclination between the current orbit and the
initial orbit itself, and Equation (6.5) is written for convenience as

i̇ = 2fsβ
πV

. (6.6)

6.2.3 The Hamiltonian and Euler-Lagrange Equations

The two state variables being i and V , with time t the independent variable and
the thrust yaw angle β the control variable, the optimal transfer between two given



6.2 The Optimal Unconstrained Transfer 143

circular orbits (io, Vo) and (if , Vf ) with the thrust acceleration continuously on is
formulated as a minimum time problem with the variational Hamiltonian

H = 1+ λi

(
2fsβ
πV

)
− λVfcβ . (6.7)

The performance index being given by J = ∫ tf
t0 Ldt with L = 1. The Euler-Lagrange

equations are given by

λ̇V = −∂H
∂V

= 2
π

fsβ
V2 λi (6.8)

λ̇i = −∂H
∂i

= 0. (6.9)

λi is therefore constant, and the optimal control law is obtained from the optimality
condition

∂H
∂β

= λi
2
π

f
V

cβ + fλVsβ = 0 (6.10)

such that

tan β = − 2
π

λi

VλV
. (6.11)

6.2.4 The Analytic Form of the State and Control Variables

Because the Hamiltonian is not an explicit function of time, it is constant and equal
to zero due to the transversatility condition Hf = 0 at the end time tf . Therefore,
λi and λV can be obtained from Equation (6.10) and the following expression of the
Hamiltonian

H = 0 = 1+ 2
π

fsβ
V

λi − fcβλV (6.12)

such that

λi = −πsβV
2f

= const (6.13)

λV = cβ
f

. (6.14)

f being assumed constant, Equation (6.13) yields Vsβ = V0sβ0
, which allows for the

integration of V̇ in equation (6.4) as in [6], that is

V =
(
V2

0 + f 2t2 − 2ftV0cβ0

)1/2
. (6.15)
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The control variable is also obtained explicitly as a function of time by observing that

V = V0sβ0

sβ
= V0sβ0

(
1+ tan2 β

)
tan β

d
dt

(tan β) = 2
π
λi

V̇λV + V λ̇V

V2λ2
V

= d tan β

dβ
β̇ = β̇

c2
β

which yields with the use of Equations (6.13), (6.14), as well as (6.4) and (6.8),

β̇ = fsβ
V = fs2

β

V0sβ0
and after integration to

tan β = V0sβ0

V0cβ0 − ft
. (6.16)

Using this explicit control law, and Equation (6.15) for V , the inclination Equation
(6.6) can also be integrated between the limits 0 and i yielding

�i = 2
π

[
tan−1
(

ft − V0cβ0

V0sβ0

)
+ π

2
− β0

]
. (6.17)

Finally, the multiplier λV is also given explicitly in terms of t after integrating λ̇V

in Equation (6.8) and using Equation (6.13) for λi. From λ̇V = −V2
0 s2

β0
V3 and with V

given by Equation (6.15), the integration yields

λV = V0cβ0 − ft
fV

(6.18)

with (λV )0 = cβ0
f and because λV = cβ

f in Equation (6.14)

cβ = V0cβ0 − ft
V

(6.19)

The total �V needed for the transfer is given by [6]

�V = V0cβ0 −
V0sβ0

tan
[π

2
�i + β0

] (6.20)

�V = V0cβ0 ±
(
V2 − V2

0 s2
β0

)1/2
and the initial value β0 needed in all the relevant equations that describe the transfer
parameters as a function of time, obtained from Equation (6.17) or �i = 2

π
(β − β0)

such that

tan β0 =
sin
(π

2
�i
)

V0

V
− cos
(π

2
�i
) . (6.21)
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The derivations leading to the expressions in (6.20) and (6.21) are not repeated here
but they are shown in [6] with all the needed details. Given �it , the total inclination
change desired, as well as V0 and Vf , the value of β0 is obtained from Equation
(6.21) with V = Vf ,�i = �it , then the �Vt is evaluated from Equation (6.20)
yielding tf = �Vt

f the transfer time.
The running values of V, �i, β, and λV are readily available from Equations

(6.15)–(6.18) with Equation (6.16) written as

β = tan−1
(

V0sβ0

V0cβ0 − ft

)
. (6.22)

6.3 The Optimal Transfer with Altitude Constraints

Because the semi-major axis can grow to very large values during a transfer that
requires a large inclination change, it is important to constrain its value with a limiting
alim such that a ≤ alim at all times during the transfer. This translates into V ≥ Vlim

for the related variable V . This problem is therefore an optimal control problem, that
is, minimum-time, with an inequality constraint on functions of the state variables
[9] which is simply written here as

S (V , i, t) = Vlim − V ≤ 0. (6.23)

This constraint is of the type S(x, t) ≤ 0 with x standing for the state variables. The
equations of motion are still given by Equations (6.4) and (6.5), such that

Ṡ = −V̇ = fcβ . (6.24)

6.3.1 The Augmented Hamiltonian

This first time derivative is explicitly dependent on the control β, therefore S is a
first-order state variable inequality constraint, and Ṡ = S(q) now plays the same role
as an equality constraint on functions of the control and state variables C(x, u, t) = 0,
where u represents the control variables and q is the order of the inequality constraint
with S(q) standing for the qth time derivative of S. Here q = 1, and the augmented
Hamiltonian H = L+ λT f∗ (x, u, t)+ μS(q) can be written as

H = 1+ λi

(
2fsβ
πV

)
− λVfcβ + μfcβ (6.25)

with f∗ standing for the constraint differential Equations (6.4) and (6.5), and μ(t) a
time-dependent Lagrange multiplier used to adjoin the Ṡ constraint. The quantities
μ and u are generally solved from the optimality condition Hu = ∂H

∂u = λTf∗u +Lu+
μCu = 0 and C (x, u, t) = 0.
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6.3.2 The Euler-Lagrange Equations and the q Tangency Constraints

The Euler-Lagrange equations are such that

λ̇
T = −Hx = −Lx − λT f∗x − μS(q)

x ; S(q) = 0 on S = 0 (6.26)

λ̇
T = −Hx = −Lx − λT f∗x ; μ = 0 for S < 0. (6.27)

Furthermore, μ(t) ≥ 0 on S = 0 for a minimizing solution because the minimizing
control u(t) requires δJ = λT (t0)δx (t0) +

∫ tf
t0

∂H
∂u δudt ≥ 0 for all admissible δu(t) in

the fixed time subproblem, with the minimum-time problem itself being a particular
problem of the set of fixed-time problems.

Finally, the trajectory entering the constraint boundary must satisfy the well-
known q tangency constraints

N (x, t) =

∣∣∣∣∣∣∣∣∣∣

S (x, t)
S(1) (x, t)

...
S(q−1) (x, t)

∣∣∣∣∣∣∣∣∣∣
= 0 (6.28)

which are also satisfied at the exit from the boundary S = 0. The Lagrange multi-
pliers are in general discontinuous at the junction points linking the constrained and
unconstrained arcs [9], and choosing the entry point at time t1 to satisfy the tangency
constraints, the multipliers λ and Hamiltonian H are in general discontinuous at t1
and continuous at the exit point at time t2. It is shown in [12] that the Lagrange mul-
tipliers, also called influence functions, are not unique on a state variable inequality
constraint boundary, meaning that the jump at t1 is not unique and that the jump at
t2 is determined by the jump at t1. However, a particular choice of the jump at t1 will
result in the corresponding multiplier being continuous at the exit corner of t2.

6.3.3 The Jump Conditions at the Constraint Entry Point

The jump conditions at t1 are then given by

λT (t−1 ) = λT (t+1 )+ π∗T ∂N
∂x

∣∣∣∣
t1

(6.29)

H
(
t−1
) = H
(
t+1
)− π∗T ∂N

∂t

∣∣∣∣
t1

(6.30)

where π∗ is a q vector of constant Lagrange multipliers introduced to enforce the
satisfaction of the q constraints in Equation (6.28).

Furthermore, the control u can be discontinuous at both t1 and t2, resulting in
corners. Therefore since N (V , i, t) = (Vlim − V) = S = 0, Equations (6.29) and
(6.30) yield

λi
(
t−1
) = λi
(
t+1
)+ π∗1

∂ (Vlim − V)

∂i

∣∣∣∣
t1

(6.31)



6.3 Optimal Transfer with Altitude Constraints 147

λV
(
t−1
) = λV

(
t+1
)+ π∗2

∂ (Vlim − V)

∂V

∣∣∣∣
t1

(6.32)

H
(
t−1
) = H
(
t+1
)− π∗3

∂ (Vlim − V)

∂t

∣∣∣∣
t1

(6.33)

or in view of Equation (6.25)

λi
(
t−1
) = λi
(
t+1
)

(6.34)

λV
(
t−1
) = λV

(
t+1
)− π∗ (6.35)

H
(
t−1
) = H
(
t+1
)

. (6.36)

Here π∗ stands for π∗2 , introducing a jump or discontinuity in λV at t1. However, both
λi and H are continuous at t1 because H is not an explicit function of time and N
is not an explicit function of the relative inclination. The Euler-Lagrange Equations
(6.26) and (6.27) yield with L = 1

λ̇i = −λi

∂
(

di
dt

)
∂i

− λV

∂
(

dV
dt

)
∂i

− μ
∂
(
fcβ
)

∂i

λ̇i = 0 (6.37)

λ̇V = −λi

∂
(

di
dt

)
∂V

− λV

∂
(

dV
dt

)
∂V

− μ
∂
(
fcβ
)

∂V

λ̇V = 2
π

fsβ
V2 λi (6.38)

on the constraint boundary S = 0; these equations for λ̇i and λ̇V being then identical
to the differential Equations (6.9) and (6.8), respectively, which are valid on the
unconstrained arcs. This is due to the fact that Ṡ is not a function of the states i and
V . The optimal control β on the constraint boundary is obtained from the optimality
condition

∂H
∂β

= λi
2
π

f
V

cβ + fλVsβ − μfsβ = 0 (6.39)

yielding

tan β = 2
π

λi

V (μ− λV )
. (6.40)

The transversality condition Hf = 0 for the minimum-time transfer from t0 to tf with
t0 fixed and tf free, holds true that is, H = 0 for all t because H is not an explicit
function of time. Therefore

H = 1+ λi
2fsβ
πV

− λV
(
fcβ
)+ μ (t) fcβ = 0. (6.41)
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Since λi is constant throughout, and because V = Vlim and β = π
2 on the con-

strained arc, Equation (6.13) for λi on the unconstrained arcs yields the constant λi

value as

λi = −π

2
Vlim

f
. (6.42)

Because V = Vlim on the constrained arc, V̇ = −fcβ = 0 leading to β = π
2 as stated

above. In an identical manner with β = π
2 , the Hamiltonian in Equation (6.41) yields

H = 1+ λi
2
π

f
Vlim

= 0

or as in Equation (6.42)

λi = −π

2
Vlim

f
.

It is also true from i̇ = 2
π

f
V sβ , that i̇ = 2

π
f

Vlim
on a constrained arc because β = π

2 .

Therefore, i̇ = constant and V̇ = 0, indicating a pure inclination change linear in
time when S = 0. Equations (6.14) and (6.42) provide the initial value of the control
β, that is, β0 at time zero, since

λi = −π

2
Vsβ

f
= −π

2
Vlim

f

or

Vsβ = Vlim (6.43)

and at t0, V0sβ0 = Vlim yielding

sβ0 =
Vlim

V0
. (6.44)

The initial value of λV , or (λV )0, is now easily obtained from the control law on
the unconstrained arc starting at t0, namely Equation (6.11), by substituting λi from
Equation (6.42)

tan β0 = − 2
π

(
−π

2
Vlim

f

)
1

V0 (λV )0
= Vlim

fV0 (λV )0

such that

(λV )0 = fV0

Vlim
tan β0. (6.45)
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6.3.4 The Non-Existence of a Corner at the Constraint Entry and Exit Points

Because V(t−1 ) = V(t+1 ) = Vlim at t1, and due to the constancy of Vsβ on the
unconstrained arcs

Vsβ = V0sβ0 = V
(
t−1
)

sβ−1
= Vlim

yielding sβ−1
= 1 or

β−1 =
π

2
. (6.46)

And due to β+1 = π
2 as the constrained arc starts, it follows that there does not exist a

corner at t1, such that there is no discontinuity in the control β at t1. From Equation
(6.16) at time t1, and with β−1 = π

2

tan β−
1
= V0sβ0

V0cβ0 − ft1
= ∞

or

V0cβ0 = ft1

and

t1 = V0cβ0

f
(6.47)

The time t1 at the first junction can also be obtained from the velocity expression in
Equation (6.15)

V2
0 + f 2t21 − 2ft1V0cβ0 = V2

lim

which yields t1 as

t1 =
V0cβ0 ±

√
V2

0 c2
β0
− (V2

0 − V2
lim

)
f

However,

V2
0 c2

β0
= V2

0

(
1− s2

β0

)
= V2

0

(
1− V2

lim

V2
0

)
= V2

0 − V2
lim

where sβ0 in Equation (6.44) has been used. Therefore, time t1 = V0cβ0
f as in Equation

(6.47) is known because V0 is given and β0 is known from Equation (6.44) for given
Vlim. FromλV = cβ

f on the first unconstrained arc from t0 to t1, and in view ofβ−1 = π
2 ,
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it follows that λV (t
−
1 ) = 0. From t1 to t2 on the constrained arc, β = π

2 , V = Vlim and

λi = −π
2

Vlim
f , resulting in λ̇V = 2

π
f

V2 sβλi = − 1
Vlim

= C, a constant.
λV (t) is therefore a linearly decreasing function in the interval (t1, t2), and due

to the fact that λV does not experience any discontinuity at t2 where λV (t) = cβ
f is

again valid on the unconstrained arc until tf , and in view of β−2 = β+2 = π
2 , λV (t

−
2 ) =

λV (t
+
2 ) = λV (t2) = 0.

β+2 = β(t+2 ) = π
2 because λi

(
t−2
) = λi

(
t+2
) = −π

2
Vlim

f = −π
2 sβ+2

Vlim
f implying

β+2 = π
2 and the absence of any corner at t2 since the control β has no discontinuity

there. There exist no jumps in either the λ’s or H at t2, that is

λi
(
t−2
) = λi
(
t+2
)

λV
(
t−2
) = λV

(
t+2
)

H
(
t−2
) = H
(
t+2
)

and due to the linear behavior of λV in the (t1, t2) interval

λV (t2)− λV
(
t+1
) = C (t2 − t1) = − 1

Vlim
(t2 − t1) = −π∗ (6.48)

such that the jump in λV at t1 is given by

π∗ =
(

t2 − V0cβ0

f

)/
Vlim (6.49)

because t1 = V0cβ0
f is already known. π∗ is therefore a function of t2 still to be

determined.
In summary, λV (t

−
1 ) = 0, λV (t

+
1 ) = π∗, and λV (t

−
2 ) = λV (t

+
2 ) = 0. The control

law on the constrained arc in the interval (t1, t2) given by Equation (6.40) yields the
value of the multiplier μ(t) = λV (t) because β = π

2 , tan β = ∞ such that

tan β = 2
π

λi

V (μ− λV )

requires

μ(t) = λV (t) = λV
(
t+1
)+ C(t − t1)

or

μ(t) = λV (t) = π∗ − 1
Vlim

(t − t1) (6.50)

where π∗ is given in Equation (6.49) in terms of t2. The remaining unknowns t2 and
tf can now be resolved from the end conditions if and Vf , which are given quantities.
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6.3.5 Evaluation of the Constraint Arc Exit and Final Transfer Times

Applying Equation (6.17) at time t1 will yield the value of i1 at the end of the first

unconstrained arc such as with t1 = V0cβ0
f

�i = i − i0 = 2
π

[
tan−1
(

ft − V0cβ0

V0sβ0

)
+ π

2
− β0

]

i = i0 + 2
π

[
tan−1
(

ft − V0cβ0

V0sβ0

)
+ π

2
− β0

]
(6.51)

i1 = i0 + 2
π

(π
2
− β0

)
(6.52)

with β0 known from Equation (6.44), that is, sβ0 = Vlim
V0

. Equation (6.51) depicts the
evolution of i as a function of time in the interval (0, t1), while Equation (6.52) is
identical to the �i = 2

π
(β − β0) Equation of Reference 6 with β = β−1 = π

2 here.

On the constrained arc between t1 and t2, i̇ = 2f
πVlim

= const such that

i = i1 + 2f
πVlim

(t − t1) (6.53)

and at time t2

i2 = i1 + 2f
πVlim

(t2 − t1)

i2 = i0 + 2
π

(π
2
− β0

)
+ 2f

πVlim

(
t2 − V0cβ0

f

)
. (6.54)

Finally, in the interval (t2, tf ), a further application of Equation (6.17) on this
unconstrained arc yields

�i = i − i2 = 2
π

[
tan−1

(
f (t − t2)− V2cβ+2

V2sβ+2

)
+ π

2
− β+2

]

with V2 = Vlim and β+2 = β−2 = β2 = π
2 , such that

�i = i − i2 = 2
π

{
tan−1
[

f (t − t2)
Vlim

]}2
. (6.55)

Therefore, the evolution of i on this interval is given by

i = i0 + 2
π

(π
2
− β0

)
+ 2f

πVlim

(
t2 − V0cβ0

f

)
+ 2

π

{
tan−1
[

f (t − t2)
Vlim

]}
. (6.56)
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Similarly, Equation (6.15) yields the variation of V on the unconstrained arcs in the
intervals (0, t1) and (t2, tf ) respectively as

V =
(
V2

0 + f 2t2 − 2ftV0cβ0

)1/2
V =
[
V2

2 + f 2 (t − t2)2 − 2f (t − t2)V2cβ+2

]1/2
(6.57)

once again with V2 = Vlim and β+2 = π
2 . At time tf , Equation (6.57) yields

V2
f = V2

lim + f 2 (tf − t2
)2

yielding

(
tf − t2
) =
√(

Vf − Vlim
) (

Vf + Vlim
)

f
≥ 0. (6.58)

Equation (6.56) evaluated at tf , along with the use of (tf – t2) above, allows for the
resolution of t2

t2 = πVlim

2f

⎧⎪⎨
⎪⎩if − 2

π

(π
2
− β0

)
− 2

π
tan−1

⎡
⎢⎣
√(

Vf − Vlim
) (

Vf + Vlim
)

Vlim

⎤
⎥⎦
⎫⎪⎬
⎪⎭+

V0cβ0

f
.

(6.59)

Thus t2 is given in terms of known quantities, which in turn yields the remaining
unknown tf from Equation (6.58)

tf = t2 +
√(

Vf − Vlim
) (

Vf + Vlim
)

f
≥ 0. (6.60)

Equation (6.49) solves for π∗, the jump in λV at t1, such that μ(t) = λV (t) = π∗ −
1

Vlim

(
t − V0cβ0

f

)
is now known on the constrained arc. This λV (t)multiplier is already

known on the first and third arcs from Equation (6.14)

λV (t) = cβ
f

with β given as a function of time t by Equation (6.16) for the two arcs respectively as

tan β = V0sβ0

V0cβ0 − ft
= Vlim

V0cβ0 − ft
(6.61)

and

tan β = − Vlim

f (t − t2)
(6.62)
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the latter expression derived from

tan β =
V2sβ+2

V2cβ+2
− f (t − t2)

with V2 = Vlim and β+2 = π
2 .

A transfer from a low orbit to a higher orbit with a large enough inclination
change or from (i0, V0) to (if , Vf ) without any constraints on the intermediate V
values, will show a certain Vmin at t = t∗. From Equation (6.15) for V , V̇ = 0 yields

t∗ = V0cβ0
f , which in turn yields

Vmin =
(
V2

0 − 2V0ft∗cβ0 + f 2t∗2
)1/2 = V0sβ0 . (6.63)

First the unconstrained �V is obtained from Edelbaum’s equation [1]

�V =
[
V2

0 + 2V0Vf cos
(π

2
�if
)
+ V2

f

]1/2
(6.64)

or Equation (6.20) with �if = if − i0, leading to the transfer time tf = �V
f . We must

have t∗ ≤ tf for a constrained transfer to be possible because otherwise Vmin < Vf

is reached after tf such that Vlim < Vf or alim > af is never reached. A constrained
transfer requires

Vmin ≤ Vlim ≤ Vf

or

amax ≥ alim ≥ af

because if Vlim > Vf or equivalently alim < af , then the final value af can never be
reached and the transfer will not be achieved. On the other hand, if Vlim < Vmin or
alim > amax, then the constraining value is never reached and the transfer is achieved
unconstrained. Therefore, Vmin ≤ Vlim ≤ Vf must be satisfied by an appropriate
choice of Vlim for given Vmin and Vf .

In the limiting case t∗ = tf , Vmin = Vf or amax = af and the only acceptable
value of alim is amax itself, that is, Vlim = Vmin is only reached at t = t∗ = tf and
the transfer will remain unconstrained. Finally when t∗ = tf , then Vmin = Vf or
amax = af and if alim is chosen such that alim ≤ amax, that is, Vlim ≥ Vmin, then the
transfer is effectively constrained.

As an example, let a0 = 6,563 km or V0 =
√

μ
a0
= 7.793241 km/s, i0 = 0, af =

6,878 km, or Vf =
√

μ
af
= 7.612692 km/s, if = 69.607 deg, and let alim = 7,000 km in

one case and alim = 10,000 km in another case.
With the gravity constant μ = 398,601.3 km3/s2 and f = 3.5 × 10−8 km/s2 for

the continuous constant acceleration value, these two cases are generated together
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Thrust Yaw Angle for Unconstrained and
Constrained Transfers (7000, 10000 km)
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Figure 6.1. Thrust yaw angle for unconstrained and constrained transfers (7,000 km,
10,000 km).

Orbital Velocity for Unconstrained and
 Constrained Transfers (7000, 10000 km)
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Figure 6.2. Orbital velocity for unconstrained and constrained transfers (7,000 km, 10,000 km).

with the unconstrained transfer where no limit is set for the intermediate semimajor
axis values. Figure 6.1 shows the thrust yaw control angle β as a function of time
for all three transfers. The constrained arcs where β = 90 deg get longer as the alim

gets smaller. As expected, the unconstrained transfer results in the shortest transit
time at 4,156.418 days, while the constrained transfer with alim = 10,000 km requires
4,355.975 days, and the one with alim = 7,000 km requiring an even longer trip time
of 4,777.683 days. Figures 2 and 3 show the evolution of the orbital velocity and
semi-major axis in time for the three transfers, with the velocity and semimajor axis
reaching their minimum and maximum respectively on the unconstrained transfer at
about t = 2,110 days with V = 4.453 km/s, a = 20, 094 km.
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Semimajor Axis for Unconstrained and
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Figure 6.3. Semimajor axis for unconstrained and constrained transfers (7,000 km, 10,000 km).
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Figure 6.4. Relative inclination for unconstrained and constrained transfers (7,000 km,
10,000 km).

For the constrained transfers, the semi-major axis never exceeds the 7,000 km
and 10,000 km limits as seen in Figure 6.3.

Figure 6.4 shows the relative inclination histories for the three transfers with
linear buildup during the constrained arcs, while Figures 5 and 6 depict the evolutions
of the multipliers λV and λi, with the jumps inλV clearly visible at time t1, the junction
between the end of the first unconstrained leg and the start of the constrained arc
for the two constrained transfers. The λV history of the unconstrained transfer is, of
course, continuous throughout. Figure 6.7 shows the variations of a versus i, once
again showing that the alim constraints are effectively enforced during the transfers.
Finally, Figure 6.8 shows the effective constancy of the Hamiltonian at the zero
mark with the small departures from zero due to machine round off. Unlike the
unconstrained arcs where λV is computed from the knowledge of the control angle
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Lambda-V for Unconstrained and Constrained Transfers (7000, 10000 km)
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Figure 6.5. Lambda-V for unconstrained and constrained transfers (7,000 km, 10,000 km).
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Figure 6.6. Lambda-i for unconstrained and constrained transfers (7,000, 10,000 km).

Semimajor Axis vs Inclination for Unconstrained
and Constrained Transfers (7000, 10000 km)

5000

7000

9000

11000

13000

15000

17000

19000

21000

0 10 20 30 40 50 60 70 80

Relative Inclination (Degrees)

S
em

im
aj

or
 A

xi
s 

(k
m

)

Unconstrained

alim = 10000 km

alim = 7000 km

Figure 6.7. Semimajor axis versus inclination for unconstrained and constrained transfers
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Hamiltonian for Unconstrained and Constrained Transfers (7000, 10000 km)
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Figure 6.8. Hamiltonian for unconstrained and constrained transfers (7,000 km, 10,000 km).

β, that is, λV = cβ
f with β itself computed by way of an inverse tangent function, the

constrained arcs make effective use of the linear drop in λV as a function of time to
calculate λV itself, and because λi is constant throughout, the linear segments appear
in Figure 6.8 during the constrained arcs.

The total�V needed for each transfer is only dependent on the orbit parameters
and the alim constraint, but not on the acceleration level.

�V = 12.569009 km/s for the unconstrained case, and 13.172470 km/s and
14.447714 km/s for the constrained alim = 10,000 km and 7,000 km, respectively.
If f is set to 3.5× 10−6 km/s2, or 100 times larger than before, then the transfer times
become 41.564, 43.559, and 47.776 days, respectively, or 100 times faster transfers
with the same corresponding �V values shown above. The shapes of the various
figures remain unchanged except that all the intermediate states V , i, as well as the
control β, are reached 100 times faster than with the lower acceleration.

The use of this analytic theory in quickly generating whole sets or families of
transfers is shown in Figure 6.9 where transfers from a0 = 7,000 km, i0 = 0 deg to a
range of final orbits with af spanning from 7,000 km to 15,000 km and a common if =
70 deg are generated for various alim values. Note that the acceleration f only affects
the transfer times but not the�V requirements that are only dependent on the initial
and final orbit parameters. Each curve in Figure 6.9 cannot extend obviously beyond
af = alim, and as the value of alim is relaxed to higher values, the �V requirements
themselves relax further because the transfers start to approach the unconstrained
solutions which, of course, are overall minimizing. Figure 6.9 is essentially generated
in a single run in a matter of a few seconds or less, and it can be repeated for other
values of say if to generate a further family of transfers and �V requirements.

6.4 The Split-Sequence Transfers

A pair of practical problems in optimal continuous-thrust transfer in general cir-
cular orbit are analyzed next within the context of analytic averaging for rapid
computations leading to near-optimal solutions.
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Delta-Vee vs Final Semimajor Axis
a0 = 7000 km, i0 = 0, if = 70 deg, f = 3.5 x 10–6km/s2
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Figure 6.9. �V requirements for a family of constrained transfers with various limiting
altitudes.

The first problem addresses the minimum-time transfer between inclined cir-
cular orbits by proposing an analytic solution based on a split-sequence strategy
in which the equatorial inclination and node controls are done separately by opti-
mally selecting the intermediate orbit size at the sequence switch point that results
in the minimum-time transfer. The consideration of the equatorial inclination and
node state variables besides the orbital velocity variable is needed to further account
for the important J2 perturbation that precesses the orbit plane during the transfer,
unlike the thrust-only case in which it is sufficient to consider the relative inclination
and velocity variables, thus reducing the dimensionality of the system equations.
Further extensions of the split-sequence strategy with analytic J2 effect are thus pos-
sible for equal computational ease. The second problem addresses the maximization
of the equatorial inclination in fixed time by adopting a particular thrust-averaging
scheme that controls only the inclination and velocity variables, leaving the node at
the mercy of the J2 precession, providing robust fast-converging codes that lead to
efficient near-optimal solutions.

Example transfers for both sets of problems are solved showing near-optimal
features as far as transfer time is concerned by directly comparing the solutions to
“exact” purely numerical counterparts that rely on precision integration of the raw
unaveraged system dynamics with continuously varying thrust vector orientation in
three-dimensional space.

6.4.1 Analytic (V , i) Transfer

The analysis of the (V , i) transfer is identical to the one shown in Section 6.2. If
the equator is ignored, then it is sufficient to consider the relative inclination i
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instead of the equatorial inclination. However, when the J2 perturbation must also
be accounted for, then i must represent the equatorial inclination and the averaging
of the thrust contribution must switch the sign of β at the antinodes of the equatorial
line of nodes instead. The i expression in Equation (6.5) stays unchanged because
the integration limits are still −π

2 , π
2 , that is

˙̃i = 1
2π

∫ 2π

0

(
di
dt

)
dθ = 2fsβ

2πV

∫ π/2

−π/2
cθdθ = 2fsβ

πV
(6.65)

with θ the angular position measured from the equator and where di
dt = fhcα

V is the
unaveraged rate with α the mean angular position equal to θ because α = ω +M =
ω + θ∗ = θ in circular orbit where θ* is the true anomaly. Therefore the (V , i)
analysis is still valid for orbit rotation around the equatorial line of nodes instead
of the current line of nodes provided that the β sign switch is carried out at the

equatorial antinodes. Note that the tilde over ˙̃i, ˙̃V is deleted for ease of writing
as i̇, V̇ .

6.4.2 Analytic (V , �) transfer

If the transfer is from (V0, �0) to (Vf , �f ) with no change in i, then the averaging
out of the angular position from the unaveraged �̇ equation is carried out with the
0, π integration limits, that is, switching the β sign at the ascending and descending
nodes, such that using �̇ = fhsα

Vsi

˙̃
� = 1

2π
× 2
∫ π

0

fsβsθ
Vsi

dθ = 2fsβ
πVsi

. (6.66)

Removing the tilde once again, the differential equations of interest read as

V̇ = −fcβ (6.67)

�̇ = 2fsβ
πVsi

. (6.68)

The Hamiltonian is now written as

H = 1+ λV
(−fcβ
)+ λ�

2fsβ
πVsi

(6.69)

with adjoint equations

λ̇V = −∂H
/
∂V = 2fsβ

πV2si
λ� (6.70)

λ̇� = −∂H
/
∂� = 0 (6.71)

such that λ� = const and the optimal control variable obtained from ∂H/∂β = 0
leading to

tan β = − 2
πVsi

λ�

λV
. (6.72)
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The transversality condition Hf = H = 0 (H not explicit function of time) together
with ∂H/∂β = 0 allows to solve for λV and λ� this time around as

λV = cβ
f

(6.73)

λ� = −πVsβsi

2f
(6.74)

and becauseλ� is constant, it follows as in the (V , i)analysis that Vsβ = const = V0sβ0

because in Equation (6.74) si remains constant. As in the (V , i) analysis, and due to
the constancy of Vsβ , the analytic form of V is obtained from

V̇ = −fcβ = −f (±)
√

1− s2
β = ∓

f
√

V2 − V2s2
β

V
= ∓

f
√

V2 − V2
0 s2

β0

V

which yields

V =
(
V2

0 + f 2t2 − 2ftV0cβ0

)1/2
. (6.75)

Also in view of i constant, d
dt (tan β) = d

dβ (tan β) β̇ = β̇

c2
β

and using tan β from

Equation (6.72), we get β̇ = fsβ
V = fs2

β

V0sβ0
integrating to

tan β = V0sβ0

V0cβ0 − ft
. (6.76)

Note that in the (V , i) analysis tan β = − 2
π

λi
VλV

, and after forming d
dt tan β and using

λ̇i = 0, λ̇V from Equation (6.8) and V̇ = −fcβ , the same expression for β̇ is arrived

at, as β̇ = fsβ
V such that the running value of β is identical to Equation (6.76) above.

From Equation (6.70), it follows that λ̇V = − s2
β

V = −V2s2
β

V3 = −V2
0 s2

β0
V3 and in view of

V = f (t) given in Equation (6.75), λV is integrated as

λV = V0cβ0 − ft
fV

(6.77)

such that from λV = cβ
f , the control is given as

cβ = V0cβ0 − ft
V

. (6.78)

Finally, the current value of � or rather the change �� = �−�0 is obtained from
�̇ in Equation (6.68) by observing that i is constant such that with sβ = V0sβ0/V and
V from Equation (6.75), we get

�� = 2
πsi

[
tan−1
(

ft − V0cβ0

V0sβ0

)
+ π

2
− β0

]
. (6.79)
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This expression is identical in its form to the �i expression in Equation (6.17) except
that we have the si factor in �� such that si�� is equivalent to �i. In other words,
the same amount of �V will either rotate the orbit by�i or by si��. Thus by analogy
with the analysis in [6], the initial value of β0 is now given by

tan β0 =
sin
(π

2
si��t

)
V0

Vf
− cos
(π

2
si��t

) (6.80)

instead of Equation (6.21) with the understanding that si is constant because only
� changes are allowed in this (V , �) analysis. Here ��t is the total �� change
required by the transfer. Also by analogy with the (V , i) analysis in [6], we have for
the (V, i) case

�V =
[
V2

0 − 2VV0 cos
(π

2
�i
)
+ V2
]1/2

and for the (V , �) case

�V =
[
V2

0 − 2VV0 cos
(π

2
si��
)
+ V2
]1/2

,

the first expression being Edelbaum’s famous �V equation.

6.4.3 Analytic Split (V, i), (V,�) Sequence Transfer

It is now possible to solve a given transfer from (V0, i0, �0) to (Vf , if , �f ) analytically
by carrying out the (V, i) portion first meaning that � is held constant at �0, its initial
value and the transfer taking place from (V0, i0) to (V1, i1), which is reached at
time t1. Because i1 is equal to if , we have (�i)t = i1 − i0 = if − i0 such that from
Equation (6.17)

(�i)t = 2
π

[
tan−1
(

ft1 − V0cβ0

V0sβ0

)
+ π

2
− β0

]
(6.81)

which can be written as

−1

tan
[π

2
(�i)t + β0

] = ft1 − V0cβ0

V0sβ0

yielding the time t1 when the switch to the (V, �) leg starts while holding i1 constant

t1 = V0cβ0

f
− V0sβ0/f

tan
[π

2
(�i)t + β0

] . (6.82)

The velocity V1, as well as (λV )1 and β1 at time t1, are obtained from

V1 =
(
V2

0 + f 2t21 − 2ft1V0cβ0

)1/2
(6.83)
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(λV )1 =
V0cβ0 − ft1

fV1
(6.84)

cβ1 =
V0cβ0 − ft1

V1
(6.85)

λi and λ� stay constant during this first leg such that

(λ�)1 = −
V0si0sβ0

2f
= (λ�)0

(λi)1 = −
πV0sβ0

2f
= (λi)0 .

The value of β0 is still unknown and must be determined. During the second leg, the
(V , �) theory is applied instead, with i1 = i0 + (�i)t = if staying constant until time
tf and with � varying from �1 = �0 at t1 until �f is reached at tf . The total change
(��)t = �f −�0 = �f −�1 can be used in Equation (6.79) such that

(��)t = 2
πsi1

{
tan−1

[
f
(
tf − t1
)− V1cβ1

V1sβ1

]
+ π

2
− β1

}

leading to

f
(
tf − t1
) = V1sβ1

tan
[
(��)t

πsi1

2
−
(π

2
− β1

)]
+ V1cβ1 . (6.86)

Using this expression in the velocity equation

Vf =
[
V2

1 + f 2 (tf − t1
)2 − 2f

(
tf − t1
)

V1cβ1

]1/2
(6.87)

provides the expression from which the angle β0 can be extracted numerically, that is

V2
f = V2

1 +
{
V1sβ1

tan
[
(��)t

πsi1

2
−
(π

2
− β1

)]
+ V1cβ1

}2
− 2V1cβ1

{
V1sβ1

tan
[
(��)t

πsi1

2
−
(π

2
− β1

)]
+ V1cβ1

}
. (6.88)

β1, t1 and V1 are still functions of β0, so that once β0 is obtained from Equation (6.88),
these variables are then determined and the final remaining unknown tf is solved for
from Equation (6.86).

6.4.4 Analytic split (V ,�), (V , i) sequence transfer

In this strategy, i is kept fixed at i0 during the first leg while � is changed from �0

to �1 = �f at t1. Then the (V , i) transfer is applied while holding � constant at
�1 = �f while i is changed from i1 = i0 to if at time tf . As in the previous section, V
is continuously changing during both legs.
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From Equation (6.79), the total required (��)t = �1−�0 allows us to solve for
t1 as a function of the unknown β0, that is

(��)t = 2
πsi0

[
tan−1
(

ft1 − V0cβ0

V0sβ0

)
+ π

2
− β0

]

yielding

t1 = V0cβ0

f
− V0sβ0/f

tan
[π

2
si0 (��)t + β0

] (6.89)

with once again

λV1
=
(
V2

0 + f 2t21 − 2ft1V0cβ0

)1/2
(6.90)

V1 = V0cβ0 − ft1
fV1

(6.91)

cβ1 =
V0cβ0 − ft1

V1
. (6.92)

During the second leg of this (V ,�), (V , i) sequence, the total (�i)t change, that is,
if − i1 = if − i0 is used in Equation (6.81)

(�i)t = 2
π

{
tan−1

[
f
(
tf − t1
)− V1cβ1

V1sβ1

]
+ π

2
− β1

}

yielding

f
(
tf − t1
) = V1sβ1 tan

[
(�i)t

π

2
−
(π

2
− β1

)]
+ V1cβ1 (6.93)

which is now used in the following velocity expression

Vf =
[
V2

1 + f 2 (tf − t1
)2 − 2f

(
tf − t1
)

V1cβ1

]1/2
(6.94)

such that the initial value of the thrust angle β0 is extracted numerically from

V2
f = V2

1 +
{
V1sβ1

tan
[
(�i)t

π

2
−
(π

2
− β1

)]
+ V1cβ1

}2
− 2V1cβ1

{
V1sβ1

tan
[
(�i)t

π

2
−
(π

2
− β1

)]
+ V1cβ1

}
. (6.95)

Once β0 is thus obtained, the final unknown tf will be given by Equation (6.93).
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6.4.5 Comparison with Precision Integration

The unaveraged system of differential equations valid in circular orbit can be written
as follows in terms of the classical elements V , i, �, and α where α = ω +M is the
mean angular position equal also to θ = ω+θ∗, the angular position defined in terms
of the true anomaly θ∗ because M = θ∗ in the circular orbit case, as in [8]

V̇ = −fcβ (6.96)

i̇ = fsβcα/V (6.97)

�̇ = fsβsα/ (Vsi) (6.98)

α̇ = V3

μ
− fsβsα/ (V tan i) . (6.99)

For minimum-time transfers, the following Hamiltonian leads to the adjoint
differential equations

H = 1+ λVV̇ + λi i̇ + λ��̇+ λαα̇

= 1+ λV
(−fcβ
)+ λi

(
fsβcα

V

)
+ λ�

(
fsβsα
Vsi

)
+ λα

(
V3

μ
− fsβsα

V tan i

)
(6.100)

λ̇V = −∂H
∂V

= λi
fsβcα
V2 + λ�

fsβsα
V2si

− λα

(
3V2

μ

)
− λα

(
fsβsα

V2 tan i

)
(6.101)

λ̇i = −∂H
∂i

= λ�
fsβsαci

Vs2
i

− λα
fsβsα
Vs2

i

(6.102)

λ̇� = −∂H
∂�

= 0 (6.103)

λ̇α = −∂H
∂α

= λi
fsβsα

V
− λ�

fsβcα
Vsi

+ λα
fsβcα

V tan i
. (6.104)

The optimality condition ∂H/∂β = 0 leads to the optimal control

tan β =
−λi

cα
V
− λ�

sα
Vsi

+ λα
sα

V tan i
λV

= sβ
cβ

. (6.105)

The continuously varying control angle β is used to drive the combined system of
state and adjoint Equations (6.96–6.99) and (6.101–6.105) by starting from guessed
(λV )0 , (λi)0 , (λ�)0 , (α)0, as well as tf in order to integrate from V0, i0,�0, (λα)0 = 0
and satisfy the end conditions Vf , if ,�f , (λα)f = 0 and Hf = 0 by slowly adjusting
the initial guesses. Both initial and final orbital positions are optimized in this search
scheme in order to arrive at the overall minimum solution. The example transfer
parameters shown in Table 6.1 use an acceleration f = 3.5× 10−6 km/s2, with initial
and final semi-major axis values of a0 = 6,563.14 km and af = 6,878 km. The
solutions in Tables 6.1 and 6.2 also involve the Edelbaum and exact transfers with
(λα)f = 0.000000061 s/deg for the exact transfer.
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Velocity vs Time
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Figure 6.10. Velocity variations for split-sequence, Edelbaum, and exact transfers.

Inclination vs Time
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Figure 6.11. Inclination variations for split-sequence and exact transfers.

The velocity variations of the four solutions are shown in Figure 6.10 as a function
of time. In this example, the initial inclination being larger than the final value, it is
more economical to carryout the (V, i) legfirst followedby the (V,�) leg insteadof the
other way around because it is much easier to adjust � at the lower inclination. The
penalty in using the (V, i), (V,�) sequence with respect to the exact solution is about
14% in �V, but a much large 30% for the (V,�), (V, i) sequence. Figures 6.11 and
6.12 depict the evolutions of the inclination and node variables for the split-sequence
transfers as well as the exact solution. Most of the benefit of allowing the orbit
size, that is, velocity to vary optimally during each leg of the (V, i), (V,�) sequence
will be lost if the orbit is raised initially from a0 = 6,563.14 km to af = 6,878 km
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Omega vs Time
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Figure 6.12. Node variations for split-sequence and exact transfers.
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Figure 6.13. Thrust β angle variations for three-step sequence, Edelbaum, and exact transfers.

in a purely coplanar transfer thrusting along the velocity vector, before carrying
out the (V, i), (V,�) legs. The �V needed for this initial coplanar leg is equal to
|V0 − Vf | = 180.466532 m/s requiring of time of 51,561.866 s or 14.322740 hrs such
that the total transfer time is now tf = 4.013070866× 105 s or a �Vtot = 1.404574803
km/s using f = 3.5 × 10−6 km/s2. This �Vtot is now about 28% or double the 14%
increase over the (V, i), (V,�) sequence without the coplanar initial phase, because
in the coplanar, (V, i), (V,�) transfer, the last two legs (V, i), (V,�) are carried out
essentially at the constant Vf value such that these legs are almost pure inclination
and pure omega changes.

The thrust β angle histories are shown in Figure 6.13 for the exact, Edelbaum
and coplanar, (V, i), (V,�) cases with the last two cases using analytic averaging that
switches the piecewise-constant β angle sign twice during each revolution instead of
continuously varying β as in the exact solution.
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Velocity vs Time
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Figure 6.14. Velocity variations for three-step sequence, Edelbaum, and exact transfers.

Inclination and Relative Inclination vs Time
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Figure 6.15. Inclination variations for three-step sequence, Edelbaum, and exact transfers.

Figures 6.14 and 6.15 show the variations of the velocity and inclination vari-
ables in time for the three cases under discussion with the understanding that in the
Edelbaum case, i∗ is the relative inclination and not the equatorial one.

6.4.6 Maximization of the Equatorial Inclination in Circular Orbit
Using Analytic Averaging under J2 Influence and Minimum-Time
Transfer for Fixed Boundary Conditions

In this problem, we go back to the original averaged equations for V and equatorial i

di/dt = 2fsβ
2V

(6.106)

dV/dt = −fcβ (6.107)
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with the averaging done by switching the sign of β at the orbital antinodes such that
the thrust acceleration will only induce changes in i and V but not in �. This is in a
way equivalent to applying impulsive �Vs at the nodes to carry out inclination and
semi major axis changes. The d�/dt equation will give a zero net contribution after
averaging in this manner because

d�/dt = fhsα
Vsi

= fhsθ
Vsi

(6.108)

˙̃
� = 1

2π

∫ 2π

0

fhsθ
Vsi

dθ = 2
2π

∫ π/2

−π/2
fsβ
Vsi

sθdθ = 0. (6.109)

Note that the assumptionα = θ is an excellent one because from the original equation

dα
dt
= n+ 2fn

V
− fhsα

V tan i
(6.110)

fn = 0 and the fhsα term contribution is also equal to zero for the thrust components.
When the J2 acceleration components are introduced, that is

(fn)J2
= 3μJ2R2

2a4

(
1− 3s2

i s2
θ

)
(6.111)

(ft)J2
= −3μJ2R2

a4 s2
i sθcθ (6.112)

(fh)J2
= −3μJ2R2

a4 sicisθ (6.113)

with (fn)J2
directed inward, (ft)J2

tangential, and (fh)J2
out-of-plane, and where μ

is the Earth gravity constant and R the equatorial radius, then the three terms in
Equation (6.110) will be of order 10−3, 10−6, and 10−6 respectively in the more severe
LEO case such that dα/dt � n and α � nt = θ . If we now apply the (fh)J2

component
to drive the �̇ equation, then

(
�̇
)
J2
= (fh)J2

sθ /Vsi( ˙̃
�
)

J2
= 1

2π

∫ 2π

0

(
�̇
)
J2

dθ

( ˙̃
�
)

J2
= −3μ1/2J2R2ci

2a7/2 (6.114)

which can also be written as

˙̃
� = −3J2R2ciV7

2μ3 = k1ciV7 (6.115)

because from V = μ1/2a−1/2 we have a7/2 = μ7/2/V7.Thus the thrust-and-J2-
averaged system of equations reduce to Equations (6.106), (6.107), and (6.115)
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because (fh)J2
will not contribute to

(˙̃i)
J2
= 1

2π

∫ 2π

0

(fh)J2
cα

V
dα = 1

2π

∫ 2π

0

−3μJ2R2

a4 sicisθcθdθ = 0

and

( ˙̃V)
J2
= − 1

2π

∫ 2π

0
(ft)J2

dα = − 1
2π

∫ 2π

0

−3μJ2R2

a4 s2
i sθcθdθ = 0.

Removing the tilde in Equation (6.115) for ease of writing, the Hamiltonian H below
leads to three Lagrange multipliers for minimum-time transfer with the present
averaging scheme, that is, β sign switching at equatorial antinodes

H = 1+ λi

(
2fsβ
πV

)
+ λV
(−fcβ
)+ λ�

(
−3J2R2ciV7

2μ3

)
(6.116)

λ̇i = −∂H/∂i = −3J2R2siV7

2μ3 λ� (6.117)

λ̇V = −∂H/∂V = 2fsβ
πV2 λi (6.118)

λ̇� = −∂H/∂� = 0. (6.119)

Thus λ� = const = K1. The optimality condition ∂H/∂β = 0 provides the optimal
control law

∂H
∂β

= 0 = λi
2fcβ
πV

+ λVfsβ (6.120)

tan β = − 2
π

λi

VλV
(6.121)

H being explicitly independent of t, the transverality condition Hf = 0 translates to
H = 0 throughout the transfer

H = 0 = 1+ λi

(
2fsβ
πV

)
+ λV
(−fcβ
)+ λ�k1ciV7 (6.122)

and letting K = K1k1, Equations (6.70) and (6.72) yield the λi and λV expressions in
terms of the constant λ� such that

λi = −KciV8πsβ
2f

(6.123)

λV = KciV7cβ/f . (6.124)

In summary, the initial guesses (λi)0 , (λV )0 , (λ�)0 = K1, and tf are used to integrate
Equations (6.106), (6.107), (6.115) using the control law in Equation (6.121), as well
as λi and λV from Equations (6.123) and (6.124), and they are slowly adjusted until
if , Vf , �f , and Hf = 0 are satisfied.
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The maximization of if in fixed time, which is the same as the minimization
of −if using the same averaging scheme described in this section, is carried out by
considering the following set of state and adjoint equations

i̇ = 2fsβ
πV

(6.125)

V̇ = −fcβ (6.126)

�̇ = k1ciV7 (6.127)

λ̇i = k1siV7λ� (6.128)

λ̇V = 2fsβ
πV2 λi (6.129)

λ̇� = 0. (6.130)

Here, i0, V0,�0, Vf ,�f , and tf are fixed, and the Hamiltonian reads as

H = λi
2fsβ
πV

+ λV
(−fcβ
)+ λ�

(
k1ciV7

)
. (6.131)

Letting ψ1 = V
(
tf
) − Vf = 0, ψ2 = �

(
tf
) − �f = 0, and 
 = −i

(
tf
) +

υ1
[
V
(
tf
)− Vf
] + υ2

[
�
(
tf
)−�f
]

or 
 = ϕ
(
tf
) + υ1ψ1 + υ2ψ2, the boundary

conditions on λi, λV , and λ� at time tf are given by

λi
(
tf
) = (∂ϕ

∂i
+ υT ∂ψ

∂i

)
tf

= −1+ υ1
∂
[
V
(
tf
)− Vf
]

∂i
+ υ2

∂
[
�
(
tf
)−�f
]

∂i
= −1

(6.132)

λV
(
tf
) = ( ∂ϕ

∂V
+ υT ∂ψ

∂V

)
tf

= υ1 (6.133)

λ�
(
tf
) = ( ∂ϕ

∂V
+ υT ∂ψ

∂�

)
tf

= υ2. (6.134)

Thus, starting from guesses for (λi)0, (λV )0, (λ�)0, υ1, υ2, the six differential
Equations (6.75)–(6.80) are integrated from i0, V0, �0, until the fixed time tf and
the guesses slowly adjusted until the end conditions λi

(
tf
) = −1, λV

(
tf
) = υ1,

λ�
(
tf
) = υ2, V

(
tf
) = Vf , �

(
tf
) = �f , are closely matched to within a small toler-

ance indicating convergence. Of course the optimal control law in Equation (6.71) is
used to steer the thrust vector at each instant of time. The fixed-time minimization of
if requires (λi)tf = 1 instead of−1. Tables 6.3 and 6.4 show the achieved final param-
eters as well as the converged initial guesses for the 10-day-fixed, 20-day-fixed, and
the minimum-time transfers, the latter case being for a fixed required if = 70 deg.

In all cases, both λ� and H remained constant at the values shown, and for
the 10-day and 20-day-fixed cases, ν2 = (λ�)f = (λ�)0 due to the constancy of λ�.
The Hamiltonian being homogeneous in the multipliers, acts like a scaling factor for
the multipliers and it stays perfectly constant throughout the transfer because it is



6.4 The Split-Sequence Transfers 173

Table 6.3. Initial and final achieved parameters

V0 (km/s)
Vf (km/s)

i0 (deg)
if (deg)

�0 (deg)
�f (deg)

β0 (deg)
βf (deg) tf (days) H

10-day fixed 7.5460614
7.5460614

60.0
64.519789

60.0
25.000000

274.32181
97.077658

10.0 −1.247011× 10−6

20-day fixed 7.5460614
7.5460614

60.0
82.888829

60.0
25.000000

280.32641
106.94783

20.0 −4.4430404× 10−7

Min-time 7.5460614
7.5460614

60.0
70.000000

60.0
25.000000

274.53944
99.680491

11.690898 3.8367853× 10−11

Thrust Beta Angle vs Time
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Figure 6.16. Thrust β angle variations for 10-day, 20-day fixed-time, and minimum-time
transfers.

Velocity vs Time (10_day_fixed, 20_day_fixed, and min_time transfers)
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Figure 6.17. Velocity variations for 10-day, 20-day fixed-time, and minimum-time transfers.
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Inclination and Omega vs Time
(10_day_fixed, 20_day_fixed, and min_time transfers)
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Figure 6.18. Inclination and node variations for 10-day, 20-day fixed-time, and minimum-time
transfers.

Lambda_i and Lambda_Omega vs Time
(10_day_fixed_time, and 20_day_fixed_time transfers)
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Figure 6.19. λi and λ� multipliers variations for 10-day and 20-day fixed-time transfers.

not an explicit function of time. These runs used J2 = 1.08263×10−3 and integration
error controls at the 10−12 level, with a thrust acceleration of f = 3.5× 10−6 km/s2.
The numerical results are produced by way of a series of Fortran routines provided in
[14], including a shooting, Runge-Kutta driver with adaptive step size control routine,
a globally convergent Newton routine using a line search method for Newton step
control, and other supporting routines for a robust package fully adequate to solve
such problems.
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Lambda_V vs Time
(10_day_fixed_time, and 20_day_fixed_time transfers)
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Figure 6.20. λV variations for 10-day and 20-day fixed-time transfers.

Lambda_i, Lambda_V, Lamda_omega vs Time (min_time transfer)
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Figure 6.21. λi, λ� and λV variations for minimum-time transfer.

Figure 6.16 depicts the thrust angle β evolution in time with once again sign
switch at the equatorial antinodes to comply with the thrust averaging method used,
for the three examples under discussion. Figure 6.17 for the velocity shows how the
orbits expand before shrinking back to the 7,000 km size, while Figure 6.18 shows the
inclination and omega variations with an initial dip in the inclination corresponding to
an increase in orbit size in order to adjust for the required nodal precession due to J2.

Figures 6.19, 6.20, and 6.21 show the evolutions of the three multipliers λi, λV ,
and λ� with perfectly constant λ� for all three transfers and steadily decreasing λi
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and λV values and with (λi)f for the 10-day and 20-day-fixed time transfers ending
exactly at −1, as also seen in Table 6.4.
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7 Global Optimization and Space Pruning for
Spacecraft Trajectory Design

Dario Izzo
European Space Agency, Advanced Concepts Team, Noordwijk, NL

7.1 Introduction

Global optimization algorithms and space pruning methods represent a recent new
paradigm for spacecraft trajectory design. They promise an automated and unbi-
ased search of different trajectory options, freeing the final user from the need for
caring about implementation details. In this chapter we provide a unified frame-
work for the definition of trajectory problems as pure mathematical optimization
problems highlighting their common nature. We then present the detailed defini-
tion of two popular typologies, the Multiple Gravity Assist (MGA) and the Multiple
Gravity Assist with single Deep Space Manouver (MGA-1DSM). Later we describe
in detail the instantiation of four particular problems proposing them as a test set
to benchmark the performances of different algorithms and pruning solutions. We
take inspiration from real interplanetary trajectories such as Cassini, Rosetta, and
the proposed TandEM mission, considering a large search space in terms of pos-
sible launch windows and transfer times, but also from rather academic cases such
as that of the First Global Trajectory Optimisation Competition (GTOC). We test
four popular heuristic paradigms on these problems (differential evolution, particle
swarm optimization, simulated annealing with adaptive neighborhood, and genetic
algorithm) and note their poor performances both in terms of reliability and solu-
tion quality, arguing for the need to use more sophisticated approaches, for example,
pruning methods, to allow finding better trajectories. We then introduce the cluster
pruning method for the MGA-1DSM problem and we apply it, in combination with
the simulated annealing with adaptive neighborhood algorithm, to the TandEM test
problem finding a large number of good solutions and a new putative global optima.

Many of the results reported here would not have been possible without the great passion and
competence of Tamas Vinko, Marco del Rey Zapatero, and Marek Rucinski, all researching,
at different times, different global trajectory optimization aspects. The author also wishes to
acknowledge Massimiliano Vasile who, while a research fellow with the Advanced Concepts
Team at the European Space Agency, conceived the Ariadna studies on Advanced Global
Optimization Tools for Mission Analysis and Design, which ignited the spark of this now
incredibly rich research topic.
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7.2 Notation

We will make extensive use of a notation that has become quite standard for the
engineering community in the past decades. We will denote the components of multi-
dimensional vectors with a boldface, x. We will then refer to their components by
using a subscript on a nonboldface font, xi. An important part of the spacecraft
trajectory optimization problem definition is the choice of variables that describe
the spacecraft state. Here we use an abstract state vector representation x when-
ever possible. Otherwise, when explicit equations are useful, a Cartesian choice is
used: x = [r, v, m], where r denotes the spacecraft position in the inertial frame
selected, v its velocity, and m its mass. Other representations can be more suited to
particular applications. Isp is the spacecraft propulsion system specific impulse and
g0 = 9.81 m/s. The positions and velocity of celestial bodies (planets and asteroid)
will be noted with capital letters R and V. In the case of multiphase problem, we will
use a superscript to indicate that a certain quantity is referred to a particular phase,
so that xi will be the spacecraft state during the i-th phase. We also use the subscripts
s and f to indicate the start or final instants of a phase, so that xi

s = xi(tis) will denote
the spacecraft state at the beginning of the phase i.

7.3 Problem Transcription

A spacecraft trajectory optimization problem can, in general, be written in the
deceptively familiar form

P

Optimize: φ(ts, tf , xs, xf )+
∫ tf

ts L(x(t), u(t), t)dt

Subject to: ẋ = a(x, t)+ u(t) dynamic con.

G(ts, tf , xs, xf ) ≤ 0 boundary con.

u ∈ U(x, t) propulsion / power con.

(7.1)

where x(t) is the spacecraft state (including at the least its position, velocity, and mass
or equivalent quantities), a(x, t) represent the external forces acting on the space-
craft (gravitational and non), and u(t) represent the control acting on the spacecraft
and coming from its propulsion system. Note that the set of admissible controls
has, in this general form, an explicit state dependence, a characteristic that is not
accounted for in the classical optimal control theory. The characteristic that makes
problem P unique in its kind is the extremely complicated nature of the dynamic
constraints, which limits the straightforward use of numerical methods to obtain an
optimal solution, and the presence of a large number of locally optimal optimal solu-
tions that calls for the use of global optimisation techniques to effectively explore
the possible solutions. As a consequence, depending on the particular trajectory
problem considered, the problem is often reduced to a simpler form. This process,
which we call problem transcription, is central to the spacecraft trajectory optimiza-
tion process as it heavily influences the performances of the subsequent solution
technique, but also the feasibility of the solution obtained, that is, the possibility
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of transforming it back to an optimal solution of the full problem P . Here we will
focus our attention on the case of interplanetary mission design, and in particular
on the preliminary phases of the process when the need of a fast exploration of the
solution space is more important than a precise description of the trajectory. A com-
prehensive description of the mission design process may be found in [1]. We will
make use of a number of simplifications and hypotheses that are quite commonly
applied:

• The only external force considered in writing the term a(x, t) is the gravitational
attraction g(x) due to the Sun.

• The sequence of N + 1 celestial bodies the spacecraft interacts with is imposed
a priori and not left to the optimization process to eventually find.

• The spacecraft interaction with the selected celestial bodies happens when the
spacecraft state enters the body sphere of influence [2] x ∈ Si, an event that is
imposed as a boundary constraint. The interaction with the intermediate bodies
(that is, excluding the departure and arrival) is described by a discontinuity in
the spacecraft state �xi = xi+1

s − xi
f , and on the time �ti = ti+1

s − tif , typically
a consequence of what is commonly referred to as planetary flyby or a planet
rendezvous.

These discontinuities in the state, describing trajectory phases where the space-
craft interacts with a celestial body, are subject to constraints we write in the form:
�i(xi+1

s , xi
f , ti+1

s , tif ) ≤ 0 and we call phase constraints. These hypotheses formally
transform problem P into:

P ′

Optimize: φ(t1s , tNf , x1
s , xN

f )+
∑N

i=1

∫ tif

tis

Li(xi(t), ui(t), t)dt

Subject to: ẋi = g(xi)+ ui(t), ∀i = 1..N dynamic con.

G(t1s , tNf , x1
s , xN

f ) ≤ 0 boundary con.


i(tis, t
i
f , xi

s, x
i
f ) ≤ 0, ∀i = 1..N phase boundary con.

�i(xi+1
s , xi

f , ti+1
s , tif ) ≤ 0, ∀i = 1..N − 1 phase matching con.

ui ∈ U(xi, t), ∀i = 1..N propulsion / power con.
(7.2)

that is a multiphase optimal control problem where the number of phases N depends
on the number of planetary encounters during the overall trajectory. In explicit Carte-
sian coordinates xi = [ri, vi, mi], and ui = [0, Ti

mi , 0], where T indicates the magnitude
of the spacecraft thrust T. In going from P to P ′, we have simplified the problem at
the cost of introducing an aprioristic choice on the sequence of planetary encounters,
a choice that also needs to be optimized and thus introduces an integer programming
element into the interplanetary trajectory design process. The sequence of planetary
encounters is enforced in the phase boundary constraints 
i. Considering the plan-
etary sphere of influence reduced to one point S i = {x ∈ R

7, x = [Ri(t), ., ., ., .]} (also
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a common simplification), the boundary constraints 
i will include the following
conditions that enforce the spacecraft position to be, at the beginning of each phase,
equal to the departure planet position, and at the end of each phase equal to the
arrival planet position


i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

...
ri
s = Ri(tis)

ri
f = Ri+1(tif )

...

, ∀i = 1..N (7.3)

where we have introduced the sequence of N + 1 planets via their positions Ri(t),
i = 1..N + 1. Under the assumption that the ui are piecewise continuous functions,
problem P ′ is further specified to describe low-thrust problems, whereas an impulsive
modelling of the thrust describes chemical propulsion problems. In mathematical
form, a chemical (impulsive) thrust can be written as Ti = ∑M

j mi�Vi
jδ(t − t̃ ij ).

Here �Vi
j are the velocity increments (impulses) that fully define the thrust law

together with the times t̃ ij . Note that we have used the Dirac delta generalized function

δ(t − t̃ ij ).
The following sections will focus entirely on chemical propulsion problems, a par-

ticular instance of problem P ′ where we basically preassign a given analytical shape
to the thrust strategy that becomes thus determined unequivocally by a finite number
of parameters, effectively reducing the OCP into an NLP (from infinite dimen-
sion to a finite number). In the following two sections we introduce two particular
instances of chemical propulsion problems: the MGA problem and the MGA-1DSM
problem.

7.4 The MGA Problem

The MGA problem definition that follows is a generalization of that given by Izzo
et al. [3]. We define the general form of the MGA trajectory optimization problem
as the following instance of problem P ′

Optimize: φ(t1s , tNf , x1
s , xN

f )

Subject to: ẋi = g(xi)+ ui(t), ∀i = 1..N dynamic con.

G(t1s , tNf , x1
s , xN

f ) ≤ 0 boundary con.


i(tis, t
i
f , xi

s, x
i
f ) ≤ 0, ∀i = 1..N phase boundary con.

�i(xi+1
s , xi

f , ti+1
s , tif ) ≤ 0, ∀i = 1..N − 1 phase matching con.

(7.4)

where:

• Thrusting is possible only at the beginning of each trajectory leg and at arrival
and is impulsive: Ti = mi�Viδ(t − tis), ∀i = 1..N − 1, TN = mN�VNδ(t − tNs )+
�VN+1δ(t − tNf ).
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• The phase matching constraints include �mi = 0, �ti = 0 , ∀i = 1..N − 1
and rp(vi

f , vi+1
s , tif ) ≥ r̃i

p, �Vi = F1(vi
f , vi+1

s , tif ), ∀i = 2..N − 1. The expression
for the functions F1 and rp are given in appendix A and model a planetocentric
hyperbolic trajectory phase where the spacecraft is allowed to thrust tangentially
at the periplanet (powered flyby).

• The boundary constraints include the launcher performances m1
s = G(v1

s , t1s ),
the departure thrust impulse definition �V1 = M(v1

s , t1s ), and the arrival thrust
impulse definition �VN+1 = N(vN

f , tNf ). The expression for G, M, and N are
problem dependent and are part of the further problem instantiation.

From an engineering point of view, these assumptions model a spacecraft equipped
with chemical propulsion engines, that is, high thrust engines that deliver their accel-
eration to the spacecraft in a very short time and that are able to thrust only at each
planet. As noted before, we no longer have an optimal control problem (OCP) as
ui = [0, Ti

mi , 0] is now fully defined by a finite number of parameters. At this stage,
the variables to be optimized, that is, the decision vector, are the initial mass m1

s
and the start and final epochs of each leg tis, t

i
f . The whole dynamic xi(t) during each

phase i, and thus all of the constraints can be, as shown in the following, determined
by these variables, allowing us to simplify the problem solving explicitly most of the
constraints, starting from the dynamic constraints, and thus reducing the problem
complexity and dimension.

7.4.1 Spacecraft Position and Velocity

The dynamic constraints relative to ri and vi may be solved explicitly if we consider
them separately grouped with the appropriate phase boundary constraints appearing
in Equation (7.3) as follows

⎧⎪⎪⎨
⎪⎪⎩

ṙi = vi

v̇i = − μ

ri3
ri

ri
s = Ri(tis), r

i
f = Ri+1(tif )

. (7.5)

For each phase, the above two-points boundary value problem defines what is
commonly known as a Lambert’s problem [2]. Such a problem admits 2(1 + 2Mi)

solutions where Mi ∈ [0,∞) is an integer depending on the boundary conditions in
a rather complex way. Solutions to the Lambert’s problem are commonly divided
into posigrade orbits and retrograde orbits according to the direction of their angu-
lar momentum vector hi = ri ∧ vi with respect to the ecliptic frame. Also, they
are divided into multirevolution and single revolution, according to the number of
times the initial position is acquired during the trajectory (one or more). To simplify
the problem, we consider only single-revolution and posigrade solutions (a general
formal treatment of the MGA problem not using these hypotheses can be found in
Izzo et al. [3]). Under these hypotheses, Lambert’s problem always admits a unique
solution, and we may thus derive the relations ri(t) = Li

r(t, t
i
s, t

i
f ), vi(t) = Li

v(t, t
i
s, t

i
f ).
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7.4.2 Spacecraft Mass

Also the remaining dynamic constraint, relative to the mass, can be solved explic-
itly. From the MGA problem definition we know the thrust law along each phase.
Considering last of Equation (7.5) (relative to the spacecraft mass), we have ṁi =
− �Vi

Ispg0
miδ(t − tis). Integrating from tis to tif , we may write explicitly the mass as a

function of time using the Heaviside step function H and explicitly using the phase
matching constraints �mi = 0

mi(t) = m1
s exp

⎛
⎜⎝−
∑N

i=1
�ViH(t − tis)+�VN+1H(t − tNf )

Ispg0

⎞
⎟⎠ . (7.6)

Eliminating m1
s and �Vi in the expression above by explicitly using the various con-

straints F1, G, M, N in the general MGA problem definition, we may eventually write
mi(t) = Li

m(t, t
1
s , .., tis, t

1
f , .., tif ).

7.4.3 The Final Form

In the remaining phase, matching constraint we still have, from the definition of the
MGA problem, �ti = 0 → tif = ti+1

s , which allows us to eliminate N − 1 further

variables. Choosing as new variable notation t0 = t1s and ti = ti−1
f , ∀i = 1..N we

define the decision vector as p = [t0, t1, .., tN ]. For each choice of the decision vector,
the whole spacecraft state xi(t) is known throughout phase i and the general form of
the MGA problem described by Equation (7.4) is thus reduced to

Optimize: φ(p)
Subject to: G(p) ≤ 0 boundary con.

rp(ti−1, ti, ti+1) ≥ r̃i
p phase matching con.

(7.7)

where no phase boundary constraints are left as they all are explicitly satisfied. The
above problem is defined here as the MGA problem and has a dimension N + 1.

We have formally presented the procedure to transcribe a trajectory optimiza-
tion problem into an MGA problem, highlighting the hypotheses that underlie this
particular transcription. Further specification of the objective function, of the bound-
ary constraints, and of the decision vector bounds will create different instances of
the MGA problem.

7.5 The MGA-1DSM Problem

The MGA-1DSM problem definition that follows generalizes a number of particular
problem instances studied in previous works [4, 5, 6]. We define the general form
of the MGA-1DSM trajectory optimization problem as the following instance of
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problem P ′

Optimize: φ(t1s , tNf , x1
s , xN

f )

Subject to: ẋi = g(xi)+ ui(t), ∀i = 1..N dynamic con.

G(t1s , tNf , x1
s , xN

f ) ≤ 0 boundary con.


i(tis, t
i
f , xi

s, x
i
f ) ≤ 0, ∀i = 1..N phase boundary con.

�i(xi+1
s , xi

f , ti+1
s , tif ) ≤ 0, ∀i = 1..N − 1 phase matching con.

(7.8)

where:

• Thrusting is possible only at departure, at arrival, and once at some point
along each phase and is impulsive: T1 = m1�V0δ(t − t1s ) + �V1δ(t − t̃1),
Ti = mi�Viδ(t − t̃ i), ∀i = 2..N − 1, TN = mN�VNδ(t − t̃N)+�VN+1δ(t − tNf ).

• The phase matching constraints include �mi = 0, �ti = 0 , ∀i = 1..N − 1,
rp(vi

f , vi+1
s , tif ) ≥ r̃i

p ∀i = 1..N − 1 and ṽi
in = ṽi

out , ∀i = 1..N − 1, where ṽi
in =

|vi
f − Vi+1(tif )|, ṽi

out = |vi+1
s − Vi+1(ti+1

s )|, and the functional relationship rp is
the same as in the MGA problem and is given in appendix.

• The boundary constraints include the launcher performances m1
s = G(v1

s , t1s ),
the departure thrust impulse definition �V0 = M(v1

s , t1s ), and the arrival thrust
impulse definition �VN+1 = N(vN

f , tNf ). The expression for G, M, and N are
problem dependent and are part of the further problem instantiation.

These hypotheses model a spacecraft equipped with chemical propulsion engines,
able to thrust at departure, at arrival, and only once during each trajectory phase
and never during planetary flybys. The MGA-1DSM problem removes most of the
limitation of the MGA problem and is an accurate problem transcription for many
preliminary trajectory design cases. The most important remaining limitation of this
problem transcription is in the fixed number of DSM allowed in each phase. As in the
MGA problem, the optimal control problem is transformed into an NLP problem
as the control ui(t) is now fully parameterized by a discrete number of variables.
At this stage, the variables to be optimised, that is, the decision vector, are the
initial mass mi

s and, for each phase, the vector pi = [tis, vi
s, t̃

i, tif ]. The whole dynamic

during each phase xi(t) is, as shown in the following, determined analytically by
these variables, allowing us to simplify the problem solving explicitly most of the
constraints, starting from the dynamic constraints, and thus reducing the problem
complexity and dimension.

7.5.1 Spacecraft Position and Velocity

Let us focus on the i-th phase. Given tis and vi
s, it is possible to find ri(t) and vi(t) for

t ≤ t̃ i using the known analytical solution to Kepler’s problem expressed, for exam-
ple, in terms of the Lagrange coefficients [2]. The initial position is also known from
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the phase boundary constraints and is ri
s = Ri(tis). From t̃ i to tif , we also can derive

explicitly the spacecraft position and velocity by considering (as in the MGA case)
the dynamic constraints separately grouped with the appropriate phase boundary
constraints appearing in Equation (7.3) as follows

⎧⎪⎨
⎪⎩

ṙi = vi

v̇i = − μ

ri3
ri

ri(tis) = ri(t̃ i), ri(tif ) = Ri+1(tif ).

This is again a Lambert’s problem that, under the same hypotheses assumed for the
MGA case, always admits a unique solution and allows us to derive the relations
ri(t) = Li

r(t, p
i), vi(t) = Li

v(t, p
i). Note that in t̃ i, the spacecraft velocity will be

discontinuous as the value evaluated using the Lagrange coefficients will generally
differ from that returned by the Lambert’s problem solution. Such a discontinuity
defines the velocity increment �Vi, i = 1..N as a function of pi.

7.5.2 Spacecraft Mass

As was done in the case of the MGA problem, by explicitly using the phase match-
ing constraints �mi = 0 and the equation for the mass, we may derive the simple
expression

mi(t) = m1
s exp

⎛
⎜⎝−�V0H(t − t1s )+

∑N

i=1
�ViH(t − tis)+�VN+1H(t − tNf )

Ispg0

⎞
⎟⎠ .

(7.9)

Eliminating m1
s and the �Vi in the expression above by explicitly using the launcher

performance, the departure and arrival thrust impulse definitions, we may eventually
write mi(t) = Li

m(t, p
1, .., pi).

7.5.3 The Final Form

All the remaining phase constraints from the definition of the simple MGA-1DSM
problem may also be explicitly satisfied using suitable variable changes in the decision
vector. In particular we may substitute the variables vi for each phase, except the
first one, with the periplanet of the planetocentric hyperbola ri

p and the b-plane
orientation β i using the existing functional relationship

vi+1
s = F2(vi

f , Vi+1(ti+1
s ), ri+1

p ,β i+1) (7.10)

that describes explicitly the flyby dynamics satisfying explicitly the phase constraints
ṽi

in = ṽi
out , ∀i = 1..N − 1 (see Appendix A) and allows to transform the nonlinear



186 Global Optimization & Space Pruning

constraint rp(vi
f , vi+1

s , tif ) = ri
p ≥ r̃i

p into a lower bound for the introduced decision

vector variable ri
p. Eventually eliminating further variables using the phase matching

constraint�ti = 0, we have a decision vector p̃ = [t1s , v1
s , t̃1, t1f , r2

p,β2, t̃2, t2f , ..]. To sim-
plify the search space structure, we introduce some variable substitutions. Instead of
the heliocentric spacecraft initial velocity v1

s , we use the variables V∞, u, v defined as

v1
s = V∞

(
cos(θ) cos(φ)î + sin(θ) cos(φ)ĵ+ sin(φ)k̂

)
θ = 2πu

φ = arccos(2v− 1)− π/2

î = V1(t1s )/|V1(t1s )|
k̂ = R1(t1s ) ∧ V1(t1s )/|R1(t1s ) ∧ V1(t1s )|
ĵ = k̂ ∧ î.

Also, instead of the absolute epochs tif we use the transfer times T1 = t1f − t1s ,

Ti = tif − ti−1
f and instead of t̃ i we use ηi defined as t̃1 = t1s + T1η1, t̃ i = ti−1

f + Tiηi.

The decision vector used will thus be p̃′ = [t1s , V∞, u, v, η1, T1, r2
p,β2, η2, T2, ..]. This

allows us to specify as upper and lower bounds on the decision vector what would
otherwise need to be nonlinear constraints. Eventually the general form of the simple
MGA-1DSM problem described by Equation (7.8) is reduced to

Optimize: φ(p̃′)
Subject to: G(p̃′) ≤ 0 boundary con.

(7.11)

No phase matching constraints or phase boundary constraints are left as we have
explicitly satisfied all of them, reducing the search space structure to a hyper-
rectangle. The remaining boundary constraints, as detailed later in the description of
particular instances of this problem, express, typically, a maximum trajectory length
duration or other particular mission requirements. The MGA-1DSM problem, as
defined here, includes trajectories with multiple revolutions and with no deep space
maneuvers in a particular phase. Thus, this particular transcription creates a contin-
uous optimization problem while being able to describe discrete decision variables
such as the number of revolutions or the use of a deep space maneuver during a
trajectory phase.

7.6 Benchmark Problems

We now describe the detailed instantiation of some MGA and MGA-1DSM prob-
lems that can be used as test problems to study the performance of global optimization
solvers or of space pruning techniques. All problems proposed present very large
bounds to be representative of the type of trajectory optimization often required in
preliminary mission design phases. For each problem we define the flyby sequence,
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the objective function, the bounds on the decision vector variables, and the constraint
expressions. Clearly there are a number of other factors that influence, to some
smaller extent, the exact calculation of the objective function, such as the values of
the different planetary gravitational constants, the planet ephemerides used (that is,
the functions Ri, Vi), the planets’ radii, and so on. To allow the scientific community
to share a common implementation of each problem instance, the code in C++ and
Matlab of each one of the problems described in detail here is available for down-
load from the European Space Agency Global Trajectory Optimisation Problems
(GTOP) database [7]. A preliminary description of some of these test problems is
also given by Vinko [8]. We also report the best putative global optima known at
the time of writing as taken from the GTOP database where the reader can also find
exact numerical details of the solutions here reported.

7.6.1 Cassini1

This problem is a particular instance of the MGA problem as defined in Equation
(7.7). It has N = 5 phases and hence N+1 = 6 celestial bodies are defined in the flyby
sequence: Earth, Venus, Venus, Earth, Jupiter, and Saturn. Thus the decision vector
is p = [t0, .., t5] and contains the epochs of each planetary encounter. The objective
function is defined as φ(p) = −g0Isp log(mN

f /m
1
s ), where the ratio between the final

and the initial mass mN
f /m

1
s is given by Equation (7.6) evaluated at tNf . Note that,

after taking the logarithm, the objective function is essentially the sum of the various
velocity increments: φ(p) = ∑�Vi. No further constraints are considered except
those appearing in the generic MGA problem definition. The Cassini1 problem can
be written as

Minimize: −g0Isp log(mN
f /m

1
s ) =
∑

�Vi

Subject to: rp(ti−1, ti, ti+1) ≥ r̃i
p, ∀i = 1..N − 2 phase matching con.

(7.12)

The departure thrust impulse is defined as �V1(t0, t1) = |V1(t0) − v1
s |, the arrival

thrust impulse is defined as an orbital insertion as detailed in the Appendix A (rins
p

and eins are given in Table 7.3). The launcher performance is in this case not rele-
vant, as the value of the initial spacecraft mass m1

s does not appear anywhere in the
problem definition (the objective function depends only on the velocity increments).
Introducing the variable change Ti = ti − ti−1, i = 1..5, the exact values needed to
define this test problem are given in Table 7.1. The Cassini1 problem admits a putative
global optima at φ = 4.93 km/s and is characterized by a number of local optima with
a very strong basin of attraction, particularly noteworthy the one at φ = 5.30 km/s
that seems to be very difficult for many optimization techniques to overcome.

7.6.2 GTOC1

This problem is a particular instance of the MGA problem as defined in Equation
(7.7). It has N = 7 phases and hence N + 1 = 8 celestial bodies (the flyby
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Table 7.1. Bounds and other parameters for the problem Cassini1

Variable Lower Bound Upper Bound units parameter value units

t0 −1000 0 (MJD2000) r̃1
p 6351.8 km

T1 30 400 days r̃2
p 6351.8 km

T2 100 470 days r̃3
p 6778.1 km

T3 30 400 days r̃4
p 671492 km

T4 400 2000 days rins
p 108950 km

T5 1000 6000 days eins 0.98

Table 7.2. Bounds and other parameters for the problem GTOC1

Variable Lower Bound Upper Bound units parameter value units

t0 3000 10000 (MJD2000) r̃1
p 6351.8 km

T1 14 2000 days r̃2
p 6778.1 km

T2 14 2000 days r̃3
p 6351.8 km

T3 14 2000 days r̃4
p 6778.1 km

T4 14 2000 days r̃5
p 600000 km

T5 100 9000 days r̃6
p 70000 km

T6 366 9000 days �Vlau 2.5 km/s

T7 300 9000 days m0 1500 kg
Isp 2500 sec

sequence) are forced to be encountered by the spacecraft along its trajectory: Earth,
Venus, Earth, Venus, Earth, Jupiter, Saturn, TW299. Thus, the decision vector is
p = [t0, .., t7] and contains the epochs of each planetary encounter. The objective
function is defined as φ(p) = mN

f |(VN+1 − vN
f ) · VN+1| and no further constraints

are considered except those appearing in the generic MGA problem definition. The
GTOC1 problem can be written as

Maximize: φ(p) = mN
f |(VN+1 − vN

f ) ·VN+1|
Subject to: rp(ti−1, ti, ti+1) ≥ r̃i

p, ∀i = 1..N − 2 phase matching con.
(7.13)

where the final mass mN
f is given by Equation (7.6) evaluated in tNf . The departure

thrust impulse is defined as �V1(t0, t1) = max(|V1(t0)− v1
s | −�Vlau|, 0), the arrival

thrust impulse is defined as �VN+1 = 0. The launcher performance is defined as
m1

s = m0. Introducing the variable change Ti = ti − ti−1, i = 1..7, the exact values
needed to define this test problem are given in Table 7.2. The GTOC1 problem
admits a putative global optima at φ = 1, 580, 599 kg km2 /s2 and is characterized by
a large number of local optima at almost all objective function ranges.

7.6.3 Rosetta

This problem is a particular instance of the MGA-1DSM problem as defined in
Equation (7.11). It has N = 5 phases and hence N + 1 = 6 celestial bodies (the
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flyby sequence) are forced to be encountered by the spacecraft along its trajectory:
Earth, Earth, Mars, Earth, Earth, Jupiter, Saturn, 67P/Churyumov-Gerasimenko..
Thus, the decision vector is p̃ = [t1s , v1

s , t̃1, t1f , r2
p,β2, t̃2, t2f , ..]. The objective function

is defined as φ(p) = −g0Isp log(mN
f /m

1
s ), where the ratio between the final and the

initial mass mN
f /m

1
s is given by Equation (7.9) evaluated in tNf . Note that, after taking

the logarithm, the objective function is essentially the sum of the various velocity
increments: φ(p′) =∑�Vi. The Rosetta problem can thus be written as

Minimize: −g0Isp log(mN
f /m

1
s ) =
∑

�Vi (7.14)

and is an unconstrained global optimization problem. The departure velocity incre-
ment is defined as�V0 = 0, the arrival velocity increment is defined as�VN+1(p′) =
|VN(tNf )−vN(tNf )|. The launcher performance is in this case not relevant, as the value

of the initial spacecraft mass m1
s does not appear anywhere in the problem definition

(the objective function depends only on the velocity increments). The exact values
needed to define this test problem are given in Table 7.3. The Rosetta problem admits
a putative global optima at φ = 1.34 km/s.

Table 7.3. Lower and upper bounds defining the MGA-1DSM
problems Rosetta and TandEM

Rosetta TandEM

Variable LB UB units LB UB

t0 1460 1825 MJD2000 5475 9132
Vinf 3 5 km/s 2.5 4.9
u 0 1 0 1
v 0 1 0 1
T1 300 500 days 20 2500
T2 150 800 days 20 2500
T3 150 800 days 20 2500
T4 300 800 days 20 2500
T5 700 1850 days
η1 0.01 0.9 0.01 0.99
η2 0.01 0.9 0.01 0.99
η3 0.01 0.9 0.01 0.99
η4 0.01 0.9 0.01 0.99
η5 0.01 0.9
r1
p 1.05 9 Planet Radii 1.05 10

r2
p 1.05 9 Planet Radii 1.05 10

r3
p 1.05 9 Planet Radii 1.05 10

r4
p 1.05 9 Planet Radii

β1 −π π rad −π π

β2 −π π rad −π π

β3 −π π rad −π π

β4 −π π rad
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7.6.4 Constrained TandEM–Atlas501–EVEEJ

This problem is a particular instance of the MGA-1DSM problem as defined in
Equation (7.11). It has N = 4 phases and hence N + 1 = 5 celestial bod-
ies (the flyby sequence) are forced to be encountered by the spacecraft along
its trajectory: Earth, Venus, Earth, Earth, Jupiter. Thus the decision vector is
p̃ = [t1s , v1

s , t̃1, t1f , r2
p,β2, t̃2, t2f , ..]. The objective function is defined as φ(p) = mN

f ,

where the final mass is given by Equation (7.9) evaluated in tNf . We also introduce
a global constraint on the total trajectory duration. The TandEM-Atlas501-EVEEJ
(in the following “TandEM problem” for brevity) can thus be written as

Minimize: mN
f

subject to: tNf − t1s ≤ ttot
(7.15)

and is a constrained global optimization problem where the total trajectory time is
limited to ttot = 10 years. The departure thrust impulse is defined as �V0 = 0, the
arrival thrust impulse is defined as an orbital insertion as detailed in the Appendix
(rins

p = 80, 330 km and eins = 0.9853). The launcher performance is that of Atlas-501
obtained as detailed in Appendix A using the table given by NASA Launch Services
(NLS) Launcher Performances. Outside the reported declinations (± 28.5 deg), a
null mass is considered. The TandEM problem admits a putative global optima at
φ = 1437.58 kg.

7.7 Global Optimization

The advantage of transcribing a given trajectory design problem into a well-defined
optimization problem stems from the possibility of using computer algorithms to
achieve a complete automation of the design. Each problem instance can in fact be
coded into a black-box function expressing the functional relationship between the
decision vector and a figure of merit expressing the quality of the related trajec-
tory and its constraint violations. Derivative-free global optimization algorithms can
then be applied to try finding optimal solutions. This approach to designing space-
craft trajectories is reaching a great maturity and promises a completely unbiased
and automated listing of optimal trajectory options. Algorithms such as Differential
Evolution, Genetic Algorithms, Particle Swarm Optimization, Simulated Anneal-
ing, and, even more recently, Monotonic Basin Hopping, just to quote a few, have
all been tried with different degrees of success. It is important to be aware that all
of the above algorithms are able to solve some particular instances of the trajec-
tory problems. Simply taking a suitable problem instance, it is possible to achieve
good performances in almost all cases. It is crucial to escape the temptation to pick
an algorithm, perhaps introduce some modifications, and present a few pseudo-
randomly selected trajectory optimizations where its performances seem good. With
this respect, the test problems introduced here, in Vinko et al. [8], and in general
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Table 7.4. Performances of off-the-shelf solvers on two MGA test problems
over 100 runs

Problem Paradigm DE PSO MPSO SA-AN SGA

Cassini1
(min =
4.93 )

Mean 8.57 9.47 7.05 11.67 7.09
Std 3.29 4.20 2.39 4.236 2.30
Min 4.93 5.33 5.43 5.12 5.44
Max 16.71 22.90 15.53 23.44 17.98

GTOC1
(max =
1,580,599 )

Mean 1,140,759 759,221 602,331 1,179,835 907,781
Std 146,589 174,463 125,163 139,590 232,290
Min 836,772 295,143 341,780 846,720 81,820
Max 1,523,629 1,134,860 876,177 1,511,767 1,416,050

Table 7.5. Performances of off-the-shelf solvers on two
MGA-1DSM test problems over 100 runs

Problem Paradigm DE PSO MPSO SA-AN SGA

Rosetta
(min =
1.34 )

Mean 7.55 10.36 10.76 4.13 9.95
Std 1.82 2.72 1.93 0.94 3.29
Min 3.94 5.34 7.01 2.61 4.35
Max 13.26 15.79 15.46 6.65 17.52

TandEM
(max =
1437.58 )

Mean 216.32 144.03 108.12 625.26 78.75
Std 80.35 135.79 50.42 254.62 80.50
Min 95.28 22.42 33.57 60.43 3.78
Max 460.87 862.64 321.37 1298.19 498.22

those present in the GTOP database [7] can offer a significant help in understand-
ing the value of any proposed algorithm under the conditions that the bounds, the
parameter values, and the underlying models are left untouched. They describe a fair
range of quite complex interplanetary spacecraft trajectory optimization problems.
Some of them have a rather academic value, like Cassini1 or GTOC1, and some are
instead quite close to the type of problems mission designers solve in preliminary
phases of the trajectory design process, like Rosetta or the constrained TandEM
problem.

In Table 7.4 and Table 7.5, we list the performances that several standard imple-
mentation of popular heuristics paradigms achieve on the described test problems.
These results can give a feel for the type of performances one can expect by applying
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a given paradigm but should in no way be considered as a general comparison table
between paradigms, as the tables are obtained by choosing a particular algorithmic
setting that can, no doubt, be improved by tuning appropriately the various con-
stants or by changing some implementation details. The algorithms tested are all
well described in the literature and we here only briefly touch upon them:

• DE: The Differential Evolution paradigm has been found by Myatt et al. [9] to
be a good solver for spacecraft trajectory optimization problems and is described
in detail in the work by Storn and Price [10]. It is fully defined by the strategy
adopted (several are proposed in the original paper) the population size NP, and
two parameters, the weighting factor F and the crossover ratio CR.

• PSO: The Particle Swarm Optimization algorithm, in its simplest form, has been
proposed by Kennedy and Eberhart [11] and is fully defined by the number of
particles NP, the inertia weight ω, by the cognitive component factor η1, and the
social component factor η2.

• MPSO: The Multiple Particle Swarm Optimization algorithm is a variation to the
canonic PSO whereby multiple swarms are performing the search independently
except randomly swapping every k iterations the swarm membership. It has been
found to provide some advantages over PSO in [12] and is fully defined by k, the
number of particles NP, the inertia weight ω, the cognitive component factor η1,
the social component factor η2, and the number of swarms n.

• SA-AN: The Simulated Annealing with Adaptive Neighborhood paradigm [13]
is a variation to the Simulated Annealing, where the sampling neighborhood
for each decision vector component is adaptively changed according to the
acceptance rate of new solutions. There are many ways of implementing such a
paradigm; here we use the algorithm proposed by Corana [13] detailed in the
Appendix B using re-annealing and that is fully defined by the starting temper-
ature Ti, the final temperature Tf , and the annealing speed nfann defining the
number of function evaluation allowed for each annealing.

• SGA: The Simple Genetic Algorithm is a basic version of a genetic algorithm
[14] that uses roulette wheel selection, exponential crossover, uniform mutation,
and an elitist strategy. The free parameters for this algorithm are the population
size NP, the mutation probability M of each gene, and the crossover ratio CR
defined in the same way as that of the DE algorithm.

In the test results presented here, each algorithm was left free to calculate for
enough function evaluations allowing a statistical convergence of the results. That
is, the results given in the tables refer to a fixed number of function evaluations
FEVAL and would not be significantly statistically different (a pair-wise Welsh test
has been carried out with a confidence level of 95%) if the results were compiled
after FEVAL/2 function evaluations. For all tests, FEVAL = 1,200,000 except for
Cassini1 where FEVAL = 80,000. All population-based algorithms were tested with
a population size NP = 20. The parameters for DE are F = 0.7, CR = 0.7, and the
strategy DE/rand/1/exp was used. For PSO we used ω = 0.65, η1 = η2 = 2. For
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MPSO we used the same settings as for PSO and n = 4 swarms, that is, each swarm
had five particles. For the GA we used M = 0.2 and CR = 0.7. For SA-AN we used
a starting temperature Ti = 10 for Cassini1 and Rosetta, Ti = 100,000 for GTOC1
and Ti = 1 for TandEM, a final temperature of Tf = 0.036 for Cassini1 Tf = 138
for GTOC1, Tf = 0.073 for Rosetta, and Tf = 0.0024 for TandEM. All SA-AN
simulations were allowed nfsa−an = 10, 000 function evaluations per annealing cycle.

7.7.1 Discussion

The results presented aim at showing that the standard implementations of the global
optimization algorithms tested all have, to different degrees, quite poor reliability
and performances if applied directly to the difficult interplanetary test problems
proposed. The straightforward use of these algorithms seem thus to fail providing the
hoped automated and unbiased approach to complex trajectory optimization. Tuning
the various algorithms parameters can surely offer a performance improvement that
comes, though, at the cost of further objective function evaluations and needs to be
performed for each problem instance. From the results reported here and from the
experience accumulated by this author in several other experiments, we can claim
that DE and SA-AN are the best performing algorithms, DE being particularly
efficient in MGA problems and SA-AN, whose performances are reported here
for the first time, appearing to outperform all others in MGA-1DSM problems. A
further performance improvement can also be obtained by letting heterogeneous
versions of these algorithms run in parallel in a so-called island model1, as recently
suggested by Izzo et al. [15]. Other algorithms are available that have not been tested
here, and new ones are certain to come in the future. Noteworthy is the case of the
Basin Hopping algorithm [16] that has been very recently applied, to the knowledge
of this author, for the first time by Bernadetta Addis, Fabio Schoen, and Marco
Locatelli to a great number of interplanetary trajectory problem instances (also to
the ones described here) locating reliably good solutions and beating consistently all
the known global optima [7]. Another approach able to find reliably a large number
of good trajectory options in reasonable computational times is that of applying
global optimization algorithms on a reduced portion of the search space obtained
by pruning out regions according to some predefined criteria. This way the problem
instance complexity can be substantially reduced allowing different algorithms to
reliably converge in short times to optimal solutions. In the next sections, we will
introduce two of such techniques and we will comment on how, while allowing for
an automated and efficient search, they introduce the need to perform a number of

1The island model is one successful paradigm to perform heuristic global optimization in
a CPU network by having different sets of solutions being optimized separately in different
islands, typically assigned to different CPUs, and letting some solutions stochastically move
to new islands following predefined “migration” paths. A careful setup of such a system can
bring to an improvement that is superlinear with the respect to the number of CPUs used and
eventually to the definition of a new algorithm outperforming those operating on the single
islands.
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choices on the pruning criteria that need to be carefully made as not to introduce
unwanted biases in the optimization process.

7.8 Space Pruning

The term space pruning refers to all techniques that allow reduction of search space
focussing the optimization in smaller areas where the optimal solutions are to be
found. The output of a typical pruning process is a set of hyperrectangles contained
in the original search space where, according to some criteria, good solutions are
expected. There are a large number of criteria that can be adopted to define such
regions and that are dependent on the particular problem instance considered, here
we introduce techniques that are generically applicable to a whole problem class,
regardless of the instantiation details.

7.8.1 Pruning the MGA Problem: GASP

For the MGA problem an efficient pruning method is that developed by Myatt et al.
[9, 3] and named Gravity Assist Space Pruning (GASP). The details of such a tech-
nique are well described in these two references and are thus not reported here. The
method is based on the possibility of incrementally dividing the MGA problem in a
cascade of two-dimensional problems where grid sampling is computationally effi-
cient. Propagating back and forward pruning criteria defined on the flyby constraint
satisfaction and on maximum �Vi allowed, it is then possible to reduce the number
of sampled points to a fraction of the original space. For the Cassini1 problem, a
space reduction of six-order of magnitude is reported. The polynomial complexity of
the resulting algorithm has also been demonstrated both with respect to the grid size
defined for each two-dimensional problem and to the overall problem dimension.
While polynomial complexity as such does not necessarily lead to efficient algorithms,
in the case of GASP the low exponents involved produce an incredibly fast prun-
ing algorithm that allow to reliably solve MGA problems locating all good launch
windows and the globally optimal solution contained therein. Recent attempts have
been made to improve the GASP algorithm to allow a mathematical proof on the
global optimality of the found solution [17] or to extend it to low-thrust trajectories
[18] and to problems similar to the MGA-1DSM [19, 20, 21]. In these methods, poly-
nomial complexity is retained, but with much larger exponents, or to the price of an
excessive problem simplification that make the resulting implementations of a rather
limited use.

7.8.2 Pruning the MGA-1DSM Problem: Cluster Pruning

The cluster pruning algorithm we propose here was developed by Marco del Rey
Zapatero and by this author during March 2008 at the Advanced Concepts Team and
is reported here for the first time. It results in the possibility to achieve full automation
of the trajectory optimization process at the cost of employing appropriate computing
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power. The algorithm is based on the observation that in the MGA-1DSM problem,
good solutions are often clustered in a small portion of the solution space rather than
being equally distributed all over it. This is quite intuitive for variables such as t1s ,
that is, the launch date, but is also equally valid for the other variables, as we will
see. Each cluster of solutions corresponds to a different strategy and can be detected
automatically and further explored in more depth as isolated problems by global
optimization algorithms. The following pseudoalgorithm illustrates the approach in
more detail:

(1) instantiate the problem with bounds LB, UB
(2) while not convergence-criterion
(3) perform N optimizations using the algorithm A
(4) refine the N solutions found using a local optimization technique (optional)
(5) identify clusters of good solutions
(6) prune according to the results obtained and define new bounds LB, UB

In step 1, an MGA1-DSM problem is instantiated. In the following main loop, a
global optimization algorithm is used to produce N solutions to the problem. The
solutions, representing local optima of varying quality, are then optimized locally;
this step is not necessary but helps in reducing the total pruning steps. The obtained
trajectories are later analyzed to identify regions where the best of them lie and
thus to produce reduced bounds. At each iteration, a smaller space is produced, and
the N following optimizations produce increasingly better solutions. The baseline
performances of the chosen algorithm A are crucial to the success of the process,
as is the method used to produce the new bounds (or the set of new bounds in case
multiple clusters are allowed to be selected).

We illustrate the detailed steps of a possible implementation of the algorithm
in the particular case of the MGA-1DSM problem TandEM. We select one the best
performing algorithms from Table 7.5, that is Simulated Annealing with Adaptive
Neighborhood. Performing N = 100 optimization on the full problem, we obtain the
relatively poor results reported on the same table. We evaluate the p percentile of
the different objective functions returned and consider only the decision vectors x
that are above such a value. We set the new bounds to LBnewi = min(xi) − (UBi −
LBi)p/100/2 and UBnewi = max(xi) + (UBi − LBi)p/100/2 only if these are still
within the old bounds.

In Table 7.6 we report the results of the N = 100 runs of the SA-AN algorithm
at each pruning step (we perform four iterations of the cluster pruning algorithm
with increasing percentile levels of 80, 90, and 95. At the end of each iteration,
we run a local optimizer starting from all the N trajectories found. A total of 400
locally optimal trajectories is thus computed during the process.). In Figure 7.1, as
an example, we show the values of u and T3 for these 400 solutions together with
the bounds at each pruning steps. The final best solution can be further improved
by performing iteratively local optimization starting from a close neighborhood. We
thus find a new putative global optimum at mN

f = 1,476.01 kg improving the known
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Table 7.6. Stochastic pruning for the TandEM-Atlas501-6 MGA–1DSM problem

Problem Pruning iterations 0 1 (p = 80) 2 (p = 90) 3 (p = 95)

TandEM-Atlas501-6
(max) Mean 625.26 838.94 1060.74 1445.45

Std 254.62 269.31 262.08 38.133
Min 60.43 249.37 341.2 1370.52
Max 1298.19 1381.38 1475.22 1475.71
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Figure 7.1. Plot of u and T3 against the final mass for all the 400 computed trajectories. The
bounds reduction obtained by pruning is also visualized. Note the Earth-Earth transfer times
resonances clearly visible as clusters in the T3 graph.

best solution reported in the GTOP database [7]. The corresponding trajectory is
visualized in Figure 7.2.

At the end of the process, we have not only a putative globally best trajectory,
but a large number of other trajectories distributed in those parts of the search space
where good solutions are likely to be found and thus a thorough representation of
the solution space that is necessary in the preliminary phases of the trajectory design
process when requirements change quite often (for example, bounds and constraints)
and it is not possible to run a new optimization at each time. It is noteworthy that
the global best solution employs only one deep space maneuver, that is, between
the two consecutive Earth flybys, but this strategy was not imposed a priori; rather
it is a result of the optimization process. In the best solution found, no multiple
revolutions are present. While these can in principle increase the final mass, the
constraint on the total flight duration in this case drives the optimization process
toward trajectories that do not make use of multiple revolutions so as not to lose
time. Once again, this is not imposed upfront, but it is a result of the automated
optimization process. Releasing the constraint on the total flight duration, some tests
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Figure 7.2. Putative globally optimal trajectory found in the TandEM problem using cluster
pruning.

revealed that the optimal solutions indeed exploit multiple revolutions to increase
the final mass.

7.9 Concluding Remarks

Global optimization meta-heuristics are useful in automatically finding and selecting
good trajectory options between the often-many possibilities one has in the prelimi-
nary phases of mission design. Their use and efficiency are established for chemical
propulsion problems of high complexity (that is, large launch windows and multi-
ple flybys) whenever approaches more sophisticated than the straightforward use
of standard algorithms are adopted. It seems likely that future research results will
aim at proving the use of these techniques for the automated computation of low-
thrust trajectories as well. Preliminary results in this sense are already available and
pointing to an increased need of computational resources. Under the assumption
that the available computing power will keep increasing at the same pace in the
next decade, it thus seems possible to argue that a completely automated trajectory
design process, at least in the case of patched two-body problems, may sooner or
later be able to replace the current design methods relying substantially on expert
knowledge, similar to how we no longer have to perform a full function study to
obtain its graph.
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Appendix 7A

Definition of rp (vin, vout , t) and F1 (vin, vout , t)

The functional expression relating the incoming and outgoing velocities during a
given planetary flyby at epoch t is described here. In the following, the spacecraft is
allowed to have a tangential and impulsive velocity change at the periplanet so that
its trajectory will consist of two hyperbolas patched at the pericenter. Introducing
the relative velocities ṽin = |vin − V(t)|, ṽout = |vout − V(t)|, simple astrodynamic
calculations show that taking as length unit any L and as velocity unit

√
μpla/L (where

μpla is the gravitational parameter of the planet considered), the angle between ṽin

and ṽout is given by

αi = arcsin
ain

ain + rp
+ arcsin

aout

aout + rp
(7.16)

where ain = 1/(ṽin · ṽin) and aout = 1/(ṽout · ṽout). Inverting this equation for rp,
we define the function rp = rp(vin, vout , t). The velocity increment necessary at the
pericenter, that is, the function F , is given by the simple relation

�V =
∣∣∣√(1/ain + 2/rp)−

√
(1/aout + 2/rp))

∣∣∣ = F(vin, vout , t).

Note that in a MGA-1DSM problem as ṽin = ṽout , there is no velocity increment
needed (F = 0), and the definition of rp can be obtained by explicit inversion of the
first equation.

Definition of the Arrival Thrust Impulse N(v, t) as an Orbit Insertion

In case when at the arrival planet the spacecraft is inserted into an elliptic planeto-
centric orbit having an assigned pericenter rins

p and eccentricity eins, the tangential
velocity increment needed at the pericenter is determined by the spacecraft arrival

velocity v at epoch t. Taking as length unit rins
p and as velocity unit

√
μpla/rins

p (where

μpla is the gravitational parameter of the planet considered), we have, from simple
astrodynamics

vp− =
√

ṽ2 + 2

vp+ =
√

1+ eins

�V = |vp− − vp+| = N(v, t).

Definition of the Launcher Performances m = G(v, t)

When we want to model a particular launcher, its performances are often given in
terms of a table relating the mass that can be delivered by the launcher to a given
value of the hyperbolic escape velocity ṽ and at a certain declination δ (this last being
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referred to the equatorial reference system). These two quantities may be evaluated
from the heliocentric departure velocity v and the epoch t as

ṽ = v −V(t)

ṽequ = Rṽ

sin δ = ṽequ · k
ṽequ · k

where R is the rotation matrix that allows a change of reference system to the
equatorial planetocentric. Then m can be found by interpolation.

Definition of vout = F2(vin, V, rp,β)

In a patched conic approximation, the spacecraft heliocentric velocity after a flyby can
be related to its incoming heliocentric velocity vin, the planet velocity V, the planeto-
centric hyperbola periplanet rp, and its plane orientation β. The following equations,
implementing standard astrodynamic calculations, describe such a relation

ṽin = vin −V

e = 1+ rp/μplaṽ2
in

δ = 2 arcsin(1/e)

v̂out = cos(δ)î + cos(β) sin(δ)ĵ+ sin(β) sin(δ)k̂

ṽout = ṽinv̂out

vout = V + ṽout

where the unit vectors are î = ṽin
ṽin

, ĵ = î∧V
|î∧V| , and k̂ = î ∧ ĵ. Note that in this

representation, the incoming and outgoing hyperbolic velocities, ṽin, ṽout , are of
equal magnitude (no �V is modeled during the hyperbola) and form an angle δ. The
second angle, β, determines the position of the outgoing hyperbolic velocity on the
cone with axis ṽin and aperture δ.

Appendix 7B

The particular implementation of the Simulated Annealing algorithm with Adaptive
Neighborhood (that we call SA-AN) is given in the following pseudocode describing
a single annealing cycle.

1: Select a point x0

2: for i=1:no

3: for j=1:nt

4: for k=1:nr
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5: for l=1:D
6: alter xl component adding a random δ ∈ [−rl , rl]
7: accept or refuse according to Metropolis criteria
8: adjust each component of the neighborhood r using Corana’s method [13]

(the acceptance rate is evaluated separately for each component)
9: adjust the temperature using T = αT

At the end of the annealing process, the temperature will be Tf = Tiα
no . The total

number of function evaluation per annealing cycle has to be set and is nfann =
nontnrD. We use nt = 1 and nr = 20 so that we adjust the neighborhoods and the
temperature simultaneously and we have enough points to evaluate the acceptance
rate (here, 20 for each component). The starting neighborhood is set to be equal to
rl = UBl − LBl . We then perform re-annealing (that is, we restart the algorithm
from the point returned by a previous run) up to when we reach the total number of
function evaluations FEVAL. The algorithm free parameters are Tf , Ti defining the
cooling schedule, and nfann defining the annealing cycle speed.
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8 Incremental Techniques for Global Space
Trajectory Design

Massimiliano Vasile and Matteo Ceriotti
Department of Aerospace Engineering, University of Glasgow,
Glasgow, United Kingdom

8.1 Introduction

Multiple gravity assist (MGA) trajectories represent a particular class of space trajec-
tories in which a spacecraft exploits the encounter with one or more celestial bodies
to change its velocity vector. If deep space maneuvers (DSM) are inserted between
two planetary encounters, the number of alternative paths can grow exponentially
with the number of encounters and the number of DSMs. The systematic scan of
all possible trajectories in a given range of launch dates quickly becomes computa-
tionally intensive even for moderately short sequences of gravity assist maneuvers
and small launch windows. Thus finding the best trajectory for a generic transfer can
be a challenge. The search for the best transfer trajectory can be formulated as a
global optimization problem. An instance of this global optimization problem can
be identified through the combination of a particular trajectory model, a particular
sequence of planetary encounters, a number of DSMs per arc, a particular range for
the parameters defining the trajectory model, and a particular optimality criterion.
Thus a different trajectory model would correspond to a different instance of the
problem even for the same destination planet and sequence of planetary encoun-
ters. Different models as well as different sequences and ranges of the parameters
can make the problem easily solvable or NP-hard. However, the physical nature
of this class of transfers allows every instance to be decomposed into subproblems
of smaller dimension and smaller complexity. Each subproblem can be approached
incrementally, adding one segment of the trajectory at the time. At each incremental
step, a portion of the search space can be pruned out.

In a work by Myatt et al. [1] it was demonstrated that if the trajectory model
does not contain deep space maneuvers and a powered swing-by model is adopted
for the gravity assist maneuver, then an algorithm with polynomial complexity exists
that can prune the solution space efficiently. In this particular instance of the MGA
problem, each subproblem is a bi-impulsive planet-to-planet transfer and can be
approached independently of the other subproblems. In the work of Myatt, the

The authors are grateful to Dr. Rüdiger Jehn of the European Space Operations Centre for
the reference solution for the EVVMeMe test case.
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two-dimensional search space associated with each subproblem was explored with a
simple grid sampling. Unfortunately, when deep space maneuvers are inserted along
a planet-to-planet transfer leg and an unpowered swing-by model for gravity assist
maneuver is considered [2], a grid sampling approach becomes problematic due to
the higher dimensionality. The main issue associated to the use of grid sampling is
that if a coarse grid and an aggressive pruning are used, many optimal solutions are
lost; on the other hand, if a sufficiently fine grid is used, the computational time
becomes unacceptable even for a limited number of planetary swing-bys. As it will
be explained in the remainder of this chapter, this is due to a dependency problem
peculiar to this particular way of modeling MGA trajectories.

Systematic approaches for trajectory models with DSMs have been already pro-
posed in the past, leading to the effective generation of optimal solutions even for
complex MGA transfers [3]–[6]. Some approaches made use of reduced models [7] or
graphical tools like the Tisserand Graph [5, 8]. More recently some authors tackled
the problem with stochastic based approaches of different nature. Vasile et al. [9, 10]
proposed a combination of branch and bound and evolutionary search, Olds et al.
[11] showed the effectiveness of Differential Evolution, Rosa Sentinella [12] pro-
posed a combination of various evolutionary algorithms, Gurfil et al. [13] proposed
a memetic genetic algorithm, and Vasile et al. [14] a hybridization of Differential
Evolution and Monotonic Basin Hopping.

In this work, we present an incremental approach in which, after decomposition
of the problem into subproblems, the grid sampling is substituted with a global search
through a stochastic method. At each sublevel, the search for the global optimum
is substituted with the search for a feasible set. Then the feasible set is preserved
and the rest of the search space is pruned out. It will be shown how the proposed
incremental search performs an effective pruning of the search space, providing
interesting results with a lower computational cost compared to a nonincremental
approach. In particular we compare the proposed incremental process to the direct
application of known stochastic methods for global optimization, such as a simple
Multi-Start (MS), Differential Evolution [15] (DE) and Monotonic Basin Hopping
[16] (MBH) to the whole problem.

8.2 Modeling MGA Trajectories

In this section, we present two particular MGA models that lead to problems of
different complexity and prone to different solution approaches. Although the incre-
mental approach presented in the following section could, in principle, be applied to
both models, we will show its application only to the most complicated of the two.

8.2.1 The Linked Conic Approximation

A multiple gravity assist trajectory can be defined as a sequence of transfer arcs and
swing-bys of gravitational bodies, starting from a departure one and ending at a tar-
get one (or a target orbit). A change in the velocity vector along the trajectory can
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be obtained either by firing the engine of the spacecraft or by exploiting the gravity
of a celestial body. On the scale of the solar system and for fast swing-bys, both
the propelled maneuvers and the gravity assist maneuvers can be generally consid-
ered instantaneous. Thus an acceptable approximation is to consider the heliocentric
position of the spacecraft fixed during each maneuver, either propelled or gravity
assisted. In other words, each maneuver has the effect of introducing a discontinuity
in the velocity vector, but not in the position vector. This particular model of a mul-
tiple gravity assist trajectory is called linked-conic approximation, since it is made
of conic arcs (the transfer arcs) linked together by impulsive changes in the velocity
vector (given by the swing-bys or by a DSM). For each instant of time, the position
and velocity of the celestial bodies are given by analytical ephemerides with respect
to a heliocentric, ecliptic, inertial reference frame. Therefore, given a sequence of
celestial bodies and times of encounter, the position of each gravity assist maneuver
is fully determined. For the cases presented in this chapter, all the celestial bodies
are planets. At the departure planet, the velocity of the spacecraft is the sum of the
launch velocity and the heliocentric velocity of the planet and is normally limited by
the launch capabilities.

8.2.1.1 Gravity Assist Models
Following the assumption of the linked conic approximation, the effect of the grav-
ity of a planet is to instantaneously change the velocity vector of the spacecraft.
The incoming velocity vector and the outgoing velocity vector relative to the planet
have the same modulus but different directions; therefore, the heliocentric outgoing
velocity results to be different from the heliocentric incoming one. In the linked conic
model, the spacecraft is assumed to follow a hyperbolic trajectory with respect to the
swing-by planet. The angular difference between the incoming relative velocity ṽi

and the outgoing one ṽo depends on the modulus of the incoming velocity, on the
gravity parameter of the celestial body μP , and on the pericenter radius r̃p. Both
the relative incoming and outgoing velocities belong to the plane of the hyperbola.
Thus the linked conic approximation of a gravity maneuver can be modeled with the
following set of algebraic equations

ri = ro = rP (8.1)

ṽi = ṽo (8.2)〈
ṽo, ṽi
〉 = − cos (2β) ṽ2

i (8.3)

β = arccos

(
μP

ṽ2
i r̃p + μP

)
(8.4)

where ri, ro and rP are respectively the incoming heliocentric position, the outgoing
heliocentric position, and the heliocentric position of the planet. If the incoming and
outgoing velocities are available, for example, as free parameters of the global opti-
mization problem, Equations (8.2) and (8.3) represent a set of nonlinear constraints.
Thus a feasible trajectory must satisfy Equations (8.2) and (8.3).
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Figure 8.1. Geometry of the swing-by model.

If only the incoming velocity vector is available from the transfer leg prior to the
swing-by, then the outgoing vector can be computed provided that the attitude of
the plane of the hyperbola is defined. The attitude of the plane of the hyperbola �

can be defined through its normal vector n�, and the angle γ between the normal
vector and a reference plane (see Figure 8.1). There are different possible choices
for the definition of the attitude angle γ ; the one proposed in [2] is to define γ as the
angle between the vector n� and the reference vector nr , that is normal to the plane
containing the incoming relative velocity and the velocity of the planet vP .

If the outgoing velocity is computed from the incoming velocity, all trajectories
are feasible with respect to the swing-by constraints, but the problem dimension is
higher because a new free parameter needs to be introduced. Furthermore, the out-
going velocity now depends on the incoming one, therefore the leg after the swing-by
cannot be generated without knowing the incoming velocity. Expressing the out-
going velocity as a function of the incoming one rather than satisfying constraints
in Equations (8.2) and (8.3) has important consequences on the complexity of the
solution algorithm.

8.2.2 Velocity Formulation

Assuming a two-body dynamic model, an orbit arc can be characterized in two ways:
by assigning a value to the initial position and velocity vector r, v and to the transfer
time T , or by assigning a value to the initial and final position vectors r1, r2 and to
the transfer time T . The number of free parameters is the same for both cases, but
while in the former case an initial value problem needs to be solved, in the latter case
the solution of a boundary value problem (or Lambert’s problem) is required. We
can call the former characterization velocity formulation of the conic arc, while the
latter is the position formulation of the conic arc.

Assume now that a trajectory is made of two contiguous arcs separated by a
discontinuity in the velocity vector. If the velocity formulation is adopted, the velocity
and position vectors at the end of the first arc have to be computed before generating
the second arc. On the other hand, if the position formulation is used, the second arc
can be generated independently of the first arc.

From the definition of velocity and position formulation, we can call the compu-
tation of the outgoing vector from the incoming vector in the gravity assist model the
velocity formulation of the GA model, while solving constraints in Equations (8.2)
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Figure 8.2. Schematic representation of a multiple gravity assist trajectory.

and (8.3) is the position formulation of the GA model. More in general, trajectory
models for which each stage of the trajectory depends on the full state vector (position
and velocity) at the end of the previous stage will be called velocity formulations.

If the velocity formulation for the GA model is adopted, a complete MGA
trajectory can be modeled as in Figure 8.2. Given a sequence of NP planets, there
exist NP−1 legs, each of them beginning and ending with an encounter with a planet.
Each leg i is made of two conic arcs: the first, propagated analytically forward in time,
ends where the second, the solution of a Lambert’s problem [17], begins. The two arcs
have a discontinuity in the absolute heliocentric velocity at their matching point Mi.
Each DSM is computed as the vector difference between the velocities along the two
conic arcs at the matching point. Given the time of flight (TOF) Ti and the variable
αi ∈ [0, 1] relative to each leg i, the matching point is at time tDSM,i = tf ,i−1 + αiTi,
where tf ,i−1 is the final time of the leg i − 1. The relative velocity vector at the
departure planet v0 can be a design parameter and is expressed as

v0 = v0
[
sin δ̄ cos θ̄ , sin δ̄ sin θ̄ , cos δ̄

]T (8.5)

with the angles δ̄ and θ̄ respectively representing the declination and the right ascen-
sion with respect to a local reference frame, with the x axis aligned with the velocity
vector of the planet, the z axis normal to orbital plane of the planet, and the y axis
completing the coordinate frame. This choice allows easily constraining the escape
velocity and asymptote direction while adding the possibility of having a deep space
maneuver in the first arc after the launch. This is often the case when the escape
velocity must be fixed due to the launcher capability or to the requirement of a
resonant swing-by of the Earth (Earth-Earth transfers).

In order to have a uniform distribution of random points on the surface of the
sphere defining all the possible launch directions, the following transformation [18]
can be applied

θ = θ̄

2π
; δ = cos

(
δ̄ + π
/

2
)+ 1

2
. (8.6)
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It results that the sphere surface is uniformly sampled when a uniform distribution
of points θ , δ ∈ [0, 1] is chosen. Once the heliocentric velocity at the beginning of
leg i, which can be the result of a swing-by maneuver or the asymptotic velocity
after launch, is computed, the trajectory is analytically propagated until time tDSM,i.
The second arc of leg i is then solved through a Lambert’s algorithm, from Mi, the
Cartesian position of the deep space maneuver, to Pi, the position of the target planet
of phase i, for a time of flight (1− αi)Ti. Two subsequent legs are then joined together
using the swing-by model. Given the number of legs of the trajectory NL = NP − 1,
the complete solution vector for this model is

x = [v0, θ , δ, t0,α1, T1, γ1, rp,1,α2, T2, . . . , γi, rp,i,αi+1, Ti+1, . . . , γNL−1, rp,NL−1,αNL , TNL

]
(8.7)

where t0 is the departure date. Now the design of a multiple gravity assist transfer
can be transcribed into a general nonlinear programming problem, with simple box
constraints, of the form

min
x∈D

f (x). (8.8)

One of the appealing aspects of this formulation is its solvability through a gen-
eral global search method for box constrained problems. Depending on the kind
of problem under study, the objective function can be defined in different ways.
Here we choose to focus on the problem of minimizing the total �v of the mission,
therefore defining

f (x) = v0 +
NL∑
i=1

�vi +�vf (8.9)

where �vi is the velocity change due to the DSM in the ith leg, and �vf is the
maneuver needed to inject the spacecraft into the final orbit.

The trajectory model in Figure 8.2 solves explicitly the gravity assist constraints.
To do that, it requires the incoming velocity before computing the outgoing velocity.
Furthermore, the computation of the transfer leg from planet Pi to DSM at position
Mi+1 requires the velocity at the beginning of the transfer arc. As a consequence,
the transfer leg from Mi+1 to Pi+1 is dependent on the full state vector at the end of
the preceding arc. Velocity formulations suffer from a dependency problem: since
each stage of the trajectory cannot be computed without all the preceding stages, if
we discretize the state vector at the end of each stage, the number of possible paths,
corresponding to each discrete value of the state vector, grows exponentially with
the number of stages.

8.2.3 Position Formulation

The alternative to the velocity formulation is the position formulation (see
Figure 8.3). In the position formulation, we assign the position and time of each
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event along the trajectory: DSMs and swing-bys. Each leg is then computed as a
solution of a Lambert’s problem. Velocities are computed a posteriori as a result of
the solution of the Lambert’s problems. The position formulation allows us to com-
pute each arc independently of the other arcs. Now let us assume, without the loss
of generality, that the problem is planar and that the distance of each DSM from the
center of the coordinate system is constant; then the position Mi of each DSM can
be identified by a single variable: the angle θMi . The time at which the DSM happens
requires another variable, tMi . If we consider that each angle θMi can assume only
k values, and the time tMi , only h values, then the number of possible distinct arcs
leading to a DSM is equal to hk. The position of the planets is determined through
the ephemerides, thus only one parameter, the epoch, has to be specified. Once again
it is assumed that the time can be discretized in h elements. This means that there
are

h · hk = h2k

possible distinct arcs to go from planet P1 (at a given time t1) to M1 (at a given time
and position). These arcs can be computed independently of the rest of the trajectory
once t1, tM1 , θM1 are given. The same holds for connecting the last DSM to the arrival
planet.

An arc connecting two consecutive deep space maneuvers is determined when
the time and position of the two DSMs is fixed. Thus, the total number of independent
arcs is

hk · hk = h2k2.

Once again, these arcs can be computed independently of the other parts of the
trajectory.

For the trajectory given as an example, with 2 DSMs, the total number of
independent legs is

h2k + h2k2 + h2k = 2h2k + h2k2
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and in general, if N deep space maneuvers are considered

2h2k + (N − 1) h2k2.

Therefore, the position formulation does not suffer from the dependency prob-
lem, and the growth is polynomial. On the other hand, the position formulation
requires the solution of a set of nonlinear constraints for each gravity maneuver in
order to link the incoming and the outgoing velocities. As an alternative, a powered
swing-by model can be used to match the incoming velocity to the outgoing velocity,
but it should be noted that performing a corrective maneuver at the pericenter of
the swing-by hyperbola may increase the efficiency of the transfer. As a result, the
same transfer trajectory may result in being more efficient when computed with the
position formulation than when computed with the velocity formulation.

8.3 The Incremental Approach

The generic �vi in Equation (8.9) can be computed once the trajectory is completed
up to leg i. This means that only the part of the solution vector x concerning legs 1
to i is needed, and the value of f is independent of the variables associated to legs
i + 1 to NL. This allows decomposing the problem into subproblems, or levels, and
solving it incrementally adding one level at a time. Let us call DL,i the dimensional
slice of the global domain D that is composed only of the variables related to level i.
For the model used here, the variables and domains for levels from 1 to i are listed
in Table 8.1. Let us also define Di = ∏i

k=1 DL,k, such that the trajectory up to level
i is defined on the domain Di.

Let us introduce a partial objective function, for each level, of the form:

fi (xi) = fi−1 (xi−1)+ φi (xi) , xi ∈ Di, i = 1 . . .NL (8.10)

such that

f (x) = fNL(xNL) = fNL−1(xNL−1)+ φNL(xNL) (8.11)

where φi (xi) is a function that is specific to a given level i. It is important to stress
that the function fi associated with level i depends only on the part of the solution
vector related to the legs from 1 to i. Then, according to Bellman’s principle of
optimality, if all the trajectory legs from 1 to i are optimal, fi is a lower bound for fj
when j > i, and for the whole objective function f . Although this is generally true, it
does not help us define a proper partial objective function since a minimum, local or
global, of the partial objective function is not necessarily a minimum for the whole
objective function. On the other hand, if x∗ is the global minimum of the whole
objective function f , we can identify at each level i a set D̄i such that x∗i ∈ D̄i, where
x∗i is the partial vector containing the components of x∗ up to level i. We call the set
D̄i ⊆ Dithe feasible set at level i and we define it as

D̄i = {xi ∈ Di|
i(xi)} (8.12)
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Table 8.1. Levels and related variables

Level Variables Domain

1 t0, θ , δ,α1, T1 DL,1

2 γ1, rp,1,α2, T2 DL,2

. . . . . . . . .

i γi−1, rp,i−1,αi, Ti DL,i

where 
i(xi) is a property common to all the solutions in the set. The interest is
therefore to converge to a set of solutions with property 
i(xi). For example, if the
property is to have a partial objective function with a value below a given threshold
f̄i then the property 
i(xi) can become the Boolean condition


i(xi) = fi ≤ f̄i. (8.13)

Note that Equation (8.13) is consistent with Bellman’s principle; furthermore, con-
ceptually, this approach can be equally applied to the position formulation without
modification if we assume that the feasible set is made of those solutions that satisfy
the constraints and have fi below a given threshold. We call the property 
i(xi) a
pruning criterion since we can prune out the portion of the solution space that does
not belong to D̄i and consider for level i + 1 the new solution space

D̄i ×DL,i+1. (8.14)

The overall process is called incremental pruning and requires the definition of a
pruning criterion at each level i. Furthermore we need to introduce a special partial
objective function φi (xi) such that, although Equation (8.11) is not satisfied, all the
solutions in D̄i are minimal for φi (xi). What makes this approach interesting is that
the evaluation of a partial objective function can be remarkably less expensive than
the evaluation of the complete function f , and the associated search space is easier
to explore. Thus it is possible to analyze level 1 using f1 on D1 ≡ DL,1 and ideally
remove (or prune) from the search space all the sets of values for which the partial
objective function is above the threshold. The result is a pruned partial domain
D̄1 ⊆ D1. Then the process continues with level 2, considering f2, on D̄1 × DL,2.
Note that this partial domain has a smaller volume than D1 × DL,2, as there are
sets of points in D1 that have already been discarded during the pruning of level 1.
The reduction of the search space at level i makes the search at level i + 1 more
effective. At the last level, the complete objective function f is then minimized on
the remaining part of the search domain that was not pruned at previous levels,
which is D̄NL .

Note that care must be taken in defining the different pruning criteria and the
partial objective functions: for example, if the search for the feasible sets was exhaus-
tive, the threshold f̄i could be chosen arbitrarily low, but for general search methods
the threshold needs to be relaxed to avoid overpruning the search space. Further-
more, as it will be shown later in the EEM test case, for some particular kinds of
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transfer, the partial objective functions φi (xi) are not related to f . In fact, for some
cases, it is possible to exploit the knowledge of the physics of the problem to cre-
ate a partial objective function in which φi (xi) does not contribute to the value of
the objective function of the whole problem but is specifically devized to prune the
search space at level i.

8.3.1 Solution of the Subproblems

In order to find D̄i at each level i, we can use a global search to identify the regions
for which the partial objective function fi is below a given threshold. We use two
approaches: a gradient-based approach derived from MBH and an evolutionary-
based approach. Given a local minimum xl and a neighborhood of this local minimum
N (xl , ρl) ⊆ Di, with radius ρl , MBH selects a random point xc ∈ N (xl , ρl) and runs a
local optimization. If the new local minimum x̄l obtained starting from the candidate
point xc is better (that is, lower value of the objective function) than xl , then xl = x̄l .
MBH saves only the local best and therefore would be unusable to explore the
feasible set once one point is identified. Therefore, MBH was modified to store all
candidate local optimal points xc or x̄l that satisfy the conditions
i(xi). The modified
MBH can be found in Algorithm 8.1.

The evolutionary-based search is derived from the Multi-Agent Collaborative
Search (MACS) described in [10]. The basic idea underneath the MACS is to assign
the task of looking for a set of solutions to a population P of agents that perform a
combination of local and global searches. An agent is identified by a solution vector
xj , a sub-region of the search space N

(
xj , ρj
) ⊆ Di, and a local search operator, or

Algorithm 8.1. Modified MBH

1: Select x in Di, initialize neval = 0, ntrials = 0
2: Run local optimizer from x to local minimum xl

3: Select a candidate point xc ∈ N (xl , ρl); update neval ;ntrials ← ntrials + 1
4: If ntrials > ntmax

5: goto Step 1
6: End If
7: If 
i(xi) Then
8: Af ← Af ∪ {xc} ; goto Step 3
9: End If

10: Run local optimizer from xc → x̄l , update neval

11: If fi (x̄l) ≤ fi (xl) Then
12: xl ← x̄l

13: If 
i(xi)

14: Af ← Af ∪ {xl}
15: End If
16: If fi (x̄l) < fi (xl)

17: ntrials = 0
18: End If
19: End If
20: Termination Unless neval ≥ nmax, goto Step 3
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Algorithm 8.2. Modified MACS

1: Initialize a population P0 in Di, with npop agents, initialize neval = 0, g = 0
2: ∀xj ∈ Pg , If 
i(xi) Then
3: Af ← Af ∪

{
xj
}

4: End If
5: Apply communication operator: com : Pg → Pc; neval ← neval + npop

6: Apply greedy selection operator:
∀xj ∈ Pg , xj ← xj,c ∈ Pc if f (xj,c) ≤ f (xj), for j = 1, . . . , npop

7: Rank the population Pg

8: Apply local search operator to the best npopratio agents in Pg :
for xj ∈ Pg , with j = 1, . . . , npopratio, generate ntrials candidate points xj,l ∈ N

(
xj , ρj
)
;

neval ← neval + npoprationtrials

9: Apply greedy selection operator:
xj ← xj,l for j = 1, . . . , npopratio and l = 1, . . . , ntrials if fi(xj,l) ≤ fi(xj)

10: If 
i(xi)Then
11: Af ← Af ∪

{
xj,l
}

Af = Af +
{
xj,l
}

12: End If
13: Pg+1 ← Pg ; g ← g + 1
14: If ∀xj , xk ∈ Pg , max

j,k

∥∥xj − xk
∥∥ < tolconv Then

15: restart the worse of the two
16: End If
17: Termination Unless neval ≥ nmax, goto Step 5

individualistic behavior function β
(
xj , ntrials

)
that generates ntrials samples xp,l such

that xp,l ∈ N
(
xj , ρj
)
. At every generation g, a communication operator recombines

pair-wise the agents in the current population Pg and generates a new candidate
population Pc made of solution points xj,c. A greedy selection operator selects only
the solutions in Pc that improve the solutions in Pg and updates Pg. Before applying
the communication operator, the points in Pg that satisfy condition 
i(xi) are stored
in an archive Af . After the communication operator, the local search operator is
applied to the best npopratio < npop agents. All the sample points xp,l ∈ N

(
xj , ρj
)

sat-
isfying condition 
i(xi) are stored in the archive Af . The overall MACS is presented
in Algorithm 8.2. Furthermore, in order to facilitate the local exploration in a neigh-
borhood of a feasible solution without any modification to the two search algorithms,
we assigned the value −2 to the objective function of all the feasible solutions.

The modified MBH was complemented with a restart of the process after a num-
ber nt,max of local trials. This restart is fundamental to avoid stagnation and coverage
of only one portion of the feasible set when the feasible set is disconnected. For
MACS we adopted a similar idea but the domain Di is partitioned in subdomains at
every restart and MACS is restarted within a subdomain. The domain Di is parti-
tioned by dividing in two parts one coordinate belonging to a subset of the coordinates
at level i (for example, only the second and the third coordinate are divided while the
others remain unchanged). At each restart, the coordinate with the longest edge is
cut in two parts generating two new subdomains. For each subdomain, we evaluate
the two criteria vector

ψDq
=
[
−VDq ,

nDq

nDi

]
(8.15)
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where VDq is the volume of the subdomain Dq and nDq

/
nDi is the ratio between the

feasible solutions nDq in Dq ⊆ Di, such that Di =⋃q Dq, and the total number of fea-
sible solutions nDi in Di. For each subdomain, we evaluate its Pareto optimality with
respect to the criteria vector in Equation (8.15) by computing the dominance index

Id
(
Dq
) = ∣∣{j|Dj  Dq

}∣∣ (8.16)

where |.| is the cardinality of the set and a subdomain dominates another when both

criteria are better, that is, Dj  Dq ⇒ −VDj < −VDq ∧ nDj

/
nDi < nDq

/
nDi .

Furthermore we count the number of subdivisions md
(
Dq
)

that do not produce any
increase in the number of feasible solutions. For example, assume that the number
of feasible solutions in Di is 100 and that we subdivide Di in Dq and Dq+1; then
the subdivision index for each of the subdomains is increased by one unit. After
selecting one of the two, we run MACS; if the number of feasible solutions is higher
than 100, then md is set to 0. In order to select a subdomain where we want to restart
MACS, we use the cumulative quality index Iq

(
Dq
) = Id

(
Dq
) +md

(
Dq
)
. If more

subdomains have the same quality index we pick one randomly among them.

8.3.2 Clustering of the Solutions

Once a set of feasible solutions belonging to D̄i is found, the solutions are grouped
with a box clustering procedure. Assuming that we have d dimensions, each coordi-
nate c is subdivided into m (c) bins bq,c = [bl , bu]q,c with q = 1, . . . , m (c) , then for
the rth solution xr in the feasible set we consider the box

Br = bq1,1 × bq2,2 × · · · × bqd,d |x ∈ Br (8.17)

We add a new box every time a feasible solution is not included in any of the existing
boxes. When a level i + 1 is added to the incremental pruning, the union of all the

boxes at the previous level
�

Di = ∪
r

Br is used instead of the actual feasible set D̄i;

however, it should be noted that if the search for feasible solutions is exhaustive,
�

Di ⊇ D̄i.
If the search engine finds nsol solutions, the algorithmic complexity of this clus-

tering procedure is nsol ·∑d
c=1 m (c), which in the case of an equal number of bins

per coordinate becomes nsol · m · d and therefore grows linearly with the number
of coordinates. Furthermore, in order to reduce the number of boxes that are car-
ried from one level to the next, we also perform a clustering of the boxes: if two or
more adjacent boxes can be exactly covered with a single box, the covering box is
substituted for the original set of adjacent boxes. The overall incremental process
is summarized in Algorithm 8.3. Note line 6 in Algorithm 8.3. The back-pruning
procedure removes from levels 1 to i− 1 the portion of the feasible sets that contain
solutions that are not feasible at level i.

8.3.3 Exploration of the Pruned Space

The result of the incremental approach proposed in this chapter is not a specific
solution but a set of boxes containing families of solutions. The identification of
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Algorithm 8.3. Incremental Pruning

1: Set feasible set D to the whole domain, Start from level 1: i ← 1
2: While i < nlevels, Do
3: Run search for feasible solutions at level i on feasible set D̄i−1 ×DL,i

4: Cluster the feasible solutions
5: Prune the search space at level i and define new feasible set D̄L,i at level i
6: Apply back-pruning and redefine feasible sets D̄L,j at levels j = 1, . . . , i − 1

7: Define the new feasible set D̄i =
i−1∏
j=1

D̄L,j × D̄L,i

8: i ← i + 1; End Do

a specific solution within the set requires a further exploration step. The objective
function within each box is not necessarily convex, and the associated subdomain can
still contain many local minima. Thus in the following, the exploration of each box
is performed with one of the three generic global optimization methods: Monotonic
Basin Hopping, Multi-Start or Differential Evolution.

8.3.3.1 Multi-Start
The Multi-Start (MS) technique is an extremely basic approach to global optimiza-
tion. In its simplest form, it performs a global sampling of the solution space and
then starts a local search from each sampled point. Several variants of this basic
principle exist but their description is beyond the scope of this chapter. In the
examples presented here, the initial sampling of the search space is performed
with Latin Hypercube [19] to obtain a good spreading of the sampled points along
each coordinate.

8.3.3.2 Monotonic Basin Hopping
Monotonic Basin Hoping (MBH) was first applied to special global optimization
problems, the molecular conformation ones [20], and later extended to general global
optimization problems [21]. In its basic version it is quite similar to MS. It is also based
on multiple local searches and the only difference is represented by the distribution
of the starting points for local searches: while in MS these are randomly generated
over the whole feasible region, in MBH they are generated in a neighborhood N (xl)

of the current local minimizer xl . Algorithm 8.1 represents, in summary, the working
principle of MBH, except for the memorization of the solutions satisfying property

i in the archive Af . Because of its restart of the local search within N (xl), MBH
is particularly effective on functions that present a single funnel structure [16] or
are globally convex. For multifunnel structures or globally nonconvex cases, MBH
needs to be restarted to avoid stagnation at the bottom of each funnel. In the test
cases presented in this chapter, both for MS and MBH, the local optimizer is the
MATLAB function fmincon that implements an SQP method with BFGS update of
the Hessian [22].
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8.3.3.3 Differential Evolution
Differential Evolution (DE) is a population-based evolutionary algorithm proposed
for the first time by Ken Price and Rainer Storn in 1995. Given a population Pk, the
basic DE heuristic generates a new candidate point in the search space by updating
the position of each individual xi,k ∈ Pk with the following iteration

xi,c = xi,k + e(Cr)[(xi1,k − xi,k)+ F(xi2,k − xi3,k)] (8.18)

where F is the so-called mutation or perturbation parameter, e is a vector whose
components are either 0 or 1 with probability Cr , and the product between e and the
content of the square bracket has to be intended component wise. The individual
xi1,k can be the best of the population or a random one. In the former case, that will
be called strategy best in the following, fast convergence is favored, while in the latter
case, exploration is favored. The other two individuals in (8.18) instead are chosen
randomly, and the mutation parameter F plays an important role in determining the
speed of convergence of the algorithm: for example, when strategy best is chosen, a
small value of F increases convergence while a high value of F favors exploration.
The perturbation parameter and the crossover parameter Cr are generally chosen in
the interval [0 1]. Other variants of the basic iteration (8.18) exist in the literature;
the interested reader can refer to [23] for further information.

Each candidate point becomes part of the new population Pk+1 according to the
greedy selection heuristic

xi,k+1 ← xi,c ⇔ f (xi,c) < f (xi,k). (8.19)

Note that although (8.19) represents an elitism condition for the selection of the new
population, that is, it always preserves the best individual, iteration (8.18) does not
generally allow sampling arbitrary subsets of finite measure with nonzero probability.
Therefore, the global convergence theorem for evolutionary algorithms proposed by
Rudolph [24] does not apply and the asymptotic convergence to the global minimum
is not guaranteed.

8.3.4 Discussion

Before proceeding to the next section, it is worthwhile to examine some of the
characteristics of the proposed incremental approach. One key assumption of the
incremental approach is that a complete solution to the MGA problem, that is, a
complete trajectory, can be built by adding individual trajectory legs, starting from
the departure to the arrival or vice versa. Therefore, although the global minimum
of each subproblem does not represent the global minimum of the whole problem,
we can build the solution space of the whole problem by incrementally adding up
the search spaces associated with each subproblem in such a way that the resulting
total search space contains the global minimum.
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The objective functions that are used to prune the search space associated with
each subproblem do not directly depend on the chosen objective function for the
whole problem. Therefore, the incremental approach is independent of the objec-
tive function of the whole problem but is strongly dependent on the characteristics of
the trajectory model. In particular, for the trajectory model presented in this paper,
the partial objective function (and pruning criterion) associated with each subprob-
lem cannot be evaluated without considering all the previous levels. This represents
a fundamental difference with respect to what is done in [1]. In fact, a trajectory
model in which gravity maneuvers are modeled as powered swing-bys does not need
to build the whole solution incrementally (or as a cascade of subproblems) but each
subproblem can be tackled in parallel with the others. Furthermore, in the proposed
incremental approach, the search space is built up incrementally, therefore the num-
ber of dimensions of each subproblem increases as a new level is added to the list.
On the other hand, the number of dimensions of each subproblem in [1] remains
constant throughout the whole pruning process.

8.4 Testing Procedure and Performance Indicators

When a new optimization approach is proposed, it is good practice to test its per-
formance against existing approaches on a known benchmark. In order for the tests
to be significant, the testing procedure and the performance indicators need to be
rigorously defined. The tests will compare the performance of a generic global opti-
mizer, when applied to the search of the solution of a given problem, over the whole
search space (called all-at-once approach in the following) against the performance
of the same optimizer operating on the reduced search space after pruning. In fact,
a key advantage of the proposed incremental pruning approach is to increase the
probability to find sets of good solutions without increasing the computational cost.
Furthermore, since the incremental approach makes use of stochastic-based tech-
niques to identify the feasible set, some tests will demonstrate the reproducibility
of the result of the incremental pruning itself. We will start from the definition of a
general testing procedure for global optimization algorithms and then we will define
some specific performance indicators for a generic optimization algorithm and for
the incremental approach.

If we call A a generic solution algorithm and p a generic problem, we can define
the procedure in Algorithm 8.4.

Algorithm 8.4. Convergence test

1: Set the max number of function evaluations for A equal to N
2: Apply A to p for n times
3: For i ∈ [1, . . . , n], Do
4: ϕ (N , i) = min f (A (N) , p, i)
5: End For
6: Compute ϕmin (N) = min

i∈[1,...,n]
ϕ (N , i) ; ϕmax (N) = max

i∈[1,...,n]
ϕ (N , i)
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Now and in the following we say that an algorithm A is globally convergent when
for a number of function evaluations N that goes to infinity the two functions ϕmin

and ϕmax converge to the same value, which is the global minimum value denoted
as fglobal . An algorithm A is simply convergent, instead, if for N that goes to infinity
the two functions ϕmin and ϕmax converge to the same value, which is not necessarily
a global or a local minimum for f .

If we fix a tolerance value tolf , we could consider the following random variable
as a possible quality measure of a globally convergent algorithm

N∗ = min
{
N : ϕmax

(
N ′)− fglobal ≤ tolf , ∀N ′ ≥ N

}
. (8.20)

The larger (the expected value of) N∗ is, the slower is the global convergence of
A. Figure 8.4 a) and b) show the convergence profile for the bi-impulsive transfer
from the Earth to asteroid Apophis obtained with 50 repeated independent runs of
a Multi-Start algorithm: a number of samples were generated in the solution space
with a Latin hypercube sampling procedure and a local optimization that was run
from each sample. Slightly more than 1,000 initial samples are required to have
a 100% convergence to the global minimum. However, the procedure in Algo-
rithm 8.4 can be impractical since, although finite, the number N∗ could be very
large. In practice, what we would like is not to choose N large enough so that a
success is always guaranteed, but rather, for a fixed Nvalue, we would like to max-
imize the probability of hitting a global minimizer. Now let us define the following
quantities

δf (x) =
∣∣fglobal − f (x)

∣∣ ; δx (x) =
∥∥xglobal − x

∥∥ . (8.21)

In case there is more than one global minimum point, δx (x) denotes the minimum
distance between x and all global minima. Moreover, in case the global minimum
point xglobal is not known, we can substitute it with the best-known point xbest . We
can now define a new procedure, summarized in Algorithm 8.5.

A key point is setting properly the value of n. In fact, a value of n too small
would correspond to an insufficient number of samples to have proper statistics. The

Algorithm 8.5. Convergence to the global optimum

1: Set the max number of function evaluations for A equal to N
2: Apply A to p for n times
3: Set js = 0
4: For i ∈ [1, . . . , n], Do
5: ϕ (N , i) = min f (A (N) , p, i)
6: x = arg ϕ (n, i)
7: Compute δf (x) and δx (x)
8: If δf < tolf ∧ δx < tolx Then
9: js = js + 1

10: End If
11: End For



218 Techniques for Global Space Trajectory Design

0 0.5 1 1.5 2 2.5 3

x 105

0

2

4

6

8

10

12

14

Number of function evaluations

N
or

m
al

iz
ed

 m
in

im
um

φmin

φmax

(a)

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10

12

14(b)

N
or

m
al

iz
ed

 m
in

im
um

Number of initial samples

φ
min

φ
max

Figure 8.4. Convergence profile for a bi-impulsive Earth–Apophis transfer: (a) convergence
as a function of the number of function evaluations; (b) convergence as a function of the
number of initial samples for a Multi-Start algorithm.

number n is problem dependent and is related to the complexity of the problem
and to the heuristics implemented in the solution algorithm. A proper value for n
should give a little or null fluctuations on the value of js

/
n, that is, by increasing n,

the value of js/n should remain constant or should have a small variation. Note that
the values of the tolerance parameter tolf and tolx depend on the problem at hand.
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Algorithm 8.5 is applicable to general problems either presenting a single solution
with value function fglobal (or fbest) or presenting multiple solutions with value fglobal

(or fbest). On the other hand, in the following we are not interested in distinguishing
between solutions with equal f and different x, therefore we will use a reduced
version of Algorithm 8.5 in which the condition δx (x) ≤ tolx is not considered.

Finally, we remark that the two procedures described in Algorithm 8.4 and Algo-
rithm 8.5 only consider the computational cost to evaluate f but not the intrinsic
computational cost of A. The intrinsic cost of A is related to its complexity and to the
number of pieces of information A is handling. For instance, for a simple grid search,
such intrinsic cost is represented by the cost of sweeping through all the N points on
the grid at which the objective function is evaluated. The intrinsic cost varies from
algorithm to algorithm, but here we are assuming that the computational effort of
the algorithms is dominated by the function evaluation cost and therefore, we do not
take intrinsic costs into account. Note that if the algorithm A is deterministic then
we can set n = 1. Indeed, each time A is applied to p, it always returns the same
value. Then for deterministic algorithms, given a value N , a reasonable performance
index is simply Jd (N) = ϕ (N , 1), that is, the best value returned by the algo-
rithm. Instead, for stochastic based algorithms, different performance indexes can be
defined.

Commonly used indexes are the best, the mean, and the variance of all the
results returned by the n runs, or the probability of success of a single run. However,
the use of best value, mean, and variance present some difficulties. In fact, the
distribution of the best values is not Gaussian. Therefore, the distance between the
best and the mean values, or the value of the variance in general, does not give an
exact indication of the repeatability of the result. Moreover, it changes during the
process, therefore we cannot define a priori the required number of runs to produce
a correct estimation of mean and variance. In addition to that, the minimum number
of samples that are required to have sufficient statistics is not well defined for space
problems. Note that the use of the best value could be misleading since statistically,
even a simple random sampling can converge to the global optimum. On the other
hand, an algorithm converging, on average, to a good value with a small variance
does not guarantee that it will be able to find the best possible solution. For example,
given the integer numbers between 0 and 10, let us assume that we want to find
the minimum one, which is, 0, and that an algorithm returns 50% of the times the
value 0 and 50% of the times the value 10. The mean would be 5 and the variance
about 28, which would lead to the conclusion that the value 0 can be found with
probability 0.014 under the assumption of Gaussian distribution. This conclusion
is clearly wrong. Assume now that an algorithm returns solutions with mean value
equal to 5 and variance equal to 30, and another algorithm returns solutions with
mean equal to 3 and variance equal to 10. In this case, which of the two algorithms
is better performing is not well defined because the algorithm with a higher mean
value has a higher variance and thus also a higher probability to generate solutions
better than the average one. Then, if the distribution that describes the statistical
phenomenon is not known, these two numbers are not sufficient to claim that one
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algorithm is better than the other. Note that, because of this evidence, statistical
tests like the t-test, which start from the assumption of a Gauss distribution, are not
applicable or provide unreliable results.

An alternative index that can be used to assess the effectiveness of a stochastic
algorithm is the success rate ps, which is related to js in Algorithm 8.5 by ps =
js
/

n. Considering the success as the referring index for a comparative assessment
implies two main advantages. First, it gives an immediate and unique indication of
the algorithm effectiveness, addressing all the issues highlighted above, and second,
the success rate can be represented with a binomial probability density function
(pdf) independent of the number of function evaluations, the problem, and the
type of optimization algorithm. This latter characteristic implies that the test can be
designed fixing a priori the number of runs n on the basis of the error we can accept on
the estimation of the success rate. We propose here a statistical theory developed by
Minisci et al. [25]. It is assumed that the sample proportion ps of successes (the success
rate for a given n in our case) can be approximated with a normal distribution, that
is, ps ∼ Np

{
θp, θp(1− θp)

/
n
}
, where θp is the unknown true proportion of successes,

and that the probability of ps to be at distance derr from θp, Pr
[∣∣ps − θp

∣∣ ≤ derr|θp
]

is at least 1− αb (see [26]). This leads to the expression

n ≥ θp(1− θp)χ
2
(1),αb

/
d2

err (8.22)

and to the conservative rule

n ≥ 0.25χ2
(1),αb

/
d2

err (8.23)

obtained if θp = 0.5. For our tests we required an error derr ≤ 0.06 with a 92%
confidence (αb = 0.08), which, according to Equation (8.23), yields n ≥ 94. This
was extended to nruns = 100 for all the tests in this chapter in order to have a higher
confidence in the result. In order to have a feeling of the speed of convergence,
stochastic-based methods were applied to the solution of the whole problem for an
increasing number of function evaluations.

For the incremental approach, we defined a number of performance indicators
that aim at establishing if the reduction of the search space operated during the
incremental search is reliable and efficient. It is important to remind here that the
aim of the incremental approach is not to generate optimal solutions but to generate
a set of subdomains D̄j ⊆ D bounding sets of locally optimal solutions. Therefore,
the following indicators aim at measuring the ability of the incremental approach
to repeatedly generate a tight enclosure of good solutions. Ideally, a good pruning
would always yield few small boxes enclosing the global optimum together with all
the solutions satisfying δf < tolf . The performance indicators for the incremental
pruning are:

• Percentage of inclusion of the best solutions. Through the all-at-once approach,
a number of solutions satisfying the condition δf < tolf will be identified. Those
solutions are considered to be neighbors of the best one in the criteria space.
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The incremental approach is expected to identify, for every run, at least one box
containing one or more of the solutions neighboring the best one, that is, one or
more solution below the threshold. This indicator gives a measure of the ability
of the incremental approach to identify good region of the search space without
discarding areas containing potentially good solutions.

• Percentage of pruned space. This indicator measures the effectiveness of the
reduction of the search space.

• Average number of blocks. After the incremental pruning has completed the
reduction of the search space, each block coming from the pruning can be further
explored to find locally optimal solutions. A small number of blocks is therefore
desirable, although multiple blocks can correspond to multiple equivalent launch
opportunities. Thus this indicator has to be used together with the percentage
of inclusion of the best solutions. In the following we will also considered the
standard deviation on the number of generated blocks to provide an indication
of the dispersion of the results.

• Coverage. This indicator measures the ability of the incremental approach to
perform a repeatable pruning of the search space. Given a block D̄j,k for run
number k, we compute the number of times that D̄j,k is covered partially or
completely in all the other runs

Ij (k) =
∣∣{i : ∀k, p, k �= p ∧ D̄j,k ∩ D̄i,p �= ∅

}∣∣ (8.24)

with |·| denoting the cardinality of the set. The other coverage index is the actual
percentage of a block D̄j,k at run k that is covered by another block D̄i,p at run p

ςj(k) = 1
nruns

nruns∑
p=1

nb(p)∑
i=1

Vol
(
D̄j,k ∩ D̄i,p

)/
Vol
(
D̄i,p
)

(8.25)

where nb (p) is the number of blocks resulting from run p, and Vol (·) is the
volume of a given block.

8.5 Case Studies

The incremental algorithm was tested on the optimization of two MGA trajectories:
the first one is an Earth to Mars transfer, with a single gravity assist of the Earth
(EEM sequence); the second is a transfer to Mercury, exploiting two swing-bys of
Venus and one of Mercury (EVVMeMe sequence). These two test cases are repre-
sentative of the class of MGA transfers with resonant swing-bys and well illustrate
the complexity of this kind of problems. The incremental approach was compared to
the direct solution of the whole problem (all-at-once approach) with two stochastic
global optimization methods, DE and MBH, and two deterministic global optimizers,
DIRECT [27] (DIvided RECTangles) and Multilevel Coordinate Search [28] (MCS).
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8.5.1 EEM Test Case

This single gravity assist test case consists of an Earth-Earth-Mars transfer. Although
it is quite simple, the aim of this test is twofold: it demonstrates the effectiveness
of the pruning approach, and it is useful to define a particular class of problem-
dependent functions φi (xi) and pruning criteria 
i (xi). The Earth gravity assist is
used to increase the kinetic energy of the spacecraft with respect to the Sun when the
launch capabilities are limited. In order to gain the required �v, the spacecraft has
to reach the Earth with a relative velocity vector different from the one at departure.
This is achieved with a DSM along the Earth-Earth transfer leg. Thus the optimal
design of the first leg is essential in order to exploit the encounter of the Earth
properly and gain the energy to reach Mars. The departure velocity vector depends
on the launch capabilities; therefore, its modulus was set to 2 km/s for this test case,
while the nondimensional declination δ and right ascension θ were left free. In the
incremental approach, the whole problem is decomposed into two levels: level 1
consists of the Earth-Earth transfer, while level 2 computes the Earth swing-by and
the Earth-Mars transfer leg. Since v0 is constant, the solution vector has only five
decision variables at level 1, and v0 can be removed from all the objective functions.
Table 8.2 presents the bounds for the variables of the problem. The global objective
function f is the sum of the�v’s of the two deep space maneuvers, plus the difference
between the spacecraft velocity and Mars velocity at arrival. The table also reports
the number of bins and the number of function evaluations for the pruning performed
with MACS and MBH. MBH was run with a perturbation radius ρl equal to 10% of
the range of the variable at level Di. MACS was run with a population of 20 agents
with npopratio of 10, and a tolconv equal to 10−4 of the range of the variables at level
Di. For the restart of MBH, we set the maximum number of trials to 30, while for
MACS we partitioned only the second and fifth coordinate since they represent the
most critical ones for the EE leg.

The interesting aspect of this problem is that the choice of the partial objective
function f1 for the incremental approach at level 1 is tricky. In fact, the cheapest

Table 8.2. Search space for the EEM case

Lower
bound

Upper
bound

N. fun.
eval.

MACS

N. fun.
eval.
MBH N. bins Level

t0, d, MJD2000 3650 9128.75
(3650 + 15 years)

40000 40000 1 1

θ 0.2 1.2 10
δ 0 1 5
α1 0.01 0.99 5
T1,d 50 1000 30

γ1, rad −π π 10000–40000 10000–40000 N/A 2
rp,1, planet radii 1 5 N/A
α2 0.01 0.99 N/A
T2, d 50 1000 N/A
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way to perform an Earth-Earth transfer is to move from the Earth orbit as little as
possible (or not move at all). Therefore, if the sum of the DSM and v0 is chosen
as objective to minimize, the optimizer returns solutions with no maneuver. These
solutions, however, arrive at the Earth with a relative velocity that is not suitable
to exploit the swing-by properly. Furthermore, it is known from the physics of the
problem that the zero-maneuver solution is a local minimizer even for the whole
EEM transfer. Since the gravity assist maneuver requires an accurate timing to reach
the swing-by planet with the right incoming conditions, its effect is to narrow down
the basin of attraction of each minima that do not correspond to a zero-maneuver
solution. In fact, a gravity assist maneuver is more sensitive to a small variation of the
variables than a direct transfer. Consequently, the gradient of the objective function
in a neighborhood of a solution with Earth swing-by is higher than the gradient in
a neighborhood of a solution without Earth swing-by, and the basin of attraction is
expected to be narrower. Now a zero-maneuver solution for the EE leg physically
corresponds simply to a delayed departure from Earth, with no gravity assist. All
the zero-maneuver solutions, therefore, have a much wider basin of attraction. This
can be easily verified by applying a general stochastic global optimizer to the whole
EEM problem. The optimizer will return the zero-maneuver solutions with higher
probability if no special condition is imposed on the departure velocity at the Earth.

In order to minimize the �v on the EM leg, the incoming velocity vector at
the Earth should be such as to have an outgoing relative velocity vector aligned
with the velocity vector of the Earth (optimum increase in the kinetic energy) at a
time t0 + T1 such that the EM transfer is close to a Hohmann transfer. A suitable
criterion to optimize the first leg can be found by studying the characteristics of the
relative velocity vector at the end of the Earth-Earth transfer. Figure 8.5 represents
the in-plane components (radial vr and transversal vθ ) of the normalized incoming
relative velocity vector for the best solutions found minimizing the total EEM�v with
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Figure 8.5. Normalized in-plane components of the incoming relative velocity vector before
the Earth swing-by, for the best solutions found, and corresponding objective value.
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the all-at-once approach. On the same plot the objective function for the complete
problem is also represented.

For the best solutions (from 1 to about 300), the direction of the relative velocity
is almost completely radial, while for the rest of the solutions the radial component or
the entire velocity drops to zero. Therefore, the following partial objective function
can be chosen for all the levels in which there is the need for an outgoing velocity
parallel to the velocity of the planet either to brake or to accelerate

fi = ωi
v2
θ + v2

h

v2
r

+
i∑

k=1

�vk. (8.26)

This function tries to minimize the DSM while maximizing the radial component vr

of the relative velocity before the subsequent swing-by, with respect to the other
components vθ , vh. The weighing factor ωi is set to 1 km/s in the following. Although
this criterion is derived for a specific case, it has general validity and applies to two
classes of MGA transfers: aphelion-rising gravity maneuvers and perihelion-lowering
gravity maneuvers, as it will be shown in the next test case.

The threshold for level 1 is set to 1 km/s to leave some flexibility in the search for
optimal resonant transfers. At level 2 the objective function is the total�v, therefore
it is not pruned.

A first test was run, applying two deterministic-based global optimizers,
DIRECT and MCS, and three stochastic-based global optimizers, DE, MS, and
MBH to the entire problem (all-at-once approach) to assess the performance of
these global optimizers for an increasing number of function evaluations. The best
known solution for this problem has a total �v of 2.908 km/s (see Figure 8.7);
therefore, we set tolf to 0.05 km/s. Figure 8.6 shows the distribution of the val-
ues of the variables at level 1 for 200 solutions with an objective function below
2.958 km/s. It is interesting to note that the solutions belong to different launch
windows (different departure time) and have a departure velocity with respect to
the Earth, which can be either against the velocity of the Earth (θ close to 1) or
perpendicular to it (θ close to 0.5). It is therefore expected that both MACS and
MBH will find distinct families of solutions when searching for the feasible set at
level 1.

For the all-at-once test, we followed the procedure presented in the previous
section, that is, DE and MBH were run 100 times and we recorded the number
of solutions with an objective function below or equal to the best-known solution.
The DE algorithm was run with perturbation parameter F = 0.8, crossover param-
eter Cr = 0.75, search strategy best, and a population size of 90 individuals, while
MBH was run with a ρl equal to 10% of the range of the variables. The results of
the all-at-once test, summarized in Table 8.3, suggest that deterministic approaches,
though they predictably yield the same solution at every run, do not provide sat-
isfactory results. All stochastic approaches, on the other hand, are able to find,
with almost 100% probability, better solutions than the deterministic ones. There-
fore, though the probability of finding the best-known solution remains small for all
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Figure 8.6. Parameters of the first level for the local minima of the complete problem below
2.958 km/s. It is clearly visible that there exist solutions with objective value very close to the
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Figure 8.7. Projection on the ecliptic plane of the best solution found by the incremental
algorithm. The total �v is 2.908 km/s.

stochastic methods except MS, their use is advisable. Table 8.3, however, suggests
that sophisticated global search methods, such as DE and MBH, are not the right
choice; in particular, DE is the worst performing algorithm. The reason is the fast
convergence of DE with the selected settings. As theoretically demonstrated in [14]
and [29], DE can converge to a fixed point in D, which is not necessarily a local or
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Table 8.3. Comparison of different optimization approaches applied
to the EEM case all-at-once

Solver
20,000

evaluations
40,000

evaluations
80,000

evaluations
160,000

evaluations

DIRECT, km/s 4.317 4.317 3.822 3.809
MCS, km/s 3.840 3.840 3.840 3.812

DE, 100 runs
< 2.958 km/s 0% 7% 27% 27%
< DIRECT 68% 99% 100% 100%
< MCS 24% 85% 100% 100%

MBH, 100 runs
< 2.958 km/s 1% 5% 18% 41%
< DIRECT 99% 100% 100% 100%
< MCS 96% 100% 100% 100%

MS, 100 runs
< 2.958 km/s 22% 32% 52% 67%
< DIRECT 100% 100% 100% 100%
< MCS 100% 100% 100% 100%

Table 8.4. Incremental approach: performance on the EEM
case over 100 runs

Performance index MACS MBH

Inclusion of best solution 100% 100%
Pruned space (mean value) 90.43% 93.51%
Number of blocks, average 8.64 15.9
Number of blocks, standard deviation 1.64 0.082
Average coverage 88.58% 72.21%

global optimum. Once DE has converged, an increase in the number of function eval-
uations does not improve the performance. Furthermore, if the objective function is
globally non-convex, that is, it presents multiple similar funnel structures, MBH may
not be effective and DE could quickly converge but within a single funnel, mainly
due to the selection heuristic. A simple Multi-Start algorithm instead can yield better
performance provided that the local optimization algorithm converges quickly.

The incremental algorithm applied to the first level yields the results in Table 8.4.
The best solutions found with the all-at-once approach are always included in at least
one of the boxes, which proves the reliability of the pruning, confirmed also by the
value of the coverage indicators. At the same time, the percentage of pruned space is
over 90% for both MACS and MBH. Therefore, it is expected that when stochastic
optimizers such as DE, MBH, and MS operate on the reduced search space, the
percentage of times they find solutions with a value lower than 2.958 km/s increases
significantly compared to the results in Table 8.3. The performance of the incremental
pruning based on MBH is not as good as the one of the incremental algorithms based
on MACS, mainly because it generates about twice the number of boxes and with a
lower average coverage.
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Table 8.5. Performance of DE and MBH on the box
containing the reference solution over 100 runs

Solver
10,000

evaluations
20,000

evaluations
40,000

evaluations

DE 100 runs
< 2.958 km/s 52% 48% 56%

MBH 100 runs
< 2.958 km/s 41% 52% 55%

MS 100 runs
< 2.958 km/s 84% 97% 100%

Table 8.5 reports the performance of DE, MBH, and MS on the reduced search
space pruned at level 1. Differential Evolution was run with a reduced population
of 45 individuals and with the same setting and strategy of the all-at-once case. If we
look at the percentage of times the best solution is included in at least one box, the
average number of boxes, and the percentage of success for 10,000 evaluations on
the box containing the best solution, we can conclude that the overall probability of
identifying the best solution, after pruning, has considerably increased. On the other
hand, the total number of function evaluations, accounting for both the incremental
pruning and the search in all the boxes, has decreased. Note that even if the number
of function evaluations was the same, the total cost would be lower due to the lower
cost of the evaluation at level 1. In fact, on an Intel Pentium 4 with 3 GHz processing
capacity running a MATLAB coded algorithm under Microsoft Windows, the cost
for a single function evaluation at level 1 is 2.33 ms while the cost at level 2 is 3.68 ms.

Assuming 40,000 function evaluations for the pruning at level 1 and 10,000 func-
tion evaluations at level 2, for an average of 9 boxes, the total computational time for
the incremental approach is 424,400s against 478,400s for the all-at-once approach
with equal number of function evaluations. On the other hand, all the tested opti-
mizers display a lower probability of success in the all-at-once case, even for a higher
number of function evaluations.

Figure 8.8 shows a section of the domain D1 along the first, second, and fifth
coordinate. The figure clearly shows the feasible set, identified by the clusters of
solutions found by MACS and the resulting boxes. The distribution of the feasible
solutions is in agreement with what was found in Figure 8.6, in particular the two
clusters around θ = 1 and θ = 0.5, corresponding to the two optimal directions of
launch, and the clusters around T1 = 500 d and T1 = 300 d. Also note that at level
1, as expected, all the departure dates are equivalent and cannot be distinguished.

8.5.2 EVVMeMe Transfer

For this test, the searchwasperformedover the interval t0 ∈ [3457, 5457] d, MJD2000.
In this interval of launch dates, there exists a particularly good solution for the
EVVMeMe that was considered as a possible chemical option for the ESA Bepi-
Colombo mission [30]. This trajectory will be used as reference solution in the
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Table 8.6. Bounds for the EVVMeMe test case

Lower
bound

Upper
bound

N. fun.
eval. MACS

N. fun.
Eval. MBH N. Bins Level

t0, MJD2000 3457 5457 5000 15000 40 1
T1, d 90 180 10

γ1, rad −π/2 π/2 70000 150000 3 2
rp,1, planet radii 1.01 2 1
α2 0.01 0.6 4
T2, d 448 673 5

γ2, rad −π/2 π/2 140000 185000 3 3
rp,2, planet radii 1.01 2 1
α3 0.01 0.9 4
T3, d 90 220 5

γ3, rad −π/2 π/2 10000–80000 10000–80000 N/D 4
rp,3, planet radii 1.01 1.1 N/D
α4 0.01 0.5 N/D
T4, d 260 352 N/D
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Figure 8.8. Section of the search space along the first, second, and fifth coordinate. The figure
shows the clusters of feasible solutions and the corresponding bounding boxes.

following. The upper and lower bounds for the other variables are reported in
Table 8.6 and define a search space D with 14 dimensions. At first, we tested DE,
MBH, DIRECT, and MCS for an increasing number of function evaluations from
200,000 up to 1,600,000. DIRECT could not reach the highest number of function
evaluations and was excluded from the comparison. DE and MBH were run 100
times, according to the testing procedure proposed above, and we recorded the



8.5 Case Studies 229

Table 8.7. Comparison of global optimization methods applied to the
EVVMeMe case

Solver
200,000

evaluations
400,000

evaluations
800,000

evaluations
1,600,000

evaluations

MCS, km/s 14.35 13.05 13.05 12.01

DE, 100 runs
< ESA (9.467 km/s) 16% 16% 21% 16%
< MCS 100% 81% 86% 61%

MBH, 100 runs
< ESA (9.467 km/s) 4% 3% 7% 16%
< MCS 89% 78% 82% 100%

number of solutions with an objective function below or equal to the reference solu-
tion. DE was run with F = 0.8, Cr = 0.75, search strategy, best, and a population
of 140 individuals while MBH was run with a ρl equal to 10% of the range of the
variables. The results are reported in Table 8.7. On such a complex search space, a
deterministic search like MCS cannot do better than 12 km/s. DE and MBH instead
can find solutions that are better than 9.467 km/s, the ESA reference one. The prob-
ability of success, however, is limited to maximum 21% if DE and MBH are run
on the whole search space. Furthermore, note that there is no statistical difference
between the result of DE at 200,000, 400,000, 800,000, and 1,600,000 function evalu-
ations, suggesting that DE converges too quickly. On the other hand, the aim of this
preliminary set of runs is not to test DE but to have a standard of comparison for the
application of the incremental pruning of the search space. All the solutions found
with DE and MBH are represented in Figure 8.9 a) and b) respectively, together
with the reference solution, in the plane containing the departure date, in MJD2000,
and the total �v, in km/s. DE and MBH identify four main launch windows, with
two of them containing solutions that are better than the reference one. Note that
we compare solutions according to the total �v only, while the reference solution
was designed to fulfill other requirements also. Figure 8.10 shows the reference solu-
tion together with three other solutions with lower overall �v, all projected in the
ecliptic plane.

The pruning was performed on all the variables except the swing-by variable rp

because in the specified range it has a very low impact. The number of resonant orbits,
that is, the number of revolutions per leg, was preassigned. In particular, we use the
following resonance strategy: [0, 2, 0, 1, 2] where each number represents the number
of full revolutions of the spacecraft around the Sun after the deep space maneuver
and before meeting the next planet. For example, the EV leg is not performing any
complete revolution around the Sun (after the DSM), while the VV leg performs
two complete revolutions. The boundaries on the TOF for each leg were computed
as a function of the number of revolutions. In particular, assuming circular the orbits
of the departure and destination planets of each leg, the TOF is the period of the
Hohmann transfer between the two, times the number of revolutions, while the
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Figure 8.9. Solutions found by DE (a) and MBH (b) over all 100 runs with all-at-once
approach.

upper bound is the period of the same Hohmann transfer times the number of full
revolutions plus one. Note that, in principle, the trajectory model would not require
the specification of the number of revolutions as the arc propagated up to the deep
space maneuver, can be as long as required. The resulting trajectory would have
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Figure 8.10. Projection on the ecliptic plane of the reference solution and of three improved
solutions found with the all-at-once approach: a) the reference solution; b) an improved
version for the same launch window; c) a modified version; d) an improved solution for a
different launch window.
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Table 8.8. Incremental approach: performance on the
EVVMeMe case over 100 runs

Performance index MACS MBH

Inclusion of best solution 100% 94%
Inclusion of ESA solution 91% 89%
Pruned space (mean value) 97.81% 97.8%
Number of blocks, average 53.1 45.21
Number of blocks, standard deviation 19.48 15.21
Average Coverage 80.1% 81.8%

each deep space maneuver after the sequence of resonant orbits. This would make
it not comparable to the ESA solution that has each deep space maneuver before
the sequence of resonant orbits. Because, in the velocity formulation model, the arc
following the deep space maneuver is the solution of a Lambert’s problem, then the
number of revolutions has to be specified explicitly.

The number of bins and number of function evaluations for each level of the
incremental pruning are shown in Table 8.6. The aim of the test is to show how a
space reduction of all the levels from 1 to 3 can improve the search with DE and MBH
at level 4. For this reason, level 4 was not pruned. In general we can consider that the
last level is the least significant for the pruning. MBH was run with a perturbation
radius ρl equal to 10% of the range of the variable at level Di. MACS was run with
a population of 20 agents with npopratio = 10, and a tolconv equal to 10−4 of the range
of the variables at level Di. For the restart of MBH, we set the maximum number
of trials to 30, while for MACS we use no partitioning at level 1 and we partitioned
only γ and the time of flight at each subsequent level.

Special partial pruning criteria were used for the legs ending with Venus and
Mercury. In particular, for the arrival conditions at Venus, we used the objective
function in Equation (8.26), with ωi = 1 km/s, while for the arrival conditions at
Mercury (last level), the objective function was

f3 = v∞ +
3∑

k=1

�vk (8.27)

where v∞ is the spacecraft velocity relative to Mercury at arrival. The pruning func-
tions were selected based on the required effect of the gravity assist maneuvers. In
particular, Venus gravity maneuvers are expected to maximize the change in the
perihelion while the maneuvers at Mercury, combined with the DSM, are supposed
to minimize the relative velocity at Mercury. The pruning thresholds are 4, 4.5, and
7 km/s for level 1, 2, and 3 respectively. The first threshold is set according to launch
capabilities, the second accepts a DSM no larger than 0.5 km/s for the VV reso-
nant flyby, while the third threshold estimates the arrival v∞ at Mercury to be lower
than 6 km/s. Table 8.8 reports the performance of the incremental pruning on the
EVVMeMe case, with pruning up to level 3 included. Note that the reference solution
and the best solutions (all the ones better than the reference) are included in at least
one of the boxes in the majority of the cases, in particular when the MACS is used to
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Table 8.9. Performance of DE and MBH on the box containing the ESOC
solution over 100 runs

Solver
10,000

evaluations
20,000

evaluations
40,000

evaluations
80,000

evaluations

DE 100 runs
< ESA (9.467 km/s) 89% 91% 99% 99%

MBH 100 runs
< ESA (9.467 km/s) 32% 48% 72% 88%

Table 8.10. Average time to evaluate the partial
objective functions, for each level

Level 1 Level 2 Level 3 Level 4

1.69 ms 5.2 ms 5.7 ms 6.94 ms

look for the feasible set. The higher reliability of MACS compared to the modified
MBH is marginal and not statistically significant. On the other hand, MACS tends
to generate a higher number of boxes. Note that the significance of the variance in
the table has to be taken with care because the process is not necessarily Gaussian.
The only thing that can be said is that already at level 3, the number of boxes is high
despite the fact that many of them are clustered. The last row of Table 8.8 reports the
coverage metric. The reproducibility of the pruning is quite good for both algorithms.
Table 8.9 shows the percentage of success of DE and MBH on the pruned space, in
particular on the most promising box. As can be seen, the increase in performance
is considerable, reaching almost 100%, fully justifying the space reduction obtained
with the incremental approach. Finally, Table 8.10 reports the time of evaluation
of the partial objective function at each level. Again, the lower cost of the partial
objectives at lower levels leads to an overall gain in computational speed during the
incremental pruning since a good deal of the function evaluations are used when
exploring the lower levels. In this particular case, 215,000 function evaluations were
used to prune levels from 1 to 3 with MACS and 350,000 with MBH, but the cost of
each function evaluation was between one-third and one-tenth of the cost at level 4.

8.6 Conclusions

In this chapter, we presented a simple approach to the design of multiple gravity
assist trajectories. The approach decomposes the whole trajectory into subproblems
of lower dimension and complexity and proceeds to reduce the search space incre-
mentally, adding one leg at a time. This incremental space reduction, tested on a
number of cases, demonstrated to significantly increase the chance of finding good
solutions at a relatively low computational cost: the probability of success of all tested
optimizers on the pruned space is from two to six times higher and with a similar
overall number of function evaluations. Furthermore, due to reduced computational
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cost of the evaluation of the partial objective functions, the total computational time
of the incremental approach is lower even for the same number of function eval-
uations. Therefore, we obtained an increase in the reliability of the optimization
process (that is, higher success rate) with a reduction of its computational cost. An
additional advantage of the proposed incremental approach is the generation of a set
of feasible solutions rather than a single optimal one. The feasible set corresponds to
families of possible mission opportunities for different launch dates. Thus the deci-
sion maker, or mission designer, is presented with multiple options together with an
enclosure of their neighboring solution space. The amount of available information
is, therefore, higher and would allow an easier identification of baseline and backup
designs together with their robustness. In fact, the size of the neighborhood, or sub-
set of solutions below a given threshold, can be seen as a measure of their sensitivity
to small changes in the design parameters.

The critical aspects for an efficient implementation of the incremental solu-
tion of MGA trajectories are: the definition of specific partial objective functions
for each incremental level, and the definition of appropriate pruning criteria. Fur-
thermore, the search for the feasible set can substantially change the performance.
The two methods presented in this chapter, MACS and MBH, performed sub-
stantially in the same way for all the test cases. The main difference is that,
while MACS can be used with discontinuous and noisy functions, MBH needs a
smooth and continuous function. In both cases, the incremental algorithm remains
unchanged, therefore it is recommended to start with a simple search procedure,
even a simple Multi-Start algorithm, if the partial objective functions are smooth and
differentiable.

Although the incremental procedure is generally applicable to all the trajectory
models presented in this chapter, it was tested on the one built with the veloc-
ity formulation because this model leads to an exponential growth of the possible
alternative path with the number of swing-bys. Furthermore, we presented a for-
ward incremental procedure but, following the same principle, the procedure can be
performed backward or forward and backward at the same time.
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9.1 Introduction

The three-body system has been of interest to mathematicians and scientists for well
over a century dating back to Poincaré [1]. Much of the interest in recent years has
focused on using the interesting dynamics present around libration points to create
trajectories that can travel vast distances around the solar system for almost no fuel
expenditure traversing the so-called “Interplanetary Super Highway” (IPS) [2]. It
has also been proposed to use Lagrange points as staging bases for more ambitious
missions [3].

Lagrange points are equilibrium points of the three-body system that describes
the motion of a massless particle in the presence of two massive primaries in a refer-
ence frame that rotates with the primaries. There are five Lagrange points (labeled
L1, . . . , L5), the three collinear points along the line of the two primaries, and the two
equilateral points that form an equilateral triangle with the two primaries. It is the
collinear points that are of the most interest and in particular the L1 point between
the two primaries and the L2 point on the far side of the smaller primary. Since
Poincaré, there has been much work on finding periodic solutions to the three-body
problem. Early work was confined to analytic studies that are restricted to approxi-
mations as there exists no closed form analytical solution to the three-body system
equations of motion.

Several recent missions have targeted periodic orbits for their advantageous
properties. For example, a periodic orbit about the Earth-Sun L2 Lagrange point
minimizes solar radiation, allowing the extremely low temperatures required for
missions such as Herschel [4] and Planck [5] to be reached and maintained. The
Genesis mission used a periodic orbit about the Earth-Sun the L2 Lagrange point in
order to maximize the incidence of solar wind [6].

The high cost of putting mass into orbit has encouraged the use of low-thrust
propulsion, taking advantage of its high specific impulse to realize savings in
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propellant mass. However, low-thrust engines impart very small thrust. For exam-
ple, the recently launched Dawn mission is powered by Deep Space 1 heritage
xenon-ion thrusters producing only 90mN of thrust [7, 8]. Therefore, the engine
may need to be operating for a significant portion of the trajectory to impart the
�v required. If a low-thrust engine is the sole method of propulsion, there will be
a significant period of spiralling about the target or departure planet to impart the
necessary energy change for escape or capture. Complicated fuel-efficient trajec-
tories can be obtained by combining low-thrust trajectories with terminal or initial
coasts along the stable and unstable manifolds of the periodic orbits. These stable
and unstable manifolds of the periodic orbits are regions of phase space that are
asymptotic to the periodic orbits as t → ∞ or t → −∞ respectively. The “Inter-
planetary Super Highway” consists of trajectories created by patching together these
manifold–low-thrust–manifold trajectories.

A prerequisite for determining these combined low-thrust/manifold trajectories
is a method for accurately calculating individual periodic orbits. Richardson [9] con-
structed 1st and 3rd order analytic approximations by linearizing the equations of
motion about the L1 and L2 points. Higher order approximations were computed by
Gomez and Mancote [10]. Various others methods have been employed; generating
functions [11], Fourier analysis [12], and multiple shooting [13].

In this work, the periodic orbit generation problem is instead formulated as
an optimal control problem. In an optimal control problem, the dynamic system is
described by a system of differential equations; the goal is then to minimize a cost
functional subject to path constraints on the states and controls. The optimal con-
trol for this dynamical system can be computed using direct or indirect methods.
Indirect methods introduce adjoint variables and use the calculus of variations or
the maximum principle to determine necessary conditions that must be satisfied
by an optimal solution [14]. The determination of the controls from the neces-
sary conditions generally results in a two point boundary value problem (TPBVP).
Indirect methods allow very accurate computation of the optimal solution; how-
ever, the region of convergence can be small and therefore an accurate initial
guess of the states, adjoints, and controls is required. Direct methods, in which
the optimal control problem is converted into a nonlinear programming problem
(NLP), also require an initial guess but are more robust. That is, such a method
will converge to a solution satisfying the system governing equations and terminal
conditions from a poor initial guess of the optimal solution. They do not explicitly
use the necessary conditions and therefore do not require the addition of adjoint
variables.

This chapter will describe how to create a fuel-minimizing trajectory from one
planetary body to another using periodic orbits about Lagrange points and their
stable and unstable manifolds. This chapter will first describe the Circular Restricted
Three Body Problem (CR3BP) dynamics, the location of equilibrium points, periodic
orbits and their generation, and determination of the stable and unstable manifolds.
Then it will discuss how to link a low-thrust departure trajectory into a manifold in
an optimal way. Finally it will describe how to depart the manifold on a trajectory to
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another body and optimally combine with a low-thrust transfer into orbit about that
body. These elements will be illustrated in an example of an Earth-Moon low-thrust
trajectory that uses the periodic orbit about the L1 point and its manifolds.

9.2 System Dynamics

The differential equations of the CR3BP describe the motion of a point mass P3

with mass m3 under the gravitational influence of two massive primaries P1 and
P2 with masses m1 and m2 respectively, where m1 > m2 % m3 ≈ 0. Therefore, P3

exerts negligible influence on the primaries. The motion is considered in a noninertial
frame that moves with the two primaries as they rotate about the system barycenter
at constant radius, as shown in Figure 9.1.

It is convenient to normalize the system. The constant separation of the two
primaries P1 and P2 is chosen to be the length unit, the combined mass of the two
primaries m1 + m2 becomes the mass unit, and the time unit is then selected to
make the orbital period of the two primaries about the system barycenter equal to
2π time units. To further simplify, the universal gravitational constant G becomes
unity, therefore the mean motion n of the primaries is also equal to 1. The system
can now be solely described by a single parameter, the mass ratio μ

μ = m2

m1 +m2
. (9.1)

By convention, m1 ≥ m2, therefore μ ∈ [0, 0.5]. The normalized masses of the
primaries are then P1 = (1−μ) and P2 = μ and they orbit the system barycenter at
radii μ and (1− μ) length units respectively.

P1(m1)

P2(m2)

r1
r2

P3

Figure 9.1. Circular restricted three body system geometry.
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The circular restricted three body system equations of motion are

ẋ = vx

ẏ = vy

ż = vz

v̇x = 2vy + x− (1− μ)(x+ μ)

r3
1

− μ(x− 1+ μ)

r3
2

(9.2)

v̇y = −2vx + y− (1− μ)y

r3
1

− μy

r3
2

v̇z = −(1− μ)z

r3
1

− μz

r3
2

where,

r1 =
√
(x+ μ)2 + y2 + z2

r2 =
√
(x− 1+ μ)2 + y2 + z2.

The idealized low-thrust engine used in this study provides a constant thrust
acceleration of magnitude Ta. The thrust pointing angles u1 and u2 are defined with
respect to the instantaneous velocity vector v which makes an angle φ with the x−y
plane. The projection of v to the x−y plane makes an angle γ with the x-axis as shown
in Figure 9.2. The equations of motion (in first order form) then become

ẋ = vx

ẏ = vy

P1(m1)

Ta

P2(m2)

z

x

r1

r2

u1

u2

y

�
�

g
P3

Figure 9.2. Locating the low-thrust spacecraft P3 in the three body system.
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ż = vz

v̇x = 2vy + x− (1− μ)(x+ μ)

r3
1

− μ(x− 1+ μ)

r3
2

+ Ta cos(γ + u1) cos(φ + u2)

v̇y = −2vx + y− (1− μ)y

r3
1

− μy

r3
2

+ Ta cos(φ + u2) sin(γ + u1) (9.3)

v̇z = − (1− μ)z

r3
1

− μz

r3
2

+ Ta sin(φ + u2)

where,

γ = tan−1
(

vy

vx

)
φ = tan−1

⎛
⎜⎝ vz√

v2
x + v2

y

⎞
⎟⎠ .

Since only low-thrust engines are used in these cases, significant spiraling about
the departure and arrival planets with be required. It is awkward to describe these spi-
rals in cartesian coordinates, so two alternative coordinate systems will be used: orbit
elements (a, e, i,ω,�, f ) and equinoctial elements (a, P1, P2, Q1, Q2, L) [15]. In both
cases, the thrust acceleration is described in the local body-fixed axes and modeled
as a perturbation. The attraction of the third body is also included as a perturbation.
The perturbations R, T , N are accelerations in the body-fixed radial, tangential, and
normal directions respectively.

9.2.1 Orbit Elements

The familiar orbital elements (a, e, i,�,ω, f ) are used for the escape spiral from Earth.
Since the formula for ḟ explicitly depends on time, true anomaly (f ) is replaced by
two new variables (χ , ξ) related to the mean anomaly [16]

M = ξ − χ . (9.4)

The variational equations become

ȧ = 2a
3
2√

μe
(
1− e2
) (Re sin f + T (1+ e cos f ))

ė =
√

a
(
1− e2
)

μe
(R sin f + T (cos f + cos E))

i̇ =
√

a
(
1− e2
)

μe

cos θ
1+ e cos f

N

�̇ =
√

a
(
1− e2
)

μe

sin θ

sin i (1+ e cos f )
N (9.5)

ω̇ = −�̇ cos i +
√

a
(
1− e2
)

μe

−R cos f + T sin f (2+ e cos f )
e (1+ e cos f )
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χ̇ =
√

a
μe

(
1− e2)

e (1+ e cos f )

(
R
(
2e− cos f − e cos2 f

)
+ T sin f (2+ e cos f )

)

ξ̇ =
√
μe

a3 .

The perturbing accelerations (R, T , N) have two components, the first is due to
the thrust from the engine (Flt) and the second is due to the attraction of the Moon
(Fm). To compute the attraction due to the Moon, we first need the position vector
(in the body fixed frame) of the Moon relative to the spacecraft in terms of the orbit
elements.

rm = rm

⎡
⎢⎣ cos θ cos (λm −�)+ cos i sin θ sin (λm −�)

− sin θ cos (λm −�)+ cos i cos θ sin (λm −�)

− sin i sin (λm −�)

⎤
⎥⎦

where λm is the angle between the Moon and the reference axis in the plane of the
Moon’s orbit. The acceleration due to the Moon is then given by

Fm = μm
rm − r

|rm − r|3 − μm
rm

|rm|3

The acceleration due to the low-thrust engine is simply

Flt = TA

⎡
⎢⎣sin (γ + u1) cos u2

cos (γ + u1) cos u2

sin u2

⎤
⎥⎦ .

The total perturbing acceleration is then

⎡
⎢⎣R

T
N

⎤
⎥⎦ = (Fm + Flt) .

9.2.2 Equinoctial Elements

For the example to follow in Section 9.5 the desired final orbit is a zero inclination
circular orbit around the moon. The orbit element equations have a singularity at
i = 0, therefore the equinoctial elements (a, P1, P2, Q1, Q2, l) are used for the Halo
orbit to Moon phase of the trajectory. The variational equations for the equinoctial
elements are [15]

ȧ = 2a2

h

(
(P2 sin L− P1 cos L)R+ pT

r

)

Ṗ1 = r
h

(
−
(p

r
cos L
)

R+
(
P1 +
(
1+ p

r

)
sin L
)

T − P2 (Q1 cos L−Q2 sin L)N
)

Ṗ2 = r
h

(
−
(p

r
sin L
)

R+
(
P2 +
(
1+ p

r

)
cos L
)

T − P1 (Q1 cos L−Q2 sin L)N
)
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Q̇1 =
( r

2h

(
1+Q2

1 +Q2
2

)
sin L
)

N (9.6)

Q̇2 =
( r

2h

(
1+Q2

1 +Q2
2

)
cos L
)

N

l̇ = n− r
h

((
a

a+ b

)
p
r
(P1 sin L+ P2 cos L)+ 2b

a

)
R

− r
h

((
a

a+ b

)(
1+ p

r

)
(P1 cos L+ P2 sin L)+ 2b

a

)
T

− r
h
(Q1 cos L−Q2 sin L)N

where

K = 1− P1 cos K + P2 sin K

r = a (1− P1 sin K − P2 − sin K)

b =
∣∣∣∣a
√

1− P2
1 − P2

2

∣∣∣∣
n =
√

μ

a3

sin L = a
r

((
1−
(

a
a+ b

)
P2

2

)
sin K +

(
a

a+ b

)
P1P2 cos K − P1

)

cos L = a
r

((
1−
(

a
a+ b

)
P2

1

)
cos K +

(
a

a+ b

)
P1P2 sin K − P2

)

p = r (1+ P1 sin L+ P2 cos L)

h = nab.

In this case, where the Moon is the primary body, it is necessary to consider third
body perturbations due to the Earth. The position vector of the Earth relative to the
spacecraft (in local body axes) in terms of the equinoctial elements is

re = re

1+Q2
1 +Q2

2

⎡
⎢⎢⎢⎢⎣

r
re
− cos (L− λe)+ (r + cos (L− λe))Q2

1 − 2 sin (L+ λe)Q1Q2 + · · ·
(r − cos (L+ λe))Q2

2

sin (L− λe)− sin (L+ λe)Q2
1 − 2 cos (L+ λe)Q1Q2 + sin (L+ λe)Q2

2
2 (Q2 sin λe −Q1 cos λe)

⎤
⎥⎥⎥⎥⎦

where λe is the angle between the Earth and the reference axis in the plane of the
Moon’s orbit about the Earth. The acceleration due to the Earth is then given by

Fe = μe
re − r

|re − r|3 − μe
re

|re|3
.

The acceleration due to the low-thrust engine is simply

Flt = TA

⎡
⎢⎣sin (γ + u1) cos u2

cos (γ + u1) cos u2

sin u2

⎤
⎥⎦ .
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The total perturbation acceleration is then⎡
⎢⎣R

T
N

⎤
⎥⎦ = (Fm + Flt) .

9.2.3 Equilibrium Points and Periodic Orbits

The system equations for the CR3BP are autonomous, hence there exists the possi-
bility of stationary or equilibrium points in the phase space. For a stationary point
(x∗, y∗, z∗), Equations (9.2) become

−x∗ = − (1− μ)(x∗ + μ)

r3
1

− μ (x∗ − 1+ μ)

r3
2

(9.7)

−y∗ = − (1− μ)y∗

r3
1

− μy∗

r3
2

(9.8)

0 = − (1− μ)z∗

r3
1

− μz∗

r3
2

. (9.9)

Clearly from Equation (9.9), any equilibrium points must lie in the x−y plane, as
z∗ = 0 is the only solution to Equation (9.9). Consider solutions on the x-axis, with
y∗ = z∗ = 0. Equation (9.7) becomes

x∗ − (1− μ)(x+ μ)

|x∗ + μ|3 − μ (x∗ − 1+ μ)

|x∗ − 1+ μ|3 = 0. (9.10)

This is equivalent to a quintic polynomial in x∗ with three real solutions. These
solutions yield the locations of the three collinear Lagrange points L1, L2, and L3.

Now let r1 = r2 = 1; Equations (9.7) and (9.8) are both satisfied, hence there
exist equilibria at the two points in the x−y plane unit distance from both primaries,

the equilateral Lagrange points L4 and L5, where L4 =
(

1
2 − μ,

√
3

2

)
and L5 =(

1
2 − μ,−

√
3

2

)
as shown in Figure 9.3.

The equilateral Lagrange points (L4, L5) are stable but the collinear points
(L1, L2, L3) are not. However, there exist periodic orbits about the unstable
collinear points.

9.2.4 Periodic Orbits

Periodic solutions to the CR3BP have been sought since Poincaré. Since computa-
tional power was not readily available, early work focused on analytic approxima-
tions. Richardson [9] constructed first and third order analytic approximations by
linearizing the equations of motion about the L1 and L2 points. Gomez and Mar-
cote [10] extended the analysis to higher orders. More accurate solutions have been
obtained through computational means; however, all numerical methods have their
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P1 P2

L3

L5

L1

L4

60°

60°

L2

Figure 9.3. Locations of the Lagrange points.

disadvantages. Shooting methods, such as those used by Howell and Pernicka [13],
are highly sensitive to the quality of the initial guess. Generating functions as used
by Scheeres and Guibout [11] have a limited (spatial) range of applicability. In this
work, an alternative and more robust method for generating periodic orbits is used.

9.2.5 Stable and Unstable Manifolds

It will be necessary for the Earth-Moon transfer via a periodic orbit about L1 to
compute the periodic orbit’s stable and unstable manifolds (Ws, Wu). The manifolds
are tangent to the eigenvectors of the monodromy matrix, which is computed by
evaluating the variation matrix (9.11) at time equal to one period of the periodic orbit.

(
∂xi

∂x0j

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂x
∂x0

∂x
∂y0

∂x
∂z0

∂x
∂vx0

∂x
∂vy0

∂x
∂vz0

∂y
∂x0

∂y
∂y0

∂y
∂z0

∂y
∂vx0

∂y
∂vy0

∂y
∂vz0

∂z
∂x0

∂z
∂y0

∂z
∂z0

∂z
∂vx0

∂z
∂vy0

∂z
∂vz0

∂vx

∂x0

∂vx

∂y0

∂vx

∂z0

∂vx

∂vx0

∂vx

∂vy0

∂vx

∂vz0
∂vy

∂x0

∂vy

∂y0

∂vy

∂z0

∂vy

∂vx0

∂vy

∂vy0

∂vy

∂vz0
∂vz

∂x0

∂vz

∂y0

∂vz

∂z0

∂vz

∂vx0

∂vz

∂vy0

∂vz

∂vz0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9.11)

The transition matrix satisfies the differential equation

d
dt

(
∂xi

∂x0j

)
=

6∑
k=1

∂ ẋi

∂xk

xk

x0j
(9.12)
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which yields

(
∂ ẋi

∂xk

)
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

�xx �xy �xz 0 2 0
�yx �yy �yz −2 0 0
�zx �zy �zz 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(9.13)

where

�(x, y, z) = x2 + y2

2
+ 1− μ

r1
+ μ

r2
+ μ (1− μ)

2
. (9.14)

Combined with Equation (9.2), there are then 42 simultaneous differential equations
that must be solved to yield the variation matrix. The 6 eigenvalues (λ1, ...λ6) of the
monodromy matrix are in three pairs [17]

λ1 > 1, λ2 < 1, λ1λ2 = 1

λ3 = λ4 = 1

λ5 = λ∗6
|λ5| = |λ6| = 1.

(9.15)

The unstable and stable manifolds are approximated near the periodic orbits by the
eigenvectors corresponding to λ1 and λ2 respectively (VWu , VWs). The manifolds are
then computed by numerically integrating forward (unstable) or backward (stable)
in time from initial conditions given by displacing the spacecraft a small distance
d from the periodic orbit along the eigenvector (or its opposite). The displacement
distance d must be small enough to retain the validity of the linear approximation but
also large enough to enable the spacecraft to get far enough away from the periodic
orbit in a reasonable time of flight. A value of 5 km was used for this study. The
manifolds are computed by combining the trajectories obtained from many initial
points on the periodic orbit (x̄(ti))

Xs = x(ti)± d.VWs (9.16)

Xu = x(ti)± d.VWu (9.17)

9.3 Basics of Trajectory Optimization

Consider the optimal control problem with system governing equations

ẋ(t) = f(x(t), u(t), t), t0 ≤ t ≤ tf (9.18)

and objective function

J = 
(x(tf ), tf )+
∫ tf

t0
L(x(t), u(t), t)dt (9.19)
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subject to the path constraints

g(x, u, t) ≤ 0, t0 ≤ t ≤ tf (9.20)

and terminal constraints

�(x(tf ), tf ) = 0. (9.21)

The method used to solve optimal control problems in this work is the method of
direct collocation with nonlinear programming [18]. In this method, the trajectory is
approximated by a piecewise polynomial defined by the values of the state and control
variable at discrete nodes. The trajectory of each state and control are discretized;
an example for the state variable history is shown in Figure 9.4.

The trajectory is now wholly defined by the state variables, x, and control vari-
ables, u, defined at (N + 1) nodes and possibly at some interior points. For each
interval, the time history of each state is approximated over the interval by a polyno-
mial. Herman and Conway [18] found the accuracy and computational efficiency of
direct collocation using fifth degree polynomial trajectory approximations superior
to approximations using polynomials of lower degree. Six conditions are required to
uniquely define the approximating quintic polynomial over the segment. The values
of the states at the segment boundary nodes (i, i+ 1) are defined, and the derivatives
can be calculated from the system equation ẋ = f(x, u, t) providing four conditions
(xi, fi, xi+1, fi+1). That is, the approximating polynomial must evaluate to xi at the
left side node and its slope must correspond to fi = f(xi) there. At the right side
node, the polynomial must evaluate to xi+1 and its slope must be fi+1. The remaining
two conditions are defined by adding a node at the center of the segment with cor-
responding state xc and time rate of change ẋc = f(xc, uc, tc), where uc, the control
at the center point, and xc are free parameters.

States

Segments

Nodes
1

1

2

2

x1

x2 x3
xN–1

xN

xN+1

3 N – 1 N N+1

N – 1 N 

Figure 9.4. Illustration of the discretization of the continuous system.
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Figure 9.5. Illustration of the Gauss-Lobatto quintic polynomial.

These six conditions determine a quintic polynomial satisfying the governing
equations at the left and right nodes and at the center of the segment as shown in
Figure 9.5. An additional constraint is imposed that the derivative of the quintic
polynomial be equal to the derivative calculated from the system Equation (9.2) at
two interior collocation points.

The collocation points (t1, t2) are selected to minimize the error in the polyno-
mial estimation of the state [18]. For a fifth degree Gauss-Lobatto polynomial, the
collocation points are located at

t1 = tc −
√

3
7

1
2
�ti

t2 = tc +
√

3
7

1
2
�ti (9.22)

where �ti is the width of the ith time segment, i.e. �ti = ti+1 − ti.
The states at the collocation points in segment i are obtained from the polynomial

evaluated at times t1 and t3

x1 = 1
686

⎧⎨
⎩
(
39
√

21+ 231
)

xi + 224+
(
−39

√
21+ 231

)
xi+1

+�ti
[(

3
√

21+ 21
)

fi − 16
√

21fc +
(
3
√

21− 21
)

fi+1

]
⎫⎬
⎭ (9.23)

x2 = 1
686

⎧⎨
⎩
(
−39

√
21+ 231

)
xi + 224+

(
39
√

21+ 231
)

xi+1

+�ti
[(
−3
√

21+ 21
)

fi + 16
√

21fc +
(
−3
√

21− 21
)

fi+1

]
⎫⎬
⎭ (9.24)

where fi = f(xi, ui, ti), fc = f(xc, uc, tc) and fi+1 = f(xi+1, ui+1, ti+1).
The system constraints are then

C5,1(xi, xi+1) = 1
360

⎧⎨
⎩
(
32
√

21+ 180
)

xi − 64
√

21xc +
(
32
√

21− 180
)

xi+1

�ti
[(

9+√21
)

fi + 98f1 + 64fc +
(
9−√21

)
fi+1

]
⎫⎬
⎭ = 0

(9.25)
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C5,2(xi, xi+1) = 1
360

⎧⎨
⎩
(
−32

√
21+ 180

)
xi + 64

√
21xc +

(
−32

√
21− 180

)
xi+1

�ti
[(

9−√21
)

fi + 64fc + 98f2 +
(
9+√21

)
fi+1

]
⎫⎬
⎭ = 0

(9.26)

where f1 = f(x1, u1, t1), f2 = f(x2, u2, t2). Note that the values of the controls at collo-
cation points t1 and t2 must be specified. This then adds two more control parameters
per segment per control.

The state parameters x, control parameters u, and the event variables E are
collected into a single vector P. Event variables are extra parameters required to
describe the trajectory such as time of flight, engine burn times, departure date, etc.

P = [Z, E] (9.27)

where

Z = [x1, . . . xN+1, u1, . . . , uN+1].

The nonlinear programming (NLP) problem is then to minimize
(P) subject to

bL ≤

⎧⎪⎨
⎪⎩

P
AP

C(P)

⎫⎪⎬
⎪⎭ ≤ bU (9.28)

where AP is a vector of linear constraints defined by the matrix A, and C(P) is a vector
of nonlinear constraints virtually all of which are the implicit integration constraints
(9.25) and (9.26). bL and bU are the lower and upper bounds, respectively, on the
states and constraints.

The fifth degree Gauss-Lobatto transcription was used to solve the periodic
orbit generation problem. This problem happens to have no control variables, that
is, u = 0. For determining optimal low-thrust trajectories, that is, for case where
u �= 0 and in fact u must be specified at many points on the trajectory, a different
transcription method, Runge-Kutta parallel-shooting (Section 3.3) is a better choice.
This is the transcription used for the low-thrust Earth-Moon trajectory.

The NLP problem solvers used SNOPT [19, 20] or fmincon from MATLAB
requiring an initial guess for the state vector P.

9.4 Generation of Periodic Orbit Constructed as an Optimization Problem

Periodic orbits are trajectories such that x(t0) = x(t0 +NT) for some integer N and
orbital period T . Therefore, the search for periodic solutions to the circular restricted
three body problem of specified amplitude or period can be described as an optimal
control problem [21] with the objective of minimizing the function

J = |x(to)− x(t0 +NT)| (9.29)
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subject to the system Equations (9.2). The problem can be transposed into a problem
to be solved with direct collocation. The native MATLAB NLP solver fmincon was
used in this study.

Periodic orbits were sought about the interior Lagrange point L1 in the Earth-
Moon system, although the method would apply equally well to other Lagrange
points and/or different three body systems. In normalized units, the Earth-Moon
system is fully defined by the mass ratio μ = mmoon/(mearth+mmoon) = 0.0122. The
full three-dimensional solution to Equations (9.2) was sought. The time histories of
the states were discretized into N segments (as shown in Figure 9.4). The values of
state variables at the boundaries and at the centers of each segment and the final time
tf then constitute the NLP parameter vector (P). This vector is typically hundreds or
thousands of elements in length.

The fifth degree Gauss-Lobatto collocation constraints (Equations [9.25–9.26])
were employed to ensure the trajectory satisfies the system equations of motion. To
ensure that the resulting trajectory has the required amplitude, the position r1 =
[x1, y1, z1] at the initial node is specified. Since any periodic orbit must return to its
initial position after one orbit period, the position state at the final node is also fixed,
that is

rN+1 = [xN+1, yN+1, zN+1] = [x1, y1, z1] = r1. (9.30)

For a periodic solution, the velocities at the initial and final nodes must also be
equal. This is achieved by minimizing the objective (penalty) function


(x) =
√
(vxi − vxf )

2 + (vyi − vyf )
2 + (vzi − vzf )

2. (9.31)

This function has a global minimum
(x) = 0 when vxi = vxf , vyi = vyf and vzi = vzf ,
(that is, when the trajectory is a periodic orbit). Thus the pure penalty function of
Equation (9.29) is not required. Solutions were obtained with the equality constraint
(9.30) for the positions and the penalty function constraint (9.31) for the velocities.

The NLP problem solver requires an initial guess of the optimal solution. For
this case, Richardson’s first order analytical approximation [9] is used, in which

x = Ax cos(λt +
)

y = kAx sin(λt +
) (9.32)

z = Az sin(λt + ψ)

where 
 and ψ are phase angles and

k = 2λ
λ2 + 1− c2

. (9.33)

The linearized frequency λ is found from the solution to

λ4 + (c2 − 2) λ2 − (c2 − 1) (1+ 2c2) = 0. (9.34)
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Constant c2 is defined by

c2 = 1

γ 3
L

[
μ+ (1− μ) γ 3

L

(1∓ γL)
3

]
(9.35)

where the upper sign applies for orbits around L1 and the lower sign for orbits around
L2. γL = 1is defined by

γL =
(

G (mmoon +mearth)

a3

) 1
3
. (9.36)

Higher-order approximations are available [9, 10]; however, this simple initial
guess proved to be sufficient and demonstrated the robustness of the solution tech-
nique. For calculations of families of periodic orbits homotopy was employed, that is,
the solution for a periodic orbit of a certain amplitude is used as an initial guess in the
calculation of a periodic orbit with a similar amplitude and this process is continued.

9.4.1 Results

Periodic orbits of a given amplitude are obtained by specifying the initial position.
For an orbit around L1 with x amplitude Ax and z amplitude Az, initial position is
r1 = [L1 + Ax, 0, Az]. Figure 9.6 shows a periodic orbit with Ax = 1.0 × 104 km
and Az = 5 × 103 km as well, as the initial guess from the first order Richardson
approximation (Equation (9.33)) for a periodic orbit with amplitudes (Ax, Az).

Periodic orbits of a given period are obtained by removing the constraints on
the initial position and adding a constraint on the final time tf , all other constraints
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Figure 9.6. Single periodic orbit about Earth-Moon L1.



9.5 GTO to Periodic Orbit 253

0.78
0.8

0.82
0.84

0.86
0.88

0.9

−0.2

−0.1

0

0.1

0.2
−3

−2

−1

0

1

2

3

x 10−3

X 

Periodic Orbit Fixed Period (3.087 TU)

Y

Z

Periodic Orbit
Initial Guess

Figure 9.7. Single periodic orbit with period 3.087 TU about Earth-Moon Lagrange point L1.

and the objective function remaining the same. The initial guess was a first order
Richardson approximation for randomly selected amplitudes Ax and Az. Figure 9.7
shows a periodic orbit with period 3.087 TU and the initial guess of the periodic orbit
given to the numerical optimizer.

It is thus straightforward and efficient to use this method to create periodic orbits
with desired amplitude or period. It would be possible to search for an orbit with
amplitude and period in given ranges. The method could apply equally well to the
generation of periodic orbits about the other Lagrange points (L2, . . . , L5) and for
different three body systems such as Earth-Sun-Spacecraft, Sun-Jupiter-Spacecraft
and the like.

9.5 Optimal Earth Orbit to Lunar Orbit Transfer: Part 1—GTO to
Periodic Orbit

The goal is to find an optimal, fuel-minimizing trajectory from a GTO about the Earth
to a low lunar orbit (LLO) about the Moon via a periodic orbit about the L1 Lagrange
point. The first phase of the transfer is a thrust arc from GTO inserting into the stable
manifold of the periodic orbit, followed by a coast along the stable manifold to the
periodic orbit. The second phase is a coast along the unstable manifold toward the
Moon followed by a thrust arc to insert into a low lunar orbit. In general there is no
guarantee that the combination of two individually optimal trajectories is optimal.
However, in this case the periodic orbit can be considered as a parking orbit that can
be traversed with no cost, effectively decoupling the Earth-Halo transfer from the
Halo-Moon transfer.
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The problem is similar to that studied by Mingotti, Topputo, and Bernelli-
Zazzera [22]. For comparison with the results of their work, parameters were kept
as similar as possible. However, several simplifying assumptions they made were
removed in this work. For example in this work the spacecraft has constant thrust
rather than constant thrust acceleration; it is not assumed that aligning thrust with
the velocity vector is optimal during the escape spiral, and the initial plane of the
GTO is equatorial (the usual case) rather than in the plane of the Moon’s orbit.

The virtual spacecraft has an initial thrust acceleration of 7 × 10−4m/s−2 and
starts from GTO with semi major axis of 24,510 km and eccentricity 0.72345981. The
angle between the plane of the Moon’s orbit and the Earth’s equatorial plane varies
between 18.5◦ and 28.5◦ depending on the positions of the Earth and Moon in their
respective orbits. Therefore, the initial inclination is limited to the interval (18.5◦,
28.5◦). The initial longitude of the ascending node (�), argument of periapse (ω),
and true anomaly are left free, that is, to be chosen by the numerical optimizer. It is
assumed that there are no coasting arcs other than the terminal coasting arc on the
stable manifold, that is, the engine is always on and providing maximum thrust.

If the insertion point on the stable manifold of target periodic orbit is chosen
a priori then final position and velocity are known, and appropriate constraints can
be placed on the states at the final node and an optimal trajectory can be calculated
readily. However, if the goal is simply to finish on the periodic orbit, this insertion
point can almost certainly be improved upon. This constraint, that is, simply arriving
on the periodic orbit, is problematic as there exists no analytical solution to the
periodic orbit or stable manifold generation problems, hence there exists no terminal
constraint of the form of Equation (9.21).

The solution developed in this work is to express the target periodic orbit in terms
of parameters available to the optimizer. To achieve this, two additional parameters
s and τ are introduced, hereafter referred to as the periodic orbit insertion point
parameter, and the manifold insertion parameter respectively. The periodic inser-
tion point parameter represents the normalized position around the periodic orbit
from some arbitrary starting location (where 0 ≤ s = t/T ≤ 1). The manifold
insertion parameter represents the time taken to reach the periodic orbit from the
manifold insertion point (τ ≥ 0). The states are then parameterized in terms of these
new parameters.

A target periodic orbit with Az = 8,000 km was generated by the procedure
in Section 4. This procedure generates a discretized periodic orbit. For each state
(x, y, z, vx, vy, vz), a surface was fitted to create functions of the states in terms of
the periodic orbit insertion parameter (s) and the manifold insertion parameter τ .
A bicubic spline interpolant was fitted using the MATLAB curve fitting toolbox
program cftool. These fitted surfaces are continuous and differentiable functions for
the terminal states in terms of both insertion parameters (s, τ).

The quality of the initial guess significantly influences the ability of the NLP
problem solver to obtain a convergent solution. It was chosen to have a feasible
trajectory as an initial guess, that is, a trajectory that satisfies the initial and final
constraints as well as the Runge-Kutta collocation constraints. This increases the
likelihood that the optimizer will converge to a satisfactory solution. However, a
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valid trajectory that inserts into the target periodic orbit’s stable manifold is not
known a priori and must be computed. The initial guess trajectory was created using
a three-step process.

(1) The initial orbit elements (ω,�) were chosen to be zero. The Equations of
motion (9.3) were integrated forward with the assumption that the thrust is always
aligned with the instantaneous velocity vector, that is, a thrust pointing angle of zero.
The time of flight and the initial true anomaly (f) were selected so that at the end
of the integration the spacecraft is in the vicinity of the target periodic orbit. The
manifold insertion parameter (τ ) was set to zero so the trajectory produced by this
procedure targets the periodic orbit itself not the stable manifold.

(2) The next step was to create a valid trajectory that finished at a specified posi-
tion on the periodic orbit but with the velocity unconstrained. A direct optimization
was used with the Runge-Kutta transcription (Section 3.3). The initial conditions
were the same as step 1, and there were no constraints applied to the final states. The
objective function was the difference between the x, y, and z states at the final node
(xf , yf , zf ) and the specified final position (xs, ys, zs)

φ(&̃x) =
√
(xf − xs)2 + (yf − ys)2 + (zf − zs)2. (9.37)

The trajectory obtained with tangential thrust is used as the initial guess. A
solution with an objective function value of zero, that is, reaching precisely the
specified entry point, was obtained.

(3) The final step is to find a trajectory that reached the same position but that also
had the velocity required to complete the periodic orbit. The procedure is similar to
that of step 2 but with the x, y, and z states at the final node (xf , yf , zf )now constrained
to the specified final position (xs, ys, zs). The objective then becomes minimization of
the difference in the velocities at the final node (vxf , vyf , vzf ) and the velocity specified
at the end point (vxs , vys , vzs). The objective function is then

φ(&̃x) =
√
(vxf − vxs)

2 + (vyf − vys)
2 + (vzf − vzs)

2. (9.38)

The resulting trajectory is a feasible insertion trajectory that can be used as an
initial guess for the problem of finding a fuel-minimizing insertion trajectory.

The numerical optimization procedure previously described was applied using
the NLP parameters (Section 9.3) and Runge-Kutta constraints to generate optimal
insertion trajectories for periodic orbits. The periodic orbit insertion parameter s, the
manifold insertion parameters τ , and the initial moon position λm are now included
as NLP parameters. The numerical method sought a trajectory that leaves Earth
orbit and arrives at a point on the stable manifold of the periodic orbit, with the
required velocity for insertion into the stable manifold, and coast to the periodic
orbit such that the transfer is completed using minimum fuel.

The optimal trajectory obtained reaches the periodic orbit in 89.04856 days, the
first 47.1023 days using maximum thrust and the final 41.9463 days coasting on the sta-
ble manifold. The mass fraction of propellant required is mp/m0 = 0.09681. The
optimal trajectory is shown in Figure 9.8. The orbit elements at the point of departure
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Table 9.1. Orbit elements at moment of departure
from GTO for the moon

semi-major axis (a) 24510km
eccentricity (e) 0.72346
inclination (i) (to lunar orbit plane) 18.5◦
Longitude of ascending node (�) −56.55057◦
Argument of periapsis (ω) 159.11972◦
True anomaly (f) −65.74612◦
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Figure 9.8. Optimal low-thrust trajectory to target orbit of amplitude Az = 8.0× 103 km.

from the initial GTO are given in Table 9.1. Semi-major axis and eccentricity are
specified; the other elements are determined by the numerical optimiger.

9.6 Optimal Earth Orbit to Lunar Orbit Transfer: Part 2 – Periodic Orbit to
Low-Lunar Orbit

The use of periodic orbits in an Earth-Moon low-thrust trajectory allows for the
possibility of long coast arcs on both the unstable and stable manifolds of the Halo
orbit, minimizing the time spent thrusting and hence minimizing fuel consumption.
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For this second phase of the problem, the assumptions are the same as for the
first phase, that is, the problem is the CR3BP; the Moon is in a circular orbit about
the Earth and no other outside gravitational influences (Sun, Jupiter, and the like) or
perturbations are considered. The spacecraft will start in GTO, that is an equatorial
orbit, with an apogee at the radius of geostationary orbit 42,164 km. The initial
orbit semi-major axis (a) and eccentricity (e) are the values for GTO (24,510 km and
0.72346, respectively). The angle between the equatorial plane of the Earth and the
plane of the Moon’s orbit varies between 18.5◦ and 28.5◦ depending on the relative
positions of the Earth and Moon in their orbits, therefore the initial orbit inclination
is restricted to the interval [18.5◦, 28.5◦]; the remaining orbit elements (�,ω, f ) are
free to be chosen by the optimizer, with the result as given in Table 9.1.

9.6.1 Halo Orbit-Moon Trajectory

The periodic orbit to Moon trajectory is qualitatively the opposite of the Earth-Halo
trajectory. The spacecraft leaves the periodic orbit, coasts along the unstable mani-
fold for a time, then starts its engine to complete the transfer to circular equatorial
orbit about the Moon at an altitude of 100 km. Since the target orbit is a circular orbit
in the reference plane, the longitude of the ascending node (�) and the argument of
periapse (ω) are undefined. There is also a singularity in the orbit element variational
Equations (9.5) due to zero inclination. To remove these singularities, equinoctial
variables were used for this phase of the mission. For the Halo-Moon trajectory,
the position on which the spacecraft leaves the unstable manifold is described by
the same two parameters: the periodic orbit departure parameter (s) and manifold
departure parameter (τ ).

The final mass fraction from the Earth-Halo orbit trajectory mf /m0 = 0.90319
is now the initial value for the Halo-Moon trajectory. As for the Earth-Halo phase, a
valid trajectory from the unstable manifold of the periodic orbit to low-lunar orbit is
not known a priori, therefore it must be computed. It is computed using a three-step
process similar to that used for the Earth-Halo phase.

(1) The Equations of motion (9.7) were integrated backward in time assuming
tangential thrust opposite the direction of motion until the spacecraft had effectively
escaped the Moon. The time of flight and final position within the circular orbit
were chosen so that the spacecraft would be in the vicinity of the unstable manifold
after the backward integration. The manifold departure parameters (s∗, τ ∗) were
chosen to minimize the Euclidian distance between the states at the initial node of
the thrust arc (x0, y0, z0, vx0 , vy0 , vz0) and the final states on the unstable manifold
(xs∗,τ∗ , ys∗,τ∗ , zs∗,τ∗ , vxs∗ ,τ∗ , vys∗ ,τ∗ , vzs∗ ,τ∗ ).

(2) The next step was to create a valid trajectory that began at the specified
position on the unstable manifold of the periodic orbit but with the velocity uncon-
strained. A direct optimization was used with Runge-Kutta constraints and with the
final states constrained to those used in part 1. There were no constraints applied to
the initial states. The objective function was the difference between the x, y and z
states at the initial node (x0, y0, z0) and the specified initial position on the unstable
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manifold (xs∗,τ∗ , ys∗,τ∗ , zs∗,τ∗).

φ(&̃x) =
√
(x0 − xs∗,τ∗)2 + (y0 − ys∗,τ∗)2 + (z0 − zs∗,τ∗)2. (9.39)

The trajectory obtained with tangential thrust is used as the initial guess. A
solution with an objective function value of zero, that is, starting precisely at the
specified exit point on the unstable manifold, was obtained.

(3) The final step is to find a trajectory that begins at the same position but that
also starts with the velocity required to complete the periodic orbit. A similar pro-
cedure is used with the position states at the initial node (x0, y0, z0) now constrained
to the specified initial position (xs∗,τ∗ , ys∗,τ∗ , zs∗,τ∗). The objective then becomes the
minimization of the difference in the velocities at the initial node (vx0 , vy0 , vz0) and
the known velocity required at the specified starting point (vxs∗ ,τ∗ , vys∗ ,τ∗ , vzs∗ ,τ∗ ). The
objective function is then

φ(&̃x) =
√
(vx0 − vxs∗ ,τ∗ )

2 + (vy0 − vys∗ ,τ∗ )
2 + (vz0 − vzs∗ ,τ∗ )

2. (9.40)

The resulting trajectory is a feasible trajectory that can be used as an initial guess
for the problem of finding a fuel-minimizing trajectory from the periodic orbit about
L1 to low-lunar orbit.

The numerical optimization procedure previously described was applied using
the NLP parameters (Section 9.3) and Runge-Kutta constraints to generate optimal
departure trajectories from the periodic orbit to low-lunar orbit. The periodic orbit
departure parameter s and the manifold departure parameter τ are now included as
NLP parameters. The numerical method sought a trajectory that leaves the unstable
manifold and arrives in a low-lunar orbit with an altitude of 100 km such that the
transfer is completed using minimum fuel.

The optimal trajectory obtained reaches low lunar orbit in 34.2474 days, the
first 15.2215 days coasting on the unstable manifold and the final 19.0260 days using
maximum available thrust. The mass fraction of propellant required is mp/m0 =
0.04229. The trajectory is shown in Figures 9.9–9.11.

9.6.2 Combined Earth-Moon Trajectory

The two optimal trajectories can be combined to create a fuel-optimal trajectory
from the Earth to the Moon via a periodic orbit about the interior (L1) Earth-
Moon Lagrange point. The characteristics of the combined trajectory are given in
Table 9.2.

This trajectory has a shorter flight time than that computed by Mingotti et al.
[22], 89.05 days versus 91.5 days, but uses slightly more propellant, that is, the pro-
pellant mass fraction is 0.09681 versus 0.0892. It was not expected that the results
would be the same since in this work, as described in Section 9.5, several simplifying
assumptions made in the previous study were removed.
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Figure 9.9. Optimal low-thrust trajectory to low-lunar orbit from a periodic orbit of amplitude
Az = 8.0× 103 km X − Y plane.
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Figure 9.10. Optimal low-thrust trajectory to low-lunar orbit from a periodic orbit of amplitude
Az = 8.0× 103 km X − Z plane.

9.7 Extension of the Work to Interplanetary Flight

The methods used here are not restricted to the problem of a Earth-to-Moon
transfer. Any three-body system (for example, Earth-Sun, Sun-Jupiter, or Jupiter-
Jovian Moon) has the necessary Lagrange points, periodic orbits, and stable and
unstable manifolds to construct trajectories such as those shown in the previous
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Table 9.2. Characteristics of the complete Earth–Moon transfer trajectory.

First Leg Second Leg Total

ttotal (days) 89.0486 34.2475 123.2960
tpowered (days) 47.1023 19.0260 66.1282
tcoast (days) 41.9463 15.2215 57.1678

final mass fraction
mf

m0
0.9032 0.9567 0.8641

mass fraction propellant
mp

m0
0.0968 0.0433 0.1359
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Figure 9.11. Optimal low-thrust trajectory to low-lunar orbit from a periodic orbit of amplitude
Az = 8.0× 103 km Y−Z plane.

sections. Efficient interplanetary flight can be constructed by patching together
individual optimal planet-stable manifold, unstable manifold–planet, or stable
manifold–unstable manifold trajectories for various three-body systems.

9.8 Conclusions

This work demonstrates that periodic orbits about the Lagrange points can be gener-
ated by posing the problem as an optimization problem and using direct transcription
to find the solution. Periodic orbits with specific properties (amplitude, period,
energy, and so on) can be generated by altering the constraints on the state variables.
This method is able to produce periodic orbits quickly (<30s on a 2GHz Intel Core
2 Duo), easily, and reliably even from poor initial guesses.

Many current and proposed missions take advantage of Lagrange point orbits [4,
5, 6] and their manifolds. These trajectories are the “on-ramp” to the Interplanetary
Superhighway [2]. It is of great benefit to investigate how to reach these periodic
orbits cheaply and it thus follows that very-efficient, low-thrust electric propulsion
should be combined with the use of invariant manifolds to take advantage of these
low-energy paths.
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In this work, the same numerical optimization with direct transcription used
for the generation of the periodic orbits was also used to optimize a complete
planet-planet transfer via the interior Lagrange point (L1). The specific example
was a transfer from geostationary transfer orbit (GTO) to a low-lunar orbit. Opti-
mal low-thrust trajectories were generated from the GTO to a periodic orbit via
the stable manifold and also from the periodic orbit to low-lunar orbit. The opti-
mization method minimizes the duration of the thrust arcs, thus minimizing the fuel
consumed, by simultaneously determining all of the free parameters of the problem
including the orientation of the departure orbit plane, the optimal point at which to
enter the target orbit’s stable manifold, and the thrust pointing angle time history.
This is necessary as the insertion point chosen and the path to get there both influ-
ence the cost, that is, the cheapest (closest) point to reach is not necessarily the best
point to insert into. Significant fuel savings can be realized by optimizing the inser-
tion point simultaneously with optimizing the trajectory. The method demonstrated
can be straightforwardly applied to other planet-planet transfers making use of the
collinear Lagrange points.
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10.1 Introduction

The determination of optimal (either minimum-time or minimum-propellant-
consumption) space trajectories has been pursued for decades with different
numerical optimization methods. In general, numerical optimization methods can
be classified as deterministic or stochastic methods. Deterministic gradient-based
methods assume the continuity and differentiability of the objective function to be
minimized. In addition, gradient-based methods are local in nature and require the
identification of a suitable first-attempt “solution” in the region of convergence,
which is unknown a priori and strongly problem dependent. These circumstances
have motivated the development of effective stochastic methods in the last decades.
These algorithms are also referred to as evolutionary algorithms and are inspired by
natural phenomena. Evolutionary computation techniques exploit a population of
individuals, representing possible solutions to the problem of interest. The optimal
solution is sought through cooperation and competition among individuals. The most
popular class of these techniques is represented by the genetic algorithms (GA) [1],
which model the evolution of a species based on Darwin’s principle of survival of the
fittest. Differential evolution algorithms represent alternative stochastic approaches
with some analogy with genetic algorithms, in the sense that new individuals are gen-
erated from old individuals and are eventually preserved after comparing them with
their parents. Ant colony optimization [2] is another method, inspired by the behav-
ior of ants, whereas the simulated annealing algorithm [2] mimics the equilibrium of
large numbers of atoms during an annealing process.

The particle swarm optimization (PSO) technique, which is the methodology
being addressed in this chapter, was first introduced by Eberhart and Kennedy [3, 4]
in 1995 and belongs to the category of swarm intelligence methods [2, 5]. It mimics
the unpredictable motion of bird flocks while searching for food, taking advantage
of the mechanism of information sharing that affects the overall behavior of a swarm
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[2–16]. The initial population that composes the swarm is randomly generated at the
first iteration of the process. Each particle is associated with a position vector and
a velocity vector at a given iteration. More specifically, the position vector includes
the values of the unknown parameters of the problem, whereas the velocity vector
determines the position update. Each particle represents a possible solution to the
problem and corresponds to a specific value of the objective (or fitness) function. At
the end of the process, the best particle (i.e., the best solution with reference to the
objective function) is selected. Both the position and the velocity vector are updated
in a single iteration. For each particle, the formula for velocity update includes three
terms with stochastic weights; one of these terms is the so-called social component,
related to the collective best position ever visited by a portion of the particles that
form the swarm.

A number of options are available for implementing the PSO technique. First
of all, different values for the stochastic weights have been proposed [10–12], and
they seem to affect both the algorithm convergence and the capability to detect the
global optimum. In addition, two different versions of the particle swarm exist [2, 5]:
the global version, where the collective best position (associated with the social term
in the velocity updating expression) is selected by considering the entire swarm,
and the local version, where for each particle the collective best position is selected
among the particles located in a proper neighborhood of the particle itself. Albeit
less computationally efficient, in the scientific literature [2, 5, 7–11] the local version
of the PSO algorithm, based on the definition of the neighbors of each particle,
has been reported to be occasionally capable of avoiding local minima. Additional
improvements based on the application of evolutionary operators to the particle
swarm methodology are also reported by several researchers [17, 18].

The basic version of the particle swarm algorithm appears as very intuitive and
is extremely easy to program. In addition, this kind of method is well suited for find-
ing the globally optimal solution to an optimization problem and requires only the
definition of the search space for the unknown parameters. Although computation-
ally expensive with respect to gradient-based methods [13], in the scientific literature
[19–21] the particle swarm technique is reported to be more efficient when compared
to genetic algorithms, due to a reduced number of function evaluations. Despite its
promising features and the vast number of papers devoted to this technique, most
researchers concentrated on topological [22] and multimodal mathematical prob-
lems [15, 23], and only a limited number of applications appear of practical interest.
In the scientific literature, several papers describe the use of the particle swarm
methodology in the context of chemical processes [24, 25]. Fourie and Groenwold
[26] employed the PSO technique for shape and size optimization in structural engi-
neering. Most recently, Khurana et al. [27] applied the swarming theory to airfoil
shape optimization. Bessette and Spencer [28, 29] successfully employed the particle
swarm technique for space trajectory optimization, focusing on the optimization of
time-limited orbital transfers [28] and impulsive interplanetary trajectories [29]. In
both papers they claim that the PSO method outperforms the differential evolution
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algorithm (DE), with regard to convergence speed as well as to reliability. This
statement is somewhat in contrast with what is affirmed by other researchers, such as
Spaans and Mooji [30], who claim the superiority of differential evolution methods
with respect to the particle swarm algorithm. Vasile et al. [31] investigated several
algorithms for global optimization (including PSO and DE), employing different set-
tings for each of them and using the success rate as the main index for the performance
evaluation of each method. In their paper an improved algorithm based on differen-
tial evolution is proposed. Nevertheless, in the conclusions the authors remark on the
importance of appropriately coupling the evolutionary technique with the problem
structure, stating that the optimal choice of a method of solution is definitely prob-
lem dependent. Zhu et al. [32, 33] combined DE and PSO for satellite constellation
design [32] and for determining the globally optimal low-thrust trajectory for aster-
oid exploration [33]. Lastly, Rosa Sentinella and Casalino [34] proposed a hybrid
optimization procedure that runs three different optimizers – based on GA, DE, and
PSO – in parallel. They applied this method to the optimization of multiple-impulse
rendezvous trajectories and of Earth-to-Mars round-trip missions.

The work that follows adopts a basic, general-purpose global version of the
PSO method, according to the general settings suggested in References 6–8. A
simple MATLAB code has been implemented and applied to a variety of space tra-
jectory optimization problems. In particular, the following applications have been
considered:

(a) Lyapunov periodic orbits around the collinear Lagrange points of the Earth-Moon
system. The problem consists of determining the initial position and velocity such
that the motion around the collinear Lagrange points is indefinitely repeated in
the context of a circular restricted three-body problem.

(b) Lunar periodic orbits. The problem is in determining the initial position and
velocity such that the motion around the Moon is indefinitely repeated in the
context of a circular restricted three-body problem.

(c) Optimal four-impulse rendezvous. The problem consists of determining the
optimal locations, directions, and magnitudes of the four impulsive changes of
velocity that allow performing a coplanar circle-to-circle rendezvous while min-
imizing propellant consumption (i.e., the characteristic velocity of the transfer
trajectory).

(d) Optimal low-thrust orbital transfer. The problem consists of determining the
thrust pointing angle time history that minimizes the time of flight while satisfying
the terminal conditions for transferring a spacecraft from an initial circular orbit
to a terminal circular orbit.

In this chapter the particle swarm technique, even in its simplest formulation
and without interacting with other algorithms, is shown to be capable of effectively
solving the previously mentioned space trajectory optimization problems with great
numerical accuracy.
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10.2 Description of the Method

In the context of space trajectories, the optimization problems of interest usually
consist of minimizing a given objective function related with the time evolution
of a dynamical system, which can be governed either by differential equations
or by algebraic equations. The minimization is achieved by selecting the optimal
values of the unknown parameters and time-varying variables. Several method-
ologies can be employed to translate the optimal control problems that involve
continuous time-dependent control variables into parameter optimization problems.
If the system dynamics are governed by a set of algebraic (nonlinear) equations
the problem reduces to a nonlinear programming problem. Definitely, in both
cases – in the presence of optimal control problems or nonlinear programming prob-
lems – the optimization process is aimed at finding the optimal values of a set of
unknown parameters.

10.2.1 Unconstrained Optimization

Unconstrained parameter optimization problems can be stated as follows: deter-
mine the optimal values of the n unknown parameters {χ1, . . . ,χn} such that
the objective function J is minimized. The time evolution of the dynamical sys-
tem under consideration depends on {χ1, . . . ,χn}, which are constrained to their
respective ranges

ak ≤ χk ≤ bk (k = 1, . . . , n). (10.1)

As mentioned earlier in the chapter, the PSO technique is a population-based
method, where the population is represented by a swarm of N particles. Each par-
ticle i (i = 1, . . . , N) is associated with a position vector χ(i) and with a velocity
vector w(i). The position vector includes the values of the n unknown parameters of
the problem

χ(i) �= [χ1(i) . . . χn(i)]T (10.2)

whereas the velocity vector, whose components are denoted with wk(i) (k = 1, . . . , n),
determines the position update (both χ and w are defined as n-dimensional col-
umn vectors). As the position components are bounded, the corresponding velocity
components must be also constrained to suitable ranges

−(bk − ak) ≤ wk ≤ (bk − ak)⇒ −dk ≤ wk ≤ dk if dk
�= bk − ak (k = 1, . . . , n).

(10.3)

The limitations (10.3) are due to the fact that if wk > bk − ak or wk < ak − bk then,
starting from any coordinate χ

(j)
k (at the iteration j), the updated coordinate χ

(j+1)
k

(=χ(j)
k +wk)would violate the condition (10.1). If a �= [a1 . . . an ]T , b �= [b1 . . . bn]T ,
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and d �= [d1 . . . dn]T , the relationships (10.1) and (10.3) can be rewritten in compact
form as

a ≤ χ ≤ b and − d ≤ w ≤ d . (10.4)

Each particle represents a possible solution to the problem and corresponds to a spe-
cific value of the fitness function. The expressions for position and velocity update
determine the swarm evolution toward the location of the globally optimal position,
which corresponds to the globally optimal solution to the problem under consid-
eration. The initial population for the PSO algorithm is randomly generated by
introducing N particles, whose positions and velocities are (stochastically) uniformly
distributed in the respective search spaces, defined by Equation (10.4). The following
steps compose the generic iteration j:

(a) for i = 1, . . . , N :
(i) evaluate the objective function associated with particle i, J(j)(i)

(ii) determine the best position ever visited by particle i up to the current
iteration j, ψ (j)(i): ψ (j)(i) = χ (l)(i), where l = arg min

p=1,...,j
J(p)(i)

(b) determine the global best position ever visited by the entire swarm, Y (j): Y (j) =
ψ (j)(q), where q = arg min

i=1,...,N
�(j)(i) and �(j)(i) (i = 1, . . . , N) represents the

value of the objective function corresponding to the best position ever visited by
particle i up to iteration j, that is, �(j)(i) = min

p=1,...,j
J(p)(i)

(c) update the velocity vector. For each particle i and for each component wk(i)
(k = 1, . . . , n; i = 1, . . . , N):

w(j+1)
k (i) = cIw(j)

k (i)+ cC[ψ(j)
k (i)− x(j)k (i)] + cS[Y (j)

k − x(j)k (i)] (10.5)

The inertial, cognitive, and social (stochastic) weights have the following
expressions [6–8]

cI = 1+ r1(0, 1)
2

cC = 1.49445r2(0, 1) cS = 1.49445r3(0, 1) (10.6)

where r1(0, 1), r2(0, 1), and r3(0, 1) represent three independent random numbers
with uniform distribution between 0 and 1. Then:

(i) if w(j+1)
k (i) < −dk ⇒ w(j+1)

k (i) = −dk

(ii) if w(j+1)
k (i) > dk ⇒ w(j+1)

k (i) = dk

(d) update the position vector. For each particle i and for each component χk(i)
(k = 1, . . . , n; i = 1, . . . , N)

χ
(j+1)
k (i) = χ

(j)
k (i)+ w(j)

k (i) (10.7)

(i) if χ(j+1)
k (i) < ak ⇒ χ

(j+1)
k (i) = ak and w(j+1)

k (i) = 0

(ii) if χ(j+1)
k (i) > bk ⇒ χ

(j+1)
k (i) = bk and w(j+1)

k (i) = 0
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The algorithm terminates when the maximum number of iterations NIT is
reached. The position vector of the global best particle, Y (NIT ), is expected to con-
tain the optimal values of the unknown parameters, which correspond to the global
minimum of J, denoted with J(NIT )

opt . A fairly large number of iterations are set to
ensure that the final solution is stable enough to be considered optimal. The central
idea underlying the method is contained in the formula (10.5) for velocity updat-
ing. This formula includes three terms with stochastic weights: the first term is the
so called inertial component and for each particle is proportional to its velocity in
the preceding iteration; the second component is termed the cognitive component,
directed toward the personal best position, that is, the best position experienced by
the particle; and finally the third term is the social component, directed toward the
global best position, that is, the best position yet located by any particle in the swarm.
According to point (c), if a component wk of the velocity vector violates Equation
(10.3), then wk is set to the minimum (maximum) value −dk (dk). If a component
χk of the position vector violates Equation (10.1), then χk is set to the minimum
(maximum) value ak (bk), and the corresponding velocity component is set to 0.
This ensures that in the successive iteration the update of the velocity component
is not affected by the first term of Equation (10.5), which could lead the particle to
again violating the constraint (10.1).

10.2.2 Constrained Optimization

Space trajectory optimization problems must be frequently modeled as constrained
optimization problems – in other words, they involve equalities and/or inequali-
ties regarding (directly or indirectly) the unknown parameters. The PSO algorithm
described in the preceding subsection must be suitably adjusted to deal with
constrained problems.

In general, evolutionary computation methods encounter difficulties in treating
equality constraints [6–9, 14, 35], because they narrow considerably the search space
where feasible solutions can be located. This is due to the fact that (nonredundant)
equality constraints actually reduce the degree of freedom of the problem according
to their number. In fact, m equality constraints reduce the degree of freedom by
m. Therefore, in the presence of n unknown parameters, at most m = n equality
constraints are admissible (m ≤ n)

dr(χ) = 0 (r = 1, . . . , m). (10.8)

The most popular approach for dealing with these constraints consists in penalizing
them by summing additional terms to the objective function

J̃ = J +
m∑

r=1

αr |dr(χ)| . (10.9)

This approach is employed also in this research. The values of the coefficients αr

(r = 1, . . . , m) must be carefully chosen and are problem dependent. Small values
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can allow excessive constraint violations, whereas high values of αr can render the
problem ill-conditioned. The scientific literature includes a vast number of works
addressing penalty methods [36, 37] (with special convergence properties) or alter-
native approaches [38]; however, in this work the coarse trial-and-error selection of
suitable values of αr proved to be a satisfactory approach.

Inequality constraints are less problematic because they reduce the search space
of feasible solutions without decreasing the degree of freedom of the problem. For
each particle, the simplest way of treating inequality constraints consists of assigning
a fictitious infinite value to the fitness function if the particle violates at least one
of them. In addition, the corresponding velocity is set to zero, so that the succes-
sive velocity update – according to Equation (10.5) – is affected only by the social
term and by the cognitive term. This circumstance statistically leads the particle to a
feasible region of the search space. Points (a)–(i) of the algorithm (in the preceding
subsection) must be modified as follows:

(a) for i = 1, . . . , N :
(i) evaluate the inequality constraints. If (at least) one of them is violated then

set J(j)(i) = ∞ and w(j+1)(i) = 0 and skip point (c), else evaluate the
objective function associated with particle i, J(j)(i).

Further options exist for dealing with constraints (e.g., methods based on
preserving feasibility of solutions, methods that distinguish between feasible and
infeasible solutions, cf. References 14, 35–38). However, the two distinct, simple
strategies described previously in this chapter for equality and inequality constraints
will be shown to be quite effective for the problems considered in this chapter.

10.3 Lyapunov Periodic Orbits

Lyapunov periodic orbits represent a special class of planar periodic orbits around
the collinear Lagrange points in the context of a circular restricted three-body prob-
lem. The problem investigated in this section is in determining the initial position
and velocity of the third body such that its motion around the collinear Lagrange
points of the Earth-Moon system is indefinitely repeated. The problem at hand is
reformulated as an unconstrained optimization problem so that it can be solved by
the PSO algorithm.

10.3.1 Problem Definition

The circular restricted three-body problem models the dynamics of three bodies
with masses m1, m2, and m3, under the assumption that m1 > m2 % m3 ≈ 0. This
means that the mass of the third body, m3, is considered negligible, whereas the
remaining massive bodies, termed the primaries, describe counterclockwise circular
orbits around their center of mass. This problem is conveniently described in synodic
coordinates that represent a coordinate system rotating with the two primaries. The
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x-axis connects the two primaries and is directed from body 1 to body 2, whereas
the y-axis lies in the plane of their motion. This problem is analyzed by employing
canonical units that represent a set of convenient normalized units. The distance
unit (DU) is the (constant) distance between the two primaries (i.e., the Earth and
the Moon, and therefore 1 DU = 384400 km), whereas the time unit (TU) is such
that the two primaries complete a single orbit in a period equal to 2π TU (1 TU =
375190 sec). If μE and μM denote respectively the gravitational parameter of the
Earth and of the Moon, these definitions of TU and DU imply that μE + μM =
1 DU3/TU2. After introducing the parameter μ �= μM/(μE + μM) (= 0.01215510),
it is straightforward to rewrite the gravitational parameters of the two primaries as
μE = 1− μ and μM = μ (in DU3/TU2). Their respective positions along the x-axis
are identified by xE = −μ and xM = 1− μ (in DU), as shown in Figure 10.1.

With reference to the synodic frame illustrated in Figure 10.1, if (x, y) and (vx, vy)

are the coordinates of position and velocity, the equations of motion of the planar
circular restricted three-body problem are the following [39]

ẋ = vx ẏ = vy (10.10)

v̇x = ∂�

∂x
+ 2vy v̇y = ∂�

∂y
− 2vx (10.11)

where

�
�= x2 + y2

2
+ 1− μ√

(x+ μ)2 + y2
+ μ√

(x+ μ− 1)2 + y2
. (10.12)

It is relatively straightforward to demonstrate that an integral exists for this
dynamical system [39]: the Jacobi integral, whose value is referred to as the Jacobi
constant and denoted with C

C = 2�− (v2
x + v2

y). (10.13)
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Figure 10.1. Synodic reference frame.
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The value of C remains unchanged and is associated with the energy of the dynam-
ical system. Zero-velocity curves are the geometrical loci where vx = vy = 0, and
constitute the boundary of the region where the third-body motion is allowed. It is
worth reporting the values of C1, C2, and C3, which represent the values of the Jacobi
constant corresponding to the situations when the zero-velocity curves contain the
Lagrange points L1, L2, or L3, respectively:

C1 = 3.188383 C2 = 3.172196 C3 = 3.012152 (in DU2/TU2). (10.14)

These values define four intervals for the Jacobi constant, corresponding to different
geometries of the region where the third-body motion is allowed [39].

With regard to the equations of motion (10.10)–(10.11), after introducing the
angle γ that the velocity vector forms with the x-axis, due to (10.13), the two
components vx and vy can be rewritten as

vx =
√

2�− C cos γ and vy =
√

2�− C sin γ . (10.15)

As a result

tan γ = vy

vx
. (10.16)

The time derivative of Equation (10.16) is

γ̇

cos2 γ
= v̇yvx − v̇xvy

v2
x

⇒ γ̇ = v̇yvx − v̇xvy

v2
x + v2

y
= (�y − 2vx)vx − (�x + 2vy)vy

2�− C

(10.17)

where �x
�= ∂�/∂x and �y

�= ∂�/∂y. After replacing vx and vy with their respective
expressions depending on γ , Equation (10.17) becomes

γ̇ = �y cos γ −�x sin γ√
2�− C

− 2. (10.18)

Therefore, the existence of the Jacobi integral allows replacing Equations (10.11)
with Equation (10.18). As a result, the set of equations employed to determine
periodic orbits is composed of (10.10) and (10.18), also referred to as the Birkhoff’s
equations [39]. They represent the state equations for the dynamical system under
consideration.

In the context of the circular restricted three-body problem, for a given Jacobi
constant, in the synodic coordinate system an orbit is termed periodic if it is indefi-
nitely repeated. This means that after the period T the three variables {x, y, γ } assume
their respective initial values

x(T) = x(0) y(T) = y(0) γ (T) = γ (0)+ 2ρπ (ρ ∈ Z). (10.19)



272 Swarming Theory Applied to Space Trajectory Optimization

Lyapunov orbits are periodic clockwise trajectories around the Lagrange points
L1, L2, and L3. These orbits are also symmetrical with respect to the x-axis. Thus
there exists an initial position, on a Lyapunov orbit, along the x-axis with initial
velocity aligned with the y-axis. Hence, for a given Jacobi constant, in the synodic
coordinate system a Lyapunov periodic orbit is such that after the period T the three
variables {x, y, γ } assume their respective initial values

x(T) = x(0) y(T) = y(0) = 0 γ (T) = γ (0) = π

2
+ 2ρπ (ρ ∈ Z). (10.20)

The problem can be easily translated into an optimization problem if the
following objective function is introduced

J = |x(T)− x(0)| + |y(T)|
+min

{
mod
[∣∣∣γ (T)− π

2

∣∣∣ , 2π] , mod
[
−
∣∣∣γ (T)− π

2

∣∣∣ , 2π]} . (10.21)

The third term of J is a piecewise linear function of γ (T), yields a maximum value
equal to π if γ (T) = π/2 + π + 2ρπ (∀ρ ∈ Z), and vanishes if γ (T) = π/2 + 2ρπ
(∀ρ ∈ Z). The objective function J has a global minimum equal to 0, provided that
at least one periodic orbit exists. Hence, the problem consists of finding the initial
condition x(0) and the period T corresponding to the global minimum of J.

10.3.2 Numerical Results

For this example, the PSO algorithm uses a population of 30 particles (N = 30) and is
run for 500 iterations (NIT = 500). Each particle is associated with the values of the
two unknown parameters of the problem: χ = [x(0) T]T . The optimization process
is repeated for three different cases (labeled with [a], [b], and [c]), corresponding
to the collinear Lagrange points L1, L2, and L3, whose coordinates in canonical
units are

xL1 = 0.836893 xL2 = 1.155700 xL3 = −1.005065. (10.22)

For each case, the optimal values of the unknown parameters are sought in the
following ranges

xLi − 0.15 DU ≤ x(0) ≤ xLi (i = 1, 2, 3) and 3 TU ≤ T ≤ 8 TU (10.23)

and C is set to 3.01 DU2/TU2. Table 10.1 reports the results obtained with the PSO
algorithm after 500 iterations, that is, the globally optimal values of the unknown
parameters as well as the related value of the fitness function J(NIT )

opt . Figure 10.2 shows
the objective evolution as a function of the iteration index j, whereas Figure 10.3 por-
trays the corresponding Lyapunov orbits in the synodic reference frame. In two cases
J(j)opt < 10−10 after 300 iterations, and this circumstance testifies to the effectiveness
and numerical accuracy of the PSO method. In addition, the fact that χ includes
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Table 10.1. Results related with the Lyapunov
orbits (C = 3.01 DU2/TU2)

x(0) (DU) T (TU) J(NIT )
opt

L1 0.775284 4.142957 4.357 · 10−12

L2 1.027601 4.369107 6.043 · 10−6

L3 −1.050020 6.218442 4.811 · 10−11
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Figure 10.2. Lyapunov orbits: objective evolution as a function of the iteration index.
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Figure 10.3. Lyapunov orbits about the collinear Lagrange points (C = 3.01 DU2/TU2).

only two parameters has the favorable consequence that the objective function J
can be represented as a spatial surface in the neighborhood of the global optimal
solution Y (NIT ). Figure 10.4 illustrates this surface (for the Lyapunov orbit about the
Lagrange point L2), showing that the convergence region is extremely reduced in
size and irregular in shape. As an immediate consequence, gradient-based methods
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Figure 10.4. Lyapunov orbit around L2: surface associated with J(x(0), T).

are likely to be unsuccessful in finding a Lyapunov orbit, unless a sufficiently accu-
rate guess is provided. This is what most researchers did for decades, for instance by
employing analytical expansions near the Lagrange points as first attempt solutions
[40]. In contrast, the PSO algorithm does not need any guess and successfully finds
Lyapunov orbits with great accuracy.

10.4 Lunar Periodic Orbits

The problem consists of determining the initial position and velocity such that the
third-body motion around the Moon is stable (i.e., indefinitely repeated) in the
context of a planar circular restricted three-body problem. This problem is also
formulated as an optimization problem, so that it can be solved by the PSO algorithm.

10.4.1 Problem Definition

The general framework employed to investigate the problem at hand is the same
adopted in the preceding section. The third-body motion is described in the synodic
reference frame, and the same canonical units of the previous section are employed
(therefore, 1 DU = 384400 km and 1 TU = 375190 sec). The position of the Earth
and of the Moon are identified by xE = −μ and xM = 1 − μ (in DU) (respec-
tively), and the equations of the third-body motion (also termed state equations) are
represented by Equations (10.10) and (10.18).

A variety of lunar periodic orbits has been known since the 1960s [41]. However,
in this study the orbits with an initial position along the x-axis and with initial velocity
aligned with the y-axis are sought. This means that y(0) = 0 and γ (0) = π/2. For a
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given Jacobi constant C, an orbit is periodic if after the period T the three variables
{x, y, γ } assume their respective values at the initial time. The problem can be easily
translated into an optimization problem if an objective function identical to the one
employed for the previous example is introduced

J = |x(T)− x(0)| + |y(T)|
+min

{
mod
[∣∣∣γ (T)− π

2

∣∣∣ , 2π] , mod
[
−
∣∣∣γ (T)− π

2

∣∣∣ , 2π]} . (10.24)

The global minimum of J equals 0, provided that at least one periodic orbit exists.
A single additional condition is needed to ensure that the periodic orbit is actually

an orbit around the Moon. Let β denote the angle that the position vector relative
to the Moon forms with the x-axis. Then

tan β = y
x− xM

. (10.25)

Equation (10.25) implies that the following equation holds for β

β̇ =
√

2�− C
(x− xM)2 + y2 [(x− xM) sin γ − y cos γ ] (10.26)

with β(0) = π (if x(0) < xM and y(0) = 0). This equation is integrated together with
the state equations (10.10) and (10.18). The third body completes at least a single
loop around the Moon if

|β(T)− β(0)| ≥ 2π . (10.27)

10.4.2 Numerical Results

The PSO algorithm uses a population of 30 particles (N = 30) and is run for
500 iterations (NIT = 500). Each particle is associated with the values of the two
unknown parameters of the problem: χ = [x(0) T]T . The PSO technique assigns
an infinite value of the objective function to the particles that violate the inequality
constraint (10.27).

With the intent of finding periodic orbits with different features, the optimization
process is repeated for six different cases, corresponding to two distinct time intervals
for T and three distinct intervals over the x-axis for x(0)

1 TU ≤ T ≤ 3 TU or 3 TU ≤ T ≤ 8 TU (10.28)

xL1 ≤ x(0) ≤ 0.87 DU or 0.87 DU ≤ x(0) ≤ 0.9 DU or 0.9 DU ≤ x(0) ≤ xM .
(10.29)

The Jacobi constant C is set to 3.01 DU2/TU2. For three out of the six cases (labeled
with [a], [b], and [c]), the PSO algorithm was able to find periodic orbits around the
Moon. The related results are reported in Table 10.2 (in which the number of loops
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Table 10.2. Results related to the lunar periodic orbits (C = 3.01 DU2/TU2)

x(0) (DU) T (TU) J(NIT )
opt number of loops class

0.891403 1.446013 1.794 · 10−12 1 C
0.945452 5.719834 2.757 · 10−6 2 H2

0.853238 6.036339 8.054 · 10−10 4 unknown
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Figure 10.5. Lunar periodic orbits: objective evolution as a function of the iteration index.
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Figure 10.6. Periodic orbits around the Moon (C = 3.01 DU2/TU2).

refers to the loops in the period T ; not necessarily all the loops are around the Moon).
Figure 10.5 illustrates the objective evolution as a function of the iteration index for
each case, whereas Figure 10.6 portrays the corresponding lunar periodic orbits.
For the two-loop orbit the number of iterations was increased to 1,000, because the
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Figure 10.7. Four-loop lunar periodic orbit: surface associated with J(x(0), T).

objective function was not sufficiently close to 0 after 500 iterations. However, even
1,000 iterations are not prohibitive, requiring only 150 minutes of CPU time (running
MATLAB) using a 1.6 GHz AMD Sempron processor on an Acer Aspire 3102WLMi
laptop computer, assuming relative and absolute error tolerance for the numerical
integration of the equations of motion of 10−10 and 10−12, respectively. According
to the classification given by Broucke [41], the single-loop orbit is a C-type orbit,
whereas the two-loop orbit can be recognized to belong to the H2 class of periodic
orbits. The fact that only two unknown parameters are involved in the problem of
interest has the favorable consequence that the objective function (depending on x(0)
and T) can be associated with a spatial surface. Figure 10.7 illustrates this surface for
the case corresponding to the four-loop orbit and points out that the convergence
region is extremely reduced in size and irregular in shape. This circumstance implies
again that local algorithms are unlikely to converge unless a very accurate guess
solution is provided. In contrast, for this problem as well, the PSO method does not
need any guess and successfully finds the desired solution with great accuracy.

10.5 Optimal Four-Impulse Orbital Rendezvous

The orbital rendezvous of a chaser spacecraft with a target vehicle (respectively
denoted with “C” and “T” henceforward) in a specified time can be achieved by two
(or more) impulses. If the orbits of the two spacecraft are coplanar and the time
is sufficiently large, the globally optimal (two-impulse) solution is the Hohmann
transfer. More precisely, the Hohmann transfer represents the optimal rendezvous
if the specified transfer time, denoted with �tT , is not less than the sum of two
terms: (1) the time needed for a correct phasing between C and T, �tP ; (2) the
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Hohmann transfer time between the specified terminal orbits, �tH . This means that
the Hohmann transfer is the (globally) optimal two-impulse rendezvous if

�tT ≥ �tP +�tH . (10.30)

If the terminal orbits are circular with radii R1 and R2, if 0.08376 ≤ R2/R1 ≤ 11.939,
and the condition (10.30) holds, then the Hohmann transfer is the globally optimal
rendezvous without any limitation on the number of impulses.

For those cases where the condition (10.30) is violated, additional impulses can
allow performing the rendezvous with substantial propellant savings with respect
to the use of two impulses. Analytical results exist for linearized coplanar circle-to-
circle rendezvous. In fact, Prussing [42, 43] proved that as many as four impulses
are required for an optimal time-fixed rendezvous. Analytical solutions arising from
the linear theory can also be employed for locating the optimal rendezvous when
the nonlinear equations of motion are employed [44]. Yet for the four-impulse ren-
dezvous that is being considered in this section, the extension of the linear theory to
the nonlinear case only yielded a locally optimal solution [44], which can be outper-
formed by a completely different four-impulse rendezvous trajectory, as shown by
Colasurdo and Pastrone [45].

10.5.1 Problem Definition

The problem consists of determining the optimal locations, directions, and magni-
tudes of the four impulses that allow performing the orbital rendezvous between
the chaser spacecraft C and the target vehicle T in a specified time. Both spacecraft
are placed in the same circular orbit of radius R1, and their angular displacement at
the initial time is �ξ = π . In this case the time needed for a correct phasing for a
Hohmann transfer tends to infinity (�tP →∞), and therefore the Hohmann trans-
fer cannot represent the optimal rendezvous trajectory, regardless of the transfer
time �tT . As both spacecraft are placed in the same (initial) circular orbit, the first
impulse can be assumed to occur at the initial time without any loss of generality. If ξ
denotes the angular displacement from the axis corresponding to the initial position
of C, then the initial conditions for the two spacecraft are the following

v(C)
r (t−0 ) = 0 v(C)

θ (t−0 ) =
√

μ

R1
r(C)(t−0 ) = R1 ξ (C)(t−0 ) = 0 (10.31)

v(T)
r (t−0 ) = 0 v(T)

θ (t−0 ) =
√

μ

R1
r(T)(t−0 ) = R1 ξ (T)(t−0 ) = π (10.32)

where μ represents the gravitational parameter of the attracting body, v(C/T)
r and

v(C/T)
θ denote the radial and the horizontal components of the velocity (respectively),

and r(C/T) is the radius. The initial time t0 is set to 0 (the superscripts “−” and “+”
refer to the instant immediately before and after the application of an impulse). At
the terminal time tf , both the position and the velocity of the two spacecraft must
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coincide, and for C this circumstance leads to the following terminal conditions:

v(C)
r

(
t+f
)
= 0 v(C)

θ

(
t+f
)
=
√

μ

R1
r(C)
(
t+f
)
= R1 ξ (C)

(
t+f
)
= π + tf

√
μ

R3
1

.

(10.33)

What will be demonstrated is that the following six parameters define the
rendezvous trajectory

{�v1, δ1,�v2, δ2,�E1,�E2} (10.34)

where �v1 and �v2 represent the magnitudes of the first two impulsive changes
of velocity, δ1 and δ2 their respective directions (relative to the local horizontal),
and finally �E1 and �E2 denote the eccentric anomaly variations during the first
two Keplerian arcs of the trajectory. In fact, after the first impulse, the velocity
components vr and vθ change to

vr(t
+
0 ) = vr(t

−
0 )+�v1 sin δ1 and vθ (t

+
0 ) = vθ (t

−
0 )+�v1 cos δ1 (10.35)

whereas r(t+0 ) = r(t−0 ) = R1 (the superscript “C” is omitted henceforth). The second
impulse occurs at the time t1. In the time interval [t+0 , t−1 ], the trajectory is Keplerian,
and therefore the following relationships hold

a1 = μr(t+0 )
2μ− r(t+0 )[v2

r (t
+
0 )+ v2

θ (t
+
0 )]

(10.36)

e1 =
√

1− r2(t+0 )v
2
θ (t

+
0 )

μa1
(10.37)

cos[f (t+0 )] =
vθ (t

+
0 )

e1

√
a1(1− e2

1)

μ
− 1

e1
and sin[f (t+0 )] =

vr(t
+
0 )

e1

√
a1(1− e2

1)

μ

(10.38)

where a1 and e1 respectively represent the semi-major axis and the eccentricity of
the first Keplerian arc of the trajectory, and f (t+0 ) denotes the true anomaly at t+0 .
The eccentric anomaly at t+0 , E(t+0 ), is given by the well known formulas

sin[E(t+0 )] =
sin[f (t+0 )]

√
1− e2

1

1+ e1 cos[f (t+0 )]
and cos[E(t+0 )] =

cos[f (t+0 )] + e1

1+ e1 cos[f (t+0 )]
. (10.39)

Immediately before the second impulsive change of velocity, the eccentric anomaly
E(t−1 ) is E(t−1 ) = E(t+0 )+�E1. The corresponding true anomaly, f (t−1 ), can be derived
by employing the counterparts of Equations (10.39)

sin[f (t−1 )] =
sin[E(t−1 )]

√
1− e2

1

1− e1 cos[E(t−1 )]
and cos[f (t−1 )] =

cos[E(t−1 )] − e1

1− e1 cos[E(t−1 )]
. (10.40)
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Hence, the radius and the velocity components before the second impulse are
given by

r(t−1 ) = a1{1− e1 cos[E(t−1 )]} (10.41)

vr(t
−
1 ) =
√

μ

a1(1− e2
1)

e1 sin[f (t−1 )] vθ (t
−
1 ) =
√

μ

a1(1− e2
1)
{1+ e1 cos[f (t−1 )]}.

(10.42)

The second impulse changes the velocity components vr and vθ analogously to what
occurs at the application of the first impulse (cf. Equations [10.35]). In the time
interval [t+1 , t−2 ] the trajectory is Keplerian, and therefore the same steps that lead to
determining a1, e1, f (t+0 ), and E(t+0 ) (for the first Keplerian arc) can be repeated to
calculate a2, e2, f (t+1 ), and E(t+1 ) (for the second Keplerian arc). Immediately before
the third impulsive change of velocity, the eccentric anomaly is E(t−2 ) = E(t+1 )+�E2.
The corresponding true anomaly, f (t−2 ), can be derived in the same way in which f (t−1 )
was obtained from E(t−1 ). The radius and the velocity components before the third
impulse are given by

r(t−2 ) = a2{1− e2 cos[E(t−2 )]} (10.43)

vr(t
−
2 ) =
√

μ

a2(1− e2
2)

e2 sin[f (t−2 )] vθ (t
−
2 ) =
√

μ

a2(1− e2
2)
{1+ e2 cos[f (t−2 )]}.

(10.44)

The times at which the second and third impulse occur can be easily calculated
through Kepler’s law

t1 =
√

a3
1

μ
{�E1 − e1{sin[E(t−1 )] − sin[E(t+0 )]}} (10.45)

t2 = t1 +
√

a3
2

μ
{�E2 − e2{sin[E(t−2 )] − sin[E(t+1 )]}}. (10.46)

The third and fourth impulsive changes of velocity can be determined (in their respec-
tive magnitudes and directions) through the use of Lambert’s theorem. In fact, at
the time t2, both the angular separation from the desired final position and the time
available to complete the rendezvous are known, as well as the radius at t2 (given by
Equation [10.43]) and the terminal radius (which is R1). In particular, the angular
separation between the position vector at t2 and the final position is given by

�ξL = ξ(tf )− [f (t−1 )− f (t+0 )] − [f (t−2 )− f (t+1 )] (10.47)

whereas the time available to complete the rendezvous is simply

�tL = tf − t2. (10.48)
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Hence, given r(t2), r(tf ) (= R1), �ξL, and �tL, a standard Lambert solver, which
follows the steps described in [46], yields the value of the semi-major axis a3, as well
as the eccentricity e3 of the third Keplerian arc of trajectory, which finally connects C
with T in the specified time. It is worth mentioning that multiple-revolution solutions
are not considered for the third Keplerian arc. Once a3 and e3 are known, the true
anomalies f (t+2 ) and f (t−f ) can be obtained through the following three relations:

r(t2) = a3(1− e2
3)

1+ e3 cos[f (t+2 )]
(10.49)

R1 = a3(1− e2
3)

1+ e3 cos[f (t−f )]
(10.50)

f (t−f ) = f (t+2 )+�ξL. (10.51)

After inserting Equation (10.51) into Equation (10.50), the two relationships (10.49)
and (10.50) yield f (t+2 )

cos[f (t+2 )] =
p3 − r(t2)

e3r(t2)
(10.52)

sin[f (t+2 )] =
r(t2)R1e3 + R1p3e3 cos�ξL − r(t2)p3e3 − r(t2)R1e3 cos�ξL

r(t2)R1e2
3 sin�ξL

(10.53)

where p3
�= a3(1 − e2

3). The values of f (t+2 ) and f (t−f ) (given by Equation [10.51]),
allow obtaining both the components of the velocity at the corresponding times,
(vr(t

+
2 ), vθ (t

+
2 )) and (vr(t

−
f ), vθ (t

−
f )). At the times t2 and tf , the velocity impulsively

changes, and relationships formally identical to Equations (10.35) hold. As a result,
it is straightforward to derive the magnitudes and directions of the last two impulsive
changes of velocity

�v3 =
√
[vr(t

+
2 )− vr(t

−
2 )]2 + [vθ (t+2 )− vθ (t

−
2 )]2 (10.54)

sin δ3 = vr(t
+
2 )− vr(t

−
2 )

�v3
and cos δ3 = vθ (t

+
2 )− vθ (t

−
2 )

�v3
(10.55)

�v4 =
√
[vr(t

+
f )− vr(t

−
f )]2 + [vθ (t+f )− vθ (t

−
f )]2 =

√
v2

r (t
−
f )+
[√

μ

R1
− vθ (t

−
f )

]2
(10.56)

sin δ4 =
vr(t

+
f )− vr(t

−
f )

�v4
=
−vr(t

−
f )

�v4
and cos δ4 =

vθ (t
+
f )− vθ (t

−
f )

�v4
=

√
μ

R1
− vθ (t

−
f )

�v4
.

(10.57)

The globally optimal rendezvous, which is sought by the PSO algorithm, mini-
mizes the characteristic velocity of the overall orbital maneuver. This means that
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the objective function for the problem at hand is

J = �v1 +�v2 +�v3 +�v4. (10.58)

The Keplerian arcs that compose the overall rendezvous trajectory are assumed
to be of elliptic type. This means that the following constraints must hold

a1 > 0 a2 > 0 (10.59)

in conjunction with the following time constraint [46]

�tL >
1
3

√
2
μ
[s3/2 − sign(sin�ξL)(s− c)3/2] (10.60)

where

c =
√
[r(t2)]2 + R2

1 − 2r(t2)R1 cos�ξL and s = r(t2)+ R1 + c
2

. (10.61)

Due to Lambert’s theorem (cf. Reference [46]), this last constraint ensures that also
the third Keplerian arc is of elliptic type (i.e., a3 > 0).

10.5.2 Numerical Results

For the problem at hand, the PSO algorithm employs 50 particles (N = 50) and
is run for 1,000 iterations (NIT = 1,000). Each particle includes the values of the
six unknown parameters

χ =
[
�v1 δ1 �v2 δ2 �E1 �E2

]T
. (10.62)

The problem is solved by employing a normalized set of units: the radius of the
initial orbit represents the distance unit (DU), whereas the time unit (TU) is such
that μ = 1 DU3/TU2. The transfer time �tT is set to 4.6π TU (tf = �tT = 4.6π
TU). The search space is defined by the following inequalities

0
DU
TU

≤ �vi ≤ 0.2
DU
TU

0 ≤ δi ≤ 2π 0 ≤ �Ei ≤ 4π (i = 1, 2). (10.63)

The PSO algorithm assigns an infinite value of the objective function to the particles
that violate at least one of the inequality constraints (10.59) and (10.60).

Tables 10.3 and 10.4 collect the results of the optimization process, that is, the
optimal locations, directions, and magnitudes of the four impulses associated with
the (globally) optimal rendezvous trajectory, as well the values of the semi-major
axis and eccentricity of the three Keplerian arcs. Figure 10.8 illustrates the objective
evolution as a function of the iteration index and points out that the PSO algorithm
needs only 300 iterations to locate the globally optimal solution. The remaining
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Table 10.3. Results related with the optimal four-impulse rendezvous

Impulse �v (DU/TU) δ (deg) r (DU) ξ (deg) t (TU)

1 0.0511846 192.776 1 0 0
2 0.0307293 182.507 0.832237 203.928 2.996029
3 0.0307293 357.493 0.832237 84.072 11.455296
4 0.0511846 12.776 1 288 14.451326

Table 10.4. Four-impulse rendezvous: results for the Keplerian
arcs of the trajectory

Keplerian arc 1 2 3

Semi-major axis a (DU) 0.911399 0.857262 0.911399
Eccentricity e 0.0979352 0.0540120 0.0979351
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Figure 10.8. Four-impulse rendezvous: objective evolution as a function of the iteration index.

iterations are employed for refinement. Figure 10.9 portrays the optimal rendezvous
trajectory, corresponding to a minimum value of J equal to 0.163828 DU/TU. The
solution obtained with the PSO method is virtually indistinguishable from that found
by Colasurdo and Pastrone [45], and exhibits a high degree of symmetry. In fact, from
Tables 10.3 and 10.4, it is apparent that

�v1 � �v4 �v2 � �v3 mod(δ1 − δ4, 2π) = π mod(δ2 + δ3, 2π) = π

r(t1) � r(t2) ξ(t1)− ξ(t0) � ξ(tf )− ξ(t2) t1 − t0 � tf − t2 a1 � a3 e1 � e3.
(10.64)
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Figure 10.9. Optimal four-impulse rendezvous trajectory.

For the problem at hand it is relatively straightforward to demonstrate that an optimal
solution must be symmetric (i.e., that all the relations (10.64) must hold precisely).
Hence, the fact that the relationships (10.64) are satisfied to a great accuracy (up to
six digits) actually represents an additional proof of optimality of the solution found
with the PSO methodology.

10.6 Optimal Low-Thrust Orbital Transfers

In this section the optimization of low-thrust orbital transfers between two coplanar
circular orbits is considered. The problem consists of determining the thrust pointing
angle time history that minimizes the time of flight while satisfying the terminal con-
ditions for injection into the terminal orbit. For the problem at hand, the necessary
conditions for optimality are employed to express the control variable (i.e., the thrust
pointing angle) as a function of the costate.

10.6.1 Problem Definition

At the initial time t0 (= 0), the spacecraft is placed in a circular orbit of radius
R1. The terminal circular orbit has radius R2. Therefore, if vr , vθ , and r represent,
respectively, the radial and the horizontal components of velocity and the radius, the
initial conditions (at t0) and the final conditions (at tf ) are given by

vr(t0) = 0 vθ (t0) =
√

μ

R1
r(t0) = R1 (10.65)
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vr(tf ) = 0 vθ (tf ) =
√

μ

R2
r(tf ) = R2 (10.66)

where μ denotes the gravitational parameter of the attracting body. The spacecraft
is assumed to employ a constant (low) thrust during the entire time of flight, and
therefore the thrust-to-mass ratio (T/m) has the following expression

T
m
= T

m0 − T
c
(t − t0)

= cn0

c− n0(t − t0)
. (10.67)

In Equation (10.67), m0 is the initial spacecraft mass, and therefore n0 represents
the thrust-to-mass ratio at t0, whereas c is the effective exhaust velocity of the
propulsive system. Note that Equation (10.67) implies that minimizing the time of
flight will also maximize the remaining mass, which means it will also minimize the
propellant required.

The spacecraft equations of motion (also referred to as the state equations)
involve the two components of velocity and the radius r

v̇r = −μ− rv2
θ

r2 + T
m

sin δ v̇θ = −vrvθ
r
+ T

m
cos δ ṙ = vr . (10.68)

The angle δ is the thrust pointing angle (relative to the local horizontal). The state

vector is x �= [x1 x2 x3]T = [vr vθ r]T , whereas the control vector includes δ

only: u �= δ. If t0 is set to 0, the objective function to be minimized is given by

J = tf . (10.69)

To state the necessary conditions for optimality, a Hamiltonian and a function
of terminal conditions are introduced as

H = λ1

[
−μE − x3x2

2

x2
3

+ T
m

sin u

]
+ λ2

[
−x1x2

x3
+ T

m
cos u
]
+ λ3x1 (10.70)


 = tf + υ1x1f + υ2

[
x2f −
√

μ

R2

]
+ υ3[x3f − R2] (xkf

�= xk(tf ), k = 1, 2, 3)

(10.71)

where λ (�= [λ1 λ2 λ3]T ) is the (time-varying) adjoint (or costate) variable conju-

gate to the state Equations (10.68), and υ (�= [υ1 υ2 υ3]T ) is the time-independent
adjoint variable conjugate to the boundary conditions (10.66). The necessary con-
ditions for optimality include the following set of adjoint equations for λ∗ (in this
section the superscript “*” will denote the optimal value of the respective variable
henceforth)

λ̇∗1 = −λ∗3 +
x∗2λ

∗
2

x∗3
λ̇∗2 =

−2x∗2λ
∗
1 + x∗1λ

∗
2

x∗3
λ̇∗3 =

(x∗2)2λ
∗
1 − x∗1x∗2λ

∗
2

(x∗3)2
− 2μλ∗1

(x∗3)3
.

(10.72)
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In addition, the optimal control δ∗ can be expressed as a function of the costate
through the Pontryagin minimum principle

δ∗ = arg min
δ

H ⇒ cos δ∗ = − λ∗2√
(λ∗1)2 + (λ∗2)2

and sin δ∗ = − λ∗1√
(λ∗1)2 + (λ∗2)2

.

(10.73)

Lastly, as the final time is unspecified, the following transversality condition
must hold:

H(tf )+ ∂


∂tf
= 0 ⇒ cn0

c− n0t∗f

√
[λ∗1(t∗f )]2 + [λ∗2(t∗f )]2 − 1 = 0. (10.74)

The necessary conditions for optimality allow translating the optimal control prob-
lem into a two-point boundary-value problem involving Equations (10.65), (10.66),
(10.68) in conjunction with Equations (10.72)–(10.74). The unknowns are repre-
sented by the state x, the control u, the adjoint variables λ and υ, and the time of
flight tf .

The method of solution employed for this problem is based on the following
points:

(a) the control is expressed as a function of the costate through Equation (10.73)
(b) the adjoint equations (10.72) are numerically integrated together with the state

equations (10.68) after picking the time of flight tf and the values of the
components of λ at the initial time

(c) the final conditions (10.66) and the transversality condition (10.74) are checked

The problem reduces to the determination of four unknown parameters
(λ1(0), λ2(0), λ3(0), tf ) that lead the dynamical system to satisfying the four boundary
conditions (10.66) and (10.74).

10.6.2 Constraint Reduction

As mentioned in Section 10.2, equality constraints reduce the search space where
feasible solutions can be located. However, what will be demonstrated is that for the
problem at hand the transversality condition can be neglected by the PSO algorithm.

To do this, one has first to recognize the special structure of the costate
equations (10.72), which are homogeneous in λ. This circumstance implies that if
an optimization algorithm is capable of finding some initial value of λ such that

λ1(0) = aλ∗1(0) λ2(0) = aλ∗2(0) λ3(0) = aλ∗3(0) (a > 0) (10.75)

then the same proportionality (10.75) holds between λ and the optimal λ∗ at any t,
due to homogeneity of Equations (10.72). Moreover, the control u can be written
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as a function of λ through Equation (10.73), and one can recognize that u coincides
with the optimal control u∗

cos δ = − λ2√
λ2

1 + λ2
2

= − aλ∗2
a
√
(λ∗1)2 + (λ∗2)2

= − λ∗2√
(λ∗1)2 + (λ∗2)2

≡ cos δ∗ (10.76)

sin δ = − λ1√
λ2

1 + λ2
2

= − aλ∗1
a
√
(λ∗1)2 + (λ∗2)2

= − λ∗1√
(λ∗1)2 + (λ∗2)2

≡ sin δ∗. (10.77)

This circumstance implies that if the conditions (10.75) hold then the final conditions
(10.66) are fulfilled at the minimum final time t∗f . In contrast, the transversality
condition is violated, because the value of H(t∗f ), due to Equation (10.74), turns out
to be

H(t∗f ) = −
cn0

c− n0t∗f

√
λ2

1(t
∗
f )+ λ2

2(t
∗
f )

= −a
cn0

c− n0t∗f

√
[λ∗1(t∗f )]2 + [λ∗2(t∗f )]2 = −a �= −1. (10.78)

Therefore, provided that the proportionality condition holds, the optimal control
u∗ can be determined without considering the transversality condition, which in fact
is ignorable in this context. Thus this condition is discarded in order to reduce the
number of equality constraints considered by the PSO algorithm, with the intent of
improving its performance. Once a costate λ proportional to the optimal costate λ∗
has been determined, it can be suitably scaled. In fact, from Equation (10.78), it is
apparent that the proportionality coefficient is simply given by a = −H(t∗f ). In short,
the PSO algorithm can follow three steps:

(a) consider only the three conditions (10.66) as the equality constraints of the
problem

(b) once proper values of {λ1(0), λ2(0), λ3(0), tf } (such that Equations [10.66] are
satisfied to the desired accuracy) have been determined, calculate a(= −H(t∗f ))

(c) scale λ by the coefficient a to obtain λ∗, which fulfills also the transversality
condition (10.74)

10.6.3 Numerical Solution

Each particle that forms the swarm includes the four unknown parameters

χ = [λ1(0) λ2(0) λ3(0) tf
]T . (10.79)

The problem is solved by employing a normalized set of units: the radius of the
initial orbit represents the distance unit (DU), whereas the time unit (TU) is such
that μ = 1 DU3/TU2. Two orbital transfers are considered as illustrative examples,
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corresponding to two different radii of the terminal orbit: (a) R2 = 2 DU and (b)
R2 = 5 DU. The optimal values of the four unknown parameters are sought in the
following ranges

1 TU ≤ tf ≤ 100 TU and − 1 ≤ λk(0) ≤ 1 (k = 1, 2, 3). (10.80)

For both cases, the following values of c and n0 are employed: c = 1.5 DU/TU and
n0 = 0.01 DU/TU2.

Three equality constraints (related with the terminal conditions for orbit injec-
tion) are involved in the problem at hand. The control is expressed as a function of
the costate through the necessary conditions for optimality (10.73), and therefore
the satisfaction of the terminal conditions for orbit injection suffices to ensure the
optimality of the solution. Hence, the following fitness function can be considered
by the PSO algorithm

J̃ =
3∑

k=1

αk|dk| with d1 = vr(tf ) d2 = vθ (tf )−
√

μ

R2
d3 = r(tf )− R2. (10.81)

For this example, the PSO algorithm uses a population of 50 particles (N = 50)
and is run for 500 iterations (NIT = 500); αk is set to 1 (for k = 1, 2, 3). Figure 10.10
illustrates the objective evolution as a function of the iteration index and points out
that the PSO algorithm produces very accurate results also after 300 iterations in
both cases. Figure 10.11 illustrates the optimal trajectories and the corresponding

0 100 400 500200 300

Iteration Index j

10–15

10–10

10–5

100

105

J
(j

)
op

t

R2 = 2 DU

R2 = 5 DU

Figure 10.10. Low-thrust orbital transfers: objective evolution as a function of the iteration
index.
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optimal control law time histories and adjoint variables for the two cases taken into
account. The two transfers of interest are completed in the following minimum times:

(a) R2 = 2 DU: t∗f = 27.970 TU

(b) R2 = 5 DU: t∗f = 54.544 TU
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It is worth noticing that the constraint reduction allows arbitrarily defining the
search space for the initial values of the Lagrange multipliers. This means that they
can be sought in the interval −1 ≤ λk(0) ≤ 1 by the PSO algorithm, and only a
posteriori their correct values (fulfilling also the transversality condition (10.74)) can
be recovered, as discussed in Section 10.6.2.

10.7 Concluding Remarks

This chapter describes the use of an effective stochastic methodology for optimizing
space trajectories, namely the particle swarm optimization technique. This method
does not require continuity and differentiability of the objective function, does not
need any guess to generate a solution, and is well suited for finding global optima. It
is also based on very intuitive concepts, which makes it very easy to program.

A variety of space trajectory optimization problems are considered and a simple
implementation of the PSO methodology is applied to their solution. The method
proves to be capable of determining Lyapunov and periodic lunar orbits in the con-
text of the restricted three-body problem with great accuracy, after formulating
the problem as a parameter optimization problem. Then the algorithm has been
successfully applied to the optimization of a four-impulse rendezvous trajectory, a
well-known problem admitting multiple local minima. With regard to this problem,
the PSO method proves extremely effective and accurate in locating the globally
optimal solution. Finally, the last section considers the optimization of low-thrust
orbital transfers, where the time of flight is to be minimized. For this problem the
necessary conditions for optimality are employed to express the control variable as
a function of the adjoint variables.

This research demonstrates that the PSO technique indeed represents an effi-
cient, reliable, and accurate method of determining optimal space trajectories despite
its intuitiveness and simplicity. However, as alternative stochastic algorithms, the
PSO methodology can occasionally encounter difficulties when dealing with con-
strained problems (especially in the presence of equality constraints). This study
successfully employs two distinct approaches for treating equality and inequality
constraints and shows the way of reducing the number of equality constraints, albeit
with regard to a particular type of optimization problem.

The number of particles to employ in each application depends on the problem
complexity. A greater number of unknown parameters require a greater number of
particles. Of course, an increased density of particles allows a more effective explo-
ration of the search space, and this circumstance implies an enhanced probability
of detecting the globally optimal solution, particularly with regard to problems with
multiple (local) minima. For all of the optimization problems considered in this
chapter, the number of particles (as well as the number of iterations) was adjusted
up to obtaining the desired result at the first attempt.

In general, in the presence of unsatisfactory results, several options are available
to a potential user for improving the performance attainable by a PSO algorithm.
First, the number of particles and iterations can be increased to achieve more
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satisfactory results. Secondly, the fine-tuning of the weighting coefficients in the
formula for velocity update could yield improved results, at least with regard to
specific cases. However, it should be noted that the choice of weighting coefficients
(10.6) gave satisfactory results for the several qualitatively different orbital opti-
mization problems of this chapter. In addition, two versions of the PSO algorithm
exist (i.e., the local version and the global version), with their respective advantages
and drawbacks. The local version can be employed if the global version is suspected
to have yielded a local minimum. However, swarming theory is a fast-developing
discipline, and one can conclude that the proper choice of PSO algorithm is
problem-dependent.
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